]> git.proxmox.com Git - qemu.git/blame - qemu-doc.texi
QMP: Don't use do_info()
[qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
e080e785
SW
4
5@documentlanguage en
6@documentencoding UTF-8
7
8f40c388 8@settitle QEMU Emulator User Documentation
debc7065
FB
9@exampleindent 0
10@paragraphindent 0
11@c %**end of header
386405f7 12
a1a32b05
SW
13@ifinfo
14@direntry
15* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
16@end direntry
17@end ifinfo
18
0806e3f6 19@iftex
386405f7
FB
20@titlepage
21@sp 7
8f40c388 22@center @titlefont{QEMU Emulator}
debc7065
FB
23@sp 1
24@center @titlefont{User Documentation}
386405f7
FB
25@sp 3
26@end titlepage
0806e3f6 27@end iftex
386405f7 28
debc7065
FB
29@ifnottex
30@node Top
31@top
32
33@menu
34* Introduction::
35* Installation::
36* QEMU PC System emulator::
37* QEMU System emulator for non PC targets::
83195237 38* QEMU User space emulator::
debc7065 39* compilation:: Compilation from the sources
7544a042 40* License::
debc7065
FB
41* Index::
42@end menu
43@end ifnottex
44
45@contents
46
47@node Introduction
386405f7
FB
48@chapter Introduction
49
debc7065
FB
50@menu
51* intro_features:: Features
52@end menu
53
54@node intro_features
322d0c66 55@section Features
386405f7 56
1f673135
FB
57QEMU is a FAST! processor emulator using dynamic translation to
58achieve good emulation speed.
1eb20527
FB
59
60QEMU has two operating modes:
0806e3f6 61
d7e5edca 62@itemize
7544a042 63@cindex operating modes
0806e3f6 64
5fafdf24 65@item
7544a042 66@cindex system emulation
1f673135 67Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
68example a PC), including one or several processors and various
69peripherals. It can be used to launch different Operating Systems
70without rebooting the PC or to debug system code.
1eb20527 71
5fafdf24 72@item
7544a042 73@cindex user mode emulation
83195237
FB
74User mode emulation. In this mode, QEMU can launch
75processes compiled for one CPU on another CPU. It can be used to
1f673135
FB
76launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77to ease cross-compilation and cross-debugging.
1eb20527
FB
78
79@end itemize
80
7c3fc84d 81QEMU can run without an host kernel driver and yet gives acceptable
5fafdf24 82performance.
322d0c66 83
52c00a5f
FB
84For system emulation, the following hardware targets are supported:
85@itemize
7544a042
SW
86@cindex emulated target systems
87@cindex supported target systems
9d0a8e6f 88@item PC (x86 or x86_64 processor)
3f9f3aa1 89@item ISA PC (old style PC without PCI bus)
52c00a5f 90@item PREP (PowerPC processor)
d45952a0 91@item G3 Beige PowerMac (PowerPC processor)
9d0a8e6f 92@item Mac99 PowerMac (PowerPC processor, in progress)
ee76f82e 93@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
c7ba218d 94@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
d9aedc32 95@item Malta board (32-bit and 64-bit MIPS processors)
88cb0a02 96@item MIPS Magnum (64-bit MIPS processor)
9ee6e8bb
PB
97@item ARM Integrator/CP (ARM)
98@item ARM Versatile baseboard (ARM)
0ef849d7 99@item ARM RealView Emulation/Platform baseboard (ARM)
ef4c3856 100@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
9ee6e8bb
PB
101@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
707e011b 103@item Freescale MCF5208EVB (ColdFire V2).
209a4e69 104@item Arnewsh MCF5206 evaluation board (ColdFire V2).
02645926 105@item Palm Tungsten|E PDA (OMAP310 processor)
c30bb264 106@item N800 and N810 tablets (OMAP2420 processor)
57cd6e97 107@item MusicPal (MV88W8618 ARM processor)
ef4c3856
AZ
108@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109@item Siemens SX1 smartphone (OMAP310 processor)
4af39611 110@item Syborg SVP base model (ARM Cortex-A8).
48c50a62
EI
111@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
112@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
52c00a5f 113@end itemize
386405f7 114
7544a042
SW
115@cindex supported user mode targets
116For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
117ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
118Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
0806e3f6 119
debc7065 120@node Installation
5b9f457a
FB
121@chapter Installation
122
15a34c63
FB
123If you want to compile QEMU yourself, see @ref{compilation}.
124
debc7065
FB
125@menu
126* install_linux:: Linux
127* install_windows:: Windows
128* install_mac:: Macintosh
129@end menu
130
131@node install_linux
1f673135 132@section Linux
7544a042 133@cindex installation (Linux)
1f673135 134
7c3fc84d
FB
135If a precompiled package is available for your distribution - you just
136have to install it. Otherwise, see @ref{compilation}.
5b9f457a 137
debc7065 138@node install_windows
1f673135 139@section Windows
7544a042 140@cindex installation (Windows)
8cd0ac2f 141
15a34c63 142Download the experimental binary installer at
debc7065 143@url{http://www.free.oszoo.org/@/download.html}.
7544a042 144TODO (no longer available)
d691f669 145
debc7065 146@node install_mac
1f673135 147@section Mac OS X
d691f669 148
15a34c63 149Download the experimental binary installer at
debc7065 150@url{http://www.free.oszoo.org/@/download.html}.
7544a042 151TODO (no longer available)
df0f11a0 152
debc7065 153@node QEMU PC System emulator
3f9f3aa1 154@chapter QEMU PC System emulator
7544a042 155@cindex system emulation (PC)
1eb20527 156
debc7065
FB
157@menu
158* pcsys_introduction:: Introduction
159* pcsys_quickstart:: Quick Start
160* sec_invocation:: Invocation
161* pcsys_keys:: Keys
162* pcsys_monitor:: QEMU Monitor
163* disk_images:: Disk Images
164* pcsys_network:: Network emulation
165* direct_linux_boot:: Direct Linux Boot
166* pcsys_usb:: USB emulation
f858dcae 167* vnc_security:: VNC security
debc7065
FB
168* gdb_usage:: GDB usage
169* pcsys_os_specific:: Target OS specific information
170@end menu
171
172@node pcsys_introduction
0806e3f6
FB
173@section Introduction
174
175@c man begin DESCRIPTION
176
3f9f3aa1
FB
177The QEMU PC System emulator simulates the
178following peripherals:
0806e3f6
FB
179
180@itemize @minus
5fafdf24 181@item
15a34c63 182i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 183@item
15a34c63
FB
184Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
185extensions (hardware level, including all non standard modes).
0806e3f6
FB
186@item
187PS/2 mouse and keyboard
5fafdf24 188@item
15a34c63 1892 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
190@item
191Floppy disk
5fafdf24 192@item
3a2eeac0 193PCI and ISA network adapters
0806e3f6 194@item
05d5818c
FB
195Serial ports
196@item
c0fe3827
FB
197Creative SoundBlaster 16 sound card
198@item
199ENSONIQ AudioPCI ES1370 sound card
200@item
e5c9a13e
AZ
201Intel 82801AA AC97 Audio compatible sound card
202@item
c0fe3827 203Adlib(OPL2) - Yamaha YM3812 compatible chip
b389dbfb 204@item
26463dbc
AZ
205Gravis Ultrasound GF1 sound card
206@item
cc53d26d 207CS4231A compatible sound card
208@item
b389dbfb 209PCI UHCI USB controller and a virtual USB hub.
0806e3f6
FB
210@end itemize
211
3f9f3aa1
FB
212SMP is supported with up to 255 CPUs.
213
1d1f8c33 214Note that adlib, gus and cs4231a are only available when QEMU was
215configured with --audio-card-list option containing the name(s) of
e5178e8d 216required card(s).
c0fe3827 217
15a34c63
FB
218QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
219VGA BIOS.
220
c0fe3827
FB
221QEMU uses YM3812 emulation by Tatsuyuki Satoh.
222
26463dbc
AZ
223QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
224by Tibor "TS" Schütz.
423d65f4 225
720036a5 226Not that, by default, GUS shares IRQ(7) with parallel ports and so
227qemu must be told to not have parallel ports to have working GUS
228
229@example
230qemu dos.img -soundhw gus -parallel none
231@end example
232
233Alternatively:
234@example
235qemu dos.img -device gus,irq=5
236@end example
237
238Or some other unclaimed IRQ.
239
cc53d26d 240CS4231A is the chip used in Windows Sound System and GUSMAX products
241
0806e3f6
FB
242@c man end
243
debc7065 244@node pcsys_quickstart
1eb20527 245@section Quick Start
7544a042 246@cindex quick start
1eb20527 247
285dc330 248Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
249
250@example
285dc330 251qemu linux.img
0806e3f6
FB
252@end example
253
254Linux should boot and give you a prompt.
255
6cc721cf 256@node sec_invocation
ec410fc9
FB
257@section Invocation
258
259@example
0806e3f6 260@c man begin SYNOPSIS
89dfe898 261usage: qemu [options] [@var{disk_image}]
0806e3f6 262@c man end
ec410fc9
FB
263@end example
264
0806e3f6 265@c man begin OPTIONS
d2c639d6
BS
266@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
267targets do not need a disk image.
ec410fc9 268
5824d651 269@include qemu-options.texi
ec410fc9 270
3e11db9a
FB
271@c man end
272
debc7065 273@node pcsys_keys
3e11db9a
FB
274@section Keys
275
276@c man begin OPTIONS
277
a1b74fe8
FB
278During the graphical emulation, you can use the following keys:
279@table @key
f9859310 280@item Ctrl-Alt-f
7544a042 281@kindex Ctrl-Alt-f
a1b74fe8 282Toggle full screen
a0a821a4 283
c4a735f9 284@item Ctrl-Alt-u
7544a042 285@kindex Ctrl-Alt-u
c4a735f9 286Restore the screen's un-scaled dimensions
287
f9859310 288@item Ctrl-Alt-n
7544a042 289@kindex Ctrl-Alt-n
a0a821a4
FB
290Switch to virtual console 'n'. Standard console mappings are:
291@table @emph
292@item 1
293Target system display
294@item 2
295Monitor
296@item 3
297Serial port
a1b74fe8
FB
298@end table
299
f9859310 300@item Ctrl-Alt
7544a042 301@kindex Ctrl-Alt
a0a821a4
FB
302Toggle mouse and keyboard grab.
303@end table
304
7544a042
SW
305@kindex Ctrl-Up
306@kindex Ctrl-Down
307@kindex Ctrl-PageUp
308@kindex Ctrl-PageDown
3e11db9a
FB
309In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
310@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
311
7544a042 312@kindex Ctrl-a h
a0a821a4
FB
313During emulation, if you are using the @option{-nographic} option, use
314@key{Ctrl-a h} to get terminal commands:
ec410fc9
FB
315
316@table @key
a1b74fe8 317@item Ctrl-a h
7544a042 318@kindex Ctrl-a h
d2c639d6 319@item Ctrl-a ?
7544a042 320@kindex Ctrl-a ?
ec410fc9 321Print this help
3b46e624 322@item Ctrl-a x
7544a042 323@kindex Ctrl-a x
366dfc52 324Exit emulator
3b46e624 325@item Ctrl-a s
7544a042 326@kindex Ctrl-a s
1f47a922 327Save disk data back to file (if -snapshot)
20d8a3ed 328@item Ctrl-a t
7544a042 329@kindex Ctrl-a t
d2c639d6 330Toggle console timestamps
a1b74fe8 331@item Ctrl-a b
7544a042 332@kindex Ctrl-a b
1f673135 333Send break (magic sysrq in Linux)
a1b74fe8 334@item Ctrl-a c
7544a042 335@kindex Ctrl-a c
1f673135 336Switch between console and monitor
a1b74fe8 337@item Ctrl-a Ctrl-a
7544a042 338@kindex Ctrl-a a
a1b74fe8 339Send Ctrl-a
ec410fc9 340@end table
0806e3f6
FB
341@c man end
342
343@ignore
344
1f673135
FB
345@c man begin SEEALSO
346The HTML documentation of QEMU for more precise information and Linux
347user mode emulator invocation.
348@c man end
349
350@c man begin AUTHOR
351Fabrice Bellard
352@c man end
353
354@end ignore
355
debc7065 356@node pcsys_monitor
1f673135 357@section QEMU Monitor
7544a042 358@cindex QEMU monitor
1f673135
FB
359
360The QEMU monitor is used to give complex commands to the QEMU
361emulator. You can use it to:
362
363@itemize @minus
364
365@item
e598752a 366Remove or insert removable media images
89dfe898 367(such as CD-ROM or floppies).
1f673135 368
5fafdf24 369@item
1f673135
FB
370Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
371from a disk file.
372
373@item Inspect the VM state without an external debugger.
374
375@end itemize
376
377@subsection Commands
378
379The following commands are available:
380
2313086a 381@include qemu-monitor.texi
0806e3f6 382
1f673135
FB
383@subsection Integer expressions
384
385The monitor understands integers expressions for every integer
386argument. You can use register names to get the value of specifics
387CPU registers by prefixing them with @emph{$}.
ec410fc9 388
1f47a922
FB
389@node disk_images
390@section Disk Images
391
acd935ef
FB
392Since version 0.6.1, QEMU supports many disk image formats, including
393growable disk images (their size increase as non empty sectors are
13a2e80f
FB
394written), compressed and encrypted disk images. Version 0.8.3 added
395the new qcow2 disk image format which is essential to support VM
396snapshots.
1f47a922 397
debc7065
FB
398@menu
399* disk_images_quickstart:: Quick start for disk image creation
400* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 401* vm_snapshots:: VM snapshots
debc7065 402* qemu_img_invocation:: qemu-img Invocation
975b092b 403* qemu_nbd_invocation:: qemu-nbd Invocation
19cb3738 404* host_drives:: Using host drives
debc7065 405* disk_images_fat_images:: Virtual FAT disk images
75818250 406* disk_images_nbd:: NBD access
debc7065
FB
407@end menu
408
409@node disk_images_quickstart
acd935ef
FB
410@subsection Quick start for disk image creation
411
412You can create a disk image with the command:
1f47a922 413@example
acd935ef 414qemu-img create myimage.img mysize
1f47a922 415@end example
acd935ef
FB
416where @var{myimage.img} is the disk image filename and @var{mysize} is its
417size in kilobytes. You can add an @code{M} suffix to give the size in
418megabytes and a @code{G} suffix for gigabytes.
419
debc7065 420See @ref{qemu_img_invocation} for more information.
1f47a922 421
debc7065 422@node disk_images_snapshot_mode
1f47a922
FB
423@subsection Snapshot mode
424
425If you use the option @option{-snapshot}, all disk images are
426considered as read only. When sectors in written, they are written in
427a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
428write back to the raw disk images by using the @code{commit} monitor
429command (or @key{C-a s} in the serial console).
1f47a922 430
13a2e80f
FB
431@node vm_snapshots
432@subsection VM snapshots
433
434VM snapshots are snapshots of the complete virtual machine including
435CPU state, RAM, device state and the content of all the writable
436disks. In order to use VM snapshots, you must have at least one non
437removable and writable block device using the @code{qcow2} disk image
438format. Normally this device is the first virtual hard drive.
439
440Use the monitor command @code{savevm} to create a new VM snapshot or
441replace an existing one. A human readable name can be assigned to each
19d36792 442snapshot in addition to its numerical ID.
13a2e80f
FB
443
444Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
445a VM snapshot. @code{info snapshots} lists the available snapshots
446with their associated information:
447
448@example
449(qemu) info snapshots
450Snapshot devices: hda
451Snapshot list (from hda):
452ID TAG VM SIZE DATE VM CLOCK
4531 start 41M 2006-08-06 12:38:02 00:00:14.954
4542 40M 2006-08-06 12:43:29 00:00:18.633
4553 msys 40M 2006-08-06 12:44:04 00:00:23.514
456@end example
457
458A VM snapshot is made of a VM state info (its size is shown in
459@code{info snapshots}) and a snapshot of every writable disk image.
460The VM state info is stored in the first @code{qcow2} non removable
461and writable block device. The disk image snapshots are stored in
462every disk image. The size of a snapshot in a disk image is difficult
463to evaluate and is not shown by @code{info snapshots} because the
464associated disk sectors are shared among all the snapshots to save
19d36792
FB
465disk space (otherwise each snapshot would need a full copy of all the
466disk images).
13a2e80f
FB
467
468When using the (unrelated) @code{-snapshot} option
469(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
470but they are deleted as soon as you exit QEMU.
471
472VM snapshots currently have the following known limitations:
473@itemize
5fafdf24 474@item
13a2e80f
FB
475They cannot cope with removable devices if they are removed or
476inserted after a snapshot is done.
5fafdf24 477@item
13a2e80f
FB
478A few device drivers still have incomplete snapshot support so their
479state is not saved or restored properly (in particular USB).
480@end itemize
481
acd935ef
FB
482@node qemu_img_invocation
483@subsection @code{qemu-img} Invocation
1f47a922 484
acd935ef 485@include qemu-img.texi
05efe46e 486
975b092b
TS
487@node qemu_nbd_invocation
488@subsection @code{qemu-nbd} Invocation
489
490@include qemu-nbd.texi
491
19cb3738
FB
492@node host_drives
493@subsection Using host drives
494
495In addition to disk image files, QEMU can directly access host
496devices. We describe here the usage for QEMU version >= 0.8.3.
497
498@subsubsection Linux
499
500On Linux, you can directly use the host device filename instead of a
4be456f1 501disk image filename provided you have enough privileges to access
19cb3738
FB
502it. For example, use @file{/dev/cdrom} to access to the CDROM or
503@file{/dev/fd0} for the floppy.
504
f542086d 505@table @code
19cb3738
FB
506@item CD
507You can specify a CDROM device even if no CDROM is loaded. QEMU has
508specific code to detect CDROM insertion or removal. CDROM ejection by
509the guest OS is supported. Currently only data CDs are supported.
510@item Floppy
511You can specify a floppy device even if no floppy is loaded. Floppy
512removal is currently not detected accurately (if you change floppy
513without doing floppy access while the floppy is not loaded, the guest
514OS will think that the same floppy is loaded).
515@item Hard disks
516Hard disks can be used. Normally you must specify the whole disk
517(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
518see it as a partitioned disk. WARNING: unless you know what you do, it
519is better to only make READ-ONLY accesses to the hard disk otherwise
520you may corrupt your host data (use the @option{-snapshot} command
521line option or modify the device permissions accordingly).
522@end table
523
524@subsubsection Windows
525
01781963
FB
526@table @code
527@item CD
4be456f1 528The preferred syntax is the drive letter (e.g. @file{d:}). The
01781963
FB
529alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
530supported as an alias to the first CDROM drive.
19cb3738 531
e598752a 532Currently there is no specific code to handle removable media, so it
19cb3738
FB
533is better to use the @code{change} or @code{eject} monitor commands to
534change or eject media.
01781963 535@item Hard disks
89dfe898 536Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
01781963
FB
537where @var{N} is the drive number (0 is the first hard disk).
538
539WARNING: unless you know what you do, it is better to only make
540READ-ONLY accesses to the hard disk otherwise you may corrupt your
541host data (use the @option{-snapshot} command line so that the
542modifications are written in a temporary file).
543@end table
544
19cb3738
FB
545
546@subsubsection Mac OS X
547
5fafdf24 548@file{/dev/cdrom} is an alias to the first CDROM.
19cb3738 549
e598752a 550Currently there is no specific code to handle removable media, so it
19cb3738
FB
551is better to use the @code{change} or @code{eject} monitor commands to
552change or eject media.
553
debc7065 554@node disk_images_fat_images
2c6cadd4
FB
555@subsection Virtual FAT disk images
556
557QEMU can automatically create a virtual FAT disk image from a
558directory tree. In order to use it, just type:
559
5fafdf24 560@example
2c6cadd4
FB
561qemu linux.img -hdb fat:/my_directory
562@end example
563
564Then you access access to all the files in the @file{/my_directory}
565directory without having to copy them in a disk image or to export
566them via SAMBA or NFS. The default access is @emph{read-only}.
567
568Floppies can be emulated with the @code{:floppy:} option:
569
5fafdf24 570@example
2c6cadd4
FB
571qemu linux.img -fda fat:floppy:/my_directory
572@end example
573
574A read/write support is available for testing (beta stage) with the
575@code{:rw:} option:
576
5fafdf24 577@example
2c6cadd4
FB
578qemu linux.img -fda fat:floppy:rw:/my_directory
579@end example
580
581What you should @emph{never} do:
582@itemize
583@item use non-ASCII filenames ;
584@item use "-snapshot" together with ":rw:" ;
85b2c688
FB
585@item expect it to work when loadvm'ing ;
586@item write to the FAT directory on the host system while accessing it with the guest system.
2c6cadd4
FB
587@end itemize
588
75818250
TS
589@node disk_images_nbd
590@subsection NBD access
591
592QEMU can access directly to block device exported using the Network Block Device
593protocol.
594
595@example
596qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
597@end example
598
599If the NBD server is located on the same host, you can use an unix socket instead
600of an inet socket:
601
602@example
603qemu linux.img -hdb nbd:unix:/tmp/my_socket
604@end example
605
606In this case, the block device must be exported using qemu-nbd:
607
608@example
609qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
610@end example
611
612The use of qemu-nbd allows to share a disk between several guests:
613@example
614qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
615@end example
616
617and then you can use it with two guests:
618@example
619qemu linux1.img -hdb nbd:unix:/tmp/my_socket
620qemu linux2.img -hdb nbd:unix:/tmp/my_socket
621@end example
622
1d45f8b5
LV
623If the nbd-server uses named exports (since NBD 2.9.18), you must use the
624"exportname" option:
625@example
626qemu -cdrom nbd:localhost:exportname=debian-500-ppc-netinst
627qemu -cdrom nbd:localhost:exportname=openSUSE-11.1-ppc-netinst
628@end example
629
debc7065 630@node pcsys_network
9d4fb82e
FB
631@section Network emulation
632
4be456f1 633QEMU can simulate several network cards (PCI or ISA cards on the PC
41d03949
FB
634target) and can connect them to an arbitrary number of Virtual Local
635Area Networks (VLANs). Host TAP devices can be connected to any QEMU
636VLAN. VLAN can be connected between separate instances of QEMU to
4be456f1 637simulate large networks. For simpler usage, a non privileged user mode
41d03949
FB
638network stack can replace the TAP device to have a basic network
639connection.
640
641@subsection VLANs
9d4fb82e 642
41d03949
FB
643QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
644connection between several network devices. These devices can be for
645example QEMU virtual Ethernet cards or virtual Host ethernet devices
646(TAP devices).
9d4fb82e 647
41d03949
FB
648@subsection Using TAP network interfaces
649
650This is the standard way to connect QEMU to a real network. QEMU adds
651a virtual network device on your host (called @code{tapN}), and you
652can then configure it as if it was a real ethernet card.
9d4fb82e 653
8f40c388
FB
654@subsubsection Linux host
655
9d4fb82e
FB
656As an example, you can download the @file{linux-test-xxx.tar.gz}
657archive and copy the script @file{qemu-ifup} in @file{/etc} and
658configure properly @code{sudo} so that the command @code{ifconfig}
659contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 660that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
661device @file{/dev/net/tun} must be present.
662
ee0f4751
FB
663See @ref{sec_invocation} to have examples of command lines using the
664TAP network interfaces.
9d4fb82e 665
8f40c388
FB
666@subsubsection Windows host
667
668There is a virtual ethernet driver for Windows 2000/XP systems, called
669TAP-Win32. But it is not included in standard QEMU for Windows,
670so you will need to get it separately. It is part of OpenVPN package,
671so download OpenVPN from : @url{http://openvpn.net/}.
672
9d4fb82e
FB
673@subsection Using the user mode network stack
674
41d03949
FB
675By using the option @option{-net user} (default configuration if no
676@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 677network stack (you don't need root privilege to use the virtual
41d03949 678network). The virtual network configuration is the following:
9d4fb82e
FB
679
680@example
681
41d03949
FB
682 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
683 | (10.0.2.2)
9d4fb82e 684 |
2518bd0d 685 ----> DNS server (10.0.2.3)
3b46e624 686 |
2518bd0d 687 ----> SMB server (10.0.2.4)
9d4fb82e
FB
688@end example
689
690The QEMU VM behaves as if it was behind a firewall which blocks all
691incoming connections. You can use a DHCP client to automatically
41d03949
FB
692configure the network in the QEMU VM. The DHCP server assign addresses
693to the hosts starting from 10.0.2.15.
9d4fb82e
FB
694
695In order to check that the user mode network is working, you can ping
696the address 10.0.2.2 and verify that you got an address in the range
69710.0.2.x from the QEMU virtual DHCP server.
698
b415a407 699Note that @code{ping} is not supported reliably to the internet as it
4be456f1 700would require root privileges. It means you can only ping the local
b415a407
FB
701router (10.0.2.2).
702
9bf05444
FB
703When using the built-in TFTP server, the router is also the TFTP
704server.
705
706When using the @option{-redir} option, TCP or UDP connections can be
707redirected from the host to the guest. It allows for example to
708redirect X11, telnet or SSH connections.
443f1376 709
41d03949
FB
710@subsection Connecting VLANs between QEMU instances
711
712Using the @option{-net socket} option, it is possible to make VLANs
713that span several QEMU instances. See @ref{sec_invocation} to have a
714basic example.
715
6cbf4c8c
CM
716@section Other Devices
717
718@subsection Inter-VM Shared Memory device
719
720With KVM enabled on a Linux host, a shared memory device is available. Guests
721map a POSIX shared memory region into the guest as a PCI device that enables
722zero-copy communication to the application level of the guests. The basic
723syntax is:
724
725@example
726qemu -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]
727@end example
728
729If desired, interrupts can be sent between guest VMs accessing the same shared
730memory region. Interrupt support requires using a shared memory server and
731using a chardev socket to connect to it. The code for the shared memory server
732is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
733memory server is:
734
735@example
736qemu -device ivshmem,size=<size in format accepted by -m>[,chardev=<id>]
737 [,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master]
738qemu -chardev socket,path=<path>,id=<id>
739@end example
740
741When using the server, the guest will be assigned a VM ID (>=0) that allows guests
742using the same server to communicate via interrupts. Guests can read their
743VM ID from a device register (see example code). Since receiving the shared
744memory region from the server is asynchronous, there is a (small) chance the
745guest may boot before the shared memory is attached. To allow an application
746to ensure shared memory is attached, the VM ID register will return -1 (an
747invalid VM ID) until the memory is attached. Once the shared memory is
748attached, the VM ID will return the guest's valid VM ID. With these semantics,
749the guest application can check to ensure the shared memory is attached to the
750guest before proceeding.
751
752The @option{role} argument can be set to either master or peer and will affect
753how the shared memory is migrated. With @option{role=master}, the guest will
754copy the shared memory on migration to the destination host. With
755@option{role=peer}, the guest will not be able to migrate with the device attached.
756With the @option{peer} case, the device should be detached and then reattached
757after migration using the PCI hotplug support.
758
9d4fb82e
FB
759@node direct_linux_boot
760@section Direct Linux Boot
1f673135
FB
761
762This section explains how to launch a Linux kernel inside QEMU without
763having to make a full bootable image. It is very useful for fast Linux
ee0f4751 764kernel testing.
1f673135 765
ee0f4751 766The syntax is:
1f673135 767@example
ee0f4751 768qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
769@end example
770
ee0f4751
FB
771Use @option{-kernel} to provide the Linux kernel image and
772@option{-append} to give the kernel command line arguments. The
773@option{-initrd} option can be used to provide an INITRD image.
1f673135 774
ee0f4751
FB
775When using the direct Linux boot, a disk image for the first hard disk
776@file{hda} is required because its boot sector is used to launch the
777Linux kernel.
1f673135 778
ee0f4751
FB
779If you do not need graphical output, you can disable it and redirect
780the virtual serial port and the QEMU monitor to the console with the
781@option{-nographic} option. The typical command line is:
1f673135 782@example
ee0f4751
FB
783qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
784 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
785@end example
786
ee0f4751
FB
787Use @key{Ctrl-a c} to switch between the serial console and the
788monitor (@pxref{pcsys_keys}).
1f673135 789
debc7065 790@node pcsys_usb
b389dbfb
FB
791@section USB emulation
792
0aff66b5
PB
793QEMU emulates a PCI UHCI USB controller. You can virtually plug
794virtual USB devices or real host USB devices (experimental, works only
795on Linux hosts). Qemu will automatically create and connect virtual USB hubs
f542086d 796as necessary to connect multiple USB devices.
b389dbfb 797
0aff66b5
PB
798@menu
799* usb_devices::
800* host_usb_devices::
801@end menu
802@node usb_devices
803@subsection Connecting USB devices
b389dbfb 804
0aff66b5
PB
805USB devices can be connected with the @option{-usbdevice} commandline option
806or the @code{usb_add} monitor command. Available devices are:
b389dbfb 807
db380c06
AZ
808@table @code
809@item mouse
0aff66b5 810Virtual Mouse. This will override the PS/2 mouse emulation when activated.
db380c06 811@item tablet
c6d46c20 812Pointer device that uses absolute coordinates (like a touchscreen).
0aff66b5
PB
813This means qemu is able to report the mouse position without having
814to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
db380c06 815@item disk:@var{file}
0aff66b5 816Mass storage device based on @var{file} (@pxref{disk_images})
db380c06 817@item host:@var{bus.addr}
0aff66b5
PB
818Pass through the host device identified by @var{bus.addr}
819(Linux only)
db380c06 820@item host:@var{vendor_id:product_id}
0aff66b5
PB
821Pass through the host device identified by @var{vendor_id:product_id}
822(Linux only)
db380c06 823@item wacom-tablet
f6d2a316
AZ
824Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
825above but it can be used with the tslib library because in addition to touch
826coordinates it reports touch pressure.
db380c06 827@item keyboard
47b2d338 828Standard USB keyboard. Will override the PS/2 keyboard (if present).
db380c06
AZ
829@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
830Serial converter. This emulates an FTDI FT232BM chip connected to host character
831device @var{dev}. The available character devices are the same as for the
832@code{-serial} option. The @code{vendorid} and @code{productid} options can be
a11d070e 833used to override the default 0403:6001. For instance,
db380c06
AZ
834@example
835usb_add serial:productid=FA00:tcp:192.168.0.2:4444
836@end example
837will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
838serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
2e4d9fb1
AJ
839@item braille
840Braille device. This will use BrlAPI to display the braille output on a real
841or fake device.
9ad97e65
AZ
842@item net:@var{options}
843Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
844specifies NIC options as with @code{-net nic,}@var{options} (see description).
845For instance, user-mode networking can be used with
6c9f886c 846@example
9ad97e65 847qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
6c9f886c
AZ
848@end example
849Currently this cannot be used in machines that support PCI NICs.
2d564691
AZ
850@item bt[:@var{hci-type}]
851Bluetooth dongle whose type is specified in the same format as with
852the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
853no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
854This USB device implements the USB Transport Layer of HCI. Example
855usage:
856@example
857qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
858@end example
0aff66b5 859@end table
b389dbfb 860
0aff66b5 861@node host_usb_devices
b389dbfb
FB
862@subsection Using host USB devices on a Linux host
863
864WARNING: this is an experimental feature. QEMU will slow down when
865using it. USB devices requiring real time streaming (i.e. USB Video
866Cameras) are not supported yet.
867
868@enumerate
5fafdf24 869@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
870is actually using the USB device. A simple way to do that is simply to
871disable the corresponding kernel module by renaming it from @file{mydriver.o}
872to @file{mydriver.o.disabled}.
873
874@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
875@example
876ls /proc/bus/usb
877001 devices drivers
878@end example
879
880@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
881@example
882chown -R myuid /proc/bus/usb
883@end example
884
885@item Launch QEMU and do in the monitor:
5fafdf24 886@example
b389dbfb
FB
887info usbhost
888 Device 1.2, speed 480 Mb/s
889 Class 00: USB device 1234:5678, USB DISK
890@end example
891You should see the list of the devices you can use (Never try to use
892hubs, it won't work).
893
894@item Add the device in QEMU by using:
5fafdf24 895@example
b389dbfb
FB
896usb_add host:1234:5678
897@end example
898
899Normally the guest OS should report that a new USB device is
900plugged. You can use the option @option{-usbdevice} to do the same.
901
902@item Now you can try to use the host USB device in QEMU.
903
904@end enumerate
905
906When relaunching QEMU, you may have to unplug and plug again the USB
907device to make it work again (this is a bug).
908
f858dcae
TS
909@node vnc_security
910@section VNC security
911
912The VNC server capability provides access to the graphical console
913of the guest VM across the network. This has a number of security
914considerations depending on the deployment scenarios.
915
916@menu
917* vnc_sec_none::
918* vnc_sec_password::
919* vnc_sec_certificate::
920* vnc_sec_certificate_verify::
921* vnc_sec_certificate_pw::
2f9606b3
AL
922* vnc_sec_sasl::
923* vnc_sec_certificate_sasl::
f858dcae 924* vnc_generate_cert::
2f9606b3 925* vnc_setup_sasl::
f858dcae
TS
926@end menu
927@node vnc_sec_none
928@subsection Without passwords
929
930The simplest VNC server setup does not include any form of authentication.
931For this setup it is recommended to restrict it to listen on a UNIX domain
932socket only. For example
933
934@example
935qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
936@end example
937
938This ensures that only users on local box with read/write access to that
939path can access the VNC server. To securely access the VNC server from a
940remote machine, a combination of netcat+ssh can be used to provide a secure
941tunnel.
942
943@node vnc_sec_password
944@subsection With passwords
945
946The VNC protocol has limited support for password based authentication. Since
947the protocol limits passwords to 8 characters it should not be considered
948to provide high security. The password can be fairly easily brute-forced by
949a client making repeat connections. For this reason, a VNC server using password
950authentication should be restricted to only listen on the loopback interface
34a3d239 951or UNIX domain sockets. Password authentication is requested with the @code{password}
f858dcae
TS
952option, and then once QEMU is running the password is set with the monitor. Until
953the monitor is used to set the password all clients will be rejected.
954
955@example
956qemu [...OPTIONS...] -vnc :1,password -monitor stdio
957(qemu) change vnc password
958Password: ********
959(qemu)
960@end example
961
962@node vnc_sec_certificate
963@subsection With x509 certificates
964
965The QEMU VNC server also implements the VeNCrypt extension allowing use of
966TLS for encryption of the session, and x509 certificates for authentication.
967The use of x509 certificates is strongly recommended, because TLS on its
968own is susceptible to man-in-the-middle attacks. Basic x509 certificate
969support provides a secure session, but no authentication. This allows any
970client to connect, and provides an encrypted session.
971
972@example
973qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
974@end example
975
976In the above example @code{/etc/pki/qemu} should contain at least three files,
977@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
978users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
979NB the @code{server-key.pem} file should be protected with file mode 0600 to
980only be readable by the user owning it.
981
982@node vnc_sec_certificate_verify
983@subsection With x509 certificates and client verification
984
985Certificates can also provide a means to authenticate the client connecting.
986The server will request that the client provide a certificate, which it will
987then validate against the CA certificate. This is a good choice if deploying
988in an environment with a private internal certificate authority.
989
990@example
991qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
992@end example
993
994
995@node vnc_sec_certificate_pw
996@subsection With x509 certificates, client verification and passwords
997
998Finally, the previous method can be combined with VNC password authentication
999to provide two layers of authentication for clients.
1000
1001@example
1002qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1003(qemu) change vnc password
1004Password: ********
1005(qemu)
1006@end example
1007
2f9606b3
AL
1008
1009@node vnc_sec_sasl
1010@subsection With SASL authentication
1011
1012The SASL authentication method is a VNC extension, that provides an
1013easily extendable, pluggable authentication method. This allows for
1014integration with a wide range of authentication mechanisms, such as
1015PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1016The strength of the authentication depends on the exact mechanism
1017configured. If the chosen mechanism also provides a SSF layer, then
1018it will encrypt the datastream as well.
1019
1020Refer to the later docs on how to choose the exact SASL mechanism
1021used for authentication, but assuming use of one supporting SSF,
1022then QEMU can be launched with:
1023
1024@example
1025qemu [...OPTIONS...] -vnc :1,sasl -monitor stdio
1026@end example
1027
1028@node vnc_sec_certificate_sasl
1029@subsection With x509 certificates and SASL authentication
1030
1031If the desired SASL authentication mechanism does not supported
1032SSF layers, then it is strongly advised to run it in combination
1033with TLS and x509 certificates. This provides securely encrypted
1034data stream, avoiding risk of compromising of the security
1035credentials. This can be enabled, by combining the 'sasl' option
1036with the aforementioned TLS + x509 options:
1037
1038@example
1039qemu [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
1040@end example
1041
1042
f858dcae
TS
1043@node vnc_generate_cert
1044@subsection Generating certificates for VNC
1045
1046The GNU TLS packages provides a command called @code{certtool} which can
1047be used to generate certificates and keys in PEM format. At a minimum it
1048is neccessary to setup a certificate authority, and issue certificates to
1049each server. If using certificates for authentication, then each client
1050will also need to be issued a certificate. The recommendation is for the
1051server to keep its certificates in either @code{/etc/pki/qemu} or for
1052unprivileged users in @code{$HOME/.pki/qemu}.
1053
1054@menu
1055* vnc_generate_ca::
1056* vnc_generate_server::
1057* vnc_generate_client::
1058@end menu
1059@node vnc_generate_ca
1060@subsubsection Setup the Certificate Authority
1061
1062This step only needs to be performed once per organization / organizational
1063unit. First the CA needs a private key. This key must be kept VERY secret
1064and secure. If this key is compromised the entire trust chain of the certificates
1065issued with it is lost.
1066
1067@example
1068# certtool --generate-privkey > ca-key.pem
1069@end example
1070
1071A CA needs to have a public certificate. For simplicity it can be a self-signed
1072certificate, or one issue by a commercial certificate issuing authority. To
1073generate a self-signed certificate requires one core piece of information, the
1074name of the organization.
1075
1076@example
1077# cat > ca.info <<EOF
1078cn = Name of your organization
1079ca
1080cert_signing_key
1081EOF
1082# certtool --generate-self-signed \
1083 --load-privkey ca-key.pem
1084 --template ca.info \
1085 --outfile ca-cert.pem
1086@end example
1087
1088The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1089TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1090
1091@node vnc_generate_server
1092@subsubsection Issuing server certificates
1093
1094Each server (or host) needs to be issued with a key and certificate. When connecting
1095the certificate is sent to the client which validates it against the CA certificate.
1096The core piece of information for a server certificate is the hostname. This should
1097be the fully qualified hostname that the client will connect with, since the client
1098will typically also verify the hostname in the certificate. On the host holding the
1099secure CA private key:
1100
1101@example
1102# cat > server.info <<EOF
1103organization = Name of your organization
1104cn = server.foo.example.com
1105tls_www_server
1106encryption_key
1107signing_key
1108EOF
1109# certtool --generate-privkey > server-key.pem
1110# certtool --generate-certificate \
1111 --load-ca-certificate ca-cert.pem \
1112 --load-ca-privkey ca-key.pem \
1113 --load-privkey server server-key.pem \
1114 --template server.info \
1115 --outfile server-cert.pem
1116@end example
1117
1118The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1119to the server for which they were generated. The @code{server-key.pem} is security
1120sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1121
1122@node vnc_generate_client
1123@subsubsection Issuing client certificates
1124
1125If the QEMU VNC server is to use the @code{x509verify} option to validate client
1126certificates as its authentication mechanism, each client also needs to be issued
1127a certificate. The client certificate contains enough metadata to uniquely identify
1128the client, typically organization, state, city, building, etc. On the host holding
1129the secure CA private key:
1130
1131@example
1132# cat > client.info <<EOF
1133country = GB
1134state = London
1135locality = London
1136organiazation = Name of your organization
1137cn = client.foo.example.com
1138tls_www_client
1139encryption_key
1140signing_key
1141EOF
1142# certtool --generate-privkey > client-key.pem
1143# certtool --generate-certificate \
1144 --load-ca-certificate ca-cert.pem \
1145 --load-ca-privkey ca-key.pem \
1146 --load-privkey client-key.pem \
1147 --template client.info \
1148 --outfile client-cert.pem
1149@end example
1150
1151The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1152copied to the client for which they were generated.
1153
2f9606b3
AL
1154
1155@node vnc_setup_sasl
1156
1157@subsection Configuring SASL mechanisms
1158
1159The following documentation assumes use of the Cyrus SASL implementation on a
1160Linux host, but the principals should apply to any other SASL impl. When SASL
1161is enabled, the mechanism configuration will be loaded from system default
1162SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1163unprivileged user, an environment variable SASL_CONF_PATH can be used
1164to make it search alternate locations for the service config.
1165
1166The default configuration might contain
1167
1168@example
1169mech_list: digest-md5
1170sasldb_path: /etc/qemu/passwd.db
1171@end example
1172
1173This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1174Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1175in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1176command. While this mechanism is easy to configure and use, it is not
1177considered secure by modern standards, so only suitable for developers /
1178ad-hoc testing.
1179
1180A more serious deployment might use Kerberos, which is done with the 'gssapi'
1181mechanism
1182
1183@example
1184mech_list: gssapi
1185keytab: /etc/qemu/krb5.tab
1186@end example
1187
1188For this to work the administrator of your KDC must generate a Kerberos
1189principal for the server, with a name of 'qemu/somehost.example.com@@EXAMPLE.COM'
1190replacing 'somehost.example.com' with the fully qualified host name of the
1191machine running QEMU, and 'EXAMPLE.COM' with the Keberos Realm.
1192
1193Other configurations will be left as an exercise for the reader. It should
1194be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1195encryption. For all other mechanisms, VNC should always be configured to
1196use TLS and x509 certificates to protect security credentials from snooping.
1197
0806e3f6 1198@node gdb_usage
da415d54
FB
1199@section GDB usage
1200
1201QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1202'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1203
9d4520d0 1204In order to use gdb, launch qemu with the '-s' option. It will wait for a
da415d54
FB
1205gdb connection:
1206@example
debc7065
FB
1207> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1208 -append "root=/dev/hda"
da415d54
FB
1209Connected to host network interface: tun0
1210Waiting gdb connection on port 1234
1211@end example
1212
1213Then launch gdb on the 'vmlinux' executable:
1214@example
1215> gdb vmlinux
1216@end example
1217
1218In gdb, connect to QEMU:
1219@example
6c9bf893 1220(gdb) target remote localhost:1234
da415d54
FB
1221@end example
1222
1223Then you can use gdb normally. For example, type 'c' to launch the kernel:
1224@example
1225(gdb) c
1226@end example
1227
0806e3f6
FB
1228Here are some useful tips in order to use gdb on system code:
1229
1230@enumerate
1231@item
1232Use @code{info reg} to display all the CPU registers.
1233@item
1234Use @code{x/10i $eip} to display the code at the PC position.
1235@item
1236Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1237@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1238@end enumerate
1239
60897d36
EI
1240Advanced debugging options:
1241
1242The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 1243@table @code
60897d36
EI
1244@item maintenance packet qqemu.sstepbits
1245
1246This will display the MASK bits used to control the single stepping IE:
1247@example
1248(gdb) maintenance packet qqemu.sstepbits
1249sending: "qqemu.sstepbits"
1250received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1251@end example
1252@item maintenance packet qqemu.sstep
1253
1254This will display the current value of the mask used when single stepping IE:
1255@example
1256(gdb) maintenance packet qqemu.sstep
1257sending: "qqemu.sstep"
1258received: "0x7"
1259@end example
1260@item maintenance packet Qqemu.sstep=HEX_VALUE
1261
1262This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1263@example
1264(gdb) maintenance packet Qqemu.sstep=0x5
1265sending: "qemu.sstep=0x5"
1266received: "OK"
1267@end example
94d45e44 1268@end table
60897d36 1269
debc7065 1270@node pcsys_os_specific
1a084f3d
FB
1271@section Target OS specific information
1272
1273@subsection Linux
1274
15a34c63
FB
1275To have access to SVGA graphic modes under X11, use the @code{vesa} or
1276the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1277color depth in the guest and the host OS.
1a084f3d 1278
e3371e62
FB
1279When using a 2.6 guest Linux kernel, you should add the option
1280@code{clock=pit} on the kernel command line because the 2.6 Linux
1281kernels make very strict real time clock checks by default that QEMU
1282cannot simulate exactly.
1283
7c3fc84d
FB
1284When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1285not activated because QEMU is slower with this patch. The QEMU
1286Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1287Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1288patch by default. Newer kernels don't have it.
1289
1a084f3d
FB
1290@subsection Windows
1291
1292If you have a slow host, using Windows 95 is better as it gives the
1293best speed. Windows 2000 is also a good choice.
1294
e3371e62
FB
1295@subsubsection SVGA graphic modes support
1296
1297QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1298card. All Windows versions starting from Windows 95 should recognize
1299and use this graphic card. For optimal performances, use 16 bit color
1300depth in the guest and the host OS.
1a084f3d 1301
3cb0853a
FB
1302If you are using Windows XP as guest OS and if you want to use high
1303resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
13041280x1024x16), then you should use the VESA VBE virtual graphic card
1305(option @option{-std-vga}).
1306
e3371e62
FB
1307@subsubsection CPU usage reduction
1308
1309Windows 9x does not correctly use the CPU HLT
15a34c63
FB
1310instruction. The result is that it takes host CPU cycles even when
1311idle. You can install the utility from
1312@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1313problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 1314
9d0a8e6f 1315@subsubsection Windows 2000 disk full problem
e3371e62 1316
9d0a8e6f
FB
1317Windows 2000 has a bug which gives a disk full problem during its
1318installation. When installing it, use the @option{-win2k-hack} QEMU
1319option to enable a specific workaround. After Windows 2000 is
1320installed, you no longer need this option (this option slows down the
1321IDE transfers).
e3371e62 1322
6cc721cf
FB
1323@subsubsection Windows 2000 shutdown
1324
1325Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1326can. It comes from the fact that Windows 2000 does not automatically
1327use the APM driver provided by the BIOS.
1328
1329In order to correct that, do the following (thanks to Struan
1330Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1331Add/Troubleshoot a device => Add a new device & Next => No, select the
1332hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1333(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 1334correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
1335
1336@subsubsection Share a directory between Unix and Windows
1337
1338See @ref{sec_invocation} about the help of the option @option{-smb}.
1339
2192c332 1340@subsubsection Windows XP security problem
e3371e62
FB
1341
1342Some releases of Windows XP install correctly but give a security
1343error when booting:
1344@example
1345A problem is preventing Windows from accurately checking the
1346license for this computer. Error code: 0x800703e6.
1347@end example
e3371e62 1348
2192c332
FB
1349The workaround is to install a service pack for XP after a boot in safe
1350mode. Then reboot, and the problem should go away. Since there is no
1351network while in safe mode, its recommended to download the full
1352installation of SP1 or SP2 and transfer that via an ISO or using the
1353vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 1354
a0a821a4
FB
1355@subsection MS-DOS and FreeDOS
1356
1357@subsubsection CPU usage reduction
1358
1359DOS does not correctly use the CPU HLT instruction. The result is that
1360it takes host CPU cycles even when idle. You can install the utility
1361from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1362problem.
1363
debc7065 1364@node QEMU System emulator for non PC targets
3f9f3aa1
FB
1365@chapter QEMU System emulator for non PC targets
1366
1367QEMU is a generic emulator and it emulates many non PC
1368machines. Most of the options are similar to the PC emulator. The
4be456f1 1369differences are mentioned in the following sections.
3f9f3aa1 1370
debc7065 1371@menu
7544a042 1372* PowerPC System emulator::
24d4de45
TS
1373* Sparc32 System emulator::
1374* Sparc64 System emulator::
1375* MIPS System emulator::
1376* ARM System emulator::
1377* ColdFire System emulator::
7544a042
SW
1378* Cris System emulator::
1379* Microblaze System emulator::
1380* SH4 System emulator::
debc7065
FB
1381@end menu
1382
7544a042
SW
1383@node PowerPC System emulator
1384@section PowerPC System emulator
1385@cindex system emulation (PowerPC)
1a084f3d 1386
15a34c63
FB
1387Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1388or PowerMac PowerPC system.
1a084f3d 1389
b671f9ed 1390QEMU emulates the following PowerMac peripherals:
1a084f3d 1391
15a34c63 1392@itemize @minus
5fafdf24 1393@item
006f3a48 1394UniNorth or Grackle PCI Bridge
15a34c63
FB
1395@item
1396PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1397@item
15a34c63 13982 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 1399@item
15a34c63
FB
1400NE2000 PCI adapters
1401@item
1402Non Volatile RAM
1403@item
1404VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
1405@end itemize
1406
b671f9ed 1407QEMU emulates the following PREP peripherals:
52c00a5f
FB
1408
1409@itemize @minus
5fafdf24 1410@item
15a34c63
FB
1411PCI Bridge
1412@item
1413PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1414@item
52c00a5f
FB
14152 IDE interfaces with hard disk and CD-ROM support
1416@item
1417Floppy disk
5fafdf24 1418@item
15a34c63 1419NE2000 network adapters
52c00a5f
FB
1420@item
1421Serial port
1422@item
1423PREP Non Volatile RAM
15a34c63
FB
1424@item
1425PC compatible keyboard and mouse.
52c00a5f
FB
1426@end itemize
1427
15a34c63 1428QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 1429@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 1430
992e5acd 1431Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
006f3a48
BS
1432for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1433v2) portable firmware implementation. The goal is to implement a 100%
1434IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 1435
15a34c63
FB
1436@c man begin OPTIONS
1437
1438The following options are specific to the PowerPC emulation:
1439
1440@table @option
1441
4e257e5e 1442@item -g @var{W}x@var{H}[x@var{DEPTH}]
15a34c63
FB
1443
1444Set the initial VGA graphic mode. The default is 800x600x15.
1445
4e257e5e 1446@item -prom-env @var{string}
95efd11c
BS
1447
1448Set OpenBIOS variables in NVRAM, for example:
1449
1450@example
1451qemu-system-ppc -prom-env 'auto-boot?=false' \
1452 -prom-env 'boot-device=hd:2,\yaboot' \
1453 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1454@end example
1455
1456These variables are not used by Open Hack'Ware.
1457
15a34c63
FB
1458@end table
1459
5fafdf24 1460@c man end
15a34c63
FB
1461
1462
52c00a5f 1463More information is available at
3f9f3aa1 1464@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 1465
24d4de45
TS
1466@node Sparc32 System emulator
1467@section Sparc32 System emulator
7544a042 1468@cindex system emulation (Sparc32)
e80cfcfc 1469
34a3d239
BS
1470Use the executable @file{qemu-system-sparc} to simulate the following
1471Sun4m architecture machines:
1472@itemize @minus
1473@item
1474SPARCstation 4
1475@item
1476SPARCstation 5
1477@item
1478SPARCstation 10
1479@item
1480SPARCstation 20
1481@item
1482SPARCserver 600MP
1483@item
1484SPARCstation LX
1485@item
1486SPARCstation Voyager
1487@item
1488SPARCclassic
1489@item
1490SPARCbook
1491@end itemize
1492
1493The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1494but Linux limits the number of usable CPUs to 4.
e80cfcfc 1495
34a3d239
BS
1496It's also possible to simulate a SPARCstation 2 (sun4c architecture),
1497SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
1498emulators are not usable yet.
1499
1500QEMU emulates the following sun4m/sun4c/sun4d peripherals:
e80cfcfc
FB
1501
1502@itemize @minus
3475187d 1503@item
7d85892b 1504IOMMU or IO-UNITs
e80cfcfc
FB
1505@item
1506TCX Frame buffer
5fafdf24 1507@item
e80cfcfc
FB
1508Lance (Am7990) Ethernet
1509@item
34a3d239 1510Non Volatile RAM M48T02/M48T08
e80cfcfc 1511@item
3475187d
FB
1512Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1513and power/reset logic
1514@item
1515ESP SCSI controller with hard disk and CD-ROM support
1516@item
6a3b9cc9 1517Floppy drive (not on SS-600MP)
a2502b58
BS
1518@item
1519CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
1520@end itemize
1521
6a3b9cc9
BS
1522The number of peripherals is fixed in the architecture. Maximum
1523memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 1524others 2047MB.
3475187d 1525
30a604f3 1526Since version 0.8.2, QEMU uses OpenBIOS
0986ac3b
FB
1527@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1528firmware implementation. The goal is to implement a 100% IEEE
15291275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
1530
1531A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239
BS
1532the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1533some kernel versions work. Please note that currently Solaris kernels
1534don't work probably due to interface issues between OpenBIOS and
1535Solaris.
3475187d
FB
1536
1537@c man begin OPTIONS
1538
a2502b58 1539The following options are specific to the Sparc32 emulation:
3475187d
FB
1540
1541@table @option
1542
4e257e5e 1543@item -g @var{W}x@var{H}x[x@var{DEPTH}]
3475187d 1544
a2502b58
BS
1545Set the initial TCX graphic mode. The default is 1024x768x8, currently
1546the only other possible mode is 1024x768x24.
3475187d 1547
4e257e5e 1548@item -prom-env @var{string}
66508601
BS
1549
1550Set OpenBIOS variables in NVRAM, for example:
1551
1552@example
1553qemu-system-sparc -prom-env 'auto-boot?=false' \
1554 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1555@end example
1556
609c1dac 1557@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook|SS-2|SS-1000|SS-2000]
a2502b58
BS
1558
1559Set the emulated machine type. Default is SS-5.
1560
3475187d
FB
1561@end table
1562
5fafdf24 1563@c man end
3475187d 1564
24d4de45
TS
1565@node Sparc64 System emulator
1566@section Sparc64 System emulator
7544a042 1567@cindex system emulation (Sparc64)
e80cfcfc 1568
34a3d239
BS
1569Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1570(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1571Niagara (T1) machine. The emulator is not usable for anything yet, but
1572it can launch some kernels.
b756921a 1573
c7ba218d 1574QEMU emulates the following peripherals:
83469015
FB
1575
1576@itemize @minus
1577@item
5fafdf24 1578UltraSparc IIi APB PCI Bridge
83469015
FB
1579@item
1580PCI VGA compatible card with VESA Bochs Extensions
1581@item
34a3d239
BS
1582PS/2 mouse and keyboard
1583@item
83469015
FB
1584Non Volatile RAM M48T59
1585@item
1586PC-compatible serial ports
c7ba218d
BS
1587@item
15882 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
1589@item
1590Floppy disk
83469015
FB
1591@end itemize
1592
c7ba218d
BS
1593@c man begin OPTIONS
1594
1595The following options are specific to the Sparc64 emulation:
1596
1597@table @option
1598
4e257e5e 1599@item -prom-env @var{string}
34a3d239
BS
1600
1601Set OpenBIOS variables in NVRAM, for example:
1602
1603@example
1604qemu-system-sparc64 -prom-env 'auto-boot?=false'
1605@end example
1606
1607@item -M [sun4u|sun4v|Niagara]
c7ba218d
BS
1608
1609Set the emulated machine type. The default is sun4u.
1610
1611@end table
1612
1613@c man end
1614
24d4de45
TS
1615@node MIPS System emulator
1616@section MIPS System emulator
7544a042 1617@cindex system emulation (MIPS)
9d0a8e6f 1618
d9aedc32
TS
1619Four executables cover simulation of 32 and 64-bit MIPS systems in
1620both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1621@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 1622Five different machine types are emulated:
24d4de45
TS
1623
1624@itemize @minus
1625@item
1626A generic ISA PC-like machine "mips"
1627@item
1628The MIPS Malta prototype board "malta"
1629@item
d9aedc32 1630An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 1631@item
f0fc6f8f 1632MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
1633@item
1634A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
1635@end itemize
1636
1637The generic emulation is supported by Debian 'Etch' and is able to
1638install Debian into a virtual disk image. The following devices are
1639emulated:
3f9f3aa1
FB
1640
1641@itemize @minus
5fafdf24 1642@item
6bf5b4e8 1643A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
1644@item
1645PC style serial port
1646@item
24d4de45
TS
1647PC style IDE disk
1648@item
3f9f3aa1
FB
1649NE2000 network card
1650@end itemize
1651
24d4de45
TS
1652The Malta emulation supports the following devices:
1653
1654@itemize @minus
1655@item
0b64d008 1656Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
1657@item
1658PIIX4 PCI/USB/SMbus controller
1659@item
1660The Multi-I/O chip's serial device
1661@item
3a2eeac0 1662PCI network cards (PCnet32 and others)
24d4de45
TS
1663@item
1664Malta FPGA serial device
1665@item
1f605a76 1666Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
1667@end itemize
1668
1669The ACER Pica emulation supports:
1670
1671@itemize @minus
1672@item
1673MIPS R4000 CPU
1674@item
1675PC-style IRQ and DMA controllers
1676@item
1677PC Keyboard
1678@item
1679IDE controller
1680@end itemize
3f9f3aa1 1681
f0fc6f8f
TS
1682The mipssim pseudo board emulation provides an environment similiar
1683to what the proprietary MIPS emulator uses for running Linux.
1684It supports:
6bf5b4e8
TS
1685
1686@itemize @minus
1687@item
1688A range of MIPS CPUs, default is the 24Kf
1689@item
1690PC style serial port
1691@item
1692MIPSnet network emulation
1693@end itemize
1694
88cb0a02
AJ
1695The MIPS Magnum R4000 emulation supports:
1696
1697@itemize @minus
1698@item
1699MIPS R4000 CPU
1700@item
1701PC-style IRQ controller
1702@item
1703PC Keyboard
1704@item
1705SCSI controller
1706@item
1707G364 framebuffer
1708@end itemize
1709
1710
24d4de45
TS
1711@node ARM System emulator
1712@section ARM System emulator
7544a042 1713@cindex system emulation (ARM)
3f9f3aa1
FB
1714
1715Use the executable @file{qemu-system-arm} to simulate a ARM
1716machine. The ARM Integrator/CP board is emulated with the following
1717devices:
1718
1719@itemize @minus
1720@item
9ee6e8bb 1721ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
1722@item
1723Two PL011 UARTs
5fafdf24 1724@item
3f9f3aa1 1725SMC 91c111 Ethernet adapter
00a9bf19
PB
1726@item
1727PL110 LCD controller
1728@item
1729PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
1730@item
1731PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
1732@end itemize
1733
1734The ARM Versatile baseboard is emulated with the following devices:
1735
1736@itemize @minus
1737@item
9ee6e8bb 1738ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
1739@item
1740PL190 Vectored Interrupt Controller
1741@item
1742Four PL011 UARTs
5fafdf24 1743@item
00a9bf19
PB
1744SMC 91c111 Ethernet adapter
1745@item
1746PL110 LCD controller
1747@item
1748PL050 KMI with PS/2 keyboard and mouse.
1749@item
1750PCI host bridge. Note the emulated PCI bridge only provides access to
1751PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
1752This means some devices (eg. ne2k_pci NIC) are not usable, and others
1753(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 1754mapped control registers.
e6de1bad
PB
1755@item
1756PCI OHCI USB controller.
1757@item
1758LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
1759@item
1760PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
1761@end itemize
1762
21a88941
PB
1763Several variants of the ARM RealView baseboard are emulated,
1764including the EB, PB-A8 and PBX-A9. Due to interactions with the
1765bootloader, only certain Linux kernel configurations work out
1766of the box on these boards.
1767
1768Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1769enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
1770should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1771disabled and expect 1024M RAM.
1772
1773The following devices are emuilated:
d7739d75
PB
1774
1775@itemize @minus
1776@item
f7c70325 1777ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
d7739d75
PB
1778@item
1779ARM AMBA Generic/Distributed Interrupt Controller
1780@item
1781Four PL011 UARTs
5fafdf24 1782@item
0ef849d7 1783SMC 91c111 or SMSC LAN9118 Ethernet adapter
d7739d75
PB
1784@item
1785PL110 LCD controller
1786@item
1787PL050 KMI with PS/2 keyboard and mouse
1788@item
1789PCI host bridge
1790@item
1791PCI OHCI USB controller
1792@item
1793LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
1794@item
1795PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
1796@end itemize
1797
b00052e4
AZ
1798The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
1799and "Terrier") emulation includes the following peripherals:
1800
1801@itemize @minus
1802@item
1803Intel PXA270 System-on-chip (ARM V5TE core)
1804@item
1805NAND Flash memory
1806@item
1807IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
1808@item
1809On-chip OHCI USB controller
1810@item
1811On-chip LCD controller
1812@item
1813On-chip Real Time Clock
1814@item
1815TI ADS7846 touchscreen controller on SSP bus
1816@item
1817Maxim MAX1111 analog-digital converter on I@math{^2}C bus
1818@item
1819GPIO-connected keyboard controller and LEDs
1820@item
549444e1 1821Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
1822@item
1823Three on-chip UARTs
1824@item
1825WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
1826@end itemize
1827
02645926
AZ
1828The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
1829following elements:
1830
1831@itemize @minus
1832@item
1833Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1834@item
1835ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
1836@item
1837On-chip LCD controller
1838@item
1839On-chip Real Time Clock
1840@item
1841TI TSC2102i touchscreen controller / analog-digital converter / Audio
1842CODEC, connected through MicroWire and I@math{^2}S busses
1843@item
1844GPIO-connected matrix keypad
1845@item
1846Secure Digital card connected to OMAP MMC/SD host
1847@item
1848Three on-chip UARTs
1849@end itemize
1850
c30bb264
AZ
1851Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
1852emulation supports the following elements:
1853
1854@itemize @minus
1855@item
1856Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
1857@item
1858RAM and non-volatile OneNAND Flash memories
1859@item
1860Display connected to EPSON remote framebuffer chip and OMAP on-chip
1861display controller and a LS041y3 MIPI DBI-C controller
1862@item
1863TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
1864driven through SPI bus
1865@item
1866National Semiconductor LM8323-controlled qwerty keyboard driven
1867through I@math{^2}C bus
1868@item
1869Secure Digital card connected to OMAP MMC/SD host
1870@item
1871Three OMAP on-chip UARTs and on-chip STI debugging console
1872@item
2d564691
AZ
1873A Bluetooth(R) transciever and HCI connected to an UART
1874@item
c30bb264
AZ
1875Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
1876TUSB6010 chip - only USB host mode is supported
1877@item
1878TI TMP105 temperature sensor driven through I@math{^2}C bus
1879@item
1880TI TWL92230C power management companion with an RTC on I@math{^2}C bus
1881@item
1882Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
1883through CBUS
1884@end itemize
1885
9ee6e8bb
PB
1886The Luminary Micro Stellaris LM3S811EVB emulation includes the following
1887devices:
1888
1889@itemize @minus
1890@item
1891Cortex-M3 CPU core.
1892@item
189364k Flash and 8k SRAM.
1894@item
1895Timers, UARTs, ADC and I@math{^2}C interface.
1896@item
1897OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
1898@end itemize
1899
1900The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
1901devices:
1902
1903@itemize @minus
1904@item
1905Cortex-M3 CPU core.
1906@item
1907256k Flash and 64k SRAM.
1908@item
1909Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
1910@item
1911OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
1912@end itemize
1913
57cd6e97
AZ
1914The Freecom MusicPal internet radio emulation includes the following
1915elements:
1916
1917@itemize @minus
1918@item
1919Marvell MV88W8618 ARM core.
1920@item
192132 MB RAM, 256 KB SRAM, 8 MB flash.
1922@item
1923Up to 2 16550 UARTs
1924@item
1925MV88W8xx8 Ethernet controller
1926@item
1927MV88W8618 audio controller, WM8750 CODEC and mixer
1928@item
e080e785 1929128×64 display with brightness control
57cd6e97
AZ
1930@item
19312 buttons, 2 navigation wheels with button function
1932@end itemize
1933
997641a8
AZ
1934The Siemens SX1 models v1 and v2 (default) basic emulation.
1935The emulaton includes the following elements:
1936
1937@itemize @minus
1938@item
1939Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1940@item
1941ROM and RAM memories (ROM firmware image can be loaded with -pflash)
1942V1
19431 Flash of 16MB and 1 Flash of 8MB
1944V2
19451 Flash of 32MB
1946@item
1947On-chip LCD controller
1948@item
1949On-chip Real Time Clock
1950@item
1951Secure Digital card connected to OMAP MMC/SD host
1952@item
1953Three on-chip UARTs
1954@end itemize
1955
4af39611
PB
1956The "Syborg" Symbian Virtual Platform base model includes the following
1957elements:
1958
1959@itemize @minus
1960@item
1961ARM Cortex-A8 CPU
1962@item
1963Interrupt controller
1964@item
1965Timer
1966@item
1967Real Time Clock
1968@item
1969Keyboard
1970@item
1971Framebuffer
1972@item
1973Touchscreen
1974@item
1975UARTs
1976@end itemize
1977
3f9f3aa1
FB
1978A Linux 2.6 test image is available on the QEMU web site. More
1979information is available in the QEMU mailing-list archive.
9d0a8e6f 1980
d2c639d6
BS
1981@c man begin OPTIONS
1982
1983The following options are specific to the ARM emulation:
1984
1985@table @option
1986
1987@item -semihosting
1988Enable semihosting syscall emulation.
1989
1990On ARM this implements the "Angel" interface.
1991
1992Note that this allows guest direct access to the host filesystem,
1993so should only be used with trusted guest OS.
1994
1995@end table
1996
24d4de45
TS
1997@node ColdFire System emulator
1998@section ColdFire System emulator
7544a042
SW
1999@cindex system emulation (ColdFire)
2000@cindex system emulation (M68K)
209a4e69
PB
2001
2002Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2003The emulator is able to boot a uClinux kernel.
707e011b
PB
2004
2005The M5208EVB emulation includes the following devices:
2006
2007@itemize @minus
5fafdf24 2008@item
707e011b
PB
2009MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2010@item
2011Three Two on-chip UARTs.
2012@item
2013Fast Ethernet Controller (FEC)
2014@end itemize
2015
2016The AN5206 emulation includes the following devices:
209a4e69
PB
2017
2018@itemize @minus
5fafdf24 2019@item
209a4e69
PB
2020MCF5206 ColdFire V2 Microprocessor.
2021@item
2022Two on-chip UARTs.
2023@end itemize
2024
d2c639d6
BS
2025@c man begin OPTIONS
2026
7544a042 2027The following options are specific to the ColdFire emulation:
d2c639d6
BS
2028
2029@table @option
2030
2031@item -semihosting
2032Enable semihosting syscall emulation.
2033
2034On M68K this implements the "ColdFire GDB" interface used by libgloss.
2035
2036Note that this allows guest direct access to the host filesystem,
2037so should only be used with trusted guest OS.
2038
2039@end table
2040
7544a042
SW
2041@node Cris System emulator
2042@section Cris System emulator
2043@cindex system emulation (Cris)
2044
2045TODO
2046
2047@node Microblaze System emulator
2048@section Microblaze System emulator
2049@cindex system emulation (Microblaze)
2050
2051TODO
2052
2053@node SH4 System emulator
2054@section SH4 System emulator
2055@cindex system emulation (SH4)
2056
2057TODO
2058
5fafdf24
TS
2059@node QEMU User space emulator
2060@chapter QEMU User space emulator
83195237
FB
2061
2062@menu
2063* Supported Operating Systems ::
2064* Linux User space emulator::
2065* Mac OS X/Darwin User space emulator ::
84778508 2066* BSD User space emulator ::
83195237
FB
2067@end menu
2068
2069@node Supported Operating Systems
2070@section Supported Operating Systems
2071
2072The following OS are supported in user space emulation:
2073
2074@itemize @minus
2075@item
4be456f1 2076Linux (referred as qemu-linux-user)
83195237 2077@item
4be456f1 2078Mac OS X/Darwin (referred as qemu-darwin-user)
84778508
BS
2079@item
2080BSD (referred as qemu-bsd-user)
83195237
FB
2081@end itemize
2082
2083@node Linux User space emulator
2084@section Linux User space emulator
386405f7 2085
debc7065
FB
2086@menu
2087* Quick Start::
2088* Wine launch::
2089* Command line options::
79737e4a 2090* Other binaries::
debc7065
FB
2091@end menu
2092
2093@node Quick Start
83195237 2094@subsection Quick Start
df0f11a0 2095
1f673135 2096In order to launch a Linux process, QEMU needs the process executable
5fafdf24 2097itself and all the target (x86) dynamic libraries used by it.
386405f7 2098
1f673135 2099@itemize
386405f7 2100
1f673135
FB
2101@item On x86, you can just try to launch any process by using the native
2102libraries:
386405f7 2103
5fafdf24 2104@example
1f673135
FB
2105qemu-i386 -L / /bin/ls
2106@end example
386405f7 2107
1f673135
FB
2108@code{-L /} tells that the x86 dynamic linker must be searched with a
2109@file{/} prefix.
386405f7 2110
dbcf5e82
TS
2111@item Since QEMU is also a linux process, you can launch qemu with
2112qemu (NOTE: you can only do that if you compiled QEMU from the sources):
386405f7 2113
5fafdf24 2114@example
1f673135
FB
2115qemu-i386 -L / qemu-i386 -L / /bin/ls
2116@end example
386405f7 2117
1f673135
FB
2118@item On non x86 CPUs, you need first to download at least an x86 glibc
2119(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2120@code{LD_LIBRARY_PATH} is not set:
df0f11a0 2121
1f673135 2122@example
5fafdf24 2123unset LD_LIBRARY_PATH
1f673135 2124@end example
1eb87257 2125
1f673135 2126Then you can launch the precompiled @file{ls} x86 executable:
1eb87257 2127
1f673135
FB
2128@example
2129qemu-i386 tests/i386/ls
2130@end example
2131You can look at @file{qemu-binfmt-conf.sh} so that
2132QEMU is automatically launched by the Linux kernel when you try to
2133launch x86 executables. It requires the @code{binfmt_misc} module in the
2134Linux kernel.
1eb87257 2135
1f673135
FB
2136@item The x86 version of QEMU is also included. You can try weird things such as:
2137@example
debc7065
FB
2138qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2139 /usr/local/qemu-i386/bin/ls-i386
1f673135 2140@end example
1eb20527 2141
1f673135 2142@end itemize
1eb20527 2143
debc7065 2144@node Wine launch
83195237 2145@subsection Wine launch
1eb20527 2146
1f673135 2147@itemize
386405f7 2148
1f673135
FB
2149@item Ensure that you have a working QEMU with the x86 glibc
2150distribution (see previous section). In order to verify it, you must be
2151able to do:
386405f7 2152
1f673135
FB
2153@example
2154qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2155@end example
386405f7 2156
1f673135 2157@item Download the binary x86 Wine install
5fafdf24 2158(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
386405f7 2159
1f673135 2160@item Configure Wine on your account. Look at the provided script
debc7065 2161@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1f673135 2162@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
386405f7 2163
1f673135 2164@item Then you can try the example @file{putty.exe}:
386405f7 2165
1f673135 2166@example
debc7065
FB
2167qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2168 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1f673135 2169@end example
386405f7 2170
1f673135 2171@end itemize
fd429f2f 2172
debc7065 2173@node Command line options
83195237 2174@subsection Command line options
1eb20527 2175
1f673135 2176@example
68a1c816 2177usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
1f673135 2178@end example
1eb20527 2179
1f673135
FB
2180@table @option
2181@item -h
2182Print the help
3b46e624 2183@item -L path
1f673135
FB
2184Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2185@item -s size
2186Set the x86 stack size in bytes (default=524288)
34a3d239
BS
2187@item -cpu model
2188Select CPU model (-cpu ? for list and additional feature selection)
379f6698
PB
2189@item -B offset
2190Offset guest address by the specified number of bytes. This is useful when
1f5c3f8c
SW
2191the address region required by guest applications is reserved on the host.
2192This option is currently only supported on some hosts.
68a1c816
PB
2193@item -R size
2194Pre-allocate a guest virtual address space of the given size (in bytes).
2195"G", "M", and "k" suffixes may be used when specifying the size.
386405f7
FB
2196@end table
2197
1f673135 2198Debug options:
386405f7 2199
1f673135
FB
2200@table @option
2201@item -d
2202Activate log (logfile=/tmp/qemu.log)
2203@item -p pagesize
2204Act as if the host page size was 'pagesize' bytes
34a3d239
BS
2205@item -g port
2206Wait gdb connection to port
1b530a6d
AJ
2207@item -singlestep
2208Run the emulation in single step mode.
1f673135 2209@end table
386405f7 2210
b01bcae6
AZ
2211Environment variables:
2212
2213@table @env
2214@item QEMU_STRACE
2215Print system calls and arguments similar to the 'strace' program
2216(NOTE: the actual 'strace' program will not work because the user
2217space emulator hasn't implemented ptrace). At the moment this is
2218incomplete. All system calls that don't have a specific argument
2219format are printed with information for six arguments. Many
2220flag-style arguments don't have decoders and will show up as numbers.
5cfdf930 2221@end table
b01bcae6 2222
79737e4a 2223@node Other binaries
83195237 2224@subsection Other binaries
79737e4a 2225
7544a042
SW
2226@cindex user mode (Alpha)
2227@command{qemu-alpha} TODO.
2228
2229@cindex user mode (ARM)
2230@command{qemu-armeb} TODO.
2231
2232@cindex user mode (ARM)
79737e4a
PB
2233@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2234binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2235configurations), and arm-uclinux bFLT format binaries.
2236
7544a042
SW
2237@cindex user mode (ColdFire)
2238@cindex user mode (M68K)
e6e5906b
PB
2239@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2240(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2241coldfire uClinux bFLT format binaries.
2242
79737e4a
PB
2243The binary format is detected automatically.
2244
7544a042
SW
2245@cindex user mode (Cris)
2246@command{qemu-cris} TODO.
2247
2248@cindex user mode (i386)
2249@command{qemu-i386} TODO.
2250@command{qemu-x86_64} TODO.
2251
2252@cindex user mode (Microblaze)
2253@command{qemu-microblaze} TODO.
2254
2255@cindex user mode (MIPS)
2256@command{qemu-mips} TODO.
2257@command{qemu-mipsel} TODO.
2258
2259@cindex user mode (PowerPC)
2260@command{qemu-ppc64abi32} TODO.
2261@command{qemu-ppc64} TODO.
2262@command{qemu-ppc} TODO.
2263
2264@cindex user mode (SH4)
2265@command{qemu-sh4eb} TODO.
2266@command{qemu-sh4} TODO.
2267
2268@cindex user mode (SPARC)
34a3d239
BS
2269@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2270
a785e42e
BS
2271@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2272(Sparc64 CPU, 32 bit ABI).
2273
2274@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2275SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2276
83195237
FB
2277@node Mac OS X/Darwin User space emulator
2278@section Mac OS X/Darwin User space emulator
2279
2280@menu
2281* Mac OS X/Darwin Status::
2282* Mac OS X/Darwin Quick Start::
2283* Mac OS X/Darwin Command line options::
2284@end menu
2285
2286@node Mac OS X/Darwin Status
2287@subsection Mac OS X/Darwin Status
2288
2289@itemize @minus
2290@item
2291target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2292@item
2293target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2294@item
dbcf5e82 2295target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
83195237
FB
2296@item
2297target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2298@end itemize
2299
2300[1] If you're host commpage can be executed by qemu.
2301
2302@node Mac OS X/Darwin Quick Start
2303@subsection Quick Start
2304
2305In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2306itself and all the target dynamic libraries used by it. If you don't have the FAT
2307libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2308CD or compile them by hand.
2309
2310@itemize
2311
2312@item On x86, you can just try to launch any process by using the native
2313libraries:
2314
5fafdf24 2315@example
dbcf5e82 2316qemu-i386 /bin/ls
83195237
FB
2317@end example
2318
2319or to run the ppc version of the executable:
2320
5fafdf24 2321@example
dbcf5e82 2322qemu-ppc /bin/ls
83195237
FB
2323@end example
2324
2325@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2326are installed:
2327
5fafdf24 2328@example
dbcf5e82 2329qemu-i386 -L /opt/x86_root/ /bin/ls
83195237
FB
2330@end example
2331
2332@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2333@file{/opt/x86_root/usr/bin/dyld}.
2334
2335@end itemize
2336
2337@node Mac OS X/Darwin Command line options
2338@subsection Command line options
2339
2340@example
dbcf5e82 2341usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
83195237
FB
2342@end example
2343
2344@table @option
2345@item -h
2346Print the help
3b46e624 2347@item -L path
83195237
FB
2348Set the library root path (default=/)
2349@item -s size
2350Set the stack size in bytes (default=524288)
2351@end table
2352
2353Debug options:
2354
2355@table @option
2356@item -d
2357Activate log (logfile=/tmp/qemu.log)
2358@item -p pagesize
2359Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
2360@item -singlestep
2361Run the emulation in single step mode.
83195237
FB
2362@end table
2363
84778508
BS
2364@node BSD User space emulator
2365@section BSD User space emulator
2366
2367@menu
2368* BSD Status::
2369* BSD Quick Start::
2370* BSD Command line options::
2371@end menu
2372
2373@node BSD Status
2374@subsection BSD Status
2375
2376@itemize @minus
2377@item
2378target Sparc64 on Sparc64: Some trivial programs work.
2379@end itemize
2380
2381@node BSD Quick Start
2382@subsection Quick Start
2383
2384In order to launch a BSD process, QEMU needs the process executable
2385itself and all the target dynamic libraries used by it.
2386
2387@itemize
2388
2389@item On Sparc64, you can just try to launch any process by using the native
2390libraries:
2391
2392@example
2393qemu-sparc64 /bin/ls
2394@end example
2395
2396@end itemize
2397
2398@node BSD Command line options
2399@subsection Command line options
2400
2401@example
2402usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2403@end example
2404
2405@table @option
2406@item -h
2407Print the help
2408@item -L path
2409Set the library root path (default=/)
2410@item -s size
2411Set the stack size in bytes (default=524288)
2412@item -bsd type
2413Set the type of the emulated BSD Operating system. Valid values are
2414FreeBSD, NetBSD and OpenBSD (default).
2415@end table
2416
2417Debug options:
2418
2419@table @option
2420@item -d
2421Activate log (logfile=/tmp/qemu.log)
2422@item -p pagesize
2423Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
2424@item -singlestep
2425Run the emulation in single step mode.
84778508
BS
2426@end table
2427
15a34c63
FB
2428@node compilation
2429@chapter Compilation from the sources
2430
debc7065
FB
2431@menu
2432* Linux/Unix::
2433* Windows::
2434* Cross compilation for Windows with Linux::
2435* Mac OS X::
47eacb4f 2436* Make targets::
debc7065
FB
2437@end menu
2438
2439@node Linux/Unix
7c3fc84d
FB
2440@section Linux/Unix
2441
2442@subsection Compilation
2443
2444First you must decompress the sources:
2445@example
2446cd /tmp
2447tar zxvf qemu-x.y.z.tar.gz
2448cd qemu-x.y.z
2449@end example
2450
2451Then you configure QEMU and build it (usually no options are needed):
2452@example
2453./configure
2454make
2455@end example
2456
2457Then type as root user:
2458@example
2459make install
2460@end example
2461to install QEMU in @file{/usr/local}.
2462
debc7065 2463@node Windows
15a34c63
FB
2464@section Windows
2465
2466@itemize
2467@item Install the current versions of MSYS and MinGW from
2468@url{http://www.mingw.org/}. You can find detailed installation
2469instructions in the download section and the FAQ.
2470
5fafdf24 2471@item Download
15a34c63 2472the MinGW development library of SDL 1.2.x
debc7065 2473(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
d0a96f3d
ST
2474@url{http://www.libsdl.org}. Unpack it in a temporary place and
2475edit the @file{sdl-config} script so that it gives the
15a34c63
FB
2476correct SDL directory when invoked.
2477
d0a96f3d
ST
2478@item Install the MinGW version of zlib and make sure
2479@file{zlib.h} and @file{libz.dll.a} are in
2480MingGW's default header and linker search paths.
2481
15a34c63 2482@item Extract the current version of QEMU.
5fafdf24 2483
15a34c63
FB
2484@item Start the MSYS shell (file @file{msys.bat}).
2485
5fafdf24 2486@item Change to the QEMU directory. Launch @file{./configure} and
15a34c63
FB
2487@file{make}. If you have problems using SDL, verify that
2488@file{sdl-config} can be launched from the MSYS command line.
2489
5fafdf24 2490@item You can install QEMU in @file{Program Files/Qemu} by typing
15a34c63
FB
2491@file{make install}. Don't forget to copy @file{SDL.dll} in
2492@file{Program Files/Qemu}.
2493
2494@end itemize
2495
debc7065 2496@node Cross compilation for Windows with Linux
15a34c63
FB
2497@section Cross compilation for Windows with Linux
2498
2499@itemize
2500@item
2501Install the MinGW cross compilation tools available at
2502@url{http://www.mingw.org/}.
2503
d0a96f3d
ST
2504@item Download
2505the MinGW development library of SDL 1.2.x
2506(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2507@url{http://www.libsdl.org}. Unpack it in a temporary place and
2508edit the @file{sdl-config} script so that it gives the
2509correct SDL directory when invoked. Set up the @code{PATH} environment
2510variable so that @file{sdl-config} can be launched by
15a34c63
FB
2511the QEMU configuration script.
2512
d0a96f3d
ST
2513@item Install the MinGW version of zlib and make sure
2514@file{zlib.h} and @file{libz.dll.a} are in
2515MingGW's default header and linker search paths.
2516
5fafdf24 2517@item
15a34c63
FB
2518Configure QEMU for Windows cross compilation:
2519@example
d0a96f3d
ST
2520PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
2521@end example
2522The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
2523MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
2524We set the @code{PATH} environment variable to ensure the MingW version of @file{sdl-config} is used and
2525use --cross-prefix to specify the name of the cross compiler.
2526You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/Qemu}.
2527
2528Under Fedora Linux, you can run:
2529@example
2530yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
15a34c63 2531@end example
d0a96f3d 2532to get a suitable cross compilation environment.
15a34c63 2533
5fafdf24 2534@item You can install QEMU in the installation directory by typing
d0a96f3d 2535@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
5fafdf24 2536installation directory.
15a34c63
FB
2537
2538@end itemize
2539
d0a96f3d 2540Wine can be used to launch the resulting qemu.exe compiled for Win32.
15a34c63 2541
debc7065 2542@node Mac OS X
15a34c63
FB
2543@section Mac OS X
2544
2545The Mac OS X patches are not fully merged in QEMU, so you should look
2546at the QEMU mailing list archive to have all the necessary
2547information.
2548
47eacb4f
SW
2549@node Make targets
2550@section Make targets
2551
2552@table @code
2553
2554@item make
2555@item make all
2556Make everything which is typically needed.
2557
2558@item install
2559TODO
2560
2561@item install-doc
2562TODO
2563
2564@item make clean
2565Remove most files which were built during make.
2566
2567@item make distclean
2568Remove everything which was built during make.
2569
2570@item make dvi
2571@item make html
2572@item make info
2573@item make pdf
2574Create documentation in dvi, html, info or pdf format.
2575
2576@item make cscope
2577TODO
2578
2579@item make defconfig
2580(Re-)create some build configuration files.
2581User made changes will be overwritten.
2582
2583@item tar
2584@item tarbin
2585TODO
2586
2587@end table
2588
7544a042
SW
2589@node License
2590@appendix License
2591
2592QEMU is a trademark of Fabrice Bellard.
2593
2594QEMU is released under the GNU General Public License (TODO: add link).
2595Parts of QEMU have specific licenses, see file LICENSE.
2596
2597TODO (refer to file LICENSE, include it, include the GPL?)
2598
debc7065 2599@node Index
7544a042
SW
2600@appendix Index
2601@menu
2602* Concept Index::
2603* Function Index::
2604* Keystroke Index::
2605* Program Index::
2606* Data Type Index::
2607* Variable Index::
2608@end menu
2609
2610@node Concept Index
2611@section Concept Index
2612This is the main index. Should we combine all keywords in one index? TODO
debc7065
FB
2613@printindex cp
2614
7544a042
SW
2615@node Function Index
2616@section Function Index
2617This index could be used for command line options and monitor functions.
2618@printindex fn
2619
2620@node Keystroke Index
2621@section Keystroke Index
2622
2623This is a list of all keystrokes which have a special function
2624in system emulation.
2625
2626@printindex ky
2627
2628@node Program Index
2629@section Program Index
2630@printindex pg
2631
2632@node Data Type Index
2633@section Data Type Index
2634
2635This index could be used for qdev device names and options.
2636
2637@printindex tp
2638
2639@node Variable Index
2640@section Variable Index
2641@printindex vr
2642
debc7065 2643@bye