]> git.proxmox.com Git - qemu.git/blame - qemu-doc.texi
qemu-doc: Add missing blanks
[qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
e080e785
SW
4
5@documentlanguage en
6@documentencoding UTF-8
7
8f40c388 8@settitle QEMU Emulator User Documentation
debc7065
FB
9@exampleindent 0
10@paragraphindent 0
11@c %**end of header
386405f7 12
a1a32b05
SW
13@ifinfo
14@direntry
15* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
16@end direntry
17@end ifinfo
18
0806e3f6 19@iftex
386405f7
FB
20@titlepage
21@sp 7
8f40c388 22@center @titlefont{QEMU Emulator}
debc7065
FB
23@sp 1
24@center @titlefont{User Documentation}
386405f7
FB
25@sp 3
26@end titlepage
0806e3f6 27@end iftex
386405f7 28
debc7065
FB
29@ifnottex
30@node Top
31@top
32
33@menu
34* Introduction::
35* Installation::
36* QEMU PC System emulator::
37* QEMU System emulator for non PC targets::
83195237 38* QEMU User space emulator::
debc7065 39* compilation:: Compilation from the sources
7544a042 40* License::
debc7065
FB
41* Index::
42@end menu
43@end ifnottex
44
45@contents
46
47@node Introduction
386405f7
FB
48@chapter Introduction
49
debc7065
FB
50@menu
51* intro_features:: Features
52@end menu
53
54@node intro_features
322d0c66 55@section Features
386405f7 56
1f673135
FB
57QEMU is a FAST! processor emulator using dynamic translation to
58achieve good emulation speed.
1eb20527
FB
59
60QEMU has two operating modes:
0806e3f6 61
d7e5edca 62@itemize
7544a042 63@cindex operating modes
0806e3f6 64
5fafdf24 65@item
7544a042 66@cindex system emulation
1f673135 67Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
68example a PC), including one or several processors and various
69peripherals. It can be used to launch different Operating Systems
70without rebooting the PC or to debug system code.
1eb20527 71
5fafdf24 72@item
7544a042 73@cindex user mode emulation
83195237
FB
74User mode emulation. In this mode, QEMU can launch
75processes compiled for one CPU on another CPU. It can be used to
1f673135
FB
76launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77to ease cross-compilation and cross-debugging.
1eb20527
FB
78
79@end itemize
80
7c3fc84d 81QEMU can run without an host kernel driver and yet gives acceptable
5fafdf24 82performance.
322d0c66 83
52c00a5f
FB
84For system emulation, the following hardware targets are supported:
85@itemize
7544a042
SW
86@cindex emulated target systems
87@cindex supported target systems
9d0a8e6f 88@item PC (x86 or x86_64 processor)
3f9f3aa1 89@item ISA PC (old style PC without PCI bus)
52c00a5f 90@item PREP (PowerPC processor)
d45952a0 91@item G3 Beige PowerMac (PowerPC processor)
9d0a8e6f 92@item Mac99 PowerMac (PowerPC processor, in progress)
ee76f82e 93@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
c7ba218d 94@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
d9aedc32 95@item Malta board (32-bit and 64-bit MIPS processors)
88cb0a02 96@item MIPS Magnum (64-bit MIPS processor)
9ee6e8bb
PB
97@item ARM Integrator/CP (ARM)
98@item ARM Versatile baseboard (ARM)
0ef849d7 99@item ARM RealView Emulation/Platform baseboard (ARM)
ef4c3856 100@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
9ee6e8bb
PB
101@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
707e011b 103@item Freescale MCF5208EVB (ColdFire V2).
209a4e69 104@item Arnewsh MCF5206 evaluation board (ColdFire V2).
02645926 105@item Palm Tungsten|E PDA (OMAP310 processor)
c30bb264 106@item N800 and N810 tablets (OMAP2420 processor)
57cd6e97 107@item MusicPal (MV88W8618 ARM processor)
ef4c3856
AZ
108@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109@item Siemens SX1 smartphone (OMAP310 processor)
4af39611 110@item Syborg SVP base model (ARM Cortex-A8).
48c50a62
EI
111@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
112@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
52c00a5f 113@end itemize
386405f7 114
7544a042
SW
115@cindex supported user mode targets
116For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
117ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
118Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
0806e3f6 119
debc7065 120@node Installation
5b9f457a
FB
121@chapter Installation
122
15a34c63
FB
123If you want to compile QEMU yourself, see @ref{compilation}.
124
debc7065
FB
125@menu
126* install_linux:: Linux
127* install_windows:: Windows
128* install_mac:: Macintosh
129@end menu
130
131@node install_linux
1f673135 132@section Linux
7544a042 133@cindex installation (Linux)
1f673135 134
7c3fc84d
FB
135If a precompiled package is available for your distribution - you just
136have to install it. Otherwise, see @ref{compilation}.
5b9f457a 137
debc7065 138@node install_windows
1f673135 139@section Windows
7544a042 140@cindex installation (Windows)
8cd0ac2f 141
15a34c63 142Download the experimental binary installer at
debc7065 143@url{http://www.free.oszoo.org/@/download.html}.
7544a042 144TODO (no longer available)
d691f669 145
debc7065 146@node install_mac
1f673135 147@section Mac OS X
d691f669 148
15a34c63 149Download the experimental binary installer at
debc7065 150@url{http://www.free.oszoo.org/@/download.html}.
7544a042 151TODO (no longer available)
df0f11a0 152
debc7065 153@node QEMU PC System emulator
3f9f3aa1 154@chapter QEMU PC System emulator
7544a042 155@cindex system emulation (PC)
1eb20527 156
debc7065
FB
157@menu
158* pcsys_introduction:: Introduction
159* pcsys_quickstart:: Quick Start
160* sec_invocation:: Invocation
161* pcsys_keys:: Keys
162* pcsys_monitor:: QEMU Monitor
163* disk_images:: Disk Images
164* pcsys_network:: Network emulation
576fd0a1 165* pcsys_other_devs:: Other Devices
debc7065
FB
166* direct_linux_boot:: Direct Linux Boot
167* pcsys_usb:: USB emulation
f858dcae 168* vnc_security:: VNC security
debc7065
FB
169* gdb_usage:: GDB usage
170* pcsys_os_specific:: Target OS specific information
171@end menu
172
173@node pcsys_introduction
0806e3f6
FB
174@section Introduction
175
176@c man begin DESCRIPTION
177
3f9f3aa1
FB
178The QEMU PC System emulator simulates the
179following peripherals:
0806e3f6
FB
180
181@itemize @minus
5fafdf24 182@item
15a34c63 183i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 184@item
15a34c63
FB
185Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
186extensions (hardware level, including all non standard modes).
0806e3f6
FB
187@item
188PS/2 mouse and keyboard
5fafdf24 189@item
15a34c63 1902 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
191@item
192Floppy disk
5fafdf24 193@item
3a2eeac0 194PCI and ISA network adapters
0806e3f6 195@item
05d5818c
FB
196Serial ports
197@item
c0fe3827
FB
198Creative SoundBlaster 16 sound card
199@item
200ENSONIQ AudioPCI ES1370 sound card
201@item
e5c9a13e
AZ
202Intel 82801AA AC97 Audio compatible sound card
203@item
7d72e762
GH
204Intel HD Audio Controller and HDA codec
205@item
2d983446 206Adlib (OPL2) - Yamaha YM3812 compatible chip
b389dbfb 207@item
26463dbc
AZ
208Gravis Ultrasound GF1 sound card
209@item
cc53d26d 210CS4231A compatible sound card
211@item
b389dbfb 212PCI UHCI USB controller and a virtual USB hub.
0806e3f6
FB
213@end itemize
214
3f9f3aa1
FB
215SMP is supported with up to 255 CPUs.
216
1d1f8c33 217Note that adlib, gus and cs4231a are only available when QEMU was
218configured with --audio-card-list option containing the name(s) of
e5178e8d 219required card(s).
c0fe3827 220
15a34c63
FB
221QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
222VGA BIOS.
223
c0fe3827
FB
224QEMU uses YM3812 emulation by Tatsuyuki Satoh.
225
2d983446 226QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
26463dbc 227by Tibor "TS" Schütz.
423d65f4 228
720036a5 229Not that, by default, GUS shares IRQ(7) with parallel ports and so
230qemu must be told to not have parallel ports to have working GUS
231
232@example
233qemu dos.img -soundhw gus -parallel none
234@end example
235
236Alternatively:
237@example
238qemu dos.img -device gus,irq=5
239@end example
240
241Or some other unclaimed IRQ.
242
cc53d26d 243CS4231A is the chip used in Windows Sound System and GUSMAX products
244
0806e3f6
FB
245@c man end
246
debc7065 247@node pcsys_quickstart
1eb20527 248@section Quick Start
7544a042 249@cindex quick start
1eb20527 250
285dc330 251Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
252
253@example
285dc330 254qemu linux.img
0806e3f6
FB
255@end example
256
257Linux should boot and give you a prompt.
258
6cc721cf 259@node sec_invocation
ec410fc9
FB
260@section Invocation
261
262@example
0806e3f6 263@c man begin SYNOPSIS
89dfe898 264usage: qemu [options] [@var{disk_image}]
0806e3f6 265@c man end
ec410fc9
FB
266@end example
267
0806e3f6 268@c man begin OPTIONS
d2c639d6
BS
269@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
270targets do not need a disk image.
ec410fc9 271
5824d651 272@include qemu-options.texi
ec410fc9 273
3e11db9a
FB
274@c man end
275
debc7065 276@node pcsys_keys
3e11db9a
FB
277@section Keys
278
279@c man begin OPTIONS
280
a1b74fe8
FB
281During the graphical emulation, you can use the following keys:
282@table @key
f9859310 283@item Ctrl-Alt-f
7544a042 284@kindex Ctrl-Alt-f
a1b74fe8 285Toggle full screen
a0a821a4 286
c4a735f9 287@item Ctrl-Alt-u
7544a042 288@kindex Ctrl-Alt-u
c4a735f9 289Restore the screen's un-scaled dimensions
290
f9859310 291@item Ctrl-Alt-n
7544a042 292@kindex Ctrl-Alt-n
a0a821a4
FB
293Switch to virtual console 'n'. Standard console mappings are:
294@table @emph
295@item 1
296Target system display
297@item 2
298Monitor
299@item 3
300Serial port
a1b74fe8
FB
301@end table
302
f9859310 303@item Ctrl-Alt
7544a042 304@kindex Ctrl-Alt
a0a821a4
FB
305Toggle mouse and keyboard grab.
306@end table
307
7544a042
SW
308@kindex Ctrl-Up
309@kindex Ctrl-Down
310@kindex Ctrl-PageUp
311@kindex Ctrl-PageDown
3e11db9a
FB
312In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
313@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
314
7544a042 315@kindex Ctrl-a h
a0a821a4
FB
316During emulation, if you are using the @option{-nographic} option, use
317@key{Ctrl-a h} to get terminal commands:
ec410fc9
FB
318
319@table @key
a1b74fe8 320@item Ctrl-a h
7544a042 321@kindex Ctrl-a h
d2c639d6 322@item Ctrl-a ?
7544a042 323@kindex Ctrl-a ?
ec410fc9 324Print this help
3b46e624 325@item Ctrl-a x
7544a042 326@kindex Ctrl-a x
366dfc52 327Exit emulator
3b46e624 328@item Ctrl-a s
7544a042 329@kindex Ctrl-a s
1f47a922 330Save disk data back to file (if -snapshot)
20d8a3ed 331@item Ctrl-a t
7544a042 332@kindex Ctrl-a t
d2c639d6 333Toggle console timestamps
a1b74fe8 334@item Ctrl-a b
7544a042 335@kindex Ctrl-a b
1f673135 336Send break (magic sysrq in Linux)
a1b74fe8 337@item Ctrl-a c
7544a042 338@kindex Ctrl-a c
1f673135 339Switch between console and monitor
a1b74fe8 340@item Ctrl-a Ctrl-a
7544a042 341@kindex Ctrl-a a
a1b74fe8 342Send Ctrl-a
ec410fc9 343@end table
0806e3f6
FB
344@c man end
345
346@ignore
347
1f673135
FB
348@c man begin SEEALSO
349The HTML documentation of QEMU for more precise information and Linux
350user mode emulator invocation.
351@c man end
352
353@c man begin AUTHOR
354Fabrice Bellard
355@c man end
356
357@end ignore
358
debc7065 359@node pcsys_monitor
1f673135 360@section QEMU Monitor
7544a042 361@cindex QEMU monitor
1f673135
FB
362
363The QEMU monitor is used to give complex commands to the QEMU
364emulator. You can use it to:
365
366@itemize @minus
367
368@item
e598752a 369Remove or insert removable media images
89dfe898 370(such as CD-ROM or floppies).
1f673135 371
5fafdf24 372@item
1f673135
FB
373Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
374from a disk file.
375
376@item Inspect the VM state without an external debugger.
377
378@end itemize
379
380@subsection Commands
381
382The following commands are available:
383
2313086a 384@include qemu-monitor.texi
0806e3f6 385
1f673135
FB
386@subsection Integer expressions
387
388The monitor understands integers expressions for every integer
389argument. You can use register names to get the value of specifics
390CPU registers by prefixing them with @emph{$}.
ec410fc9 391
1f47a922
FB
392@node disk_images
393@section Disk Images
394
acd935ef
FB
395Since version 0.6.1, QEMU supports many disk image formats, including
396growable disk images (their size increase as non empty sectors are
13a2e80f
FB
397written), compressed and encrypted disk images. Version 0.8.3 added
398the new qcow2 disk image format which is essential to support VM
399snapshots.
1f47a922 400
debc7065
FB
401@menu
402* disk_images_quickstart:: Quick start for disk image creation
403* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 404* vm_snapshots:: VM snapshots
debc7065 405* qemu_img_invocation:: qemu-img Invocation
975b092b 406* qemu_nbd_invocation:: qemu-nbd Invocation
19cb3738 407* host_drives:: Using host drives
debc7065 408* disk_images_fat_images:: Virtual FAT disk images
75818250 409* disk_images_nbd:: NBD access
debc7065
FB
410@end menu
411
412@node disk_images_quickstart
acd935ef
FB
413@subsection Quick start for disk image creation
414
415You can create a disk image with the command:
1f47a922 416@example
acd935ef 417qemu-img create myimage.img mysize
1f47a922 418@end example
acd935ef
FB
419where @var{myimage.img} is the disk image filename and @var{mysize} is its
420size in kilobytes. You can add an @code{M} suffix to give the size in
421megabytes and a @code{G} suffix for gigabytes.
422
debc7065 423See @ref{qemu_img_invocation} for more information.
1f47a922 424
debc7065 425@node disk_images_snapshot_mode
1f47a922
FB
426@subsection Snapshot mode
427
428If you use the option @option{-snapshot}, all disk images are
429considered as read only. When sectors in written, they are written in
430a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
431write back to the raw disk images by using the @code{commit} monitor
432command (or @key{C-a s} in the serial console).
1f47a922 433
13a2e80f
FB
434@node vm_snapshots
435@subsection VM snapshots
436
437VM snapshots are snapshots of the complete virtual machine including
438CPU state, RAM, device state and the content of all the writable
439disks. In order to use VM snapshots, you must have at least one non
440removable and writable block device using the @code{qcow2} disk image
441format. Normally this device is the first virtual hard drive.
442
443Use the monitor command @code{savevm} to create a new VM snapshot or
444replace an existing one. A human readable name can be assigned to each
19d36792 445snapshot in addition to its numerical ID.
13a2e80f
FB
446
447Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
448a VM snapshot. @code{info snapshots} lists the available snapshots
449with their associated information:
450
451@example
452(qemu) info snapshots
453Snapshot devices: hda
454Snapshot list (from hda):
455ID TAG VM SIZE DATE VM CLOCK
4561 start 41M 2006-08-06 12:38:02 00:00:14.954
4572 40M 2006-08-06 12:43:29 00:00:18.633
4583 msys 40M 2006-08-06 12:44:04 00:00:23.514
459@end example
460
461A VM snapshot is made of a VM state info (its size is shown in
462@code{info snapshots}) and a snapshot of every writable disk image.
463The VM state info is stored in the first @code{qcow2} non removable
464and writable block device. The disk image snapshots are stored in
465every disk image. The size of a snapshot in a disk image is difficult
466to evaluate and is not shown by @code{info snapshots} because the
467associated disk sectors are shared among all the snapshots to save
19d36792
FB
468disk space (otherwise each snapshot would need a full copy of all the
469disk images).
13a2e80f
FB
470
471When using the (unrelated) @code{-snapshot} option
472(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
473but they are deleted as soon as you exit QEMU.
474
475VM snapshots currently have the following known limitations:
476@itemize
5fafdf24 477@item
13a2e80f
FB
478They cannot cope with removable devices if they are removed or
479inserted after a snapshot is done.
5fafdf24 480@item
13a2e80f
FB
481A few device drivers still have incomplete snapshot support so their
482state is not saved or restored properly (in particular USB).
483@end itemize
484
acd935ef
FB
485@node qemu_img_invocation
486@subsection @code{qemu-img} Invocation
1f47a922 487
acd935ef 488@include qemu-img.texi
05efe46e 489
975b092b
TS
490@node qemu_nbd_invocation
491@subsection @code{qemu-nbd} Invocation
492
493@include qemu-nbd.texi
494
19cb3738
FB
495@node host_drives
496@subsection Using host drives
497
498In addition to disk image files, QEMU can directly access host
499devices. We describe here the usage for QEMU version >= 0.8.3.
500
501@subsubsection Linux
502
503On Linux, you can directly use the host device filename instead of a
4be456f1 504disk image filename provided you have enough privileges to access
19cb3738
FB
505it. For example, use @file{/dev/cdrom} to access to the CDROM or
506@file{/dev/fd0} for the floppy.
507
f542086d 508@table @code
19cb3738
FB
509@item CD
510You can specify a CDROM device even if no CDROM is loaded. QEMU has
511specific code to detect CDROM insertion or removal. CDROM ejection by
512the guest OS is supported. Currently only data CDs are supported.
513@item Floppy
514You can specify a floppy device even if no floppy is loaded. Floppy
515removal is currently not detected accurately (if you change floppy
516without doing floppy access while the floppy is not loaded, the guest
517OS will think that the same floppy is loaded).
518@item Hard disks
519Hard disks can be used. Normally you must specify the whole disk
520(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
521see it as a partitioned disk. WARNING: unless you know what you do, it
522is better to only make READ-ONLY accesses to the hard disk otherwise
523you may corrupt your host data (use the @option{-snapshot} command
524line option or modify the device permissions accordingly).
525@end table
526
527@subsubsection Windows
528
01781963
FB
529@table @code
530@item CD
4be456f1 531The preferred syntax is the drive letter (e.g. @file{d:}). The
01781963
FB
532alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
533supported as an alias to the first CDROM drive.
19cb3738 534
e598752a 535Currently there is no specific code to handle removable media, so it
19cb3738
FB
536is better to use the @code{change} or @code{eject} monitor commands to
537change or eject media.
01781963 538@item Hard disks
89dfe898 539Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
01781963
FB
540where @var{N} is the drive number (0 is the first hard disk).
541
542WARNING: unless you know what you do, it is better to only make
543READ-ONLY accesses to the hard disk otherwise you may corrupt your
544host data (use the @option{-snapshot} command line so that the
545modifications are written in a temporary file).
546@end table
547
19cb3738
FB
548
549@subsubsection Mac OS X
550
5fafdf24 551@file{/dev/cdrom} is an alias to the first CDROM.
19cb3738 552
e598752a 553Currently there is no specific code to handle removable media, so it
19cb3738
FB
554is better to use the @code{change} or @code{eject} monitor commands to
555change or eject media.
556
debc7065 557@node disk_images_fat_images
2c6cadd4
FB
558@subsection Virtual FAT disk images
559
560QEMU can automatically create a virtual FAT disk image from a
561directory tree. In order to use it, just type:
562
5fafdf24 563@example
2c6cadd4
FB
564qemu linux.img -hdb fat:/my_directory
565@end example
566
567Then you access access to all the files in the @file{/my_directory}
568directory without having to copy them in a disk image or to export
569them via SAMBA or NFS. The default access is @emph{read-only}.
570
571Floppies can be emulated with the @code{:floppy:} option:
572
5fafdf24 573@example
2c6cadd4
FB
574qemu linux.img -fda fat:floppy:/my_directory
575@end example
576
577A read/write support is available for testing (beta stage) with the
578@code{:rw:} option:
579
5fafdf24 580@example
2c6cadd4
FB
581qemu linux.img -fda fat:floppy:rw:/my_directory
582@end example
583
584What you should @emph{never} do:
585@itemize
586@item use non-ASCII filenames ;
587@item use "-snapshot" together with ":rw:" ;
85b2c688
FB
588@item expect it to work when loadvm'ing ;
589@item write to the FAT directory on the host system while accessing it with the guest system.
2c6cadd4
FB
590@end itemize
591
75818250
TS
592@node disk_images_nbd
593@subsection NBD access
594
595QEMU can access directly to block device exported using the Network Block Device
596protocol.
597
598@example
599qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
600@end example
601
602If the NBD server is located on the same host, you can use an unix socket instead
603of an inet socket:
604
605@example
606qemu linux.img -hdb nbd:unix:/tmp/my_socket
607@end example
608
609In this case, the block device must be exported using qemu-nbd:
610
611@example
612qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
613@end example
614
615The use of qemu-nbd allows to share a disk between several guests:
616@example
617qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
618@end example
619
620and then you can use it with two guests:
621@example
622qemu linux1.img -hdb nbd:unix:/tmp/my_socket
623qemu linux2.img -hdb nbd:unix:/tmp/my_socket
624@end example
625
1d45f8b5
LV
626If the nbd-server uses named exports (since NBD 2.9.18), you must use the
627"exportname" option:
628@example
629qemu -cdrom nbd:localhost:exportname=debian-500-ppc-netinst
630qemu -cdrom nbd:localhost:exportname=openSUSE-11.1-ppc-netinst
631@end example
632
debc7065 633@node pcsys_network
9d4fb82e
FB
634@section Network emulation
635
4be456f1 636QEMU can simulate several network cards (PCI or ISA cards on the PC
41d03949
FB
637target) and can connect them to an arbitrary number of Virtual Local
638Area Networks (VLANs). Host TAP devices can be connected to any QEMU
639VLAN. VLAN can be connected between separate instances of QEMU to
4be456f1 640simulate large networks. For simpler usage, a non privileged user mode
41d03949
FB
641network stack can replace the TAP device to have a basic network
642connection.
643
644@subsection VLANs
9d4fb82e 645
41d03949
FB
646QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
647connection between several network devices. These devices can be for
648example QEMU virtual Ethernet cards or virtual Host ethernet devices
649(TAP devices).
9d4fb82e 650
41d03949
FB
651@subsection Using TAP network interfaces
652
653This is the standard way to connect QEMU to a real network. QEMU adds
654a virtual network device on your host (called @code{tapN}), and you
655can then configure it as if it was a real ethernet card.
9d4fb82e 656
8f40c388
FB
657@subsubsection Linux host
658
9d4fb82e
FB
659As an example, you can download the @file{linux-test-xxx.tar.gz}
660archive and copy the script @file{qemu-ifup} in @file{/etc} and
661configure properly @code{sudo} so that the command @code{ifconfig}
662contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 663that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
664device @file{/dev/net/tun} must be present.
665
ee0f4751
FB
666See @ref{sec_invocation} to have examples of command lines using the
667TAP network interfaces.
9d4fb82e 668
8f40c388
FB
669@subsubsection Windows host
670
671There is a virtual ethernet driver for Windows 2000/XP systems, called
672TAP-Win32. But it is not included in standard QEMU for Windows,
673so you will need to get it separately. It is part of OpenVPN package,
674so download OpenVPN from : @url{http://openvpn.net/}.
675
9d4fb82e
FB
676@subsection Using the user mode network stack
677
41d03949
FB
678By using the option @option{-net user} (default configuration if no
679@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 680network stack (you don't need root privilege to use the virtual
41d03949 681network). The virtual network configuration is the following:
9d4fb82e
FB
682
683@example
684
41d03949
FB
685 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
686 | (10.0.2.2)
9d4fb82e 687 |
2518bd0d 688 ----> DNS server (10.0.2.3)
3b46e624 689 |
2518bd0d 690 ----> SMB server (10.0.2.4)
9d4fb82e
FB
691@end example
692
693The QEMU VM behaves as if it was behind a firewall which blocks all
694incoming connections. You can use a DHCP client to automatically
41d03949
FB
695configure the network in the QEMU VM. The DHCP server assign addresses
696to the hosts starting from 10.0.2.15.
9d4fb82e
FB
697
698In order to check that the user mode network is working, you can ping
699the address 10.0.2.2 and verify that you got an address in the range
70010.0.2.x from the QEMU virtual DHCP server.
701
b415a407 702Note that @code{ping} is not supported reliably to the internet as it
4be456f1 703would require root privileges. It means you can only ping the local
b415a407
FB
704router (10.0.2.2).
705
9bf05444
FB
706When using the built-in TFTP server, the router is also the TFTP
707server.
708
709When using the @option{-redir} option, TCP or UDP connections can be
710redirected from the host to the guest. It allows for example to
711redirect X11, telnet or SSH connections.
443f1376 712
41d03949
FB
713@subsection Connecting VLANs between QEMU instances
714
715Using the @option{-net socket} option, it is possible to make VLANs
716that span several QEMU instances. See @ref{sec_invocation} to have a
717basic example.
718
576fd0a1 719@node pcsys_other_devs
6cbf4c8c
CM
720@section Other Devices
721
722@subsection Inter-VM Shared Memory device
723
724With KVM enabled on a Linux host, a shared memory device is available. Guests
725map a POSIX shared memory region into the guest as a PCI device that enables
726zero-copy communication to the application level of the guests. The basic
727syntax is:
728
729@example
730qemu -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]
731@end example
732
733If desired, interrupts can be sent between guest VMs accessing the same shared
734memory region. Interrupt support requires using a shared memory server and
735using a chardev socket to connect to it. The code for the shared memory server
736is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
737memory server is:
738
739@example
740qemu -device ivshmem,size=<size in format accepted by -m>[,chardev=<id>]
741 [,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master]
742qemu -chardev socket,path=<path>,id=<id>
743@end example
744
745When using the server, the guest will be assigned a VM ID (>=0) that allows guests
746using the same server to communicate via interrupts. Guests can read their
747VM ID from a device register (see example code). Since receiving the shared
748memory region from the server is asynchronous, there is a (small) chance the
749guest may boot before the shared memory is attached. To allow an application
750to ensure shared memory is attached, the VM ID register will return -1 (an
751invalid VM ID) until the memory is attached. Once the shared memory is
752attached, the VM ID will return the guest's valid VM ID. With these semantics,
753the guest application can check to ensure the shared memory is attached to the
754guest before proceeding.
755
756The @option{role} argument can be set to either master or peer and will affect
757how the shared memory is migrated. With @option{role=master}, the guest will
758copy the shared memory on migration to the destination host. With
759@option{role=peer}, the guest will not be able to migrate with the device attached.
760With the @option{peer} case, the device should be detached and then reattached
761after migration using the PCI hotplug support.
762
9d4fb82e
FB
763@node direct_linux_boot
764@section Direct Linux Boot
1f673135
FB
765
766This section explains how to launch a Linux kernel inside QEMU without
767having to make a full bootable image. It is very useful for fast Linux
ee0f4751 768kernel testing.
1f673135 769
ee0f4751 770The syntax is:
1f673135 771@example
ee0f4751 772qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
773@end example
774
ee0f4751
FB
775Use @option{-kernel} to provide the Linux kernel image and
776@option{-append} to give the kernel command line arguments. The
777@option{-initrd} option can be used to provide an INITRD image.
1f673135 778
ee0f4751
FB
779When using the direct Linux boot, a disk image for the first hard disk
780@file{hda} is required because its boot sector is used to launch the
781Linux kernel.
1f673135 782
ee0f4751
FB
783If you do not need graphical output, you can disable it and redirect
784the virtual serial port and the QEMU monitor to the console with the
785@option{-nographic} option. The typical command line is:
1f673135 786@example
ee0f4751
FB
787qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
788 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
789@end example
790
ee0f4751
FB
791Use @key{Ctrl-a c} to switch between the serial console and the
792monitor (@pxref{pcsys_keys}).
1f673135 793
debc7065 794@node pcsys_usb
b389dbfb
FB
795@section USB emulation
796
0aff66b5
PB
797QEMU emulates a PCI UHCI USB controller. You can virtually plug
798virtual USB devices or real host USB devices (experimental, works only
799on Linux hosts). Qemu will automatically create and connect virtual USB hubs
f542086d 800as necessary to connect multiple USB devices.
b389dbfb 801
0aff66b5
PB
802@menu
803* usb_devices::
804* host_usb_devices::
805@end menu
806@node usb_devices
807@subsection Connecting USB devices
b389dbfb 808
0aff66b5
PB
809USB devices can be connected with the @option{-usbdevice} commandline option
810or the @code{usb_add} monitor command. Available devices are:
b389dbfb 811
db380c06
AZ
812@table @code
813@item mouse
0aff66b5 814Virtual Mouse. This will override the PS/2 mouse emulation when activated.
db380c06 815@item tablet
c6d46c20 816Pointer device that uses absolute coordinates (like a touchscreen).
0aff66b5
PB
817This means qemu is able to report the mouse position without having
818to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
db380c06 819@item disk:@var{file}
0aff66b5 820Mass storage device based on @var{file} (@pxref{disk_images})
db380c06 821@item host:@var{bus.addr}
0aff66b5
PB
822Pass through the host device identified by @var{bus.addr}
823(Linux only)
db380c06 824@item host:@var{vendor_id:product_id}
0aff66b5
PB
825Pass through the host device identified by @var{vendor_id:product_id}
826(Linux only)
db380c06 827@item wacom-tablet
f6d2a316
AZ
828Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
829above but it can be used with the tslib library because in addition to touch
830coordinates it reports touch pressure.
db380c06 831@item keyboard
47b2d338 832Standard USB keyboard. Will override the PS/2 keyboard (if present).
db380c06
AZ
833@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
834Serial converter. This emulates an FTDI FT232BM chip connected to host character
835device @var{dev}. The available character devices are the same as for the
836@code{-serial} option. The @code{vendorid} and @code{productid} options can be
0d6753e5 837used to override the default 0403:6001. For instance,
db380c06
AZ
838@example
839usb_add serial:productid=FA00:tcp:192.168.0.2:4444
840@end example
841will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
842serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
2e4d9fb1
AJ
843@item braille
844Braille device. This will use BrlAPI to display the braille output on a real
845or fake device.
9ad97e65
AZ
846@item net:@var{options}
847Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
848specifies NIC options as with @code{-net nic,}@var{options} (see description).
849For instance, user-mode networking can be used with
6c9f886c 850@example
9ad97e65 851qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
6c9f886c
AZ
852@end example
853Currently this cannot be used in machines that support PCI NICs.
2d564691
AZ
854@item bt[:@var{hci-type}]
855Bluetooth dongle whose type is specified in the same format as with
856the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
857no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
858This USB device implements the USB Transport Layer of HCI. Example
859usage:
860@example
861qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
862@end example
0aff66b5 863@end table
b389dbfb 864
0aff66b5 865@node host_usb_devices
b389dbfb
FB
866@subsection Using host USB devices on a Linux host
867
868WARNING: this is an experimental feature. QEMU will slow down when
869using it. USB devices requiring real time streaming (i.e. USB Video
870Cameras) are not supported yet.
871
872@enumerate
5fafdf24 873@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
874is actually using the USB device. A simple way to do that is simply to
875disable the corresponding kernel module by renaming it from @file{mydriver.o}
876to @file{mydriver.o.disabled}.
877
878@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
879@example
880ls /proc/bus/usb
881001 devices drivers
882@end example
883
884@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
885@example
886chown -R myuid /proc/bus/usb
887@end example
888
889@item Launch QEMU and do in the monitor:
5fafdf24 890@example
b389dbfb
FB
891info usbhost
892 Device 1.2, speed 480 Mb/s
893 Class 00: USB device 1234:5678, USB DISK
894@end example
895You should see the list of the devices you can use (Never try to use
896hubs, it won't work).
897
898@item Add the device in QEMU by using:
5fafdf24 899@example
b389dbfb
FB
900usb_add host:1234:5678
901@end example
902
903Normally the guest OS should report that a new USB device is
904plugged. You can use the option @option{-usbdevice} to do the same.
905
906@item Now you can try to use the host USB device in QEMU.
907
908@end enumerate
909
910When relaunching QEMU, you may have to unplug and plug again the USB
911device to make it work again (this is a bug).
912
f858dcae
TS
913@node vnc_security
914@section VNC security
915
916The VNC server capability provides access to the graphical console
917of the guest VM across the network. This has a number of security
918considerations depending on the deployment scenarios.
919
920@menu
921* vnc_sec_none::
922* vnc_sec_password::
923* vnc_sec_certificate::
924* vnc_sec_certificate_verify::
925* vnc_sec_certificate_pw::
2f9606b3
AL
926* vnc_sec_sasl::
927* vnc_sec_certificate_sasl::
f858dcae 928* vnc_generate_cert::
2f9606b3 929* vnc_setup_sasl::
f858dcae
TS
930@end menu
931@node vnc_sec_none
932@subsection Without passwords
933
934The simplest VNC server setup does not include any form of authentication.
935For this setup it is recommended to restrict it to listen on a UNIX domain
936socket only. For example
937
938@example
939qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
940@end example
941
942This ensures that only users on local box with read/write access to that
943path can access the VNC server. To securely access the VNC server from a
944remote machine, a combination of netcat+ssh can be used to provide a secure
945tunnel.
946
947@node vnc_sec_password
948@subsection With passwords
949
950The VNC protocol has limited support for password based authentication. Since
951the protocol limits passwords to 8 characters it should not be considered
952to provide high security. The password can be fairly easily brute-forced by
953a client making repeat connections. For this reason, a VNC server using password
954authentication should be restricted to only listen on the loopback interface
34a3d239 955or UNIX domain sockets. Password authentication is requested with the @code{password}
f858dcae
TS
956option, and then once QEMU is running the password is set with the monitor. Until
957the monitor is used to set the password all clients will be rejected.
958
959@example
960qemu [...OPTIONS...] -vnc :1,password -monitor stdio
961(qemu) change vnc password
962Password: ********
963(qemu)
964@end example
965
966@node vnc_sec_certificate
967@subsection With x509 certificates
968
969The QEMU VNC server also implements the VeNCrypt extension allowing use of
970TLS for encryption of the session, and x509 certificates for authentication.
971The use of x509 certificates is strongly recommended, because TLS on its
972own is susceptible to man-in-the-middle attacks. Basic x509 certificate
973support provides a secure session, but no authentication. This allows any
974client to connect, and provides an encrypted session.
975
976@example
977qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
978@end example
979
980In the above example @code{/etc/pki/qemu} should contain at least three files,
981@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
982users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
983NB the @code{server-key.pem} file should be protected with file mode 0600 to
984only be readable by the user owning it.
985
986@node vnc_sec_certificate_verify
987@subsection With x509 certificates and client verification
988
989Certificates can also provide a means to authenticate the client connecting.
990The server will request that the client provide a certificate, which it will
991then validate against the CA certificate. This is a good choice if deploying
992in an environment with a private internal certificate authority.
993
994@example
995qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
996@end example
997
998
999@node vnc_sec_certificate_pw
1000@subsection With x509 certificates, client verification and passwords
1001
1002Finally, the previous method can be combined with VNC password authentication
1003to provide two layers of authentication for clients.
1004
1005@example
1006qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1007(qemu) change vnc password
1008Password: ********
1009(qemu)
1010@end example
1011
2f9606b3
AL
1012
1013@node vnc_sec_sasl
1014@subsection With SASL authentication
1015
1016The SASL authentication method is a VNC extension, that provides an
1017easily extendable, pluggable authentication method. This allows for
1018integration with a wide range of authentication mechanisms, such as
1019PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1020The strength of the authentication depends on the exact mechanism
1021configured. If the chosen mechanism also provides a SSF layer, then
1022it will encrypt the datastream as well.
1023
1024Refer to the later docs on how to choose the exact SASL mechanism
1025used for authentication, but assuming use of one supporting SSF,
1026then QEMU can be launched with:
1027
1028@example
1029qemu [...OPTIONS...] -vnc :1,sasl -monitor stdio
1030@end example
1031
1032@node vnc_sec_certificate_sasl
1033@subsection With x509 certificates and SASL authentication
1034
1035If the desired SASL authentication mechanism does not supported
1036SSF layers, then it is strongly advised to run it in combination
1037with TLS and x509 certificates. This provides securely encrypted
1038data stream, avoiding risk of compromising of the security
1039credentials. This can be enabled, by combining the 'sasl' option
1040with the aforementioned TLS + x509 options:
1041
1042@example
1043qemu [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
1044@end example
1045
1046
f858dcae
TS
1047@node vnc_generate_cert
1048@subsection Generating certificates for VNC
1049
1050The GNU TLS packages provides a command called @code{certtool} which can
1051be used to generate certificates and keys in PEM format. At a minimum it
1052is neccessary to setup a certificate authority, and issue certificates to
1053each server. If using certificates for authentication, then each client
1054will also need to be issued a certificate. The recommendation is for the
1055server to keep its certificates in either @code{/etc/pki/qemu} or for
1056unprivileged users in @code{$HOME/.pki/qemu}.
1057
1058@menu
1059* vnc_generate_ca::
1060* vnc_generate_server::
1061* vnc_generate_client::
1062@end menu
1063@node vnc_generate_ca
1064@subsubsection Setup the Certificate Authority
1065
1066This step only needs to be performed once per organization / organizational
1067unit. First the CA needs a private key. This key must be kept VERY secret
1068and secure. If this key is compromised the entire trust chain of the certificates
1069issued with it is lost.
1070
1071@example
1072# certtool --generate-privkey > ca-key.pem
1073@end example
1074
1075A CA needs to have a public certificate. For simplicity it can be a self-signed
1076certificate, or one issue by a commercial certificate issuing authority. To
1077generate a self-signed certificate requires one core piece of information, the
1078name of the organization.
1079
1080@example
1081# cat > ca.info <<EOF
1082cn = Name of your organization
1083ca
1084cert_signing_key
1085EOF
1086# certtool --generate-self-signed \
1087 --load-privkey ca-key.pem
1088 --template ca.info \
1089 --outfile ca-cert.pem
1090@end example
1091
1092The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1093TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1094
1095@node vnc_generate_server
1096@subsubsection Issuing server certificates
1097
1098Each server (or host) needs to be issued with a key and certificate. When connecting
1099the certificate is sent to the client which validates it against the CA certificate.
1100The core piece of information for a server certificate is the hostname. This should
1101be the fully qualified hostname that the client will connect with, since the client
1102will typically also verify the hostname in the certificate. On the host holding the
1103secure CA private key:
1104
1105@example
1106# cat > server.info <<EOF
1107organization = Name of your organization
1108cn = server.foo.example.com
1109tls_www_server
1110encryption_key
1111signing_key
1112EOF
1113# certtool --generate-privkey > server-key.pem
1114# certtool --generate-certificate \
1115 --load-ca-certificate ca-cert.pem \
1116 --load-ca-privkey ca-key.pem \
1117 --load-privkey server server-key.pem \
1118 --template server.info \
1119 --outfile server-cert.pem
1120@end example
1121
1122The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1123to the server for which they were generated. The @code{server-key.pem} is security
1124sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1125
1126@node vnc_generate_client
1127@subsubsection Issuing client certificates
1128
1129If the QEMU VNC server is to use the @code{x509verify} option to validate client
1130certificates as its authentication mechanism, each client also needs to be issued
1131a certificate. The client certificate contains enough metadata to uniquely identify
1132the client, typically organization, state, city, building, etc. On the host holding
1133the secure CA private key:
1134
1135@example
1136# cat > client.info <<EOF
1137country = GB
1138state = London
1139locality = London
1140organiazation = Name of your organization
1141cn = client.foo.example.com
1142tls_www_client
1143encryption_key
1144signing_key
1145EOF
1146# certtool --generate-privkey > client-key.pem
1147# certtool --generate-certificate \
1148 --load-ca-certificate ca-cert.pem \
1149 --load-ca-privkey ca-key.pem \
1150 --load-privkey client-key.pem \
1151 --template client.info \
1152 --outfile client-cert.pem
1153@end example
1154
1155The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1156copied to the client for which they were generated.
1157
2f9606b3
AL
1158
1159@node vnc_setup_sasl
1160
1161@subsection Configuring SASL mechanisms
1162
1163The following documentation assumes use of the Cyrus SASL implementation on a
1164Linux host, but the principals should apply to any other SASL impl. When SASL
1165is enabled, the mechanism configuration will be loaded from system default
1166SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1167unprivileged user, an environment variable SASL_CONF_PATH can be used
1168to make it search alternate locations for the service config.
1169
1170The default configuration might contain
1171
1172@example
1173mech_list: digest-md5
1174sasldb_path: /etc/qemu/passwd.db
1175@end example
1176
1177This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1178Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1179in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1180command. While this mechanism is easy to configure and use, it is not
1181considered secure by modern standards, so only suitable for developers /
1182ad-hoc testing.
1183
1184A more serious deployment might use Kerberos, which is done with the 'gssapi'
1185mechanism
1186
1187@example
1188mech_list: gssapi
1189keytab: /etc/qemu/krb5.tab
1190@end example
1191
1192For this to work the administrator of your KDC must generate a Kerberos
1193principal for the server, with a name of 'qemu/somehost.example.com@@EXAMPLE.COM'
1194replacing 'somehost.example.com' with the fully qualified host name of the
1195machine running QEMU, and 'EXAMPLE.COM' with the Keberos Realm.
1196
1197Other configurations will be left as an exercise for the reader. It should
1198be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1199encryption. For all other mechanisms, VNC should always be configured to
1200use TLS and x509 certificates to protect security credentials from snooping.
1201
0806e3f6 1202@node gdb_usage
da415d54
FB
1203@section GDB usage
1204
1205QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1206'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1207
9d4520d0 1208In order to use gdb, launch qemu with the '-s' option. It will wait for a
da415d54
FB
1209gdb connection:
1210@example
debc7065
FB
1211> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1212 -append "root=/dev/hda"
da415d54
FB
1213Connected to host network interface: tun0
1214Waiting gdb connection on port 1234
1215@end example
1216
1217Then launch gdb on the 'vmlinux' executable:
1218@example
1219> gdb vmlinux
1220@end example
1221
1222In gdb, connect to QEMU:
1223@example
6c9bf893 1224(gdb) target remote localhost:1234
da415d54
FB
1225@end example
1226
1227Then you can use gdb normally. For example, type 'c' to launch the kernel:
1228@example
1229(gdb) c
1230@end example
1231
0806e3f6
FB
1232Here are some useful tips in order to use gdb on system code:
1233
1234@enumerate
1235@item
1236Use @code{info reg} to display all the CPU registers.
1237@item
1238Use @code{x/10i $eip} to display the code at the PC position.
1239@item
1240Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1241@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1242@end enumerate
1243
60897d36
EI
1244Advanced debugging options:
1245
1246The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 1247@table @code
60897d36
EI
1248@item maintenance packet qqemu.sstepbits
1249
1250This will display the MASK bits used to control the single stepping IE:
1251@example
1252(gdb) maintenance packet qqemu.sstepbits
1253sending: "qqemu.sstepbits"
1254received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1255@end example
1256@item maintenance packet qqemu.sstep
1257
1258This will display the current value of the mask used when single stepping IE:
1259@example
1260(gdb) maintenance packet qqemu.sstep
1261sending: "qqemu.sstep"
1262received: "0x7"
1263@end example
1264@item maintenance packet Qqemu.sstep=HEX_VALUE
1265
1266This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1267@example
1268(gdb) maintenance packet Qqemu.sstep=0x5
1269sending: "qemu.sstep=0x5"
1270received: "OK"
1271@end example
94d45e44 1272@end table
60897d36 1273
debc7065 1274@node pcsys_os_specific
1a084f3d
FB
1275@section Target OS specific information
1276
1277@subsection Linux
1278
15a34c63
FB
1279To have access to SVGA graphic modes under X11, use the @code{vesa} or
1280the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1281color depth in the guest and the host OS.
1a084f3d 1282
e3371e62
FB
1283When using a 2.6 guest Linux kernel, you should add the option
1284@code{clock=pit} on the kernel command line because the 2.6 Linux
1285kernels make very strict real time clock checks by default that QEMU
1286cannot simulate exactly.
1287
7c3fc84d
FB
1288When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1289not activated because QEMU is slower with this patch. The QEMU
1290Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1291Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1292patch by default. Newer kernels don't have it.
1293
1a084f3d
FB
1294@subsection Windows
1295
1296If you have a slow host, using Windows 95 is better as it gives the
1297best speed. Windows 2000 is also a good choice.
1298
e3371e62
FB
1299@subsubsection SVGA graphic modes support
1300
1301QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1302card. All Windows versions starting from Windows 95 should recognize
1303and use this graphic card. For optimal performances, use 16 bit color
1304depth in the guest and the host OS.
1a084f3d 1305
3cb0853a
FB
1306If you are using Windows XP as guest OS and if you want to use high
1307resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
13081280x1024x16), then you should use the VESA VBE virtual graphic card
1309(option @option{-std-vga}).
1310
e3371e62
FB
1311@subsubsection CPU usage reduction
1312
1313Windows 9x does not correctly use the CPU HLT
15a34c63
FB
1314instruction. The result is that it takes host CPU cycles even when
1315idle. You can install the utility from
1316@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1317problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 1318
9d0a8e6f 1319@subsubsection Windows 2000 disk full problem
e3371e62 1320
9d0a8e6f
FB
1321Windows 2000 has a bug which gives a disk full problem during its
1322installation. When installing it, use the @option{-win2k-hack} QEMU
1323option to enable a specific workaround. After Windows 2000 is
1324installed, you no longer need this option (this option slows down the
1325IDE transfers).
e3371e62 1326
6cc721cf
FB
1327@subsubsection Windows 2000 shutdown
1328
1329Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1330can. It comes from the fact that Windows 2000 does not automatically
1331use the APM driver provided by the BIOS.
1332
1333In order to correct that, do the following (thanks to Struan
1334Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1335Add/Troubleshoot a device => Add a new device & Next => No, select the
1336hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1337(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 1338correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
1339
1340@subsubsection Share a directory between Unix and Windows
1341
1342See @ref{sec_invocation} about the help of the option @option{-smb}.
1343
2192c332 1344@subsubsection Windows XP security problem
e3371e62
FB
1345
1346Some releases of Windows XP install correctly but give a security
1347error when booting:
1348@example
1349A problem is preventing Windows from accurately checking the
1350license for this computer. Error code: 0x800703e6.
1351@end example
e3371e62 1352
2192c332
FB
1353The workaround is to install a service pack for XP after a boot in safe
1354mode. Then reboot, and the problem should go away. Since there is no
1355network while in safe mode, its recommended to download the full
1356installation of SP1 or SP2 and transfer that via an ISO or using the
1357vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 1358
a0a821a4
FB
1359@subsection MS-DOS and FreeDOS
1360
1361@subsubsection CPU usage reduction
1362
1363DOS does not correctly use the CPU HLT instruction. The result is that
1364it takes host CPU cycles even when idle. You can install the utility
1365from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1366problem.
1367
debc7065 1368@node QEMU System emulator for non PC targets
3f9f3aa1
FB
1369@chapter QEMU System emulator for non PC targets
1370
1371QEMU is a generic emulator and it emulates many non PC
1372machines. Most of the options are similar to the PC emulator. The
4be456f1 1373differences are mentioned in the following sections.
3f9f3aa1 1374
debc7065 1375@menu
7544a042 1376* PowerPC System emulator::
24d4de45
TS
1377* Sparc32 System emulator::
1378* Sparc64 System emulator::
1379* MIPS System emulator::
1380* ARM System emulator::
1381* ColdFire System emulator::
7544a042
SW
1382* Cris System emulator::
1383* Microblaze System emulator::
1384* SH4 System emulator::
debc7065
FB
1385@end menu
1386
7544a042
SW
1387@node PowerPC System emulator
1388@section PowerPC System emulator
1389@cindex system emulation (PowerPC)
1a084f3d 1390
15a34c63
FB
1391Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1392or PowerMac PowerPC system.
1a084f3d 1393
b671f9ed 1394QEMU emulates the following PowerMac peripherals:
1a084f3d 1395
15a34c63 1396@itemize @minus
5fafdf24 1397@item
006f3a48 1398UniNorth or Grackle PCI Bridge
15a34c63
FB
1399@item
1400PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1401@item
15a34c63 14022 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 1403@item
15a34c63
FB
1404NE2000 PCI adapters
1405@item
1406Non Volatile RAM
1407@item
1408VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
1409@end itemize
1410
b671f9ed 1411QEMU emulates the following PREP peripherals:
52c00a5f
FB
1412
1413@itemize @minus
5fafdf24 1414@item
15a34c63
FB
1415PCI Bridge
1416@item
1417PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1418@item
52c00a5f
FB
14192 IDE interfaces with hard disk and CD-ROM support
1420@item
1421Floppy disk
5fafdf24 1422@item
15a34c63 1423NE2000 network adapters
52c00a5f
FB
1424@item
1425Serial port
1426@item
1427PREP Non Volatile RAM
15a34c63
FB
1428@item
1429PC compatible keyboard and mouse.
52c00a5f
FB
1430@end itemize
1431
15a34c63 1432QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 1433@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 1434
992e5acd 1435Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
006f3a48
BS
1436for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1437v2) portable firmware implementation. The goal is to implement a 100%
1438IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 1439
15a34c63
FB
1440@c man begin OPTIONS
1441
1442The following options are specific to the PowerPC emulation:
1443
1444@table @option
1445
4e257e5e 1446@item -g @var{W}x@var{H}[x@var{DEPTH}]
15a34c63
FB
1447
1448Set the initial VGA graphic mode. The default is 800x600x15.
1449
4e257e5e 1450@item -prom-env @var{string}
95efd11c
BS
1451
1452Set OpenBIOS variables in NVRAM, for example:
1453
1454@example
1455qemu-system-ppc -prom-env 'auto-boot?=false' \
1456 -prom-env 'boot-device=hd:2,\yaboot' \
1457 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1458@end example
1459
1460These variables are not used by Open Hack'Ware.
1461
15a34c63
FB
1462@end table
1463
5fafdf24 1464@c man end
15a34c63
FB
1465
1466
52c00a5f 1467More information is available at
3f9f3aa1 1468@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 1469
24d4de45
TS
1470@node Sparc32 System emulator
1471@section Sparc32 System emulator
7544a042 1472@cindex system emulation (Sparc32)
e80cfcfc 1473
34a3d239
BS
1474Use the executable @file{qemu-system-sparc} to simulate the following
1475Sun4m architecture machines:
1476@itemize @minus
1477@item
1478SPARCstation 4
1479@item
1480SPARCstation 5
1481@item
1482SPARCstation 10
1483@item
1484SPARCstation 20
1485@item
1486SPARCserver 600MP
1487@item
1488SPARCstation LX
1489@item
1490SPARCstation Voyager
1491@item
1492SPARCclassic
1493@item
1494SPARCbook
1495@end itemize
1496
1497The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1498but Linux limits the number of usable CPUs to 4.
e80cfcfc 1499
34a3d239
BS
1500It's also possible to simulate a SPARCstation 2 (sun4c architecture),
1501SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
1502emulators are not usable yet.
1503
1504QEMU emulates the following sun4m/sun4c/sun4d peripherals:
e80cfcfc
FB
1505
1506@itemize @minus
3475187d 1507@item
7d85892b 1508IOMMU or IO-UNITs
e80cfcfc
FB
1509@item
1510TCX Frame buffer
5fafdf24 1511@item
e80cfcfc
FB
1512Lance (Am7990) Ethernet
1513@item
34a3d239 1514Non Volatile RAM M48T02/M48T08
e80cfcfc 1515@item
3475187d
FB
1516Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1517and power/reset logic
1518@item
1519ESP SCSI controller with hard disk and CD-ROM support
1520@item
6a3b9cc9 1521Floppy drive (not on SS-600MP)
a2502b58
BS
1522@item
1523CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
1524@end itemize
1525
6a3b9cc9
BS
1526The number of peripherals is fixed in the architecture. Maximum
1527memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 1528others 2047MB.
3475187d 1529
30a604f3 1530Since version 0.8.2, QEMU uses OpenBIOS
0986ac3b
FB
1531@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1532firmware implementation. The goal is to implement a 100% IEEE
15331275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
1534
1535A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239
BS
1536the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1537some kernel versions work. Please note that currently Solaris kernels
1538don't work probably due to interface issues between OpenBIOS and
1539Solaris.
3475187d
FB
1540
1541@c man begin OPTIONS
1542
a2502b58 1543The following options are specific to the Sparc32 emulation:
3475187d
FB
1544
1545@table @option
1546
4e257e5e 1547@item -g @var{W}x@var{H}x[x@var{DEPTH}]
3475187d 1548
a2502b58
BS
1549Set the initial TCX graphic mode. The default is 1024x768x8, currently
1550the only other possible mode is 1024x768x24.
3475187d 1551
4e257e5e 1552@item -prom-env @var{string}
66508601
BS
1553
1554Set OpenBIOS variables in NVRAM, for example:
1555
1556@example
1557qemu-system-sparc -prom-env 'auto-boot?=false' \
1558 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1559@end example
1560
609c1dac 1561@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook|SS-2|SS-1000|SS-2000]
a2502b58
BS
1562
1563Set the emulated machine type. Default is SS-5.
1564
3475187d
FB
1565@end table
1566
5fafdf24 1567@c man end
3475187d 1568
24d4de45
TS
1569@node Sparc64 System emulator
1570@section Sparc64 System emulator
7544a042 1571@cindex system emulation (Sparc64)
e80cfcfc 1572
34a3d239
BS
1573Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1574(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1575Niagara (T1) machine. The emulator is not usable for anything yet, but
1576it can launch some kernels.
b756921a 1577
c7ba218d 1578QEMU emulates the following peripherals:
83469015
FB
1579
1580@itemize @minus
1581@item
5fafdf24 1582UltraSparc IIi APB PCI Bridge
83469015
FB
1583@item
1584PCI VGA compatible card with VESA Bochs Extensions
1585@item
34a3d239
BS
1586PS/2 mouse and keyboard
1587@item
83469015
FB
1588Non Volatile RAM M48T59
1589@item
1590PC-compatible serial ports
c7ba218d
BS
1591@item
15922 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
1593@item
1594Floppy disk
83469015
FB
1595@end itemize
1596
c7ba218d
BS
1597@c man begin OPTIONS
1598
1599The following options are specific to the Sparc64 emulation:
1600
1601@table @option
1602
4e257e5e 1603@item -prom-env @var{string}
34a3d239
BS
1604
1605Set OpenBIOS variables in NVRAM, for example:
1606
1607@example
1608qemu-system-sparc64 -prom-env 'auto-boot?=false'
1609@end example
1610
1611@item -M [sun4u|sun4v|Niagara]
c7ba218d
BS
1612
1613Set the emulated machine type. The default is sun4u.
1614
1615@end table
1616
1617@c man end
1618
24d4de45
TS
1619@node MIPS System emulator
1620@section MIPS System emulator
7544a042 1621@cindex system emulation (MIPS)
9d0a8e6f 1622
d9aedc32
TS
1623Four executables cover simulation of 32 and 64-bit MIPS systems in
1624both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1625@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 1626Five different machine types are emulated:
24d4de45
TS
1627
1628@itemize @minus
1629@item
1630A generic ISA PC-like machine "mips"
1631@item
1632The MIPS Malta prototype board "malta"
1633@item
d9aedc32 1634An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 1635@item
f0fc6f8f 1636MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
1637@item
1638A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
1639@end itemize
1640
1641The generic emulation is supported by Debian 'Etch' and is able to
1642install Debian into a virtual disk image. The following devices are
1643emulated:
3f9f3aa1
FB
1644
1645@itemize @minus
5fafdf24 1646@item
6bf5b4e8 1647A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
1648@item
1649PC style serial port
1650@item
24d4de45
TS
1651PC style IDE disk
1652@item
3f9f3aa1
FB
1653NE2000 network card
1654@end itemize
1655
24d4de45
TS
1656The Malta emulation supports the following devices:
1657
1658@itemize @minus
1659@item
0b64d008 1660Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
1661@item
1662PIIX4 PCI/USB/SMbus controller
1663@item
1664The Multi-I/O chip's serial device
1665@item
3a2eeac0 1666PCI network cards (PCnet32 and others)
24d4de45
TS
1667@item
1668Malta FPGA serial device
1669@item
1f605a76 1670Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
1671@end itemize
1672
1673The ACER Pica emulation supports:
1674
1675@itemize @minus
1676@item
1677MIPS R4000 CPU
1678@item
1679PC-style IRQ and DMA controllers
1680@item
1681PC Keyboard
1682@item
1683IDE controller
1684@end itemize
3f9f3aa1 1685
f0fc6f8f
TS
1686The mipssim pseudo board emulation provides an environment similiar
1687to what the proprietary MIPS emulator uses for running Linux.
1688It supports:
6bf5b4e8
TS
1689
1690@itemize @minus
1691@item
1692A range of MIPS CPUs, default is the 24Kf
1693@item
1694PC style serial port
1695@item
1696MIPSnet network emulation
1697@end itemize
1698
88cb0a02
AJ
1699The MIPS Magnum R4000 emulation supports:
1700
1701@itemize @minus
1702@item
1703MIPS R4000 CPU
1704@item
1705PC-style IRQ controller
1706@item
1707PC Keyboard
1708@item
1709SCSI controller
1710@item
1711G364 framebuffer
1712@end itemize
1713
1714
24d4de45
TS
1715@node ARM System emulator
1716@section ARM System emulator
7544a042 1717@cindex system emulation (ARM)
3f9f3aa1
FB
1718
1719Use the executable @file{qemu-system-arm} to simulate a ARM
1720machine. The ARM Integrator/CP board is emulated with the following
1721devices:
1722
1723@itemize @minus
1724@item
9ee6e8bb 1725ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
1726@item
1727Two PL011 UARTs
5fafdf24 1728@item
3f9f3aa1 1729SMC 91c111 Ethernet adapter
00a9bf19
PB
1730@item
1731PL110 LCD controller
1732@item
1733PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
1734@item
1735PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
1736@end itemize
1737
1738The ARM Versatile baseboard is emulated with the following devices:
1739
1740@itemize @minus
1741@item
9ee6e8bb 1742ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
1743@item
1744PL190 Vectored Interrupt Controller
1745@item
1746Four PL011 UARTs
5fafdf24 1747@item
00a9bf19
PB
1748SMC 91c111 Ethernet adapter
1749@item
1750PL110 LCD controller
1751@item
1752PL050 KMI with PS/2 keyboard and mouse.
1753@item
1754PCI host bridge. Note the emulated PCI bridge only provides access to
1755PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
1756This means some devices (eg. ne2k_pci NIC) are not usable, and others
1757(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 1758mapped control registers.
e6de1bad
PB
1759@item
1760PCI OHCI USB controller.
1761@item
1762LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
1763@item
1764PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
1765@end itemize
1766
21a88941
PB
1767Several variants of the ARM RealView baseboard are emulated,
1768including the EB, PB-A8 and PBX-A9. Due to interactions with the
1769bootloader, only certain Linux kernel configurations work out
1770of the box on these boards.
1771
1772Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1773enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
1774should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1775disabled and expect 1024M RAM.
1776
1777The following devices are emuilated:
d7739d75
PB
1778
1779@itemize @minus
1780@item
f7c70325 1781ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
d7739d75
PB
1782@item
1783ARM AMBA Generic/Distributed Interrupt Controller
1784@item
1785Four PL011 UARTs
5fafdf24 1786@item
0ef849d7 1787SMC 91c111 or SMSC LAN9118 Ethernet adapter
d7739d75
PB
1788@item
1789PL110 LCD controller
1790@item
1791PL050 KMI with PS/2 keyboard and mouse
1792@item
1793PCI host bridge
1794@item
1795PCI OHCI USB controller
1796@item
1797LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
1798@item
1799PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
1800@end itemize
1801
b00052e4
AZ
1802The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
1803and "Terrier") emulation includes the following peripherals:
1804
1805@itemize @minus
1806@item
1807Intel PXA270 System-on-chip (ARM V5TE core)
1808@item
1809NAND Flash memory
1810@item
1811IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
1812@item
1813On-chip OHCI USB controller
1814@item
1815On-chip LCD controller
1816@item
1817On-chip Real Time Clock
1818@item
1819TI ADS7846 touchscreen controller on SSP bus
1820@item
1821Maxim MAX1111 analog-digital converter on I@math{^2}C bus
1822@item
1823GPIO-connected keyboard controller and LEDs
1824@item
549444e1 1825Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
1826@item
1827Three on-chip UARTs
1828@item
1829WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
1830@end itemize
1831
02645926
AZ
1832The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
1833following elements:
1834
1835@itemize @minus
1836@item
1837Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1838@item
1839ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
1840@item
1841On-chip LCD controller
1842@item
1843On-chip Real Time Clock
1844@item
1845TI TSC2102i touchscreen controller / analog-digital converter / Audio
1846CODEC, connected through MicroWire and I@math{^2}S busses
1847@item
1848GPIO-connected matrix keypad
1849@item
1850Secure Digital card connected to OMAP MMC/SD host
1851@item
1852Three on-chip UARTs
1853@end itemize
1854
c30bb264
AZ
1855Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
1856emulation supports the following elements:
1857
1858@itemize @minus
1859@item
1860Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
1861@item
1862RAM and non-volatile OneNAND Flash memories
1863@item
1864Display connected to EPSON remote framebuffer chip and OMAP on-chip
1865display controller and a LS041y3 MIPI DBI-C controller
1866@item
1867TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
1868driven through SPI bus
1869@item
1870National Semiconductor LM8323-controlled qwerty keyboard driven
1871through I@math{^2}C bus
1872@item
1873Secure Digital card connected to OMAP MMC/SD host
1874@item
1875Three OMAP on-chip UARTs and on-chip STI debugging console
1876@item
2d564691
AZ
1877A Bluetooth(R) transciever and HCI connected to an UART
1878@item
c30bb264
AZ
1879Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
1880TUSB6010 chip - only USB host mode is supported
1881@item
1882TI TMP105 temperature sensor driven through I@math{^2}C bus
1883@item
1884TI TWL92230C power management companion with an RTC on I@math{^2}C bus
1885@item
1886Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
1887through CBUS
1888@end itemize
1889
9ee6e8bb
PB
1890The Luminary Micro Stellaris LM3S811EVB emulation includes the following
1891devices:
1892
1893@itemize @minus
1894@item
1895Cortex-M3 CPU core.
1896@item
189764k Flash and 8k SRAM.
1898@item
1899Timers, UARTs, ADC and I@math{^2}C interface.
1900@item
1901OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
1902@end itemize
1903
1904The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
1905devices:
1906
1907@itemize @minus
1908@item
1909Cortex-M3 CPU core.
1910@item
1911256k Flash and 64k SRAM.
1912@item
1913Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
1914@item
1915OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
1916@end itemize
1917
57cd6e97
AZ
1918The Freecom MusicPal internet radio emulation includes the following
1919elements:
1920
1921@itemize @minus
1922@item
1923Marvell MV88W8618 ARM core.
1924@item
192532 MB RAM, 256 KB SRAM, 8 MB flash.
1926@item
1927Up to 2 16550 UARTs
1928@item
1929MV88W8xx8 Ethernet controller
1930@item
1931MV88W8618 audio controller, WM8750 CODEC and mixer
1932@item
e080e785 1933128×64 display with brightness control
57cd6e97
AZ
1934@item
19352 buttons, 2 navigation wheels with button function
1936@end itemize
1937
997641a8
AZ
1938The Siemens SX1 models v1 and v2 (default) basic emulation.
1939The emulaton includes the following elements:
1940
1941@itemize @minus
1942@item
1943Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1944@item
1945ROM and RAM memories (ROM firmware image can be loaded with -pflash)
1946V1
19471 Flash of 16MB and 1 Flash of 8MB
1948V2
19491 Flash of 32MB
1950@item
1951On-chip LCD controller
1952@item
1953On-chip Real Time Clock
1954@item
1955Secure Digital card connected to OMAP MMC/SD host
1956@item
1957Three on-chip UARTs
1958@end itemize
1959
4af39611
PB
1960The "Syborg" Symbian Virtual Platform base model includes the following
1961elements:
1962
1963@itemize @minus
1964@item
1965ARM Cortex-A8 CPU
1966@item
1967Interrupt controller
1968@item
1969Timer
1970@item
1971Real Time Clock
1972@item
1973Keyboard
1974@item
1975Framebuffer
1976@item
1977Touchscreen
1978@item
1979UARTs
1980@end itemize
1981
3f9f3aa1
FB
1982A Linux 2.6 test image is available on the QEMU web site. More
1983information is available in the QEMU mailing-list archive.
9d0a8e6f 1984
d2c639d6
BS
1985@c man begin OPTIONS
1986
1987The following options are specific to the ARM emulation:
1988
1989@table @option
1990
1991@item -semihosting
1992Enable semihosting syscall emulation.
1993
1994On ARM this implements the "Angel" interface.
1995
1996Note that this allows guest direct access to the host filesystem,
1997so should only be used with trusted guest OS.
1998
1999@end table
2000
24d4de45
TS
2001@node ColdFire System emulator
2002@section ColdFire System emulator
7544a042
SW
2003@cindex system emulation (ColdFire)
2004@cindex system emulation (M68K)
209a4e69
PB
2005
2006Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2007The emulator is able to boot a uClinux kernel.
707e011b
PB
2008
2009The M5208EVB emulation includes the following devices:
2010
2011@itemize @minus
5fafdf24 2012@item
707e011b
PB
2013MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2014@item
2015Three Two on-chip UARTs.
2016@item
2017Fast Ethernet Controller (FEC)
2018@end itemize
2019
2020The AN5206 emulation includes the following devices:
209a4e69
PB
2021
2022@itemize @minus
5fafdf24 2023@item
209a4e69
PB
2024MCF5206 ColdFire V2 Microprocessor.
2025@item
2026Two on-chip UARTs.
2027@end itemize
2028
d2c639d6
BS
2029@c man begin OPTIONS
2030
7544a042 2031The following options are specific to the ColdFire emulation:
d2c639d6
BS
2032
2033@table @option
2034
2035@item -semihosting
2036Enable semihosting syscall emulation.
2037
2038On M68K this implements the "ColdFire GDB" interface used by libgloss.
2039
2040Note that this allows guest direct access to the host filesystem,
2041so should only be used with trusted guest OS.
2042
2043@end table
2044
7544a042
SW
2045@node Cris System emulator
2046@section Cris System emulator
2047@cindex system emulation (Cris)
2048
2049TODO
2050
2051@node Microblaze System emulator
2052@section Microblaze System emulator
2053@cindex system emulation (Microblaze)
2054
2055TODO
2056
2057@node SH4 System emulator
2058@section SH4 System emulator
2059@cindex system emulation (SH4)
2060
2061TODO
2062
5fafdf24
TS
2063@node QEMU User space emulator
2064@chapter QEMU User space emulator
83195237
FB
2065
2066@menu
2067* Supported Operating Systems ::
2068* Linux User space emulator::
2069* Mac OS X/Darwin User space emulator ::
84778508 2070* BSD User space emulator ::
83195237
FB
2071@end menu
2072
2073@node Supported Operating Systems
2074@section Supported Operating Systems
2075
2076The following OS are supported in user space emulation:
2077
2078@itemize @minus
2079@item
4be456f1 2080Linux (referred as qemu-linux-user)
83195237 2081@item
4be456f1 2082Mac OS X/Darwin (referred as qemu-darwin-user)
84778508
BS
2083@item
2084BSD (referred as qemu-bsd-user)
83195237
FB
2085@end itemize
2086
2087@node Linux User space emulator
2088@section Linux User space emulator
386405f7 2089
debc7065
FB
2090@menu
2091* Quick Start::
2092* Wine launch::
2093* Command line options::
79737e4a 2094* Other binaries::
debc7065
FB
2095@end menu
2096
2097@node Quick Start
83195237 2098@subsection Quick Start
df0f11a0 2099
1f673135 2100In order to launch a Linux process, QEMU needs the process executable
5fafdf24 2101itself and all the target (x86) dynamic libraries used by it.
386405f7 2102
1f673135 2103@itemize
386405f7 2104
1f673135
FB
2105@item On x86, you can just try to launch any process by using the native
2106libraries:
386405f7 2107
5fafdf24 2108@example
1f673135
FB
2109qemu-i386 -L / /bin/ls
2110@end example
386405f7 2111
1f673135
FB
2112@code{-L /} tells that the x86 dynamic linker must be searched with a
2113@file{/} prefix.
386405f7 2114
dbcf5e82
TS
2115@item Since QEMU is also a linux process, you can launch qemu with
2116qemu (NOTE: you can only do that if you compiled QEMU from the sources):
386405f7 2117
5fafdf24 2118@example
1f673135
FB
2119qemu-i386 -L / qemu-i386 -L / /bin/ls
2120@end example
386405f7 2121
1f673135
FB
2122@item On non x86 CPUs, you need first to download at least an x86 glibc
2123(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2124@code{LD_LIBRARY_PATH} is not set:
df0f11a0 2125
1f673135 2126@example
5fafdf24 2127unset LD_LIBRARY_PATH
1f673135 2128@end example
1eb87257 2129
1f673135 2130Then you can launch the precompiled @file{ls} x86 executable:
1eb87257 2131
1f673135
FB
2132@example
2133qemu-i386 tests/i386/ls
2134@end example
2135You can look at @file{qemu-binfmt-conf.sh} so that
2136QEMU is automatically launched by the Linux kernel when you try to
2137launch x86 executables. It requires the @code{binfmt_misc} module in the
2138Linux kernel.
1eb87257 2139
1f673135
FB
2140@item The x86 version of QEMU is also included. You can try weird things such as:
2141@example
debc7065
FB
2142qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2143 /usr/local/qemu-i386/bin/ls-i386
1f673135 2144@end example
1eb20527 2145
1f673135 2146@end itemize
1eb20527 2147
debc7065 2148@node Wine launch
83195237 2149@subsection Wine launch
1eb20527 2150
1f673135 2151@itemize
386405f7 2152
1f673135
FB
2153@item Ensure that you have a working QEMU with the x86 glibc
2154distribution (see previous section). In order to verify it, you must be
2155able to do:
386405f7 2156
1f673135
FB
2157@example
2158qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2159@end example
386405f7 2160
1f673135 2161@item Download the binary x86 Wine install
5fafdf24 2162(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
386405f7 2163
1f673135 2164@item Configure Wine on your account. Look at the provided script
debc7065 2165@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1f673135 2166@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
386405f7 2167
1f673135 2168@item Then you can try the example @file{putty.exe}:
386405f7 2169
1f673135 2170@example
debc7065
FB
2171qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2172 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1f673135 2173@end example
386405f7 2174
1f673135 2175@end itemize
fd429f2f 2176
debc7065 2177@node Command line options
83195237 2178@subsection Command line options
1eb20527 2179
1f673135 2180@example
68a1c816 2181usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
1f673135 2182@end example
1eb20527 2183
1f673135
FB
2184@table @option
2185@item -h
2186Print the help
3b46e624 2187@item -L path
1f673135
FB
2188Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2189@item -s size
2190Set the x86 stack size in bytes (default=524288)
34a3d239
BS
2191@item -cpu model
2192Select CPU model (-cpu ? for list and additional feature selection)
f66724c9
SW
2193@item -ignore-environment
2194Start with an empty environment. Without this option,
2195the inital environment is a copy of the caller's environment.
2196@item -E @var{var}=@var{value}
2197Set environment @var{var} to @var{value}.
2198@item -U @var{var}
2199Remove @var{var} from the environment.
379f6698
PB
2200@item -B offset
2201Offset guest address by the specified number of bytes. This is useful when
1f5c3f8c
SW
2202the address region required by guest applications is reserved on the host.
2203This option is currently only supported on some hosts.
68a1c816
PB
2204@item -R size
2205Pre-allocate a guest virtual address space of the given size (in bytes).
0d6753e5 2206"G", "M", and "k" suffixes may be used when specifying the size.
386405f7
FB
2207@end table
2208
1f673135 2209Debug options:
386405f7 2210
1f673135
FB
2211@table @option
2212@item -d
2213Activate log (logfile=/tmp/qemu.log)
2214@item -p pagesize
2215Act as if the host page size was 'pagesize' bytes
34a3d239
BS
2216@item -g port
2217Wait gdb connection to port
1b530a6d
AJ
2218@item -singlestep
2219Run the emulation in single step mode.
1f673135 2220@end table
386405f7 2221
b01bcae6
AZ
2222Environment variables:
2223
2224@table @env
2225@item QEMU_STRACE
2226Print system calls and arguments similar to the 'strace' program
2227(NOTE: the actual 'strace' program will not work because the user
2228space emulator hasn't implemented ptrace). At the moment this is
2229incomplete. All system calls that don't have a specific argument
2230format are printed with information for six arguments. Many
2231flag-style arguments don't have decoders and will show up as numbers.
5cfdf930 2232@end table
b01bcae6 2233
79737e4a 2234@node Other binaries
83195237 2235@subsection Other binaries
79737e4a 2236
7544a042
SW
2237@cindex user mode (Alpha)
2238@command{qemu-alpha} TODO.
2239
2240@cindex user mode (ARM)
2241@command{qemu-armeb} TODO.
2242
2243@cindex user mode (ARM)
79737e4a
PB
2244@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2245binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2246configurations), and arm-uclinux bFLT format binaries.
2247
7544a042
SW
2248@cindex user mode (ColdFire)
2249@cindex user mode (M68K)
e6e5906b
PB
2250@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2251(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2252coldfire uClinux bFLT format binaries.
2253
79737e4a
PB
2254The binary format is detected automatically.
2255
7544a042
SW
2256@cindex user mode (Cris)
2257@command{qemu-cris} TODO.
2258
2259@cindex user mode (i386)
2260@command{qemu-i386} TODO.
2261@command{qemu-x86_64} TODO.
2262
2263@cindex user mode (Microblaze)
2264@command{qemu-microblaze} TODO.
2265
2266@cindex user mode (MIPS)
2267@command{qemu-mips} TODO.
2268@command{qemu-mipsel} TODO.
2269
2270@cindex user mode (PowerPC)
2271@command{qemu-ppc64abi32} TODO.
2272@command{qemu-ppc64} TODO.
2273@command{qemu-ppc} TODO.
2274
2275@cindex user mode (SH4)
2276@command{qemu-sh4eb} TODO.
2277@command{qemu-sh4} TODO.
2278
2279@cindex user mode (SPARC)
34a3d239
BS
2280@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2281
a785e42e
BS
2282@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2283(Sparc64 CPU, 32 bit ABI).
2284
2285@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2286SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2287
83195237
FB
2288@node Mac OS X/Darwin User space emulator
2289@section Mac OS X/Darwin User space emulator
2290
2291@menu
2292* Mac OS X/Darwin Status::
2293* Mac OS X/Darwin Quick Start::
2294* Mac OS X/Darwin Command line options::
2295@end menu
2296
2297@node Mac OS X/Darwin Status
2298@subsection Mac OS X/Darwin Status
2299
2300@itemize @minus
2301@item
2302target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2303@item
2304target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2305@item
dbcf5e82 2306target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
83195237
FB
2307@item
2308target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2309@end itemize
2310
2311[1] If you're host commpage can be executed by qemu.
2312
2313@node Mac OS X/Darwin Quick Start
2314@subsection Quick Start
2315
2316In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2317itself and all the target dynamic libraries used by it. If you don't have the FAT
2318libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2319CD or compile them by hand.
2320
2321@itemize
2322
2323@item On x86, you can just try to launch any process by using the native
2324libraries:
2325
5fafdf24 2326@example
dbcf5e82 2327qemu-i386 /bin/ls
83195237
FB
2328@end example
2329
2330or to run the ppc version of the executable:
2331
5fafdf24 2332@example
dbcf5e82 2333qemu-ppc /bin/ls
83195237
FB
2334@end example
2335
2336@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2337are installed:
2338
5fafdf24 2339@example
dbcf5e82 2340qemu-i386 -L /opt/x86_root/ /bin/ls
83195237
FB
2341@end example
2342
2343@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2344@file{/opt/x86_root/usr/bin/dyld}.
2345
2346@end itemize
2347
2348@node Mac OS X/Darwin Command line options
2349@subsection Command line options
2350
2351@example
dbcf5e82 2352usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
83195237
FB
2353@end example
2354
2355@table @option
2356@item -h
2357Print the help
3b46e624 2358@item -L path
83195237
FB
2359Set the library root path (default=/)
2360@item -s size
2361Set the stack size in bytes (default=524288)
2362@end table
2363
2364Debug options:
2365
2366@table @option
2367@item -d
2368Activate log (logfile=/tmp/qemu.log)
2369@item -p pagesize
2370Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
2371@item -singlestep
2372Run the emulation in single step mode.
83195237
FB
2373@end table
2374
84778508
BS
2375@node BSD User space emulator
2376@section BSD User space emulator
2377
2378@menu
2379* BSD Status::
2380* BSD Quick Start::
2381* BSD Command line options::
2382@end menu
2383
2384@node BSD Status
2385@subsection BSD Status
2386
2387@itemize @minus
2388@item
2389target Sparc64 on Sparc64: Some trivial programs work.
2390@end itemize
2391
2392@node BSD Quick Start
2393@subsection Quick Start
2394
2395In order to launch a BSD process, QEMU needs the process executable
2396itself and all the target dynamic libraries used by it.
2397
2398@itemize
2399
2400@item On Sparc64, you can just try to launch any process by using the native
2401libraries:
2402
2403@example
2404qemu-sparc64 /bin/ls
2405@end example
2406
2407@end itemize
2408
2409@node BSD Command line options
2410@subsection Command line options
2411
2412@example
2413usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2414@end example
2415
2416@table @option
2417@item -h
2418Print the help
2419@item -L path
2420Set the library root path (default=/)
2421@item -s size
2422Set the stack size in bytes (default=524288)
f66724c9
SW
2423@item -ignore-environment
2424Start with an empty environment. Without this option,
2425the inital environment is a copy of the caller's environment.
2426@item -E @var{var}=@var{value}
2427Set environment @var{var} to @var{value}.
2428@item -U @var{var}
2429Remove @var{var} from the environment.
84778508
BS
2430@item -bsd type
2431Set the type of the emulated BSD Operating system. Valid values are
2432FreeBSD, NetBSD and OpenBSD (default).
2433@end table
2434
2435Debug options:
2436
2437@table @option
2438@item -d
2439Activate log (logfile=/tmp/qemu.log)
2440@item -p pagesize
2441Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
2442@item -singlestep
2443Run the emulation in single step mode.
84778508
BS
2444@end table
2445
15a34c63
FB
2446@node compilation
2447@chapter Compilation from the sources
2448
debc7065
FB
2449@menu
2450* Linux/Unix::
2451* Windows::
2452* Cross compilation for Windows with Linux::
2453* Mac OS X::
47eacb4f 2454* Make targets::
debc7065
FB
2455@end menu
2456
2457@node Linux/Unix
7c3fc84d
FB
2458@section Linux/Unix
2459
2460@subsection Compilation
2461
2462First you must decompress the sources:
2463@example
2464cd /tmp
2465tar zxvf qemu-x.y.z.tar.gz
2466cd qemu-x.y.z
2467@end example
2468
2469Then you configure QEMU and build it (usually no options are needed):
2470@example
2471./configure
2472make
2473@end example
2474
2475Then type as root user:
2476@example
2477make install
2478@end example
2479to install QEMU in @file{/usr/local}.
2480
debc7065 2481@node Windows
15a34c63
FB
2482@section Windows
2483
2484@itemize
2485@item Install the current versions of MSYS and MinGW from
2486@url{http://www.mingw.org/}. You can find detailed installation
2487instructions in the download section and the FAQ.
2488
5fafdf24 2489@item Download
15a34c63 2490the MinGW development library of SDL 1.2.x
debc7065 2491(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
d0a96f3d
ST
2492@url{http://www.libsdl.org}. Unpack it in a temporary place and
2493edit the @file{sdl-config} script so that it gives the
15a34c63
FB
2494correct SDL directory when invoked.
2495
d0a96f3d
ST
2496@item Install the MinGW version of zlib and make sure
2497@file{zlib.h} and @file{libz.dll.a} are in
2498MingGW's default header and linker search paths.
2499
15a34c63 2500@item Extract the current version of QEMU.
5fafdf24 2501
15a34c63
FB
2502@item Start the MSYS shell (file @file{msys.bat}).
2503
5fafdf24 2504@item Change to the QEMU directory. Launch @file{./configure} and
15a34c63
FB
2505@file{make}. If you have problems using SDL, verify that
2506@file{sdl-config} can be launched from the MSYS command line.
2507
5fafdf24 2508@item You can install QEMU in @file{Program Files/Qemu} by typing
15a34c63
FB
2509@file{make install}. Don't forget to copy @file{SDL.dll} in
2510@file{Program Files/Qemu}.
2511
2512@end itemize
2513
debc7065 2514@node Cross compilation for Windows with Linux
15a34c63
FB
2515@section Cross compilation for Windows with Linux
2516
2517@itemize
2518@item
2519Install the MinGW cross compilation tools available at
2520@url{http://www.mingw.org/}.
2521
d0a96f3d
ST
2522@item Download
2523the MinGW development library of SDL 1.2.x
2524(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2525@url{http://www.libsdl.org}. Unpack it in a temporary place and
2526edit the @file{sdl-config} script so that it gives the
2527correct SDL directory when invoked. Set up the @code{PATH} environment
2528variable so that @file{sdl-config} can be launched by
15a34c63
FB
2529the QEMU configuration script.
2530
d0a96f3d
ST
2531@item Install the MinGW version of zlib and make sure
2532@file{zlib.h} and @file{libz.dll.a} are in
2533MingGW's default header and linker search paths.
2534
5fafdf24 2535@item
15a34c63
FB
2536Configure QEMU for Windows cross compilation:
2537@example
d0a96f3d
ST
2538PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
2539@end example
2540The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
2541MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
2542We set the @code{PATH} environment variable to ensure the MingW version of @file{sdl-config} is used and
2543use --cross-prefix to specify the name of the cross compiler.
2544You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/Qemu}.
2545
2546Under Fedora Linux, you can run:
2547@example
2548yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
15a34c63 2549@end example
d0a96f3d 2550to get a suitable cross compilation environment.
15a34c63 2551
5fafdf24 2552@item You can install QEMU in the installation directory by typing
d0a96f3d 2553@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
5fafdf24 2554installation directory.
15a34c63
FB
2555
2556@end itemize
2557
d0a96f3d 2558Wine can be used to launch the resulting qemu.exe compiled for Win32.
15a34c63 2559
debc7065 2560@node Mac OS X
15a34c63
FB
2561@section Mac OS X
2562
2563The Mac OS X patches are not fully merged in QEMU, so you should look
2564at the QEMU mailing list archive to have all the necessary
2565information.
2566
47eacb4f
SW
2567@node Make targets
2568@section Make targets
2569
2570@table @code
2571
2572@item make
2573@item make all
2574Make everything which is typically needed.
2575
2576@item install
2577TODO
2578
2579@item install-doc
2580TODO
2581
2582@item make clean
2583Remove most files which were built during make.
2584
2585@item make distclean
2586Remove everything which was built during make.
2587
2588@item make dvi
2589@item make html
2590@item make info
2591@item make pdf
2592Create documentation in dvi, html, info or pdf format.
2593
2594@item make cscope
2595TODO
2596
2597@item make defconfig
2598(Re-)create some build configuration files.
2599User made changes will be overwritten.
2600
2601@item tar
2602@item tarbin
2603TODO
2604
2605@end table
2606
7544a042
SW
2607@node License
2608@appendix License
2609
2610QEMU is a trademark of Fabrice Bellard.
2611
2612QEMU is released under the GNU General Public License (TODO: add link).
2613Parts of QEMU have specific licenses, see file LICENSE.
2614
2615TODO (refer to file LICENSE, include it, include the GPL?)
2616
debc7065 2617@node Index
7544a042
SW
2618@appendix Index
2619@menu
2620* Concept Index::
2621* Function Index::
2622* Keystroke Index::
2623* Program Index::
2624* Data Type Index::
2625* Variable Index::
2626@end menu
2627
2628@node Concept Index
2629@section Concept Index
2630This is the main index. Should we combine all keywords in one index? TODO
debc7065
FB
2631@printindex cp
2632
7544a042
SW
2633@node Function Index
2634@section Function Index
2635This index could be used for command line options and monitor functions.
2636@printindex fn
2637
2638@node Keystroke Index
2639@section Keystroke Index
2640
2641This is a list of all keystrokes which have a special function
2642in system emulation.
2643
2644@printindex ky
2645
2646@node Program Index
2647@section Program Index
2648@printindex pg
2649
2650@node Data Type Index
2651@section Data Type Index
2652
2653This index could be used for qdev device names and options.
2654
2655@printindex tp
2656
2657@node Variable Index
2658@section Variable Index
2659@printindex vr
2660
debc7065 2661@bye