]> git.proxmox.com Git - qemu.git/blame - qemu-doc.texi
More flexible audio card selection
[qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
8f40c388 4@settitle QEMU Emulator User Documentation
debc7065
FB
5@exampleindent 0
6@paragraphindent 0
7@c %**end of header
386405f7 8
0806e3f6 9@iftex
386405f7
FB
10@titlepage
11@sp 7
8f40c388 12@center @titlefont{QEMU Emulator}
debc7065
FB
13@sp 1
14@center @titlefont{User Documentation}
386405f7
FB
15@sp 3
16@end titlepage
0806e3f6 17@end iftex
386405f7 18
debc7065
FB
19@ifnottex
20@node Top
21@top
22
23@menu
24* Introduction::
25* Installation::
26* QEMU PC System emulator::
27* QEMU System emulator for non PC targets::
83195237 28* QEMU User space emulator::
debc7065
FB
29* compilation:: Compilation from the sources
30* Index::
31@end menu
32@end ifnottex
33
34@contents
35
36@node Introduction
386405f7
FB
37@chapter Introduction
38
debc7065
FB
39@menu
40* intro_features:: Features
41@end menu
42
43@node intro_features
322d0c66 44@section Features
386405f7 45
1f673135
FB
46QEMU is a FAST! processor emulator using dynamic translation to
47achieve good emulation speed.
1eb20527
FB
48
49QEMU has two operating modes:
0806e3f6
FB
50
51@itemize @minus
52
5fafdf24 53@item
1f673135 54Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
55example a PC), including one or several processors and various
56peripherals. It can be used to launch different Operating Systems
57without rebooting the PC or to debug system code.
1eb20527 58
5fafdf24 59@item
83195237
FB
60User mode emulation. In this mode, QEMU can launch
61processes compiled for one CPU on another CPU. It can be used to
1f673135
FB
62launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63to ease cross-compilation and cross-debugging.
1eb20527
FB
64
65@end itemize
66
7c3fc84d 67QEMU can run without an host kernel driver and yet gives acceptable
5fafdf24 68performance.
322d0c66 69
52c00a5f
FB
70For system emulation, the following hardware targets are supported:
71@itemize
9d0a8e6f 72@item PC (x86 or x86_64 processor)
3f9f3aa1 73@item ISA PC (old style PC without PCI bus)
52c00a5f 74@item PREP (PowerPC processor)
d45952a0 75@item G3 Beige PowerMac (PowerPC processor)
9d0a8e6f 76@item Mac99 PowerMac (PowerPC processor, in progress)
ee76f82e 77@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
c7ba218d 78@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
d9aedc32 79@item Malta board (32-bit and 64-bit MIPS processors)
88cb0a02 80@item MIPS Magnum (64-bit MIPS processor)
9ee6e8bb
PB
81@item ARM Integrator/CP (ARM)
82@item ARM Versatile baseboard (ARM)
83@item ARM RealView Emulation baseboard (ARM)
ef4c3856 84@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
9ee6e8bb
PB
85@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
86@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
707e011b 87@item Freescale MCF5208EVB (ColdFire V2).
209a4e69 88@item Arnewsh MCF5206 evaluation board (ColdFire V2).
02645926 89@item Palm Tungsten|E PDA (OMAP310 processor)
c30bb264 90@item N800 and N810 tablets (OMAP2420 processor)
57cd6e97 91@item MusicPal (MV88W8618 ARM processor)
ef4c3856
AZ
92@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
93@item Siemens SX1 smartphone (OMAP310 processor)
52c00a5f 94@end itemize
386405f7 95
d9aedc32 96For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
0806e3f6 97
debc7065 98@node Installation
5b9f457a
FB
99@chapter Installation
100
15a34c63
FB
101If you want to compile QEMU yourself, see @ref{compilation}.
102
debc7065
FB
103@menu
104* install_linux:: Linux
105* install_windows:: Windows
106* install_mac:: Macintosh
107@end menu
108
109@node install_linux
1f673135
FB
110@section Linux
111
7c3fc84d
FB
112If a precompiled package is available for your distribution - you just
113have to install it. Otherwise, see @ref{compilation}.
5b9f457a 114
debc7065 115@node install_windows
1f673135 116@section Windows
8cd0ac2f 117
15a34c63 118Download the experimental binary installer at
debc7065 119@url{http://www.free.oszoo.org/@/download.html}.
d691f669 120
debc7065 121@node install_mac
1f673135 122@section Mac OS X
d691f669 123
15a34c63 124Download the experimental binary installer at
debc7065 125@url{http://www.free.oszoo.org/@/download.html}.
df0f11a0 126
debc7065 127@node QEMU PC System emulator
3f9f3aa1 128@chapter QEMU PC System emulator
1eb20527 129
debc7065
FB
130@menu
131* pcsys_introduction:: Introduction
132* pcsys_quickstart:: Quick Start
133* sec_invocation:: Invocation
134* pcsys_keys:: Keys
135* pcsys_monitor:: QEMU Monitor
136* disk_images:: Disk Images
137* pcsys_network:: Network emulation
138* direct_linux_boot:: Direct Linux Boot
139* pcsys_usb:: USB emulation
f858dcae 140* vnc_security:: VNC security
debc7065
FB
141* gdb_usage:: GDB usage
142* pcsys_os_specific:: Target OS specific information
143@end menu
144
145@node pcsys_introduction
0806e3f6
FB
146@section Introduction
147
148@c man begin DESCRIPTION
149
3f9f3aa1
FB
150The QEMU PC System emulator simulates the
151following peripherals:
0806e3f6
FB
152
153@itemize @minus
5fafdf24 154@item
15a34c63 155i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 156@item
15a34c63
FB
157Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
158extensions (hardware level, including all non standard modes).
0806e3f6
FB
159@item
160PS/2 mouse and keyboard
5fafdf24 161@item
15a34c63 1622 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
163@item
164Floppy disk
5fafdf24 165@item
c4a7060c 166PCI/ISA PCI network adapters
0806e3f6 167@item
05d5818c
FB
168Serial ports
169@item
c0fe3827
FB
170Creative SoundBlaster 16 sound card
171@item
172ENSONIQ AudioPCI ES1370 sound card
173@item
e5c9a13e
AZ
174Intel 82801AA AC97 Audio compatible sound card
175@item
c0fe3827 176Adlib(OPL2) - Yamaha YM3812 compatible chip
b389dbfb 177@item
26463dbc
AZ
178Gravis Ultrasound GF1 sound card
179@item
cc53d26d 180CS4231A compatible sound card
181@item
b389dbfb 182PCI UHCI USB controller and a virtual USB hub.
0806e3f6
FB
183@end itemize
184
3f9f3aa1
FB
185SMP is supported with up to 255 CPUs.
186
cc53d26d 187Note that adlib, ac97, gus and cs4231a are only available when QEMU
0c58ac1c 188was configured with --audio-card-list option containing the name(s) of
e5178e8d 189required card(s).
c0fe3827 190
15a34c63
FB
191QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
192VGA BIOS.
193
c0fe3827
FB
194QEMU uses YM3812 emulation by Tatsuyuki Satoh.
195
26463dbc
AZ
196QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
197by Tibor "TS" Schütz.
423d65f4 198
cc53d26d 199CS4231A is the chip used in Windows Sound System and GUSMAX products
200
0806e3f6
FB
201@c man end
202
debc7065 203@node pcsys_quickstart
1eb20527
FB
204@section Quick Start
205
285dc330 206Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
207
208@example
285dc330 209qemu linux.img
0806e3f6
FB
210@end example
211
212Linux should boot and give you a prompt.
213
6cc721cf 214@node sec_invocation
ec410fc9
FB
215@section Invocation
216
217@example
0806e3f6 218@c man begin SYNOPSIS
89dfe898 219usage: qemu [options] [@var{disk_image}]
0806e3f6 220@c man end
ec410fc9
FB
221@end example
222
0806e3f6 223@c man begin OPTIONS
9d4520d0 224@var{disk_image} is a raw hard disk image for IDE hard disk 0.
ec410fc9
FB
225
226General options:
227@table @option
89dfe898
TS
228@item -M @var{machine}
229Select the emulated @var{machine} (@code{-M ?} for list)
3dbbdc25 230
89dfe898
TS
231@item -fda @var{file}
232@item -fdb @var{file}
debc7065 233Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
19cb3738 234use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
2be3bc02 235
89dfe898
TS
236@item -hda @var{file}
237@item -hdb @var{file}
238@item -hdc @var{file}
239@item -hdd @var{file}
debc7065 240Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
1f47a922 241
89dfe898
TS
242@item -cdrom @var{file}
243Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
be3edd95 244@option{-cdrom} at the same time). You can use the host CD-ROM by
19cb3738 245using @file{/dev/cdrom} as filename (@pxref{host_drives}).
181f1558 246
e0e7ada1
AZ
247@item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
248
249Define a new drive. Valid options are:
250
251@table @code
252@item file=@var{file}
253This option defines which disk image (@pxref{disk_images}) to use with
609497ab
AZ
254this drive. If the filename contains comma, you must double it
255(for instance, "file=my,,file" to use file "my,file").
e0e7ada1
AZ
256@item if=@var{interface}
257This option defines on which type on interface the drive is connected.
6e02c38d 258Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio.
e0e7ada1
AZ
259@item bus=@var{bus},unit=@var{unit}
260These options define where is connected the drive by defining the bus number and
261the unit id.
262@item index=@var{index}
263This option defines where is connected the drive by using an index in the list
264of available connectors of a given interface type.
265@item media=@var{media}
266This option defines the type of the media: disk or cdrom.
267@item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
268These options have the same definition as they have in @option{-hdachs}.
269@item snapshot=@var{snapshot}
270@var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
33f00271 271@item cache=@var{cache}
9f7965c7 272@var{cache} is "none", "writeback", or "writethrough" and controls how the host cache is used to access block data.
1e72d3b7
AJ
273@item format=@var{format}
274Specify which disk @var{format} will be used rather than detecting
275the format. Can be used to specifiy format=raw to avoid interpreting
276an untrusted format header.
fa879c64
AL
277@item serial=@var{serial}
278This option specifies the serial number to assign to the device.
e0e7ada1
AZ
279@end table
280
9f7965c7
AL
281By default, writethrough caching is used for all block device. This means that
282the host page cache will be used to read and write data but write notification
283will be sent to the guest only when the data has been reported as written by
284the storage subsystem.
285
286Writeback caching will report data writes as completed as soon as the data is
287present in the host page cache. This is safe as long as you trust your host.
288If your host crashes or loses power, then the guest may experience data
289corruption. When using the @option{-snapshot} option, writeback caching is
290used by default.
291
292The host page can be avoided entirely with @option{cache=none}. This will
293attempt to do disk IO directly to the guests memory. QEMU may still perform
294an internal copy of the data.
295
4dc822d7
AL
296Some block drivers perform badly with @option{cache=writethrough}, most notably,
297qcow2. If performance is more important than correctness,
298@option{cache=writeback} should be used with qcow2. By default, if no explicit
299caching is specified for a qcow2 disk image, @option{cache=writeback} will be
300used. For all other disk types, @option{cache=writethrough} is the default.
301
e0e7ada1
AZ
302Instead of @option{-cdrom} you can use:
303@example
304qemu -drive file=file,index=2,media=cdrom
305@end example
306
307Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
308use:
309@example
310qemu -drive file=file,index=0,media=disk
311qemu -drive file=file,index=1,media=disk
312qemu -drive file=file,index=2,media=disk
313qemu -drive file=file,index=3,media=disk
314@end example
315
316You can connect a CDROM to the slave of ide0:
317@example
318qemu -drive file=file,if=ide,index=1,media=cdrom
319@end example
320
321If you don't specify the "file=" argument, you define an empty drive:
322@example
323qemu -drive if=ide,index=1,media=cdrom
324@end example
325
326You can connect a SCSI disk with unit ID 6 on the bus #0:
327@example
328qemu -drive file=file,if=scsi,bus=0,unit=6
329@end example
330
331Instead of @option{-fda}, @option{-fdb}, you can use:
332@example
333qemu -drive file=file,index=0,if=floppy
334qemu -drive file=file,index=1,if=floppy
335@end example
336
337By default, @var{interface} is "ide" and @var{index} is automatically
338incremented:
339@example
340qemu -drive file=a -drive file=b"
341@end example
342is interpreted like:
343@example
344qemu -hda a -hdb b
345@end example
346
eec85c2a
TS
347@item -boot [a|c|d|n]
348Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
349is the default.
1f47a922 350
181f1558 351@item -snapshot
1f47a922
FB
352Write to temporary files instead of disk image files. In this case,
353the raw disk image you use is not written back. You can however force
42550fde 354the write back by pressing @key{C-a s} (@pxref{disk_images}).
ec410fc9 355
52ca8d6a
FB
356@item -no-fd-bootchk
357Disable boot signature checking for floppy disks in Bochs BIOS. It may
358be needed to boot from old floppy disks.
359
89dfe898 360@item -m @var{megs}
00f82b8a
AJ
361Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB. Optionally,
362a suffix of ``M'' or ``G'' can be used to signify a value in megabytes or
363gigabytes respectively.
ec410fc9 364
34a3d239
BS
365@item -cpu @var{model}
366Select CPU model (-cpu ? for list and additional feature selection)
367
89dfe898 368@item -smp @var{n}
3f9f3aa1 369Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
a785e42e
BS
370CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
371to 4.
3f9f3aa1 372
1d14ffa9
FB
373@item -audio-help
374
375Will show the audio subsystem help: list of drivers, tunable
376parameters.
377
89dfe898 378@item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
1d14ffa9
FB
379
380Enable audio and selected sound hardware. Use ? to print all
381available sound hardware.
382
383@example
9b3469cc 384qemu -soundhw sb16,adlib disk.img
385qemu -soundhw es1370 disk.img
386qemu -soundhw ac97 disk.img
387qemu -soundhw all disk.img
1d14ffa9
FB
388qemu -soundhw ?
389@end example
a8c490cd 390
e5c9a13e
AZ
391Note that Linux's i810_audio OSS kernel (for AC97) module might
392require manually specifying clocking.
393
394@example
395modprobe i810_audio clocking=48000
396@end example
397
15a34c63
FB
398@item -localtime
399Set the real time clock to local time (the default is to UTC
400time). This option is needed to have correct date in MS-DOS or
401Windows.
402
89dfe898 403@item -startdate @var{date}
1addc7c5 404Set the initial date of the real time clock. Valid formats for
7e0af5d0
FB
405@var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
406@code{2006-06-17}. The default value is @code{now}.
407
89dfe898 408@item -pidfile @var{file}
f7cce898
FB
409Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
410from a script.
411
71e3ceb8
TS
412@item -daemonize
413Daemonize the QEMU process after initialization. QEMU will not detach from
414standard IO until it is ready to receive connections on any of its devices.
415This option is a useful way for external programs to launch QEMU without having
416to cope with initialization race conditions.
417
9d0a8e6f
FB
418@item -win2k-hack
419Use it when installing Windows 2000 to avoid a disk full bug. After
420Windows 2000 is installed, you no longer need this option (this option
421slows down the IDE transfers).
422
89dfe898
TS
423@item -option-rom @var{file}
424Load the contents of @var{file} as an option ROM.
425This option is useful to load things like EtherBoot.
9ae02555 426
89dfe898
TS
427@item -name @var{name}
428Sets the @var{name} of the guest.
1addc7c5 429This name will be displayed in the SDL window caption.
89dfe898 430The @var{name} will also be used for the VNC server.
c35734b2 431
0806e3f6
FB
432@end table
433
f858dcae
TS
434Display options:
435@table @option
436
437@item -nographic
438
439Normally, QEMU uses SDL to display the VGA output. With this option,
440you can totally disable graphical output so that QEMU is a simple
441command line application. The emulated serial port is redirected on
442the console. Therefore, you can still use QEMU to debug a Linux kernel
443with a serial console.
444
052caf70
AJ
445@item -curses
446
447Normally, QEMU uses SDL to display the VGA output. With this option,
448QEMU can display the VGA output when in text mode using a
449curses/ncurses interface. Nothing is displayed in graphical mode.
450
f858dcae
TS
451@item -no-frame
452
453Do not use decorations for SDL windows and start them using the whole
454available screen space. This makes the using QEMU in a dedicated desktop
455workspace more convenient.
456
99aa9e4c
AJ
457@item -no-quit
458
459Disable SDL window close capability.
460
f858dcae
TS
461@item -full-screen
462Start in full screen.
463
89dfe898 464@item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
f858dcae
TS
465
466Normally, QEMU uses SDL to display the VGA output. With this option,
467you can have QEMU listen on VNC display @var{display} and redirect the VGA
468display over the VNC session. It is very useful to enable the usb
469tablet device when using this option (option @option{-usbdevice
470tablet}). When using the VNC display, you must use the @option{-k}
471parameter to set the keyboard layout if you are not using en-us. Valid
472syntax for the @var{display} is
473
474@table @code
475
3aa3eea3 476@item @var{host}:@var{d}
f858dcae 477
3aa3eea3
AZ
478TCP connections will only be allowed from @var{host} on display @var{d}.
479By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
480be omitted in which case the server will accept connections from any host.
f858dcae 481
3aa3eea3 482@item @code{unix}:@var{path}
f858dcae
TS
483
484Connections will be allowed over UNIX domain sockets where @var{path} is the
485location of a unix socket to listen for connections on.
486
89dfe898 487@item none
f858dcae 488
3aa3eea3
AZ
489VNC is initialized but not started. The monitor @code{change} command
490can be used to later start the VNC server.
f858dcae
TS
491
492@end table
493
494Following the @var{display} value there may be one or more @var{option} flags
495separated by commas. Valid options are
496
497@table @code
498
3aa3eea3
AZ
499@item reverse
500
501Connect to a listening VNC client via a ``reverse'' connection. The
502client is specified by the @var{display}. For reverse network
503connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
504is a TCP port number, not a display number.
505
89dfe898 506@item password
f858dcae
TS
507
508Require that password based authentication is used for client connections.
509The password must be set separately using the @code{change} command in the
510@ref{pcsys_monitor}
511
89dfe898 512@item tls
f858dcae
TS
513
514Require that client use TLS when communicating with the VNC server. This
515uses anonymous TLS credentials so is susceptible to a man-in-the-middle
516attack. It is recommended that this option be combined with either the
517@var{x509} or @var{x509verify} options.
518
89dfe898 519@item x509=@var{/path/to/certificate/dir}
f858dcae 520
89dfe898 521Valid if @option{tls} is specified. Require that x509 credentials are used
f858dcae
TS
522for negotiating the TLS session. The server will send its x509 certificate
523to the client. It is recommended that a password be set on the VNC server
524to provide authentication of the client when this is used. The path following
525this option specifies where the x509 certificates are to be loaded from.
526See the @ref{vnc_security} section for details on generating certificates.
527
89dfe898 528@item x509verify=@var{/path/to/certificate/dir}
f858dcae 529
89dfe898 530Valid if @option{tls} is specified. Require that x509 credentials are used
f858dcae
TS
531for negotiating the TLS session. The server will send its x509 certificate
532to the client, and request that the client send its own x509 certificate.
533The server will validate the client's certificate against the CA certificate,
534and reject clients when validation fails. If the certificate authority is
535trusted, this is a sufficient authentication mechanism. You may still wish
536to set a password on the VNC server as a second authentication layer. The
537path following this option specifies where the x509 certificates are to
538be loaded from. See the @ref{vnc_security} section for details on generating
539certificates.
540
541@end table
542
89dfe898 543@item -k @var{language}
f858dcae
TS
544
545Use keyboard layout @var{language} (for example @code{fr} for
546French). This option is only needed where it is not easy to get raw PC
547keycodes (e.g. on Macs, with some X11 servers or with a VNC
548display). You don't normally need to use it on PC/Linux or PC/Windows
549hosts.
550
551The available layouts are:
552@example
553ar de-ch es fo fr-ca hu ja mk no pt-br sv
554da en-gb et fr fr-ch is lt nl pl ru th
555de en-us fi fr-be hr it lv nl-be pt sl tr
556@end example
557
558The default is @code{en-us}.
559
560@end table
561
b389dbfb
FB
562USB options:
563@table @option
564
565@item -usb
566Enable the USB driver (will be the default soon)
567
89dfe898 568@item -usbdevice @var{devname}
0aff66b5 569Add the USB device @var{devname}. @xref{usb_devices}.
8fccda83
TS
570
571@table @code
572
573@item mouse
574Virtual Mouse. This will override the PS/2 mouse emulation when activated.
575
576@item tablet
577Pointer device that uses absolute coordinates (like a touchscreen). This
578means qemu is able to report the mouse position without having to grab the
579mouse. Also overrides the PS/2 mouse emulation when activated.
580
334c0241
AJ
581@item disk:[format=@var{format}]:file
582Mass storage device based on file. The optional @var{format} argument
583will be used rather than detecting the format. Can be used to specifiy
584format=raw to avoid interpreting an untrusted format header.
8fccda83
TS
585
586@item host:bus.addr
587Pass through the host device identified by bus.addr (Linux only).
588
589@item host:vendor_id:product_id
590Pass through the host device identified by vendor_id:product_id (Linux only).
591
db380c06
AZ
592@item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
593Serial converter to host character device @var{dev}, see @code{-serial} for the
594available devices.
595
2e4d9fb1
AJ
596@item braille
597Braille device. This will use BrlAPI to display the braille output on a real
598or fake device.
599
9ad97e65 600@item net:options
6c9f886c
AZ
601Network adapter that supports CDC ethernet and RNDIS protocols.
602
8fccda83
TS
603@end table
604
b389dbfb
FB
605@end table
606
1f673135
FB
607Network options:
608
609@table @option
610
7a9f6e4a 611@item -net nic[,vlan=@var{n}][,macaddr=@var{addr}][,model=@var{type}][,name=@var{name}]
41d03949 612Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
c4a7060c 613= 0 is the default). The NIC is an ne2k_pci by default on the PC
7a9f6e4a
AL
614target. Optionally, the MAC address can be changed to @var{addr}
615and a @var{name} can be assigned for use in monitor commands. If no
41d03949 616@option{-net} option is specified, a single NIC is created.
549444e1
AZ
617Qemu can emulate several different models of network card.
618Valid values for @var{type} are
619@code{i82551}, @code{i82557b}, @code{i82559er},
620@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
9ad97e65 621@code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
c4a7060c
BS
622Not all devices are supported on all targets. Use -net nic,model=?
623for a list of available devices for your target.
41d03949 624
7a9f6e4a 625@item -net user[,vlan=@var{n}][,hostname=@var{name}][,name=@var{name}]
7e89463d 626Use the user mode network stack which requires no administrator
4be456f1 627privilege to run. @option{hostname=name} can be used to specify the client
115defd1 628hostname reported by the builtin DHCP server.
41d03949 629
7a9f6e4a 630@item -net tap[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}]
030370a2
AJ
631Connect the host TAP network interface @var{name} to VLAN @var{n}, use
632the network script @var{file} to configure it and the network script
633@var{dfile} to deconfigure it. If @var{name} is not provided, the OS
634automatically provides one. @option{fd}=@var{h} can be used to specify
635the handle of an already opened host TAP interface. The default network
636configure script is @file{/etc/qemu-ifup} and the default network
637deconfigure script is @file{/etc/qemu-ifdown}. Use @option{script=no}
638or @option{downscript=no} to disable script execution. Example:
1f673135 639
41d03949
FB
640@example
641qemu linux.img -net nic -net tap
642@end example
643
644More complicated example (two NICs, each one connected to a TAP device)
645@example
646qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
647 -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
648@end example
3f1a88f4 649
3f1a88f4 650
7a9f6e4a 651@item -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
1f673135 652
41d03949
FB
653Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
654machine using a TCP socket connection. If @option{listen} is
655specified, QEMU waits for incoming connections on @var{port}
656(@var{host} is optional). @option{connect} is used to connect to
89dfe898 657another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
3d830459 658specifies an already opened TCP socket.
1f673135 659
41d03949
FB
660Example:
661@example
662# launch a first QEMU instance
debc7065
FB
663qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
664 -net socket,listen=:1234
665# connect the VLAN 0 of this instance to the VLAN 0
666# of the first instance
667qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
668 -net socket,connect=127.0.0.1:1234
41d03949 669@end example
52c00a5f 670
7a9f6e4a 671@item -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
3d830459
FB
672
673Create a VLAN @var{n} shared with another QEMU virtual
5fafdf24 674machines using a UDP multicast socket, effectively making a bus for
3d830459
FB
675every QEMU with same multicast address @var{maddr} and @var{port}.
676NOTES:
677@enumerate
5fafdf24
TS
678@item
679Several QEMU can be running on different hosts and share same bus (assuming
3d830459
FB
680correct multicast setup for these hosts).
681@item
682mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
683@url{http://user-mode-linux.sf.net}.
4be456f1
TS
684@item
685Use @option{fd=h} to specify an already opened UDP multicast socket.
3d830459
FB
686@end enumerate
687
688Example:
689@example
690# launch one QEMU instance
debc7065
FB
691qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
692 -net socket,mcast=230.0.0.1:1234
3d830459 693# launch another QEMU instance on same "bus"
debc7065
FB
694qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
695 -net socket,mcast=230.0.0.1:1234
3d830459 696# launch yet another QEMU instance on same "bus"
debc7065
FB
697qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
698 -net socket,mcast=230.0.0.1:1234
3d830459
FB
699@end example
700
701Example (User Mode Linux compat.):
702@example
debc7065
FB
703# launch QEMU instance (note mcast address selected
704# is UML's default)
705qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
706 -net socket,mcast=239.192.168.1:1102
3d830459
FB
707# launch UML
708/path/to/linux ubd0=/path/to/root_fs eth0=mcast
709@end example
8a16d273 710
7a9f6e4a 711@item -net vde[,vlan=@var{n}][,name=@var{name}][,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
8a16d273
TS
712Connect VLAN @var{n} to PORT @var{n} of a vde switch running on host and
713listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
714and MODE @var{octalmode} to change default ownership and permissions for
715communication port. This option is available only if QEMU has been compiled
716with vde support enabled.
717
718Example:
719@example
720# launch vde switch
721vde_switch -F -sock /tmp/myswitch
722# launch QEMU instance
723qemu linux.img -net nic -net vde,sock=/tmp/myswitch
724@end example
3d830459 725
41d03949
FB
726@item -net none
727Indicate that no network devices should be configured. It is used to
039af320
FB
728override the default configuration (@option{-net nic -net user}) which
729is activated if no @option{-net} options are provided.
52c00a5f 730
89dfe898 731@item -tftp @var{dir}
9bf05444 732When using the user mode network stack, activate a built-in TFTP
0db1137d
TS
733server. The files in @var{dir} will be exposed as the root of a TFTP server.
734The TFTP client on the guest must be configured in binary mode (use the command
735@code{bin} of the Unix TFTP client). The host IP address on the guest is as
736usual 10.0.2.2.
9bf05444 737
89dfe898 738@item -bootp @var{file}
47d5d01a
TS
739When using the user mode network stack, broadcast @var{file} as the BOOTP
740filename. In conjunction with @option{-tftp}, this can be used to network boot
741a guest from a local directory.
742
743Example (using pxelinux):
744@example
745qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
746@end example
747
89dfe898 748@item -smb @var{dir}
2518bd0d 749When using the user mode network stack, activate a built-in SMB
89dfe898 750server so that Windows OSes can access to the host files in @file{@var{dir}}
2518bd0d
FB
751transparently.
752
753In the guest Windows OS, the line:
754@example
75510.0.2.4 smbserver
756@end example
757must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
758or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
759
89dfe898 760Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
2518bd0d
FB
761
762Note that a SAMBA server must be installed on the host OS in
366dfc52 763@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
6cc721cf 7642.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
2518bd0d 765
89dfe898 766@item -redir [tcp|udp]:@var{host-port}:[@var{guest-host}]:@var{guest-port}
9bf05444
FB
767
768When using the user mode network stack, redirect incoming TCP or UDP
769connections to the host port @var{host-port} to the guest
770@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
771is not specified, its value is 10.0.2.15 (default address given by the
772built-in DHCP server).
773
774For example, to redirect host X11 connection from screen 1 to guest
775screen 0, use the following:
776
777@example
778# on the host
779qemu -redir tcp:6001::6000 [...]
780# this host xterm should open in the guest X11 server
781xterm -display :1
782@end example
783
784To redirect telnet connections from host port 5555 to telnet port on
785the guest, use the following:
786
787@example
788# on the host
789qemu -redir tcp:5555::23 [...]
790telnet localhost 5555
791@end example
792
793Then when you use on the host @code{telnet localhost 5555}, you
794connect to the guest telnet server.
795
1f673135
FB
796@end table
797
2d564691
AZ
798Bluetooth(R) options:
799@table @option
800
801@item -bt hci[...]
802Defines the function of the corresponding Bluetooth HCI. -bt options
803are matched with the HCIs present in the chosen machine type. For
804example when emulating a machine with only one HCI built into it, only
805the first @code{-bt hci[...]} option is valid and defines the HCI's
806logic. The Transport Layer is decided by the machine type. Currently
807the machines @code{n800} and @code{n810} have one HCI and all other
808machines have none.
809
810@anchor{bt-hcis}
811The following three types are recognized:
812
813@table @code
814@item -bt hci,null
815(default) The corresponding Bluetooth HCI assumes no internal logic
816and will not respond to any HCI commands or emit events.
817
818@item -bt hci,host[:@var{id}]
819(@code{bluez} only) The corresponding HCI passes commands / events
820to / from the physical HCI identified by the name @var{id} (default:
821@code{hci0}) on the computer running QEMU. Only available on @code{bluez}
822capable systems like Linux.
823
824@item -bt hci[,vlan=@var{n}]
825Add a virtual, standard HCI that will participate in the Bluetooth
826scatternet @var{n} (default @code{0}). Similarly to @option{-net}
827VLANs, devices inside a bluetooth network @var{n} can only communicate
828with other devices in the same network (scatternet).
829@end table
830
831@item -bt vhci[,vlan=@var{n}]
832(Linux-host only) Create a HCI in scatternet @var{n} (default 0) attached
833to the host bluetooth stack instead of to the emulated target. This
834allows the host and target machines to participate in a common scatternet
835and communicate. Requires the Linux @code{vhci} driver installed. Can
836be used as following:
837
838@example
839qemu [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5
840@end example
841
842@item -bt device:@var{dev}[,vlan=@var{n}]
843Emulate a bluetooth device @var{dev} and place it in network @var{n}
844(default @code{0}). QEMU can only emulate one type of bluetooth devices
845currently:
846
847@table @code
848@item keyboard
849Virtual wireless keyboard implementing the HIDP bluetooth profile.
850@end table
851
852@end table
853
41d03949 854Linux boot specific: When using these options, you can use a given
1f673135
FB
855Linux kernel without installing it in the disk image. It can be useful
856for easier testing of various kernels.
857
0806e3f6
FB
858@table @option
859
89dfe898 860@item -kernel @var{bzImage}
0806e3f6
FB
861Use @var{bzImage} as kernel image.
862
89dfe898 863@item -append @var{cmdline}
0806e3f6
FB
864Use @var{cmdline} as kernel command line
865
89dfe898 866@item -initrd @var{file}
0806e3f6
FB
867Use @var{file} as initial ram disk.
868
ec410fc9
FB
869@end table
870
15a34c63 871Debug/Expert options:
ec410fc9 872@table @option
a0a821a4 873
89dfe898 874@item -serial @var{dev}
0bab00f3
FB
875Redirect the virtual serial port to host character device
876@var{dev}. The default device is @code{vc} in graphical mode and
877@code{stdio} in non graphical mode.
878
879This option can be used several times to simulate up to 4 serials
880ports.
881
c03b0f0f
FB
882Use @code{-serial none} to disable all serial ports.
883
0bab00f3 884Available character devices are:
a0a821a4 885@table @code
af3a9031
TS
886@item vc[:WxH]
887Virtual console. Optionally, a width and height can be given in pixel with
888@example
889vc:800x600
890@end example
891It is also possible to specify width or height in characters:
892@example
893vc:80Cx24C
894@end example
a0a821a4
FB
895@item pty
896[Linux only] Pseudo TTY (a new PTY is automatically allocated)
c03b0f0f
FB
897@item none
898No device is allocated.
a0a821a4
FB
899@item null
900void device
f8d179e3 901@item /dev/XXX
e57a8c0e 902[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
f8d179e3 903parameters are set according to the emulated ones.
89dfe898 904@item /dev/parport@var{N}
e57a8c0e 905[Linux only, parallel port only] Use host parallel port
5867c88a 906@var{N}. Currently SPP and EPP parallel port features can be used.
89dfe898
TS
907@item file:@var{filename}
908Write output to @var{filename}. No character can be read.
a0a821a4
FB
909@item stdio
910[Unix only] standard input/output
89dfe898 911@item pipe:@var{filename}
0bab00f3 912name pipe @var{filename}
89dfe898 913@item COM@var{n}
0bab00f3 914[Windows only] Use host serial port @var{n}
89dfe898
TS
915@item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
916This implements UDP Net Console.
917When @var{remote_host} or @var{src_ip} are not specified
918they default to @code{0.0.0.0}.
919When not using a specified @var{src_port} a random port is automatically chosen.
951f1351
FB
920
921If you just want a simple readonly console you can use @code{netcat} or
922@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
923@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
924will appear in the netconsole session.
0bab00f3
FB
925
926If you plan to send characters back via netconsole or you want to stop
927and start qemu a lot of times, you should have qemu use the same
928source port each time by using something like @code{-serial
951f1351 929udp::4555@@:4556} to qemu. Another approach is to use a patched
0bab00f3
FB
930version of netcat which can listen to a TCP port and send and receive
931characters via udp. If you have a patched version of netcat which
932activates telnet remote echo and single char transfer, then you can
933use the following options to step up a netcat redirector to allow
934telnet on port 5555 to access the qemu port.
935@table @code
951f1351
FB
936@item Qemu Options:
937-serial udp::4555@@:4556
938@item netcat options:
939-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
940@item telnet options:
941localhost 5555
942@end table
943
944
89dfe898 945@item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
951f1351
FB
946The TCP Net Console has two modes of operation. It can send the serial
947I/O to a location or wait for a connection from a location. By default
948the TCP Net Console is sent to @var{host} at the @var{port}. If you use
f542086d
FB
949the @var{server} option QEMU will wait for a client socket application
950to connect to the port before continuing, unless the @code{nowait}
f7499989 951option was specified. The @code{nodelay} option disables the Nagle buffering
4be456f1 952algorithm. If @var{host} is omitted, 0.0.0.0 is assumed. Only
951f1351
FB
953one TCP connection at a time is accepted. You can use @code{telnet} to
954connect to the corresponding character device.
955@table @code
956@item Example to send tcp console to 192.168.0.2 port 4444
957-serial tcp:192.168.0.2:4444
958@item Example to listen and wait on port 4444 for connection
959-serial tcp::4444,server
960@item Example to not wait and listen on ip 192.168.0.100 port 4444
961-serial tcp:192.168.0.100:4444,server,nowait
a0a821a4 962@end table
a0a821a4 963
89dfe898 964@item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
951f1351
FB
965The telnet protocol is used instead of raw tcp sockets. The options
966work the same as if you had specified @code{-serial tcp}. The
967difference is that the port acts like a telnet server or client using
968telnet option negotiation. This will also allow you to send the
969MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
970sequence. Typically in unix telnet you do it with Control-] and then
971type "send break" followed by pressing the enter key.
0bab00f3 972
89dfe898 973@item unix:@var{path}[,server][,nowait]
ffd843bc
TS
974A unix domain socket is used instead of a tcp socket. The option works the
975same as if you had specified @code{-serial tcp} except the unix domain socket
976@var{path} is used for connections.
977
89dfe898 978@item mon:@var{dev_string}
20d8a3ed
TS
979This is a special option to allow the monitor to be multiplexed onto
980another serial port. The monitor is accessed with key sequence of
981@key{Control-a} and then pressing @key{c}. See monitor access
982@ref{pcsys_keys} in the -nographic section for more keys.
983@var{dev_string} should be any one of the serial devices specified
984above. An example to multiplex the monitor onto a telnet server
985listening on port 4444 would be:
986@table @code
987@item -serial mon:telnet::4444,server,nowait
988@end table
989
2e4d9fb1
AJ
990@item braille
991Braille device. This will use BrlAPI to display the braille output on a real
992or fake device.
993
0bab00f3 994@end table
05d5818c 995
89dfe898 996@item -parallel @var{dev}
e57a8c0e
FB
997Redirect the virtual parallel port to host device @var{dev} (same
998devices as the serial port). On Linux hosts, @file{/dev/parportN} can
999be used to use hardware devices connected on the corresponding host
1000parallel port.
1001
1002This option can be used several times to simulate up to 3 parallel
1003ports.
1004
c03b0f0f
FB
1005Use @code{-parallel none} to disable all parallel ports.
1006
89dfe898 1007@item -monitor @var{dev}
a0a821a4
FB
1008Redirect the monitor to host device @var{dev} (same devices as the
1009serial port).
1010The default device is @code{vc} in graphical mode and @code{stdio} in
1011non graphical mode.
1012
20d8a3ed
TS
1013@item -echr numeric_ascii_value
1014Change the escape character used for switching to the monitor when using
1015monitor and serial sharing. The default is @code{0x01} when using the
1016@code{-nographic} option. @code{0x01} is equal to pressing
1017@code{Control-a}. You can select a different character from the ascii
1018control keys where 1 through 26 map to Control-a through Control-z. For
1019instance you could use the either of the following to change the escape
1020character to Control-t.
1021@table @code
1022@item -echr 0x14
1023@item -echr 20
1024@end table
1025
ec410fc9 1026@item -s
5fafdf24 1027Wait gdb connection to port 1234 (@pxref{gdb_usage}).
89dfe898 1028@item -p @var{port}
4046d913
PB
1029Change gdb connection port. @var{port} can be either a decimal number
1030to specify a TCP port, or a host device (same devices as the serial port).
52c00a5f
FB
1031@item -S
1032Do not start CPU at startup (you must type 'c' in the monitor).
3b46e624 1033@item -d
9d4520d0 1034Output log in /tmp/qemu.log
89dfe898 1035@item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
46d4767d
FB
1036Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
1037@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
1038translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
4be456f1 1039all those parameters. This option is useful for old MS-DOS disk
46d4767d 1040images.
7c3fc84d 1041
87b47350
FB
1042@item -L path
1043Set the directory for the BIOS, VGA BIOS and keymaps.
1044
3893c124 1045@item -vga @var{type}
1046Select type of VGA card to emulate. Valid values for @var{type} are
1047@table @code
1048@item cirrus
1049Cirrus Logic GD5446 Video card. All Windows versions starting from
1050Windows 95 should recognize and use this graphic card. For optimal
1051performances, use 16 bit color depth in the guest and the host OS.
1052(This one is the default)
1053@item std
1054Standard VGA card with Bochs VBE extensions. If your guest OS
1055supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
1056to use high resolution modes (>= 1280x1024x16) then you should use
1057this option.
1058@item vmware
1059VMWare SVGA-II compatible adapter. Use it if you have sufficiently
1060recent XFree86/XOrg server or Windows guest with a driver for this
1061card.
1062@end table
3cb0853a 1063
3c656346
FB
1064@item -no-acpi
1065Disable ACPI (Advanced Configuration and Power Interface) support. Use
1066it if your guest OS complains about ACPI problems (PC target machine
1067only).
1068
d1beab82
FB
1069@item -no-reboot
1070Exit instead of rebooting.
1071
99aa9e4c
AJ
1072@item -no-shutdown
1073Don't exit QEMU on guest shutdown, but instead only stop the emulation.
1074This allows for instance switching to monitor to commit changes to the
1075disk image.
1076
d63d307f
FB
1077@item -loadvm file
1078Start right away with a saved state (@code{loadvm} in monitor)
8e71621f
PB
1079
1080@item -semihosting
a87295e8
PB
1081Enable semihosting syscall emulation (ARM and M68K target machines only).
1082
1083On ARM this implements the "Angel" interface.
1084On M68K this implements the "ColdFire GDB" interface used by libgloss.
1085
8e71621f
PB
1086Note that this allows guest direct access to the host filesystem,
1087so should only be used with trusted guest OS.
2e70f6ef
PB
1088
1089@item -icount [N|auto]
1090Enable virtual instruction counter. The virtual cpu will execute one
1091instruction every 2^N ns of virtual time. If @code{auto} is specified
1092then the virtual cpu speed will be automatically adjusted to keep virtual
1093time within a few seconds of real time.
1094
1095Note that while this option can give deterministic behavior, it does not
1096provide cycle accurate emulation. Modern CPUs contain superscalar out of
dd5d6fe9 1097order cores with complex cache hierarchies. The number of instructions
2e70f6ef 1098executed often has little or no correlation with actual performance.
ec410fc9
FB
1099@end table
1100
3e11db9a
FB
1101@c man end
1102
debc7065 1103@node pcsys_keys
3e11db9a
FB
1104@section Keys
1105
1106@c man begin OPTIONS
1107
a1b74fe8
FB
1108During the graphical emulation, you can use the following keys:
1109@table @key
f9859310 1110@item Ctrl-Alt-f
a1b74fe8 1111Toggle full screen
a0a821a4 1112
f9859310 1113@item Ctrl-Alt-n
a0a821a4
FB
1114Switch to virtual console 'n'. Standard console mappings are:
1115@table @emph
1116@item 1
1117Target system display
1118@item 2
1119Monitor
1120@item 3
1121Serial port
a1b74fe8
FB
1122@end table
1123
f9859310 1124@item Ctrl-Alt
a0a821a4
FB
1125Toggle mouse and keyboard grab.
1126@end table
1127
3e11db9a
FB
1128In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
1129@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
1130
a0a821a4
FB
1131During emulation, if you are using the @option{-nographic} option, use
1132@key{Ctrl-a h} to get terminal commands:
ec410fc9
FB
1133
1134@table @key
a1b74fe8 1135@item Ctrl-a h
ec410fc9 1136Print this help
3b46e624 1137@item Ctrl-a x
366dfc52 1138Exit emulator
3b46e624 1139@item Ctrl-a s
1f47a922 1140Save disk data back to file (if -snapshot)
20d8a3ed
TS
1141@item Ctrl-a t
1142toggle console timestamps
a1b74fe8 1143@item Ctrl-a b
1f673135 1144Send break (magic sysrq in Linux)
a1b74fe8 1145@item Ctrl-a c
1f673135 1146Switch between console and monitor
a1b74fe8
FB
1147@item Ctrl-a Ctrl-a
1148Send Ctrl-a
ec410fc9 1149@end table
0806e3f6
FB
1150@c man end
1151
1152@ignore
1153
1f673135
FB
1154@c man begin SEEALSO
1155The HTML documentation of QEMU for more precise information and Linux
1156user mode emulator invocation.
1157@c man end
1158
1159@c man begin AUTHOR
1160Fabrice Bellard
1161@c man end
1162
1163@end ignore
1164
debc7065 1165@node pcsys_monitor
1f673135
FB
1166@section QEMU Monitor
1167
1168The QEMU monitor is used to give complex commands to the QEMU
1169emulator. You can use it to:
1170
1171@itemize @minus
1172
1173@item
e598752a 1174Remove or insert removable media images
89dfe898 1175(such as CD-ROM or floppies).
1f673135 1176
5fafdf24 1177@item
1f673135
FB
1178Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
1179from a disk file.
1180
1181@item Inspect the VM state without an external debugger.
1182
1183@end itemize
1184
1185@subsection Commands
1186
1187The following commands are available:
1188
1189@table @option
1190
89dfe898 1191@item help or ? [@var{cmd}]
1f673135
FB
1192Show the help for all commands or just for command @var{cmd}.
1193
3b46e624 1194@item commit
89dfe898 1195Commit changes to the disk images (if -snapshot is used).
1f673135 1196
89dfe898
TS
1197@item info @var{subcommand}
1198Show various information about the system state.
1f673135
FB
1199
1200@table @option
1201@item info network
41d03949 1202show the various VLANs and the associated devices
1f673135
FB
1203@item info block
1204show the block devices
1205@item info registers
1206show the cpu registers
1207@item info history
1208show the command line history
b389dbfb
FB
1209@item info pci
1210show emulated PCI device
1211@item info usb
1212show USB devices plugged on the virtual USB hub
1213@item info usbhost
1214show all USB host devices
a3c25997
FB
1215@item info capture
1216show information about active capturing
13a2e80f
FB
1217@item info snapshots
1218show list of VM snapshots
455204eb
TS
1219@item info mice
1220show which guest mouse is receiving events
1f673135
FB
1221@end table
1222
1223@item q or quit
1224Quit the emulator.
1225
89dfe898 1226@item eject [-f] @var{device}
e598752a 1227Eject a removable medium (use -f to force it).
1f673135 1228
89dfe898 1229@item change @var{device} @var{setting}
f858dcae 1230
89dfe898 1231Change the configuration of a device.
f858dcae
TS
1232
1233@table @option
1234@item change @var{diskdevice} @var{filename}
1235Change the medium for a removable disk device to point to @var{filename}. eg
1236
1237@example
4bf27c24 1238(qemu) change ide1-cd0 /path/to/some.iso
f858dcae
TS
1239@end example
1240
89dfe898 1241@item change vnc @var{display},@var{options}
f858dcae
TS
1242Change the configuration of the VNC server. The valid syntax for @var{display}
1243and @var{options} are described at @ref{sec_invocation}. eg
1244
1245@example
1246(qemu) change vnc localhost:1
1247@end example
1248
2569da0c 1249@item change vnc password [@var{password}]
f858dcae 1250
2569da0c
AL
1251Change the password associated with the VNC server. If the new password is not
1252supplied, the monitor will prompt for it to be entered. VNC passwords are only
1253significant up to 8 letters. eg
f858dcae
TS
1254
1255@example
1256(qemu) change vnc password
1257Password: ********
1258@end example
1259
1260@end table
1f673135 1261
89dfe898 1262@item screendump @var{filename}
1f673135
FB
1263Save screen into PPM image @var{filename}.
1264
89dfe898 1265@item mouse_move @var{dx} @var{dy} [@var{dz}]
455204eb
TS
1266Move the active mouse to the specified coordinates @var{dx} @var{dy}
1267with optional scroll axis @var{dz}.
1268
89dfe898 1269@item mouse_button @var{val}
455204eb
TS
1270Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
1271
89dfe898 1272@item mouse_set @var{index}
455204eb
TS
1273Set which mouse device receives events at given @var{index}, index
1274can be obtained with
1275@example
1276info mice
1277@end example
1278
89dfe898 1279@item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
a3c25997
FB
1280Capture audio into @var{filename}. Using sample rate @var{frequency}
1281bits per sample @var{bits} and number of channels @var{channels}.
1282
1283Defaults:
1284@itemize @minus
1285@item Sample rate = 44100 Hz - CD quality
1286@item Bits = 16
1287@item Number of channels = 2 - Stereo
1288@end itemize
1289
89dfe898 1290@item stopcapture @var{index}
a3c25997
FB
1291Stop capture with a given @var{index}, index can be obtained with
1292@example
1293info capture
1294@end example
1295
89dfe898 1296@item log @var{item1}[,...]
1f673135
FB
1297Activate logging of the specified items to @file{/tmp/qemu.log}.
1298
89dfe898 1299@item savevm [@var{tag}|@var{id}]
13a2e80f
FB
1300Create a snapshot of the whole virtual machine. If @var{tag} is
1301provided, it is used as human readable identifier. If there is already
1302a snapshot with the same tag or ID, it is replaced. More info at
1303@ref{vm_snapshots}.
1f673135 1304
89dfe898 1305@item loadvm @var{tag}|@var{id}
13a2e80f
FB
1306Set the whole virtual machine to the snapshot identified by the tag
1307@var{tag} or the unique snapshot ID @var{id}.
1308
89dfe898 1309@item delvm @var{tag}|@var{id}
13a2e80f 1310Delete the snapshot identified by @var{tag} or @var{id}.
1f673135
FB
1311
1312@item stop
1313Stop emulation.
1314
1315@item c or cont
1316Resume emulation.
1317
89dfe898
TS
1318@item gdbserver [@var{port}]
1319Start gdbserver session (default @var{port}=1234)
1f673135 1320
89dfe898 1321@item x/fmt @var{addr}
1f673135
FB
1322Virtual memory dump starting at @var{addr}.
1323
89dfe898 1324@item xp /@var{fmt} @var{addr}
1f673135
FB
1325Physical memory dump starting at @var{addr}.
1326
1327@var{fmt} is a format which tells the command how to format the
1328data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1329
1330@table @var
5fafdf24 1331@item count
1f673135
FB
1332is the number of items to be dumped.
1333
1334@item format
4be456f1 1335can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1f673135
FB
1336c (char) or i (asm instruction).
1337
1338@item size
52c00a5f
FB
1339can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1340@code{h} or @code{w} can be specified with the @code{i} format to
1341respectively select 16 or 32 bit code instruction size.
1f673135
FB
1342
1343@end table
1344
5fafdf24 1345Examples:
1f673135
FB
1346@itemize
1347@item
1348Dump 10 instructions at the current instruction pointer:
5fafdf24 1349@example
1f673135
FB
1350(qemu) x/10i $eip
13510x90107063: ret
13520x90107064: sti
13530x90107065: lea 0x0(%esi,1),%esi
13540x90107069: lea 0x0(%edi,1),%edi
13550x90107070: ret
13560x90107071: jmp 0x90107080
13570x90107073: nop
13580x90107074: nop
13590x90107075: nop
13600x90107076: nop
1361@end example
1362
1363@item
1364Dump 80 16 bit values at the start of the video memory.
5fafdf24 1365@smallexample
1f673135
FB
1366(qemu) xp/80hx 0xb8000
13670x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
13680x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
13690x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
13700x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
13710x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
13720x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
13730x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
13740x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
13750x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
13760x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
debc7065 1377@end smallexample
1f673135
FB
1378@end itemize
1379
89dfe898 1380@item p or print/@var{fmt} @var{expr}
1f673135
FB
1381
1382Print expression value. Only the @var{format} part of @var{fmt} is
1383used.
0806e3f6 1384
89dfe898 1385@item sendkey @var{keys}
a3a91a35 1386
54ae1fbd
AJ
1387Send @var{keys} to the emulator. @var{keys} could be the name of the
1388key or @code{#} followed by the raw value in either decimal or hexadecimal
1389format. Use @code{-} to press several keys simultaneously. Example:
a3a91a35
FB
1390@example
1391sendkey ctrl-alt-f1
1392@end example
1393
1394This command is useful to send keys that your graphical user interface
1395intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1396
15a34c63
FB
1397@item system_reset
1398
1399Reset the system.
1400
0ecdffbb
AJ
1401@item boot_set @var{bootdevicelist}
1402
1403Define new values for the boot device list. Those values will override
1404the values specified on the command line through the @code{-boot} option.
1405
1406The values that can be specified here depend on the machine type, but are
1407the same that can be specified in the @code{-boot} command line option.
1408
89dfe898 1409@item usb_add @var{devname}
b389dbfb 1410
0aff66b5
PB
1411Add the USB device @var{devname}. For details of available devices see
1412@ref{usb_devices}
b389dbfb 1413
89dfe898 1414@item usb_del @var{devname}
b389dbfb
FB
1415
1416Remove the USB device @var{devname} from the QEMU virtual USB
1417hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1418command @code{info usb} to see the devices you can remove.
1419
1f673135 1420@end table
0806e3f6 1421
1f673135
FB
1422@subsection Integer expressions
1423
1424The monitor understands integers expressions for every integer
1425argument. You can use register names to get the value of specifics
1426CPU registers by prefixing them with @emph{$}.
ec410fc9 1427
1f47a922
FB
1428@node disk_images
1429@section Disk Images
1430
acd935ef
FB
1431Since version 0.6.1, QEMU supports many disk image formats, including
1432growable disk images (their size increase as non empty sectors are
13a2e80f
FB
1433written), compressed and encrypted disk images. Version 0.8.3 added
1434the new qcow2 disk image format which is essential to support VM
1435snapshots.
1f47a922 1436
debc7065
FB
1437@menu
1438* disk_images_quickstart:: Quick start for disk image creation
1439* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 1440* vm_snapshots:: VM snapshots
debc7065 1441* qemu_img_invocation:: qemu-img Invocation
975b092b 1442* qemu_nbd_invocation:: qemu-nbd Invocation
19cb3738 1443* host_drives:: Using host drives
debc7065 1444* disk_images_fat_images:: Virtual FAT disk images
75818250 1445* disk_images_nbd:: NBD access
debc7065
FB
1446@end menu
1447
1448@node disk_images_quickstart
acd935ef
FB
1449@subsection Quick start for disk image creation
1450
1451You can create a disk image with the command:
1f47a922 1452@example
acd935ef 1453qemu-img create myimage.img mysize
1f47a922 1454@end example
acd935ef
FB
1455where @var{myimage.img} is the disk image filename and @var{mysize} is its
1456size in kilobytes. You can add an @code{M} suffix to give the size in
1457megabytes and a @code{G} suffix for gigabytes.
1458
debc7065 1459See @ref{qemu_img_invocation} for more information.
1f47a922 1460
debc7065 1461@node disk_images_snapshot_mode
1f47a922
FB
1462@subsection Snapshot mode
1463
1464If you use the option @option{-snapshot}, all disk images are
1465considered as read only. When sectors in written, they are written in
1466a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
1467write back to the raw disk images by using the @code{commit} monitor
1468command (or @key{C-a s} in the serial console).
1f47a922 1469
13a2e80f
FB
1470@node vm_snapshots
1471@subsection VM snapshots
1472
1473VM snapshots are snapshots of the complete virtual machine including
1474CPU state, RAM, device state and the content of all the writable
1475disks. In order to use VM snapshots, you must have at least one non
1476removable and writable block device using the @code{qcow2} disk image
1477format. Normally this device is the first virtual hard drive.
1478
1479Use the monitor command @code{savevm} to create a new VM snapshot or
1480replace an existing one. A human readable name can be assigned to each
19d36792 1481snapshot in addition to its numerical ID.
13a2e80f
FB
1482
1483Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1484a VM snapshot. @code{info snapshots} lists the available snapshots
1485with their associated information:
1486
1487@example
1488(qemu) info snapshots
1489Snapshot devices: hda
1490Snapshot list (from hda):
1491ID TAG VM SIZE DATE VM CLOCK
14921 start 41M 2006-08-06 12:38:02 00:00:14.954
14932 40M 2006-08-06 12:43:29 00:00:18.633
14943 msys 40M 2006-08-06 12:44:04 00:00:23.514
1495@end example
1496
1497A VM snapshot is made of a VM state info (its size is shown in
1498@code{info snapshots}) and a snapshot of every writable disk image.
1499The VM state info is stored in the first @code{qcow2} non removable
1500and writable block device. The disk image snapshots are stored in
1501every disk image. The size of a snapshot in a disk image is difficult
1502to evaluate and is not shown by @code{info snapshots} because the
1503associated disk sectors are shared among all the snapshots to save
19d36792
FB
1504disk space (otherwise each snapshot would need a full copy of all the
1505disk images).
13a2e80f
FB
1506
1507When using the (unrelated) @code{-snapshot} option
1508(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1509but they are deleted as soon as you exit QEMU.
1510
1511VM snapshots currently have the following known limitations:
1512@itemize
5fafdf24 1513@item
13a2e80f
FB
1514They cannot cope with removable devices if they are removed or
1515inserted after a snapshot is done.
5fafdf24 1516@item
13a2e80f
FB
1517A few device drivers still have incomplete snapshot support so their
1518state is not saved or restored properly (in particular USB).
1519@end itemize
1520
acd935ef
FB
1521@node qemu_img_invocation
1522@subsection @code{qemu-img} Invocation
1f47a922 1523
acd935ef 1524@include qemu-img.texi
05efe46e 1525
975b092b
TS
1526@node qemu_nbd_invocation
1527@subsection @code{qemu-nbd} Invocation
1528
1529@include qemu-nbd.texi
1530
19cb3738
FB
1531@node host_drives
1532@subsection Using host drives
1533
1534In addition to disk image files, QEMU can directly access host
1535devices. We describe here the usage for QEMU version >= 0.8.3.
1536
1537@subsubsection Linux
1538
1539On Linux, you can directly use the host device filename instead of a
4be456f1 1540disk image filename provided you have enough privileges to access
19cb3738
FB
1541it. For example, use @file{/dev/cdrom} to access to the CDROM or
1542@file{/dev/fd0} for the floppy.
1543
f542086d 1544@table @code
19cb3738
FB
1545@item CD
1546You can specify a CDROM device even if no CDROM is loaded. QEMU has
1547specific code to detect CDROM insertion or removal. CDROM ejection by
1548the guest OS is supported. Currently only data CDs are supported.
1549@item Floppy
1550You can specify a floppy device even if no floppy is loaded. Floppy
1551removal is currently not detected accurately (if you change floppy
1552without doing floppy access while the floppy is not loaded, the guest
1553OS will think that the same floppy is loaded).
1554@item Hard disks
1555Hard disks can be used. Normally you must specify the whole disk
1556(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1557see it as a partitioned disk. WARNING: unless you know what you do, it
1558is better to only make READ-ONLY accesses to the hard disk otherwise
1559you may corrupt your host data (use the @option{-snapshot} command
1560line option or modify the device permissions accordingly).
1561@end table
1562
1563@subsubsection Windows
1564
01781963
FB
1565@table @code
1566@item CD
4be456f1 1567The preferred syntax is the drive letter (e.g. @file{d:}). The
01781963
FB
1568alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1569supported as an alias to the first CDROM drive.
19cb3738 1570
e598752a 1571Currently there is no specific code to handle removable media, so it
19cb3738
FB
1572is better to use the @code{change} or @code{eject} monitor commands to
1573change or eject media.
01781963 1574@item Hard disks
89dfe898 1575Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
01781963
FB
1576where @var{N} is the drive number (0 is the first hard disk).
1577
1578WARNING: unless you know what you do, it is better to only make
1579READ-ONLY accesses to the hard disk otherwise you may corrupt your
1580host data (use the @option{-snapshot} command line so that the
1581modifications are written in a temporary file).
1582@end table
1583
19cb3738
FB
1584
1585@subsubsection Mac OS X
1586
5fafdf24 1587@file{/dev/cdrom} is an alias to the first CDROM.
19cb3738 1588
e598752a 1589Currently there is no specific code to handle removable media, so it
19cb3738
FB
1590is better to use the @code{change} or @code{eject} monitor commands to
1591change or eject media.
1592
debc7065 1593@node disk_images_fat_images
2c6cadd4
FB
1594@subsection Virtual FAT disk images
1595
1596QEMU can automatically create a virtual FAT disk image from a
1597directory tree. In order to use it, just type:
1598
5fafdf24 1599@example
2c6cadd4
FB
1600qemu linux.img -hdb fat:/my_directory
1601@end example
1602
1603Then you access access to all the files in the @file{/my_directory}
1604directory without having to copy them in a disk image or to export
1605them via SAMBA or NFS. The default access is @emph{read-only}.
1606
1607Floppies can be emulated with the @code{:floppy:} option:
1608
5fafdf24 1609@example
2c6cadd4
FB
1610qemu linux.img -fda fat:floppy:/my_directory
1611@end example
1612
1613A read/write support is available for testing (beta stage) with the
1614@code{:rw:} option:
1615
5fafdf24 1616@example
2c6cadd4
FB
1617qemu linux.img -fda fat:floppy:rw:/my_directory
1618@end example
1619
1620What you should @emph{never} do:
1621@itemize
1622@item use non-ASCII filenames ;
1623@item use "-snapshot" together with ":rw:" ;
85b2c688
FB
1624@item expect it to work when loadvm'ing ;
1625@item write to the FAT directory on the host system while accessing it with the guest system.
2c6cadd4
FB
1626@end itemize
1627
75818250
TS
1628@node disk_images_nbd
1629@subsection NBD access
1630
1631QEMU can access directly to block device exported using the Network Block Device
1632protocol.
1633
1634@example
1635qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
1636@end example
1637
1638If the NBD server is located on the same host, you can use an unix socket instead
1639of an inet socket:
1640
1641@example
1642qemu linux.img -hdb nbd:unix:/tmp/my_socket
1643@end example
1644
1645In this case, the block device must be exported using qemu-nbd:
1646
1647@example
1648qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
1649@end example
1650
1651The use of qemu-nbd allows to share a disk between several guests:
1652@example
1653qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
1654@end example
1655
1656and then you can use it with two guests:
1657@example
1658qemu linux1.img -hdb nbd:unix:/tmp/my_socket
1659qemu linux2.img -hdb nbd:unix:/tmp/my_socket
1660@end example
1661
debc7065 1662@node pcsys_network
9d4fb82e
FB
1663@section Network emulation
1664
4be456f1 1665QEMU can simulate several network cards (PCI or ISA cards on the PC
41d03949
FB
1666target) and can connect them to an arbitrary number of Virtual Local
1667Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1668VLAN. VLAN can be connected between separate instances of QEMU to
4be456f1 1669simulate large networks. For simpler usage, a non privileged user mode
41d03949
FB
1670network stack can replace the TAP device to have a basic network
1671connection.
1672
1673@subsection VLANs
9d4fb82e 1674
41d03949
FB
1675QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1676connection between several network devices. These devices can be for
1677example QEMU virtual Ethernet cards or virtual Host ethernet devices
1678(TAP devices).
9d4fb82e 1679
41d03949
FB
1680@subsection Using TAP network interfaces
1681
1682This is the standard way to connect QEMU to a real network. QEMU adds
1683a virtual network device on your host (called @code{tapN}), and you
1684can then configure it as if it was a real ethernet card.
9d4fb82e 1685
8f40c388
FB
1686@subsubsection Linux host
1687
9d4fb82e
FB
1688As an example, you can download the @file{linux-test-xxx.tar.gz}
1689archive and copy the script @file{qemu-ifup} in @file{/etc} and
1690configure properly @code{sudo} so that the command @code{ifconfig}
1691contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 1692that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
1693device @file{/dev/net/tun} must be present.
1694
ee0f4751
FB
1695See @ref{sec_invocation} to have examples of command lines using the
1696TAP network interfaces.
9d4fb82e 1697
8f40c388
FB
1698@subsubsection Windows host
1699
1700There is a virtual ethernet driver for Windows 2000/XP systems, called
1701TAP-Win32. But it is not included in standard QEMU for Windows,
1702so you will need to get it separately. It is part of OpenVPN package,
1703so download OpenVPN from : @url{http://openvpn.net/}.
1704
9d4fb82e
FB
1705@subsection Using the user mode network stack
1706
41d03949
FB
1707By using the option @option{-net user} (default configuration if no
1708@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 1709network stack (you don't need root privilege to use the virtual
41d03949 1710network). The virtual network configuration is the following:
9d4fb82e
FB
1711
1712@example
1713
41d03949
FB
1714 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
1715 | (10.0.2.2)
9d4fb82e 1716 |
2518bd0d 1717 ----> DNS server (10.0.2.3)
3b46e624 1718 |
2518bd0d 1719 ----> SMB server (10.0.2.4)
9d4fb82e
FB
1720@end example
1721
1722The QEMU VM behaves as if it was behind a firewall which blocks all
1723incoming connections. You can use a DHCP client to automatically
41d03949
FB
1724configure the network in the QEMU VM. The DHCP server assign addresses
1725to the hosts starting from 10.0.2.15.
9d4fb82e
FB
1726
1727In order to check that the user mode network is working, you can ping
1728the address 10.0.2.2 and verify that you got an address in the range
172910.0.2.x from the QEMU virtual DHCP server.
1730
b415a407 1731Note that @code{ping} is not supported reliably to the internet as it
4be456f1 1732would require root privileges. It means you can only ping the local
b415a407
FB
1733router (10.0.2.2).
1734
9bf05444
FB
1735When using the built-in TFTP server, the router is also the TFTP
1736server.
1737
1738When using the @option{-redir} option, TCP or UDP connections can be
1739redirected from the host to the guest. It allows for example to
1740redirect X11, telnet or SSH connections.
443f1376 1741
41d03949
FB
1742@subsection Connecting VLANs between QEMU instances
1743
1744Using the @option{-net socket} option, it is possible to make VLANs
1745that span several QEMU instances. See @ref{sec_invocation} to have a
1746basic example.
1747
9d4fb82e
FB
1748@node direct_linux_boot
1749@section Direct Linux Boot
1f673135
FB
1750
1751This section explains how to launch a Linux kernel inside QEMU without
1752having to make a full bootable image. It is very useful for fast Linux
ee0f4751 1753kernel testing.
1f673135 1754
ee0f4751 1755The syntax is:
1f673135 1756@example
ee0f4751 1757qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
1758@end example
1759
ee0f4751
FB
1760Use @option{-kernel} to provide the Linux kernel image and
1761@option{-append} to give the kernel command line arguments. The
1762@option{-initrd} option can be used to provide an INITRD image.
1f673135 1763
ee0f4751
FB
1764When using the direct Linux boot, a disk image for the first hard disk
1765@file{hda} is required because its boot sector is used to launch the
1766Linux kernel.
1f673135 1767
ee0f4751
FB
1768If you do not need graphical output, you can disable it and redirect
1769the virtual serial port and the QEMU monitor to the console with the
1770@option{-nographic} option. The typical command line is:
1f673135 1771@example
ee0f4751
FB
1772qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1773 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
1774@end example
1775
ee0f4751
FB
1776Use @key{Ctrl-a c} to switch between the serial console and the
1777monitor (@pxref{pcsys_keys}).
1f673135 1778
debc7065 1779@node pcsys_usb
b389dbfb
FB
1780@section USB emulation
1781
0aff66b5
PB
1782QEMU emulates a PCI UHCI USB controller. You can virtually plug
1783virtual USB devices or real host USB devices (experimental, works only
1784on Linux hosts). Qemu will automatically create and connect virtual USB hubs
f542086d 1785as necessary to connect multiple USB devices.
b389dbfb 1786
0aff66b5
PB
1787@menu
1788* usb_devices::
1789* host_usb_devices::
1790@end menu
1791@node usb_devices
1792@subsection Connecting USB devices
b389dbfb 1793
0aff66b5
PB
1794USB devices can be connected with the @option{-usbdevice} commandline option
1795or the @code{usb_add} monitor command. Available devices are:
b389dbfb 1796
db380c06
AZ
1797@table @code
1798@item mouse
0aff66b5 1799Virtual Mouse. This will override the PS/2 mouse emulation when activated.
db380c06 1800@item tablet
c6d46c20 1801Pointer device that uses absolute coordinates (like a touchscreen).
0aff66b5
PB
1802This means qemu is able to report the mouse position without having
1803to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
db380c06 1804@item disk:@var{file}
0aff66b5 1805Mass storage device based on @var{file} (@pxref{disk_images})
db380c06 1806@item host:@var{bus.addr}
0aff66b5
PB
1807Pass through the host device identified by @var{bus.addr}
1808(Linux only)
db380c06 1809@item host:@var{vendor_id:product_id}
0aff66b5
PB
1810Pass through the host device identified by @var{vendor_id:product_id}
1811(Linux only)
db380c06 1812@item wacom-tablet
f6d2a316
AZ
1813Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1814above but it can be used with the tslib library because in addition to touch
1815coordinates it reports touch pressure.
db380c06 1816@item keyboard
47b2d338 1817Standard USB keyboard. Will override the PS/2 keyboard (if present).
db380c06
AZ
1818@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1819Serial converter. This emulates an FTDI FT232BM chip connected to host character
1820device @var{dev}. The available character devices are the same as for the
1821@code{-serial} option. The @code{vendorid} and @code{productid} options can be
a11d070e 1822used to override the default 0403:6001. For instance,
db380c06
AZ
1823@example
1824usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1825@end example
1826will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1827serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
2e4d9fb1
AJ
1828@item braille
1829Braille device. This will use BrlAPI to display the braille output on a real
1830or fake device.
9ad97e65
AZ
1831@item net:@var{options}
1832Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
1833specifies NIC options as with @code{-net nic,}@var{options} (see description).
1834For instance, user-mode networking can be used with
6c9f886c 1835@example
9ad97e65 1836qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
6c9f886c
AZ
1837@end example
1838Currently this cannot be used in machines that support PCI NICs.
2d564691
AZ
1839@item bt[:@var{hci-type}]
1840Bluetooth dongle whose type is specified in the same format as with
1841the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
1842no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1843This USB device implements the USB Transport Layer of HCI. Example
1844usage:
1845@example
1846qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
1847@end example
0aff66b5 1848@end table
b389dbfb 1849
0aff66b5 1850@node host_usb_devices
b389dbfb
FB
1851@subsection Using host USB devices on a Linux host
1852
1853WARNING: this is an experimental feature. QEMU will slow down when
1854using it. USB devices requiring real time streaming (i.e. USB Video
1855Cameras) are not supported yet.
1856
1857@enumerate
5fafdf24 1858@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
1859is actually using the USB device. A simple way to do that is simply to
1860disable the corresponding kernel module by renaming it from @file{mydriver.o}
1861to @file{mydriver.o.disabled}.
1862
1863@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1864@example
1865ls /proc/bus/usb
1866001 devices drivers
1867@end example
1868
1869@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1870@example
1871chown -R myuid /proc/bus/usb
1872@end example
1873
1874@item Launch QEMU and do in the monitor:
5fafdf24 1875@example
b389dbfb
FB
1876info usbhost
1877 Device 1.2, speed 480 Mb/s
1878 Class 00: USB device 1234:5678, USB DISK
1879@end example
1880You should see the list of the devices you can use (Never try to use
1881hubs, it won't work).
1882
1883@item Add the device in QEMU by using:
5fafdf24 1884@example
b389dbfb
FB
1885usb_add host:1234:5678
1886@end example
1887
1888Normally the guest OS should report that a new USB device is
1889plugged. You can use the option @option{-usbdevice} to do the same.
1890
1891@item Now you can try to use the host USB device in QEMU.
1892
1893@end enumerate
1894
1895When relaunching QEMU, you may have to unplug and plug again the USB
1896device to make it work again (this is a bug).
1897
f858dcae
TS
1898@node vnc_security
1899@section VNC security
1900
1901The VNC server capability provides access to the graphical console
1902of the guest VM across the network. This has a number of security
1903considerations depending on the deployment scenarios.
1904
1905@menu
1906* vnc_sec_none::
1907* vnc_sec_password::
1908* vnc_sec_certificate::
1909* vnc_sec_certificate_verify::
1910* vnc_sec_certificate_pw::
1911* vnc_generate_cert::
1912@end menu
1913@node vnc_sec_none
1914@subsection Without passwords
1915
1916The simplest VNC server setup does not include any form of authentication.
1917For this setup it is recommended to restrict it to listen on a UNIX domain
1918socket only. For example
1919
1920@example
1921qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1922@end example
1923
1924This ensures that only users on local box with read/write access to that
1925path can access the VNC server. To securely access the VNC server from a
1926remote machine, a combination of netcat+ssh can be used to provide a secure
1927tunnel.
1928
1929@node vnc_sec_password
1930@subsection With passwords
1931
1932The VNC protocol has limited support for password based authentication. Since
1933the protocol limits passwords to 8 characters it should not be considered
1934to provide high security. The password can be fairly easily brute-forced by
1935a client making repeat connections. For this reason, a VNC server using password
1936authentication should be restricted to only listen on the loopback interface
34a3d239 1937or UNIX domain sockets. Password authentication is requested with the @code{password}
f858dcae
TS
1938option, and then once QEMU is running the password is set with the monitor. Until
1939the monitor is used to set the password all clients will be rejected.
1940
1941@example
1942qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1943(qemu) change vnc password
1944Password: ********
1945(qemu)
1946@end example
1947
1948@node vnc_sec_certificate
1949@subsection With x509 certificates
1950
1951The QEMU VNC server also implements the VeNCrypt extension allowing use of
1952TLS for encryption of the session, and x509 certificates for authentication.
1953The use of x509 certificates is strongly recommended, because TLS on its
1954own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1955support provides a secure session, but no authentication. This allows any
1956client to connect, and provides an encrypted session.
1957
1958@example
1959qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1960@end example
1961
1962In the above example @code{/etc/pki/qemu} should contain at least three files,
1963@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1964users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1965NB the @code{server-key.pem} file should be protected with file mode 0600 to
1966only be readable by the user owning it.
1967
1968@node vnc_sec_certificate_verify
1969@subsection With x509 certificates and client verification
1970
1971Certificates can also provide a means to authenticate the client connecting.
1972The server will request that the client provide a certificate, which it will
1973then validate against the CA certificate. This is a good choice if deploying
1974in an environment with a private internal certificate authority.
1975
1976@example
1977qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1978@end example
1979
1980
1981@node vnc_sec_certificate_pw
1982@subsection With x509 certificates, client verification and passwords
1983
1984Finally, the previous method can be combined with VNC password authentication
1985to provide two layers of authentication for clients.
1986
1987@example
1988qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1989(qemu) change vnc password
1990Password: ********
1991(qemu)
1992@end example
1993
1994@node vnc_generate_cert
1995@subsection Generating certificates for VNC
1996
1997The GNU TLS packages provides a command called @code{certtool} which can
1998be used to generate certificates and keys in PEM format. At a minimum it
1999is neccessary to setup a certificate authority, and issue certificates to
2000each server. If using certificates for authentication, then each client
2001will also need to be issued a certificate. The recommendation is for the
2002server to keep its certificates in either @code{/etc/pki/qemu} or for
2003unprivileged users in @code{$HOME/.pki/qemu}.
2004
2005@menu
2006* vnc_generate_ca::
2007* vnc_generate_server::
2008* vnc_generate_client::
2009@end menu
2010@node vnc_generate_ca
2011@subsubsection Setup the Certificate Authority
2012
2013This step only needs to be performed once per organization / organizational
2014unit. First the CA needs a private key. This key must be kept VERY secret
2015and secure. If this key is compromised the entire trust chain of the certificates
2016issued with it is lost.
2017
2018@example
2019# certtool --generate-privkey > ca-key.pem
2020@end example
2021
2022A CA needs to have a public certificate. For simplicity it can be a self-signed
2023certificate, or one issue by a commercial certificate issuing authority. To
2024generate a self-signed certificate requires one core piece of information, the
2025name of the organization.
2026
2027@example
2028# cat > ca.info <<EOF
2029cn = Name of your organization
2030ca
2031cert_signing_key
2032EOF
2033# certtool --generate-self-signed \
2034 --load-privkey ca-key.pem
2035 --template ca.info \
2036 --outfile ca-cert.pem
2037@end example
2038
2039The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
2040TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
2041
2042@node vnc_generate_server
2043@subsubsection Issuing server certificates
2044
2045Each server (or host) needs to be issued with a key and certificate. When connecting
2046the certificate is sent to the client which validates it against the CA certificate.
2047The core piece of information for a server certificate is the hostname. This should
2048be the fully qualified hostname that the client will connect with, since the client
2049will typically also verify the hostname in the certificate. On the host holding the
2050secure CA private key:
2051
2052@example
2053# cat > server.info <<EOF
2054organization = Name of your organization
2055cn = server.foo.example.com
2056tls_www_server
2057encryption_key
2058signing_key
2059EOF
2060# certtool --generate-privkey > server-key.pem
2061# certtool --generate-certificate \
2062 --load-ca-certificate ca-cert.pem \
2063 --load-ca-privkey ca-key.pem \
2064 --load-privkey server server-key.pem \
2065 --template server.info \
2066 --outfile server-cert.pem
2067@end example
2068
2069The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
2070to the server for which they were generated. The @code{server-key.pem} is security
2071sensitive and should be kept protected with file mode 0600 to prevent disclosure.
2072
2073@node vnc_generate_client
2074@subsubsection Issuing client certificates
2075
2076If the QEMU VNC server is to use the @code{x509verify} option to validate client
2077certificates as its authentication mechanism, each client also needs to be issued
2078a certificate. The client certificate contains enough metadata to uniquely identify
2079the client, typically organization, state, city, building, etc. On the host holding
2080the secure CA private key:
2081
2082@example
2083# cat > client.info <<EOF
2084country = GB
2085state = London
2086locality = London
2087organiazation = Name of your organization
2088cn = client.foo.example.com
2089tls_www_client
2090encryption_key
2091signing_key
2092EOF
2093# certtool --generate-privkey > client-key.pem
2094# certtool --generate-certificate \
2095 --load-ca-certificate ca-cert.pem \
2096 --load-ca-privkey ca-key.pem \
2097 --load-privkey client-key.pem \
2098 --template client.info \
2099 --outfile client-cert.pem
2100@end example
2101
2102The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
2103copied to the client for which they were generated.
2104
0806e3f6 2105@node gdb_usage
da415d54
FB
2106@section GDB usage
2107
2108QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 2109'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 2110
9d4520d0 2111In order to use gdb, launch qemu with the '-s' option. It will wait for a
da415d54
FB
2112gdb connection:
2113@example
debc7065
FB
2114> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
2115 -append "root=/dev/hda"
da415d54
FB
2116Connected to host network interface: tun0
2117Waiting gdb connection on port 1234
2118@end example
2119
2120Then launch gdb on the 'vmlinux' executable:
2121@example
2122> gdb vmlinux
2123@end example
2124
2125In gdb, connect to QEMU:
2126@example
6c9bf893 2127(gdb) target remote localhost:1234
da415d54
FB
2128@end example
2129
2130Then you can use gdb normally. For example, type 'c' to launch the kernel:
2131@example
2132(gdb) c
2133@end example
2134
0806e3f6
FB
2135Here are some useful tips in order to use gdb on system code:
2136
2137@enumerate
2138@item
2139Use @code{info reg} to display all the CPU registers.
2140@item
2141Use @code{x/10i $eip} to display the code at the PC position.
2142@item
2143Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 2144@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
2145@end enumerate
2146
60897d36
EI
2147Advanced debugging options:
2148
2149The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 2150@table @code
60897d36
EI
2151@item maintenance packet qqemu.sstepbits
2152
2153This will display the MASK bits used to control the single stepping IE:
2154@example
2155(gdb) maintenance packet qqemu.sstepbits
2156sending: "qqemu.sstepbits"
2157received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
2158@end example
2159@item maintenance packet qqemu.sstep
2160
2161This will display the current value of the mask used when single stepping IE:
2162@example
2163(gdb) maintenance packet qqemu.sstep
2164sending: "qqemu.sstep"
2165received: "0x7"
2166@end example
2167@item maintenance packet Qqemu.sstep=HEX_VALUE
2168
2169This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
2170@example
2171(gdb) maintenance packet Qqemu.sstep=0x5
2172sending: "qemu.sstep=0x5"
2173received: "OK"
2174@end example
94d45e44 2175@end table
60897d36 2176
debc7065 2177@node pcsys_os_specific
1a084f3d
FB
2178@section Target OS specific information
2179
2180@subsection Linux
2181
15a34c63
FB
2182To have access to SVGA graphic modes under X11, use the @code{vesa} or
2183the @code{cirrus} X11 driver. For optimal performances, use 16 bit
2184color depth in the guest and the host OS.
1a084f3d 2185
e3371e62
FB
2186When using a 2.6 guest Linux kernel, you should add the option
2187@code{clock=pit} on the kernel command line because the 2.6 Linux
2188kernels make very strict real time clock checks by default that QEMU
2189cannot simulate exactly.
2190
7c3fc84d
FB
2191When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
2192not activated because QEMU is slower with this patch. The QEMU
2193Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 2194Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
2195patch by default. Newer kernels don't have it.
2196
1a084f3d
FB
2197@subsection Windows
2198
2199If you have a slow host, using Windows 95 is better as it gives the
2200best speed. Windows 2000 is also a good choice.
2201
e3371e62
FB
2202@subsubsection SVGA graphic modes support
2203
2204QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
2205card. All Windows versions starting from Windows 95 should recognize
2206and use this graphic card. For optimal performances, use 16 bit color
2207depth in the guest and the host OS.
1a084f3d 2208
3cb0853a
FB
2209If you are using Windows XP as guest OS and if you want to use high
2210resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
22111280x1024x16), then you should use the VESA VBE virtual graphic card
2212(option @option{-std-vga}).
2213
e3371e62
FB
2214@subsubsection CPU usage reduction
2215
2216Windows 9x does not correctly use the CPU HLT
15a34c63
FB
2217instruction. The result is that it takes host CPU cycles even when
2218idle. You can install the utility from
2219@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
2220problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 2221
9d0a8e6f 2222@subsubsection Windows 2000 disk full problem
e3371e62 2223
9d0a8e6f
FB
2224Windows 2000 has a bug which gives a disk full problem during its
2225installation. When installing it, use the @option{-win2k-hack} QEMU
2226option to enable a specific workaround. After Windows 2000 is
2227installed, you no longer need this option (this option slows down the
2228IDE transfers).
e3371e62 2229
6cc721cf
FB
2230@subsubsection Windows 2000 shutdown
2231
2232Windows 2000 cannot automatically shutdown in QEMU although Windows 98
2233can. It comes from the fact that Windows 2000 does not automatically
2234use the APM driver provided by the BIOS.
2235
2236In order to correct that, do the following (thanks to Struan
2237Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
2238Add/Troubleshoot a device => Add a new device & Next => No, select the
2239hardware from a list & Next => NT Apm/Legacy Support & Next => Next
2240(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 2241correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
2242
2243@subsubsection Share a directory between Unix and Windows
2244
2245See @ref{sec_invocation} about the help of the option @option{-smb}.
2246
2192c332 2247@subsubsection Windows XP security problem
e3371e62
FB
2248
2249Some releases of Windows XP install correctly but give a security
2250error when booting:
2251@example
2252A problem is preventing Windows from accurately checking the
2253license for this computer. Error code: 0x800703e6.
2254@end example
e3371e62 2255
2192c332
FB
2256The workaround is to install a service pack for XP after a boot in safe
2257mode. Then reboot, and the problem should go away. Since there is no
2258network while in safe mode, its recommended to download the full
2259installation of SP1 or SP2 and transfer that via an ISO or using the
2260vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 2261
a0a821a4
FB
2262@subsection MS-DOS and FreeDOS
2263
2264@subsubsection CPU usage reduction
2265
2266DOS does not correctly use the CPU HLT instruction. The result is that
2267it takes host CPU cycles even when idle. You can install the utility
2268from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
2269problem.
2270
debc7065 2271@node QEMU System emulator for non PC targets
3f9f3aa1
FB
2272@chapter QEMU System emulator for non PC targets
2273
2274QEMU is a generic emulator and it emulates many non PC
2275machines. Most of the options are similar to the PC emulator. The
4be456f1 2276differences are mentioned in the following sections.
3f9f3aa1 2277
debc7065
FB
2278@menu
2279* QEMU PowerPC System emulator::
24d4de45
TS
2280* Sparc32 System emulator::
2281* Sparc64 System emulator::
2282* MIPS System emulator::
2283* ARM System emulator::
2284* ColdFire System emulator::
debc7065
FB
2285@end menu
2286
2287@node QEMU PowerPC System emulator
3f9f3aa1 2288@section QEMU PowerPC System emulator
1a084f3d 2289
15a34c63
FB
2290Use the executable @file{qemu-system-ppc} to simulate a complete PREP
2291or PowerMac PowerPC system.
1a084f3d 2292
b671f9ed 2293QEMU emulates the following PowerMac peripherals:
1a084f3d 2294
15a34c63 2295@itemize @minus
5fafdf24
TS
2296@item
2297UniNorth PCI Bridge
15a34c63
FB
2298@item
2299PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 2300@item
15a34c63 23012 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 2302@item
15a34c63
FB
2303NE2000 PCI adapters
2304@item
2305Non Volatile RAM
2306@item
2307VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
2308@end itemize
2309
b671f9ed 2310QEMU emulates the following PREP peripherals:
52c00a5f
FB
2311
2312@itemize @minus
5fafdf24 2313@item
15a34c63
FB
2314PCI Bridge
2315@item
2316PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 2317@item
52c00a5f
FB
23182 IDE interfaces with hard disk and CD-ROM support
2319@item
2320Floppy disk
5fafdf24 2321@item
15a34c63 2322NE2000 network adapters
52c00a5f
FB
2323@item
2324Serial port
2325@item
2326PREP Non Volatile RAM
15a34c63
FB
2327@item
2328PC compatible keyboard and mouse.
52c00a5f
FB
2329@end itemize
2330
15a34c63 2331QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 2332@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 2333
992e5acd 2334Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
13e4e059 2335for the g3beige PowerMac machine. OpenBIOS is a free (GPL v2) portable
992e5acd
BS
2336firmware implementation. The goal is to implement a 100% IEEE
23371275-1994 (referred to as Open Firmware) compliant firmware.
2338
15a34c63
FB
2339@c man begin OPTIONS
2340
2341The following options are specific to the PowerPC emulation:
2342
2343@table @option
2344
3b46e624 2345@item -g WxH[xDEPTH]
15a34c63
FB
2346
2347Set the initial VGA graphic mode. The default is 800x600x15.
2348
95efd11c
BS
2349@item -prom-env string
2350
2351Set OpenBIOS variables in NVRAM, for example:
2352
2353@example
2354qemu-system-ppc -prom-env 'auto-boot?=false' \
2355 -prom-env 'boot-device=hd:2,\yaboot' \
2356 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
2357@end example
2358
2359These variables are not used by Open Hack'Ware.
2360
15a34c63
FB
2361@end table
2362
5fafdf24 2363@c man end
15a34c63
FB
2364
2365
52c00a5f 2366More information is available at
3f9f3aa1 2367@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 2368
24d4de45
TS
2369@node Sparc32 System emulator
2370@section Sparc32 System emulator
e80cfcfc 2371
34a3d239
BS
2372Use the executable @file{qemu-system-sparc} to simulate the following
2373Sun4m architecture machines:
2374@itemize @minus
2375@item
2376SPARCstation 4
2377@item
2378SPARCstation 5
2379@item
2380SPARCstation 10
2381@item
2382SPARCstation 20
2383@item
2384SPARCserver 600MP
2385@item
2386SPARCstation LX
2387@item
2388SPARCstation Voyager
2389@item
2390SPARCclassic
2391@item
2392SPARCbook
2393@end itemize
2394
2395The emulation is somewhat complete. SMP up to 16 CPUs is supported,
2396but Linux limits the number of usable CPUs to 4.
e80cfcfc 2397
34a3d239
BS
2398It's also possible to simulate a SPARCstation 2 (sun4c architecture),
2399SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
2400emulators are not usable yet.
2401
2402QEMU emulates the following sun4m/sun4c/sun4d peripherals:
e80cfcfc
FB
2403
2404@itemize @minus
3475187d 2405@item
7d85892b 2406IOMMU or IO-UNITs
e80cfcfc
FB
2407@item
2408TCX Frame buffer
5fafdf24 2409@item
e80cfcfc
FB
2410Lance (Am7990) Ethernet
2411@item
34a3d239 2412Non Volatile RAM M48T02/M48T08
e80cfcfc 2413@item
3475187d
FB
2414Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2415and power/reset logic
2416@item
2417ESP SCSI controller with hard disk and CD-ROM support
2418@item
6a3b9cc9 2419Floppy drive (not on SS-600MP)
a2502b58
BS
2420@item
2421CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
2422@end itemize
2423
6a3b9cc9
BS
2424The number of peripherals is fixed in the architecture. Maximum
2425memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 2426others 2047MB.
3475187d 2427
30a604f3 2428Since version 0.8.2, QEMU uses OpenBIOS
0986ac3b
FB
2429@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2430firmware implementation. The goal is to implement a 100% IEEE
24311275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
2432
2433A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239
BS
2434the QEMU web site. There are still issues with NetBSD and OpenBSD, but
2435some kernel versions work. Please note that currently Solaris kernels
2436don't work probably due to interface issues between OpenBIOS and
2437Solaris.
3475187d
FB
2438
2439@c man begin OPTIONS
2440
a2502b58 2441The following options are specific to the Sparc32 emulation:
3475187d
FB
2442
2443@table @option
2444
a2502b58 2445@item -g WxHx[xDEPTH]
3475187d 2446
a2502b58
BS
2447Set the initial TCX graphic mode. The default is 1024x768x8, currently
2448the only other possible mode is 1024x768x24.
3475187d 2449
66508601
BS
2450@item -prom-env string
2451
2452Set OpenBIOS variables in NVRAM, for example:
2453
2454@example
2455qemu-system-sparc -prom-env 'auto-boot?=false' \
2456 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2457@end example
2458
34a3d239 2459@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic|SPARCbook|SS-2|SS-1000|SS-2000]
a2502b58
BS
2460
2461Set the emulated machine type. Default is SS-5.
2462
3475187d
FB
2463@end table
2464
5fafdf24 2465@c man end
3475187d 2466
24d4de45
TS
2467@node Sparc64 System emulator
2468@section Sparc64 System emulator
e80cfcfc 2469
34a3d239
BS
2470Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2471(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
2472Niagara (T1) machine. The emulator is not usable for anything yet, but
2473it can launch some kernels.
b756921a 2474
c7ba218d 2475QEMU emulates the following peripherals:
83469015
FB
2476
2477@itemize @minus
2478@item
5fafdf24 2479UltraSparc IIi APB PCI Bridge
83469015
FB
2480@item
2481PCI VGA compatible card with VESA Bochs Extensions
2482@item
34a3d239
BS
2483PS/2 mouse and keyboard
2484@item
83469015
FB
2485Non Volatile RAM M48T59
2486@item
2487PC-compatible serial ports
c7ba218d
BS
2488@item
24892 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
2490@item
2491Floppy disk
83469015
FB
2492@end itemize
2493
c7ba218d
BS
2494@c man begin OPTIONS
2495
2496The following options are specific to the Sparc64 emulation:
2497
2498@table @option
2499
34a3d239
BS
2500@item -prom-env string
2501
2502Set OpenBIOS variables in NVRAM, for example:
2503
2504@example
2505qemu-system-sparc64 -prom-env 'auto-boot?=false'
2506@end example
2507
2508@item -M [sun4u|sun4v|Niagara]
c7ba218d
BS
2509
2510Set the emulated machine type. The default is sun4u.
2511
2512@end table
2513
2514@c man end
2515
24d4de45
TS
2516@node MIPS System emulator
2517@section MIPS System emulator
9d0a8e6f 2518
d9aedc32
TS
2519Four executables cover simulation of 32 and 64-bit MIPS systems in
2520both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2521@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 2522Five different machine types are emulated:
24d4de45
TS
2523
2524@itemize @minus
2525@item
2526A generic ISA PC-like machine "mips"
2527@item
2528The MIPS Malta prototype board "malta"
2529@item
d9aedc32 2530An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 2531@item
f0fc6f8f 2532MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
2533@item
2534A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
2535@end itemize
2536
2537The generic emulation is supported by Debian 'Etch' and is able to
2538install Debian into a virtual disk image. The following devices are
2539emulated:
3f9f3aa1
FB
2540
2541@itemize @minus
5fafdf24 2542@item
6bf5b4e8 2543A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
2544@item
2545PC style serial port
2546@item
24d4de45
TS
2547PC style IDE disk
2548@item
3f9f3aa1
FB
2549NE2000 network card
2550@end itemize
2551
24d4de45
TS
2552The Malta emulation supports the following devices:
2553
2554@itemize @minus
2555@item
0b64d008 2556Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
2557@item
2558PIIX4 PCI/USB/SMbus controller
2559@item
2560The Multi-I/O chip's serial device
2561@item
2562PCnet32 PCI network card
2563@item
2564Malta FPGA serial device
2565@item
2566Cirrus VGA graphics card
2567@end itemize
2568
2569The ACER Pica emulation supports:
2570
2571@itemize @minus
2572@item
2573MIPS R4000 CPU
2574@item
2575PC-style IRQ and DMA controllers
2576@item
2577PC Keyboard
2578@item
2579IDE controller
2580@end itemize
3f9f3aa1 2581
f0fc6f8f
TS
2582The mipssim pseudo board emulation provides an environment similiar
2583to what the proprietary MIPS emulator uses for running Linux.
2584It supports:
6bf5b4e8
TS
2585
2586@itemize @minus
2587@item
2588A range of MIPS CPUs, default is the 24Kf
2589@item
2590PC style serial port
2591@item
2592MIPSnet network emulation
2593@end itemize
2594
88cb0a02
AJ
2595The MIPS Magnum R4000 emulation supports:
2596
2597@itemize @minus
2598@item
2599MIPS R4000 CPU
2600@item
2601PC-style IRQ controller
2602@item
2603PC Keyboard
2604@item
2605SCSI controller
2606@item
2607G364 framebuffer
2608@end itemize
2609
2610
24d4de45
TS
2611@node ARM System emulator
2612@section ARM System emulator
3f9f3aa1
FB
2613
2614Use the executable @file{qemu-system-arm} to simulate a ARM
2615machine. The ARM Integrator/CP board is emulated with the following
2616devices:
2617
2618@itemize @minus
2619@item
9ee6e8bb 2620ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
2621@item
2622Two PL011 UARTs
5fafdf24 2623@item
3f9f3aa1 2624SMC 91c111 Ethernet adapter
00a9bf19
PB
2625@item
2626PL110 LCD controller
2627@item
2628PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
2629@item
2630PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
2631@end itemize
2632
2633The ARM Versatile baseboard is emulated with the following devices:
2634
2635@itemize @minus
2636@item
9ee6e8bb 2637ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
2638@item
2639PL190 Vectored Interrupt Controller
2640@item
2641Four PL011 UARTs
5fafdf24 2642@item
00a9bf19
PB
2643SMC 91c111 Ethernet adapter
2644@item
2645PL110 LCD controller
2646@item
2647PL050 KMI with PS/2 keyboard and mouse.
2648@item
2649PCI host bridge. Note the emulated PCI bridge only provides access to
2650PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
2651This means some devices (eg. ne2k_pci NIC) are not usable, and others
2652(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 2653mapped control registers.
e6de1bad
PB
2654@item
2655PCI OHCI USB controller.
2656@item
2657LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
2658@item
2659PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
2660@end itemize
2661
d7739d75
PB
2662The ARM RealView Emulation baseboard is emulated with the following devices:
2663
2664@itemize @minus
2665@item
9ee6e8bb 2666ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
d7739d75
PB
2667@item
2668ARM AMBA Generic/Distributed Interrupt Controller
2669@item
2670Four PL011 UARTs
5fafdf24 2671@item
d7739d75
PB
2672SMC 91c111 Ethernet adapter
2673@item
2674PL110 LCD controller
2675@item
2676PL050 KMI with PS/2 keyboard and mouse
2677@item
2678PCI host bridge
2679@item
2680PCI OHCI USB controller
2681@item
2682LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
2683@item
2684PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
2685@end itemize
2686
b00052e4
AZ
2687The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2688and "Terrier") emulation includes the following peripherals:
2689
2690@itemize @minus
2691@item
2692Intel PXA270 System-on-chip (ARM V5TE core)
2693@item
2694NAND Flash memory
2695@item
2696IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2697@item
2698On-chip OHCI USB controller
2699@item
2700On-chip LCD controller
2701@item
2702On-chip Real Time Clock
2703@item
2704TI ADS7846 touchscreen controller on SSP bus
2705@item
2706Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2707@item
2708GPIO-connected keyboard controller and LEDs
2709@item
549444e1 2710Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
2711@item
2712Three on-chip UARTs
2713@item
2714WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2715@end itemize
2716
02645926
AZ
2717The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2718following elements:
2719
2720@itemize @minus
2721@item
2722Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2723@item
2724ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2725@item
2726On-chip LCD controller
2727@item
2728On-chip Real Time Clock
2729@item
2730TI TSC2102i touchscreen controller / analog-digital converter / Audio
2731CODEC, connected through MicroWire and I@math{^2}S busses
2732@item
2733GPIO-connected matrix keypad
2734@item
2735Secure Digital card connected to OMAP MMC/SD host
2736@item
2737Three on-chip UARTs
2738@end itemize
2739
c30bb264
AZ
2740Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2741emulation supports the following elements:
2742
2743@itemize @minus
2744@item
2745Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2746@item
2747RAM and non-volatile OneNAND Flash memories
2748@item
2749Display connected to EPSON remote framebuffer chip and OMAP on-chip
2750display controller and a LS041y3 MIPI DBI-C controller
2751@item
2752TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2753driven through SPI bus
2754@item
2755National Semiconductor LM8323-controlled qwerty keyboard driven
2756through I@math{^2}C bus
2757@item
2758Secure Digital card connected to OMAP MMC/SD host
2759@item
2760Three OMAP on-chip UARTs and on-chip STI debugging console
2761@item
2d564691
AZ
2762A Bluetooth(R) transciever and HCI connected to an UART
2763@item
c30bb264
AZ
2764Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2765TUSB6010 chip - only USB host mode is supported
2766@item
2767TI TMP105 temperature sensor driven through I@math{^2}C bus
2768@item
2769TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2770@item
2771Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2772through CBUS
2773@end itemize
2774
9ee6e8bb
PB
2775The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2776devices:
2777
2778@itemize @minus
2779@item
2780Cortex-M3 CPU core.
2781@item
278264k Flash and 8k SRAM.
2783@item
2784Timers, UARTs, ADC and I@math{^2}C interface.
2785@item
2786OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2787@end itemize
2788
2789The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2790devices:
2791
2792@itemize @minus
2793@item
2794Cortex-M3 CPU core.
2795@item
2796256k Flash and 64k SRAM.
2797@item
2798Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2799@item
2800OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2801@end itemize
2802
57cd6e97
AZ
2803The Freecom MusicPal internet radio emulation includes the following
2804elements:
2805
2806@itemize @minus
2807@item
2808Marvell MV88W8618 ARM core.
2809@item
281032 MB RAM, 256 KB SRAM, 8 MB flash.
2811@item
2812Up to 2 16550 UARTs
2813@item
2814MV88W8xx8 Ethernet controller
2815@item
2816MV88W8618 audio controller, WM8750 CODEC and mixer
2817@item
2818