]> git.proxmox.com Git - qemu.git/blame - qemu-doc.texi
Preliminary BSD user emulator support
[qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
8f40c388 4@settitle QEMU Emulator User Documentation
debc7065
FB
5@exampleindent 0
6@paragraphindent 0
7@c %**end of header
386405f7 8
0806e3f6 9@iftex
386405f7
FB
10@titlepage
11@sp 7
8f40c388 12@center @titlefont{QEMU Emulator}
debc7065
FB
13@sp 1
14@center @titlefont{User Documentation}
386405f7
FB
15@sp 3
16@end titlepage
0806e3f6 17@end iftex
386405f7 18
debc7065
FB
19@ifnottex
20@node Top
21@top
22
23@menu
24* Introduction::
25* Installation::
26* QEMU PC System emulator::
27* QEMU System emulator for non PC targets::
83195237 28* QEMU User space emulator::
debc7065
FB
29* compilation:: Compilation from the sources
30* Index::
31@end menu
32@end ifnottex
33
34@contents
35
36@node Introduction
386405f7
FB
37@chapter Introduction
38
debc7065
FB
39@menu
40* intro_features:: Features
41@end menu
42
43@node intro_features
322d0c66 44@section Features
386405f7 45
1f673135
FB
46QEMU is a FAST! processor emulator using dynamic translation to
47achieve good emulation speed.
1eb20527
FB
48
49QEMU has two operating modes:
0806e3f6
FB
50
51@itemize @minus
52
5fafdf24 53@item
1f673135 54Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
55example a PC), including one or several processors and various
56peripherals. It can be used to launch different Operating Systems
57without rebooting the PC or to debug system code.
1eb20527 58
5fafdf24 59@item
83195237
FB
60User mode emulation. In this mode, QEMU can launch
61processes compiled for one CPU on another CPU. It can be used to
1f673135
FB
62launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63to ease cross-compilation and cross-debugging.
1eb20527
FB
64
65@end itemize
66
7c3fc84d 67QEMU can run without an host kernel driver and yet gives acceptable
5fafdf24 68performance.
322d0c66 69
52c00a5f
FB
70For system emulation, the following hardware targets are supported:
71@itemize
9d0a8e6f 72@item PC (x86 or x86_64 processor)
3f9f3aa1 73@item ISA PC (old style PC without PCI bus)
52c00a5f 74@item PREP (PowerPC processor)
9d0a8e6f
FB
75@item G3 BW PowerMac (PowerPC processor)
76@item Mac99 PowerMac (PowerPC processor, in progress)
ee76f82e 77@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
c7ba218d 78@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
d9aedc32 79@item Malta board (32-bit and 64-bit MIPS processors)
88cb0a02 80@item MIPS Magnum (64-bit MIPS processor)
9ee6e8bb
PB
81@item ARM Integrator/CP (ARM)
82@item ARM Versatile baseboard (ARM)
83@item ARM RealView Emulation baseboard (ARM)
b00052e4 84@item Spitz, Akita, Borzoi and Terrier PDAs (PXA270 processor)
9ee6e8bb
PB
85@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
86@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
707e011b 87@item Freescale MCF5208EVB (ColdFire V2).
209a4e69 88@item Arnewsh MCF5206 evaluation board (ColdFire V2).
02645926 89@item Palm Tungsten|E PDA (OMAP310 processor)
c30bb264 90@item N800 and N810 tablets (OMAP2420 processor)
57cd6e97 91@item MusicPal (MV88W8618 ARM processor)
52c00a5f 92@end itemize
386405f7 93
d9aedc32 94For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
0806e3f6 95
debc7065 96@node Installation
5b9f457a
FB
97@chapter Installation
98
15a34c63
FB
99If you want to compile QEMU yourself, see @ref{compilation}.
100
debc7065
FB
101@menu
102* install_linux:: Linux
103* install_windows:: Windows
104* install_mac:: Macintosh
105@end menu
106
107@node install_linux
1f673135
FB
108@section Linux
109
7c3fc84d
FB
110If a precompiled package is available for your distribution - you just
111have to install it. Otherwise, see @ref{compilation}.
5b9f457a 112
debc7065 113@node install_windows
1f673135 114@section Windows
8cd0ac2f 115
15a34c63 116Download the experimental binary installer at
debc7065 117@url{http://www.free.oszoo.org/@/download.html}.
d691f669 118
debc7065 119@node install_mac
1f673135 120@section Mac OS X
d691f669 121
15a34c63 122Download the experimental binary installer at
debc7065 123@url{http://www.free.oszoo.org/@/download.html}.
df0f11a0 124
debc7065 125@node QEMU PC System emulator
3f9f3aa1 126@chapter QEMU PC System emulator
1eb20527 127
debc7065
FB
128@menu
129* pcsys_introduction:: Introduction
130* pcsys_quickstart:: Quick Start
131* sec_invocation:: Invocation
132* pcsys_keys:: Keys
133* pcsys_monitor:: QEMU Monitor
134* disk_images:: Disk Images
135* pcsys_network:: Network emulation
136* direct_linux_boot:: Direct Linux Boot
137* pcsys_usb:: USB emulation
f858dcae 138* vnc_security:: VNC security
debc7065
FB
139* gdb_usage:: GDB usage
140* pcsys_os_specific:: Target OS specific information
141@end menu
142
143@node pcsys_introduction
0806e3f6
FB
144@section Introduction
145
146@c man begin DESCRIPTION
147
3f9f3aa1
FB
148The QEMU PC System emulator simulates the
149following peripherals:
0806e3f6
FB
150
151@itemize @minus
5fafdf24 152@item
15a34c63 153i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 154@item
15a34c63
FB
155Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
156extensions (hardware level, including all non standard modes).
0806e3f6
FB
157@item
158PS/2 mouse and keyboard
5fafdf24 159@item
15a34c63 1602 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
161@item
162Floppy disk
5fafdf24 163@item
c4a7060c 164PCI/ISA PCI network adapters
0806e3f6 165@item
05d5818c
FB
166Serial ports
167@item
c0fe3827
FB
168Creative SoundBlaster 16 sound card
169@item
170ENSONIQ AudioPCI ES1370 sound card
171@item
e5c9a13e
AZ
172Intel 82801AA AC97 Audio compatible sound card
173@item
c0fe3827 174Adlib(OPL2) - Yamaha YM3812 compatible chip
b389dbfb 175@item
26463dbc
AZ
176Gravis Ultrasound GF1 sound card
177@item
cc53d26d 178CS4231A compatible sound card
179@item
b389dbfb 180PCI UHCI USB controller and a virtual USB hub.
0806e3f6
FB
181@end itemize
182
3f9f3aa1
FB
183SMP is supported with up to 255 CPUs.
184
cc53d26d 185Note that adlib, ac97, gus and cs4231a are only available when QEMU
0c58ac1c 186was configured with --audio-card-list option containing the name(s) of
e5178e8d 187required card(s).
c0fe3827 188
15a34c63
FB
189QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
190VGA BIOS.
191
c0fe3827
FB
192QEMU uses YM3812 emulation by Tatsuyuki Satoh.
193
26463dbc
AZ
194QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
195by Tibor "TS" Schütz.
423d65f4 196
cc53d26d 197CS4231A is the chip used in Windows Sound System and GUSMAX products
198
0806e3f6
FB
199@c man end
200
debc7065 201@node pcsys_quickstart
1eb20527
FB
202@section Quick Start
203
285dc330 204Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
205
206@example
285dc330 207qemu linux.img
0806e3f6
FB
208@end example
209
210Linux should boot and give you a prompt.
211
6cc721cf 212@node sec_invocation
ec410fc9
FB
213@section Invocation
214
215@example
0806e3f6 216@c man begin SYNOPSIS
89dfe898 217usage: qemu [options] [@var{disk_image}]
0806e3f6 218@c man end
ec410fc9
FB
219@end example
220
0806e3f6 221@c man begin OPTIONS
9d4520d0 222@var{disk_image} is a raw hard disk image for IDE hard disk 0.
ec410fc9
FB
223
224General options:
225@table @option
89dfe898
TS
226@item -M @var{machine}
227Select the emulated @var{machine} (@code{-M ?} for list)
3dbbdc25 228
89dfe898
TS
229@item -fda @var{file}
230@item -fdb @var{file}
debc7065 231Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
19cb3738 232use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
2be3bc02 233
89dfe898
TS
234@item -hda @var{file}
235@item -hdb @var{file}
236@item -hdc @var{file}
237@item -hdd @var{file}
debc7065 238Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
1f47a922 239
89dfe898
TS
240@item -cdrom @var{file}
241Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
be3edd95 242@option{-cdrom} at the same time). You can use the host CD-ROM by
19cb3738 243using @file{/dev/cdrom} as filename (@pxref{host_drives}).
181f1558 244
e0e7ada1
AZ
245@item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
246
247Define a new drive. Valid options are:
248
249@table @code
250@item file=@var{file}
251This option defines which disk image (@pxref{disk_images}) to use with
609497ab
AZ
252this drive. If the filename contains comma, you must double it
253(for instance, "file=my,,file" to use file "my,file").
e0e7ada1
AZ
254@item if=@var{interface}
255This option defines on which type on interface the drive is connected.
256Available types are: ide, scsi, sd, mtd, floppy, pflash.
257@item bus=@var{bus},unit=@var{unit}
258These options define where is connected the drive by defining the bus number and
259the unit id.
260@item index=@var{index}
261This option defines where is connected the drive by using an index in the list
262of available connectors of a given interface type.
263@item media=@var{media}
264This option defines the type of the media: disk or cdrom.
265@item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
266These options have the same definition as they have in @option{-hdachs}.
267@item snapshot=@var{snapshot}
268@var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
33f00271 269@item cache=@var{cache}
9f7965c7 270@var{cache} is "none", "writeback", or "writethrough" and controls how the host cache is used to access block data.
1e72d3b7
AJ
271@item format=@var{format}
272Specify which disk @var{format} will be used rather than detecting
273the format. Can be used to specifiy format=raw to avoid interpreting
274an untrusted format header.
e0e7ada1
AZ
275@end table
276
9f7965c7
AL
277By default, writethrough caching is used for all block device. This means that
278the host page cache will be used to read and write data but write notification
279will be sent to the guest only when the data has been reported as written by
280the storage subsystem.
281
282Writeback caching will report data writes as completed as soon as the data is
283present in the host page cache. This is safe as long as you trust your host.
284If your host crashes or loses power, then the guest may experience data
285corruption. When using the @option{-snapshot} option, writeback caching is
286used by default.
287
288The host page can be avoided entirely with @option{cache=none}. This will
289attempt to do disk IO directly to the guests memory. QEMU may still perform
290an internal copy of the data.
291
e0e7ada1
AZ
292Instead of @option{-cdrom} you can use:
293@example
294qemu -drive file=file,index=2,media=cdrom
295@end example
296
297Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
298use:
299@example
300qemu -drive file=file,index=0,media=disk
301qemu -drive file=file,index=1,media=disk
302qemu -drive file=file,index=2,media=disk
303qemu -drive file=file,index=3,media=disk
304@end example
305
306You can connect a CDROM to the slave of ide0:
307@example
308qemu -drive file=file,if=ide,index=1,media=cdrom
309@end example
310
311If you don't specify the "file=" argument, you define an empty drive:
312@example
313qemu -drive if=ide,index=1,media=cdrom
314@end example
315
316You can connect a SCSI disk with unit ID 6 on the bus #0:
317@example
318qemu -drive file=file,if=scsi,bus=0,unit=6
319@end example
320
321Instead of @option{-fda}, @option{-fdb}, you can use:
322@example
323qemu -drive file=file,index=0,if=floppy
324qemu -drive file=file,index=1,if=floppy
325@end example
326
327By default, @var{interface} is "ide" and @var{index} is automatically
328incremented:
329@example
330qemu -drive file=a -drive file=b"
331@end example
332is interpreted like:
333@example
334qemu -hda a -hdb b
335@end example
336
eec85c2a
TS
337@item -boot [a|c|d|n]
338Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
339is the default.
1f47a922 340
181f1558 341@item -snapshot
1f47a922
FB
342Write to temporary files instead of disk image files. In this case,
343the raw disk image you use is not written back. You can however force
42550fde 344the write back by pressing @key{C-a s} (@pxref{disk_images}).
ec410fc9 345
52ca8d6a
FB
346@item -no-fd-bootchk
347Disable boot signature checking for floppy disks in Bochs BIOS. It may
348be needed to boot from old floppy disks.
349
89dfe898 350@item -m @var{megs}
00f82b8a
AJ
351Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB. Optionally,
352a suffix of ``M'' or ``G'' can be used to signify a value in megabytes or
353gigabytes respectively.
ec410fc9 354
34a3d239
BS
355@item -cpu @var{model}
356Select CPU model (-cpu ? for list and additional feature selection)
357
89dfe898 358@item -smp @var{n}
3f9f3aa1 359Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
a785e42e
BS
360CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
361to 4.
3f9f3aa1 362
1d14ffa9
FB
363@item -audio-help
364
365Will show the audio subsystem help: list of drivers, tunable
366parameters.
367
89dfe898 368@item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
1d14ffa9
FB
369
370Enable audio and selected sound hardware. Use ? to print all
371available sound hardware.
372
373@example
374qemu -soundhw sb16,adlib hda
375qemu -soundhw es1370 hda
e5c9a13e 376qemu -soundhw ac97 hda
6a36d84e 377qemu -soundhw all hda
1d14ffa9
FB
378qemu -soundhw ?
379@end example
a8c490cd 380
e5c9a13e
AZ
381Note that Linux's i810_audio OSS kernel (for AC97) module might
382require manually specifying clocking.
383
384@example
385modprobe i810_audio clocking=48000
386@end example
387
15a34c63
FB
388@item -localtime
389Set the real time clock to local time (the default is to UTC
390time). This option is needed to have correct date in MS-DOS or
391Windows.
392
89dfe898 393@item -startdate @var{date}
7e0af5d0
FB
394Set the initial date of the real time clock. Valid format for
395@var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
396@code{2006-06-17}. The default value is @code{now}.
397
89dfe898 398@item -pidfile @var{file}
f7cce898
FB
399Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
400from a script.
401
71e3ceb8
TS
402@item -daemonize
403Daemonize the QEMU process after initialization. QEMU will not detach from
404standard IO until it is ready to receive connections on any of its devices.
405This option is a useful way for external programs to launch QEMU without having
406to cope with initialization race conditions.
407
9d0a8e6f
FB
408@item -win2k-hack
409Use it when installing Windows 2000 to avoid a disk full bug. After
410Windows 2000 is installed, you no longer need this option (this option
411slows down the IDE transfers).
412
89dfe898
TS
413@item -option-rom @var{file}
414Load the contents of @var{file} as an option ROM.
415This option is useful to load things like EtherBoot.
9ae02555 416
89dfe898
TS
417@item -name @var{name}
418Sets the @var{name} of the guest.
419This name will be display in the SDL window caption.
420The @var{name} will also be used for the VNC server.
c35734b2 421
0806e3f6
FB
422@end table
423
f858dcae
TS
424Display options:
425@table @option
426
427@item -nographic
428
429Normally, QEMU uses SDL to display the VGA output. With this option,
430you can totally disable graphical output so that QEMU is a simple
431command line application. The emulated serial port is redirected on
432the console. Therefore, you can still use QEMU to debug a Linux kernel
433with a serial console.
434
052caf70
AJ
435@item -curses
436
437Normally, QEMU uses SDL to display the VGA output. With this option,
438QEMU can display the VGA output when in text mode using a
439curses/ncurses interface. Nothing is displayed in graphical mode.
440
f858dcae
TS
441@item -no-frame
442
443Do not use decorations for SDL windows and start them using the whole
444available screen space. This makes the using QEMU in a dedicated desktop
445workspace more convenient.
446
99aa9e4c
AJ
447@item -no-quit
448
449Disable SDL window close capability.
450
f858dcae
TS
451@item -full-screen
452Start in full screen.
453
89dfe898 454@item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
f858dcae
TS
455
456Normally, QEMU uses SDL to display the VGA output. With this option,
457you can have QEMU listen on VNC display @var{display} and redirect the VGA
458display over the VNC session. It is very useful to enable the usb
459tablet device when using this option (option @option{-usbdevice
460tablet}). When using the VNC display, you must use the @option{-k}
461parameter to set the keyboard layout if you are not using en-us. Valid
462syntax for the @var{display} is
463
464@table @code
465
3aa3eea3 466@item @var{host}:@var{d}
f858dcae 467
3aa3eea3
AZ
468TCP connections will only be allowed from @var{host} on display @var{d}.
469By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
470be omitted in which case the server will accept connections from any host.
f858dcae 471
3aa3eea3 472@item @code{unix}:@var{path}
f858dcae
TS
473
474Connections will be allowed over UNIX domain sockets where @var{path} is the
475location of a unix socket to listen for connections on.
476
89dfe898 477@item none
f858dcae 478
3aa3eea3
AZ
479VNC is initialized but not started. The monitor @code{change} command
480can be used to later start the VNC server.
f858dcae
TS
481
482@end table
483
484Following the @var{display} value there may be one or more @var{option} flags
485separated by commas. Valid options are
486
487@table @code
488
3aa3eea3
AZ
489@item reverse
490
491Connect to a listening VNC client via a ``reverse'' connection. The
492client is specified by the @var{display}. For reverse network
493connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
494is a TCP port number, not a display number.
495
89dfe898 496@item password
f858dcae
TS
497
498Require that password based authentication is used for client connections.
499The password must be set separately using the @code{change} command in the
500@ref{pcsys_monitor}
501
89dfe898 502@item tls
f858dcae
TS
503
504Require that client use TLS when communicating with the VNC server. This
505uses anonymous TLS credentials so is susceptible to a man-in-the-middle
506attack. It is recommended that this option be combined with either the
507@var{x509} or @var{x509verify} options.
508
89dfe898 509@item x509=@var{/path/to/certificate/dir}
f858dcae 510
89dfe898 511Valid if @option{tls} is specified. Require that x509 credentials are used
f858dcae
TS
512for negotiating the TLS session. The server will send its x509 certificate
513to the client. It is recommended that a password be set on the VNC server
514to provide authentication of the client when this is used. The path following
515this option specifies where the x509 certificates are to be loaded from.
516See the @ref{vnc_security} section for details on generating certificates.
517
89dfe898 518@item x509verify=@var{/path/to/certificate/dir}
f858dcae 519
89dfe898 520Valid if @option{tls} is specified. Require that x509 credentials are used
f858dcae
TS
521for negotiating the TLS session. The server will send its x509 certificate
522to the client, and request that the client send its own x509 certificate.
523The server will validate the client's certificate against the CA certificate,
524and reject clients when validation fails. If the certificate authority is
525trusted, this is a sufficient authentication mechanism. You may still wish
526to set a password on the VNC server as a second authentication layer. The
527path following this option specifies where the x509 certificates are to
528be loaded from. See the @ref{vnc_security} section for details on generating
529certificates.
530
531@end table
532
89dfe898 533@item -k @var{language}
f858dcae
TS
534
535Use keyboard layout @var{language} (for example @code{fr} for
536French). This option is only needed where it is not easy to get raw PC
537keycodes (e.g. on Macs, with some X11 servers or with a VNC
538display). You don't normally need to use it on PC/Linux or PC/Windows
539hosts.
540
541The available layouts are:
542@example
543ar de-ch es fo fr-ca hu ja mk no pt-br sv
544da en-gb et fr fr-ch is lt nl pl ru th
545de en-us fi fr-be hr it lv nl-be pt sl tr
546@end example
547
548The default is @code{en-us}.
549
550@end table
551
b389dbfb
FB
552USB options:
553@table @option
554
555@item -usb
556Enable the USB driver (will be the default soon)
557
89dfe898 558@item -usbdevice @var{devname}
0aff66b5 559Add the USB device @var{devname}. @xref{usb_devices}.
8fccda83
TS
560
561@table @code
562
563@item mouse
564Virtual Mouse. This will override the PS/2 mouse emulation when activated.
565
566@item tablet
567Pointer device that uses absolute coordinates (like a touchscreen). This
568means qemu is able to report the mouse position without having to grab the
569mouse. Also overrides the PS/2 mouse emulation when activated.
570
334c0241
AJ
571@item disk:[format=@var{format}]:file
572Mass storage device based on file. The optional @var{format} argument
573will be used rather than detecting the format. Can be used to specifiy
574format=raw to avoid interpreting an untrusted format header.
8fccda83
TS
575
576@item host:bus.addr
577Pass through the host device identified by bus.addr (Linux only).
578
579@item host:vendor_id:product_id
580Pass through the host device identified by vendor_id:product_id (Linux only).
581
db380c06
AZ
582@item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
583Serial converter to host character device @var{dev}, see @code{-serial} for the
584available devices.
585
2e4d9fb1
AJ
586@item braille
587Braille device. This will use BrlAPI to display the braille output on a real
588or fake device.
589
9ad97e65 590@item net:options
6c9f886c
AZ
591Network adapter that supports CDC ethernet and RNDIS protocols.
592
8fccda83
TS
593@end table
594
b389dbfb
FB
595@end table
596
1f673135
FB
597Network options:
598
599@table @option
600
89dfe898 601@item -net nic[,vlan=@var{n}][,macaddr=@var{addr}][,model=@var{type}]
41d03949 602Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
c4a7060c 603= 0 is the default). The NIC is an ne2k_pci by default on the PC
41d03949
FB
604target. Optionally, the MAC address can be changed. If no
605@option{-net} option is specified, a single NIC is created.
549444e1
AZ
606Qemu can emulate several different models of network card.
607Valid values for @var{type} are
608@code{i82551}, @code{i82557b}, @code{i82559er},
609@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
9ad97e65 610@code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
c4a7060c
BS
611Not all devices are supported on all targets. Use -net nic,model=?
612for a list of available devices for your target.
41d03949 613
89dfe898 614@item -net user[,vlan=@var{n}][,hostname=@var{name}]
7e89463d 615Use the user mode network stack which requires no administrator
4be456f1 616privilege to run. @option{hostname=name} can be used to specify the client
115defd1 617hostname reported by the builtin DHCP server.
41d03949 618
89dfe898 619@item -net tap[,vlan=@var{n}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}]
41d03949
FB
620Connect the host TAP network interface @var{name} to VLAN @var{n} and
621use the network script @var{file} to configure it. The default
6a1cbf68
TS
622network script is @file{/etc/qemu-ifup}. Use @option{script=no} to
623disable script execution. If @var{name} is not
89dfe898 624provided, the OS automatically provides one. @option{fd}=@var{h} can be
41d03949 625used to specify the handle of an already opened host TAP interface. Example:
1f673135 626
41d03949
FB
627@example
628qemu linux.img -net nic -net tap
629@end example
630
631More complicated example (two NICs, each one connected to a TAP device)
632@example
633qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
634 -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
635@end example
3f1a88f4 636
3f1a88f4 637
89dfe898 638@item -net socket[,vlan=@var{n}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
1f673135 639
41d03949
FB
640Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
641machine using a TCP socket connection. If @option{listen} is
642specified, QEMU waits for incoming connections on @var{port}
643(@var{host} is optional). @option{connect} is used to connect to
89dfe898 644another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
3d830459 645specifies an already opened TCP socket.
1f673135 646
41d03949
FB
647Example:
648@example
649# launch a first QEMU instance
debc7065
FB
650qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
651 -net socket,listen=:1234
652# connect the VLAN 0 of this instance to the VLAN 0
653# of the first instance
654qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
655 -net socket,connect=127.0.0.1:1234
41d03949 656@end example
52c00a5f 657
89dfe898 658@item -net socket[,vlan=@var{n}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
3d830459
FB
659
660Create a VLAN @var{n} shared with another QEMU virtual
5fafdf24 661machines using a UDP multicast socket, effectively making a bus for
3d830459
FB
662every QEMU with same multicast address @var{maddr} and @var{port}.
663NOTES:
664@enumerate
5fafdf24
TS
665@item
666Several QEMU can be running on different hosts and share same bus (assuming
3d830459
FB
667correct multicast setup for these hosts).
668@item
669mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
670@url{http://user-mode-linux.sf.net}.
4be456f1
TS
671@item
672Use @option{fd=h} to specify an already opened UDP multicast socket.
3d830459
FB
673@end enumerate
674
675Example:
676@example
677# launch one QEMU instance
debc7065
FB
678qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
679 -net socket,mcast=230.0.0.1:1234
3d830459 680# launch another QEMU instance on same "bus"
debc7065
FB
681qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
682 -net socket,mcast=230.0.0.1:1234
3d830459 683# launch yet another QEMU instance on same "bus"
debc7065
FB
684qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
685 -net socket,mcast=230.0.0.1:1234
3d830459
FB
686@end example
687
688Example (User Mode Linux compat.):
689@example
debc7065
FB
690# launch QEMU instance (note mcast address selected
691# is UML's default)
692qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
693 -net socket,mcast=239.192.168.1:1102
3d830459
FB
694# launch UML
695/path/to/linux ubd0=/path/to/root_fs eth0=mcast
696@end example
8a16d273
TS
697
698@item -net vde[,vlan=@var{n}][,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
699Connect VLAN @var{n} to PORT @var{n} of a vde switch running on host and
700listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
701and MODE @var{octalmode} to change default ownership and permissions for
702communication port. This option is available only if QEMU has been compiled
703with vde support enabled.
704
705Example:
706@example
707# launch vde switch
708vde_switch -F -sock /tmp/myswitch
709# launch QEMU instance
710qemu linux.img -net nic -net vde,sock=/tmp/myswitch
711@end example
3d830459 712
41d03949
FB
713@item -net none
714Indicate that no network devices should be configured. It is used to
039af320
FB
715override the default configuration (@option{-net nic -net user}) which
716is activated if no @option{-net} options are provided.
52c00a5f 717
89dfe898 718@item -tftp @var{dir}
9bf05444 719When using the user mode network stack, activate a built-in TFTP
0db1137d
TS
720server. The files in @var{dir} will be exposed as the root of a TFTP server.
721The TFTP client on the guest must be configured in binary mode (use the command
722@code{bin} of the Unix TFTP client). The host IP address on the guest is as
723usual 10.0.2.2.
9bf05444 724
89dfe898 725@item -bootp @var{file}
47d5d01a
TS
726When using the user mode network stack, broadcast @var{file} as the BOOTP
727filename. In conjunction with @option{-tftp}, this can be used to network boot
728a guest from a local directory.
729
730Example (using pxelinux):
731@example
732qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
733@end example
734
89dfe898 735@item -smb @var{dir}
2518bd0d 736When using the user mode network stack, activate a built-in SMB
89dfe898 737server so that Windows OSes can access to the host files in @file{@var{dir}}
2518bd0d
FB
738transparently.
739
740In the guest Windows OS, the line:
741@example
74210.0.2.4 smbserver
743@end example
744must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
745or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
746
89dfe898 747Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
2518bd0d
FB
748
749Note that a SAMBA server must be installed on the host OS in
366dfc52 750@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
6cc721cf 7512.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
2518bd0d 752
89dfe898 753@item -redir [tcp|udp]:@var{host-port}:[@var{guest-host}]:@var{guest-port}
9bf05444
FB
754
755When using the user mode network stack, redirect incoming TCP or UDP
756connections to the host port @var{host-port} to the guest
757@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
758is not specified, its value is 10.0.2.15 (default address given by the
759built-in DHCP server).
760
761For example, to redirect host X11 connection from screen 1 to guest
762screen 0, use the following:
763
764@example
765# on the host
766qemu -redir tcp:6001::6000 [...]
767# this host xterm should open in the guest X11 server
768xterm -display :1
769@end example
770
771To redirect telnet connections from host port 5555 to telnet port on
772the guest, use the following:
773
774@example
775# on the host
776qemu -redir tcp:5555::23 [...]
777telnet localhost 5555
778@end example
779
780Then when you use on the host @code{telnet localhost 5555}, you
781connect to the guest telnet server.
782
1f673135
FB
783@end table
784
41d03949 785Linux boot specific: When using these options, you can use a given
1f673135
FB
786Linux kernel without installing it in the disk image. It can be useful
787for easier testing of various kernels.
788
0806e3f6
FB
789@table @option
790
89dfe898 791@item -kernel @var{bzImage}
0806e3f6
FB
792Use @var{bzImage} as kernel image.
793
89dfe898 794@item -append @var{cmdline}
0806e3f6
FB
795Use @var{cmdline} as kernel command line
796
89dfe898 797@item -initrd @var{file}
0806e3f6
FB
798Use @var{file} as initial ram disk.
799
ec410fc9
FB
800@end table
801
15a34c63 802Debug/Expert options:
ec410fc9 803@table @option
a0a821a4 804
89dfe898 805@item -serial @var{dev}
0bab00f3
FB
806Redirect the virtual serial port to host character device
807@var{dev}. The default device is @code{vc} in graphical mode and
808@code{stdio} in non graphical mode.
809
810This option can be used several times to simulate up to 4 serials
811ports.
812
c03b0f0f
FB
813Use @code{-serial none} to disable all serial ports.
814
0bab00f3 815Available character devices are:
a0a821a4 816@table @code
af3a9031
TS
817@item vc[:WxH]
818Virtual console. Optionally, a width and height can be given in pixel with
819@example
820vc:800x600
821@end example
822It is also possible to specify width or height in characters:
823@example
824vc:80Cx24C
825@end example
a0a821a4
FB
826@item pty
827[Linux only] Pseudo TTY (a new PTY is automatically allocated)
c03b0f0f
FB
828@item none
829No device is allocated.
a0a821a4
FB
830@item null
831void device
f8d179e3 832@item /dev/XXX
e57a8c0e 833[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
f8d179e3 834parameters are set according to the emulated ones.
89dfe898 835@item /dev/parport@var{N}
e57a8c0e 836[Linux only, parallel port only] Use host parallel port
5867c88a 837@var{N}. Currently SPP and EPP parallel port features can be used.
89dfe898
TS
838@item file:@var{filename}
839Write output to @var{filename}. No character can be read.
a0a821a4
FB
840@item stdio
841[Unix only] standard input/output
89dfe898 842@item pipe:@var{filename}
0bab00f3 843name pipe @var{filename}
89dfe898 844@item COM@var{n}
0bab00f3 845[Windows only] Use host serial port @var{n}
89dfe898
TS
846@item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
847This implements UDP Net Console.
848When @var{remote_host} or @var{src_ip} are not specified
849they default to @code{0.0.0.0}.
850When not using a specified @var{src_port} a random port is automatically chosen.
951f1351
FB
851
852If you just want a simple readonly console you can use @code{netcat} or
853@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
854@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
855will appear in the netconsole session.
0bab00f3
FB
856
857If you plan to send characters back via netconsole or you want to stop
858and start qemu a lot of times, you should have qemu use the same
859source port each time by using something like @code{-serial
951f1351 860udp::4555@@:4556} to qemu. Another approach is to use a patched
0bab00f3
FB
861version of netcat which can listen to a TCP port and send and receive
862characters via udp. If you have a patched version of netcat which
863activates telnet remote echo and single char transfer, then you can
864use the following options to step up a netcat redirector to allow
865telnet on port 5555 to access the qemu port.
866@table @code
951f1351
FB
867@item Qemu Options:
868-serial udp::4555@@:4556
869@item netcat options:
870-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
871@item telnet options:
872localhost 5555
873@end table
874
875
89dfe898 876@item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
951f1351
FB
877The TCP Net Console has two modes of operation. It can send the serial
878I/O to a location or wait for a connection from a location. By default
879the TCP Net Console is sent to @var{host} at the @var{port}. If you use
f542086d
FB
880the @var{server} option QEMU will wait for a client socket application
881to connect to the port before continuing, unless the @code{nowait}
f7499989 882option was specified. The @code{nodelay} option disables the Nagle buffering
4be456f1 883algorithm. If @var{host} is omitted, 0.0.0.0 is assumed. Only
951f1351
FB
884one TCP connection at a time is accepted. You can use @code{telnet} to
885connect to the corresponding character device.
886@table @code
887@item Example to send tcp console to 192.168.0.2 port 4444
888-serial tcp:192.168.0.2:4444
889@item Example to listen and wait on port 4444 for connection
890-serial tcp::4444,server
891@item Example to not wait and listen on ip 192.168.0.100 port 4444
892-serial tcp:192.168.0.100:4444,server,nowait
a0a821a4 893@end table
a0a821a4 894
89dfe898 895@item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
951f1351
FB
896The telnet protocol is used instead of raw tcp sockets. The options
897work the same as if you had specified @code{-serial tcp}. The
898difference is that the port acts like a telnet server or client using
899telnet option negotiation. This will also allow you to send the
900MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
901sequence. Typically in unix telnet you do it with Control-] and then
902type "send break" followed by pressing the enter key.
0bab00f3 903
89dfe898 904@item unix:@var{path}[,server][,nowait]
ffd843bc
TS
905A unix domain socket is used instead of a tcp socket. The option works the
906same as if you had specified @code{-serial tcp} except the unix domain socket
907@var{path} is used for connections.
908
89dfe898 909@item mon:@var{dev_string}
20d8a3ed
TS
910This is a special option to allow the monitor to be multiplexed onto
911another serial port. The monitor is accessed with key sequence of
912@key{Control-a} and then pressing @key{c}. See monitor access
913@ref{pcsys_keys} in the -nographic section for more keys.
914@var{dev_string} should be any one of the serial devices specified
915above. An example to multiplex the monitor onto a telnet server
916listening on port 4444 would be:
917@table @code
918@item -serial mon:telnet::4444,server,nowait
919@end table
920
2e4d9fb1
AJ
921@item braille
922Braille device. This will use BrlAPI to display the braille output on a real
923or fake device.
924
0bab00f3 925@end table
05d5818c 926
89dfe898 927@item -parallel @var{dev}
e57a8c0e
FB
928Redirect the virtual parallel port to host device @var{dev} (same
929devices as the serial port). On Linux hosts, @file{/dev/parportN} can
930be used to use hardware devices connected on the corresponding host
931parallel port.
932
933This option can be used several times to simulate up to 3 parallel
934ports.
935
c03b0f0f
FB
936Use @code{-parallel none} to disable all parallel ports.
937
89dfe898 938@item -monitor @var{dev}
a0a821a4
FB
939Redirect the monitor to host device @var{dev} (same devices as the
940serial port).
941The default device is @code{vc} in graphical mode and @code{stdio} in
942non graphical mode.
943
20d8a3ed
TS
944@item -echr numeric_ascii_value
945Change the escape character used for switching to the monitor when using
946monitor and serial sharing. The default is @code{0x01} when using the
947@code{-nographic} option. @code{0x01} is equal to pressing
948@code{Control-a}. You can select a different character from the ascii
949control keys where 1 through 26 map to Control-a through Control-z. For
950instance you could use the either of the following to change the escape
951character to Control-t.
952@table @code
953@item -echr 0x14
954@item -echr 20
955@end table
956
ec410fc9 957@item -s
5fafdf24 958Wait gdb connection to port 1234 (@pxref{gdb_usage}).
89dfe898 959@item -p @var{port}
4046d913
PB
960Change gdb connection port. @var{port} can be either a decimal number
961to specify a TCP port, or a host device (same devices as the serial port).
52c00a5f
FB
962@item -S
963Do not start CPU at startup (you must type 'c' in the monitor).
3b46e624 964@item -d
9d4520d0 965Output log in /tmp/qemu.log
89dfe898 966@item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
46d4767d
FB
967Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
968@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
969translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
4be456f1 970all those parameters. This option is useful for old MS-DOS disk
46d4767d 971images.
7c3fc84d 972
87b47350
FB
973@item -L path
974Set the directory for the BIOS, VGA BIOS and keymaps.
975
3893c124 976@item -vga @var{type}
977Select type of VGA card to emulate. Valid values for @var{type} are
978@table @code
979@item cirrus
980Cirrus Logic GD5446 Video card. All Windows versions starting from
981Windows 95 should recognize and use this graphic card. For optimal
982performances, use 16 bit color depth in the guest and the host OS.
983(This one is the default)
984@item std
985Standard VGA card with Bochs VBE extensions. If your guest OS
986supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
987to use high resolution modes (>= 1280x1024x16) then you should use
988this option.
989@item vmware
990VMWare SVGA-II compatible adapter. Use it if you have sufficiently
991recent XFree86/XOrg server or Windows guest with a driver for this
992card.
993@end table
3cb0853a 994
3c656346
FB
995@item -no-acpi
996Disable ACPI (Advanced Configuration and Power Interface) support. Use
997it if your guest OS complains about ACPI problems (PC target machine
998only).
999
d1beab82
FB
1000@item -no-reboot
1001Exit instead of rebooting.
1002
99aa9e4c
AJ
1003@item -no-shutdown
1004Don't exit QEMU on guest shutdown, but instead only stop the emulation.
1005This allows for instance switching to monitor to commit changes to the
1006disk image.
1007
d63d307f
FB
1008@item -loadvm file
1009Start right away with a saved state (@code{loadvm} in monitor)
8e71621f
PB
1010
1011@item -semihosting
a87295e8
PB
1012Enable semihosting syscall emulation (ARM and M68K target machines only).
1013
1014On ARM this implements the "Angel" interface.
1015On M68K this implements the "ColdFire GDB" interface used by libgloss.
1016
8e71621f
PB
1017Note that this allows guest direct access to the host filesystem,
1018so should only be used with trusted guest OS.
2e70f6ef
PB
1019
1020@item -icount [N|auto]
1021Enable virtual instruction counter. The virtual cpu will execute one
1022instruction every 2^N ns of virtual time. If @code{auto} is specified
1023then the virtual cpu speed will be automatically adjusted to keep virtual
1024time within a few seconds of real time.
1025
1026Note that while this option can give deterministic behavior, it does not
1027provide cycle accurate emulation. Modern CPUs contain superscalar out of
dd5d6fe9 1028order cores with complex cache hierarchies. The number of instructions
2e70f6ef 1029executed often has little or no correlation with actual performance.
ec410fc9
FB
1030@end table
1031
3e11db9a
FB
1032@c man end
1033
debc7065 1034@node pcsys_keys
3e11db9a
FB
1035@section Keys
1036
1037@c man begin OPTIONS
1038
a1b74fe8
FB
1039During the graphical emulation, you can use the following keys:
1040@table @key
f9859310 1041@item Ctrl-Alt-f
a1b74fe8 1042Toggle full screen
a0a821a4 1043
f9859310 1044@item Ctrl-Alt-n
a0a821a4
FB
1045Switch to virtual console 'n'. Standard console mappings are:
1046@table @emph
1047@item 1
1048Target system display
1049@item 2
1050Monitor
1051@item 3
1052Serial port
a1b74fe8
FB
1053@end table
1054
f9859310 1055@item Ctrl-Alt
a0a821a4
FB
1056Toggle mouse and keyboard grab.
1057@end table
1058
3e11db9a
FB
1059In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
1060@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
1061
a0a821a4
FB
1062During emulation, if you are using the @option{-nographic} option, use
1063@key{Ctrl-a h} to get terminal commands:
ec410fc9
FB
1064
1065@table @key
a1b74fe8 1066@item Ctrl-a h
ec410fc9 1067Print this help
3b46e624 1068@item Ctrl-a x
366dfc52 1069Exit emulator
3b46e624 1070@item Ctrl-a s
1f47a922 1071Save disk data back to file (if -snapshot)
20d8a3ed
TS
1072@item Ctrl-a t
1073toggle console timestamps
a1b74fe8 1074@item Ctrl-a b
1f673135 1075Send break (magic sysrq in Linux)
a1b74fe8 1076@item Ctrl-a c
1f673135 1077Switch between console and monitor
a1b74fe8
FB
1078@item Ctrl-a Ctrl-a
1079Send Ctrl-a
ec410fc9 1080@end table
0806e3f6
FB
1081@c man end
1082
1083@ignore
1084
1f673135
FB
1085@c man begin SEEALSO
1086The HTML documentation of QEMU for more precise information and Linux
1087user mode emulator invocation.
1088@c man end
1089
1090@c man begin AUTHOR
1091Fabrice Bellard
1092@c man end
1093
1094@end ignore
1095
debc7065 1096@node pcsys_monitor
1f673135
FB
1097@section QEMU Monitor
1098
1099The QEMU monitor is used to give complex commands to the QEMU
1100emulator. You can use it to:
1101
1102@itemize @minus
1103
1104@item
e598752a 1105Remove or insert removable media images
89dfe898 1106(such as CD-ROM or floppies).
1f673135 1107
5fafdf24 1108@item
1f673135
FB
1109Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
1110from a disk file.
1111
1112@item Inspect the VM state without an external debugger.
1113
1114@end itemize
1115
1116@subsection Commands
1117
1118The following commands are available:
1119
1120@table @option
1121
89dfe898 1122@item help or ? [@var{cmd}]
1f673135
FB
1123Show the help for all commands or just for command @var{cmd}.
1124
3b46e624 1125@item commit
89dfe898 1126Commit changes to the disk images (if -snapshot is used).
1f673135 1127
89dfe898
TS
1128@item info @var{subcommand}
1129Show various information about the system state.
1f673135
FB
1130
1131@table @option
1132@item info network
41d03949 1133show the various VLANs and the associated devices
1f673135
FB
1134@item info block
1135show the block devices
1136@item info registers
1137show the cpu registers
1138@item info history
1139show the command line history
b389dbfb
FB
1140@item info pci
1141show emulated PCI device
1142@item info usb
1143show USB devices plugged on the virtual USB hub
1144@item info usbhost
1145show all USB host devices
a3c25997
FB
1146@item info capture
1147show information about active capturing
13a2e80f
FB
1148@item info snapshots
1149show list of VM snapshots
455204eb
TS
1150@item info mice
1151show which guest mouse is receiving events
1f673135
FB
1152@end table
1153
1154@item q or quit
1155Quit the emulator.
1156
89dfe898 1157@item eject [-f] @var{device}
e598752a 1158Eject a removable medium (use -f to force it).
1f673135 1159
89dfe898 1160@item change @var{device} @var{setting}
f858dcae 1161
89dfe898 1162Change the configuration of a device.
f858dcae
TS
1163
1164@table @option
1165@item change @var{diskdevice} @var{filename}
1166Change the medium for a removable disk device to point to @var{filename}. eg
1167
1168@example
4bf27c24 1169(qemu) change ide1-cd0 /path/to/some.iso
f858dcae
TS
1170@end example
1171
89dfe898 1172@item change vnc @var{display},@var{options}
f858dcae
TS
1173Change the configuration of the VNC server. The valid syntax for @var{display}
1174and @var{options} are described at @ref{sec_invocation}. eg
1175
1176@example
1177(qemu) change vnc localhost:1
1178@end example
1179
1180@item change vnc password
1181
1182Change the password associated with the VNC server. The monitor will prompt for
1183the new password to be entered. VNC passwords are only significant upto 8 letters.
1184eg.
1185
1186@example
1187(qemu) change vnc password
1188Password: ********
1189@end example
1190
1191@end table
1f673135 1192
89dfe898 1193@item screendump @var{filename}
1f673135
FB
1194Save screen into PPM image @var{filename}.
1195
89dfe898 1196@item mouse_move @var{dx} @var{dy} [@var{dz}]
455204eb
TS
1197Move the active mouse to the specified coordinates @var{dx} @var{dy}
1198with optional scroll axis @var{dz}.
1199
89dfe898 1200@item mouse_button @var{val}
455204eb
TS
1201Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
1202
89dfe898 1203@item mouse_set @var{index}
455204eb
TS
1204Set which mouse device receives events at given @var{index}, index
1205can be obtained with
1206@example
1207info mice
1208@end example
1209
89dfe898 1210@item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
a3c25997
FB
1211Capture audio into @var{filename}. Using sample rate @var{frequency}
1212bits per sample @var{bits} and number of channels @var{channels}.
1213
1214Defaults:
1215@itemize @minus
1216@item Sample rate = 44100 Hz - CD quality
1217@item Bits = 16
1218@item Number of channels = 2 - Stereo
1219@end itemize
1220
89dfe898 1221@item stopcapture @var{index}
a3c25997
FB
1222Stop capture with a given @var{index}, index can be obtained with
1223@example
1224info capture
1225@end example
1226
89dfe898 1227@item log @var{item1}[,...]
1f673135
FB
1228Activate logging of the specified items to @file{/tmp/qemu.log}.
1229
89dfe898 1230@item savevm [@var{tag}|@var{id}]
13a2e80f
FB
1231Create a snapshot of the whole virtual machine. If @var{tag} is
1232provided, it is used as human readable identifier. If there is already
1233a snapshot with the same tag or ID, it is replaced. More info at
1234@ref{vm_snapshots}.
1f673135 1235
89dfe898 1236@item loadvm @var{tag}|@var{id}
13a2e80f
FB
1237Set the whole virtual machine to the snapshot identified by the tag
1238@var{tag} or the unique snapshot ID @var{id}.
1239
89dfe898 1240@item delvm @var{tag}|@var{id}
13a2e80f 1241Delete the snapshot identified by @var{tag} or @var{id}.
1f673135
FB
1242
1243@item stop
1244Stop emulation.
1245
1246@item c or cont
1247Resume emulation.
1248
89dfe898
TS
1249@item gdbserver [@var{port}]
1250Start gdbserver session (default @var{port}=1234)
1f673135 1251
89dfe898 1252@item x/fmt @var{addr}
1f673135
FB
1253Virtual memory dump starting at @var{addr}.
1254
89dfe898 1255@item xp /@var{fmt} @var{addr}
1f673135
FB
1256Physical memory dump starting at @var{addr}.
1257
1258@var{fmt} is a format which tells the command how to format the
1259data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1260
1261@table @var
5fafdf24 1262@item count
1f673135
FB
1263is the number of items to be dumped.
1264
1265@item format
4be456f1 1266can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1f673135
FB
1267c (char) or i (asm instruction).
1268
1269@item size
52c00a5f
FB
1270can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1271@code{h} or @code{w} can be specified with the @code{i} format to
1272respectively select 16 or 32 bit code instruction size.
1f673135
FB
1273
1274@end table
1275
5fafdf24 1276Examples:
1f673135
FB
1277@itemize
1278@item
1279Dump 10 instructions at the current instruction pointer:
5fafdf24 1280@example
1f673135
FB
1281(qemu) x/10i $eip
12820x90107063: ret
12830x90107064: sti
12840x90107065: lea 0x0(%esi,1),%esi
12850x90107069: lea 0x0(%edi,1),%edi
12860x90107070: ret
12870x90107071: jmp 0x90107080
12880x90107073: nop
12890x90107074: nop
12900x90107075: nop
12910x90107076: nop
1292@end example
1293
1294@item
1295Dump 80 16 bit values at the start of the video memory.
5fafdf24 1296@smallexample
1f673135
FB
1297(qemu) xp/80hx 0xb8000
12980x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
12990x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
13000x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
13010x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
13020x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
13030x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
13040x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
13050x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
13060x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
13070x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
debc7065 1308@end smallexample
1f673135
FB
1309@end itemize
1310
89dfe898 1311@item p or print/@var{fmt} @var{expr}
1f673135
FB
1312
1313Print expression value. Only the @var{format} part of @var{fmt} is
1314used.
0806e3f6 1315
89dfe898 1316@item sendkey @var{keys}
a3a91a35 1317
54ae1fbd
AJ
1318Send @var{keys} to the emulator. @var{keys} could be the name of the
1319key or @code{#} followed by the raw value in either decimal or hexadecimal
1320format. Use @code{-} to press several keys simultaneously. Example:
a3a91a35
FB
1321@example
1322sendkey ctrl-alt-f1
1323@end example
1324
1325This command is useful to send keys that your graphical user interface
1326intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1327
15a34c63
FB
1328@item system_reset
1329
1330Reset the system.
1331
0ecdffbb
AJ
1332@item boot_set @var{bootdevicelist}
1333
1334Define new values for the boot device list. Those values will override
1335the values specified on the command line through the @code{-boot} option.
1336
1337The values that can be specified here depend on the machine type, but are
1338the same that can be specified in the @code{-boot} command line option.
1339
89dfe898 1340@item usb_add @var{devname}
b389dbfb 1341
0aff66b5
PB
1342Add the USB device @var{devname}. For details of available devices see
1343@ref{usb_devices}
b389dbfb 1344
89dfe898 1345@item usb_del @var{devname}
b389dbfb
FB
1346
1347Remove the USB device @var{devname} from the QEMU virtual USB
1348hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1349command @code{info usb} to see the devices you can remove.
1350
1f673135 1351@end table
0806e3f6 1352
1f673135
FB
1353@subsection Integer expressions
1354
1355The monitor understands integers expressions for every integer
1356argument. You can use register names to get the value of specifics
1357CPU registers by prefixing them with @emph{$}.
ec410fc9 1358
1f47a922
FB
1359@node disk_images
1360@section Disk Images
1361
acd935ef
FB
1362Since version 0.6.1, QEMU supports many disk image formats, including
1363growable disk images (their size increase as non empty sectors are
13a2e80f
FB
1364written), compressed and encrypted disk images. Version 0.8.3 added
1365the new qcow2 disk image format which is essential to support VM
1366snapshots.
1f47a922 1367
debc7065
FB
1368@menu
1369* disk_images_quickstart:: Quick start for disk image creation
1370* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 1371* vm_snapshots:: VM snapshots
debc7065 1372* qemu_img_invocation:: qemu-img Invocation
975b092b 1373* qemu_nbd_invocation:: qemu-nbd Invocation
19cb3738 1374* host_drives:: Using host drives
debc7065 1375* disk_images_fat_images:: Virtual FAT disk images
75818250 1376* disk_images_nbd:: NBD access
debc7065
FB
1377@end menu
1378
1379@node disk_images_quickstart
acd935ef
FB
1380@subsection Quick start for disk image creation
1381
1382You can create a disk image with the command:
1f47a922 1383@example
acd935ef 1384qemu-img create myimage.img mysize
1f47a922 1385@end example
acd935ef
FB
1386where @var{myimage.img} is the disk image filename and @var{mysize} is its
1387size in kilobytes. You can add an @code{M} suffix to give the size in
1388megabytes and a @code{G} suffix for gigabytes.
1389
debc7065 1390See @ref{qemu_img_invocation} for more information.
1f47a922 1391
debc7065 1392@node disk_images_snapshot_mode
1f47a922
FB
1393@subsection Snapshot mode
1394
1395If you use the option @option{-snapshot}, all disk images are
1396considered as read only. When sectors in written, they are written in
1397a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
1398write back to the raw disk images by using the @code{commit} monitor
1399command (or @key{C-a s} in the serial console).
1f47a922 1400
13a2e80f
FB
1401@node vm_snapshots
1402@subsection VM snapshots
1403
1404VM snapshots are snapshots of the complete virtual machine including
1405CPU state, RAM, device state and the content of all the writable
1406disks. In order to use VM snapshots, you must have at least one non
1407removable and writable block device using the @code{qcow2} disk image
1408format. Normally this device is the first virtual hard drive.
1409
1410Use the monitor command @code{savevm} to create a new VM snapshot or
1411replace an existing one. A human readable name can be assigned to each
19d36792 1412snapshot in addition to its numerical ID.
13a2e80f
FB
1413
1414Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1415a VM snapshot. @code{info snapshots} lists the available snapshots
1416with their associated information:
1417
1418@example
1419(qemu) info snapshots
1420Snapshot devices: hda
1421Snapshot list (from hda):
1422ID TAG VM SIZE DATE VM CLOCK
14231 start 41M 2006-08-06 12:38:02 00:00:14.954
14242 40M 2006-08-06 12:43:29 00:00:18.633
14253 msys 40M 2006-08-06 12:44:04 00:00:23.514
1426@end example
1427
1428A VM snapshot is made of a VM state info (its size is shown in
1429@code{info snapshots}) and a snapshot of every writable disk image.
1430The VM state info is stored in the first @code{qcow2} non removable
1431and writable block device. The disk image snapshots are stored in
1432every disk image. The size of a snapshot in a disk image is difficult
1433to evaluate and is not shown by @code{info snapshots} because the
1434associated disk sectors are shared among all the snapshots to save
19d36792
FB
1435disk space (otherwise each snapshot would need a full copy of all the
1436disk images).
13a2e80f
FB
1437
1438When using the (unrelated) @code{-snapshot} option
1439(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1440but they are deleted as soon as you exit QEMU.
1441
1442VM snapshots currently have the following known limitations:
1443@itemize
5fafdf24 1444@item
13a2e80f
FB
1445They cannot cope with removable devices if they are removed or
1446inserted after a snapshot is done.
5fafdf24 1447@item
13a2e80f
FB
1448A few device drivers still have incomplete snapshot support so their
1449state is not saved or restored properly (in particular USB).
1450@end itemize
1451
acd935ef
FB
1452@node qemu_img_invocation
1453@subsection @code{qemu-img} Invocation
1f47a922 1454
acd935ef 1455@include qemu-img.texi
05efe46e 1456
975b092b
TS
1457@node qemu_nbd_invocation
1458@subsection @code{qemu-nbd} Invocation
1459
1460@include qemu-nbd.texi
1461
19cb3738
FB
1462@node host_drives
1463@subsection Using host drives
1464
1465In addition to disk image files, QEMU can directly access host
1466devices. We describe here the usage for QEMU version >= 0.8.3.
1467
1468@subsubsection Linux
1469
1470On Linux, you can directly use the host device filename instead of a
4be456f1 1471disk image filename provided you have enough privileges to access
19cb3738
FB
1472it. For example, use @file{/dev/cdrom} to access to the CDROM or
1473@file{/dev/fd0} for the floppy.
1474
f542086d 1475@table @code
19cb3738
FB
1476@item CD
1477You can specify a CDROM device even if no CDROM is loaded. QEMU has
1478specific code to detect CDROM insertion or removal. CDROM ejection by
1479the guest OS is supported. Currently only data CDs are supported.
1480@item Floppy
1481You can specify a floppy device even if no floppy is loaded. Floppy
1482removal is currently not detected accurately (if you change floppy
1483without doing floppy access while the floppy is not loaded, the guest
1484OS will think that the same floppy is loaded).
1485@item Hard disks
1486Hard disks can be used. Normally you must specify the whole disk
1487(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1488see it as a partitioned disk. WARNING: unless you know what you do, it
1489is better to only make READ-ONLY accesses to the hard disk otherwise
1490you may corrupt your host data (use the @option{-snapshot} command
1491line option or modify the device permissions accordingly).
1492@end table
1493
1494@subsubsection Windows
1495
01781963
FB
1496@table @code
1497@item CD
4be456f1 1498The preferred syntax is the drive letter (e.g. @file{d:}). The
01781963
FB
1499alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1500supported as an alias to the first CDROM drive.
19cb3738 1501
e598752a 1502Currently there is no specific code to handle removable media, so it
19cb3738
FB
1503is better to use the @code{change} or @code{eject} monitor commands to
1504change or eject media.
01781963 1505@item Hard disks
89dfe898 1506Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
01781963
FB
1507where @var{N} is the drive number (0 is the first hard disk).
1508
1509WARNING: unless you know what you do, it is better to only make
1510READ-ONLY accesses to the hard disk otherwise you may corrupt your
1511host data (use the @option{-snapshot} command line so that the
1512modifications are written in a temporary file).
1513@end table
1514
19cb3738
FB
1515
1516@subsubsection Mac OS X
1517
5fafdf24 1518@file{/dev/cdrom} is an alias to the first CDROM.
19cb3738 1519
e598752a 1520Currently there is no specific code to handle removable media, so it
19cb3738
FB
1521is better to use the @code{change} or @code{eject} monitor commands to
1522change or eject media.
1523
debc7065 1524@node disk_images_fat_images
2c6cadd4
FB
1525@subsection Virtual FAT disk images
1526
1527QEMU can automatically create a virtual FAT disk image from a
1528directory tree. In order to use it, just type:
1529
5fafdf24 1530@example
2c6cadd4
FB
1531qemu linux.img -hdb fat:/my_directory
1532@end example
1533
1534Then you access access to all the files in the @file{/my_directory}
1535directory without having to copy them in a disk image or to export
1536them via SAMBA or NFS. The default access is @emph{read-only}.
1537
1538Floppies can be emulated with the @code{:floppy:} option:
1539
5fafdf24 1540@example
2c6cadd4
FB
1541qemu linux.img -fda fat:floppy:/my_directory
1542@end example
1543
1544A read/write support is available for testing (beta stage) with the
1545@code{:rw:} option:
1546
5fafdf24 1547@example
2c6cadd4
FB
1548qemu linux.img -fda fat:floppy:rw:/my_directory
1549@end example
1550
1551What you should @emph{never} do:
1552@itemize
1553@item use non-ASCII filenames ;
1554@item use "-snapshot" together with ":rw:" ;
85b2c688
FB
1555@item expect it to work when loadvm'ing ;
1556@item write to the FAT directory on the host system while accessing it with the guest system.
2c6cadd4
FB
1557@end itemize
1558
75818250
TS
1559@node disk_images_nbd
1560@subsection NBD access
1561
1562QEMU can access directly to block device exported using the Network Block Device
1563protocol.
1564
1565@example
1566qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
1567@end example
1568
1569If the NBD server is located on the same host, you can use an unix socket instead
1570of an inet socket:
1571
1572@example
1573qemu linux.img -hdb nbd:unix:/tmp/my_socket
1574@end example
1575
1576In this case, the block device must be exported using qemu-nbd:
1577
1578@example
1579qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
1580@end example
1581
1582The use of qemu-nbd allows to share a disk between several guests:
1583@example
1584qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
1585@end example
1586
1587and then you can use it with two guests:
1588@example
1589qemu linux1.img -hdb nbd:unix:/tmp/my_socket
1590qemu linux2.img -hdb nbd:unix:/tmp/my_socket
1591@end example
1592
debc7065 1593@node pcsys_network
9d4fb82e
FB
1594@section Network emulation
1595
4be456f1 1596QEMU can simulate several network cards (PCI or ISA cards on the PC
41d03949
FB
1597target) and can connect them to an arbitrary number of Virtual Local
1598Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1599VLAN. VLAN can be connected between separate instances of QEMU to
4be456f1 1600simulate large networks. For simpler usage, a non privileged user mode
41d03949
FB
1601network stack can replace the TAP device to have a basic network
1602connection.
1603
1604@subsection VLANs
9d4fb82e 1605
41d03949
FB
1606QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1607connection between several network devices. These devices can be for
1608example QEMU virtual Ethernet cards or virtual Host ethernet devices
1609(TAP devices).
9d4fb82e 1610
41d03949
FB
1611@subsection Using TAP network interfaces
1612
1613This is the standard way to connect QEMU to a real network. QEMU adds
1614a virtual network device on your host (called @code{tapN}), and you
1615can then configure it as if it was a real ethernet card.
9d4fb82e 1616
8f40c388
FB
1617@subsubsection Linux host
1618
9d4fb82e
FB
1619As an example, you can download the @file{linux-test-xxx.tar.gz}
1620archive and copy the script @file{qemu-ifup} in @file{/etc} and
1621configure properly @code{sudo} so that the command @code{ifconfig}
1622contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 1623that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
1624device @file{/dev/net/tun} must be present.
1625
ee0f4751
FB
1626See @ref{sec_invocation} to have examples of command lines using the
1627TAP network interfaces.
9d4fb82e 1628
8f40c388
FB
1629@subsubsection Windows host
1630
1631There is a virtual ethernet driver for Windows 2000/XP systems, called
1632TAP-Win32. But it is not included in standard QEMU for Windows,
1633so you will need to get it separately. It is part of OpenVPN package,
1634so download OpenVPN from : @url{http://openvpn.net/}.
1635
9d4fb82e
FB
1636@subsection Using the user mode network stack
1637
41d03949
FB
1638By using the option @option{-net user} (default configuration if no
1639@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 1640network stack (you don't need root privilege to use the virtual
41d03949 1641network). The virtual network configuration is the following:
9d4fb82e
FB
1642
1643@example
1644
41d03949
FB
1645 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
1646 | (10.0.2.2)
9d4fb82e 1647 |
2518bd0d 1648 ----> DNS server (10.0.2.3)
3b46e624 1649 |
2518bd0d 1650 ----> SMB server (10.0.2.4)
9d4fb82e
FB
1651@end example
1652
1653The QEMU VM behaves as if it was behind a firewall which blocks all
1654incoming connections. You can use a DHCP client to automatically
41d03949
FB
1655configure the network in the QEMU VM. The DHCP server assign addresses
1656to the hosts starting from 10.0.2.15.
9d4fb82e
FB
1657
1658In order to check that the user mode network is working, you can ping
1659the address 10.0.2.2 and verify that you got an address in the range
166010.0.2.x from the QEMU virtual DHCP server.
1661
b415a407 1662Note that @code{ping} is not supported reliably to the internet as it
4be456f1 1663would require root privileges. It means you can only ping the local
b415a407
FB
1664router (10.0.2.2).
1665
9bf05444
FB
1666When using the built-in TFTP server, the router is also the TFTP
1667server.
1668
1669When using the @option{-redir} option, TCP or UDP connections can be
1670redirected from the host to the guest. It allows for example to
1671redirect X11, telnet or SSH connections.
443f1376 1672
41d03949
FB
1673@subsection Connecting VLANs between QEMU instances
1674
1675Using the @option{-net socket} option, it is possible to make VLANs
1676that span several QEMU instances. See @ref{sec_invocation} to have a
1677basic example.
1678
9d4fb82e
FB
1679@node direct_linux_boot
1680@section Direct Linux Boot
1f673135
FB
1681
1682This section explains how to launch a Linux kernel inside QEMU without
1683having to make a full bootable image. It is very useful for fast Linux
ee0f4751 1684kernel testing.
1f673135 1685
ee0f4751 1686The syntax is:
1f673135 1687@example
ee0f4751 1688qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
1689@end example
1690
ee0f4751
FB
1691Use @option{-kernel} to provide the Linux kernel image and
1692@option{-append} to give the kernel command line arguments. The
1693@option{-initrd} option can be used to provide an INITRD image.
1f673135 1694
ee0f4751
FB
1695When using the direct Linux boot, a disk image for the first hard disk
1696@file{hda} is required because its boot sector is used to launch the
1697Linux kernel.
1f673135 1698
ee0f4751
FB
1699If you do not need graphical output, you can disable it and redirect
1700the virtual serial port and the QEMU monitor to the console with the
1701@option{-nographic} option. The typical command line is:
1f673135 1702@example
ee0f4751
FB
1703qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1704 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
1705@end example
1706
ee0f4751
FB
1707Use @key{Ctrl-a c} to switch between the serial console and the
1708monitor (@pxref{pcsys_keys}).
1f673135 1709
debc7065 1710@node pcsys_usb
b389dbfb
FB
1711@section USB emulation
1712
0aff66b5
PB
1713QEMU emulates a PCI UHCI USB controller. You can virtually plug
1714virtual USB devices or real host USB devices (experimental, works only
1715on Linux hosts). Qemu will automatically create and connect virtual USB hubs
f542086d 1716as necessary to connect multiple USB devices.
b389dbfb 1717
0aff66b5
PB
1718@menu
1719* usb_devices::
1720* host_usb_devices::
1721@end menu
1722@node usb_devices
1723@subsection Connecting USB devices
b389dbfb 1724
0aff66b5
PB
1725USB devices can be connected with the @option{-usbdevice} commandline option
1726or the @code{usb_add} monitor command. Available devices are:
b389dbfb 1727
db380c06
AZ
1728@table @code
1729@item mouse
0aff66b5 1730Virtual Mouse. This will override the PS/2 mouse emulation when activated.
db380c06 1731@item tablet
c6d46c20 1732Pointer device that uses absolute coordinates (like a touchscreen).
0aff66b5
PB
1733This means qemu is able to report the mouse position without having
1734to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
db380c06 1735@item disk:@var{file}
0aff66b5 1736Mass storage device based on @var{file} (@pxref{disk_images})
db380c06 1737@item host:@var{bus.addr}
0aff66b5
PB
1738Pass through the host device identified by @var{bus.addr}
1739(Linux only)
db380c06 1740@item host:@var{vendor_id:product_id}
0aff66b5
PB
1741Pass through the host device identified by @var{vendor_id:product_id}
1742(Linux only)
db380c06 1743@item wacom-tablet
f6d2a316
AZ
1744Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1745above but it can be used with the tslib library because in addition to touch
1746coordinates it reports touch pressure.
db380c06 1747@item keyboard
47b2d338 1748Standard USB keyboard. Will override the PS/2 keyboard (if present).
db380c06
AZ
1749@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1750Serial converter. This emulates an FTDI FT232BM chip connected to host character
1751device @var{dev}. The available character devices are the same as for the
1752@code{-serial} option. The @code{vendorid} and @code{productid} options can be
a11d070e 1753used to override the default 0403:6001. For instance,
db380c06
AZ
1754@example
1755usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1756@end example
1757will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1758serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
2e4d9fb1
AJ
1759@item braille
1760Braille device. This will use BrlAPI to display the braille output on a real
1761or fake device.
9ad97e65
AZ
1762@item net:@var{options}
1763Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
1764specifies NIC options as with @code{-net nic,}@var{options} (see description).
1765For instance, user-mode networking can be used with
6c9f886c 1766@example
9ad97e65 1767qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
6c9f886c
AZ
1768@end example
1769Currently this cannot be used in machines that support PCI NICs.
0aff66b5 1770@end table
b389dbfb 1771
0aff66b5 1772@node host_usb_devices
b389dbfb
FB
1773@subsection Using host USB devices on a Linux host
1774
1775WARNING: this is an experimental feature. QEMU will slow down when
1776using it. USB devices requiring real time streaming (i.e. USB Video
1777Cameras) are not supported yet.
1778
1779@enumerate
5fafdf24 1780@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
1781is actually using the USB device. A simple way to do that is simply to
1782disable the corresponding kernel module by renaming it from @file{mydriver.o}
1783to @file{mydriver.o.disabled}.
1784
1785@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1786@example
1787ls /proc/bus/usb
1788001 devices drivers
1789@end example
1790
1791@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1792@example
1793chown -R myuid /proc/bus/usb
1794@end example
1795
1796@item Launch QEMU and do in the monitor:
5fafdf24 1797@example
b389dbfb
FB
1798info usbhost
1799 Device 1.2, speed 480 Mb/s
1800 Class 00: USB device 1234:5678, USB DISK
1801@end example
1802You should see the list of the devices you can use (Never try to use
1803hubs, it won't work).
1804
1805@item Add the device in QEMU by using:
5fafdf24 1806@example
b389dbfb
FB
1807usb_add host:1234:5678
1808@end example
1809
1810Normally the guest OS should report that a new USB device is
1811plugged. You can use the option @option{-usbdevice} to do the same.
1812
1813@item Now you can try to use the host USB device in QEMU.
1814
1815@end enumerate
1816
1817When relaunching QEMU, you may have to unplug and plug again the USB
1818device to make it work again (this is a bug).
1819
f858dcae
TS
1820@node vnc_security
1821@section VNC security
1822
1823The VNC server capability provides access to the graphical console
1824of the guest VM across the network. This has a number of security
1825considerations depending on the deployment scenarios.
1826
1827@menu
1828* vnc_sec_none::
1829* vnc_sec_password::
1830* vnc_sec_certificate::
1831* vnc_sec_certificate_verify::
1832* vnc_sec_certificate_pw::
1833* vnc_generate_cert::
1834@end menu
1835@node vnc_sec_none
1836@subsection Without passwords
1837
1838The simplest VNC server setup does not include any form of authentication.
1839For this setup it is recommended to restrict it to listen on a UNIX domain
1840socket only. For example
1841
1842@example
1843qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1844@end example
1845
1846This ensures that only users on local box with read/write access to that
1847path can access the VNC server. To securely access the VNC server from a
1848remote machine, a combination of netcat+ssh can be used to provide a secure
1849tunnel.
1850
1851@node vnc_sec_password
1852@subsection With passwords
1853
1854The VNC protocol has limited support for password based authentication. Since
1855the protocol limits passwords to 8 characters it should not be considered
1856to provide high security. The password can be fairly easily brute-forced by
1857a client making repeat connections. For this reason, a VNC server using password
1858authentication should be restricted to only listen on the loopback interface
34a3d239 1859or UNIX domain sockets. Password authentication is requested with the @code{password}
f858dcae
TS
1860option, and then once QEMU is running the password is set with the monitor. Until
1861the monitor is used to set the password all clients will be rejected.
1862
1863@example
1864qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1865(qemu) change vnc password
1866Password: ********
1867(qemu)
1868@end example
1869
1870@node vnc_sec_certificate
1871@subsection With x509 certificates
1872
1873The QEMU VNC server also implements the VeNCrypt extension allowing use of
1874TLS for encryption of the session, and x509 certificates for authentication.
1875The use of x509 certificates is strongly recommended, because TLS on its
1876own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1877support provides a secure session, but no authentication. This allows any
1878client to connect, and provides an encrypted session.
1879
1880@example
1881qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1882@end example
1883
1884In the above example @code{/etc/pki/qemu} should contain at least three files,
1885@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1886users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1887NB the @code{server-key.pem} file should be protected with file mode 0600 to
1888only be readable by the user owning it.
1889
1890@node vnc_sec_certificate_verify
1891@subsection With x509 certificates and client verification
1892
1893Certificates can also provide a means to authenticate the client connecting.
1894The server will request that the client provide a certificate, which it will
1895then validate against the CA certificate. This is a good choice if deploying
1896in an environment with a private internal certificate authority.
1897
1898@example
1899qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1900@end example
1901
1902
1903@node vnc_sec_certificate_pw
1904@subsection With x509 certificates, client verification and passwords
1905
1906Finally, the previous method can be combined with VNC password authentication
1907to provide two layers of authentication for clients.
1908
1909@example
1910qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1911(qemu) change vnc password
1912Password: ********
1913(qemu)
1914@end example
1915
1916@node vnc_generate_cert
1917@subsection Generating certificates for VNC
1918
1919The GNU TLS packages provides a command called @code{certtool} which can
1920be used to generate certificates and keys in PEM format. At a minimum it
1921is neccessary to setup a certificate authority, and issue certificates to
1922each server. If using certificates for authentication, then each client
1923will also need to be issued a certificate. The recommendation is for the
1924server to keep its certificates in either @code{/etc/pki/qemu} or for
1925unprivileged users in @code{$HOME/.pki/qemu}.
1926
1927@menu
1928* vnc_generate_ca::
1929* vnc_generate_server::
1930* vnc_generate_client::
1931@end menu
1932@node vnc_generate_ca
1933@subsubsection Setup the Certificate Authority
1934
1935This step only needs to be performed once per organization / organizational
1936unit. First the CA needs a private key. This key must be kept VERY secret
1937and secure. If this key is compromised the entire trust chain of the certificates
1938issued with it is lost.
1939
1940@example
1941# certtool --generate-privkey > ca-key.pem
1942@end example
1943
1944A CA needs to have a public certificate. For simplicity it can be a self-signed
1945certificate, or one issue by a commercial certificate issuing authority. To
1946generate a self-signed certificate requires one core piece of information, the
1947name of the organization.
1948
1949@example
1950# cat > ca.info <<EOF
1951cn = Name of your organization
1952ca
1953cert_signing_key
1954EOF
1955# certtool --generate-self-signed \
1956 --load-privkey ca-key.pem
1957 --template ca.info \
1958 --outfile ca-cert.pem
1959@end example
1960
1961The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1962TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1963
1964@node vnc_generate_server
1965@subsubsection Issuing server certificates
1966
1967Each server (or host) needs to be issued with a key and certificate. When connecting
1968the certificate is sent to the client which validates it against the CA certificate.
1969The core piece of information for a server certificate is the hostname. This should
1970be the fully qualified hostname that the client will connect with, since the client
1971will typically also verify the hostname in the certificate. On the host holding the
1972secure CA private key:
1973
1974@example
1975# cat > server.info <<EOF
1976organization = Name of your organization
1977cn = server.foo.example.com
1978tls_www_server
1979encryption_key
1980signing_key
1981EOF
1982# certtool --generate-privkey > server-key.pem
1983# certtool --generate-certificate \
1984 --load-ca-certificate ca-cert.pem \
1985 --load-ca-privkey ca-key.pem \
1986 --load-privkey server server-key.pem \
1987 --template server.info \
1988 --outfile server-cert.pem
1989@end example
1990
1991The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1992to the server for which they were generated. The @code{server-key.pem} is security
1993sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1994
1995@node vnc_generate_client
1996@subsubsection Issuing client certificates
1997
1998If the QEMU VNC server is to use the @code{x509verify} option to validate client
1999certificates as its authentication mechanism, each client also needs to be issued
2000a certificate. The client certificate contains enough metadata to uniquely identify
2001the client, typically organization, state, city, building, etc. On the host holding
2002the secure CA private key:
2003
2004@example
2005# cat > client.info <<EOF
2006country = GB
2007state = London
2008locality = London
2009organiazation = Name of your organization
2010cn = client.foo.example.com
2011tls_www_client
2012encryption_key
2013signing_key
2014EOF
2015# certtool --generate-privkey > client-key.pem
2016# certtool --generate-certificate \
2017 --load-ca-certificate ca-cert.pem \
2018 --load-ca-privkey ca-key.pem \
2019 --load-privkey client-key.pem \
2020 --template client.info \
2021 --outfile client-cert.pem
2022@end example
2023
2024The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
2025copied to the client for which they were generated.
2026
0806e3f6 2027@node gdb_usage
da415d54
FB
2028@section GDB usage
2029
2030QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 2031'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 2032
9d4520d0 2033In order to use gdb, launch qemu with the '-s' option. It will wait for a
da415d54
FB
2034gdb connection:
2035@example
debc7065
FB
2036> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
2037 -append "root=/dev/hda"
da415d54
FB
2038Connected to host network interface: tun0
2039Waiting gdb connection on port 1234
2040@end example
2041
2042Then launch gdb on the 'vmlinux' executable:
2043@example
2044> gdb vmlinux
2045@end example
2046
2047In gdb, connect to QEMU:
2048@example
6c9bf893 2049(gdb) target remote localhost:1234
da415d54
FB
2050@end example
2051
2052Then you can use gdb normally. For example, type 'c' to launch the kernel:
2053@example
2054(gdb) c
2055@end example
2056
0806e3f6
FB
2057Here are some useful tips in order to use gdb on system code:
2058
2059@enumerate
2060@item
2061Use @code{info reg} to display all the CPU registers.
2062@item
2063Use @code{x/10i $eip} to display the code at the PC position.
2064@item
2065Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 2066@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
2067@end enumerate
2068
60897d36
EI
2069Advanced debugging options:
2070
2071The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 2072@table @code
60897d36
EI
2073@item maintenance packet qqemu.sstepbits
2074
2075This will display the MASK bits used to control the single stepping IE:
2076@example
2077(gdb) maintenance packet qqemu.sstepbits
2078sending: "qqemu.sstepbits"
2079received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
2080@end example
2081@item maintenance packet qqemu.sstep
2082
2083This will display the current value of the mask used when single stepping IE:
2084@example
2085(gdb) maintenance packet qqemu.sstep
2086sending: "qqemu.sstep"
2087received: "0x7"
2088@end example
2089@item maintenance packet Qqemu.sstep=HEX_VALUE
2090
2091This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
2092@example
2093(gdb) maintenance packet Qqemu.sstep=0x5
2094sending: "qemu.sstep=0x5"
2095received: "OK"
2096@end example
94d45e44 2097@end table
60897d36 2098
debc7065 2099@node pcsys_os_specific
1a084f3d
FB
2100@section Target OS specific information
2101
2102@subsection Linux
2103
15a34c63
FB
2104To have access to SVGA graphic modes under X11, use the @code{vesa} or
2105the @code{cirrus} X11 driver. For optimal performances, use 16 bit
2106color depth in the guest and the host OS.
1a084f3d 2107
e3371e62
FB
2108When using a 2.6 guest Linux kernel, you should add the option
2109@code{clock=pit} on the kernel command line because the 2.6 Linux
2110kernels make very strict real time clock checks by default that QEMU
2111cannot simulate exactly.
2112
7c3fc84d
FB
2113When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
2114not activated because QEMU is slower with this patch. The QEMU
2115Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 2116Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
2117patch by default. Newer kernels don't have it.
2118
1a084f3d
FB
2119@subsection Windows
2120
2121If you have a slow host, using Windows 95 is better as it gives the
2122best speed. Windows 2000 is also a good choice.
2123
e3371e62
FB
2124@subsubsection SVGA graphic modes support
2125
2126QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
2127card. All Windows versions starting from Windows 95 should recognize
2128and use this graphic card. For optimal performances, use 16 bit color
2129depth in the guest and the host OS.
1a084f3d 2130
3cb0853a
FB
2131If you are using Windows XP as guest OS and if you want to use high
2132resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
21331280x1024x16), then you should use the VESA VBE virtual graphic card
2134(option @option{-std-vga}).
2135
e3371e62
FB
2136@subsubsection CPU usage reduction
2137
2138Windows 9x does not correctly use the CPU HLT
15a34c63
FB
2139instruction. The result is that it takes host CPU cycles even when
2140idle. You can install the utility from
2141@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
2142problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 2143
9d0a8e6f 2144@subsubsection Windows 2000 disk full problem
e3371e62 2145
9d0a8e6f
FB
2146Windows 2000 has a bug which gives a disk full problem during its
2147installation. When installing it, use the @option{-win2k-hack} QEMU
2148option to enable a specific workaround. After Windows 2000 is
2149installed, you no longer need this option (this option slows down the
2150IDE transfers).
e3371e62 2151
6cc721cf
FB
2152@subsubsection Windows 2000 shutdown
2153
2154Windows 2000 cannot automatically shutdown in QEMU although Windows 98
2155can. It comes from the fact that Windows 2000 does not automatically
2156use the APM driver provided by the BIOS.
2157
2158In order to correct that, do the following (thanks to Struan
2159Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
2160Add/Troubleshoot a device => Add a new device & Next => No, select the
2161hardware from a list & Next => NT Apm/Legacy Support & Next => Next
2162(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 2163correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
2164
2165@subsubsection Share a directory between Unix and Windows
2166
2167See @ref{sec_invocation} about the help of the option @option{-smb}.
2168
2192c332 2169@subsubsection Windows XP security problem
e3371e62
FB
2170
2171Some releases of Windows XP install correctly but give a security
2172error when booting:
2173@example
2174A problem is preventing Windows from accurately checking the
2175license for this computer. Error code: 0x800703e6.
2176@end example
e3371e62 2177
2192c332
FB
2178The workaround is to install a service pack for XP after a boot in safe
2179mode. Then reboot, and the problem should go away. Since there is no
2180network while in safe mode, its recommended to download the full
2181installation of SP1 or SP2 and transfer that via an ISO or using the
2182vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 2183
a0a821a4
FB
2184@subsection MS-DOS and FreeDOS
2185
2186@subsubsection CPU usage reduction
2187
2188DOS does not correctly use the CPU HLT instruction. The result is that
2189it takes host CPU cycles even when idle. You can install the utility
2190from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
2191problem.
2192
debc7065 2193@node QEMU System emulator for non PC targets
3f9f3aa1
FB
2194@chapter QEMU System emulator for non PC targets
2195
2196QEMU is a generic emulator and it emulates many non PC
2197machines. Most of the options are similar to the PC emulator. The
4be456f1 2198differences are mentioned in the following sections.
3f9f3aa1 2199
debc7065
FB
2200@menu
2201* QEMU PowerPC System emulator::
24d4de45
TS
2202* Sparc32 System emulator::
2203* Sparc64 System emulator::
2204* MIPS System emulator::
2205* ARM System emulator::
2206* ColdFire System emulator::
debc7065
FB
2207@end menu
2208
2209@node QEMU PowerPC System emulator
3f9f3aa1 2210@section QEMU PowerPC System emulator
1a084f3d 2211
15a34c63
FB
2212Use the executable @file{qemu-system-ppc} to simulate a complete PREP
2213or PowerMac PowerPC system.
1a084f3d 2214
b671f9ed 2215QEMU emulates the following PowerMac peripherals:
1a084f3d 2216
15a34c63 2217@itemize @minus
5fafdf24
TS
2218@item
2219UniNorth PCI Bridge
15a34c63
FB
2220@item
2221PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 2222@item
15a34c63 22232 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 2224@item
15a34c63
FB
2225NE2000 PCI adapters
2226@item
2227Non Volatile RAM
2228@item
2229VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
2230@end itemize
2231
b671f9ed 2232QEMU emulates the following PREP peripherals:
52c00a5f
FB
2233
2234@itemize @minus
5fafdf24 2235@item
15a34c63
FB
2236PCI Bridge
2237@item
2238PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 2239@item
52c00a5f
FB
22402 IDE interfaces with hard disk and CD-ROM support
2241@item
2242Floppy disk
5fafdf24 2243@item
15a34c63 2244NE2000 network adapters
52c00a5f
FB
2245@item
2246Serial port
2247@item
2248PREP Non Volatile RAM
15a34c63
FB
2249@item
2250PC compatible keyboard and mouse.
52c00a5f
FB
2251@end itemize
2252
15a34c63 2253QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 2254@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 2255
15a34c63
FB
2256@c man begin OPTIONS
2257
2258The following options are specific to the PowerPC emulation:
2259
2260@table @option
2261
3b46e624 2262@item -g WxH[xDEPTH]
15a34c63
FB
2263
2264Set the initial VGA graphic mode. The default is 800x600x15.
2265
2266@end table
2267
5fafdf24 2268@c man end
15a34c63
FB
2269
2270
52c00a5f 2271More information is available at
3f9f3aa1 2272@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 2273
24d4de45
TS
2274@node Sparc32 System emulator
2275@section Sparc32 System emulator
e80cfcfc 2276
34a3d239
BS
2277Use the executable @file{qemu-system-sparc} to simulate the following
2278Sun4m architecture machines:
2279@itemize @minus
2280@item
2281SPARCstation 4
2282@item
2283SPARCstation 5
2284@item
2285SPARCstation 10
2286@item
2287SPARCstation 20
2288@item
2289SPARCserver 600MP
2290@item
2291SPARCstation LX
2292@item
2293SPARCstation Voyager
2294@item
2295SPARCclassic
2296@item
2297SPARCbook
2298@end itemize
2299
2300The emulation is somewhat complete. SMP up to 16 CPUs is supported,
2301but Linux limits the number of usable CPUs to 4.
e80cfcfc 2302
34a3d239
BS
2303It's also possible to simulate a SPARCstation 2 (sun4c architecture),
2304SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
2305emulators are not usable yet.
2306
2307QEMU emulates the following sun4m/sun4c/sun4d peripherals:
e80cfcfc
FB
2308
2309@itemize @minus
3475187d 2310@item
7d85892b 2311IOMMU or IO-UNITs
e80cfcfc
FB
2312@item
2313TCX Frame buffer
5fafdf24 2314@item
e80cfcfc
FB
2315Lance (Am7990) Ethernet
2316@item
34a3d239 2317Non Volatile RAM M48T02/M48T08
e80cfcfc 2318@item
3475187d
FB
2319Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2320and power/reset logic
2321@item
2322ESP SCSI controller with hard disk and CD-ROM support
2323@item
6a3b9cc9 2324Floppy drive (not on SS-600MP)
a2502b58
BS
2325@item
2326CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
2327@end itemize
2328
6a3b9cc9
BS
2329The number of peripherals is fixed in the architecture. Maximum
2330memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 2331others 2047MB.
3475187d 2332
30a604f3 2333Since version 0.8.2, QEMU uses OpenBIOS
0986ac3b
FB
2334@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2335firmware implementation. The goal is to implement a 100% IEEE
23361275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
2337
2338A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239
BS
2339the QEMU web site. There are still issues with NetBSD and OpenBSD, but
2340some kernel versions work. Please note that currently Solaris kernels
2341don't work probably due to interface issues between OpenBIOS and
2342Solaris.
3475187d
FB
2343
2344@c man begin OPTIONS
2345
a2502b58 2346The following options are specific to the Sparc32 emulation:
3475187d
FB
2347
2348@table @option
2349
a2502b58 2350@item -g WxHx[xDEPTH]
3475187d 2351
a2502b58
BS
2352Set the initial TCX graphic mode. The default is 1024x768x8, currently
2353the only other possible mode is 1024x768x24.
3475187d 2354
66508601
BS
2355@item -prom-env string
2356
2357Set OpenBIOS variables in NVRAM, for example:
2358
2359@example
2360qemu-system-sparc -prom-env 'auto-boot?=false' \
2361 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2362@end example
2363
34a3d239 2364@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic|SPARCbook|SS-2|SS-1000|SS-2000]
a2502b58
BS
2365
2366Set the emulated machine type. Default is SS-5.
2367
3475187d
FB
2368@end table
2369
5fafdf24 2370@c man end
3475187d 2371
24d4de45
TS
2372@node Sparc64 System emulator
2373@section Sparc64 System emulator
e80cfcfc 2374
34a3d239
BS
2375Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2376(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
2377Niagara (T1) machine. The emulator is not usable for anything yet, but
2378it can launch some kernels.
b756921a 2379
c7ba218d 2380QEMU emulates the following peripherals:
83469015
FB
2381
2382@itemize @minus
2383@item
5fafdf24 2384UltraSparc IIi APB PCI Bridge
83469015
FB
2385@item
2386PCI VGA compatible card with VESA Bochs Extensions
2387@item
34a3d239
BS
2388PS/2 mouse and keyboard
2389@item
83469015
FB
2390Non Volatile RAM M48T59
2391@item
2392PC-compatible serial ports
c7ba218d
BS
2393@item
23942 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
2395@item
2396Floppy disk
83469015
FB
2397@end itemize
2398
c7ba218d
BS
2399@c man begin OPTIONS
2400
2401The following options are specific to the Sparc64 emulation:
2402
2403@table @option
2404
34a3d239
BS
2405@item -prom-env string
2406
2407Set OpenBIOS variables in NVRAM, for example:
2408
2409@example
2410qemu-system-sparc64 -prom-env 'auto-boot?=false'
2411@end example
2412
2413@item -M [sun4u|sun4v|Niagara]
c7ba218d
BS
2414
2415Set the emulated machine type. The default is sun4u.
2416
2417@end table
2418
2419@c man end
2420
24d4de45
TS
2421@node MIPS System emulator
2422@section MIPS System emulator
9d0a8e6f 2423
d9aedc32
TS
2424Four executables cover simulation of 32 and 64-bit MIPS systems in
2425both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2426@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 2427Five different machine types are emulated:
24d4de45
TS
2428
2429@itemize @minus
2430@item
2431A generic ISA PC-like machine "mips"
2432@item
2433The MIPS Malta prototype board "malta"
2434@item
d9aedc32 2435An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 2436@item
f0fc6f8f 2437MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
2438@item
2439A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
2440@end itemize
2441
2442The generic emulation is supported by Debian 'Etch' and is able to
2443install Debian into a virtual disk image. The following devices are
2444emulated:
3f9f3aa1
FB
2445
2446@itemize @minus
5fafdf24 2447@item
6bf5b4e8 2448A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
2449@item
2450PC style serial port
2451@item
24d4de45
TS
2452PC style IDE disk
2453@item
3f9f3aa1
FB
2454NE2000 network card
2455@end itemize
2456
24d4de45
TS
2457The Malta emulation supports the following devices:
2458
2459@itemize @minus
2460@item
0b64d008 2461Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
2462@item
2463PIIX4 PCI/USB/SMbus controller
2464@item
2465The Multi-I/O chip's serial device
2466@item
2467PCnet32 PCI network card
2468@item
2469Malta FPGA serial device
2470@item
2471Cirrus VGA graphics card
2472@end itemize
2473
2474The ACER Pica emulation supports:
2475
2476@itemize @minus
2477@item
2478MIPS R4000 CPU
2479@item
2480PC-style IRQ and DMA controllers
2481@item
2482PC Keyboard
2483@item
2484IDE controller
2485@end itemize
3f9f3aa1 2486
f0fc6f8f
TS
2487The mipssim pseudo board emulation provides an environment similiar
2488to what the proprietary MIPS emulator uses for running Linux.
2489It supports:
6bf5b4e8
TS
2490
2491@itemize @minus
2492@item
2493A range of MIPS CPUs, default is the 24Kf
2494@item
2495PC style serial port
2496@item
2497MIPSnet network emulation
2498@end itemize
2499
88cb0a02
AJ
2500The MIPS Magnum R4000 emulation supports:
2501
2502@itemize @minus
2503@item
2504MIPS R4000 CPU
2505@item
2506PC-style IRQ controller
2507@item
2508PC Keyboard
2509@item
2510SCSI controller
2511@item
2512G364 framebuffer
2513@end itemize
2514
2515
24d4de45
TS
2516@node ARM System emulator
2517@section ARM System emulator
3f9f3aa1
FB
2518
2519Use the executable @file{qemu-system-arm} to simulate a ARM
2520machine. The ARM Integrator/CP board is emulated with the following
2521devices:
2522
2523@itemize @minus
2524@item
9ee6e8bb 2525ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
2526@item
2527Two PL011 UARTs
5fafdf24 2528@item
3f9f3aa1 2529SMC 91c111 Ethernet adapter
00a9bf19
PB
2530@item
2531PL110 LCD controller
2532@item
2533PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
2534@item
2535PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
2536@end itemize
2537
2538The ARM Versatile baseboard is emulated with the following devices:
2539
2540@itemize @minus
2541@item
9ee6e8bb 2542ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
2543@item
2544PL190 Vectored Interrupt Controller
2545@item
2546Four PL011 UARTs
5fafdf24 2547@item
00a9bf19
PB
2548SMC 91c111 Ethernet adapter
2549@item
2550PL110 LCD controller
2551@item
2552PL050 KMI with PS/2 keyboard and mouse.
2553@item
2554PCI host bridge. Note the emulated PCI bridge only provides access to
2555PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
2556This means some devices (eg. ne2k_pci NIC) are not usable, and others
2557(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 2558mapped control registers.
e6de1bad
PB
2559@item
2560PCI OHCI USB controller.
2561@item
2562LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
2563@item
2564PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
2565@end itemize
2566
d7739d75
PB
2567The ARM RealView Emulation baseboard is emulated with the following devices:
2568
2569@itemize @minus
2570@item
9ee6e8bb 2571ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
d7739d75
PB
2572@item
2573ARM AMBA Generic/Distributed Interrupt Controller
2574@item
2575Four PL011 UARTs
5fafdf24 2576@item
d7739d75
PB
2577SMC 91c111 Ethernet adapter
2578@item
2579PL110 LCD controller
2580@item
2581PL050 KMI with PS/2 keyboard and mouse
2582@item
2583PCI host bridge
2584@item
2585PCI OHCI USB controller
2586@item
2587LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
2588@item
2589PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
2590@end itemize
2591
b00052e4
AZ
2592The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2593and "Terrier") emulation includes the following peripherals:
2594
2595@itemize @minus
2596@item
2597Intel PXA270 System-on-chip (ARM V5TE core)
2598@item
2599NAND Flash memory
2600@item
2601IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2602@item
2603On-chip OHCI USB controller
2604@item
2605On-chip LCD controller
2606@item
2607On-chip Real Time Clock
2608@item
2609TI ADS7846 touchscreen controller on SSP bus
2610@item
2611Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2612@item
2613GPIO-connected keyboard controller and LEDs
2614@item
549444e1 2615Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
2616@item
2617Three on-chip UARTs
2618@item
2619WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2620@end itemize
2621
02645926
AZ
2622The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2623following elements:
2624
2625@itemize @minus
2626@item
2627Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2628@item
2629ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2630@item
2631On-chip LCD controller
2632@item
2633On-chip Real Time Clock
2634@item
2635TI TSC2102i touchscreen controller / analog-digital converter / Audio
2636CODEC, connected through MicroWire and I@math{^2}S busses
2637@item
2638GPIO-connected matrix keypad
2639@item
2640Secure Digital card connected to OMAP MMC/SD host
2641@item
2642Three on-chip UARTs
2643@end itemize
2644
c30bb264
AZ
2645Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2646emulation supports the following elements:
2647
2648@itemize @minus
2649@item
2650Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2651@item
2652RAM and non-volatile OneNAND Flash memories
2653@item
2654Display connected to EPSON remote framebuffer chip and OMAP on-chip
2655display controller and a LS041y3 MIPI DBI-C controller
2656@item
2657TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2658driven through SPI bus
2659@item
2660National Semiconductor LM8323-controlled qwerty keyboard driven
2661through I@math{^2}C bus
2662@item
2663Secure Digital card connected to OMAP MMC/SD host
2664@item
2665Three OMAP on-chip UARTs and on-chip STI debugging console
2666@item
2667Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2668TUSB6010 chip - only USB host mode is supported
2669@item
2670TI TMP105 temperature sensor driven through I@math{^2}C bus
2671@item
2672TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2673@item
2674Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2675through CBUS
2676@end itemize
2677
9ee6e8bb
PB
2678The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2679devices:
2680
2681@itemize @minus
2682@item
2683Cortex-M3 CPU core.
2684@item
268564k Flash and 8k SRAM.
2686@item
2687Timers, UARTs, ADC and I@math{^2}C interface.
2688@item
2689OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2690@end itemize
2691
2692The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2693devices:
2694
2695@itemize @minus
2696@item
2697Cortex-M3 CPU core.
2698@item
2699256k Flash and 64k SRAM.
2700@item
2701Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2702@item
2703OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2704@end itemize
2705
57cd6e97
AZ
2706The Freecom MusicPal internet radio emulation includes the following
2707elements:
2708
2709@itemize @minus
2710@item
2711Marvell MV88W8618 ARM core.
2712@item
271332 MB RAM, 256 KB SRAM, 8 MB flash.
2714@item
2715Up to 2 16550 UARTs
2716@item
2717MV88W8xx8 Ethernet controller
2718@item
2719MV88W8618 audio controller, WM8750 CODEC and mixer
2720@item
2721