]> git.proxmox.com Git - mirror_qemu.git/blame - qemu-doc.texi
qemu-tech: drop index
[mirror_qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
e080e785
SW
4
5@documentlanguage en
6@documentencoding UTF-8
7
8f40c388 8@settitle QEMU Emulator User Documentation
debc7065
FB
9@exampleindent 0
10@paragraphindent 0
11@c %**end of header
386405f7 12
a1a32b05
SW
13@ifinfo
14@direntry
15* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
16@end direntry
17@end ifinfo
18
0806e3f6 19@iftex
386405f7
FB
20@titlepage
21@sp 7
8f40c388 22@center @titlefont{QEMU Emulator}
debc7065
FB
23@sp 1
24@center @titlefont{User Documentation}
386405f7
FB
25@sp 3
26@end titlepage
0806e3f6 27@end iftex
386405f7 28
debc7065
FB
29@ifnottex
30@node Top
31@top
32
33@menu
34* Introduction::
35* Installation::
36* QEMU PC System emulator::
37* QEMU System emulator for non PC targets::
83195237 38* QEMU User space emulator::
debc7065 39* compilation:: Compilation from the sources
7544a042 40* License::
debc7065
FB
41* Index::
42@end menu
43@end ifnottex
44
45@contents
46
47@node Introduction
386405f7
FB
48@chapter Introduction
49
debc7065
FB
50@menu
51* intro_features:: Features
52@end menu
53
54@node intro_features
322d0c66 55@section Features
386405f7 56
1f673135
FB
57QEMU is a FAST! processor emulator using dynamic translation to
58achieve good emulation speed.
1eb20527
FB
59
60QEMU has two operating modes:
0806e3f6 61
d7e5edca 62@itemize
7544a042 63@cindex operating modes
0806e3f6 64
5fafdf24 65@item
7544a042 66@cindex system emulation
1f673135 67Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
68example a PC), including one or several processors and various
69peripherals. It can be used to launch different Operating Systems
70without rebooting the PC or to debug system code.
1eb20527 71
5fafdf24 72@item
7544a042 73@cindex user mode emulation
83195237
FB
74User mode emulation. In this mode, QEMU can launch
75processes compiled for one CPU on another CPU. It can be used to
1f673135
FB
76launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77to ease cross-compilation and cross-debugging.
1eb20527
FB
78
79@end itemize
80
e1b4382c 81QEMU can run without a host kernel driver and yet gives acceptable
5fafdf24 82performance.
322d0c66 83
52c00a5f
FB
84For system emulation, the following hardware targets are supported:
85@itemize
7544a042
SW
86@cindex emulated target systems
87@cindex supported target systems
9d0a8e6f 88@item PC (x86 or x86_64 processor)
3f9f3aa1 89@item ISA PC (old style PC without PCI bus)
52c00a5f 90@item PREP (PowerPC processor)
d45952a0 91@item G3 Beige PowerMac (PowerPC processor)
9d0a8e6f 92@item Mac99 PowerMac (PowerPC processor, in progress)
ee76f82e 93@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
c7ba218d 94@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
d9aedc32 95@item Malta board (32-bit and 64-bit MIPS processors)
88cb0a02 96@item MIPS Magnum (64-bit MIPS processor)
9ee6e8bb
PB
97@item ARM Integrator/CP (ARM)
98@item ARM Versatile baseboard (ARM)
0ef849d7 99@item ARM RealView Emulation/Platform baseboard (ARM)
ef4c3856 100@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
9ee6e8bb
PB
101@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
707e011b 103@item Freescale MCF5208EVB (ColdFire V2).
209a4e69 104@item Arnewsh MCF5206 evaluation board (ColdFire V2).
02645926 105@item Palm Tungsten|E PDA (OMAP310 processor)
c30bb264 106@item N800 and N810 tablets (OMAP2420 processor)
57cd6e97 107@item MusicPal (MV88W8618 ARM processor)
ef4c3856
AZ
108@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109@item Siemens SX1 smartphone (OMAP310 processor)
48c50a62
EI
110@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
111@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
3aeaea65 112@item Avnet LX60/LX110/LX200 boards (Xtensa)
52c00a5f 113@end itemize
386405f7 114
7544a042
SW
115@cindex supported user mode targets
116For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
117ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
118Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
0806e3f6 119
debc7065 120@node Installation
5b9f457a
FB
121@chapter Installation
122
15a34c63
FB
123If you want to compile QEMU yourself, see @ref{compilation}.
124
debc7065
FB
125@menu
126* install_linux:: Linux
127* install_windows:: Windows
128* install_mac:: Macintosh
129@end menu
130
131@node install_linux
1f673135 132@section Linux
7544a042 133@cindex installation (Linux)
1f673135 134
7c3fc84d
FB
135If a precompiled package is available for your distribution - you just
136have to install it. Otherwise, see @ref{compilation}.
5b9f457a 137
debc7065 138@node install_windows
1f673135 139@section Windows
7544a042 140@cindex installation (Windows)
8cd0ac2f 141
15a34c63 142Download the experimental binary installer at
debc7065 143@url{http://www.free.oszoo.org/@/download.html}.
7544a042 144TODO (no longer available)
d691f669 145
debc7065 146@node install_mac
1f673135 147@section Mac OS X
d691f669 148
15a34c63 149Download the experimental binary installer at
debc7065 150@url{http://www.free.oszoo.org/@/download.html}.
7544a042 151TODO (no longer available)
df0f11a0 152
debc7065 153@node QEMU PC System emulator
3f9f3aa1 154@chapter QEMU PC System emulator
7544a042 155@cindex system emulation (PC)
1eb20527 156
debc7065
FB
157@menu
158* pcsys_introduction:: Introduction
159* pcsys_quickstart:: Quick Start
160* sec_invocation:: Invocation
a40db1b3
PM
161* pcsys_keys:: Keys in the graphical frontends
162* mux_keys:: Keys in the character backend multiplexer
debc7065
FB
163* pcsys_monitor:: QEMU Monitor
164* disk_images:: Disk Images
165* pcsys_network:: Network emulation
576fd0a1 166* pcsys_other_devs:: Other Devices
debc7065
FB
167* direct_linux_boot:: Direct Linux Boot
168* pcsys_usb:: USB emulation
f858dcae 169* vnc_security:: VNC security
debc7065
FB
170* gdb_usage:: GDB usage
171* pcsys_os_specific:: Target OS specific information
172@end menu
173
174@node pcsys_introduction
0806e3f6
FB
175@section Introduction
176
177@c man begin DESCRIPTION
178
3f9f3aa1
FB
179The QEMU PC System emulator simulates the
180following peripherals:
0806e3f6
FB
181
182@itemize @minus
5fafdf24 183@item
15a34c63 184i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 185@item
15a34c63
FB
186Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
187extensions (hardware level, including all non standard modes).
0806e3f6
FB
188@item
189PS/2 mouse and keyboard
5fafdf24 190@item
15a34c63 1912 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
192@item
193Floppy disk
5fafdf24 194@item
3a2eeac0 195PCI and ISA network adapters
0806e3f6 196@item
05d5818c
FB
197Serial ports
198@item
23076bb3
CM
199IPMI BMC, either and internal or external one
200@item
c0fe3827
FB
201Creative SoundBlaster 16 sound card
202@item
203ENSONIQ AudioPCI ES1370 sound card
204@item
e5c9a13e
AZ
205Intel 82801AA AC97 Audio compatible sound card
206@item
7d72e762
GH
207Intel HD Audio Controller and HDA codec
208@item
2d983446 209Adlib (OPL2) - Yamaha YM3812 compatible chip
b389dbfb 210@item
26463dbc
AZ
211Gravis Ultrasound GF1 sound card
212@item
cc53d26d 213CS4231A compatible sound card
214@item
b389dbfb 215PCI UHCI USB controller and a virtual USB hub.
0806e3f6
FB
216@end itemize
217
3f9f3aa1
FB
218SMP is supported with up to 255 CPUs.
219
a8ad4159 220QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
15a34c63
FB
221VGA BIOS.
222
c0fe3827
FB
223QEMU uses YM3812 emulation by Tatsuyuki Satoh.
224
2d983446 225QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
26463dbc 226by Tibor "TS" Schütz.
423d65f4 227
1a1a0e20 228Note that, by default, GUS shares IRQ(7) with parallel ports and so
b65ee4fa 229QEMU must be told to not have parallel ports to have working GUS.
720036a5 230
231@example
3804da9d 232qemu-system-i386 dos.img -soundhw gus -parallel none
720036a5 233@end example
234
235Alternatively:
236@example
3804da9d 237qemu-system-i386 dos.img -device gus,irq=5
720036a5 238@end example
239
240Or some other unclaimed IRQ.
241
cc53d26d 242CS4231A is the chip used in Windows Sound System and GUSMAX products
243
0806e3f6
FB
244@c man end
245
debc7065 246@node pcsys_quickstart
1eb20527 247@section Quick Start
7544a042 248@cindex quick start
1eb20527 249
285dc330 250Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
251
252@example
3804da9d 253qemu-system-i386 linux.img
0806e3f6
FB
254@end example
255
256Linux should boot and give you a prompt.
257
6cc721cf 258@node sec_invocation
ec410fc9
FB
259@section Invocation
260
261@example
0806e3f6 262@c man begin SYNOPSIS
8485140f 263@command{qemu-system-i386} [@var{options}] [@var{disk_image}]
0806e3f6 264@c man end
ec410fc9
FB
265@end example
266
0806e3f6 267@c man begin OPTIONS
d2c639d6
BS
268@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
269targets do not need a disk image.
ec410fc9 270
5824d651 271@include qemu-options.texi
ec410fc9 272
3e11db9a
FB
273@c man end
274
debc7065 275@node pcsys_keys
a40db1b3 276@section Keys in the graphical frontends
3e11db9a
FB
277
278@c man begin OPTIONS
279
de1db2a1
BH
280During the graphical emulation, you can use special key combinations to change
281modes. The default key mappings are shown below, but if you use @code{-alt-grab}
282then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
283@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
284
a1b74fe8 285@table @key
f9859310 286@item Ctrl-Alt-f
7544a042 287@kindex Ctrl-Alt-f
a1b74fe8 288Toggle full screen
a0a821a4 289
d6a65ba3
JK
290@item Ctrl-Alt-+
291@kindex Ctrl-Alt-+
292Enlarge the screen
293
294@item Ctrl-Alt--
295@kindex Ctrl-Alt--
296Shrink the screen
297
c4a735f9 298@item Ctrl-Alt-u
7544a042 299@kindex Ctrl-Alt-u
c4a735f9 300Restore the screen's un-scaled dimensions
301
f9859310 302@item Ctrl-Alt-n
7544a042 303@kindex Ctrl-Alt-n
a0a821a4
FB
304Switch to virtual console 'n'. Standard console mappings are:
305@table @emph
306@item 1
307Target system display
308@item 2
309Monitor
310@item 3
311Serial port
a1b74fe8
FB
312@end table
313
f9859310 314@item Ctrl-Alt
7544a042 315@kindex Ctrl-Alt
a0a821a4
FB
316Toggle mouse and keyboard grab.
317@end table
318
7544a042
SW
319@kindex Ctrl-Up
320@kindex Ctrl-Down
321@kindex Ctrl-PageUp
322@kindex Ctrl-PageDown
3e11db9a
FB
323In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
324@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
325
a40db1b3
PM
326@c man end
327
328@node mux_keys
329@section Keys in the character backend multiplexer
330
331@c man begin OPTIONS
332
333During emulation, if you are using a character backend multiplexer
334(which is the default if you are using @option{-nographic}) then
335several commands are available via an escape sequence. These
336key sequences all start with an escape character, which is @key{Ctrl-a}
337by default, but can be changed with @option{-echr}. The list below assumes
338you're using the default.
ec410fc9
FB
339
340@table @key
a1b74fe8 341@item Ctrl-a h
7544a042 342@kindex Ctrl-a h
ec410fc9 343Print this help
3b46e624 344@item Ctrl-a x
7544a042 345@kindex Ctrl-a x
366dfc52 346Exit emulator
3b46e624 347@item Ctrl-a s
7544a042 348@kindex Ctrl-a s
1f47a922 349Save disk data back to file (if -snapshot)
20d8a3ed 350@item Ctrl-a t
7544a042 351@kindex Ctrl-a t
d2c639d6 352Toggle console timestamps
a1b74fe8 353@item Ctrl-a b
7544a042 354@kindex Ctrl-a b
1f673135 355Send break (magic sysrq in Linux)
a1b74fe8 356@item Ctrl-a c
7544a042 357@kindex Ctrl-a c
a40db1b3
PM
358Rotate between the frontends connected to the multiplexer (usually
359this switches between the monitor and the console)
a1b74fe8 360@item Ctrl-a Ctrl-a
a40db1b3
PM
361@kindex Ctrl-a Ctrl-a
362Send the escape character to the frontend
ec410fc9 363@end table
0806e3f6
FB
364@c man end
365
366@ignore
367
1f673135
FB
368@c man begin SEEALSO
369The HTML documentation of QEMU for more precise information and Linux
370user mode emulator invocation.
371@c man end
372
373@c man begin AUTHOR
374Fabrice Bellard
375@c man end
376
377@end ignore
378
debc7065 379@node pcsys_monitor
1f673135 380@section QEMU Monitor
7544a042 381@cindex QEMU monitor
1f673135
FB
382
383The QEMU monitor is used to give complex commands to the QEMU
384emulator. You can use it to:
385
386@itemize @minus
387
388@item
e598752a 389Remove or insert removable media images
89dfe898 390(such as CD-ROM or floppies).
1f673135 391
5fafdf24 392@item
1f673135
FB
393Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
394from a disk file.
395
396@item Inspect the VM state without an external debugger.
397
398@end itemize
399
400@subsection Commands
401
402The following commands are available:
403
2313086a 404@include qemu-monitor.texi
0806e3f6 405
2cd8af2d
PB
406@include qemu-monitor-info.texi
407
1f673135
FB
408@subsection Integer expressions
409
410The monitor understands integers expressions for every integer
411argument. You can use register names to get the value of specifics
412CPU registers by prefixing them with @emph{$}.
ec410fc9 413
1f47a922
FB
414@node disk_images
415@section Disk Images
416
acd935ef
FB
417Since version 0.6.1, QEMU supports many disk image formats, including
418growable disk images (their size increase as non empty sectors are
13a2e80f
FB
419written), compressed and encrypted disk images. Version 0.8.3 added
420the new qcow2 disk image format which is essential to support VM
421snapshots.
1f47a922 422
debc7065
FB
423@menu
424* disk_images_quickstart:: Quick start for disk image creation
425* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 426* vm_snapshots:: VM snapshots
debc7065 427* qemu_img_invocation:: qemu-img Invocation
975b092b 428* qemu_nbd_invocation:: qemu-nbd Invocation
665b5d0d 429* qemu_ga_invocation:: qemu-ga Invocation
d3067b02 430* disk_images_formats:: Disk image file formats
19cb3738 431* host_drives:: Using host drives
debc7065 432* disk_images_fat_images:: Virtual FAT disk images
75818250 433* disk_images_nbd:: NBD access
42af9c30 434* disk_images_sheepdog:: Sheepdog disk images
00984e39 435* disk_images_iscsi:: iSCSI LUNs
8809e289 436* disk_images_gluster:: GlusterFS disk images
0a12ec87 437* disk_images_ssh:: Secure Shell (ssh) disk images
debc7065
FB
438@end menu
439
440@node disk_images_quickstart
acd935ef
FB
441@subsection Quick start for disk image creation
442
443You can create a disk image with the command:
1f47a922 444@example
acd935ef 445qemu-img create myimage.img mysize
1f47a922 446@end example
acd935ef
FB
447where @var{myimage.img} is the disk image filename and @var{mysize} is its
448size in kilobytes. You can add an @code{M} suffix to give the size in
449megabytes and a @code{G} suffix for gigabytes.
450
debc7065 451See @ref{qemu_img_invocation} for more information.
1f47a922 452
debc7065 453@node disk_images_snapshot_mode
1f47a922
FB
454@subsection Snapshot mode
455
456If you use the option @option{-snapshot}, all disk images are
457considered as read only. When sectors in written, they are written in
458a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
459write back to the raw disk images by using the @code{commit} monitor
460command (or @key{C-a s} in the serial console).
1f47a922 461
13a2e80f
FB
462@node vm_snapshots
463@subsection VM snapshots
464
465VM snapshots are snapshots of the complete virtual machine including
466CPU state, RAM, device state and the content of all the writable
467disks. In order to use VM snapshots, you must have at least one non
468removable and writable block device using the @code{qcow2} disk image
469format. Normally this device is the first virtual hard drive.
470
471Use the monitor command @code{savevm} to create a new VM snapshot or
472replace an existing one. A human readable name can be assigned to each
19d36792 473snapshot in addition to its numerical ID.
13a2e80f
FB
474
475Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
476a VM snapshot. @code{info snapshots} lists the available snapshots
477with their associated information:
478
479@example
480(qemu) info snapshots
481Snapshot devices: hda
482Snapshot list (from hda):
483ID TAG VM SIZE DATE VM CLOCK
4841 start 41M 2006-08-06 12:38:02 00:00:14.954
4852 40M 2006-08-06 12:43:29 00:00:18.633
4863 msys 40M 2006-08-06 12:44:04 00:00:23.514
487@end example
488
489A VM snapshot is made of a VM state info (its size is shown in
490@code{info snapshots}) and a snapshot of every writable disk image.
491The VM state info is stored in the first @code{qcow2} non removable
492and writable block device. The disk image snapshots are stored in
493every disk image. The size of a snapshot in a disk image is difficult
494to evaluate and is not shown by @code{info snapshots} because the
495associated disk sectors are shared among all the snapshots to save
19d36792
FB
496disk space (otherwise each snapshot would need a full copy of all the
497disk images).
13a2e80f
FB
498
499When using the (unrelated) @code{-snapshot} option
500(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
501but they are deleted as soon as you exit QEMU.
502
503VM snapshots currently have the following known limitations:
504@itemize
5fafdf24 505@item
13a2e80f
FB
506They cannot cope with removable devices if they are removed or
507inserted after a snapshot is done.
5fafdf24 508@item
13a2e80f
FB
509A few device drivers still have incomplete snapshot support so their
510state is not saved or restored properly (in particular USB).
511@end itemize
512
acd935ef
FB
513@node qemu_img_invocation
514@subsection @code{qemu-img} Invocation
1f47a922 515
acd935ef 516@include qemu-img.texi
05efe46e 517
975b092b
TS
518@node qemu_nbd_invocation
519@subsection @code{qemu-nbd} Invocation
520
521@include qemu-nbd.texi
522
665b5d0d
MAL
523@node qemu_ga_invocation
524@subsection @code{qemu-ga} Invocation
525
526@include qemu-ga.texi
527
d3067b02
KW
528@node disk_images_formats
529@subsection Disk image file formats
530
531QEMU supports many image file formats that can be used with VMs as well as with
532any of the tools (like @code{qemu-img}). This includes the preferred formats
533raw and qcow2 as well as formats that are supported for compatibility with
534older QEMU versions or other hypervisors.
535
536Depending on the image format, different options can be passed to
537@code{qemu-img create} and @code{qemu-img convert} using the @code{-o} option.
538This section describes each format and the options that are supported for it.
539
540@table @option
541@item raw
542
543Raw disk image format. This format has the advantage of
544being simple and easily exportable to all other emulators. If your
545file system supports @emph{holes} (for example in ext2 or ext3 on
546Linux or NTFS on Windows), then only the written sectors will reserve
547space. Use @code{qemu-img info} to know the real size used by the
548image or @code{ls -ls} on Unix/Linux.
549
06247428
HT
550Supported options:
551@table @code
552@item preallocation
553Preallocation mode (allowed values: @code{off}, @code{falloc}, @code{full}).
554@code{falloc} mode preallocates space for image by calling posix_fallocate().
555@code{full} mode preallocates space for image by writing zeros to underlying
556storage.
557@end table
558
d3067b02
KW
559@item qcow2
560QEMU image format, the most versatile format. Use it to have smaller
561images (useful if your filesystem does not supports holes, for example
a1f688f4
MA
562on Windows), zlib based compression and support of multiple VM
563snapshots.
d3067b02
KW
564
565Supported options:
566@table @code
567@item compat
7fa9e1f9
SH
568Determines the qcow2 version to use. @code{compat=0.10} uses the
569traditional image format that can be read by any QEMU since 0.10.
d3067b02 570@code{compat=1.1} enables image format extensions that only QEMU 1.1 and
7fa9e1f9
SH
571newer understand (this is the default). Amongst others, this includes
572zero clusters, which allow efficient copy-on-read for sparse images.
d3067b02
KW
573
574@item backing_file
575File name of a base image (see @option{create} subcommand)
576@item backing_fmt
577Image format of the base image
578@item encryption
136cd19d 579If this option is set to @code{on}, the image is encrypted with 128-bit AES-CBC.
d3067b02 580
136cd19d
DB
581The use of encryption in qcow and qcow2 images is considered to be flawed by
582modern cryptography standards, suffering from a number of design problems:
583
584@itemize @minus
585@item The AES-CBC cipher is used with predictable initialization vectors based
586on the sector number. This makes it vulnerable to chosen plaintext attacks
587which can reveal the existence of encrypted data.
588@item The user passphrase is directly used as the encryption key. A poorly
589chosen or short passphrase will compromise the security of the encryption.
590@item In the event of the passphrase being compromised there is no way to
591change the passphrase to protect data in any qcow images. The files must
592be cloned, using a different encryption passphrase in the new file. The
593original file must then be securely erased using a program like shred,
594though even this is ineffective with many modern storage technologies.
595@end itemize
596
a1f688f4
MA
597Use of qcow / qcow2 encryption with QEMU is deprecated, and support for
598it will go away in a future release. Users are recommended to use an
599alternative encryption technology such as the Linux dm-crypt / LUKS
600system.
d3067b02
KW
601
602@item cluster_size
603Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster
604sizes can improve the image file size whereas larger cluster sizes generally
605provide better performance.
606
607@item preallocation
0e4271b7
HT
608Preallocation mode (allowed values: @code{off}, @code{metadata}, @code{falloc},
609@code{full}). An image with preallocated metadata is initially larger but can
610improve performance when the image needs to grow. @code{falloc} and @code{full}
611preallocations are like the same options of @code{raw} format, but sets up
612metadata also.
d3067b02
KW
613
614@item lazy_refcounts
615If this option is set to @code{on}, reference count updates are postponed with
616the goal of avoiding metadata I/O and improving performance. This is
617particularly interesting with @option{cache=writethrough} which doesn't batch
618metadata updates. The tradeoff is that after a host crash, the reference count
619tables must be rebuilt, i.e. on the next open an (automatic) @code{qemu-img
620check -r all} is required, which may take some time.
621
622This option can only be enabled if @code{compat=1.1} is specified.
623
4ab15590 624@item nocow
bc3a7f90 625If this option is set to @code{on}, it will turn off COW of the file. It's only
4ab15590
CL
626valid on btrfs, no effect on other file systems.
627
628Btrfs has low performance when hosting a VM image file, even more when the guest
629on the VM also using btrfs as file system. Turning off COW is a way to mitigate
630this bad performance. Generally there are two ways to turn off COW on btrfs:
631a) Disable it by mounting with nodatacow, then all newly created files will be
632NOCOW. b) For an empty file, add the NOCOW file attribute. That's what this option
633does.
634
635Note: this option is only valid to new or empty files. If there is an existing
636file which is COW and has data blocks already, it couldn't be changed to NOCOW
637by setting @code{nocow=on}. One can issue @code{lsattr filename} to check if
bc3a7f90 638the NOCOW flag is set or not (Capital 'C' is NOCOW flag).
4ab15590 639
d3067b02
KW
640@end table
641
642@item qed
643Old QEMU image format with support for backing files and compact image files
644(when your filesystem or transport medium does not support holes).
645
646When converting QED images to qcow2, you might want to consider using the
647@code{lazy_refcounts=on} option to get a more QED-like behaviour.
648
649Supported options:
650@table @code
651@item backing_file
652File name of a base image (see @option{create} subcommand).
653@item backing_fmt
654Image file format of backing file (optional). Useful if the format cannot be
655autodetected because it has no header, like some vhd/vpc files.
656@item cluster_size
657Changes the cluster size (must be power-of-2 between 4K and 64K). Smaller
658cluster sizes can improve the image file size whereas larger cluster sizes
659generally provide better performance.
660@item table_size
661Changes the number of clusters per L1/L2 table (must be power-of-2 between 1
662and 16). There is normally no need to change this value but this option can be
663used for performance benchmarking.
664@end table
665
666@item qcow
667Old QEMU image format with support for backing files, compact image files,
668encryption and compression.
669
670Supported options:
671@table @code
672@item backing_file
673File name of a base image (see @option{create} subcommand)
674@item encryption
675If this option is set to @code{on}, the image is encrypted.
676@end table
677
d3067b02
KW
678@item vdi
679VirtualBox 1.1 compatible image format.
680Supported options:
681@table @code
682@item static
683If this option is set to @code{on}, the image is created with metadata
684preallocation.
685@end table
686
687@item vmdk
688VMware 3 and 4 compatible image format.
689
690Supported options:
691@table @code
692@item backing_file
693File name of a base image (see @option{create} subcommand).
694@item compat6
695Create a VMDK version 6 image (instead of version 4)
f249924e
JK
696@item hwversion
697Specify vmdk virtual hardware version. Compat6 flag cannot be enabled
698if hwversion is specified.
d3067b02
KW
699@item subformat
700Specifies which VMDK subformat to use. Valid options are
701@code{monolithicSparse} (default),
702@code{monolithicFlat},
703@code{twoGbMaxExtentSparse},
704@code{twoGbMaxExtentFlat} and
705@code{streamOptimized}.
706@end table
707
708@item vpc
709VirtualPC compatible image format (VHD).
710Supported options:
711@table @code
712@item subformat
713Specifies which VHD subformat to use. Valid options are
714@code{dynamic} (default) and @code{fixed}.
715@end table
8282db1b
JC
716
717@item VHDX
718Hyper-V compatible image format (VHDX).
719Supported options:
720@table @code
721@item subformat
722Specifies which VHDX subformat to use. Valid options are
723@code{dynamic} (default) and @code{fixed}.
724@item block_state_zero
30af51ce
JC
725Force use of payload blocks of type 'ZERO'. Can be set to @code{on} (default)
726or @code{off}. When set to @code{off}, new blocks will be created as
727@code{PAYLOAD_BLOCK_NOT_PRESENT}, which means parsers are free to return
728arbitrary data for those blocks. Do not set to @code{off} when using
729@code{qemu-img convert} with @code{subformat=dynamic}.
8282db1b
JC
730@item block_size
731Block size; min 1 MB, max 256 MB. 0 means auto-calculate based on image size.
732@item log_size
733Log size; min 1 MB.
734@end table
d3067b02
KW
735@end table
736
737@subsubsection Read-only formats
738More disk image file formats are supported in a read-only mode.
739@table @option
740@item bochs
741Bochs images of @code{growing} type.
742@item cloop
743Linux Compressed Loop image, useful only to reuse directly compressed
744CD-ROM images present for example in the Knoppix CD-ROMs.
745@item dmg
746Apple disk image.
747@item parallels
748Parallels disk image format.
749@end table
750
751
19cb3738
FB
752@node host_drives
753@subsection Using host drives
754
755In addition to disk image files, QEMU can directly access host
756devices. We describe here the usage for QEMU version >= 0.8.3.
757
758@subsubsection Linux
759
760On Linux, you can directly use the host device filename instead of a
4be456f1 761disk image filename provided you have enough privileges to access
92a539d2 762it. For example, use @file{/dev/cdrom} to access to the CDROM.
19cb3738 763
f542086d 764@table @code
19cb3738
FB
765@item CD
766You can specify a CDROM device even if no CDROM is loaded. QEMU has
767specific code to detect CDROM insertion or removal. CDROM ejection by
768the guest OS is supported. Currently only data CDs are supported.
769@item Floppy
770You can specify a floppy device even if no floppy is loaded. Floppy
771removal is currently not detected accurately (if you change floppy
772without doing floppy access while the floppy is not loaded, the guest
773OS will think that the same floppy is loaded).
92a539d2
MA
774Use of the host's floppy device is deprecated, and support for it will
775be removed in a future release.
19cb3738
FB
776@item Hard disks
777Hard disks can be used. Normally you must specify the whole disk
778(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
779see it as a partitioned disk. WARNING: unless you know what you do, it
780is better to only make READ-ONLY accesses to the hard disk otherwise
781you may corrupt your host data (use the @option{-snapshot} command
782line option or modify the device permissions accordingly).
783@end table
784
785@subsubsection Windows
786
01781963
FB
787@table @code
788@item CD
4be456f1 789The preferred syntax is the drive letter (e.g. @file{d:}). The
01781963
FB
790alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
791supported as an alias to the first CDROM drive.
19cb3738 792
e598752a 793Currently there is no specific code to handle removable media, so it
19cb3738
FB
794is better to use the @code{change} or @code{eject} monitor commands to
795change or eject media.
01781963 796@item Hard disks
89dfe898 797Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
01781963
FB
798where @var{N} is the drive number (0 is the first hard disk).
799
800WARNING: unless you know what you do, it is better to only make
801READ-ONLY accesses to the hard disk otherwise you may corrupt your
802host data (use the @option{-snapshot} command line so that the
803modifications are written in a temporary file).
804@end table
805
19cb3738
FB
806
807@subsubsection Mac OS X
808
5fafdf24 809@file{/dev/cdrom} is an alias to the first CDROM.
19cb3738 810
e598752a 811Currently there is no specific code to handle removable media, so it
19cb3738
FB
812is better to use the @code{change} or @code{eject} monitor commands to
813change or eject media.
814
debc7065 815@node disk_images_fat_images
2c6cadd4
FB
816@subsection Virtual FAT disk images
817
818QEMU can automatically create a virtual FAT disk image from a
819directory tree. In order to use it, just type:
820
5fafdf24 821@example
3804da9d 822qemu-system-i386 linux.img -hdb fat:/my_directory
2c6cadd4
FB
823@end example
824
825Then you access access to all the files in the @file{/my_directory}
826directory without having to copy them in a disk image or to export
827them via SAMBA or NFS. The default access is @emph{read-only}.
828
829Floppies can be emulated with the @code{:floppy:} option:
830
5fafdf24 831@example
3804da9d 832qemu-system-i386 linux.img -fda fat:floppy:/my_directory
2c6cadd4
FB
833@end example
834
835A read/write support is available for testing (beta stage) with the
836@code{:rw:} option:
837
5fafdf24 838@example
3804da9d 839qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
2c6cadd4
FB
840@end example
841
842What you should @emph{never} do:
843@itemize
844@item use non-ASCII filenames ;
845@item use "-snapshot" together with ":rw:" ;
85b2c688
FB
846@item expect it to work when loadvm'ing ;
847@item write to the FAT directory on the host system while accessing it with the guest system.
2c6cadd4
FB
848@end itemize
849
75818250
TS
850@node disk_images_nbd
851@subsection NBD access
852
853QEMU can access directly to block device exported using the Network Block Device
854protocol.
855
856@example
1d7d2a9d 857qemu-system-i386 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/
75818250
TS
858@end example
859
860If the NBD server is located on the same host, you can use an unix socket instead
861of an inet socket:
862
863@example
1d7d2a9d 864qemu-system-i386 linux.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
865@end example
866
867In this case, the block device must be exported using qemu-nbd:
868
869@example
870qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
871@end example
872
9d85d557 873The use of qemu-nbd allows sharing of a disk between several guests:
75818250
TS
874@example
875qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
876@end example
877
1d7d2a9d 878@noindent
75818250
TS
879and then you can use it with two guests:
880@example
1d7d2a9d
PB
881qemu-system-i386 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket
882qemu-system-i386 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
883@end example
884
1d7d2a9d
PB
885If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's
886own embedded NBD server), you must specify an export name in the URI:
1d45f8b5 887@example
1d7d2a9d
PB
888qemu-system-i386 -cdrom nbd://localhost/debian-500-ppc-netinst
889qemu-system-i386 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst
890@end example
891
892The URI syntax for NBD is supported since QEMU 1.3. An alternative syntax is
893also available. Here are some example of the older syntax:
894@example
895qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
896qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
897qemu-system-i386 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst
1d45f8b5
LV
898@end example
899
42af9c30
MK
900@node disk_images_sheepdog
901@subsection Sheepdog disk images
902
903Sheepdog is a distributed storage system for QEMU. It provides highly
904available block level storage volumes that can be attached to
905QEMU-based virtual machines.
906
907You can create a Sheepdog disk image with the command:
908@example
5d6768e3 909qemu-img create sheepdog:///@var{image} @var{size}
42af9c30
MK
910@end example
911where @var{image} is the Sheepdog image name and @var{size} is its
912size.
913
914To import the existing @var{filename} to Sheepdog, you can use a
915convert command.
916@example
5d6768e3 917qemu-img convert @var{filename} sheepdog:///@var{image}
42af9c30
MK
918@end example
919
920You can boot from the Sheepdog disk image with the command:
921@example
5d6768e3 922qemu-system-i386 sheepdog:///@var{image}
42af9c30
MK
923@end example
924
925You can also create a snapshot of the Sheepdog image like qcow2.
926@example
5d6768e3 927qemu-img snapshot -c @var{tag} sheepdog:///@var{image}
42af9c30
MK
928@end example
929where @var{tag} is a tag name of the newly created snapshot.
930
931To boot from the Sheepdog snapshot, specify the tag name of the
932snapshot.
933@example
5d6768e3 934qemu-system-i386 sheepdog:///@var{image}#@var{tag}
42af9c30
MK
935@end example
936
937You can create a cloned image from the existing snapshot.
938@example
5d6768e3 939qemu-img create -b sheepdog:///@var{base}#@var{tag} sheepdog:///@var{image}
42af9c30
MK
940@end example
941where @var{base} is a image name of the source snapshot and @var{tag}
942is its tag name.
943
1b8bbb46
MK
944You can use an unix socket instead of an inet socket:
945
946@example
947qemu-system-i386 sheepdog+unix:///@var{image}?socket=@var{path}
948@end example
949
42af9c30
MK
950If the Sheepdog daemon doesn't run on the local host, you need to
951specify one of the Sheepdog servers to connect to.
952@example
5d6768e3
MK
953qemu-img create sheepdog://@var{hostname}:@var{port}/@var{image} @var{size}
954qemu-system-i386 sheepdog://@var{hostname}:@var{port}/@var{image}
42af9c30
MK
955@end example
956
00984e39
RS
957@node disk_images_iscsi
958@subsection iSCSI LUNs
959
960iSCSI is a popular protocol used to access SCSI devices across a computer
961network.
962
963There are two different ways iSCSI devices can be used by QEMU.
964
965The first method is to mount the iSCSI LUN on the host, and make it appear as
966any other ordinary SCSI device on the host and then to access this device as a
967/dev/sd device from QEMU. How to do this differs between host OSes.
968
969The second method involves using the iSCSI initiator that is built into
970QEMU. This provides a mechanism that works the same way regardless of which
971host OS you are running QEMU on. This section will describe this second method
972of using iSCSI together with QEMU.
973
974In QEMU, iSCSI devices are described using special iSCSI URLs
975
976@example
977URL syntax:
978iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
979@end example
980
981Username and password are optional and only used if your target is set up
982using CHAP authentication for access control.
983Alternatively the username and password can also be set via environment
984variables to have these not show up in the process list
985
986@example
987export LIBISCSI_CHAP_USERNAME=<username>
988export LIBISCSI_CHAP_PASSWORD=<password>
989iscsi://<host>/<target-iqn-name>/<lun>
990@end example
991
f9dadc98
RS
992Various session related parameters can be set via special options, either
993in a configuration file provided via '-readconfig' or directly on the
994command line.
995
31459f46
RS
996If the initiator-name is not specified qemu will use a default name
997of 'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the
998virtual machine.
999
1000
f9dadc98
RS
1001@example
1002Setting a specific initiator name to use when logging in to the target
1003-iscsi initiator-name=iqn.qemu.test:my-initiator
1004@end example
1005
1006@example
1007Controlling which type of header digest to negotiate with the target
1008-iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
1009@end example
1010
1011These can also be set via a configuration file
1012@example
1013[iscsi]
1014 user = "CHAP username"
1015 password = "CHAP password"
1016 initiator-name = "iqn.qemu.test:my-initiator"
1017 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
1018 header-digest = "CRC32C"
1019@end example
1020
1021
1022Setting the target name allows different options for different targets
1023@example
1024[iscsi "iqn.target.name"]
1025 user = "CHAP username"
1026 password = "CHAP password"
1027 initiator-name = "iqn.qemu.test:my-initiator"
1028 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
1029 header-digest = "CRC32C"
1030@end example
1031
1032
1033Howto use a configuration file to set iSCSI configuration options:
1034@example
1035cat >iscsi.conf <<EOF
1036[iscsi]
1037 user = "me"
1038 password = "my password"
1039 initiator-name = "iqn.qemu.test:my-initiator"
1040 header-digest = "CRC32C"
1041EOF
1042
1043qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
1044 -readconfig iscsi.conf
1045@end example
1046
1047
00984e39
RS
1048Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
1049@example
1050This example shows how to set up an iSCSI target with one CDROM and one DISK
1051using the Linux STGT software target. This target is available on Red Hat based
1052systems as the package 'scsi-target-utils'.
1053
1054tgtd --iscsi portal=127.0.0.1:3260
1055tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
1056tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
1057 -b /IMAGES/disk.img --device-type=disk
1058tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
1059 -b /IMAGES/cd.iso --device-type=cd
1060tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
1061
f9dadc98
RS
1062qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
1063 -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
00984e39
RS
1064 -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
1065@end example
1066
8809e289
BR
1067@node disk_images_gluster
1068@subsection GlusterFS disk images
00984e39 1069
8809e289
BR
1070GlusterFS is an user space distributed file system.
1071
1072You can boot from the GlusterFS disk image with the command:
1073@example
1074qemu-system-x86_64 -drive file=gluster[+@var{transport}]://[@var{server}[:@var{port}]]/@var{volname}/@var{image}[?socket=...]
1075@end example
1076
1077@var{gluster} is the protocol.
1078
1079@var{transport} specifies the transport type used to connect to gluster
1080management daemon (glusterd). Valid transport types are
1081tcp, unix and rdma. If a transport type isn't specified, then tcp
1082type is assumed.
1083
1084@var{server} specifies the server where the volume file specification for
1085the given volume resides. This can be either hostname, ipv4 address
1086or ipv6 address. ipv6 address needs to be within square brackets [ ].
d274e07c 1087If transport type is unix, then @var{server} field should not be specified.
8809e289
BR
1088Instead @var{socket} field needs to be populated with the path to unix domain
1089socket.
1090
1091@var{port} is the port number on which glusterd is listening. This is optional
1092and if not specified, QEMU will send 0 which will make gluster to use the
1093default port. If the transport type is unix, then @var{port} should not be
1094specified.
1095
1096@var{volname} is the name of the gluster volume which contains the disk image.
1097
1098@var{image} is the path to the actual disk image that resides on gluster volume.
1099
1100You can create a GlusterFS disk image with the command:
1101@example
1102qemu-img create gluster://@var{server}/@var{volname}/@var{image} @var{size}
1103@end example
1104
1105Examples
1106@example
1107qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img
1108qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img
1109qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img
1110qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img
1111qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img
1112qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img
1113qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket
1114qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img
1115@end example
00984e39 1116
0a12ec87
RJ
1117@node disk_images_ssh
1118@subsection Secure Shell (ssh) disk images
1119
1120You can access disk images located on a remote ssh server
1121by using the ssh protocol:
1122
1123@example
1124qemu-system-x86_64 -drive file=ssh://[@var{user}@@]@var{server}[:@var{port}]/@var{path}[?host_key_check=@var{host_key_check}]
1125@end example
1126
1127Alternative syntax using properties:
1128
1129@example
1130qemu-system-x86_64 -drive file.driver=ssh[,file.user=@var{user}],file.host=@var{server}[,file.port=@var{port}],file.path=@var{path}[,file.host_key_check=@var{host_key_check}]
1131@end example
1132
1133@var{ssh} is the protocol.
1134
1135@var{user} is the remote user. If not specified, then the local
1136username is tried.
1137
1138@var{server} specifies the remote ssh server. Any ssh server can be
1139used, but it must implement the sftp-server protocol. Most Unix/Linux
1140systems should work without requiring any extra configuration.
1141
1142@var{port} is the port number on which sshd is listening. By default
1143the standard ssh port (22) is used.
1144
1145@var{path} is the path to the disk image.
1146
1147The optional @var{host_key_check} parameter controls how the remote
1148host's key is checked. The default is @code{yes} which means to use
1149the local @file{.ssh/known_hosts} file. Setting this to @code{no}
1150turns off known-hosts checking. Or you can check that the host key
1151matches a specific fingerprint:
1152@code{host_key_check=md5:78:45:8e:14:57:4f:d5:45:83:0a:0e:f3:49:82:c9:c8}
1153(@code{sha1:} can also be used as a prefix, but note that OpenSSH
1154tools only use MD5 to print fingerprints).
1155
1156Currently authentication must be done using ssh-agent. Other
1157authentication methods may be supported in future.
1158
9a2d462e
RJ
1159Note: Many ssh servers do not support an @code{fsync}-style operation.
1160The ssh driver cannot guarantee that disk flush requests are
1161obeyed, and this causes a risk of disk corruption if the remote
1162server or network goes down during writes. The driver will
1163print a warning when @code{fsync} is not supported:
1164
1165warning: ssh server @code{ssh.example.com:22} does not support fsync
1166
1167With sufficiently new versions of libssh2 and OpenSSH, @code{fsync} is
1168supported.
0a12ec87 1169
debc7065 1170@node pcsys_network
9d4fb82e
FB
1171@section Network emulation
1172
4be456f1 1173QEMU can simulate several network cards (PCI or ISA cards on the PC
41d03949
FB
1174target) and can connect them to an arbitrary number of Virtual Local
1175Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1176VLAN. VLAN can be connected between separate instances of QEMU to
4be456f1 1177simulate large networks. For simpler usage, a non privileged user mode
41d03949
FB
1178network stack can replace the TAP device to have a basic network
1179connection.
1180
1181@subsection VLANs
9d4fb82e 1182
41d03949
FB
1183QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1184connection between several network devices. These devices can be for
1185example QEMU virtual Ethernet cards or virtual Host ethernet devices
1186(TAP devices).
9d4fb82e 1187
41d03949
FB
1188@subsection Using TAP network interfaces
1189
1190This is the standard way to connect QEMU to a real network. QEMU adds
1191a virtual network device on your host (called @code{tapN}), and you
1192can then configure it as if it was a real ethernet card.
9d4fb82e 1193
8f40c388
FB
1194@subsubsection Linux host
1195
9d4fb82e
FB
1196As an example, you can download the @file{linux-test-xxx.tar.gz}
1197archive and copy the script @file{qemu-ifup} in @file{/etc} and
1198configure properly @code{sudo} so that the command @code{ifconfig}
1199contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 1200that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
1201device @file{/dev/net/tun} must be present.
1202
ee0f4751
FB
1203See @ref{sec_invocation} to have examples of command lines using the
1204TAP network interfaces.
9d4fb82e 1205
8f40c388
FB
1206@subsubsection Windows host
1207
1208There is a virtual ethernet driver for Windows 2000/XP systems, called
1209TAP-Win32. But it is not included in standard QEMU for Windows,
1210so you will need to get it separately. It is part of OpenVPN package,
1211so download OpenVPN from : @url{http://openvpn.net/}.
1212
9d4fb82e
FB
1213@subsection Using the user mode network stack
1214
41d03949
FB
1215By using the option @option{-net user} (default configuration if no
1216@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 1217network stack (you don't need root privilege to use the virtual
41d03949 1218network). The virtual network configuration is the following:
9d4fb82e
FB
1219
1220@example
1221
41d03949
FB
1222 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
1223 | (10.0.2.2)
9d4fb82e 1224 |
2518bd0d 1225 ----> DNS server (10.0.2.3)
3b46e624 1226 |
2518bd0d 1227 ----> SMB server (10.0.2.4)
9d4fb82e
FB
1228@end example
1229
1230The QEMU VM behaves as if it was behind a firewall which blocks all
1231incoming connections. You can use a DHCP client to automatically
41d03949
FB
1232configure the network in the QEMU VM. The DHCP server assign addresses
1233to the hosts starting from 10.0.2.15.
9d4fb82e
FB
1234
1235In order to check that the user mode network is working, you can ping
1236the address 10.0.2.2 and verify that you got an address in the range
123710.0.2.x from the QEMU virtual DHCP server.
1238
37cbfcce
GH
1239Note that ICMP traffic in general does not work with user mode networking.
1240@code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
1241however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
1242ping sockets to allow @code{ping} to the Internet. The host admin has to set
1243the ping_group_range in order to grant access to those sockets. To allow ping
1244for GID 100 (usually users group):
1245
1246@example
1247echo 100 100 > /proc/sys/net/ipv4/ping_group_range
1248@end example
b415a407 1249
9bf05444
FB
1250When using the built-in TFTP server, the router is also the TFTP
1251server.
1252
c8c6afa8
TH
1253When using the @option{'-netdev user,hostfwd=...'} option, TCP or UDP
1254connections can be redirected from the host to the guest. It allows for
1255example to redirect X11, telnet or SSH connections.
443f1376 1256
41d03949
FB
1257@subsection Connecting VLANs between QEMU instances
1258
1259Using the @option{-net socket} option, it is possible to make VLANs
1260that span several QEMU instances. See @ref{sec_invocation} to have a
1261basic example.
1262
576fd0a1 1263@node pcsys_other_devs
6cbf4c8c
CM
1264@section Other Devices
1265
1266@subsection Inter-VM Shared Memory device
1267
5400c02b
MA
1268On Linux hosts, a shared memory device is available. The basic syntax
1269is:
6cbf4c8c
CM
1270
1271@example
5400c02b
MA
1272qemu-system-x86_64 -device ivshmem-plain,memdev=@var{hostmem}
1273@end example
1274
1275where @var{hostmem} names a host memory backend. For a POSIX shared
1276memory backend, use something like
1277
1278@example
1279-object memory-backend-file,size=1M,share,mem-path=/dev/shm/ivshmem,id=@var{hostmem}
6cbf4c8c
CM
1280@end example
1281
1282If desired, interrupts can be sent between guest VMs accessing the same shared
1283memory region. Interrupt support requires using a shared memory server and
1284using a chardev socket to connect to it. The code for the shared memory server
1285is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
1286memory server is:
1287
1288@example
a75eb03b 1289# First start the ivshmem server once and for all
50d34c4e 1290ivshmem-server -p @var{pidfile} -S @var{path} -m @var{shm-name} -l @var{shm-size} -n @var{vectors}
a75eb03b
DM
1291
1292# Then start your qemu instances with matching arguments
5400c02b 1293qemu-system-x86_64 -device ivshmem-doorbell,vectors=@var{vectors},chardev=@var{id}
50d34c4e 1294 -chardev socket,path=@var{path},id=@var{id}
6cbf4c8c
CM
1295@end example
1296
1297When using the server, the guest will be assigned a VM ID (>=0) that allows guests
1298using the same server to communicate via interrupts. Guests can read their
1309cf44 1299VM ID from a device register (see ivshmem-spec.txt).
6cbf4c8c 1300
62a830b6
MA
1301@subsubsection Migration with ivshmem
1302
5400c02b
MA
1303With device property @option{master=on}, the guest will copy the shared
1304memory on migration to the destination host. With @option{master=off},
1305the guest will not be able to migrate with the device attached. In the
1306latter case, the device should be detached and then reattached after
1307migration using the PCI hotplug support.
6cbf4c8c 1308
62a830b6
MA
1309At most one of the devices sharing the same memory can be master. The
1310master must complete migration before you plug back the other devices.
1311
7d4f4bda
MAL
1312@subsubsection ivshmem and hugepages
1313
1314Instead of specifying the <shm size> using POSIX shm, you may specify
1315a memory backend that has hugepage support:
1316
1317@example
5400c02b
MA
1318qemu-system-x86_64 -object memory-backend-file,size=1G,mem-path=/dev/hugepages/my-shmem-file,share,id=mb1
1319 -device ivshmem-plain,memdev=mb1
7d4f4bda
MAL
1320@end example
1321
1322ivshmem-server also supports hugepages mount points with the
1323@option{-m} memory path argument.
1324
9d4fb82e
FB
1325@node direct_linux_boot
1326@section Direct Linux Boot
1f673135
FB
1327
1328This section explains how to launch a Linux kernel inside QEMU without
1329having to make a full bootable image. It is very useful for fast Linux
ee0f4751 1330kernel testing.
1f673135 1331
ee0f4751 1332The syntax is:
1f673135 1333@example
3804da9d 1334qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
1335@end example
1336
ee0f4751
FB
1337Use @option{-kernel} to provide the Linux kernel image and
1338@option{-append} to give the kernel command line arguments. The
1339@option{-initrd} option can be used to provide an INITRD image.
1f673135 1340
ee0f4751
FB
1341When using the direct Linux boot, a disk image for the first hard disk
1342@file{hda} is required because its boot sector is used to launch the
1343Linux kernel.
1f673135 1344
ee0f4751
FB
1345If you do not need graphical output, you can disable it and redirect
1346the virtual serial port and the QEMU monitor to the console with the
1347@option{-nographic} option. The typical command line is:
1f673135 1348@example
3804da9d
SW
1349qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1350 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
1351@end example
1352
ee0f4751
FB
1353Use @key{Ctrl-a c} to switch between the serial console and the
1354monitor (@pxref{pcsys_keys}).
1f673135 1355
debc7065 1356@node pcsys_usb
b389dbfb
FB
1357@section USB emulation
1358
0aff66b5
PB
1359QEMU emulates a PCI UHCI USB controller. You can virtually plug
1360virtual USB devices or real host USB devices (experimental, works only
071c9394 1361on Linux hosts). QEMU will automatically create and connect virtual USB hubs
f542086d 1362as necessary to connect multiple USB devices.
b389dbfb 1363
0aff66b5
PB
1364@menu
1365* usb_devices::
1366* host_usb_devices::
1367@end menu
1368@node usb_devices
1369@subsection Connecting USB devices
b389dbfb 1370
0aff66b5
PB
1371USB devices can be connected with the @option{-usbdevice} commandline option
1372or the @code{usb_add} monitor command. Available devices are:
b389dbfb 1373
db380c06
AZ
1374@table @code
1375@item mouse
0aff66b5 1376Virtual Mouse. This will override the PS/2 mouse emulation when activated.
db380c06 1377@item tablet
c6d46c20 1378Pointer device that uses absolute coordinates (like a touchscreen).
b65ee4fa 1379This means QEMU is able to report the mouse position without having
0aff66b5 1380to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
db380c06 1381@item disk:@var{file}
0aff66b5 1382Mass storage device based on @var{file} (@pxref{disk_images})
db380c06 1383@item host:@var{bus.addr}
0aff66b5
PB
1384Pass through the host device identified by @var{bus.addr}
1385(Linux only)
db380c06 1386@item host:@var{vendor_id:product_id}
0aff66b5
PB
1387Pass through the host device identified by @var{vendor_id:product_id}
1388(Linux only)
db380c06 1389@item wacom-tablet
f6d2a316
AZ
1390Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1391above but it can be used with the tslib library because in addition to touch
1392coordinates it reports touch pressure.
db380c06 1393@item keyboard
47b2d338 1394Standard USB keyboard. Will override the PS/2 keyboard (if present).
db380c06
AZ
1395@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1396Serial converter. This emulates an FTDI FT232BM chip connected to host character
1397device @var{dev}. The available character devices are the same as for the
1398@code{-serial} option. The @code{vendorid} and @code{productid} options can be
0d6753e5 1399used to override the default 0403:6001. For instance,
db380c06
AZ
1400@example
1401usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1402@end example
1403will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1404serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
2e4d9fb1
AJ
1405@item braille
1406Braille device. This will use BrlAPI to display the braille output on a real
1407or fake device.
9ad97e65
AZ
1408@item net:@var{options}
1409Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
1410specifies NIC options as with @code{-net nic,}@var{options} (see description).
1411For instance, user-mode networking can be used with
6c9f886c 1412@example
3804da9d 1413qemu-system-i386 [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
6c9f886c
AZ
1414@end example
1415Currently this cannot be used in machines that support PCI NICs.
2d564691
AZ
1416@item bt[:@var{hci-type}]
1417Bluetooth dongle whose type is specified in the same format as with
1418the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
1419no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1420This USB device implements the USB Transport Layer of HCI. Example
1421usage:
1422@example
8485140f 1423@command{qemu-system-i386} [...@var{OPTIONS}...] @option{-usbdevice} bt:hci,vlan=3 @option{-bt} device:keyboard,vlan=3
2d564691 1424@end example
0aff66b5 1425@end table
b389dbfb 1426
0aff66b5 1427@node host_usb_devices
b389dbfb
FB
1428@subsection Using host USB devices on a Linux host
1429
1430WARNING: this is an experimental feature. QEMU will slow down when
1431using it. USB devices requiring real time streaming (i.e. USB Video
1432Cameras) are not supported yet.
1433
1434@enumerate
5fafdf24 1435@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
1436is actually using the USB device. A simple way to do that is simply to
1437disable the corresponding kernel module by renaming it from @file{mydriver.o}
1438to @file{mydriver.o.disabled}.
1439
1440@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1441@example
1442ls /proc/bus/usb
1443001 devices drivers
1444@end example
1445
1446@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1447@example
1448chown -R myuid /proc/bus/usb
1449@end example
1450
1451@item Launch QEMU and do in the monitor:
5fafdf24 1452@example
b389dbfb
FB
1453info usbhost
1454 Device 1.2, speed 480 Mb/s
1455 Class 00: USB device 1234:5678, USB DISK
1456@end example
1457You should see the list of the devices you can use (Never try to use
1458hubs, it won't work).
1459
1460@item Add the device in QEMU by using:
5fafdf24 1461@example
b389dbfb
FB
1462usb_add host:1234:5678
1463@end example
1464
1465Normally the guest OS should report that a new USB device is
1466plugged. You can use the option @option{-usbdevice} to do the same.
1467
1468@item Now you can try to use the host USB device in QEMU.
1469
1470@end enumerate
1471
1472When relaunching QEMU, you may have to unplug and plug again the USB
1473device to make it work again (this is a bug).
1474
f858dcae
TS
1475@node vnc_security
1476@section VNC security
1477
1478The VNC server capability provides access to the graphical console
1479of the guest VM across the network. This has a number of security
1480considerations depending on the deployment scenarios.
1481
1482@menu
1483* vnc_sec_none::
1484* vnc_sec_password::
1485* vnc_sec_certificate::
1486* vnc_sec_certificate_verify::
1487* vnc_sec_certificate_pw::
2f9606b3
AL
1488* vnc_sec_sasl::
1489* vnc_sec_certificate_sasl::
f858dcae 1490* vnc_generate_cert::
2f9606b3 1491* vnc_setup_sasl::
f858dcae
TS
1492@end menu
1493@node vnc_sec_none
1494@subsection Without passwords
1495
1496The simplest VNC server setup does not include any form of authentication.
1497For this setup it is recommended to restrict it to listen on a UNIX domain
1498socket only. For example
1499
1500@example
3804da9d 1501qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
f858dcae
TS
1502@end example
1503
1504This ensures that only users on local box with read/write access to that
1505path can access the VNC server. To securely access the VNC server from a
1506remote machine, a combination of netcat+ssh can be used to provide a secure
1507tunnel.
1508
1509@node vnc_sec_password
1510@subsection With passwords
1511
1512The VNC protocol has limited support for password based authentication. Since
1513the protocol limits passwords to 8 characters it should not be considered
1514to provide high security. The password can be fairly easily brute-forced by
1515a client making repeat connections. For this reason, a VNC server using password
1516authentication should be restricted to only listen on the loopback interface
0f66998f
PM
1517or UNIX domain sockets. Password authentication is not supported when operating
1518in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1519authentication is requested with the @code{password} option, and then once QEMU
1520is running the password is set with the monitor. Until the monitor is used to
1521set the password all clients will be rejected.
f858dcae
TS
1522
1523@example
3804da9d 1524qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
f858dcae
TS
1525(qemu) change vnc password
1526Password: ********
1527(qemu)
1528@end example
1529
1530@node vnc_sec_certificate
1531@subsection With x509 certificates
1532
1533The QEMU VNC server also implements the VeNCrypt extension allowing use of
1534TLS for encryption of the session, and x509 certificates for authentication.
1535The use of x509 certificates is strongly recommended, because TLS on its
1536own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1537support provides a secure session, but no authentication. This allows any
1538client to connect, and provides an encrypted session.
1539
1540@example
3804da9d 1541qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
f858dcae
TS
1542@end example
1543
1544In the above example @code{/etc/pki/qemu} should contain at least three files,
1545@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1546users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1547NB the @code{server-key.pem} file should be protected with file mode 0600 to
1548only be readable by the user owning it.
1549
1550@node vnc_sec_certificate_verify
1551@subsection With x509 certificates and client verification
1552
1553Certificates can also provide a means to authenticate the client connecting.
1554The server will request that the client provide a certificate, which it will
1555then validate against the CA certificate. This is a good choice if deploying
1556in an environment with a private internal certificate authority.
1557
1558@example
3804da9d 1559qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1560@end example
1561
1562
1563@node vnc_sec_certificate_pw
1564@subsection With x509 certificates, client verification and passwords
1565
1566Finally, the previous method can be combined with VNC password authentication
1567to provide two layers of authentication for clients.
1568
1569@example
3804da9d 1570qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1571(qemu) change vnc password
1572Password: ********
1573(qemu)
1574@end example
1575
2f9606b3
AL
1576
1577@node vnc_sec_sasl
1578@subsection With SASL authentication
1579
1580The SASL authentication method is a VNC extension, that provides an
1581easily extendable, pluggable authentication method. This allows for
1582integration with a wide range of authentication mechanisms, such as
1583PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1584The strength of the authentication depends on the exact mechanism
1585configured. If the chosen mechanism also provides a SSF layer, then
1586it will encrypt the datastream as well.
1587
1588Refer to the later docs on how to choose the exact SASL mechanism
1589used for authentication, but assuming use of one supporting SSF,
1590then QEMU can be launched with:
1591
1592@example
3804da9d 1593qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
2f9606b3
AL
1594@end example
1595
1596@node vnc_sec_certificate_sasl
1597@subsection With x509 certificates and SASL authentication
1598
1599If the desired SASL authentication mechanism does not supported
1600SSF layers, then it is strongly advised to run it in combination
1601with TLS and x509 certificates. This provides securely encrypted
1602data stream, avoiding risk of compromising of the security
1603credentials. This can be enabled, by combining the 'sasl' option
1604with the aforementioned TLS + x509 options:
1605
1606@example
3804da9d 1607qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
2f9606b3
AL
1608@end example
1609
1610
f858dcae
TS
1611@node vnc_generate_cert
1612@subsection Generating certificates for VNC
1613
1614The GNU TLS packages provides a command called @code{certtool} which can
1615be used to generate certificates and keys in PEM format. At a minimum it
40c5c6cd 1616is necessary to setup a certificate authority, and issue certificates to
f858dcae
TS
1617each server. If using certificates for authentication, then each client
1618will also need to be issued a certificate. The recommendation is for the
1619server to keep its certificates in either @code{/etc/pki/qemu} or for
1620unprivileged users in @code{$HOME/.pki/qemu}.
1621
1622@menu
1623* vnc_generate_ca::
1624* vnc_generate_server::
1625* vnc_generate_client::
1626@end menu
1627@node vnc_generate_ca
1628@subsubsection Setup the Certificate Authority
1629
1630This step only needs to be performed once per organization / organizational
1631unit. First the CA needs a private key. This key must be kept VERY secret
1632and secure. If this key is compromised the entire trust chain of the certificates
1633issued with it is lost.
1634
1635@example
1636# certtool --generate-privkey > ca-key.pem
1637@end example
1638
1639A CA needs to have a public certificate. For simplicity it can be a self-signed
1640certificate, or one issue by a commercial certificate issuing authority. To
1641generate a self-signed certificate requires one core piece of information, the
1642name of the organization.
1643
1644@example
1645# cat > ca.info <<EOF
1646cn = Name of your organization
1647ca
1648cert_signing_key
1649EOF
1650# certtool --generate-self-signed \
1651 --load-privkey ca-key.pem
1652 --template ca.info \
1653 --outfile ca-cert.pem
1654@end example
1655
1656The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1657TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1658
1659@node vnc_generate_server
1660@subsubsection Issuing server certificates
1661
1662Each server (or host) needs to be issued with a key and certificate. When connecting
1663the certificate is sent to the client which validates it against the CA certificate.
1664The core piece of information for a server certificate is the hostname. This should
1665be the fully qualified hostname that the client will connect with, since the client
1666will typically also verify the hostname in the certificate. On the host holding the
1667secure CA private key:
1668
1669@example
1670# cat > server.info <<EOF
1671organization = Name of your organization
1672cn = server.foo.example.com
1673tls_www_server
1674encryption_key
1675signing_key
1676EOF
1677# certtool --generate-privkey > server-key.pem
1678# certtool --generate-certificate \
1679 --load-ca-certificate ca-cert.pem \
1680 --load-ca-privkey ca-key.pem \
63c693f8 1681 --load-privkey server-key.pem \
f858dcae
TS
1682 --template server.info \
1683 --outfile server-cert.pem
1684@end example
1685
1686The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1687to the server for which they were generated. The @code{server-key.pem} is security
1688sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1689
1690@node vnc_generate_client
1691@subsubsection Issuing client certificates
1692
1693If the QEMU VNC server is to use the @code{x509verify} option to validate client
1694certificates as its authentication mechanism, each client also needs to be issued
1695a certificate. The client certificate contains enough metadata to uniquely identify
1696the client, typically organization, state, city, building, etc. On the host holding
1697the secure CA private key:
1698
1699@example
1700# cat > client.info <<EOF
1701country = GB
1702state = London
1703locality = London
63c693f8 1704organization = Name of your organization
f858dcae
TS
1705cn = client.foo.example.com
1706tls_www_client
1707encryption_key
1708signing_key
1709EOF
1710# certtool --generate-privkey > client-key.pem
1711# certtool --generate-certificate \
1712 --load-ca-certificate ca-cert.pem \
1713 --load-ca-privkey ca-key.pem \
1714 --load-privkey client-key.pem \
1715 --template client.info \
1716 --outfile client-cert.pem
1717@end example
1718
1719The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1720copied to the client for which they were generated.
1721
2f9606b3
AL
1722
1723@node vnc_setup_sasl
1724
1725@subsection Configuring SASL mechanisms
1726
1727The following documentation assumes use of the Cyrus SASL implementation on a
1728Linux host, but the principals should apply to any other SASL impl. When SASL
1729is enabled, the mechanism configuration will be loaded from system default
1730SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1731unprivileged user, an environment variable SASL_CONF_PATH can be used
1732to make it search alternate locations for the service config.
1733
1734The default configuration might contain
1735
1736@example
1737mech_list: digest-md5
1738sasldb_path: /etc/qemu/passwd.db
1739@end example
1740
1741This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1742Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1743in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1744command. While this mechanism is easy to configure and use, it is not
1745considered secure by modern standards, so only suitable for developers /
1746ad-hoc testing.
1747
1748A more serious deployment might use Kerberos, which is done with the 'gssapi'
1749mechanism
1750
1751@example
1752mech_list: gssapi
1753keytab: /etc/qemu/krb5.tab
1754@end example
1755
1756For this to work the administrator of your KDC must generate a Kerberos
1757principal for the server, with a name of 'qemu/somehost.example.com@@EXAMPLE.COM'
1758replacing 'somehost.example.com' with the fully qualified host name of the
40c5c6cd 1759machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
2f9606b3
AL
1760
1761Other configurations will be left as an exercise for the reader. It should
1762be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1763encryption. For all other mechanisms, VNC should always be configured to
1764use TLS and x509 certificates to protect security credentials from snooping.
1765
0806e3f6 1766@node gdb_usage
da415d54
FB
1767@section GDB usage
1768
1769QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1770'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1771
b65ee4fa 1772In order to use gdb, launch QEMU with the '-s' option. It will wait for a
da415d54
FB
1773gdb connection:
1774@example
3804da9d
SW
1775qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1776 -append "root=/dev/hda"
da415d54
FB
1777Connected to host network interface: tun0
1778Waiting gdb connection on port 1234
1779@end example
1780
1781Then launch gdb on the 'vmlinux' executable:
1782@example
1783> gdb vmlinux
1784@end example
1785
1786In gdb, connect to QEMU:
1787@example
6c9bf893 1788(gdb) target remote localhost:1234
da415d54
FB
1789@end example
1790
1791Then you can use gdb normally. For example, type 'c' to launch the kernel:
1792@example
1793(gdb) c
1794@end example
1795
0806e3f6
FB
1796Here are some useful tips in order to use gdb on system code:
1797
1798@enumerate
1799@item
1800Use @code{info reg} to display all the CPU registers.
1801@item
1802Use @code{x/10i $eip} to display the code at the PC position.
1803@item
1804Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1805@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1806@end enumerate
1807
60897d36
EI
1808Advanced debugging options:
1809
b6af0975 1810The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 1811@table @code
60897d36
EI
1812@item maintenance packet qqemu.sstepbits
1813
1814This will display the MASK bits used to control the single stepping IE:
1815@example
1816(gdb) maintenance packet qqemu.sstepbits
1817sending: "qqemu.sstepbits"
1818received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1819@end example
1820@item maintenance packet qqemu.sstep
1821
1822This will display the current value of the mask used when single stepping IE:
1823@example
1824(gdb) maintenance packet qqemu.sstep
1825sending: "qqemu.sstep"
1826received: "0x7"
1827@end example
1828@item maintenance packet Qqemu.sstep=HEX_VALUE
1829
1830This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1831@example
1832(gdb) maintenance packet Qqemu.sstep=0x5
1833sending: "qemu.sstep=0x5"
1834received: "OK"
1835@end example
94d45e44 1836@end table
60897d36 1837
debc7065 1838@node pcsys_os_specific
1a084f3d
FB
1839@section Target OS specific information
1840
1841@subsection Linux
1842
15a34c63
FB
1843To have access to SVGA graphic modes under X11, use the @code{vesa} or
1844the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1845color depth in the guest and the host OS.
1a084f3d 1846
e3371e62
FB
1847When using a 2.6 guest Linux kernel, you should add the option
1848@code{clock=pit} on the kernel command line because the 2.6 Linux
1849kernels make very strict real time clock checks by default that QEMU
1850cannot simulate exactly.
1851
7c3fc84d
FB
1852When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1853not activated because QEMU is slower with this patch. The QEMU
1854Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1855Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1856patch by default. Newer kernels don't have it.
1857
1a084f3d
FB
1858@subsection Windows
1859
1860If you have a slow host, using Windows 95 is better as it gives the
1861best speed. Windows 2000 is also a good choice.
1862
e3371e62
FB
1863@subsubsection SVGA graphic modes support
1864
1865QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1866card. All Windows versions starting from Windows 95 should recognize
1867and use this graphic card. For optimal performances, use 16 bit color
1868depth in the guest and the host OS.
1a084f3d 1869
3cb0853a
FB
1870If you are using Windows XP as guest OS and if you want to use high
1871resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
18721280x1024x16), then you should use the VESA VBE virtual graphic card
1873(option @option{-std-vga}).
1874
e3371e62
FB
1875@subsubsection CPU usage reduction
1876
1877Windows 9x does not correctly use the CPU HLT
15a34c63
FB
1878instruction. The result is that it takes host CPU cycles even when
1879idle. You can install the utility from
1880@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1881problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 1882
9d0a8e6f 1883@subsubsection Windows 2000 disk full problem
e3371e62 1884
9d0a8e6f
FB
1885Windows 2000 has a bug which gives a disk full problem during its
1886installation. When installing it, use the @option{-win2k-hack} QEMU
1887option to enable a specific workaround. After Windows 2000 is
1888installed, you no longer need this option (this option slows down the
1889IDE transfers).
e3371e62 1890
6cc721cf
FB
1891@subsubsection Windows 2000 shutdown
1892
1893Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1894can. It comes from the fact that Windows 2000 does not automatically
1895use the APM driver provided by the BIOS.
1896
1897In order to correct that, do the following (thanks to Struan
1898Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1899Add/Troubleshoot a device => Add a new device & Next => No, select the
1900hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1901(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 1902correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
1903
1904@subsubsection Share a directory between Unix and Windows
1905
c8c6afa8
TH
1906See @ref{sec_invocation} about the help of the option
1907@option{'-netdev user,smb=...'}.
6cc721cf 1908
2192c332 1909@subsubsection Windows XP security problem
e3371e62
FB
1910
1911Some releases of Windows XP install correctly but give a security
1912error when booting:
1913@example
1914A problem is preventing Windows from accurately checking the
1915license for this computer. Error code: 0x800703e6.
1916@end example
e3371e62 1917
2192c332
FB
1918The workaround is to install a service pack for XP after a boot in safe
1919mode. Then reboot, and the problem should go away. Since there is no
1920network while in safe mode, its recommended to download the full
1921installation of SP1 or SP2 and transfer that via an ISO or using the
1922vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 1923
a0a821a4
FB
1924@subsection MS-DOS and FreeDOS
1925
1926@subsubsection CPU usage reduction
1927
1928DOS does not correctly use the CPU HLT instruction. The result is that
1929it takes host CPU cycles even when idle. You can install the utility
1930from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1931problem.
1932
debc7065 1933@node QEMU System emulator for non PC targets
3f9f3aa1
FB
1934@chapter QEMU System emulator for non PC targets
1935
1936QEMU is a generic emulator and it emulates many non PC
1937machines. Most of the options are similar to the PC emulator. The
4be456f1 1938differences are mentioned in the following sections.
3f9f3aa1 1939
debc7065 1940@menu
7544a042 1941* PowerPC System emulator::
24d4de45
TS
1942* Sparc32 System emulator::
1943* Sparc64 System emulator::
1944* MIPS System emulator::
1945* ARM System emulator::
1946* ColdFire System emulator::
7544a042
SW
1947* Cris System emulator::
1948* Microblaze System emulator::
1949* SH4 System emulator::
3aeaea65 1950* Xtensa System emulator::
debc7065
FB
1951@end menu
1952
7544a042
SW
1953@node PowerPC System emulator
1954@section PowerPC System emulator
1955@cindex system emulation (PowerPC)
1a084f3d 1956
15a34c63
FB
1957Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1958or PowerMac PowerPC system.
1a084f3d 1959
b671f9ed 1960QEMU emulates the following PowerMac peripherals:
1a084f3d 1961
15a34c63 1962@itemize @minus
5fafdf24 1963@item
006f3a48 1964UniNorth or Grackle PCI Bridge
15a34c63
FB
1965@item
1966PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1967@item
15a34c63 19682 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 1969@item
15a34c63
FB
1970NE2000 PCI adapters
1971@item
1972Non Volatile RAM
1973@item
1974VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
1975@end itemize
1976
b671f9ed 1977QEMU emulates the following PREP peripherals:
52c00a5f
FB
1978
1979@itemize @minus
5fafdf24 1980@item
15a34c63
FB
1981PCI Bridge
1982@item
1983PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1984@item
52c00a5f
FB
19852 IDE interfaces with hard disk and CD-ROM support
1986@item
1987Floppy disk
5fafdf24 1988@item
15a34c63 1989NE2000 network adapters
52c00a5f
FB
1990@item
1991Serial port
1992@item
1993PREP Non Volatile RAM
15a34c63
FB
1994@item
1995PC compatible keyboard and mouse.
52c00a5f
FB
1996@end itemize
1997
15a34c63 1998QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 1999@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 2000
992e5acd 2001Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
006f3a48
BS
2002for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
2003v2) portable firmware implementation. The goal is to implement a 100%
2004IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 2005
15a34c63
FB
2006@c man begin OPTIONS
2007
2008The following options are specific to the PowerPC emulation:
2009
2010@table @option
2011
4e257e5e 2012@item -g @var{W}x@var{H}[x@var{DEPTH}]
15a34c63 2013
340fb41b 2014Set the initial VGA graphic mode. The default is 800x600x32.
15a34c63 2015
4e257e5e 2016@item -prom-env @var{string}
95efd11c
BS
2017
2018Set OpenBIOS variables in NVRAM, for example:
2019
2020@example
2021qemu-system-ppc -prom-env 'auto-boot?=false' \
2022 -prom-env 'boot-device=hd:2,\yaboot' \
2023 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
2024@end example
2025
2026These variables are not used by Open Hack'Ware.
2027
15a34c63
FB
2028@end table
2029
5fafdf24 2030@c man end
15a34c63
FB
2031
2032
52c00a5f 2033More information is available at
3f9f3aa1 2034@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 2035
24d4de45
TS
2036@node Sparc32 System emulator
2037@section Sparc32 System emulator
7544a042 2038@cindex system emulation (Sparc32)
e80cfcfc 2039
34a3d239
BS
2040Use the executable @file{qemu-system-sparc} to simulate the following
2041Sun4m architecture machines:
2042@itemize @minus
2043@item
2044SPARCstation 4
2045@item
2046SPARCstation 5
2047@item
2048SPARCstation 10
2049@item
2050SPARCstation 20
2051@item
2052SPARCserver 600MP
2053@item
2054SPARCstation LX
2055@item
2056SPARCstation Voyager
2057@item
2058SPARCclassic
2059@item
2060SPARCbook
2061@end itemize
2062
2063The emulation is somewhat complete. SMP up to 16 CPUs is supported,
2064but Linux limits the number of usable CPUs to 4.
e80cfcfc 2065
6a4e1771 2066QEMU emulates the following sun4m peripherals:
e80cfcfc
FB
2067
2068@itemize @minus
3475187d 2069@item
6a4e1771 2070IOMMU
e80cfcfc 2071@item
33632788 2072TCX or cgthree Frame buffer
5fafdf24 2073@item
e80cfcfc
FB
2074Lance (Am7990) Ethernet
2075@item
34a3d239 2076Non Volatile RAM M48T02/M48T08
e80cfcfc 2077@item
3475187d
FB
2078Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2079and power/reset logic
2080@item
2081ESP SCSI controller with hard disk and CD-ROM support
2082@item
6a3b9cc9 2083Floppy drive (not on SS-600MP)
a2502b58
BS
2084@item
2085CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
2086@end itemize
2087
6a3b9cc9
BS
2088The number of peripherals is fixed in the architecture. Maximum
2089memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 2090others 2047MB.
3475187d 2091
30a604f3 2092Since version 0.8.2, QEMU uses OpenBIOS
0986ac3b
FB
2093@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2094firmware implementation. The goal is to implement a 100% IEEE
20951275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
2096
2097A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239 2098the QEMU web site. There are still issues with NetBSD and OpenBSD, but
9bb9f217 2099most kernel versions work. Please note that currently older Solaris kernels
34a3d239
BS
2100don't work probably due to interface issues between OpenBIOS and
2101Solaris.
3475187d
FB
2102
2103@c man begin OPTIONS
2104
a2502b58 2105The following options are specific to the Sparc32 emulation:
3475187d
FB
2106
2107@table @option
2108
4e257e5e 2109@item -g @var{W}x@var{H}x[x@var{DEPTH}]
3475187d 2110
33632788
MCA
2111Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
2112option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
2113of 1152x900x8 for people who wish to use OBP.
3475187d 2114
4e257e5e 2115@item -prom-env @var{string}
66508601
BS
2116
2117Set OpenBIOS variables in NVRAM, for example:
2118
2119@example
2120qemu-system-sparc -prom-env 'auto-boot?=false' \
2121 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2122@end example
2123
6a4e1771 2124@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
a2502b58
BS
2125
2126Set the emulated machine type. Default is SS-5.
2127
3475187d
FB
2128@end table
2129
5fafdf24 2130@c man end
3475187d 2131
24d4de45
TS
2132@node Sparc64 System emulator
2133@section Sparc64 System emulator
7544a042 2134@cindex system emulation (Sparc64)
e80cfcfc 2135
34a3d239
BS
2136Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2137(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
9bb9f217
MCA
2138Niagara (T1) machine. The Sun4u emulator is mostly complete, being
2139able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The
2140Sun4v and Niagara emulators are still a work in progress.
b756921a 2141
c7ba218d 2142QEMU emulates the following peripherals:
83469015
FB
2143
2144@itemize @minus
2145@item
5fafdf24 2146UltraSparc IIi APB PCI Bridge
83469015
FB
2147@item
2148PCI VGA compatible card with VESA Bochs Extensions
2149@item
34a3d239
BS
2150PS/2 mouse and keyboard
2151@item
83469015
FB
2152Non Volatile RAM M48T59
2153@item
2154PC-compatible serial ports
c7ba218d
BS
2155@item
21562 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
2157@item
2158Floppy disk
83469015
FB
2159@end itemize
2160
c7ba218d
BS
2161@c man begin OPTIONS
2162
2163The following options are specific to the Sparc64 emulation:
2164
2165@table @option
2166
4e257e5e 2167@item -prom-env @var{string}
34a3d239
BS
2168
2169Set OpenBIOS variables in NVRAM, for example:
2170
2171@example
2172qemu-system-sparc64 -prom-env 'auto-boot?=false'
2173@end example
2174
2175@item -M [sun4u|sun4v|Niagara]
c7ba218d
BS
2176
2177Set the emulated machine type. The default is sun4u.
2178
2179@end table
2180
2181@c man end
2182
24d4de45
TS
2183@node MIPS System emulator
2184@section MIPS System emulator
7544a042 2185@cindex system emulation (MIPS)
9d0a8e6f 2186
d9aedc32
TS
2187Four executables cover simulation of 32 and 64-bit MIPS systems in
2188both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2189@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 2190Five different machine types are emulated:
24d4de45
TS
2191
2192@itemize @minus
2193@item
2194A generic ISA PC-like machine "mips"
2195@item
2196The MIPS Malta prototype board "malta"
2197@item
d9aedc32 2198An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 2199@item
f0fc6f8f 2200MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
2201@item
2202A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
2203@end itemize
2204
2205The generic emulation is supported by Debian 'Etch' and is able to
2206install Debian into a virtual disk image. The following devices are
2207emulated:
3f9f3aa1
FB
2208
2209@itemize @minus
5fafdf24 2210@item
6bf5b4e8 2211A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
2212@item
2213PC style serial port
2214@item
24d4de45
TS
2215PC style IDE disk
2216@item
3f9f3aa1
FB
2217NE2000 network card
2218@end itemize
2219
24d4de45
TS
2220The Malta emulation supports the following devices:
2221
2222@itemize @minus
2223@item
0b64d008 2224Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
2225@item
2226PIIX4 PCI/USB/SMbus controller
2227@item
2228The Multi-I/O chip's serial device
2229@item
3a2eeac0 2230PCI network cards (PCnet32 and others)
24d4de45
TS
2231@item
2232Malta FPGA serial device
2233@item
1f605a76 2234Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
2235@end itemize
2236
2237The ACER Pica emulation supports:
2238
2239@itemize @minus
2240@item
2241MIPS R4000 CPU
2242@item
2243PC-style IRQ and DMA controllers
2244@item
2245PC Keyboard
2246@item
2247IDE controller
2248@end itemize
3f9f3aa1 2249
b5e4946f 2250The mipssim pseudo board emulation provides an environment similar
f0fc6f8f
TS
2251to what the proprietary MIPS emulator uses for running Linux.
2252It supports:
6bf5b4e8
TS
2253
2254@itemize @minus
2255@item
2256A range of MIPS CPUs, default is the 24Kf
2257@item
2258PC style serial port
2259@item
2260MIPSnet network emulation
2261@end itemize
2262
88cb0a02
AJ
2263The MIPS Magnum R4000 emulation supports:
2264
2265@itemize @minus
2266@item
2267MIPS R4000 CPU
2268@item
2269PC-style IRQ controller
2270@item
2271PC Keyboard
2272@item
2273SCSI controller
2274@item
2275G364 framebuffer
2276@end itemize
2277
2278
24d4de45
TS
2279@node ARM System emulator
2280@section ARM System emulator
7544a042 2281@cindex system emulation (ARM)
3f9f3aa1
FB
2282
2283Use the executable @file{qemu-system-arm} to simulate a ARM
2284machine. The ARM Integrator/CP board is emulated with the following
2285devices:
2286
2287@itemize @minus
2288@item
9ee6e8bb 2289ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
2290@item
2291Two PL011 UARTs
5fafdf24 2292@item
3f9f3aa1 2293SMC 91c111 Ethernet adapter
00a9bf19
PB
2294@item
2295PL110 LCD controller
2296@item
2297PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
2298@item
2299PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
2300@end itemize
2301
2302The ARM Versatile baseboard is emulated with the following devices:
2303
2304@itemize @minus
2305@item
9ee6e8bb 2306ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
2307@item
2308PL190 Vectored Interrupt Controller
2309@item
2310Four PL011 UARTs
5fafdf24 2311@item
00a9bf19
PB
2312SMC 91c111 Ethernet adapter
2313@item
2314PL110 LCD controller
2315@item
2316PL050 KMI with PS/2 keyboard and mouse.
2317@item
2318PCI host bridge. Note the emulated PCI bridge only provides access to
2319PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
2320This means some devices (eg. ne2k_pci NIC) are not usable, and others
2321(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 2322mapped control registers.
e6de1bad
PB
2323@item
2324PCI OHCI USB controller.
2325@item
2326LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
2327@item
2328PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
2329@end itemize
2330
21a88941
PB
2331Several variants of the ARM RealView baseboard are emulated,
2332including the EB, PB-A8 and PBX-A9. Due to interactions with the
2333bootloader, only certain Linux kernel configurations work out
2334of the box on these boards.
2335
2336Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2337enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
2338should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2339disabled and expect 1024M RAM.
2340
40c5c6cd 2341The following devices are emulated:
d7739d75
PB
2342
2343@itemize @minus
2344@item
f7c70325 2345ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
d7739d75
PB
2346@item
2347ARM AMBA Generic/Distributed Interrupt Controller
2348@item
2349Four PL011 UARTs
5fafdf24 2350@item
0ef849d7 2351SMC 91c111 or SMSC LAN9118 Ethernet adapter
d7739d75
PB
2352@item
2353PL110 LCD controller
2354@item
2355PL050 KMI with PS/2 keyboard and mouse
2356@item
2357PCI host bridge
2358@item
2359PCI OHCI USB controller
2360@item
2361LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
2362@item
2363PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
2364@end itemize
2365
b00052e4
AZ
2366The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2367and "Terrier") emulation includes the following peripherals:
2368
2369@itemize @minus
2370@item
2371Intel PXA270 System-on-chip (ARM V5TE core)
2372@item
2373NAND Flash memory
2374@item
2375IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2376@item
2377On-chip OHCI USB controller
2378@item
2379On-chip LCD controller
2380@item
2381On-chip Real Time Clock
2382@item
2383TI ADS7846 touchscreen controller on SSP bus
2384@item
2385Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2386@item
2387GPIO-connected keyboard controller and LEDs
2388@item
549444e1 2389Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
2390@item
2391Three on-chip UARTs
2392@item
2393WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2394@end itemize
2395
02645926
AZ
2396The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2397following elements:
2398
2399@itemize @minus
2400@item
2401Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2402@item
2403ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2404@item
2405On-chip LCD controller
2406@item
2407On-chip Real Time Clock
2408@item
2409TI TSC2102i touchscreen controller / analog-digital converter / Audio
2410CODEC, connected through MicroWire and I@math{^2}S busses
2411@item
2412GPIO-connected matrix keypad
2413@item
2414Secure Digital card connected to OMAP MMC/SD host
2415@item
2416Three on-chip UARTs
2417@end itemize
2418
c30bb264
AZ
2419Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2420emulation supports the following elements:
2421
2422@itemize @minus
2423@item
2424Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2425@item
2426RAM and non-volatile OneNAND Flash memories
2427@item
2428Display connected to EPSON remote framebuffer chip and OMAP on-chip
2429display controller and a LS041y3 MIPI DBI-C controller
2430@item
2431TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2432driven through SPI bus
2433@item
2434National Semiconductor LM8323-controlled qwerty keyboard driven
2435through I@math{^2}C bus
2436@item
2437Secure Digital card connected to OMAP MMC/SD host
2438@item
2439Three OMAP on-chip UARTs and on-chip STI debugging console
2440@item
40c5c6cd 2441A Bluetooth(R) transceiver and HCI connected to an UART
2d564691 2442@item
c30bb264
AZ
2443Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2444TUSB6010 chip - only USB host mode is supported
2445@item
2446TI TMP105 temperature sensor driven through I@math{^2}C bus
2447@item
2448TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2449@item
2450Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2451through CBUS
2452@end itemize
2453
9ee6e8bb
PB
2454The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2455devices:
2456
2457@itemize @minus
2458@item
2459Cortex-M3 CPU core.
2460@item
246164k Flash and 8k SRAM.
2462@item
2463Timers, UARTs, ADC and I@math{^2}C interface.
2464@item
2465OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2466@end itemize
2467
2468The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2469devices:
2470
2471@itemize @minus
2472@item
2473Cortex-M3 CPU core.
2474@item
2475256k Flash and 64k SRAM.
2476@item
2477Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2478@item
2479OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2480@end itemize
2481
57cd6e97
AZ
2482The Freecom MusicPal internet radio emulation includes the following
2483elements:
2484
2485@itemize @minus
2486@item
2487Marvell MV88W8618 ARM core.
2488@item
248932 MB RAM, 256 KB SRAM, 8 MB flash.
2490@item
2491Up to 2 16550 UARTs
2492@item
2493MV88W8xx8 Ethernet controller
2494@item
2495MV88W8618 audio controller, WM8750 CODEC and mixer
2496@item
e080e785 2497128×64 display with brightness control
57cd6e97
AZ
2498@item
24992 buttons, 2 navigation wheels with button function
2500@end itemize
2501
997641a8 2502The Siemens SX1 models v1 and v2 (default) basic emulation.
40c5c6cd 2503The emulation includes the following elements:
997641a8
AZ
2504
2505@itemize @minus
2506@item
2507Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2508@item
2509ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2510V1
25111 Flash of 16MB and 1 Flash of 8MB
2512V2
25131 Flash of 32MB
2514@item
2515On-chip LCD controller
2516@item
2517On-chip Real Time Clock
2518@item
2519Secure Digital card connected to OMAP MMC/SD host
2520@item
2521Three on-chip UARTs
2522@end itemize
2523
3f9f3aa1
FB
2524A Linux 2.6 test image is available on the QEMU web site. More
2525information is available in the QEMU mailing-list archive.
9d0a8e6f 2526
d2c639d6
BS
2527@c man begin OPTIONS
2528
2529The following options are specific to the ARM emulation:
2530
2531@table @option
2532
2533@item -semihosting
2534Enable semihosting syscall emulation.
2535
2536On ARM this implements the "Angel" interface.
2537
2538Note that this allows guest direct access to the host filesystem,
2539so should only be used with trusted guest OS.
2540
2541@end table
2542
24d4de45
TS
2543@node ColdFire System emulator
2544@section ColdFire System emulator
7544a042
SW
2545@cindex system emulation (ColdFire)
2546@cindex system emulation (M68K)
209a4e69
PB
2547
2548Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2549The emulator is able to boot a uClinux kernel.
707e011b
PB
2550
2551The M5208EVB emulation includes the following devices:
2552
2553@itemize @minus
5fafdf24 2554@item
707e011b
PB
2555MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2556@item
2557Three Two on-chip UARTs.
2558@item
2559Fast Ethernet Controller (FEC)
2560@end itemize
2561
2562The AN5206 emulation includes the following devices:
209a4e69
PB
2563
2564@itemize @minus
5fafdf24 2565@item
209a4e69
PB
2566MCF5206 ColdFire V2 Microprocessor.
2567@item
2568Two on-chip UARTs.
2569@end itemize
2570
d2c639d6
BS
2571@c man begin OPTIONS
2572
7544a042 2573The following options are specific to the ColdFire emulation:
d2c639d6
BS
2574
2575@table @option
2576
2577@item -semihosting
2578Enable semihosting syscall emulation.
2579
2580On M68K this implements the "ColdFire GDB" interface used by libgloss.
2581
2582Note that this allows guest direct access to the host filesystem,
2583so should only be used with trusted guest OS.
2584
2585@end table
2586
7544a042
SW
2587@node Cris System emulator
2588@section Cris System emulator
2589@cindex system emulation (Cris)
2590
2591TODO
2592
2593@node Microblaze System emulator
2594@section Microblaze System emulator
2595@cindex system emulation (Microblaze)
2596
2597TODO
2598
2599@node SH4 System emulator
2600@section SH4 System emulator
2601@cindex system emulation (SH4)
2602
2603TODO
2604
3aeaea65
MF
2605@node Xtensa System emulator
2606@section Xtensa System emulator
2607@cindex system emulation (Xtensa)
2608
2609Two executables cover simulation of both Xtensa endian options,
2610@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2611Two different machine types are emulated:
2612
2613@itemize @minus
2614@item
2615Xtensa emulator pseudo board "sim"
2616@item
2617Avnet LX60/LX110/LX200 board
2618@end itemize
2619
b5e4946f 2620The sim pseudo board emulation provides an environment similar
3aeaea65
MF
2621to one provided by the proprietary Tensilica ISS.
2622It supports:
2623
2624@itemize @minus
2625@item
2626A range of Xtensa CPUs, default is the DC232B
2627@item
2628Console and filesystem access via semihosting calls
2629@end itemize
2630
2631The Avnet LX60/LX110/LX200 emulation supports:
2632
2633@itemize @minus
2634@item
2635A range of Xtensa CPUs, default is the DC232B
2636@item
263716550 UART
2638@item
2639OpenCores 10/100 Mbps Ethernet MAC
2640@end itemize
2641
2642@c man begin OPTIONS
2643
2644The following options are specific to the Xtensa emulation:
2645
2646@table @option
2647
2648@item -semihosting
2649Enable semihosting syscall emulation.
2650
2651Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2652Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2653
2654Note that this allows guest direct access to the host filesystem,
2655so should only be used with trusted guest OS.
2656
2657@end table
5fafdf24
TS
2658@node QEMU User space emulator
2659@chapter QEMU User space emulator
83195237
FB
2660
2661@menu
2662* Supported Operating Systems ::
2663* Linux User space emulator::
84778508 2664* BSD User space emulator ::
83195237
FB
2665@end menu
2666
2667@node Supported Operating Systems
2668@section Supported Operating Systems
2669
2670The following OS are supported in user space emulation:
2671
2672@itemize @minus
2673@item
4be456f1 2674Linux (referred as qemu-linux-user)
83195237 2675@item
84778508 2676BSD (referred as qemu-bsd-user)
83195237
FB
2677@end itemize
2678
2679@node Linux User space emulator
2680@section Linux User space emulator
386405f7 2681
debc7065
FB
2682@menu
2683* Quick Start::
2684* Wine launch::
2685* Command line options::
79737e4a 2686* Other binaries::
debc7065
FB
2687@end menu
2688
2689@node Quick Start
83195237 2690@subsection Quick Start
df0f11a0 2691
1f673135 2692In order to launch a Linux process, QEMU needs the process executable
5fafdf24 2693itself and all the target (x86) dynamic libraries used by it.
386405f7 2694
1f673135 2695@itemize
386405f7 2696
1f673135
FB
2697@item On x86, you can just try to launch any process by using the native
2698libraries:
386405f7 2699
5fafdf24 2700@example
1f673135
FB
2701qemu-i386 -L / /bin/ls
2702@end example
386405f7 2703
1f673135
FB
2704@code{-L /} tells that the x86 dynamic linker must be searched with a
2705@file{/} prefix.
386405f7 2706
b65ee4fa
SW
2707@item Since QEMU is also a linux process, you can launch QEMU with
2708QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
386405f7 2709
5fafdf24 2710@example
1f673135
FB
2711qemu-i386 -L / qemu-i386 -L / /bin/ls
2712@end example
386405f7 2713
1f673135
FB
2714@item On non x86 CPUs, you need first to download at least an x86 glibc
2715(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2716@code{LD_LIBRARY_PATH} is not set:
df0f11a0 2717
1f673135 2718@example
5fafdf24 2719unset LD_LIBRARY_PATH
1f673135 2720@end example
1eb87257 2721
1f673135 2722Then you can launch the precompiled @file{ls} x86 executable:
1eb87257 2723
1f673135
FB
2724@example
2725qemu-i386 tests/i386/ls
2726@end example
4c3b5a48 2727You can look at @file{scripts/qemu-binfmt-conf.sh} so that
1f673135
FB
2728QEMU is automatically launched by the Linux kernel when you try to
2729launch x86 executables. It requires the @code{binfmt_misc} module in the
2730Linux kernel.
1eb87257 2731
1f673135
FB
2732@item The x86 version of QEMU is also included. You can try weird things such as:
2733@example
debc7065
FB
2734qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2735 /usr/local/qemu-i386/bin/ls-i386
1f673135 2736@end example
1eb20527 2737
1f673135 2738@end itemize
1eb20527 2739
debc7065 2740@node Wine launch
83195237 2741@subsection Wine launch
1eb20527 2742
1f673135 2743@itemize
386405f7 2744
1f673135
FB
2745@item Ensure that you have a working QEMU with the x86 glibc
2746distribution (see previous section). In order to verify it, you must be
2747able to do:
386405f7 2748
1f673135
FB
2749@example
2750qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2751@end example
386405f7 2752
1f673135 2753@item Download the binary x86 Wine install
5fafdf24 2754(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
386405f7 2755
1f673135 2756@item Configure Wine on your account. Look at the provided script
debc7065 2757@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1f673135 2758@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
386405f7 2759
1f673135 2760@item Then you can try the example @file{putty.exe}:
386405f7 2761
1f673135 2762@example
debc7065
FB
2763qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2764 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1f673135 2765@end example
386405f7 2766
1f673135 2767@end itemize
fd429f2f 2768
debc7065 2769@node Command line options
83195237 2770@subsection Command line options
1eb20527 2771
1f673135 2772@example
8485140f 2773@command{qemu-i386} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-cpu} @var{model}] [@option{-g} @var{port}] [@option{-B} @var{offset}] [@option{-R} @var{size}] @var{program} [@var{arguments}...]
1f673135 2774@end example
1eb20527 2775
1f673135
FB
2776@table @option
2777@item -h
2778Print the help
3b46e624 2779@item -L path
1f673135
FB
2780Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2781@item -s size
2782Set the x86 stack size in bytes (default=524288)
34a3d239 2783@item -cpu model
c8057f95 2784Select CPU model (-cpu help for list and additional feature selection)
f66724c9
SW
2785@item -E @var{var}=@var{value}
2786Set environment @var{var} to @var{value}.
2787@item -U @var{var}
2788Remove @var{var} from the environment.
379f6698
PB
2789@item -B offset
2790Offset guest address by the specified number of bytes. This is useful when
1f5c3f8c
SW
2791the address region required by guest applications is reserved on the host.
2792This option is currently only supported on some hosts.
68a1c816
PB
2793@item -R size
2794Pre-allocate a guest virtual address space of the given size (in bytes).
0d6753e5 2795"G", "M", and "k" suffixes may be used when specifying the size.
386405f7
FB
2796@end table
2797
1f673135 2798Debug options:
386405f7 2799
1f673135 2800@table @option
989b697d
PM
2801@item -d item1,...
2802Activate logging of the specified items (use '-d help' for a list of log items)
1f673135
FB
2803@item -p pagesize
2804Act as if the host page size was 'pagesize' bytes
34a3d239
BS
2805@item -g port
2806Wait gdb connection to port
1b530a6d
AJ
2807@item -singlestep
2808Run the emulation in single step mode.
1f673135 2809@end table
386405f7 2810
b01bcae6
AZ
2811Environment variables:
2812
2813@table @env
2814@item QEMU_STRACE
2815Print system calls and arguments similar to the 'strace' program
2816(NOTE: the actual 'strace' program will not work because the user
2817space emulator hasn't implemented ptrace). At the moment this is
2818incomplete. All system calls that don't have a specific argument
2819format are printed with information for six arguments. Many
2820flag-style arguments don't have decoders and will show up as numbers.
5cfdf930 2821@end table
b01bcae6 2822
79737e4a 2823@node Other binaries
83195237 2824@subsection Other binaries
79737e4a 2825
7544a042
SW
2826@cindex user mode (Alpha)
2827@command{qemu-alpha} TODO.
2828
2829@cindex user mode (ARM)
2830@command{qemu-armeb} TODO.
2831
2832@cindex user mode (ARM)
79737e4a
PB
2833@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2834binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2835configurations), and arm-uclinux bFLT format binaries.
2836
7544a042
SW
2837@cindex user mode (ColdFire)
2838@cindex user mode (M68K)
e6e5906b
PB
2839@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2840(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2841coldfire uClinux bFLT format binaries.
2842
79737e4a
PB
2843The binary format is detected automatically.
2844
7544a042
SW
2845@cindex user mode (Cris)
2846@command{qemu-cris} TODO.
2847
2848@cindex user mode (i386)
2849@command{qemu-i386} TODO.
2850@command{qemu-x86_64} TODO.
2851
2852@cindex user mode (Microblaze)
2853@command{qemu-microblaze} TODO.
2854
2855@cindex user mode (MIPS)
2856@command{qemu-mips} TODO.
2857@command{qemu-mipsel} TODO.
2858
2859@cindex user mode (PowerPC)
2860@command{qemu-ppc64abi32} TODO.
2861@command{qemu-ppc64} TODO.
2862@command{qemu-ppc} TODO.
2863
2864@cindex user mode (SH4)
2865@command{qemu-sh4eb} TODO.
2866@command{qemu-sh4} TODO.
2867
2868@cindex user mode (SPARC)
34a3d239
BS
2869@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2870
a785e42e
BS
2871@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2872(Sparc64 CPU, 32 bit ABI).
2873
2874@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2875SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2876
84778508
BS
2877@node BSD User space emulator
2878@section BSD User space emulator
2879
2880@menu
2881* BSD Status::
2882* BSD Quick Start::
2883* BSD Command line options::
2884@end menu
2885
2886@node BSD Status
2887@subsection BSD Status
2888
2889@itemize @minus
2890@item
2891target Sparc64 on Sparc64: Some trivial programs work.
2892@end itemize
2893
2894@node BSD Quick Start
2895@subsection Quick Start
2896
2897In order to launch a BSD process, QEMU needs the process executable
2898itself and all the target dynamic libraries used by it.
2899
2900@itemize
2901
2902@item On Sparc64, you can just try to launch any process by using the native
2903libraries:
2904
2905@example
2906qemu-sparc64 /bin/ls
2907@end example
2908
2909@end itemize
2910
2911@node BSD Command line options
2912@subsection Command line options
2913
2914@example
8485140f 2915@command{qemu-sparc64} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-bsd} @var{type}] @var{program} [@var{arguments}...]
84778508
BS
2916@end example
2917
2918@table @option
2919@item -h
2920Print the help
2921@item -L path
2922Set the library root path (default=/)
2923@item -s size
2924Set the stack size in bytes (default=524288)
f66724c9
SW
2925@item -ignore-environment
2926Start with an empty environment. Without this option,
40c5c6cd 2927the initial environment is a copy of the caller's environment.
f66724c9
SW
2928@item -E @var{var}=@var{value}
2929Set environment @var{var} to @var{value}.
2930@item -U @var{var}
2931Remove @var{var} from the environment.
84778508
BS
2932@item -bsd type
2933Set the type of the emulated BSD Operating system. Valid values are
2934FreeBSD, NetBSD and OpenBSD (default).
2935@end table
2936
2937Debug options:
2938
2939@table @option
989b697d
PM
2940@item -d item1,...
2941Activate logging of the specified items (use '-d help' for a list of log items)
84778508
BS
2942@item -p pagesize
2943Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
2944@item -singlestep
2945Run the emulation in single step mode.
84778508
BS
2946@end table
2947
15a34c63
FB
2948@node compilation
2949@chapter Compilation from the sources
2950
debc7065
FB
2951@menu
2952* Linux/Unix::
2953* Windows::
2954* Cross compilation for Windows with Linux::
2955* Mac OS X::
47eacb4f 2956* Make targets::
debc7065
FB
2957@end menu
2958
2959@node Linux/Unix
7c3fc84d
FB
2960@section Linux/Unix
2961
2962@subsection Compilation
2963
2964First you must decompress the sources:
2965@example
2966cd /tmp
2967tar zxvf qemu-x.y.z.tar.gz
2968cd qemu-x.y.z
2969@end example
2970
2971Then you configure QEMU and build it (usually no options are needed):
2972@example
2973./configure
2974make
2975@end example
2976
2977Then type as root user:
2978@example
2979make install
2980@end example
2981to install QEMU in @file{/usr/local}.
2982
debc7065 2983@node Windows
15a34c63
FB
2984@section Windows
2985
2986@itemize
2987@item Install the current versions of MSYS and MinGW from
2988@url{http://www.mingw.org/}. You can find detailed installation
2989instructions in the download section and the FAQ.
2990
5fafdf24 2991@item Download
15a34c63 2992the MinGW development library of SDL 1.2.x
debc7065 2993(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
d0a96f3d
ST
2994@url{http://www.libsdl.org}. Unpack it in a temporary place and
2995edit the @file{sdl-config} script so that it gives the
15a34c63
FB
2996correct SDL directory when invoked.
2997
d0a96f3d
ST
2998@item Install the MinGW version of zlib and make sure
2999@file{zlib.h} and @file{libz.dll.a} are in
40c5c6cd 3000MinGW's default header and linker search paths.
d0a96f3d 3001
15a34c63 3002@item Extract the current version of QEMU.
5fafdf24 3003
15a34c63
FB
3004@item Start the MSYS shell (file @file{msys.bat}).
3005
5fafdf24 3006@item Change to the QEMU directory. Launch @file{./configure} and
15a34c63
FB
3007@file{make}. If you have problems using SDL, verify that
3008@file{sdl-config} can be launched from the MSYS command line.
3009
c5ec15ea 3010@item You can install QEMU in @file{Program Files/QEMU} by typing
15a34c63 3011@file{make install}. Don't forget to copy @file{SDL.dll} in
c5ec15ea 3012@file{Program Files/QEMU}.
15a34c63
FB
3013
3014@end itemize
3015
debc7065 3016@node Cross compilation for Windows with Linux
15a34c63
FB
3017@section Cross compilation for Windows with Linux
3018
3019@itemize
3020@item
3021Install the MinGW cross compilation tools available at
3022@url{http://www.mingw.org/}.
3023
d0a96f3d
ST
3024@item Download
3025the MinGW development library of SDL 1.2.x
3026(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
3027@url{http://www.libsdl.org}. Unpack it in a temporary place and
3028edit the @file{sdl-config} script so that it gives the
3029correct SDL directory when invoked. Set up the @code{PATH} environment
3030variable so that @file{sdl-config} can be launched by
15a34c63
FB
3031the QEMU configuration script.
3032
d0a96f3d
ST
3033@item Install the MinGW version of zlib and make sure
3034@file{zlib.h} and @file{libz.dll.a} are in
40c5c6cd 3035MinGW's default header and linker search paths.
d0a96f3d 3036
5fafdf24 3037@item
15a34c63
FB
3038Configure QEMU for Windows cross compilation:
3039@example
d0a96f3d
ST
3040PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
3041@end example
3042The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
3043MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
40c5c6cd 3044We set the @code{PATH} environment variable to ensure the MinGW version of @file{sdl-config} is used and
d0a96f3d 3045use --cross-prefix to specify the name of the cross compiler.
c5ec15ea 3046You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/QEMU}.
d0a96f3d
ST
3047
3048Under Fedora Linux, you can run:
3049@example
3050yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
15a34c63 3051@end example
d0a96f3d 3052to get a suitable cross compilation environment.
15a34c63 3053
5fafdf24 3054@item You can install QEMU in the installation directory by typing
d0a96f3d 3055@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
5fafdf24 3056installation directory.
15a34c63
FB
3057
3058@end itemize
3059
3804da9d
SW
3060Wine can be used to launch the resulting qemu-system-i386.exe
3061and all other qemu-system-@var{target}.exe compiled for Win32.
15a34c63 3062
debc7065 3063@node Mac OS X
15a34c63
FB
3064@section Mac OS X
3065
b352153f
JA
3066System Requirements:
3067@itemize
3068@item Mac OS 10.5 or higher
3069@item The clang compiler shipped with Xcode 4.2 or higher,
3070or GCC 4.3 or higher
3071@end itemize
3072
3073Additional Requirements (install in order):
3074@enumerate
3075@item libffi: @uref{https://sourceware.org/libffi/}
3076@item gettext: @uref{http://www.gnu.org/software/gettext/}
3077@item glib: @uref{http://ftp.gnome.org/pub/GNOME/sources/glib/}
3078@item pkg-config: @uref{http://www.freedesktop.org/wiki/Software/pkg-config/}
3079@item autoconf: @uref{http://www.gnu.org/software/autoconf/autoconf.html}
3080@item automake: @uref{http://www.gnu.org/software/automake/}
b352153f
JA
3081@item pixman: @uref{http://www.pixman.org/}
3082@end enumerate
3083
3084* You may find it easiest to get these from a third-party packager
3085such as Homebrew, Macports, or Fink.
3086
3087After downloading the QEMU source code, double-click it to expand it.
3088
3089Then configure and make QEMU:
3090@example
3091./configure
3092make
3093@end example
3094
3095If you have a recent version of Mac OS X (OSX 10.7 or better
3096with Xcode 4.2 or better) we recommend building QEMU with the
3097default compiler provided by Apple, for your version of Mac OS X
3098(which will be 'clang'). The configure script will
3099automatically pick this.
3100
3101Note: If after the configure step you see a message like this:
3102@example
3103ERROR: Your compiler does not support the __thread specifier for
3104 Thread-Local Storage (TLS). Please upgrade to a version that does.
3105@end example
6c76ec68 3106you may have to build your own version of gcc from source. Expect that to take
b352153f
JA
3107several hours. More information can be found here:
3108@uref{https://gcc.gnu.org/install/} @*
3109
3110These are some of the third party binaries of gcc available for download:
3111@itemize
3112@item Homebrew: @uref{http://brew.sh/}
3113@item @uref{https://www.litebeam.net/gcc/gcc_472.pkg}
3114@item @uref{http://www.macports.org/ports.php?by=name&substr=gcc}
3115@end itemize
3116
3117You can have several versions of GCC on your system. To specify a certain version,
3118use the --cc and --cxx options.
3119@example
3120./configure --cxx=<path of your c++ compiler> --cc=<path of your c compiler> <other options>
3121@end example
15a34c63 3122
47eacb4f
SW
3123@node Make targets
3124@section Make targets
3125
3126@table @code
3127
3128@item make
3129@item make all
3130Make everything which is typically needed.
3131
3132@item install
3133TODO
3134
3135@item install-doc
3136TODO
3137
3138@item make clean
3139Remove most files which were built during make.
3140
3141@item make distclean
3142Remove everything which was built during make.
3143
3144@item make dvi
3145@item make html
3146@item make info
3147@item make pdf
3148Create documentation in dvi, html, info or pdf format.
3149
3150@item make cscope
3151TODO
3152
3153@item make defconfig
3154(Re-)create some build configuration files.
3155User made changes will be overwritten.
3156
3157@item tar
3158@item tarbin
3159TODO
3160
3161@end table
3162
7544a042
SW
3163@node License
3164@appendix License
3165
3166QEMU is a trademark of Fabrice Bellard.
3167
3168QEMU is released under the GNU General Public License (TODO: add link).
3169Parts of QEMU have specific licenses, see file LICENSE.
3170
3171TODO (refer to file LICENSE, include it, include the GPL?)
3172
debc7065 3173@node Index
7544a042
SW
3174@appendix Index
3175@menu
3176* Concept Index::
3177* Function Index::
3178* Keystroke Index::
3179* Program Index::
3180* Data Type Index::
3181* Variable Index::
3182@end menu
3183
3184@node Concept Index
3185@section Concept Index
3186This is the main index. Should we combine all keywords in one index? TODO
debc7065
FB
3187@printindex cp
3188
7544a042
SW
3189@node Function Index
3190@section Function Index
3191This index could be used for command line options and monitor functions.
3192@printindex fn
3193
3194@node Keystroke Index
3195@section Keystroke Index
3196
3197This is a list of all keystrokes which have a special function
3198in system emulation.
3199
3200@printindex ky
3201
3202@node Program Index
3203@section Program Index
3204@printindex pg
3205
3206@node Data Type Index
3207@section Data Type Index
3208
3209This index could be used for qdev device names and options.
3210
3211@printindex tp
3212
3213@node Variable Index
3214@section Variable Index
3215@printindex vr
3216
debc7065 3217@bye