]> git.proxmox.com Git - mirror_qemu.git/blame - qemu-doc.texi
qemu-tech: document lazy condition code evaluation in cpu.h
[mirror_qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
e080e785
SW
4
5@documentlanguage en
6@documentencoding UTF-8
7
8f40c388 8@settitle QEMU Emulator User Documentation
debc7065
FB
9@exampleindent 0
10@paragraphindent 0
11@c %**end of header
386405f7 12
a1a32b05
SW
13@ifinfo
14@direntry
15* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
16@end direntry
17@end ifinfo
18
0806e3f6 19@iftex
386405f7
FB
20@titlepage
21@sp 7
8f40c388 22@center @titlefont{QEMU Emulator}
debc7065
FB
23@sp 1
24@center @titlefont{User Documentation}
386405f7
FB
25@sp 3
26@end titlepage
0806e3f6 27@end iftex
386405f7 28
debc7065
FB
29@ifnottex
30@node Top
31@top
32
33@menu
34* Introduction::
debc7065
FB
35* QEMU PC System emulator::
36* QEMU System emulator for non PC targets::
83195237 37* QEMU User space emulator::
7544a042 38* License::
debc7065
FB
39* Index::
40@end menu
41@end ifnottex
42
43@contents
44
45@node Introduction
386405f7
FB
46@chapter Introduction
47
debc7065
FB
48@menu
49* intro_features:: Features
50@end menu
51
52@node intro_features
322d0c66 53@section Features
386405f7 54
1f673135
FB
55QEMU is a FAST! processor emulator using dynamic translation to
56achieve good emulation speed.
1eb20527 57
1f3e7e41 58@cindex operating modes
1eb20527 59QEMU has two operating modes:
0806e3f6 60
d7e5edca 61@itemize
7544a042 62@cindex system emulation
1f3e7e41 63@item Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
64example a PC), including one or several processors and various
65peripherals. It can be used to launch different Operating Systems
66without rebooting the PC or to debug system code.
1eb20527 67
7544a042 68@cindex user mode emulation
1f3e7e41 69@item User mode emulation. In this mode, QEMU can launch
83195237 70processes compiled for one CPU on another CPU. It can be used to
1f673135
FB
71launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
72to ease cross-compilation and cross-debugging.
1eb20527
FB
73
74@end itemize
75
1f3e7e41
PB
76QEMU has the following features:
77
78@itemize
79@item QEMU can run without a host kernel driver and yet gives acceptable
80performance. It uses dynamic translation to native code for reasonable speed,
81with support for self-modifying code and precise exceptions.
82
83@item It is portable to several operating systems (GNU/Linux, *BSD, Mac OS X,
84Windows) and architectures.
85
86@item It performs accurate software emulation of the FPU.
87@end itemize
322d0c66 88
1f3e7e41 89QEMU user mode emulation has the following features:
52c00a5f 90@itemize
1f3e7e41
PB
91@item Generic Linux system call converter, including most ioctls.
92
93@item clone() emulation using native CPU clone() to use Linux scheduler for threads.
94
95@item Accurate signal handling by remapping host signals to target signals.
96@end itemize
97
98QEMU full system emulation has the following features:
99@itemize
100@item
101QEMU uses a full software MMU for maximum portability.
102
103@item
104QEMU can optionally use an in-kernel accelerator, like kvm. The accelerators
105execute most of the guest code natively, while
106continuing to emulate the rest of the machine.
107
108@item
109Various hardware devices can be emulated and in some cases, host
110devices (e.g. serial and parallel ports, USB, drives) can be used
111transparently by the guest Operating System. Host device passthrough
112can be used for talking to external physical peripherals (e.g. a
113webcam, modem or tape drive).
114
115@item
116Symmetric multiprocessing (SMP) support. Currently, an in-kernel
117accelerator is required to use more than one host CPU for emulation.
118
52c00a5f 119@end itemize
386405f7 120
0806e3f6 121
debc7065 122@node QEMU PC System emulator
3f9f3aa1 123@chapter QEMU PC System emulator
7544a042 124@cindex system emulation (PC)
1eb20527 125
debc7065
FB
126@menu
127* pcsys_introduction:: Introduction
128* pcsys_quickstart:: Quick Start
129* sec_invocation:: Invocation
a40db1b3
PM
130* pcsys_keys:: Keys in the graphical frontends
131* mux_keys:: Keys in the character backend multiplexer
debc7065
FB
132* pcsys_monitor:: QEMU Monitor
133* disk_images:: Disk Images
134* pcsys_network:: Network emulation
576fd0a1 135* pcsys_other_devs:: Other Devices
debc7065
FB
136* direct_linux_boot:: Direct Linux Boot
137* pcsys_usb:: USB emulation
f858dcae 138* vnc_security:: VNC security
debc7065
FB
139* gdb_usage:: GDB usage
140* pcsys_os_specific:: Target OS specific information
141@end menu
142
143@node pcsys_introduction
0806e3f6
FB
144@section Introduction
145
146@c man begin DESCRIPTION
147
3f9f3aa1
FB
148The QEMU PC System emulator simulates the
149following peripherals:
0806e3f6
FB
150
151@itemize @minus
5fafdf24 152@item
15a34c63 153i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 154@item
15a34c63
FB
155Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
156extensions (hardware level, including all non standard modes).
0806e3f6
FB
157@item
158PS/2 mouse and keyboard
5fafdf24 159@item
15a34c63 1602 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
161@item
162Floppy disk
5fafdf24 163@item
3a2eeac0 164PCI and ISA network adapters
0806e3f6 165@item
05d5818c
FB
166Serial ports
167@item
23076bb3
CM
168IPMI BMC, either and internal or external one
169@item
c0fe3827
FB
170Creative SoundBlaster 16 sound card
171@item
172ENSONIQ AudioPCI ES1370 sound card
173@item
e5c9a13e
AZ
174Intel 82801AA AC97 Audio compatible sound card
175@item
7d72e762
GH
176Intel HD Audio Controller and HDA codec
177@item
2d983446 178Adlib (OPL2) - Yamaha YM3812 compatible chip
b389dbfb 179@item
26463dbc
AZ
180Gravis Ultrasound GF1 sound card
181@item
cc53d26d 182CS4231A compatible sound card
183@item
b389dbfb 184PCI UHCI USB controller and a virtual USB hub.
0806e3f6
FB
185@end itemize
186
3f9f3aa1
FB
187SMP is supported with up to 255 CPUs.
188
a8ad4159 189QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
15a34c63
FB
190VGA BIOS.
191
c0fe3827
FB
192QEMU uses YM3812 emulation by Tatsuyuki Satoh.
193
2d983446 194QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
26463dbc 195by Tibor "TS" Schütz.
423d65f4 196
1a1a0e20 197Note that, by default, GUS shares IRQ(7) with parallel ports and so
b65ee4fa 198QEMU must be told to not have parallel ports to have working GUS.
720036a5 199
200@example
3804da9d 201qemu-system-i386 dos.img -soundhw gus -parallel none
720036a5 202@end example
203
204Alternatively:
205@example
3804da9d 206qemu-system-i386 dos.img -device gus,irq=5
720036a5 207@end example
208
209Or some other unclaimed IRQ.
210
cc53d26d 211CS4231A is the chip used in Windows Sound System and GUSMAX products
212
0806e3f6
FB
213@c man end
214
debc7065 215@node pcsys_quickstart
1eb20527 216@section Quick Start
7544a042 217@cindex quick start
1eb20527 218
285dc330 219Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
220
221@example
3804da9d 222qemu-system-i386 linux.img
0806e3f6
FB
223@end example
224
225Linux should boot and give you a prompt.
226
6cc721cf 227@node sec_invocation
ec410fc9
FB
228@section Invocation
229
230@example
0806e3f6 231@c man begin SYNOPSIS
8485140f 232@command{qemu-system-i386} [@var{options}] [@var{disk_image}]
0806e3f6 233@c man end
ec410fc9
FB
234@end example
235
0806e3f6 236@c man begin OPTIONS
d2c639d6
BS
237@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
238targets do not need a disk image.
ec410fc9 239
5824d651 240@include qemu-options.texi
ec410fc9 241
3e11db9a
FB
242@c man end
243
debc7065 244@node pcsys_keys
a40db1b3 245@section Keys in the graphical frontends
3e11db9a
FB
246
247@c man begin OPTIONS
248
de1db2a1
BH
249During the graphical emulation, you can use special key combinations to change
250modes. The default key mappings are shown below, but if you use @code{-alt-grab}
251then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
252@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
253
a1b74fe8 254@table @key
f9859310 255@item Ctrl-Alt-f
7544a042 256@kindex Ctrl-Alt-f
a1b74fe8 257Toggle full screen
a0a821a4 258
d6a65ba3
JK
259@item Ctrl-Alt-+
260@kindex Ctrl-Alt-+
261Enlarge the screen
262
263@item Ctrl-Alt--
264@kindex Ctrl-Alt--
265Shrink the screen
266
c4a735f9 267@item Ctrl-Alt-u
7544a042 268@kindex Ctrl-Alt-u
c4a735f9 269Restore the screen's un-scaled dimensions
270
f9859310 271@item Ctrl-Alt-n
7544a042 272@kindex Ctrl-Alt-n
a0a821a4
FB
273Switch to virtual console 'n'. Standard console mappings are:
274@table @emph
275@item 1
276Target system display
277@item 2
278Monitor
279@item 3
280Serial port
a1b74fe8
FB
281@end table
282
f9859310 283@item Ctrl-Alt
7544a042 284@kindex Ctrl-Alt
a0a821a4
FB
285Toggle mouse and keyboard grab.
286@end table
287
7544a042
SW
288@kindex Ctrl-Up
289@kindex Ctrl-Down
290@kindex Ctrl-PageUp
291@kindex Ctrl-PageDown
3e11db9a
FB
292In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
293@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
294
a40db1b3
PM
295@c man end
296
297@node mux_keys
298@section Keys in the character backend multiplexer
299
300@c man begin OPTIONS
301
302During emulation, if you are using a character backend multiplexer
303(which is the default if you are using @option{-nographic}) then
304several commands are available via an escape sequence. These
305key sequences all start with an escape character, which is @key{Ctrl-a}
306by default, but can be changed with @option{-echr}. The list below assumes
307you're using the default.
ec410fc9
FB
308
309@table @key
a1b74fe8 310@item Ctrl-a h
7544a042 311@kindex Ctrl-a h
ec410fc9 312Print this help
3b46e624 313@item Ctrl-a x
7544a042 314@kindex Ctrl-a x
366dfc52 315Exit emulator
3b46e624 316@item Ctrl-a s
7544a042 317@kindex Ctrl-a s
1f47a922 318Save disk data back to file (if -snapshot)
20d8a3ed 319@item Ctrl-a t
7544a042 320@kindex Ctrl-a t
d2c639d6 321Toggle console timestamps
a1b74fe8 322@item Ctrl-a b
7544a042 323@kindex Ctrl-a b
1f673135 324Send break (magic sysrq in Linux)
a1b74fe8 325@item Ctrl-a c
7544a042 326@kindex Ctrl-a c
a40db1b3
PM
327Rotate between the frontends connected to the multiplexer (usually
328this switches between the monitor and the console)
a1b74fe8 329@item Ctrl-a Ctrl-a
a40db1b3
PM
330@kindex Ctrl-a Ctrl-a
331Send the escape character to the frontend
ec410fc9 332@end table
0806e3f6
FB
333@c man end
334
335@ignore
336
1f673135
FB
337@c man begin SEEALSO
338The HTML documentation of QEMU for more precise information and Linux
339user mode emulator invocation.
340@c man end
341
342@c man begin AUTHOR
343Fabrice Bellard
344@c man end
345
346@end ignore
347
debc7065 348@node pcsys_monitor
1f673135 349@section QEMU Monitor
7544a042 350@cindex QEMU monitor
1f673135
FB
351
352The QEMU monitor is used to give complex commands to the QEMU
353emulator. You can use it to:
354
355@itemize @minus
356
357@item
e598752a 358Remove or insert removable media images
89dfe898 359(such as CD-ROM or floppies).
1f673135 360
5fafdf24 361@item
1f673135
FB
362Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
363from a disk file.
364
365@item Inspect the VM state without an external debugger.
366
367@end itemize
368
369@subsection Commands
370
371The following commands are available:
372
2313086a 373@include qemu-monitor.texi
0806e3f6 374
2cd8af2d
PB
375@include qemu-monitor-info.texi
376
1f673135
FB
377@subsection Integer expressions
378
379The monitor understands integers expressions for every integer
380argument. You can use register names to get the value of specifics
381CPU registers by prefixing them with @emph{$}.
ec410fc9 382
1f47a922
FB
383@node disk_images
384@section Disk Images
385
acd935ef
FB
386Since version 0.6.1, QEMU supports many disk image formats, including
387growable disk images (their size increase as non empty sectors are
13a2e80f
FB
388written), compressed and encrypted disk images. Version 0.8.3 added
389the new qcow2 disk image format which is essential to support VM
390snapshots.
1f47a922 391
debc7065
FB
392@menu
393* disk_images_quickstart:: Quick start for disk image creation
394* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 395* vm_snapshots:: VM snapshots
debc7065 396* qemu_img_invocation:: qemu-img Invocation
975b092b 397* qemu_nbd_invocation:: qemu-nbd Invocation
665b5d0d 398* qemu_ga_invocation:: qemu-ga Invocation
d3067b02 399* disk_images_formats:: Disk image file formats
19cb3738 400* host_drives:: Using host drives
debc7065 401* disk_images_fat_images:: Virtual FAT disk images
75818250 402* disk_images_nbd:: NBD access
42af9c30 403* disk_images_sheepdog:: Sheepdog disk images
00984e39 404* disk_images_iscsi:: iSCSI LUNs
8809e289 405* disk_images_gluster:: GlusterFS disk images
0a12ec87 406* disk_images_ssh:: Secure Shell (ssh) disk images
debc7065
FB
407@end menu
408
409@node disk_images_quickstart
acd935ef
FB
410@subsection Quick start for disk image creation
411
412You can create a disk image with the command:
1f47a922 413@example
acd935ef 414qemu-img create myimage.img mysize
1f47a922 415@end example
acd935ef
FB
416where @var{myimage.img} is the disk image filename and @var{mysize} is its
417size in kilobytes. You can add an @code{M} suffix to give the size in
418megabytes and a @code{G} suffix for gigabytes.
419
debc7065 420See @ref{qemu_img_invocation} for more information.
1f47a922 421
debc7065 422@node disk_images_snapshot_mode
1f47a922
FB
423@subsection Snapshot mode
424
425If you use the option @option{-snapshot}, all disk images are
426considered as read only. When sectors in written, they are written in
427a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
428write back to the raw disk images by using the @code{commit} monitor
429command (or @key{C-a s} in the serial console).
1f47a922 430
13a2e80f
FB
431@node vm_snapshots
432@subsection VM snapshots
433
434VM snapshots are snapshots of the complete virtual machine including
435CPU state, RAM, device state and the content of all the writable
436disks. In order to use VM snapshots, you must have at least one non
437removable and writable block device using the @code{qcow2} disk image
438format. Normally this device is the first virtual hard drive.
439
440Use the monitor command @code{savevm} to create a new VM snapshot or
441replace an existing one. A human readable name can be assigned to each
19d36792 442snapshot in addition to its numerical ID.
13a2e80f
FB
443
444Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
445a VM snapshot. @code{info snapshots} lists the available snapshots
446with their associated information:
447
448@example
449(qemu) info snapshots
450Snapshot devices: hda
451Snapshot list (from hda):
452ID TAG VM SIZE DATE VM CLOCK
4531 start 41M 2006-08-06 12:38:02 00:00:14.954
4542 40M 2006-08-06 12:43:29 00:00:18.633
4553 msys 40M 2006-08-06 12:44:04 00:00:23.514
456@end example
457
458A VM snapshot is made of a VM state info (its size is shown in
459@code{info snapshots}) and a snapshot of every writable disk image.
460The VM state info is stored in the first @code{qcow2} non removable
461and writable block device. The disk image snapshots are stored in
462every disk image. The size of a snapshot in a disk image is difficult
463to evaluate and is not shown by @code{info snapshots} because the
464associated disk sectors are shared among all the snapshots to save
19d36792
FB
465disk space (otherwise each snapshot would need a full copy of all the
466disk images).
13a2e80f
FB
467
468When using the (unrelated) @code{-snapshot} option
469(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
470but they are deleted as soon as you exit QEMU.
471
472VM snapshots currently have the following known limitations:
473@itemize
5fafdf24 474@item
13a2e80f
FB
475They cannot cope with removable devices if they are removed or
476inserted after a snapshot is done.
5fafdf24 477@item
13a2e80f
FB
478A few device drivers still have incomplete snapshot support so their
479state is not saved or restored properly (in particular USB).
480@end itemize
481
acd935ef
FB
482@node qemu_img_invocation
483@subsection @code{qemu-img} Invocation
1f47a922 484
acd935ef 485@include qemu-img.texi
05efe46e 486
975b092b
TS
487@node qemu_nbd_invocation
488@subsection @code{qemu-nbd} Invocation
489
490@include qemu-nbd.texi
491
665b5d0d
MAL
492@node qemu_ga_invocation
493@subsection @code{qemu-ga} Invocation
494
495@include qemu-ga.texi
496
d3067b02
KW
497@node disk_images_formats
498@subsection Disk image file formats
499
500QEMU supports many image file formats that can be used with VMs as well as with
501any of the tools (like @code{qemu-img}). This includes the preferred formats
502raw and qcow2 as well as formats that are supported for compatibility with
503older QEMU versions or other hypervisors.
504
505Depending on the image format, different options can be passed to
506@code{qemu-img create} and @code{qemu-img convert} using the @code{-o} option.
507This section describes each format and the options that are supported for it.
508
509@table @option
510@item raw
511
512Raw disk image format. This format has the advantage of
513being simple and easily exportable to all other emulators. If your
514file system supports @emph{holes} (for example in ext2 or ext3 on
515Linux or NTFS on Windows), then only the written sectors will reserve
516space. Use @code{qemu-img info} to know the real size used by the
517image or @code{ls -ls} on Unix/Linux.
518
06247428
HT
519Supported options:
520@table @code
521@item preallocation
522Preallocation mode (allowed values: @code{off}, @code{falloc}, @code{full}).
523@code{falloc} mode preallocates space for image by calling posix_fallocate().
524@code{full} mode preallocates space for image by writing zeros to underlying
525storage.
526@end table
527
d3067b02
KW
528@item qcow2
529QEMU image format, the most versatile format. Use it to have smaller
530images (useful if your filesystem does not supports holes, for example
a1f688f4
MA
531on Windows), zlib based compression and support of multiple VM
532snapshots.
d3067b02
KW
533
534Supported options:
535@table @code
536@item compat
7fa9e1f9
SH
537Determines the qcow2 version to use. @code{compat=0.10} uses the
538traditional image format that can be read by any QEMU since 0.10.
d3067b02 539@code{compat=1.1} enables image format extensions that only QEMU 1.1 and
7fa9e1f9
SH
540newer understand (this is the default). Amongst others, this includes
541zero clusters, which allow efficient copy-on-read for sparse images.
d3067b02
KW
542
543@item backing_file
544File name of a base image (see @option{create} subcommand)
545@item backing_fmt
546Image format of the base image
547@item encryption
136cd19d 548If this option is set to @code{on}, the image is encrypted with 128-bit AES-CBC.
d3067b02 549
136cd19d
DB
550The use of encryption in qcow and qcow2 images is considered to be flawed by
551modern cryptography standards, suffering from a number of design problems:
552
553@itemize @minus
554@item The AES-CBC cipher is used with predictable initialization vectors based
555on the sector number. This makes it vulnerable to chosen plaintext attacks
556which can reveal the existence of encrypted data.
557@item The user passphrase is directly used as the encryption key. A poorly
558chosen or short passphrase will compromise the security of the encryption.
559@item In the event of the passphrase being compromised there is no way to
560change the passphrase to protect data in any qcow images. The files must
561be cloned, using a different encryption passphrase in the new file. The
562original file must then be securely erased using a program like shred,
563though even this is ineffective with many modern storage technologies.
564@end itemize
565
a1f688f4
MA
566Use of qcow / qcow2 encryption with QEMU is deprecated, and support for
567it will go away in a future release. Users are recommended to use an
568alternative encryption technology such as the Linux dm-crypt / LUKS
569system.
d3067b02
KW
570
571@item cluster_size
572Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster
573sizes can improve the image file size whereas larger cluster sizes generally
574provide better performance.
575
576@item preallocation
0e4271b7
HT
577Preallocation mode (allowed values: @code{off}, @code{metadata}, @code{falloc},
578@code{full}). An image with preallocated metadata is initially larger but can
579improve performance when the image needs to grow. @code{falloc} and @code{full}
580preallocations are like the same options of @code{raw} format, but sets up
581metadata also.
d3067b02
KW
582
583@item lazy_refcounts
584If this option is set to @code{on}, reference count updates are postponed with
585the goal of avoiding metadata I/O and improving performance. This is
586particularly interesting with @option{cache=writethrough} which doesn't batch
587metadata updates. The tradeoff is that after a host crash, the reference count
588tables must be rebuilt, i.e. on the next open an (automatic) @code{qemu-img
589check -r all} is required, which may take some time.
590
591This option can only be enabled if @code{compat=1.1} is specified.
592
4ab15590 593@item nocow
bc3a7f90 594If this option is set to @code{on}, it will turn off COW of the file. It's only
4ab15590
CL
595valid on btrfs, no effect on other file systems.
596
597Btrfs has low performance when hosting a VM image file, even more when the guest
598on the VM also using btrfs as file system. Turning off COW is a way to mitigate
599this bad performance. Generally there are two ways to turn off COW on btrfs:
600a) Disable it by mounting with nodatacow, then all newly created files will be
601NOCOW. b) For an empty file, add the NOCOW file attribute. That's what this option
602does.
603
604Note: this option is only valid to new or empty files. If there is an existing
605file which is COW and has data blocks already, it couldn't be changed to NOCOW
606by setting @code{nocow=on}. One can issue @code{lsattr filename} to check if
bc3a7f90 607the NOCOW flag is set or not (Capital 'C' is NOCOW flag).
4ab15590 608
d3067b02
KW
609@end table
610
611@item qed
612Old QEMU image format with support for backing files and compact image files
613(when your filesystem or transport medium does not support holes).
614
615When converting QED images to qcow2, you might want to consider using the
616@code{lazy_refcounts=on} option to get a more QED-like behaviour.
617
618Supported options:
619@table @code
620@item backing_file
621File name of a base image (see @option{create} subcommand).
622@item backing_fmt
623Image file format of backing file (optional). Useful if the format cannot be
624autodetected because it has no header, like some vhd/vpc files.
625@item cluster_size
626Changes the cluster size (must be power-of-2 between 4K and 64K). Smaller
627cluster sizes can improve the image file size whereas larger cluster sizes
628generally provide better performance.
629@item table_size
630Changes the number of clusters per L1/L2 table (must be power-of-2 between 1
631and 16). There is normally no need to change this value but this option can be
632used for performance benchmarking.
633@end table
634
635@item qcow
636Old QEMU image format with support for backing files, compact image files,
637encryption and compression.
638
639Supported options:
640@table @code
641@item backing_file
642File name of a base image (see @option{create} subcommand)
643@item encryption
644If this option is set to @code{on}, the image is encrypted.
645@end table
646
d3067b02
KW
647@item vdi
648VirtualBox 1.1 compatible image format.
649Supported options:
650@table @code
651@item static
652If this option is set to @code{on}, the image is created with metadata
653preallocation.
654@end table
655
656@item vmdk
657VMware 3 and 4 compatible image format.
658
659Supported options:
660@table @code
661@item backing_file
662File name of a base image (see @option{create} subcommand).
663@item compat6
664Create a VMDK version 6 image (instead of version 4)
f249924e
JK
665@item hwversion
666Specify vmdk virtual hardware version. Compat6 flag cannot be enabled
667if hwversion is specified.
d3067b02
KW
668@item subformat
669Specifies which VMDK subformat to use. Valid options are
670@code{monolithicSparse} (default),
671@code{monolithicFlat},
672@code{twoGbMaxExtentSparse},
673@code{twoGbMaxExtentFlat} and
674@code{streamOptimized}.
675@end table
676
677@item vpc
678VirtualPC compatible image format (VHD).
679Supported options:
680@table @code
681@item subformat
682Specifies which VHD subformat to use. Valid options are
683@code{dynamic} (default) and @code{fixed}.
684@end table
8282db1b
JC
685
686@item VHDX
687Hyper-V compatible image format (VHDX).
688Supported options:
689@table @code
690@item subformat
691Specifies which VHDX subformat to use. Valid options are
692@code{dynamic} (default) and @code{fixed}.
693@item block_state_zero
30af51ce
JC
694Force use of payload blocks of type 'ZERO'. Can be set to @code{on} (default)
695or @code{off}. When set to @code{off}, new blocks will be created as
696@code{PAYLOAD_BLOCK_NOT_PRESENT}, which means parsers are free to return
697arbitrary data for those blocks. Do not set to @code{off} when using
698@code{qemu-img convert} with @code{subformat=dynamic}.
8282db1b
JC
699@item block_size
700Block size; min 1 MB, max 256 MB. 0 means auto-calculate based on image size.
701@item log_size
702Log size; min 1 MB.
703@end table
d3067b02
KW
704@end table
705
706@subsubsection Read-only formats
707More disk image file formats are supported in a read-only mode.
708@table @option
709@item bochs
710Bochs images of @code{growing} type.
711@item cloop
712Linux Compressed Loop image, useful only to reuse directly compressed
713CD-ROM images present for example in the Knoppix CD-ROMs.
714@item dmg
715Apple disk image.
716@item parallels
717Parallels disk image format.
718@end table
719
720
19cb3738
FB
721@node host_drives
722@subsection Using host drives
723
724In addition to disk image files, QEMU can directly access host
725devices. We describe here the usage for QEMU version >= 0.8.3.
726
727@subsubsection Linux
728
729On Linux, you can directly use the host device filename instead of a
4be456f1 730disk image filename provided you have enough privileges to access
92a539d2 731it. For example, use @file{/dev/cdrom} to access to the CDROM.
19cb3738 732
f542086d 733@table @code
19cb3738
FB
734@item CD
735You can specify a CDROM device even if no CDROM is loaded. QEMU has
736specific code to detect CDROM insertion or removal. CDROM ejection by
737the guest OS is supported. Currently only data CDs are supported.
738@item Floppy
739You can specify a floppy device even if no floppy is loaded. Floppy
740removal is currently not detected accurately (if you change floppy
741without doing floppy access while the floppy is not loaded, the guest
742OS will think that the same floppy is loaded).
92a539d2
MA
743Use of the host's floppy device is deprecated, and support for it will
744be removed in a future release.
19cb3738
FB
745@item Hard disks
746Hard disks can be used. Normally you must specify the whole disk
747(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
748see it as a partitioned disk. WARNING: unless you know what you do, it
749is better to only make READ-ONLY accesses to the hard disk otherwise
750you may corrupt your host data (use the @option{-snapshot} command
751line option or modify the device permissions accordingly).
752@end table
753
754@subsubsection Windows
755
01781963
FB
756@table @code
757@item CD
4be456f1 758The preferred syntax is the drive letter (e.g. @file{d:}). The
01781963
FB
759alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
760supported as an alias to the first CDROM drive.
19cb3738 761
e598752a 762Currently there is no specific code to handle removable media, so it
19cb3738
FB
763is better to use the @code{change} or @code{eject} monitor commands to
764change or eject media.
01781963 765@item Hard disks
89dfe898 766Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
01781963
FB
767where @var{N} is the drive number (0 is the first hard disk).
768
769WARNING: unless you know what you do, it is better to only make
770READ-ONLY accesses to the hard disk otherwise you may corrupt your
771host data (use the @option{-snapshot} command line so that the
772modifications are written in a temporary file).
773@end table
774
19cb3738
FB
775
776@subsubsection Mac OS X
777
5fafdf24 778@file{/dev/cdrom} is an alias to the first CDROM.
19cb3738 779
e598752a 780Currently there is no specific code to handle removable media, so it
19cb3738
FB
781is better to use the @code{change} or @code{eject} monitor commands to
782change or eject media.
783
debc7065 784@node disk_images_fat_images
2c6cadd4
FB
785@subsection Virtual FAT disk images
786
787QEMU can automatically create a virtual FAT disk image from a
788directory tree. In order to use it, just type:
789
5fafdf24 790@example
3804da9d 791qemu-system-i386 linux.img -hdb fat:/my_directory
2c6cadd4
FB
792@end example
793
794Then you access access to all the files in the @file{/my_directory}
795directory without having to copy them in a disk image or to export
796them via SAMBA or NFS. The default access is @emph{read-only}.
797
798Floppies can be emulated with the @code{:floppy:} option:
799
5fafdf24 800@example
3804da9d 801qemu-system-i386 linux.img -fda fat:floppy:/my_directory
2c6cadd4
FB
802@end example
803
804A read/write support is available for testing (beta stage) with the
805@code{:rw:} option:
806
5fafdf24 807@example
3804da9d 808qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
2c6cadd4
FB
809@end example
810
811What you should @emph{never} do:
812@itemize
813@item use non-ASCII filenames ;
814@item use "-snapshot" together with ":rw:" ;
85b2c688
FB
815@item expect it to work when loadvm'ing ;
816@item write to the FAT directory on the host system while accessing it with the guest system.
2c6cadd4
FB
817@end itemize
818
75818250
TS
819@node disk_images_nbd
820@subsection NBD access
821
822QEMU can access directly to block device exported using the Network Block Device
823protocol.
824
825@example
1d7d2a9d 826qemu-system-i386 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/
75818250
TS
827@end example
828
829If the NBD server is located on the same host, you can use an unix socket instead
830of an inet socket:
831
832@example
1d7d2a9d 833qemu-system-i386 linux.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
834@end example
835
836In this case, the block device must be exported using qemu-nbd:
837
838@example
839qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
840@end example
841
9d85d557 842The use of qemu-nbd allows sharing of a disk between several guests:
75818250
TS
843@example
844qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
845@end example
846
1d7d2a9d 847@noindent
75818250
TS
848and then you can use it with two guests:
849@example
1d7d2a9d
PB
850qemu-system-i386 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket
851qemu-system-i386 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
852@end example
853
1d7d2a9d
PB
854If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's
855own embedded NBD server), you must specify an export name in the URI:
1d45f8b5 856@example
1d7d2a9d
PB
857qemu-system-i386 -cdrom nbd://localhost/debian-500-ppc-netinst
858qemu-system-i386 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst
859@end example
860
861The URI syntax for NBD is supported since QEMU 1.3. An alternative syntax is
862also available. Here are some example of the older syntax:
863@example
864qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
865qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
866qemu-system-i386 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst
1d45f8b5
LV
867@end example
868
42af9c30
MK
869@node disk_images_sheepdog
870@subsection Sheepdog disk images
871
872Sheepdog is a distributed storage system for QEMU. It provides highly
873available block level storage volumes that can be attached to
874QEMU-based virtual machines.
875
876You can create a Sheepdog disk image with the command:
877@example
5d6768e3 878qemu-img create sheepdog:///@var{image} @var{size}
42af9c30
MK
879@end example
880where @var{image} is the Sheepdog image name and @var{size} is its
881size.
882
883To import the existing @var{filename} to Sheepdog, you can use a
884convert command.
885@example
5d6768e3 886qemu-img convert @var{filename} sheepdog:///@var{image}
42af9c30
MK
887@end example
888
889You can boot from the Sheepdog disk image with the command:
890@example
5d6768e3 891qemu-system-i386 sheepdog:///@var{image}
42af9c30
MK
892@end example
893
894You can also create a snapshot of the Sheepdog image like qcow2.
895@example
5d6768e3 896qemu-img snapshot -c @var{tag} sheepdog:///@var{image}
42af9c30
MK
897@end example
898where @var{tag} is a tag name of the newly created snapshot.
899
900To boot from the Sheepdog snapshot, specify the tag name of the
901snapshot.
902@example
5d6768e3 903qemu-system-i386 sheepdog:///@var{image}#@var{tag}
42af9c30
MK
904@end example
905
906You can create a cloned image from the existing snapshot.
907@example
5d6768e3 908qemu-img create -b sheepdog:///@var{base}#@var{tag} sheepdog:///@var{image}
42af9c30
MK
909@end example
910where @var{base} is a image name of the source snapshot and @var{tag}
911is its tag name.
912
1b8bbb46
MK
913You can use an unix socket instead of an inet socket:
914
915@example
916qemu-system-i386 sheepdog+unix:///@var{image}?socket=@var{path}
917@end example
918
42af9c30
MK
919If the Sheepdog daemon doesn't run on the local host, you need to
920specify one of the Sheepdog servers to connect to.
921@example
5d6768e3
MK
922qemu-img create sheepdog://@var{hostname}:@var{port}/@var{image} @var{size}
923qemu-system-i386 sheepdog://@var{hostname}:@var{port}/@var{image}
42af9c30
MK
924@end example
925
00984e39
RS
926@node disk_images_iscsi
927@subsection iSCSI LUNs
928
929iSCSI is a popular protocol used to access SCSI devices across a computer
930network.
931
932There are two different ways iSCSI devices can be used by QEMU.
933
934The first method is to mount the iSCSI LUN on the host, and make it appear as
935any other ordinary SCSI device on the host and then to access this device as a
936/dev/sd device from QEMU. How to do this differs between host OSes.
937
938The second method involves using the iSCSI initiator that is built into
939QEMU. This provides a mechanism that works the same way regardless of which
940host OS you are running QEMU on. This section will describe this second method
941of using iSCSI together with QEMU.
942
943In QEMU, iSCSI devices are described using special iSCSI URLs
944
945@example
946URL syntax:
947iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
948@end example
949
950Username and password are optional and only used if your target is set up
951using CHAP authentication for access control.
952Alternatively the username and password can also be set via environment
953variables to have these not show up in the process list
954
955@example
956export LIBISCSI_CHAP_USERNAME=<username>
957export LIBISCSI_CHAP_PASSWORD=<password>
958iscsi://<host>/<target-iqn-name>/<lun>
959@end example
960
f9dadc98
RS
961Various session related parameters can be set via special options, either
962in a configuration file provided via '-readconfig' or directly on the
963command line.
964
31459f46
RS
965If the initiator-name is not specified qemu will use a default name
966of 'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the
967virtual machine.
968
969
f9dadc98
RS
970@example
971Setting a specific initiator name to use when logging in to the target
972-iscsi initiator-name=iqn.qemu.test:my-initiator
973@end example
974
975@example
976Controlling which type of header digest to negotiate with the target
977-iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
978@end example
979
980These can also be set via a configuration file
981@example
982[iscsi]
983 user = "CHAP username"
984 password = "CHAP password"
985 initiator-name = "iqn.qemu.test:my-initiator"
986 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
987 header-digest = "CRC32C"
988@end example
989
990
991Setting the target name allows different options for different targets
992@example
993[iscsi "iqn.target.name"]
994 user = "CHAP username"
995 password = "CHAP password"
996 initiator-name = "iqn.qemu.test:my-initiator"
997 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
998 header-digest = "CRC32C"
999@end example
1000
1001
1002Howto use a configuration file to set iSCSI configuration options:
1003@example
1004cat >iscsi.conf <<EOF
1005[iscsi]
1006 user = "me"
1007 password = "my password"
1008 initiator-name = "iqn.qemu.test:my-initiator"
1009 header-digest = "CRC32C"
1010EOF
1011
1012qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
1013 -readconfig iscsi.conf
1014@end example
1015
1016
00984e39
RS
1017Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
1018@example
1019This example shows how to set up an iSCSI target with one CDROM and one DISK
1020using the Linux STGT software target. This target is available on Red Hat based
1021systems as the package 'scsi-target-utils'.
1022
1023tgtd --iscsi portal=127.0.0.1:3260
1024tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
1025tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
1026 -b /IMAGES/disk.img --device-type=disk
1027tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
1028 -b /IMAGES/cd.iso --device-type=cd
1029tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
1030
f9dadc98
RS
1031qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
1032 -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
00984e39
RS
1033 -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
1034@end example
1035
8809e289
BR
1036@node disk_images_gluster
1037@subsection GlusterFS disk images
00984e39 1038
8809e289
BR
1039GlusterFS is an user space distributed file system.
1040
1041You can boot from the GlusterFS disk image with the command:
1042@example
1043qemu-system-x86_64 -drive file=gluster[+@var{transport}]://[@var{server}[:@var{port}]]/@var{volname}/@var{image}[?socket=...]
1044@end example
1045
1046@var{gluster} is the protocol.
1047
1048@var{transport} specifies the transport type used to connect to gluster
1049management daemon (glusterd). Valid transport types are
1050tcp, unix and rdma. If a transport type isn't specified, then tcp
1051type is assumed.
1052
1053@var{server} specifies the server where the volume file specification for
1054the given volume resides. This can be either hostname, ipv4 address
1055or ipv6 address. ipv6 address needs to be within square brackets [ ].
d274e07c 1056If transport type is unix, then @var{server} field should not be specified.
8809e289
BR
1057Instead @var{socket} field needs to be populated with the path to unix domain
1058socket.
1059
1060@var{port} is the port number on which glusterd is listening. This is optional
1061and if not specified, QEMU will send 0 which will make gluster to use the
1062default port. If the transport type is unix, then @var{port} should not be
1063specified.
1064
1065@var{volname} is the name of the gluster volume which contains the disk image.
1066
1067@var{image} is the path to the actual disk image that resides on gluster volume.
1068
1069You can create a GlusterFS disk image with the command:
1070@example
1071qemu-img create gluster://@var{server}/@var{volname}/@var{image} @var{size}
1072@end example
1073
1074Examples
1075@example
1076qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img
1077qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img
1078qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img
1079qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img
1080qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img
1081qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img
1082qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket
1083qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img
1084@end example
00984e39 1085
0a12ec87
RJ
1086@node disk_images_ssh
1087@subsection Secure Shell (ssh) disk images
1088
1089You can access disk images located on a remote ssh server
1090by using the ssh protocol:
1091
1092@example
1093qemu-system-x86_64 -drive file=ssh://[@var{user}@@]@var{server}[:@var{port}]/@var{path}[?host_key_check=@var{host_key_check}]
1094@end example
1095
1096Alternative syntax using properties:
1097
1098@example
1099qemu-system-x86_64 -drive file.driver=ssh[,file.user=@var{user}],file.host=@var{server}[,file.port=@var{port}],file.path=@var{path}[,file.host_key_check=@var{host_key_check}]
1100@end example
1101
1102@var{ssh} is the protocol.
1103
1104@var{user} is the remote user. If not specified, then the local
1105username is tried.
1106
1107@var{server} specifies the remote ssh server. Any ssh server can be
1108used, but it must implement the sftp-server protocol. Most Unix/Linux
1109systems should work without requiring any extra configuration.
1110
1111@var{port} is the port number on which sshd is listening. By default
1112the standard ssh port (22) is used.
1113
1114@var{path} is the path to the disk image.
1115
1116The optional @var{host_key_check} parameter controls how the remote
1117host's key is checked. The default is @code{yes} which means to use
1118the local @file{.ssh/known_hosts} file. Setting this to @code{no}
1119turns off known-hosts checking. Or you can check that the host key
1120matches a specific fingerprint:
1121@code{host_key_check=md5:78:45:8e:14:57:4f:d5:45:83:0a:0e:f3:49:82:c9:c8}
1122(@code{sha1:} can also be used as a prefix, but note that OpenSSH
1123tools only use MD5 to print fingerprints).
1124
1125Currently authentication must be done using ssh-agent. Other
1126authentication methods may be supported in future.
1127
9a2d462e
RJ
1128Note: Many ssh servers do not support an @code{fsync}-style operation.
1129The ssh driver cannot guarantee that disk flush requests are
1130obeyed, and this causes a risk of disk corruption if the remote
1131server or network goes down during writes. The driver will
1132print a warning when @code{fsync} is not supported:
1133
1134warning: ssh server @code{ssh.example.com:22} does not support fsync
1135
1136With sufficiently new versions of libssh2 and OpenSSH, @code{fsync} is
1137supported.
0a12ec87 1138
debc7065 1139@node pcsys_network
9d4fb82e
FB
1140@section Network emulation
1141
4be456f1 1142QEMU can simulate several network cards (PCI or ISA cards on the PC
41d03949
FB
1143target) and can connect them to an arbitrary number of Virtual Local
1144Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1145VLAN. VLAN can be connected between separate instances of QEMU to
4be456f1 1146simulate large networks. For simpler usage, a non privileged user mode
41d03949
FB
1147network stack can replace the TAP device to have a basic network
1148connection.
1149
1150@subsection VLANs
9d4fb82e 1151
41d03949
FB
1152QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1153connection between several network devices. These devices can be for
1154example QEMU virtual Ethernet cards or virtual Host ethernet devices
1155(TAP devices).
9d4fb82e 1156
41d03949
FB
1157@subsection Using TAP network interfaces
1158
1159This is the standard way to connect QEMU to a real network. QEMU adds
1160a virtual network device on your host (called @code{tapN}), and you
1161can then configure it as if it was a real ethernet card.
9d4fb82e 1162
8f40c388
FB
1163@subsubsection Linux host
1164
9d4fb82e
FB
1165As an example, you can download the @file{linux-test-xxx.tar.gz}
1166archive and copy the script @file{qemu-ifup} in @file{/etc} and
1167configure properly @code{sudo} so that the command @code{ifconfig}
1168contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 1169that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
1170device @file{/dev/net/tun} must be present.
1171
ee0f4751
FB
1172See @ref{sec_invocation} to have examples of command lines using the
1173TAP network interfaces.
9d4fb82e 1174
8f40c388
FB
1175@subsubsection Windows host
1176
1177There is a virtual ethernet driver for Windows 2000/XP systems, called
1178TAP-Win32. But it is not included in standard QEMU for Windows,
1179so you will need to get it separately. It is part of OpenVPN package,
1180so download OpenVPN from : @url{http://openvpn.net/}.
1181
9d4fb82e
FB
1182@subsection Using the user mode network stack
1183
41d03949
FB
1184By using the option @option{-net user} (default configuration if no
1185@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 1186network stack (you don't need root privilege to use the virtual
41d03949 1187network). The virtual network configuration is the following:
9d4fb82e
FB
1188
1189@example
1190
41d03949
FB
1191 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
1192 | (10.0.2.2)
9d4fb82e 1193 |
2518bd0d 1194 ----> DNS server (10.0.2.3)
3b46e624 1195 |
2518bd0d 1196 ----> SMB server (10.0.2.4)
9d4fb82e
FB
1197@end example
1198
1199The QEMU VM behaves as if it was behind a firewall which blocks all
1200incoming connections. You can use a DHCP client to automatically
41d03949
FB
1201configure the network in the QEMU VM. The DHCP server assign addresses
1202to the hosts starting from 10.0.2.15.
9d4fb82e
FB
1203
1204In order to check that the user mode network is working, you can ping
1205the address 10.0.2.2 and verify that you got an address in the range
120610.0.2.x from the QEMU virtual DHCP server.
1207
37cbfcce
GH
1208Note that ICMP traffic in general does not work with user mode networking.
1209@code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
1210however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
1211ping sockets to allow @code{ping} to the Internet. The host admin has to set
1212the ping_group_range in order to grant access to those sockets. To allow ping
1213for GID 100 (usually users group):
1214
1215@example
1216echo 100 100 > /proc/sys/net/ipv4/ping_group_range
1217@end example
b415a407 1218
9bf05444
FB
1219When using the built-in TFTP server, the router is also the TFTP
1220server.
1221
c8c6afa8
TH
1222When using the @option{'-netdev user,hostfwd=...'} option, TCP or UDP
1223connections can be redirected from the host to the guest. It allows for
1224example to redirect X11, telnet or SSH connections.
443f1376 1225
41d03949
FB
1226@subsection Connecting VLANs between QEMU instances
1227
1228Using the @option{-net socket} option, it is possible to make VLANs
1229that span several QEMU instances. See @ref{sec_invocation} to have a
1230basic example.
1231
576fd0a1 1232@node pcsys_other_devs
6cbf4c8c
CM
1233@section Other Devices
1234
1235@subsection Inter-VM Shared Memory device
1236
5400c02b
MA
1237On Linux hosts, a shared memory device is available. The basic syntax
1238is:
6cbf4c8c
CM
1239
1240@example
5400c02b
MA
1241qemu-system-x86_64 -device ivshmem-plain,memdev=@var{hostmem}
1242@end example
1243
1244where @var{hostmem} names a host memory backend. For a POSIX shared
1245memory backend, use something like
1246
1247@example
1248-object memory-backend-file,size=1M,share,mem-path=/dev/shm/ivshmem,id=@var{hostmem}
6cbf4c8c
CM
1249@end example
1250
1251If desired, interrupts can be sent between guest VMs accessing the same shared
1252memory region. Interrupt support requires using a shared memory server and
1253using a chardev socket to connect to it. The code for the shared memory server
1254is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
1255memory server is:
1256
1257@example
a75eb03b 1258# First start the ivshmem server once and for all
50d34c4e 1259ivshmem-server -p @var{pidfile} -S @var{path} -m @var{shm-name} -l @var{shm-size} -n @var{vectors}
a75eb03b
DM
1260
1261# Then start your qemu instances with matching arguments
5400c02b 1262qemu-system-x86_64 -device ivshmem-doorbell,vectors=@var{vectors},chardev=@var{id}
50d34c4e 1263 -chardev socket,path=@var{path},id=@var{id}
6cbf4c8c
CM
1264@end example
1265
1266When using the server, the guest will be assigned a VM ID (>=0) that allows guests
1267using the same server to communicate via interrupts. Guests can read their
1309cf44 1268VM ID from a device register (see ivshmem-spec.txt).
6cbf4c8c 1269
62a830b6
MA
1270@subsubsection Migration with ivshmem
1271
5400c02b
MA
1272With device property @option{master=on}, the guest will copy the shared
1273memory on migration to the destination host. With @option{master=off},
1274the guest will not be able to migrate with the device attached. In the
1275latter case, the device should be detached and then reattached after
1276migration using the PCI hotplug support.
6cbf4c8c 1277
62a830b6
MA
1278At most one of the devices sharing the same memory can be master. The
1279master must complete migration before you plug back the other devices.
1280
7d4f4bda
MAL
1281@subsubsection ivshmem and hugepages
1282
1283Instead of specifying the <shm size> using POSIX shm, you may specify
1284a memory backend that has hugepage support:
1285
1286@example
5400c02b
MA
1287qemu-system-x86_64 -object memory-backend-file,size=1G,mem-path=/dev/hugepages/my-shmem-file,share,id=mb1
1288 -device ivshmem-plain,memdev=mb1
7d4f4bda
MAL
1289@end example
1290
1291ivshmem-server also supports hugepages mount points with the
1292@option{-m} memory path argument.
1293
9d4fb82e
FB
1294@node direct_linux_boot
1295@section Direct Linux Boot
1f673135
FB
1296
1297This section explains how to launch a Linux kernel inside QEMU without
1298having to make a full bootable image. It is very useful for fast Linux
ee0f4751 1299kernel testing.
1f673135 1300
ee0f4751 1301The syntax is:
1f673135 1302@example
3804da9d 1303qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
1304@end example
1305
ee0f4751
FB
1306Use @option{-kernel} to provide the Linux kernel image and
1307@option{-append} to give the kernel command line arguments. The
1308@option{-initrd} option can be used to provide an INITRD image.
1f673135 1309
ee0f4751
FB
1310When using the direct Linux boot, a disk image for the first hard disk
1311@file{hda} is required because its boot sector is used to launch the
1312Linux kernel.
1f673135 1313
ee0f4751
FB
1314If you do not need graphical output, you can disable it and redirect
1315the virtual serial port and the QEMU monitor to the console with the
1316@option{-nographic} option. The typical command line is:
1f673135 1317@example
3804da9d
SW
1318qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1319 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
1320@end example
1321
ee0f4751
FB
1322Use @key{Ctrl-a c} to switch between the serial console and the
1323monitor (@pxref{pcsys_keys}).
1f673135 1324
debc7065 1325@node pcsys_usb
b389dbfb
FB
1326@section USB emulation
1327
0aff66b5
PB
1328QEMU emulates a PCI UHCI USB controller. You can virtually plug
1329virtual USB devices or real host USB devices (experimental, works only
071c9394 1330on Linux hosts). QEMU will automatically create and connect virtual USB hubs
f542086d 1331as necessary to connect multiple USB devices.
b389dbfb 1332
0aff66b5
PB
1333@menu
1334* usb_devices::
1335* host_usb_devices::
1336@end menu
1337@node usb_devices
1338@subsection Connecting USB devices
b389dbfb 1339
0aff66b5
PB
1340USB devices can be connected with the @option{-usbdevice} commandline option
1341or the @code{usb_add} monitor command. Available devices are:
b389dbfb 1342
db380c06
AZ
1343@table @code
1344@item mouse
0aff66b5 1345Virtual Mouse. This will override the PS/2 mouse emulation when activated.
db380c06 1346@item tablet
c6d46c20 1347Pointer device that uses absolute coordinates (like a touchscreen).
b65ee4fa 1348This means QEMU is able to report the mouse position without having
0aff66b5 1349to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
db380c06 1350@item disk:@var{file}
0aff66b5 1351Mass storage device based on @var{file} (@pxref{disk_images})
db380c06 1352@item host:@var{bus.addr}
0aff66b5
PB
1353Pass through the host device identified by @var{bus.addr}
1354(Linux only)
db380c06 1355@item host:@var{vendor_id:product_id}
0aff66b5
PB
1356Pass through the host device identified by @var{vendor_id:product_id}
1357(Linux only)
db380c06 1358@item wacom-tablet
f6d2a316
AZ
1359Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1360above but it can be used with the tslib library because in addition to touch
1361coordinates it reports touch pressure.
db380c06 1362@item keyboard
47b2d338 1363Standard USB keyboard. Will override the PS/2 keyboard (if present).
db380c06
AZ
1364@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1365Serial converter. This emulates an FTDI FT232BM chip connected to host character
1366device @var{dev}. The available character devices are the same as for the
1367@code{-serial} option. The @code{vendorid} and @code{productid} options can be
0d6753e5 1368used to override the default 0403:6001. For instance,
db380c06
AZ
1369@example
1370usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1371@end example
1372will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1373serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
2e4d9fb1
AJ
1374@item braille
1375Braille device. This will use BrlAPI to display the braille output on a real
1376or fake device.
9ad97e65
AZ
1377@item net:@var{options}
1378Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
1379specifies NIC options as with @code{-net nic,}@var{options} (see description).
1380For instance, user-mode networking can be used with
6c9f886c 1381@example
3804da9d 1382qemu-system-i386 [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
6c9f886c
AZ
1383@end example
1384Currently this cannot be used in machines that support PCI NICs.
2d564691
AZ
1385@item bt[:@var{hci-type}]
1386Bluetooth dongle whose type is specified in the same format as with
1387the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
1388no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1389This USB device implements the USB Transport Layer of HCI. Example
1390usage:
1391@example
8485140f 1392@command{qemu-system-i386} [...@var{OPTIONS}...] @option{-usbdevice} bt:hci,vlan=3 @option{-bt} device:keyboard,vlan=3
2d564691 1393@end example
0aff66b5 1394@end table
b389dbfb 1395
0aff66b5 1396@node host_usb_devices
b389dbfb
FB
1397@subsection Using host USB devices on a Linux host
1398
1399WARNING: this is an experimental feature. QEMU will slow down when
1400using it. USB devices requiring real time streaming (i.e. USB Video
1401Cameras) are not supported yet.
1402
1403@enumerate
5fafdf24 1404@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
1405is actually using the USB device. A simple way to do that is simply to
1406disable the corresponding kernel module by renaming it from @file{mydriver.o}
1407to @file{mydriver.o.disabled}.
1408
1409@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1410@example
1411ls /proc/bus/usb
1412001 devices drivers
1413@end example
1414
1415@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1416@example
1417chown -R myuid /proc/bus/usb
1418@end example
1419
1420@item Launch QEMU and do in the monitor:
5fafdf24 1421@example
b389dbfb
FB
1422info usbhost
1423 Device 1.2, speed 480 Mb/s
1424 Class 00: USB device 1234:5678, USB DISK
1425@end example
1426You should see the list of the devices you can use (Never try to use
1427hubs, it won't work).
1428
1429@item Add the device in QEMU by using:
5fafdf24 1430@example
b389dbfb
FB
1431usb_add host:1234:5678
1432@end example
1433
1434Normally the guest OS should report that a new USB device is
1435plugged. You can use the option @option{-usbdevice} to do the same.
1436
1437@item Now you can try to use the host USB device in QEMU.
1438
1439@end enumerate
1440
1441When relaunching QEMU, you may have to unplug and plug again the USB
1442device to make it work again (this is a bug).
1443
f858dcae
TS
1444@node vnc_security
1445@section VNC security
1446
1447The VNC server capability provides access to the graphical console
1448of the guest VM across the network. This has a number of security
1449considerations depending on the deployment scenarios.
1450
1451@menu
1452* vnc_sec_none::
1453* vnc_sec_password::
1454* vnc_sec_certificate::
1455* vnc_sec_certificate_verify::
1456* vnc_sec_certificate_pw::
2f9606b3
AL
1457* vnc_sec_sasl::
1458* vnc_sec_certificate_sasl::
f858dcae 1459* vnc_generate_cert::
2f9606b3 1460* vnc_setup_sasl::
f858dcae
TS
1461@end menu
1462@node vnc_sec_none
1463@subsection Without passwords
1464
1465The simplest VNC server setup does not include any form of authentication.
1466For this setup it is recommended to restrict it to listen on a UNIX domain
1467socket only. For example
1468
1469@example
3804da9d 1470qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
f858dcae
TS
1471@end example
1472
1473This ensures that only users on local box with read/write access to that
1474path can access the VNC server. To securely access the VNC server from a
1475remote machine, a combination of netcat+ssh can be used to provide a secure
1476tunnel.
1477
1478@node vnc_sec_password
1479@subsection With passwords
1480
1481The VNC protocol has limited support for password based authentication. Since
1482the protocol limits passwords to 8 characters it should not be considered
1483to provide high security. The password can be fairly easily brute-forced by
1484a client making repeat connections. For this reason, a VNC server using password
1485authentication should be restricted to only listen on the loopback interface
0f66998f
PM
1486or UNIX domain sockets. Password authentication is not supported when operating
1487in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1488authentication is requested with the @code{password} option, and then once QEMU
1489is running the password is set with the monitor. Until the monitor is used to
1490set the password all clients will be rejected.
f858dcae
TS
1491
1492@example
3804da9d 1493qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
f858dcae
TS
1494(qemu) change vnc password
1495Password: ********
1496(qemu)
1497@end example
1498
1499@node vnc_sec_certificate
1500@subsection With x509 certificates
1501
1502The QEMU VNC server also implements the VeNCrypt extension allowing use of
1503TLS for encryption of the session, and x509 certificates for authentication.
1504The use of x509 certificates is strongly recommended, because TLS on its
1505own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1506support provides a secure session, but no authentication. This allows any
1507client to connect, and provides an encrypted session.
1508
1509@example
3804da9d 1510qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
f858dcae
TS
1511@end example
1512
1513In the above example @code{/etc/pki/qemu} should contain at least three files,
1514@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1515users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1516NB the @code{server-key.pem} file should be protected with file mode 0600 to
1517only be readable by the user owning it.
1518
1519@node vnc_sec_certificate_verify
1520@subsection With x509 certificates and client verification
1521
1522Certificates can also provide a means to authenticate the client connecting.
1523The server will request that the client provide a certificate, which it will
1524then validate against the CA certificate. This is a good choice if deploying
1525in an environment with a private internal certificate authority.
1526
1527@example
3804da9d 1528qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1529@end example
1530
1531
1532@node vnc_sec_certificate_pw
1533@subsection With x509 certificates, client verification and passwords
1534
1535Finally, the previous method can be combined with VNC password authentication
1536to provide two layers of authentication for clients.
1537
1538@example
3804da9d 1539qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1540(qemu) change vnc password
1541Password: ********
1542(qemu)
1543@end example
1544
2f9606b3
AL
1545
1546@node vnc_sec_sasl
1547@subsection With SASL authentication
1548
1549The SASL authentication method is a VNC extension, that provides an
1550easily extendable, pluggable authentication method. This allows for
1551integration with a wide range of authentication mechanisms, such as
1552PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1553The strength of the authentication depends on the exact mechanism
1554configured. If the chosen mechanism also provides a SSF layer, then
1555it will encrypt the datastream as well.
1556
1557Refer to the later docs on how to choose the exact SASL mechanism
1558used for authentication, but assuming use of one supporting SSF,
1559then QEMU can be launched with:
1560
1561@example
3804da9d 1562qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
2f9606b3
AL
1563@end example
1564
1565@node vnc_sec_certificate_sasl
1566@subsection With x509 certificates and SASL authentication
1567
1568If the desired SASL authentication mechanism does not supported
1569SSF layers, then it is strongly advised to run it in combination
1570with TLS and x509 certificates. This provides securely encrypted
1571data stream, avoiding risk of compromising of the security
1572credentials. This can be enabled, by combining the 'sasl' option
1573with the aforementioned TLS + x509 options:
1574
1575@example
3804da9d 1576qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
2f9606b3
AL
1577@end example
1578
1579
f858dcae
TS
1580@node vnc_generate_cert
1581@subsection Generating certificates for VNC
1582
1583The GNU TLS packages provides a command called @code{certtool} which can
1584be used to generate certificates and keys in PEM format. At a minimum it
40c5c6cd 1585is necessary to setup a certificate authority, and issue certificates to
f858dcae
TS
1586each server. If using certificates for authentication, then each client
1587will also need to be issued a certificate. The recommendation is for the
1588server to keep its certificates in either @code{/etc/pki/qemu} or for
1589unprivileged users in @code{$HOME/.pki/qemu}.
1590
1591@menu
1592* vnc_generate_ca::
1593* vnc_generate_server::
1594* vnc_generate_client::
1595@end menu
1596@node vnc_generate_ca
1597@subsubsection Setup the Certificate Authority
1598
1599This step only needs to be performed once per organization / organizational
1600unit. First the CA needs a private key. This key must be kept VERY secret
1601and secure. If this key is compromised the entire trust chain of the certificates
1602issued with it is lost.
1603
1604@example
1605# certtool --generate-privkey > ca-key.pem
1606@end example
1607
1608A CA needs to have a public certificate. For simplicity it can be a self-signed
1609certificate, or one issue by a commercial certificate issuing authority. To
1610generate a self-signed certificate requires one core piece of information, the
1611name of the organization.
1612
1613@example
1614# cat > ca.info <<EOF
1615cn = Name of your organization
1616ca
1617cert_signing_key
1618EOF
1619# certtool --generate-self-signed \
1620 --load-privkey ca-key.pem
1621 --template ca.info \
1622 --outfile ca-cert.pem
1623@end example
1624
1625The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1626TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1627
1628@node vnc_generate_server
1629@subsubsection Issuing server certificates
1630
1631Each server (or host) needs to be issued with a key and certificate. When connecting
1632the certificate is sent to the client which validates it against the CA certificate.
1633The core piece of information for a server certificate is the hostname. This should
1634be the fully qualified hostname that the client will connect with, since the client
1635will typically also verify the hostname in the certificate. On the host holding the
1636secure CA private key:
1637
1638@example
1639# cat > server.info <<EOF
1640organization = Name of your organization
1641cn = server.foo.example.com
1642tls_www_server
1643encryption_key
1644signing_key
1645EOF
1646# certtool --generate-privkey > server-key.pem
1647# certtool --generate-certificate \
1648 --load-ca-certificate ca-cert.pem \
1649 --load-ca-privkey ca-key.pem \
63c693f8 1650 --load-privkey server-key.pem \
f858dcae
TS
1651 --template server.info \
1652 --outfile server-cert.pem
1653@end example
1654
1655The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1656to the server for which they were generated. The @code{server-key.pem} is security
1657sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1658
1659@node vnc_generate_client
1660@subsubsection Issuing client certificates
1661
1662If the QEMU VNC server is to use the @code{x509verify} option to validate client
1663certificates as its authentication mechanism, each client also needs to be issued
1664a certificate. The client certificate contains enough metadata to uniquely identify
1665the client, typically organization, state, city, building, etc. On the host holding
1666the secure CA private key:
1667
1668@example
1669# cat > client.info <<EOF
1670country = GB
1671state = London
1672locality = London
63c693f8 1673organization = Name of your organization
f858dcae
TS
1674cn = client.foo.example.com
1675tls_www_client
1676encryption_key
1677signing_key
1678EOF
1679# certtool --generate-privkey > client-key.pem
1680# certtool --generate-certificate \
1681 --load-ca-certificate ca-cert.pem \
1682 --load-ca-privkey ca-key.pem \
1683 --load-privkey client-key.pem \
1684 --template client.info \
1685 --outfile client-cert.pem
1686@end example
1687
1688The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1689copied to the client for which they were generated.
1690
2f9606b3
AL
1691
1692@node vnc_setup_sasl
1693
1694@subsection Configuring SASL mechanisms
1695
1696The following documentation assumes use of the Cyrus SASL implementation on a
1697Linux host, but the principals should apply to any other SASL impl. When SASL
1698is enabled, the mechanism configuration will be loaded from system default
1699SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1700unprivileged user, an environment variable SASL_CONF_PATH can be used
1701to make it search alternate locations for the service config.
1702
1703The default configuration might contain
1704
1705@example
1706mech_list: digest-md5
1707sasldb_path: /etc/qemu/passwd.db
1708@end example
1709
1710This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1711Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1712in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1713command. While this mechanism is easy to configure and use, it is not
1714considered secure by modern standards, so only suitable for developers /
1715ad-hoc testing.
1716
1717A more serious deployment might use Kerberos, which is done with the 'gssapi'
1718mechanism
1719
1720@example
1721mech_list: gssapi
1722keytab: /etc/qemu/krb5.tab
1723@end example
1724
1725For this to work the administrator of your KDC must generate a Kerberos
1726principal for the server, with a name of 'qemu/somehost.example.com@@EXAMPLE.COM'
1727replacing 'somehost.example.com' with the fully qualified host name of the
40c5c6cd 1728machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
2f9606b3
AL
1729
1730Other configurations will be left as an exercise for the reader. It should
1731be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1732encryption. For all other mechanisms, VNC should always be configured to
1733use TLS and x509 certificates to protect security credentials from snooping.
1734
0806e3f6 1735@node gdb_usage
da415d54
FB
1736@section GDB usage
1737
1738QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1739'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1740
b65ee4fa 1741In order to use gdb, launch QEMU with the '-s' option. It will wait for a
da415d54
FB
1742gdb connection:
1743@example
3804da9d
SW
1744qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1745 -append "root=/dev/hda"
da415d54
FB
1746Connected to host network interface: tun0
1747Waiting gdb connection on port 1234
1748@end example
1749
1750Then launch gdb on the 'vmlinux' executable:
1751@example
1752> gdb vmlinux
1753@end example
1754
1755In gdb, connect to QEMU:
1756@example
6c9bf893 1757(gdb) target remote localhost:1234
da415d54
FB
1758@end example
1759
1760Then you can use gdb normally. For example, type 'c' to launch the kernel:
1761@example
1762(gdb) c
1763@end example
1764
0806e3f6
FB
1765Here are some useful tips in order to use gdb on system code:
1766
1767@enumerate
1768@item
1769Use @code{info reg} to display all the CPU registers.
1770@item
1771Use @code{x/10i $eip} to display the code at the PC position.
1772@item
1773Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1774@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1775@end enumerate
1776
60897d36
EI
1777Advanced debugging options:
1778
b6af0975 1779The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 1780@table @code
60897d36
EI
1781@item maintenance packet qqemu.sstepbits
1782
1783This will display the MASK bits used to control the single stepping IE:
1784@example
1785(gdb) maintenance packet qqemu.sstepbits
1786sending: "qqemu.sstepbits"
1787received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1788@end example
1789@item maintenance packet qqemu.sstep
1790
1791This will display the current value of the mask used when single stepping IE:
1792@example
1793(gdb) maintenance packet qqemu.sstep
1794sending: "qqemu.sstep"
1795received: "0x7"
1796@end example
1797@item maintenance packet Qqemu.sstep=HEX_VALUE
1798
1799This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1800@example
1801(gdb) maintenance packet Qqemu.sstep=0x5
1802sending: "qemu.sstep=0x5"
1803received: "OK"
1804@end example
94d45e44 1805@end table
60897d36 1806
debc7065 1807@node pcsys_os_specific
1a084f3d
FB
1808@section Target OS specific information
1809
1810@subsection Linux
1811
15a34c63
FB
1812To have access to SVGA graphic modes under X11, use the @code{vesa} or
1813the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1814color depth in the guest and the host OS.
1a084f3d 1815
e3371e62
FB
1816When using a 2.6 guest Linux kernel, you should add the option
1817@code{clock=pit} on the kernel command line because the 2.6 Linux
1818kernels make very strict real time clock checks by default that QEMU
1819cannot simulate exactly.
1820
7c3fc84d
FB
1821When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1822not activated because QEMU is slower with this patch. The QEMU
1823Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1824Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1825patch by default. Newer kernels don't have it.
1826
1a084f3d
FB
1827@subsection Windows
1828
1829If you have a slow host, using Windows 95 is better as it gives the
1830best speed. Windows 2000 is also a good choice.
1831
e3371e62
FB
1832@subsubsection SVGA graphic modes support
1833
1834QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1835card. All Windows versions starting from Windows 95 should recognize
1836and use this graphic card. For optimal performances, use 16 bit color
1837depth in the guest and the host OS.
1a084f3d 1838
3cb0853a
FB
1839If you are using Windows XP as guest OS and if you want to use high
1840resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
18411280x1024x16), then you should use the VESA VBE virtual graphic card
1842(option @option{-std-vga}).
1843
e3371e62
FB
1844@subsubsection CPU usage reduction
1845
1846Windows 9x does not correctly use the CPU HLT
15a34c63
FB
1847instruction. The result is that it takes host CPU cycles even when
1848idle. You can install the utility from
1849@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1850problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 1851
9d0a8e6f 1852@subsubsection Windows 2000 disk full problem
e3371e62 1853
9d0a8e6f
FB
1854Windows 2000 has a bug which gives a disk full problem during its
1855installation. When installing it, use the @option{-win2k-hack} QEMU
1856option to enable a specific workaround. After Windows 2000 is
1857installed, you no longer need this option (this option slows down the
1858IDE transfers).
e3371e62 1859
6cc721cf
FB
1860@subsubsection Windows 2000 shutdown
1861
1862Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1863can. It comes from the fact that Windows 2000 does not automatically
1864use the APM driver provided by the BIOS.
1865
1866In order to correct that, do the following (thanks to Struan
1867Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1868Add/Troubleshoot a device => Add a new device & Next => No, select the
1869hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1870(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 1871correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
1872
1873@subsubsection Share a directory between Unix and Windows
1874
c8c6afa8
TH
1875See @ref{sec_invocation} about the help of the option
1876@option{'-netdev user,smb=...'}.
6cc721cf 1877
2192c332 1878@subsubsection Windows XP security problem
e3371e62
FB
1879
1880Some releases of Windows XP install correctly but give a security
1881error when booting:
1882@example
1883A problem is preventing Windows from accurately checking the
1884license for this computer. Error code: 0x800703e6.
1885@end example
e3371e62 1886
2192c332
FB
1887The workaround is to install a service pack for XP after a boot in safe
1888mode. Then reboot, and the problem should go away. Since there is no
1889network while in safe mode, its recommended to download the full
1890installation of SP1 or SP2 and transfer that via an ISO or using the
1891vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 1892
a0a821a4
FB
1893@subsection MS-DOS and FreeDOS
1894
1895@subsubsection CPU usage reduction
1896
1897DOS does not correctly use the CPU HLT instruction. The result is that
1898it takes host CPU cycles even when idle. You can install the utility
1899from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1900problem.
1901
debc7065 1902@node QEMU System emulator for non PC targets
3f9f3aa1
FB
1903@chapter QEMU System emulator for non PC targets
1904
1905QEMU is a generic emulator and it emulates many non PC
1906machines. Most of the options are similar to the PC emulator. The
4be456f1 1907differences are mentioned in the following sections.
3f9f3aa1 1908
debc7065 1909@menu
7544a042 1910* PowerPC System emulator::
24d4de45
TS
1911* Sparc32 System emulator::
1912* Sparc64 System emulator::
1913* MIPS System emulator::
1914* ARM System emulator::
1915* ColdFire System emulator::
7544a042
SW
1916* Cris System emulator::
1917* Microblaze System emulator::
1918* SH4 System emulator::
3aeaea65 1919* Xtensa System emulator::
debc7065
FB
1920@end menu
1921
7544a042
SW
1922@node PowerPC System emulator
1923@section PowerPC System emulator
1924@cindex system emulation (PowerPC)
1a084f3d 1925
15a34c63
FB
1926Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1927or PowerMac PowerPC system.
1a084f3d 1928
b671f9ed 1929QEMU emulates the following PowerMac peripherals:
1a084f3d 1930
15a34c63 1931@itemize @minus
5fafdf24 1932@item
006f3a48 1933UniNorth or Grackle PCI Bridge
15a34c63
FB
1934@item
1935PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1936@item
15a34c63 19372 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 1938@item
15a34c63
FB
1939NE2000 PCI adapters
1940@item
1941Non Volatile RAM
1942@item
1943VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
1944@end itemize
1945
b671f9ed 1946QEMU emulates the following PREP peripherals:
52c00a5f
FB
1947
1948@itemize @minus
5fafdf24 1949@item
15a34c63
FB
1950PCI Bridge
1951@item
1952PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1953@item
52c00a5f
FB
19542 IDE interfaces with hard disk and CD-ROM support
1955@item
1956Floppy disk
5fafdf24 1957@item
15a34c63 1958NE2000 network adapters
52c00a5f
FB
1959@item
1960Serial port
1961@item
1962PREP Non Volatile RAM
15a34c63
FB
1963@item
1964PC compatible keyboard and mouse.
52c00a5f
FB
1965@end itemize
1966
15a34c63 1967QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 1968@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 1969
992e5acd 1970Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
006f3a48
BS
1971for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1972v2) portable firmware implementation. The goal is to implement a 100%
1973IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 1974
15a34c63
FB
1975@c man begin OPTIONS
1976
1977The following options are specific to the PowerPC emulation:
1978
1979@table @option
1980
4e257e5e 1981@item -g @var{W}x@var{H}[x@var{DEPTH}]
15a34c63 1982
340fb41b 1983Set the initial VGA graphic mode. The default is 800x600x32.
15a34c63 1984
4e257e5e 1985@item -prom-env @var{string}
95efd11c
BS
1986
1987Set OpenBIOS variables in NVRAM, for example:
1988
1989@example
1990qemu-system-ppc -prom-env 'auto-boot?=false' \
1991 -prom-env 'boot-device=hd:2,\yaboot' \
1992 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1993@end example
1994
1995These variables are not used by Open Hack'Ware.
1996
15a34c63
FB
1997@end table
1998
5fafdf24 1999@c man end
15a34c63
FB
2000
2001
52c00a5f 2002More information is available at
3f9f3aa1 2003@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 2004
24d4de45
TS
2005@node Sparc32 System emulator
2006@section Sparc32 System emulator
7544a042 2007@cindex system emulation (Sparc32)
e80cfcfc 2008
34a3d239
BS
2009Use the executable @file{qemu-system-sparc} to simulate the following
2010Sun4m architecture machines:
2011@itemize @minus
2012@item
2013SPARCstation 4
2014@item
2015SPARCstation 5
2016@item
2017SPARCstation 10
2018@item
2019SPARCstation 20
2020@item
2021SPARCserver 600MP
2022@item
2023SPARCstation LX
2024@item
2025SPARCstation Voyager
2026@item
2027SPARCclassic
2028@item
2029SPARCbook
2030@end itemize
2031
2032The emulation is somewhat complete. SMP up to 16 CPUs is supported,
2033but Linux limits the number of usable CPUs to 4.
e80cfcfc 2034
6a4e1771 2035QEMU emulates the following sun4m peripherals:
e80cfcfc
FB
2036
2037@itemize @minus
3475187d 2038@item
6a4e1771 2039IOMMU
e80cfcfc 2040@item
33632788 2041TCX or cgthree Frame buffer
5fafdf24 2042@item
e80cfcfc
FB
2043Lance (Am7990) Ethernet
2044@item
34a3d239 2045Non Volatile RAM M48T02/M48T08
e80cfcfc 2046@item
3475187d
FB
2047Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2048and power/reset logic
2049@item
2050ESP SCSI controller with hard disk and CD-ROM support
2051@item
6a3b9cc9 2052Floppy drive (not on SS-600MP)
a2502b58
BS
2053@item
2054CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
2055@end itemize
2056
6a3b9cc9
BS
2057The number of peripherals is fixed in the architecture. Maximum
2058memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 2059others 2047MB.
3475187d 2060
30a604f3 2061Since version 0.8.2, QEMU uses OpenBIOS
0986ac3b
FB
2062@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2063firmware implementation. The goal is to implement a 100% IEEE
20641275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
2065
2066A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239 2067the QEMU web site. There are still issues with NetBSD and OpenBSD, but
9bb9f217 2068most kernel versions work. Please note that currently older Solaris kernels
34a3d239
BS
2069don't work probably due to interface issues between OpenBIOS and
2070Solaris.
3475187d
FB
2071
2072@c man begin OPTIONS
2073
a2502b58 2074The following options are specific to the Sparc32 emulation:
3475187d
FB
2075
2076@table @option
2077
4e257e5e 2078@item -g @var{W}x@var{H}x[x@var{DEPTH}]
3475187d 2079
33632788
MCA
2080Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
2081option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
2082of 1152x900x8 for people who wish to use OBP.
3475187d 2083
4e257e5e 2084@item -prom-env @var{string}
66508601
BS
2085
2086Set OpenBIOS variables in NVRAM, for example:
2087
2088@example
2089qemu-system-sparc -prom-env 'auto-boot?=false' \
2090 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2091@end example
2092
6a4e1771 2093@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
a2502b58
BS
2094
2095Set the emulated machine type. Default is SS-5.
2096
3475187d
FB
2097@end table
2098
5fafdf24 2099@c man end
3475187d 2100
24d4de45
TS
2101@node Sparc64 System emulator
2102@section Sparc64 System emulator
7544a042 2103@cindex system emulation (Sparc64)
e80cfcfc 2104
34a3d239
BS
2105Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2106(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
9bb9f217
MCA
2107Niagara (T1) machine. The Sun4u emulator is mostly complete, being
2108able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The
2109Sun4v and Niagara emulators are still a work in progress.
b756921a 2110
c7ba218d 2111QEMU emulates the following peripherals:
83469015
FB
2112
2113@itemize @minus
2114@item
5fafdf24 2115UltraSparc IIi APB PCI Bridge
83469015
FB
2116@item
2117PCI VGA compatible card with VESA Bochs Extensions
2118@item
34a3d239
BS
2119PS/2 mouse and keyboard
2120@item
83469015
FB
2121Non Volatile RAM M48T59
2122@item
2123PC-compatible serial ports
c7ba218d
BS
2124@item
21252 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
2126@item
2127Floppy disk
83469015
FB
2128@end itemize
2129
c7ba218d
BS
2130@c man begin OPTIONS
2131
2132The following options are specific to the Sparc64 emulation:
2133
2134@table @option
2135
4e257e5e 2136@item -prom-env @var{string}
34a3d239
BS
2137
2138Set OpenBIOS variables in NVRAM, for example:
2139
2140@example
2141qemu-system-sparc64 -prom-env 'auto-boot?=false'
2142@end example
2143
2144@item -M [sun4u|sun4v|Niagara]
c7ba218d
BS
2145
2146Set the emulated machine type. The default is sun4u.
2147
2148@end table
2149
2150@c man end
2151
24d4de45
TS
2152@node MIPS System emulator
2153@section MIPS System emulator
7544a042 2154@cindex system emulation (MIPS)
9d0a8e6f 2155
d9aedc32
TS
2156Four executables cover simulation of 32 and 64-bit MIPS systems in
2157both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2158@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 2159Five different machine types are emulated:
24d4de45
TS
2160
2161@itemize @minus
2162@item
2163A generic ISA PC-like machine "mips"
2164@item
2165The MIPS Malta prototype board "malta"
2166@item
d9aedc32 2167An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 2168@item
f0fc6f8f 2169MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
2170@item
2171A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
2172@end itemize
2173
2174The generic emulation is supported by Debian 'Etch' and is able to
2175install Debian into a virtual disk image. The following devices are
2176emulated:
3f9f3aa1
FB
2177
2178@itemize @minus
5fafdf24 2179@item
6bf5b4e8 2180A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
2181@item
2182PC style serial port
2183@item
24d4de45
TS
2184PC style IDE disk
2185@item
3f9f3aa1
FB
2186NE2000 network card
2187@end itemize
2188
24d4de45
TS
2189The Malta emulation supports the following devices:
2190
2191@itemize @minus
2192@item
0b64d008 2193Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
2194@item
2195PIIX4 PCI/USB/SMbus controller
2196@item
2197The Multi-I/O chip's serial device
2198@item
3a2eeac0 2199PCI network cards (PCnet32 and others)
24d4de45
TS
2200@item
2201Malta FPGA serial device
2202@item
1f605a76 2203Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
2204@end itemize
2205
2206The ACER Pica emulation supports:
2207
2208@itemize @minus
2209@item
2210MIPS R4000 CPU
2211@item
2212PC-style IRQ and DMA controllers
2213@item
2214PC Keyboard
2215@item
2216IDE controller
2217@end itemize
3f9f3aa1 2218
b5e4946f 2219The mipssim pseudo board emulation provides an environment similar
f0fc6f8f
TS
2220to what the proprietary MIPS emulator uses for running Linux.
2221It supports:
6bf5b4e8
TS
2222
2223@itemize @minus
2224@item
2225A range of MIPS CPUs, default is the 24Kf
2226@item
2227PC style serial port
2228@item
2229MIPSnet network emulation
2230@end itemize
2231
88cb0a02
AJ
2232The MIPS Magnum R4000 emulation supports:
2233
2234@itemize @minus
2235@item
2236MIPS R4000 CPU
2237@item
2238PC-style IRQ controller
2239@item
2240PC Keyboard
2241@item
2242SCSI controller
2243@item
2244G364 framebuffer
2245@end itemize
2246
2247
24d4de45
TS
2248@node ARM System emulator
2249@section ARM System emulator
7544a042 2250@cindex system emulation (ARM)
3f9f3aa1
FB
2251
2252Use the executable @file{qemu-system-arm} to simulate a ARM
2253machine. The ARM Integrator/CP board is emulated with the following
2254devices:
2255
2256@itemize @minus
2257@item
9ee6e8bb 2258ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
2259@item
2260Two PL011 UARTs
5fafdf24 2261@item
3f9f3aa1 2262SMC 91c111 Ethernet adapter
00a9bf19
PB
2263@item
2264PL110 LCD controller
2265@item
2266PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
2267@item
2268PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
2269@end itemize
2270
2271The ARM Versatile baseboard is emulated with the following devices:
2272
2273@itemize @minus
2274@item
9ee6e8bb 2275ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
2276@item
2277PL190 Vectored Interrupt Controller
2278@item
2279Four PL011 UARTs
5fafdf24 2280@item
00a9bf19
PB
2281SMC 91c111 Ethernet adapter
2282@item
2283PL110 LCD controller
2284@item
2285PL050 KMI with PS/2 keyboard and mouse.
2286@item
2287PCI host bridge. Note the emulated PCI bridge only provides access to
2288PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
2289This means some devices (eg. ne2k_pci NIC) are not usable, and others
2290(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 2291mapped control registers.
e6de1bad
PB
2292@item
2293PCI OHCI USB controller.
2294@item
2295LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
2296@item
2297PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
2298@end itemize
2299
21a88941
PB
2300Several variants of the ARM RealView baseboard are emulated,
2301including the EB, PB-A8 and PBX-A9. Due to interactions with the
2302bootloader, only certain Linux kernel configurations work out
2303of the box on these boards.
2304
2305Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2306enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
2307should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2308disabled and expect 1024M RAM.
2309
40c5c6cd 2310The following devices are emulated:
d7739d75
PB
2311
2312@itemize @minus
2313@item
f7c70325 2314ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
d7739d75
PB
2315@item
2316ARM AMBA Generic/Distributed Interrupt Controller
2317@item
2318Four PL011 UARTs
5fafdf24 2319@item
0ef849d7 2320SMC 91c111 or SMSC LAN9118 Ethernet adapter
d7739d75
PB
2321@item
2322PL110 LCD controller
2323@item
2324PL050 KMI with PS/2 keyboard and mouse
2325@item
2326PCI host bridge
2327@item
2328PCI OHCI USB controller
2329@item
2330LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
2331@item
2332PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
2333@end itemize
2334
b00052e4
AZ
2335The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2336and "Terrier") emulation includes the following peripherals:
2337
2338@itemize @minus
2339@item
2340Intel PXA270 System-on-chip (ARM V5TE core)
2341@item
2342NAND Flash memory
2343@item
2344IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2345@item
2346On-chip OHCI USB controller
2347@item
2348On-chip LCD controller
2349@item
2350On-chip Real Time Clock
2351@item
2352TI ADS7846 touchscreen controller on SSP bus
2353@item
2354Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2355@item
2356GPIO-connected keyboard controller and LEDs
2357@item
549444e1 2358Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
2359@item
2360Three on-chip UARTs
2361@item
2362WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2363@end itemize
2364
02645926
AZ
2365The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2366following elements:
2367
2368@itemize @minus
2369@item
2370Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2371@item
2372ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2373@item
2374On-chip LCD controller
2375@item
2376On-chip Real Time Clock
2377@item
2378TI TSC2102i touchscreen controller / analog-digital converter / Audio
2379CODEC, connected through MicroWire and I@math{^2}S busses
2380@item
2381GPIO-connected matrix keypad
2382@item
2383Secure Digital card connected to OMAP MMC/SD host
2384@item
2385Three on-chip UARTs
2386@end itemize
2387
c30bb264
AZ
2388Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2389emulation supports the following elements:
2390
2391@itemize @minus
2392@item
2393Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2394@item
2395RAM and non-volatile OneNAND Flash memories
2396@item
2397Display connected to EPSON remote framebuffer chip and OMAP on-chip
2398display controller and a LS041y3 MIPI DBI-C controller
2399@item
2400TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2401driven through SPI bus
2402@item
2403National Semiconductor LM8323-controlled qwerty keyboard driven
2404through I@math{^2}C bus
2405@item
2406Secure Digital card connected to OMAP MMC/SD host
2407@item
2408Three OMAP on-chip UARTs and on-chip STI debugging console
2409@item
40c5c6cd 2410A Bluetooth(R) transceiver and HCI connected to an UART
2d564691 2411@item
c30bb264
AZ
2412Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2413TUSB6010 chip - only USB host mode is supported
2414@item
2415TI TMP105 temperature sensor driven through I@math{^2}C bus
2416@item
2417TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2418@item
2419Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2420through CBUS
2421@end itemize
2422
9ee6e8bb
PB
2423The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2424devices:
2425
2426@itemize @minus
2427@item
2428Cortex-M3 CPU core.
2429@item
243064k Flash and 8k SRAM.
2431@item
2432Timers, UARTs, ADC and I@math{^2}C interface.
2433@item
2434OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2435@end itemize
2436
2437The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2438devices:
2439
2440@itemize @minus
2441@item
2442Cortex-M3 CPU core.
2443@item
2444256k Flash and 64k SRAM.
2445@item
2446Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2447@item
2448OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2449@end itemize
2450
57cd6e97
AZ
2451The Freecom MusicPal internet radio emulation includes the following
2452elements:
2453
2454@itemize @minus
2455@item
2456Marvell MV88W8618 ARM core.
2457@item
245832 MB RAM, 256 KB SRAM, 8 MB flash.
2459@item
2460Up to 2 16550 UARTs
2461@item
2462MV88W8xx8 Ethernet controller
2463@item
2464MV88W8618 audio controller, WM8750 CODEC and mixer
2465@item
e080e785 2466128×64 display with brightness control
57cd6e97
AZ
2467@item
24682 buttons, 2 navigation wheels with button function
2469@end itemize
2470
997641a8 2471The Siemens SX1 models v1 and v2 (default) basic emulation.
40c5c6cd 2472The emulation includes the following elements:
997641a8
AZ
2473
2474@itemize @minus
2475@item
2476Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2477@item
2478ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2479V1
24801 Flash of 16MB and 1 Flash of 8MB
2481V2
24821 Flash of 32MB
2483@item
2484On-chip LCD controller
2485@item
2486On-chip Real Time Clock
2487@item
2488Secure Digital card connected to OMAP MMC/SD host
2489@item
2490Three on-chip UARTs
2491@end itemize
2492
3f9f3aa1
FB
2493A Linux 2.6 test image is available on the QEMU web site. More
2494information is available in the QEMU mailing-list archive.
9d0a8e6f 2495
d2c639d6
BS
2496@c man begin OPTIONS
2497
2498The following options are specific to the ARM emulation:
2499
2500@table @option
2501
2502@item -semihosting
2503Enable semihosting syscall emulation.
2504
2505On ARM this implements the "Angel" interface.
2506
2507Note that this allows guest direct access to the host filesystem,
2508so should only be used with trusted guest OS.
2509
2510@end table
2511
24d4de45
TS
2512@node ColdFire System emulator
2513@section ColdFire System emulator
7544a042
SW
2514@cindex system emulation (ColdFire)
2515@cindex system emulation (M68K)
209a4e69
PB
2516
2517Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2518The emulator is able to boot a uClinux kernel.
707e011b
PB
2519
2520The M5208EVB emulation includes the following devices:
2521
2522@itemize @minus
5fafdf24 2523@item
707e011b
PB
2524MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2525@item
2526Three Two on-chip UARTs.
2527@item
2528Fast Ethernet Controller (FEC)
2529@end itemize
2530
2531The AN5206 emulation includes the following devices:
209a4e69
PB
2532
2533@itemize @minus
5fafdf24 2534@item
209a4e69
PB
2535MCF5206 ColdFire V2 Microprocessor.
2536@item
2537Two on-chip UARTs.
2538@end itemize
2539
d2c639d6
BS
2540@c man begin OPTIONS
2541
7544a042 2542The following options are specific to the ColdFire emulation:
d2c639d6
BS
2543
2544@table @option
2545
2546@item -semihosting
2547Enable semihosting syscall emulation.
2548
2549On M68K this implements the "ColdFire GDB" interface used by libgloss.
2550
2551Note that this allows guest direct access to the host filesystem,
2552so should only be used with trusted guest OS.
2553
2554@end table
2555
7544a042
SW
2556@node Cris System emulator
2557@section Cris System emulator
2558@cindex system emulation (Cris)
2559
2560TODO
2561
2562@node Microblaze System emulator
2563@section Microblaze System emulator
2564@cindex system emulation (Microblaze)
2565
2566TODO
2567
2568@node SH4 System emulator
2569@section SH4 System emulator
2570@cindex system emulation (SH4)
2571
2572TODO
2573
3aeaea65
MF
2574@node Xtensa System emulator
2575@section Xtensa System emulator
2576@cindex system emulation (Xtensa)
2577
2578Two executables cover simulation of both Xtensa endian options,
2579@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2580Two different machine types are emulated:
2581
2582@itemize @minus
2583@item
2584Xtensa emulator pseudo board "sim"
2585@item
2586Avnet LX60/LX110/LX200 board
2587@end itemize
2588
b5e4946f 2589The sim pseudo board emulation provides an environment similar
3aeaea65
MF
2590to one provided by the proprietary Tensilica ISS.
2591It supports:
2592
2593@itemize @minus
2594@item
2595A range of Xtensa CPUs, default is the DC232B
2596@item
2597Console and filesystem access via semihosting calls
2598@end itemize
2599
2600The Avnet LX60/LX110/LX200 emulation supports:
2601
2602@itemize @minus
2603@item
2604A range of Xtensa CPUs, default is the DC232B
2605@item
260616550 UART
2607@item
2608OpenCores 10/100 Mbps Ethernet MAC
2609@end itemize
2610
2611@c man begin OPTIONS
2612
2613The following options are specific to the Xtensa emulation:
2614
2615@table @option
2616
2617@item -semihosting
2618Enable semihosting syscall emulation.
2619
2620Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2621Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2622
2623Note that this allows guest direct access to the host filesystem,
2624so should only be used with trusted guest OS.
2625
2626@end table
5fafdf24
TS
2627@node QEMU User space emulator
2628@chapter QEMU User space emulator
83195237
FB
2629
2630@menu
2631* Supported Operating Systems ::
2632* Linux User space emulator::
84778508 2633* BSD User space emulator ::
83195237
FB
2634@end menu
2635
2636@node Supported Operating Systems
2637@section Supported Operating Systems
2638
2639The following OS are supported in user space emulation:
2640
2641@itemize @minus
2642@item
4be456f1 2643Linux (referred as qemu-linux-user)
83195237 2644@item
84778508 2645BSD (referred as qemu-bsd-user)
83195237
FB
2646@end itemize
2647
2648@node Linux User space emulator
2649@section Linux User space emulator
386405f7 2650
debc7065
FB
2651@menu
2652* Quick Start::
2653* Wine launch::
2654* Command line options::
79737e4a 2655* Other binaries::
debc7065
FB
2656@end menu
2657
2658@node Quick Start
83195237 2659@subsection Quick Start
df0f11a0 2660
1f673135 2661In order to launch a Linux process, QEMU needs the process executable
5fafdf24 2662itself and all the target (x86) dynamic libraries used by it.
386405f7 2663
1f673135 2664@itemize
386405f7 2665
1f673135
FB
2666@item On x86, you can just try to launch any process by using the native
2667libraries:
386405f7 2668
5fafdf24 2669@example
1f673135
FB
2670qemu-i386 -L / /bin/ls
2671@end example
386405f7 2672
1f673135
FB
2673@code{-L /} tells that the x86 dynamic linker must be searched with a
2674@file{/} prefix.
386405f7 2675
b65ee4fa
SW
2676@item Since QEMU is also a linux process, you can launch QEMU with
2677QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
386405f7 2678
5fafdf24 2679@example
1f673135
FB
2680qemu-i386 -L / qemu-i386 -L / /bin/ls
2681@end example
386405f7 2682
1f673135
FB
2683@item On non x86 CPUs, you need first to download at least an x86 glibc
2684(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2685@code{LD_LIBRARY_PATH} is not set:
df0f11a0 2686
1f673135 2687@example
5fafdf24 2688unset LD_LIBRARY_PATH
1f673135 2689@end example
1eb87257 2690
1f673135 2691Then you can launch the precompiled @file{ls} x86 executable:
1eb87257 2692
1f673135
FB
2693@example
2694qemu-i386 tests/i386/ls
2695@end example
4c3b5a48 2696You can look at @file{scripts/qemu-binfmt-conf.sh} so that
1f673135
FB
2697QEMU is automatically launched by the Linux kernel when you try to
2698launch x86 executables. It requires the @code{binfmt_misc} module in the
2699Linux kernel.
1eb87257 2700
1f673135
FB
2701@item The x86 version of QEMU is also included. You can try weird things such as:
2702@example
debc7065
FB
2703qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2704 /usr/local/qemu-i386/bin/ls-i386
1f673135 2705@end example
1eb20527 2706
1f673135 2707@end itemize
1eb20527 2708
debc7065 2709@node Wine launch
83195237 2710@subsection Wine launch
1eb20527 2711
1f673135 2712@itemize
386405f7 2713
1f673135
FB
2714@item Ensure that you have a working QEMU with the x86 glibc
2715distribution (see previous section). In order to verify it, you must be
2716able to do:
386405f7 2717
1f673135
FB
2718@example
2719qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2720@end example
386405f7 2721
1f673135 2722@item Download the binary x86 Wine install
5fafdf24 2723(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
386405f7 2724
1f673135 2725@item Configure Wine on your account. Look at the provided script
debc7065 2726@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1f673135 2727@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
386405f7 2728
1f673135 2729@item Then you can try the example @file{putty.exe}:
386405f7 2730
1f673135 2731@example
debc7065
FB
2732qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2733 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1f673135 2734@end example
386405f7 2735
1f673135 2736@end itemize
fd429f2f 2737
debc7065 2738@node Command line options
83195237 2739@subsection Command line options
1eb20527 2740
1f673135 2741@example
8485140f 2742@command{qemu-i386} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-cpu} @var{model}] [@option{-g} @var{port}] [@option{-B} @var{offset}] [@option{-R} @var{size}] @var{program} [@var{arguments}...]
1f673135 2743@end example
1eb20527 2744
1f673135
FB
2745@table @option
2746@item -h
2747Print the help
3b46e624 2748@item -L path
1f673135
FB
2749Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2750@item -s size
2751Set the x86 stack size in bytes (default=524288)
34a3d239 2752@item -cpu model
c8057f95 2753Select CPU model (-cpu help for list and additional feature selection)
f66724c9
SW
2754@item -E @var{var}=@var{value}
2755Set environment @var{var} to @var{value}.
2756@item -U @var{var}
2757Remove @var{var} from the environment.
379f6698
PB
2758@item -B offset
2759Offset guest address by the specified number of bytes. This is useful when
1f5c3f8c
SW
2760the address region required by guest applications is reserved on the host.
2761This option is currently only supported on some hosts.
68a1c816
PB
2762@item -R size
2763Pre-allocate a guest virtual address space of the given size (in bytes).
0d6753e5 2764"G", "M", and "k" suffixes may be used when specifying the size.
386405f7
FB
2765@end table
2766
1f673135 2767Debug options:
386405f7 2768
1f673135 2769@table @option
989b697d
PM
2770@item -d item1,...
2771Activate logging of the specified items (use '-d help' for a list of log items)
1f673135
FB
2772@item -p pagesize
2773Act as if the host page size was 'pagesize' bytes
34a3d239
BS
2774@item -g port
2775Wait gdb connection to port
1b530a6d
AJ
2776@item -singlestep
2777Run the emulation in single step mode.
1f673135 2778@end table
386405f7 2779
b01bcae6
AZ
2780Environment variables:
2781
2782@table @env
2783@item QEMU_STRACE
2784Print system calls and arguments similar to the 'strace' program
2785(NOTE: the actual 'strace' program will not work because the user
2786space emulator hasn't implemented ptrace). At the moment this is
2787incomplete. All system calls that don't have a specific argument
2788format are printed with information for six arguments. Many
2789flag-style arguments don't have decoders and will show up as numbers.
5cfdf930 2790@end table
b01bcae6 2791
79737e4a 2792@node Other binaries
83195237 2793@subsection Other binaries
79737e4a 2794
7544a042
SW
2795@cindex user mode (Alpha)
2796@command{qemu-alpha} TODO.
2797
2798@cindex user mode (ARM)
2799@command{qemu-armeb} TODO.
2800
2801@cindex user mode (ARM)
79737e4a
PB
2802@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2803binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2804configurations), and arm-uclinux bFLT format binaries.
2805
7544a042
SW
2806@cindex user mode (ColdFire)
2807@cindex user mode (M68K)
e6e5906b
PB
2808@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2809(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2810coldfire uClinux bFLT format binaries.
2811
79737e4a
PB
2812The binary format is detected automatically.
2813
7544a042
SW
2814@cindex user mode (Cris)
2815@command{qemu-cris} TODO.
2816
2817@cindex user mode (i386)
2818@command{qemu-i386} TODO.
2819@command{qemu-x86_64} TODO.
2820
2821@cindex user mode (Microblaze)
2822@command{qemu-microblaze} TODO.
2823
2824@cindex user mode (MIPS)
2825@command{qemu-mips} TODO.
2826@command{qemu-mipsel} TODO.
2827
2828@cindex user mode (PowerPC)
2829@command{qemu-ppc64abi32} TODO.
2830@command{qemu-ppc64} TODO.
2831@command{qemu-ppc} TODO.
2832
2833@cindex user mode (SH4)
2834@command{qemu-sh4eb} TODO.
2835@command{qemu-sh4} TODO.
2836
2837@cindex user mode (SPARC)
34a3d239
BS
2838@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2839
a785e42e
BS
2840@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2841(Sparc64 CPU, 32 bit ABI).
2842
2843@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2844SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2845
84778508
BS
2846@node BSD User space emulator
2847@section BSD User space emulator
2848
2849@menu
2850* BSD Status::
2851* BSD Quick Start::
2852* BSD Command line options::
2853@end menu
2854
2855@node BSD Status
2856@subsection BSD Status
2857
2858@itemize @minus
2859@item
2860target Sparc64 on Sparc64: Some trivial programs work.
2861@end itemize
2862
2863@node BSD Quick Start
2864@subsection Quick Start
2865
2866In order to launch a BSD process, QEMU needs the process executable
2867itself and all the target dynamic libraries used by it.
2868
2869@itemize
2870
2871@item On Sparc64, you can just try to launch any process by using the native
2872libraries:
2873
2874@example
2875qemu-sparc64 /bin/ls
2876@end example
2877
2878@end itemize
2879
2880@node BSD Command line options
2881@subsection Command line options
2882
2883@example
8485140f 2884@command{qemu-sparc64} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-bsd} @var{type}] @var{program} [@var{arguments}...]
84778508
BS
2885@end example
2886
2887@table @option
2888@item -h
2889Print the help
2890@item -L path
2891Set the library root path (default=/)
2892@item -s size
2893Set the stack size in bytes (default=524288)
f66724c9
SW
2894@item -ignore-environment
2895Start with an empty environment. Without this option,
40c5c6cd 2896the initial environment is a copy of the caller's environment.
f66724c9
SW
2897@item -E @var{var}=@var{value}
2898Set environment @var{var} to @var{value}.
2899@item -U @var{var}
2900Remove @var{var} from the environment.
84778508
BS
2901@item -bsd type
2902Set the type of the emulated BSD Operating system. Valid values are
2903FreeBSD, NetBSD and OpenBSD (default).
2904@end table
2905
2906Debug options:
2907
2908@table @option
989b697d
PM
2909@item -d item1,...
2910Activate logging of the specified items (use '-d help' for a list of log items)
84778508
BS
2911@item -p pagesize
2912Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
2913@item -singlestep
2914Run the emulation in single step mode.
84778508
BS
2915@end table
2916
47eacb4f 2917
7544a042
SW
2918@node License
2919@appendix License
2920
2921QEMU is a trademark of Fabrice Bellard.
2922
2923QEMU is released under the GNU General Public License (TODO: add link).
2924Parts of QEMU have specific licenses, see file LICENSE.
2925
2926TODO (refer to file LICENSE, include it, include the GPL?)
2927
debc7065 2928@node Index
7544a042
SW
2929@appendix Index
2930@menu
2931* Concept Index::
2932* Function Index::
2933* Keystroke Index::
2934* Program Index::
2935* Data Type Index::
2936* Variable Index::
2937@end menu
2938
2939@node Concept Index
2940@section Concept Index
2941This is the main index. Should we combine all keywords in one index? TODO
debc7065
FB
2942@printindex cp
2943
7544a042
SW
2944@node Function Index
2945@section Function Index
2946This index could be used for command line options and monitor functions.
2947@printindex fn
2948
2949@node Keystroke Index
2950@section Keystroke Index
2951
2952This is a list of all keystrokes which have a special function
2953in system emulation.
2954
2955@printindex ky
2956
2957@node Program Index
2958@section Program Index
2959@printindex pg
2960
2961@node Data Type Index
2962@section Data Type Index
2963
2964This index could be used for qdev device names and options.
2965
2966@printindex tp
2967
2968@node Variable Index
2969@section Variable Index
2970@printindex vr
2971
debc7065 2972@bye