]> git.proxmox.com Git - mirror_qemu.git/blame - qemu-doc.texi
From: John Arbuckle <programmingkidx@gmail.com>
[mirror_qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
e080e785
SW
4
5@documentlanguage en
6@documentencoding UTF-8
7
8f40c388 8@settitle QEMU Emulator User Documentation
debc7065
FB
9@exampleindent 0
10@paragraphindent 0
11@c %**end of header
386405f7 12
a1a32b05
SW
13@ifinfo
14@direntry
15* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
16@end direntry
17@end ifinfo
18
0806e3f6 19@iftex
386405f7
FB
20@titlepage
21@sp 7
8f40c388 22@center @titlefont{QEMU Emulator}
debc7065
FB
23@sp 1
24@center @titlefont{User Documentation}
386405f7
FB
25@sp 3
26@end titlepage
0806e3f6 27@end iftex
386405f7 28
debc7065
FB
29@ifnottex
30@node Top
31@top
32
33@menu
34* Introduction::
35* Installation::
36* QEMU PC System emulator::
37* QEMU System emulator for non PC targets::
83195237 38* QEMU User space emulator::
debc7065 39* compilation:: Compilation from the sources
7544a042 40* License::
debc7065
FB
41* Index::
42@end menu
43@end ifnottex
44
45@contents
46
47@node Introduction
386405f7
FB
48@chapter Introduction
49
debc7065
FB
50@menu
51* intro_features:: Features
52@end menu
53
54@node intro_features
322d0c66 55@section Features
386405f7 56
1f673135
FB
57QEMU is a FAST! processor emulator using dynamic translation to
58achieve good emulation speed.
1eb20527
FB
59
60QEMU has two operating modes:
0806e3f6 61
d7e5edca 62@itemize
7544a042 63@cindex operating modes
0806e3f6 64
5fafdf24 65@item
7544a042 66@cindex system emulation
1f673135 67Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
68example a PC), including one or several processors and various
69peripherals. It can be used to launch different Operating Systems
70without rebooting the PC or to debug system code.
1eb20527 71
5fafdf24 72@item
7544a042 73@cindex user mode emulation
83195237
FB
74User mode emulation. In this mode, QEMU can launch
75processes compiled for one CPU on another CPU. It can be used to
1f673135
FB
76launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77to ease cross-compilation and cross-debugging.
1eb20527
FB
78
79@end itemize
80
e1b4382c 81QEMU can run without a host kernel driver and yet gives acceptable
5fafdf24 82performance.
322d0c66 83
52c00a5f
FB
84For system emulation, the following hardware targets are supported:
85@itemize
7544a042
SW
86@cindex emulated target systems
87@cindex supported target systems
9d0a8e6f 88@item PC (x86 or x86_64 processor)
3f9f3aa1 89@item ISA PC (old style PC without PCI bus)
52c00a5f 90@item PREP (PowerPC processor)
d45952a0 91@item G3 Beige PowerMac (PowerPC processor)
9d0a8e6f 92@item Mac99 PowerMac (PowerPC processor, in progress)
ee76f82e 93@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
c7ba218d 94@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
d9aedc32 95@item Malta board (32-bit and 64-bit MIPS processors)
88cb0a02 96@item MIPS Magnum (64-bit MIPS processor)
9ee6e8bb
PB
97@item ARM Integrator/CP (ARM)
98@item ARM Versatile baseboard (ARM)
0ef849d7 99@item ARM RealView Emulation/Platform baseboard (ARM)
ef4c3856 100@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
9ee6e8bb
PB
101@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
707e011b 103@item Freescale MCF5208EVB (ColdFire V2).
209a4e69 104@item Arnewsh MCF5206 evaluation board (ColdFire V2).
02645926 105@item Palm Tungsten|E PDA (OMAP310 processor)
c30bb264 106@item N800 and N810 tablets (OMAP2420 processor)
57cd6e97 107@item MusicPal (MV88W8618 ARM processor)
ef4c3856
AZ
108@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109@item Siemens SX1 smartphone (OMAP310 processor)
48c50a62
EI
110@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
111@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
3aeaea65 112@item Avnet LX60/LX110/LX200 boards (Xtensa)
52c00a5f 113@end itemize
386405f7 114
7544a042
SW
115@cindex supported user mode targets
116For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
117ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
118Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
0806e3f6 119
debc7065 120@node Installation
5b9f457a
FB
121@chapter Installation
122
15a34c63
FB
123If you want to compile QEMU yourself, see @ref{compilation}.
124
debc7065
FB
125@menu
126* install_linux:: Linux
127* install_windows:: Windows
128* install_mac:: Macintosh
129@end menu
130
131@node install_linux
1f673135 132@section Linux
7544a042 133@cindex installation (Linux)
1f673135 134
7c3fc84d
FB
135If a precompiled package is available for your distribution - you just
136have to install it. Otherwise, see @ref{compilation}.
5b9f457a 137
debc7065 138@node install_windows
1f673135 139@section Windows
7544a042 140@cindex installation (Windows)
8cd0ac2f 141
15a34c63 142Download the experimental binary installer at
debc7065 143@url{http://www.free.oszoo.org/@/download.html}.
7544a042 144TODO (no longer available)
d691f669 145
debc7065 146@node install_mac
1f673135 147@section Mac OS X
d691f669 148
15a34c63 149Download the experimental binary installer at
debc7065 150@url{http://www.free.oszoo.org/@/download.html}.
7544a042 151TODO (no longer available)
df0f11a0 152
debc7065 153@node QEMU PC System emulator
3f9f3aa1 154@chapter QEMU PC System emulator
7544a042 155@cindex system emulation (PC)
1eb20527 156
debc7065
FB
157@menu
158* pcsys_introduction:: Introduction
159* pcsys_quickstart:: Quick Start
160* sec_invocation:: Invocation
161* pcsys_keys:: Keys
162* pcsys_monitor:: QEMU Monitor
163* disk_images:: Disk Images
164* pcsys_network:: Network emulation
576fd0a1 165* pcsys_other_devs:: Other Devices
debc7065
FB
166* direct_linux_boot:: Direct Linux Boot
167* pcsys_usb:: USB emulation
f858dcae 168* vnc_security:: VNC security
debc7065
FB
169* gdb_usage:: GDB usage
170* pcsys_os_specific:: Target OS specific information
171@end menu
172
173@node pcsys_introduction
0806e3f6
FB
174@section Introduction
175
176@c man begin DESCRIPTION
177
3f9f3aa1
FB
178The QEMU PC System emulator simulates the
179following peripherals:
0806e3f6
FB
180
181@itemize @minus
5fafdf24 182@item
15a34c63 183i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 184@item
15a34c63
FB
185Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
186extensions (hardware level, including all non standard modes).
0806e3f6
FB
187@item
188PS/2 mouse and keyboard
5fafdf24 189@item
15a34c63 1902 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
191@item
192Floppy disk
5fafdf24 193@item
3a2eeac0 194PCI and ISA network adapters
0806e3f6 195@item
05d5818c
FB
196Serial ports
197@item
c0fe3827
FB
198Creative SoundBlaster 16 sound card
199@item
200ENSONIQ AudioPCI ES1370 sound card
201@item
e5c9a13e
AZ
202Intel 82801AA AC97 Audio compatible sound card
203@item
7d72e762
GH
204Intel HD Audio Controller and HDA codec
205@item
2d983446 206Adlib (OPL2) - Yamaha YM3812 compatible chip
b389dbfb 207@item
26463dbc
AZ
208Gravis Ultrasound GF1 sound card
209@item
cc53d26d 210CS4231A compatible sound card
211@item
b389dbfb 212PCI UHCI USB controller and a virtual USB hub.
0806e3f6
FB
213@end itemize
214
3f9f3aa1
FB
215SMP is supported with up to 255 CPUs.
216
a8ad4159 217QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
15a34c63
FB
218VGA BIOS.
219
c0fe3827
FB
220QEMU uses YM3812 emulation by Tatsuyuki Satoh.
221
2d983446 222QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
26463dbc 223by Tibor "TS" Schütz.
423d65f4 224
1a1a0e20 225Note that, by default, GUS shares IRQ(7) with parallel ports and so
b65ee4fa 226QEMU must be told to not have parallel ports to have working GUS.
720036a5 227
228@example
3804da9d 229qemu-system-i386 dos.img -soundhw gus -parallel none
720036a5 230@end example
231
232Alternatively:
233@example
3804da9d 234qemu-system-i386 dos.img -device gus,irq=5
720036a5 235@end example
236
237Or some other unclaimed IRQ.
238
cc53d26d 239CS4231A is the chip used in Windows Sound System and GUSMAX products
240
0806e3f6
FB
241@c man end
242
debc7065 243@node pcsys_quickstart
1eb20527 244@section Quick Start
7544a042 245@cindex quick start
1eb20527 246
285dc330 247Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
248
249@example
3804da9d 250qemu-system-i386 linux.img
0806e3f6
FB
251@end example
252
253Linux should boot and give you a prompt.
254
6cc721cf 255@node sec_invocation
ec410fc9
FB
256@section Invocation
257
258@example
0806e3f6 259@c man begin SYNOPSIS
3804da9d 260usage: qemu-system-i386 [options] [@var{disk_image}]
0806e3f6 261@c man end
ec410fc9
FB
262@end example
263
0806e3f6 264@c man begin OPTIONS
d2c639d6
BS
265@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
266targets do not need a disk image.
ec410fc9 267
5824d651 268@include qemu-options.texi
ec410fc9 269
3e11db9a
FB
270@c man end
271
debc7065 272@node pcsys_keys
3e11db9a
FB
273@section Keys
274
275@c man begin OPTIONS
276
de1db2a1
BH
277During the graphical emulation, you can use special key combinations to change
278modes. The default key mappings are shown below, but if you use @code{-alt-grab}
279then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
280@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
281
a1b74fe8 282@table @key
f9859310 283@item Ctrl-Alt-f
7544a042 284@kindex Ctrl-Alt-f
a1b74fe8 285Toggle full screen
a0a821a4 286
d6a65ba3
JK
287@item Ctrl-Alt-+
288@kindex Ctrl-Alt-+
289Enlarge the screen
290
291@item Ctrl-Alt--
292@kindex Ctrl-Alt--
293Shrink the screen
294
c4a735f9 295@item Ctrl-Alt-u
7544a042 296@kindex Ctrl-Alt-u
c4a735f9 297Restore the screen's un-scaled dimensions
298
f9859310 299@item Ctrl-Alt-n
7544a042 300@kindex Ctrl-Alt-n
a0a821a4
FB
301Switch to virtual console 'n'. Standard console mappings are:
302@table @emph
303@item 1
304Target system display
305@item 2
306Monitor
307@item 3
308Serial port
a1b74fe8
FB
309@end table
310
f9859310 311@item Ctrl-Alt
7544a042 312@kindex Ctrl-Alt
a0a821a4
FB
313Toggle mouse and keyboard grab.
314@end table
315
7544a042
SW
316@kindex Ctrl-Up
317@kindex Ctrl-Down
318@kindex Ctrl-PageUp
319@kindex Ctrl-PageDown
3e11db9a
FB
320In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
321@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
322
7544a042 323@kindex Ctrl-a h
a0a821a4
FB
324During emulation, if you are using the @option{-nographic} option, use
325@key{Ctrl-a h} to get terminal commands:
ec410fc9
FB
326
327@table @key
a1b74fe8 328@item Ctrl-a h
7544a042 329@kindex Ctrl-a h
d2c639d6 330@item Ctrl-a ?
7544a042 331@kindex Ctrl-a ?
ec410fc9 332Print this help
3b46e624 333@item Ctrl-a x
7544a042 334@kindex Ctrl-a x
366dfc52 335Exit emulator
3b46e624 336@item Ctrl-a s
7544a042 337@kindex Ctrl-a s
1f47a922 338Save disk data back to file (if -snapshot)
20d8a3ed 339@item Ctrl-a t
7544a042 340@kindex Ctrl-a t
d2c639d6 341Toggle console timestamps
a1b74fe8 342@item Ctrl-a b
7544a042 343@kindex Ctrl-a b
1f673135 344Send break (magic sysrq in Linux)
a1b74fe8 345@item Ctrl-a c
7544a042 346@kindex Ctrl-a c
1f673135 347Switch between console and monitor
a1b74fe8 348@item Ctrl-a Ctrl-a
7544a042 349@kindex Ctrl-a a
a1b74fe8 350Send Ctrl-a
ec410fc9 351@end table
0806e3f6
FB
352@c man end
353
354@ignore
355
1f673135
FB
356@c man begin SEEALSO
357The HTML documentation of QEMU for more precise information and Linux
358user mode emulator invocation.
359@c man end
360
361@c man begin AUTHOR
362Fabrice Bellard
363@c man end
364
365@end ignore
366
debc7065 367@node pcsys_monitor
1f673135 368@section QEMU Monitor
7544a042 369@cindex QEMU monitor
1f673135
FB
370
371The QEMU monitor is used to give complex commands to the QEMU
372emulator. You can use it to:
373
374@itemize @minus
375
376@item
e598752a 377Remove or insert removable media images
89dfe898 378(such as CD-ROM or floppies).
1f673135 379
5fafdf24 380@item
1f673135
FB
381Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
382from a disk file.
383
384@item Inspect the VM state without an external debugger.
385
386@end itemize
387
388@subsection Commands
389
390The following commands are available:
391
2313086a 392@include qemu-monitor.texi
0806e3f6 393
1f673135
FB
394@subsection Integer expressions
395
396The monitor understands integers expressions for every integer
397argument. You can use register names to get the value of specifics
398CPU registers by prefixing them with @emph{$}.
ec410fc9 399
1f47a922
FB
400@node disk_images
401@section Disk Images
402
acd935ef
FB
403Since version 0.6.1, QEMU supports many disk image formats, including
404growable disk images (their size increase as non empty sectors are
13a2e80f
FB
405written), compressed and encrypted disk images. Version 0.8.3 added
406the new qcow2 disk image format which is essential to support VM
407snapshots.
1f47a922 408
debc7065
FB
409@menu
410* disk_images_quickstart:: Quick start for disk image creation
411* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 412* vm_snapshots:: VM snapshots
debc7065 413* qemu_img_invocation:: qemu-img Invocation
975b092b 414* qemu_nbd_invocation:: qemu-nbd Invocation
d3067b02 415* disk_images_formats:: Disk image file formats
19cb3738 416* host_drives:: Using host drives
debc7065 417* disk_images_fat_images:: Virtual FAT disk images
75818250 418* disk_images_nbd:: NBD access
42af9c30 419* disk_images_sheepdog:: Sheepdog disk images
00984e39 420* disk_images_iscsi:: iSCSI LUNs
8809e289 421* disk_images_gluster:: GlusterFS disk images
0a12ec87 422* disk_images_ssh:: Secure Shell (ssh) disk images
debc7065
FB
423@end menu
424
425@node disk_images_quickstart
acd935ef
FB
426@subsection Quick start for disk image creation
427
428You can create a disk image with the command:
1f47a922 429@example
acd935ef 430qemu-img create myimage.img mysize
1f47a922 431@end example
acd935ef
FB
432where @var{myimage.img} is the disk image filename and @var{mysize} is its
433size in kilobytes. You can add an @code{M} suffix to give the size in
434megabytes and a @code{G} suffix for gigabytes.
435
debc7065 436See @ref{qemu_img_invocation} for more information.
1f47a922 437
debc7065 438@node disk_images_snapshot_mode
1f47a922
FB
439@subsection Snapshot mode
440
441If you use the option @option{-snapshot}, all disk images are
442considered as read only. When sectors in written, they are written in
443a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
444write back to the raw disk images by using the @code{commit} monitor
445command (or @key{C-a s} in the serial console).
1f47a922 446
13a2e80f
FB
447@node vm_snapshots
448@subsection VM snapshots
449
450VM snapshots are snapshots of the complete virtual machine including
451CPU state, RAM, device state and the content of all the writable
452disks. In order to use VM snapshots, you must have at least one non
453removable and writable block device using the @code{qcow2} disk image
454format. Normally this device is the first virtual hard drive.
455
456Use the monitor command @code{savevm} to create a new VM snapshot or
457replace an existing one. A human readable name can be assigned to each
19d36792 458snapshot in addition to its numerical ID.
13a2e80f
FB
459
460Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
461a VM snapshot. @code{info snapshots} lists the available snapshots
462with their associated information:
463
464@example
465(qemu) info snapshots
466Snapshot devices: hda
467Snapshot list (from hda):
468ID TAG VM SIZE DATE VM CLOCK
4691 start 41M 2006-08-06 12:38:02 00:00:14.954
4702 40M 2006-08-06 12:43:29 00:00:18.633
4713 msys 40M 2006-08-06 12:44:04 00:00:23.514
472@end example
473
474A VM snapshot is made of a VM state info (its size is shown in
475@code{info snapshots}) and a snapshot of every writable disk image.
476The VM state info is stored in the first @code{qcow2} non removable
477and writable block device. The disk image snapshots are stored in
478every disk image. The size of a snapshot in a disk image is difficult
479to evaluate and is not shown by @code{info snapshots} because the
480associated disk sectors are shared among all the snapshots to save
19d36792
FB
481disk space (otherwise each snapshot would need a full copy of all the
482disk images).
13a2e80f
FB
483
484When using the (unrelated) @code{-snapshot} option
485(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
486but they are deleted as soon as you exit QEMU.
487
488VM snapshots currently have the following known limitations:
489@itemize
5fafdf24 490@item
13a2e80f
FB
491They cannot cope with removable devices if they are removed or
492inserted after a snapshot is done.
5fafdf24 493@item
13a2e80f
FB
494A few device drivers still have incomplete snapshot support so their
495state is not saved or restored properly (in particular USB).
496@end itemize
497
acd935ef
FB
498@node qemu_img_invocation
499@subsection @code{qemu-img} Invocation
1f47a922 500
acd935ef 501@include qemu-img.texi
05efe46e 502
975b092b
TS
503@node qemu_nbd_invocation
504@subsection @code{qemu-nbd} Invocation
505
506@include qemu-nbd.texi
507
d3067b02
KW
508@node disk_images_formats
509@subsection Disk image file formats
510
511QEMU supports many image file formats that can be used with VMs as well as with
512any of the tools (like @code{qemu-img}). This includes the preferred formats
513raw and qcow2 as well as formats that are supported for compatibility with
514older QEMU versions or other hypervisors.
515
516Depending on the image format, different options can be passed to
517@code{qemu-img create} and @code{qemu-img convert} using the @code{-o} option.
518This section describes each format and the options that are supported for it.
519
520@table @option
521@item raw
522
523Raw disk image format. This format has the advantage of
524being simple and easily exportable to all other emulators. If your
525file system supports @emph{holes} (for example in ext2 or ext3 on
526Linux or NTFS on Windows), then only the written sectors will reserve
527space. Use @code{qemu-img info} to know the real size used by the
528image or @code{ls -ls} on Unix/Linux.
529
06247428
HT
530Supported options:
531@table @code
532@item preallocation
533Preallocation mode (allowed values: @code{off}, @code{falloc}, @code{full}).
534@code{falloc} mode preallocates space for image by calling posix_fallocate().
535@code{full} mode preallocates space for image by writing zeros to underlying
536storage.
537@end table
538
d3067b02
KW
539@item qcow2
540QEMU image format, the most versatile format. Use it to have smaller
541images (useful if your filesystem does not supports holes, for example
a1f688f4
MA
542on Windows), zlib based compression and support of multiple VM
543snapshots.
d3067b02
KW
544
545Supported options:
546@table @code
547@item compat
7fa9e1f9
SH
548Determines the qcow2 version to use. @code{compat=0.10} uses the
549traditional image format that can be read by any QEMU since 0.10.
d3067b02 550@code{compat=1.1} enables image format extensions that only QEMU 1.1 and
7fa9e1f9
SH
551newer understand (this is the default). Amongst others, this includes
552zero clusters, which allow efficient copy-on-read for sparse images.
d3067b02
KW
553
554@item backing_file
555File name of a base image (see @option{create} subcommand)
556@item backing_fmt
557Image format of the base image
558@item encryption
136cd19d 559If this option is set to @code{on}, the image is encrypted with 128-bit AES-CBC.
d3067b02 560
136cd19d
DB
561The use of encryption in qcow and qcow2 images is considered to be flawed by
562modern cryptography standards, suffering from a number of design problems:
563
564@itemize @minus
565@item The AES-CBC cipher is used with predictable initialization vectors based
566on the sector number. This makes it vulnerable to chosen plaintext attacks
567which can reveal the existence of encrypted data.
568@item The user passphrase is directly used as the encryption key. A poorly
569chosen or short passphrase will compromise the security of the encryption.
570@item In the event of the passphrase being compromised there is no way to
571change the passphrase to protect data in any qcow images. The files must
572be cloned, using a different encryption passphrase in the new file. The
573original file must then be securely erased using a program like shred,
574though even this is ineffective with many modern storage technologies.
575@end itemize
576
a1f688f4
MA
577Use of qcow / qcow2 encryption with QEMU is deprecated, and support for
578it will go away in a future release. Users are recommended to use an
579alternative encryption technology such as the Linux dm-crypt / LUKS
580system.
d3067b02
KW
581
582@item cluster_size
583Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster
584sizes can improve the image file size whereas larger cluster sizes generally
585provide better performance.
586
587@item preallocation
0e4271b7
HT
588Preallocation mode (allowed values: @code{off}, @code{metadata}, @code{falloc},
589@code{full}). An image with preallocated metadata is initially larger but can
590improve performance when the image needs to grow. @code{falloc} and @code{full}
591preallocations are like the same options of @code{raw} format, but sets up
592metadata also.
d3067b02
KW
593
594@item lazy_refcounts
595If this option is set to @code{on}, reference count updates are postponed with
596the goal of avoiding metadata I/O and improving performance. This is
597particularly interesting with @option{cache=writethrough} which doesn't batch
598metadata updates. The tradeoff is that after a host crash, the reference count
599tables must be rebuilt, i.e. on the next open an (automatic) @code{qemu-img
600check -r all} is required, which may take some time.
601
602This option can only be enabled if @code{compat=1.1} is specified.
603
4ab15590 604@item nocow
bc3a7f90 605If this option is set to @code{on}, it will turn off COW of the file. It's only
4ab15590
CL
606valid on btrfs, no effect on other file systems.
607
608Btrfs has low performance when hosting a VM image file, even more when the guest
609on the VM also using btrfs as file system. Turning off COW is a way to mitigate
610this bad performance. Generally there are two ways to turn off COW on btrfs:
611a) Disable it by mounting with nodatacow, then all newly created files will be
612NOCOW. b) For an empty file, add the NOCOW file attribute. That's what this option
613does.
614
615Note: this option is only valid to new or empty files. If there is an existing
616file which is COW and has data blocks already, it couldn't be changed to NOCOW
617by setting @code{nocow=on}. One can issue @code{lsattr filename} to check if
bc3a7f90 618the NOCOW flag is set or not (Capital 'C' is NOCOW flag).
4ab15590 619
d3067b02
KW
620@end table
621
622@item qed
623Old QEMU image format with support for backing files and compact image files
624(when your filesystem or transport medium does not support holes).
625
626When converting QED images to qcow2, you might want to consider using the
627@code{lazy_refcounts=on} option to get a more QED-like behaviour.
628
629Supported options:
630@table @code
631@item backing_file
632File name of a base image (see @option{create} subcommand).
633@item backing_fmt
634Image file format of backing file (optional). Useful if the format cannot be
635autodetected because it has no header, like some vhd/vpc files.
636@item cluster_size
637Changes the cluster size (must be power-of-2 between 4K and 64K). Smaller
638cluster sizes can improve the image file size whereas larger cluster sizes
639generally provide better performance.
640@item table_size
641Changes the number of clusters per L1/L2 table (must be power-of-2 between 1
642and 16). There is normally no need to change this value but this option can be
643used for performance benchmarking.
644@end table
645
646@item qcow
647Old QEMU image format with support for backing files, compact image files,
648encryption and compression.
649
650Supported options:
651@table @code
652@item backing_file
653File name of a base image (see @option{create} subcommand)
654@item encryption
655If this option is set to @code{on}, the image is encrypted.
656@end table
657
d3067b02
KW
658@item vdi
659VirtualBox 1.1 compatible image format.
660Supported options:
661@table @code
662@item static
663If this option is set to @code{on}, the image is created with metadata
664preallocation.
665@end table
666
667@item vmdk
668VMware 3 and 4 compatible image format.
669
670Supported options:
671@table @code
672@item backing_file
673File name of a base image (see @option{create} subcommand).
674@item compat6
675Create a VMDK version 6 image (instead of version 4)
676@item subformat
677Specifies which VMDK subformat to use. Valid options are
678@code{monolithicSparse} (default),
679@code{monolithicFlat},
680@code{twoGbMaxExtentSparse},
681@code{twoGbMaxExtentFlat} and
682@code{streamOptimized}.
683@end table
684
685@item vpc
686VirtualPC compatible image format (VHD).
687Supported options:
688@table @code
689@item subformat
690Specifies which VHD subformat to use. Valid options are
691@code{dynamic} (default) and @code{fixed}.
692@end table
8282db1b
JC
693
694@item VHDX
695Hyper-V compatible image format (VHDX).
696Supported options:
697@table @code
698@item subformat
699Specifies which VHDX subformat to use. Valid options are
700@code{dynamic} (default) and @code{fixed}.
701@item block_state_zero
30af51ce
JC
702Force use of payload blocks of type 'ZERO'. Can be set to @code{on} (default)
703or @code{off}. When set to @code{off}, new blocks will be created as
704@code{PAYLOAD_BLOCK_NOT_PRESENT}, which means parsers are free to return
705arbitrary data for those blocks. Do not set to @code{off} when using
706@code{qemu-img convert} with @code{subformat=dynamic}.
8282db1b
JC
707@item block_size
708Block size; min 1 MB, max 256 MB. 0 means auto-calculate based on image size.
709@item log_size
710Log size; min 1 MB.
711@end table
d3067b02
KW
712@end table
713
714@subsubsection Read-only formats
715More disk image file formats are supported in a read-only mode.
716@table @option
717@item bochs
718Bochs images of @code{growing} type.
719@item cloop
720Linux Compressed Loop image, useful only to reuse directly compressed
721CD-ROM images present for example in the Knoppix CD-ROMs.
722@item dmg
723Apple disk image.
724@item parallels
725Parallels disk image format.
726@end table
727
728
19cb3738
FB
729@node host_drives
730@subsection Using host drives
731
732In addition to disk image files, QEMU can directly access host
733devices. We describe here the usage for QEMU version >= 0.8.3.
734
735@subsubsection Linux
736
737On Linux, you can directly use the host device filename instead of a
4be456f1 738disk image filename provided you have enough privileges to access
92a539d2 739it. For example, use @file{/dev/cdrom} to access to the CDROM.
19cb3738 740
f542086d 741@table @code
19cb3738
FB
742@item CD
743You can specify a CDROM device even if no CDROM is loaded. QEMU has
744specific code to detect CDROM insertion or removal. CDROM ejection by
745the guest OS is supported. Currently only data CDs are supported.
746@item Floppy
747You can specify a floppy device even if no floppy is loaded. Floppy
748removal is currently not detected accurately (if you change floppy
749without doing floppy access while the floppy is not loaded, the guest
750OS will think that the same floppy is loaded).
92a539d2
MA
751Use of the host's floppy device is deprecated, and support for it will
752be removed in a future release.
19cb3738
FB
753@item Hard disks
754Hard disks can be used. Normally you must specify the whole disk
755(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
756see it as a partitioned disk. WARNING: unless you know what you do, it
757is better to only make READ-ONLY accesses to the hard disk otherwise
758you may corrupt your host data (use the @option{-snapshot} command
759line option or modify the device permissions accordingly).
760@end table
761
762@subsubsection Windows
763
01781963
FB
764@table @code
765@item CD
4be456f1 766The preferred syntax is the drive letter (e.g. @file{d:}). The
01781963
FB
767alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
768supported as an alias to the first CDROM drive.
19cb3738 769
e598752a 770Currently there is no specific code to handle removable media, so it
19cb3738
FB
771is better to use the @code{change} or @code{eject} monitor commands to
772change or eject media.
01781963 773@item Hard disks
89dfe898 774Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
01781963
FB
775where @var{N} is the drive number (0 is the first hard disk).
776
777WARNING: unless you know what you do, it is better to only make
778READ-ONLY accesses to the hard disk otherwise you may corrupt your
779host data (use the @option{-snapshot} command line so that the
780modifications are written in a temporary file).
781@end table
782
19cb3738
FB
783
784@subsubsection Mac OS X
785
5fafdf24 786@file{/dev/cdrom} is an alias to the first CDROM.
19cb3738 787
e598752a 788Currently there is no specific code to handle removable media, so it
19cb3738
FB
789is better to use the @code{change} or @code{eject} monitor commands to
790change or eject media.
791
debc7065 792@node disk_images_fat_images
2c6cadd4
FB
793@subsection Virtual FAT disk images
794
795QEMU can automatically create a virtual FAT disk image from a
796directory tree. In order to use it, just type:
797
5fafdf24 798@example
3804da9d 799qemu-system-i386 linux.img -hdb fat:/my_directory
2c6cadd4
FB
800@end example
801
802Then you access access to all the files in the @file{/my_directory}
803directory without having to copy them in a disk image or to export
804them via SAMBA or NFS. The default access is @emph{read-only}.
805
806Floppies can be emulated with the @code{:floppy:} option:
807
5fafdf24 808@example
3804da9d 809qemu-system-i386 linux.img -fda fat:floppy:/my_directory
2c6cadd4
FB
810@end example
811
812A read/write support is available for testing (beta stage) with the
813@code{:rw:} option:
814
5fafdf24 815@example
3804da9d 816qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
2c6cadd4
FB
817@end example
818
819What you should @emph{never} do:
820@itemize
821@item use non-ASCII filenames ;
822@item use "-snapshot" together with ":rw:" ;
85b2c688
FB
823@item expect it to work when loadvm'ing ;
824@item write to the FAT directory on the host system while accessing it with the guest system.
2c6cadd4
FB
825@end itemize
826
75818250
TS
827@node disk_images_nbd
828@subsection NBD access
829
830QEMU can access directly to block device exported using the Network Block Device
831protocol.
832
833@example
1d7d2a9d 834qemu-system-i386 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/
75818250
TS
835@end example
836
837If the NBD server is located on the same host, you can use an unix socket instead
838of an inet socket:
839
840@example
1d7d2a9d 841qemu-system-i386 linux.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
842@end example
843
844In this case, the block device must be exported using qemu-nbd:
845
846@example
847qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
848@end example
849
9d85d557 850The use of qemu-nbd allows sharing of a disk between several guests:
75818250
TS
851@example
852qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
853@end example
854
1d7d2a9d 855@noindent
75818250
TS
856and then you can use it with two guests:
857@example
1d7d2a9d
PB
858qemu-system-i386 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket
859qemu-system-i386 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
860@end example
861
1d7d2a9d
PB
862If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's
863own embedded NBD server), you must specify an export name in the URI:
1d45f8b5 864@example
1d7d2a9d
PB
865qemu-system-i386 -cdrom nbd://localhost/debian-500-ppc-netinst
866qemu-system-i386 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst
867@end example
868
869The URI syntax for NBD is supported since QEMU 1.3. An alternative syntax is
870also available. Here are some example of the older syntax:
871@example
872qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
873qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
874qemu-system-i386 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst
1d45f8b5
LV
875@end example
876
42af9c30
MK
877@node disk_images_sheepdog
878@subsection Sheepdog disk images
879
880Sheepdog is a distributed storage system for QEMU. It provides highly
881available block level storage volumes that can be attached to
882QEMU-based virtual machines.
883
884You can create a Sheepdog disk image with the command:
885@example
5d6768e3 886qemu-img create sheepdog:///@var{image} @var{size}
42af9c30
MK
887@end example
888where @var{image} is the Sheepdog image name and @var{size} is its
889size.
890
891To import the existing @var{filename} to Sheepdog, you can use a
892convert command.
893@example
5d6768e3 894qemu-img convert @var{filename} sheepdog:///@var{image}
42af9c30
MK
895@end example
896
897You can boot from the Sheepdog disk image with the command:
898@example
5d6768e3 899qemu-system-i386 sheepdog:///@var{image}
42af9c30
MK
900@end example
901
902You can also create a snapshot of the Sheepdog image like qcow2.
903@example
5d6768e3 904qemu-img snapshot -c @var{tag} sheepdog:///@var{image}
42af9c30
MK
905@end example
906where @var{tag} is a tag name of the newly created snapshot.
907
908To boot from the Sheepdog snapshot, specify the tag name of the
909snapshot.
910@example
5d6768e3 911qemu-system-i386 sheepdog:///@var{image}#@var{tag}
42af9c30
MK
912@end example
913
914You can create a cloned image from the existing snapshot.
915@example
5d6768e3 916qemu-img create -b sheepdog:///@var{base}#@var{tag} sheepdog:///@var{image}
42af9c30
MK
917@end example
918where @var{base} is a image name of the source snapshot and @var{tag}
919is its tag name.
920
1b8bbb46
MK
921You can use an unix socket instead of an inet socket:
922
923@example
924qemu-system-i386 sheepdog+unix:///@var{image}?socket=@var{path}
925@end example
926
42af9c30
MK
927If the Sheepdog daemon doesn't run on the local host, you need to
928specify one of the Sheepdog servers to connect to.
929@example
5d6768e3
MK
930qemu-img create sheepdog://@var{hostname}:@var{port}/@var{image} @var{size}
931qemu-system-i386 sheepdog://@var{hostname}:@var{port}/@var{image}
42af9c30
MK
932@end example
933
00984e39
RS
934@node disk_images_iscsi
935@subsection iSCSI LUNs
936
937iSCSI is a popular protocol used to access SCSI devices across a computer
938network.
939
940There are two different ways iSCSI devices can be used by QEMU.
941
942The first method is to mount the iSCSI LUN on the host, and make it appear as
943any other ordinary SCSI device on the host and then to access this device as a
944/dev/sd device from QEMU. How to do this differs between host OSes.
945
946The second method involves using the iSCSI initiator that is built into
947QEMU. This provides a mechanism that works the same way regardless of which
948host OS you are running QEMU on. This section will describe this second method
949of using iSCSI together with QEMU.
950
951In QEMU, iSCSI devices are described using special iSCSI URLs
952
953@example
954URL syntax:
955iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
956@end example
957
958Username and password are optional and only used if your target is set up
959using CHAP authentication for access control.
960Alternatively the username and password can also be set via environment
961variables to have these not show up in the process list
962
963@example
964export LIBISCSI_CHAP_USERNAME=<username>
965export LIBISCSI_CHAP_PASSWORD=<password>
966iscsi://<host>/<target-iqn-name>/<lun>
967@end example
968
f9dadc98
RS
969Various session related parameters can be set via special options, either
970in a configuration file provided via '-readconfig' or directly on the
971command line.
972
31459f46
RS
973If the initiator-name is not specified qemu will use a default name
974of 'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the
975virtual machine.
976
977
f9dadc98
RS
978@example
979Setting a specific initiator name to use when logging in to the target
980-iscsi initiator-name=iqn.qemu.test:my-initiator
981@end example
982
983@example
984Controlling which type of header digest to negotiate with the target
985-iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
986@end example
987
988These can also be set via a configuration file
989@example
990[iscsi]
991 user = "CHAP username"
992 password = "CHAP password"
993 initiator-name = "iqn.qemu.test:my-initiator"
994 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
995 header-digest = "CRC32C"
996@end example
997
998
999Setting the target name allows different options for different targets
1000@example
1001[iscsi "iqn.target.name"]
1002 user = "CHAP username"
1003 password = "CHAP password"
1004 initiator-name = "iqn.qemu.test:my-initiator"
1005 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
1006 header-digest = "CRC32C"
1007@end example
1008
1009
1010Howto use a configuration file to set iSCSI configuration options:
1011@example
1012cat >iscsi.conf <<EOF
1013[iscsi]
1014 user = "me"
1015 password = "my password"
1016 initiator-name = "iqn.qemu.test:my-initiator"
1017 header-digest = "CRC32C"
1018EOF
1019
1020qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
1021 -readconfig iscsi.conf
1022@end example
1023
1024
00984e39
RS
1025Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
1026@example
1027This example shows how to set up an iSCSI target with one CDROM and one DISK
1028using the Linux STGT software target. This target is available on Red Hat based
1029systems as the package 'scsi-target-utils'.
1030
1031tgtd --iscsi portal=127.0.0.1:3260
1032tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
1033tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
1034 -b /IMAGES/disk.img --device-type=disk
1035tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
1036 -b /IMAGES/cd.iso --device-type=cd
1037tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
1038
f9dadc98
RS
1039qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
1040 -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
00984e39
RS
1041 -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
1042@end example
1043
8809e289
BR
1044@node disk_images_gluster
1045@subsection GlusterFS disk images
00984e39 1046
8809e289
BR
1047GlusterFS is an user space distributed file system.
1048
1049You can boot from the GlusterFS disk image with the command:
1050@example
1051qemu-system-x86_64 -drive file=gluster[+@var{transport}]://[@var{server}[:@var{port}]]/@var{volname}/@var{image}[?socket=...]
1052@end example
1053
1054@var{gluster} is the protocol.
1055
1056@var{transport} specifies the transport type used to connect to gluster
1057management daemon (glusterd). Valid transport types are
1058tcp, unix and rdma. If a transport type isn't specified, then tcp
1059type is assumed.
1060
1061@var{server} specifies the server where the volume file specification for
1062the given volume resides. This can be either hostname, ipv4 address
1063or ipv6 address. ipv6 address needs to be within square brackets [ ].
d274e07c 1064If transport type is unix, then @var{server} field should not be specified.
8809e289
BR
1065Instead @var{socket} field needs to be populated with the path to unix domain
1066socket.
1067
1068@var{port} is the port number on which glusterd is listening. This is optional
1069and if not specified, QEMU will send 0 which will make gluster to use the
1070default port. If the transport type is unix, then @var{port} should not be
1071specified.
1072
1073@var{volname} is the name of the gluster volume which contains the disk image.
1074
1075@var{image} is the path to the actual disk image that resides on gluster volume.
1076
1077You can create a GlusterFS disk image with the command:
1078@example
1079qemu-img create gluster://@var{server}/@var{volname}/@var{image} @var{size}
1080@end example
1081
1082Examples
1083@example
1084qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img
1085qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img
1086qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img
1087qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img
1088qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img
1089qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img
1090qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket
1091qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img
1092@end example
00984e39 1093
0a12ec87
RJ
1094@node disk_images_ssh
1095@subsection Secure Shell (ssh) disk images
1096
1097You can access disk images located on a remote ssh server
1098by using the ssh protocol:
1099
1100@example
1101qemu-system-x86_64 -drive file=ssh://[@var{user}@@]@var{server}[:@var{port}]/@var{path}[?host_key_check=@var{host_key_check}]
1102@end example
1103
1104Alternative syntax using properties:
1105
1106@example
1107qemu-system-x86_64 -drive file.driver=ssh[,file.user=@var{user}],file.host=@var{server}[,file.port=@var{port}],file.path=@var{path}[,file.host_key_check=@var{host_key_check}]
1108@end example
1109
1110@var{ssh} is the protocol.
1111
1112@var{user} is the remote user. If not specified, then the local
1113username is tried.
1114
1115@var{server} specifies the remote ssh server. Any ssh server can be
1116used, but it must implement the sftp-server protocol. Most Unix/Linux
1117systems should work without requiring any extra configuration.
1118
1119@var{port} is the port number on which sshd is listening. By default
1120the standard ssh port (22) is used.
1121
1122@var{path} is the path to the disk image.
1123
1124The optional @var{host_key_check} parameter controls how the remote
1125host's key is checked. The default is @code{yes} which means to use
1126the local @file{.ssh/known_hosts} file. Setting this to @code{no}
1127turns off known-hosts checking. Or you can check that the host key
1128matches a specific fingerprint:
1129@code{host_key_check=md5:78:45:8e:14:57:4f:d5:45:83:0a:0e:f3:49:82:c9:c8}
1130(@code{sha1:} can also be used as a prefix, but note that OpenSSH
1131tools only use MD5 to print fingerprints).
1132
1133Currently authentication must be done using ssh-agent. Other
1134authentication methods may be supported in future.
1135
9a2d462e
RJ
1136Note: Many ssh servers do not support an @code{fsync}-style operation.
1137The ssh driver cannot guarantee that disk flush requests are
1138obeyed, and this causes a risk of disk corruption if the remote
1139server or network goes down during writes. The driver will
1140print a warning when @code{fsync} is not supported:
1141
1142warning: ssh server @code{ssh.example.com:22} does not support fsync
1143
1144With sufficiently new versions of libssh2 and OpenSSH, @code{fsync} is
1145supported.
0a12ec87 1146
debc7065 1147@node pcsys_network
9d4fb82e
FB
1148@section Network emulation
1149
4be456f1 1150QEMU can simulate several network cards (PCI or ISA cards on the PC
41d03949
FB
1151target) and can connect them to an arbitrary number of Virtual Local
1152Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1153VLAN. VLAN can be connected between separate instances of QEMU to
4be456f1 1154simulate large networks. For simpler usage, a non privileged user mode
41d03949
FB
1155network stack can replace the TAP device to have a basic network
1156connection.
1157
1158@subsection VLANs
9d4fb82e 1159
41d03949
FB
1160QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1161connection between several network devices. These devices can be for
1162example QEMU virtual Ethernet cards or virtual Host ethernet devices
1163(TAP devices).
9d4fb82e 1164
41d03949
FB
1165@subsection Using TAP network interfaces
1166
1167This is the standard way to connect QEMU to a real network. QEMU adds
1168a virtual network device on your host (called @code{tapN}), and you
1169can then configure it as if it was a real ethernet card.
9d4fb82e 1170
8f40c388
FB
1171@subsubsection Linux host
1172
9d4fb82e
FB
1173As an example, you can download the @file{linux-test-xxx.tar.gz}
1174archive and copy the script @file{qemu-ifup} in @file{/etc} and
1175configure properly @code{sudo} so that the command @code{ifconfig}
1176contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 1177that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
1178device @file{/dev/net/tun} must be present.
1179
ee0f4751
FB
1180See @ref{sec_invocation} to have examples of command lines using the
1181TAP network interfaces.
9d4fb82e 1182
8f40c388
FB
1183@subsubsection Windows host
1184
1185There is a virtual ethernet driver for Windows 2000/XP systems, called
1186TAP-Win32. But it is not included in standard QEMU for Windows,
1187so you will need to get it separately. It is part of OpenVPN package,
1188so download OpenVPN from : @url{http://openvpn.net/}.
1189
9d4fb82e
FB
1190@subsection Using the user mode network stack
1191
41d03949
FB
1192By using the option @option{-net user} (default configuration if no
1193@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 1194network stack (you don't need root privilege to use the virtual
41d03949 1195network). The virtual network configuration is the following:
9d4fb82e
FB
1196
1197@example
1198
41d03949
FB
1199 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
1200 | (10.0.2.2)
9d4fb82e 1201 |
2518bd0d 1202 ----> DNS server (10.0.2.3)
3b46e624 1203 |
2518bd0d 1204 ----> SMB server (10.0.2.4)
9d4fb82e
FB
1205@end example
1206
1207The QEMU VM behaves as if it was behind a firewall which blocks all
1208incoming connections. You can use a DHCP client to automatically
41d03949
FB
1209configure the network in the QEMU VM. The DHCP server assign addresses
1210to the hosts starting from 10.0.2.15.
9d4fb82e
FB
1211
1212In order to check that the user mode network is working, you can ping
1213the address 10.0.2.2 and verify that you got an address in the range
121410.0.2.x from the QEMU virtual DHCP server.
1215
37cbfcce
GH
1216Note that ICMP traffic in general does not work with user mode networking.
1217@code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
1218however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
1219ping sockets to allow @code{ping} to the Internet. The host admin has to set
1220the ping_group_range in order to grant access to those sockets. To allow ping
1221for GID 100 (usually users group):
1222
1223@example
1224echo 100 100 > /proc/sys/net/ipv4/ping_group_range
1225@end example
b415a407 1226
9bf05444
FB
1227When using the built-in TFTP server, the router is also the TFTP
1228server.
1229
1230When using the @option{-redir} option, TCP or UDP connections can be
1231redirected from the host to the guest. It allows for example to
1232redirect X11, telnet or SSH connections.
443f1376 1233
41d03949
FB
1234@subsection Connecting VLANs between QEMU instances
1235
1236Using the @option{-net socket} option, it is possible to make VLANs
1237that span several QEMU instances. See @ref{sec_invocation} to have a
1238basic example.
1239
576fd0a1 1240@node pcsys_other_devs
6cbf4c8c
CM
1241@section Other Devices
1242
1243@subsection Inter-VM Shared Memory device
1244
1245With KVM enabled on a Linux host, a shared memory device is available. Guests
1246map a POSIX shared memory region into the guest as a PCI device that enables
1247zero-copy communication to the application level of the guests. The basic
1248syntax is:
1249
1250@example
3804da9d 1251qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]
6cbf4c8c
CM
1252@end example
1253
1254If desired, interrupts can be sent between guest VMs accessing the same shared
1255memory region. Interrupt support requires using a shared memory server and
1256using a chardev socket to connect to it. The code for the shared memory server
1257is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
1258memory server is:
1259
1260@example
3804da9d
SW
1261qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,chardev=<id>]
1262 [,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master]
1263qemu-system-i386 -chardev socket,path=<path>,id=<id>
6cbf4c8c
CM
1264@end example
1265
1266When using the server, the guest will be assigned a VM ID (>=0) that allows guests
1267using the same server to communicate via interrupts. Guests can read their
1268VM ID from a device register (see example code). Since receiving the shared
1269memory region from the server is asynchronous, there is a (small) chance the
1270guest may boot before the shared memory is attached. To allow an application
1271to ensure shared memory is attached, the VM ID register will return -1 (an
1272invalid VM ID) until the memory is attached. Once the shared memory is
1273attached, the VM ID will return the guest's valid VM ID. With these semantics,
1274the guest application can check to ensure the shared memory is attached to the
1275guest before proceeding.
1276
1277The @option{role} argument can be set to either master or peer and will affect
1278how the shared memory is migrated. With @option{role=master}, the guest will
1279copy the shared memory on migration to the destination host. With
1280@option{role=peer}, the guest will not be able to migrate with the device attached.
1281With the @option{peer} case, the device should be detached and then reattached
1282after migration using the PCI hotplug support.
1283
9d4fb82e
FB
1284@node direct_linux_boot
1285@section Direct Linux Boot
1f673135
FB
1286
1287This section explains how to launch a Linux kernel inside QEMU without
1288having to make a full bootable image. It is very useful for fast Linux
ee0f4751 1289kernel testing.
1f673135 1290
ee0f4751 1291The syntax is:
1f673135 1292@example
3804da9d 1293qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
1294@end example
1295
ee0f4751
FB
1296Use @option{-kernel} to provide the Linux kernel image and
1297@option{-append} to give the kernel command line arguments. The
1298@option{-initrd} option can be used to provide an INITRD image.
1f673135 1299
ee0f4751
FB
1300When using the direct Linux boot, a disk image for the first hard disk
1301@file{hda} is required because its boot sector is used to launch the
1302Linux kernel.
1f673135 1303
ee0f4751
FB
1304If you do not need graphical output, you can disable it and redirect
1305the virtual serial port and the QEMU monitor to the console with the
1306@option{-nographic} option. The typical command line is:
1f673135 1307@example
3804da9d
SW
1308qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1309 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
1310@end example
1311
ee0f4751
FB
1312Use @key{Ctrl-a c} to switch between the serial console and the
1313monitor (@pxref{pcsys_keys}).
1f673135 1314
debc7065 1315@node pcsys_usb
b389dbfb
FB
1316@section USB emulation
1317
0aff66b5
PB
1318QEMU emulates a PCI UHCI USB controller. You can virtually plug
1319virtual USB devices or real host USB devices (experimental, works only
071c9394 1320on Linux hosts). QEMU will automatically create and connect virtual USB hubs
f542086d 1321as necessary to connect multiple USB devices.
b389dbfb 1322
0aff66b5
PB
1323@menu
1324* usb_devices::
1325* host_usb_devices::
1326@end menu
1327@node usb_devices
1328@subsection Connecting USB devices
b389dbfb 1329
0aff66b5
PB
1330USB devices can be connected with the @option{-usbdevice} commandline option
1331or the @code{usb_add} monitor command. Available devices are:
b389dbfb 1332
db380c06
AZ
1333@table @code
1334@item mouse
0aff66b5 1335Virtual Mouse. This will override the PS/2 mouse emulation when activated.
db380c06 1336@item tablet
c6d46c20 1337Pointer device that uses absolute coordinates (like a touchscreen).
b65ee4fa 1338This means QEMU is able to report the mouse position without having
0aff66b5 1339to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
db380c06 1340@item disk:@var{file}
0aff66b5 1341Mass storage device based on @var{file} (@pxref{disk_images})
db380c06 1342@item host:@var{bus.addr}
0aff66b5
PB
1343Pass through the host device identified by @var{bus.addr}
1344(Linux only)
db380c06 1345@item host:@var{vendor_id:product_id}
0aff66b5
PB
1346Pass through the host device identified by @var{vendor_id:product_id}
1347(Linux only)
db380c06 1348@item wacom-tablet
f6d2a316
AZ
1349Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1350above but it can be used with the tslib library because in addition to touch
1351coordinates it reports touch pressure.
db380c06 1352@item keyboard
47b2d338 1353Standard USB keyboard. Will override the PS/2 keyboard (if present).
db380c06
AZ
1354@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1355Serial converter. This emulates an FTDI FT232BM chip connected to host character
1356device @var{dev}. The available character devices are the same as for the
1357@code{-serial} option. The @code{vendorid} and @code{productid} options can be
0d6753e5 1358used to override the default 0403:6001. For instance,
db380c06
AZ
1359@example
1360usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1361@end example
1362will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1363serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
2e4d9fb1
AJ
1364@item braille
1365Braille device. This will use BrlAPI to display the braille output on a real
1366or fake device.
9ad97e65
AZ
1367@item net:@var{options}
1368Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
1369specifies NIC options as with @code{-net nic,}@var{options} (see description).
1370For instance, user-mode networking can be used with
6c9f886c 1371@example
3804da9d 1372qemu-system-i386 [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
6c9f886c
AZ
1373@end example
1374Currently this cannot be used in machines that support PCI NICs.
2d564691
AZ
1375@item bt[:@var{hci-type}]
1376Bluetooth dongle whose type is specified in the same format as with
1377the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
1378no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1379This USB device implements the USB Transport Layer of HCI. Example
1380usage:
1381@example
3804da9d 1382qemu-system-i386 [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
2d564691 1383@end example
0aff66b5 1384@end table
b389dbfb 1385
0aff66b5 1386@node host_usb_devices
b389dbfb
FB
1387@subsection Using host USB devices on a Linux host
1388
1389WARNING: this is an experimental feature. QEMU will slow down when
1390using it. USB devices requiring real time streaming (i.e. USB Video
1391Cameras) are not supported yet.
1392
1393@enumerate
5fafdf24 1394@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
1395is actually using the USB device. A simple way to do that is simply to
1396disable the corresponding kernel module by renaming it from @file{mydriver.o}
1397to @file{mydriver.o.disabled}.
1398
1399@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1400@example
1401ls /proc/bus/usb
1402001 devices drivers
1403@end example
1404
1405@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1406@example
1407chown -R myuid /proc/bus/usb
1408@end example
1409
1410@item Launch QEMU and do in the monitor:
5fafdf24 1411@example
b389dbfb
FB
1412info usbhost
1413 Device 1.2, speed 480 Mb/s
1414 Class 00: USB device 1234:5678, USB DISK
1415@end example
1416You should see the list of the devices you can use (Never try to use
1417hubs, it won't work).
1418
1419@item Add the device in QEMU by using:
5fafdf24 1420@example
b389dbfb
FB
1421usb_add host:1234:5678
1422@end example
1423
1424Normally the guest OS should report that a new USB device is
1425plugged. You can use the option @option{-usbdevice} to do the same.
1426
1427@item Now you can try to use the host USB device in QEMU.
1428
1429@end enumerate
1430
1431When relaunching QEMU, you may have to unplug and plug again the USB
1432device to make it work again (this is a bug).
1433
f858dcae
TS
1434@node vnc_security
1435@section VNC security
1436
1437The VNC server capability provides access to the graphical console
1438of the guest VM across the network. This has a number of security
1439considerations depending on the deployment scenarios.
1440
1441@menu
1442* vnc_sec_none::
1443* vnc_sec_password::
1444* vnc_sec_certificate::
1445* vnc_sec_certificate_verify::
1446* vnc_sec_certificate_pw::
2f9606b3
AL
1447* vnc_sec_sasl::
1448* vnc_sec_certificate_sasl::
f858dcae 1449* vnc_generate_cert::
2f9606b3 1450* vnc_setup_sasl::
f858dcae
TS
1451@end menu
1452@node vnc_sec_none
1453@subsection Without passwords
1454
1455The simplest VNC server setup does not include any form of authentication.
1456For this setup it is recommended to restrict it to listen on a UNIX domain
1457socket only. For example
1458
1459@example
3804da9d 1460qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
f858dcae
TS
1461@end example
1462
1463This ensures that only users on local box with read/write access to that
1464path can access the VNC server. To securely access the VNC server from a
1465remote machine, a combination of netcat+ssh can be used to provide a secure
1466tunnel.
1467
1468@node vnc_sec_password
1469@subsection With passwords
1470
1471The VNC protocol has limited support for password based authentication. Since
1472the protocol limits passwords to 8 characters it should not be considered
1473to provide high security. The password can be fairly easily brute-forced by
1474a client making repeat connections. For this reason, a VNC server using password
1475authentication should be restricted to only listen on the loopback interface
0f66998f
PM
1476or UNIX domain sockets. Password authentication is not supported when operating
1477in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1478authentication is requested with the @code{password} option, and then once QEMU
1479is running the password is set with the monitor. Until the monitor is used to
1480set the password all clients will be rejected.
f858dcae
TS
1481
1482@example
3804da9d 1483qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
f858dcae
TS
1484(qemu) change vnc password
1485Password: ********
1486(qemu)
1487@end example
1488
1489@node vnc_sec_certificate
1490@subsection With x509 certificates
1491
1492The QEMU VNC server also implements the VeNCrypt extension allowing use of
1493TLS for encryption of the session, and x509 certificates for authentication.
1494The use of x509 certificates is strongly recommended, because TLS on its
1495own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1496support provides a secure session, but no authentication. This allows any
1497client to connect, and provides an encrypted session.
1498
1499@example
3804da9d 1500qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
f858dcae
TS
1501@end example
1502
1503In the above example @code{/etc/pki/qemu} should contain at least three files,
1504@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1505users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1506NB the @code{server-key.pem} file should be protected with file mode 0600 to
1507only be readable by the user owning it.
1508
1509@node vnc_sec_certificate_verify
1510@subsection With x509 certificates and client verification
1511
1512Certificates can also provide a means to authenticate the client connecting.
1513The server will request that the client provide a certificate, which it will
1514then validate against the CA certificate. This is a good choice if deploying
1515in an environment with a private internal certificate authority.
1516
1517@example
3804da9d 1518qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1519@end example
1520
1521
1522@node vnc_sec_certificate_pw
1523@subsection With x509 certificates, client verification and passwords
1524
1525Finally, the previous method can be combined with VNC password authentication
1526to provide two layers of authentication for clients.
1527
1528@example
3804da9d 1529qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1530(qemu) change vnc password
1531Password: ********
1532(qemu)
1533@end example
1534
2f9606b3
AL
1535
1536@node vnc_sec_sasl
1537@subsection With SASL authentication
1538
1539The SASL authentication method is a VNC extension, that provides an
1540easily extendable, pluggable authentication method. This allows for
1541integration with a wide range of authentication mechanisms, such as
1542PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1543The strength of the authentication depends on the exact mechanism
1544configured. If the chosen mechanism also provides a SSF layer, then
1545it will encrypt the datastream as well.
1546
1547Refer to the later docs on how to choose the exact SASL mechanism
1548used for authentication, but assuming use of one supporting SSF,
1549then QEMU can be launched with:
1550
1551@example
3804da9d 1552qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
2f9606b3
AL
1553@end example
1554
1555@node vnc_sec_certificate_sasl
1556@subsection With x509 certificates and SASL authentication
1557
1558If the desired SASL authentication mechanism does not supported
1559SSF layers, then it is strongly advised to run it in combination
1560with TLS and x509 certificates. This provides securely encrypted
1561data stream, avoiding risk of compromising of the security
1562credentials. This can be enabled, by combining the 'sasl' option
1563with the aforementioned TLS + x509 options:
1564
1565@example
3804da9d 1566qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
2f9606b3
AL
1567@end example
1568
1569
f858dcae
TS
1570@node vnc_generate_cert
1571@subsection Generating certificates for VNC
1572
1573The GNU TLS packages provides a command called @code{certtool} which can
1574be used to generate certificates and keys in PEM format. At a minimum it
40c5c6cd 1575is necessary to setup a certificate authority, and issue certificates to
f858dcae
TS
1576each server. If using certificates for authentication, then each client
1577will also need to be issued a certificate. The recommendation is for the
1578server to keep its certificates in either @code{/etc/pki/qemu} or for
1579unprivileged users in @code{$HOME/.pki/qemu}.
1580
1581@menu
1582* vnc_generate_ca::
1583* vnc_generate_server::
1584* vnc_generate_client::
1585@end menu
1586@node vnc_generate_ca
1587@subsubsection Setup the Certificate Authority
1588
1589This step only needs to be performed once per organization / organizational
1590unit. First the CA needs a private key. This key must be kept VERY secret
1591and secure. If this key is compromised the entire trust chain of the certificates
1592issued with it is lost.
1593
1594@example
1595# certtool --generate-privkey > ca-key.pem
1596@end example
1597
1598A CA needs to have a public certificate. For simplicity it can be a self-signed
1599certificate, or one issue by a commercial certificate issuing authority. To
1600generate a self-signed certificate requires one core piece of information, the
1601name of the organization.
1602
1603@example
1604# cat > ca.info <<EOF
1605cn = Name of your organization
1606ca
1607cert_signing_key
1608EOF
1609# certtool --generate-self-signed \
1610 --load-privkey ca-key.pem
1611 --template ca.info \
1612 --outfile ca-cert.pem
1613@end example
1614
1615The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1616TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1617
1618@node vnc_generate_server
1619@subsubsection Issuing server certificates
1620
1621Each server (or host) needs to be issued with a key and certificate. When connecting
1622the certificate is sent to the client which validates it against the CA certificate.
1623The core piece of information for a server certificate is the hostname. This should
1624be the fully qualified hostname that the client will connect with, since the client
1625will typically also verify the hostname in the certificate. On the host holding the
1626secure CA private key:
1627
1628@example
1629# cat > server.info <<EOF
1630organization = Name of your organization
1631cn = server.foo.example.com
1632tls_www_server
1633encryption_key
1634signing_key
1635EOF
1636# certtool --generate-privkey > server-key.pem
1637# certtool --generate-certificate \
1638 --load-ca-certificate ca-cert.pem \
1639 --load-ca-privkey ca-key.pem \
63c693f8 1640 --load-privkey server-key.pem \
f858dcae
TS
1641 --template server.info \
1642 --outfile server-cert.pem
1643@end example
1644
1645The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1646to the server for which they were generated. The @code{server-key.pem} is security
1647sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1648
1649@node vnc_generate_client
1650@subsubsection Issuing client certificates
1651
1652If the QEMU VNC server is to use the @code{x509verify} option to validate client
1653certificates as its authentication mechanism, each client also needs to be issued
1654a certificate. The client certificate contains enough metadata to uniquely identify
1655the client, typically organization, state, city, building, etc. On the host holding
1656the secure CA private key:
1657
1658@example
1659# cat > client.info <<EOF
1660country = GB
1661state = London
1662locality = London
63c693f8 1663organization = Name of your organization
f858dcae
TS
1664cn = client.foo.example.com
1665tls_www_client
1666encryption_key
1667signing_key
1668EOF
1669# certtool --generate-privkey > client-key.pem
1670# certtool --generate-certificate \
1671 --load-ca-certificate ca-cert.pem \
1672 --load-ca-privkey ca-key.pem \
1673 --load-privkey client-key.pem \
1674 --template client.info \
1675 --outfile client-cert.pem
1676@end example
1677
1678The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1679copied to the client for which they were generated.
1680
2f9606b3
AL
1681
1682@node vnc_setup_sasl
1683
1684@subsection Configuring SASL mechanisms
1685
1686The following documentation assumes use of the Cyrus SASL implementation on a
1687Linux host, but the principals should apply to any other SASL impl. When SASL
1688is enabled, the mechanism configuration will be loaded from system default
1689SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1690unprivileged user, an environment variable SASL_CONF_PATH can be used
1691to make it search alternate locations for the service config.
1692
1693The default configuration might contain
1694
1695@example
1696mech_list: digest-md5
1697sasldb_path: /etc/qemu/passwd.db
1698@end example
1699
1700This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1701Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1702in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1703command. While this mechanism is easy to configure and use, it is not
1704considered secure by modern standards, so only suitable for developers /
1705ad-hoc testing.
1706
1707A more serious deployment might use Kerberos, which is done with the 'gssapi'
1708mechanism
1709
1710@example
1711mech_list: gssapi
1712keytab: /etc/qemu/krb5.tab
1713@end example
1714
1715For this to work the administrator of your KDC must generate a Kerberos
1716principal for the server, with a name of 'qemu/somehost.example.com@@EXAMPLE.COM'
1717replacing 'somehost.example.com' with the fully qualified host name of the
40c5c6cd 1718machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
2f9606b3
AL
1719
1720Other configurations will be left as an exercise for the reader. It should
1721be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1722encryption. For all other mechanisms, VNC should always be configured to
1723use TLS and x509 certificates to protect security credentials from snooping.
1724
0806e3f6 1725@node gdb_usage
da415d54
FB
1726@section GDB usage
1727
1728QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1729'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1730
b65ee4fa 1731In order to use gdb, launch QEMU with the '-s' option. It will wait for a
da415d54
FB
1732gdb connection:
1733@example
3804da9d
SW
1734qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1735 -append "root=/dev/hda"
da415d54
FB
1736Connected to host network interface: tun0
1737Waiting gdb connection on port 1234
1738@end example
1739
1740Then launch gdb on the 'vmlinux' executable:
1741@example
1742> gdb vmlinux
1743@end example
1744
1745In gdb, connect to QEMU:
1746@example
6c9bf893 1747(gdb) target remote localhost:1234
da415d54
FB
1748@end example
1749
1750Then you can use gdb normally. For example, type 'c' to launch the kernel:
1751@example
1752(gdb) c
1753@end example
1754
0806e3f6
FB
1755Here are some useful tips in order to use gdb on system code:
1756
1757@enumerate
1758@item
1759Use @code{info reg} to display all the CPU registers.
1760@item
1761Use @code{x/10i $eip} to display the code at the PC position.
1762@item
1763Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1764@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1765@end enumerate
1766
60897d36
EI
1767Advanced debugging options:
1768
1769The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 1770@table @code
60897d36
EI
1771@item maintenance packet qqemu.sstepbits
1772
1773This will display the MASK bits used to control the single stepping IE:
1774@example
1775(gdb) maintenance packet qqemu.sstepbits
1776sending: "qqemu.sstepbits"
1777received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1778@end example
1779@item maintenance packet qqemu.sstep
1780
1781This will display the current value of the mask used when single stepping IE:
1782@example
1783(gdb) maintenance packet qqemu.sstep
1784sending: "qqemu.sstep"
1785received: "0x7"
1786@end example
1787@item maintenance packet Qqemu.sstep=HEX_VALUE
1788
1789This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1790@example
1791(gdb) maintenance packet Qqemu.sstep=0x5
1792sending: "qemu.sstep=0x5"
1793received: "OK"
1794@end example
94d45e44 1795@end table
60897d36 1796
debc7065 1797@node pcsys_os_specific
1a084f3d
FB
1798@section Target OS specific information
1799
1800@subsection Linux
1801
15a34c63
FB
1802To have access to SVGA graphic modes under X11, use the @code{vesa} or
1803the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1804color depth in the guest and the host OS.
1a084f3d 1805
e3371e62
FB
1806When using a 2.6 guest Linux kernel, you should add the option
1807@code{clock=pit} on the kernel command line because the 2.6 Linux
1808kernels make very strict real time clock checks by default that QEMU
1809cannot simulate exactly.
1810
7c3fc84d
FB
1811When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1812not activated because QEMU is slower with this patch. The QEMU
1813Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1814Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1815patch by default. Newer kernels don't have it.
1816
1a084f3d
FB
1817@subsection Windows
1818
1819If you have a slow host, using Windows 95 is better as it gives the
1820best speed. Windows 2000 is also a good choice.
1821
e3371e62
FB
1822@subsubsection SVGA graphic modes support
1823
1824QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1825card. All Windows versions starting from Windows 95 should recognize
1826and use this graphic card. For optimal performances, use 16 bit color
1827depth in the guest and the host OS.
1a084f3d 1828
3cb0853a
FB
1829If you are using Windows XP as guest OS and if you want to use high
1830resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
18311280x1024x16), then you should use the VESA VBE virtual graphic card
1832(option @option{-std-vga}).
1833
e3371e62
FB
1834@subsubsection CPU usage reduction
1835
1836Windows 9x does not correctly use the CPU HLT
15a34c63
FB
1837instruction. The result is that it takes host CPU cycles even when
1838idle. You can install the utility from
1839@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1840problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 1841
9d0a8e6f 1842@subsubsection Windows 2000 disk full problem
e3371e62 1843
9d0a8e6f
FB
1844Windows 2000 has a bug which gives a disk full problem during its
1845installation. When installing it, use the @option{-win2k-hack} QEMU
1846option to enable a specific workaround. After Windows 2000 is
1847installed, you no longer need this option (this option slows down the
1848IDE transfers).
e3371e62 1849
6cc721cf
FB
1850@subsubsection Windows 2000 shutdown
1851
1852Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1853can. It comes from the fact that Windows 2000 does not automatically
1854use the APM driver provided by the BIOS.
1855
1856In order to correct that, do the following (thanks to Struan
1857Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1858Add/Troubleshoot a device => Add a new device & Next => No, select the
1859hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1860(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 1861correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
1862
1863@subsubsection Share a directory between Unix and Windows
1864
1865See @ref{sec_invocation} about the help of the option @option{-smb}.
1866
2192c332 1867@subsubsection Windows XP security problem
e3371e62
FB
1868
1869Some releases of Windows XP install correctly but give a security
1870error when booting:
1871@example
1872A problem is preventing Windows from accurately checking the
1873license for this computer. Error code: 0x800703e6.
1874@end example
e3371e62 1875
2192c332
FB
1876The workaround is to install a service pack for XP after a boot in safe
1877mode. Then reboot, and the problem should go away. Since there is no
1878network while in safe mode, its recommended to download the full
1879installation of SP1 or SP2 and transfer that via an ISO or using the
1880vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 1881
a0a821a4
FB
1882@subsection MS-DOS and FreeDOS
1883
1884@subsubsection CPU usage reduction
1885
1886DOS does not correctly use the CPU HLT instruction. The result is that
1887it takes host CPU cycles even when idle. You can install the utility
1888from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1889problem.
1890
debc7065 1891@node QEMU System emulator for non PC targets
3f9f3aa1
FB
1892@chapter QEMU System emulator for non PC targets
1893
1894QEMU is a generic emulator and it emulates many non PC
1895machines. Most of the options are similar to the PC emulator. The
4be456f1 1896differences are mentioned in the following sections.
3f9f3aa1 1897
debc7065 1898@menu
7544a042 1899* PowerPC System emulator::
24d4de45
TS
1900* Sparc32 System emulator::
1901* Sparc64 System emulator::
1902* MIPS System emulator::
1903* ARM System emulator::
1904* ColdFire System emulator::
7544a042
SW
1905* Cris System emulator::
1906* Microblaze System emulator::
1907* SH4 System emulator::
3aeaea65 1908* Xtensa System emulator::
debc7065
FB
1909@end menu
1910
7544a042
SW
1911@node PowerPC System emulator
1912@section PowerPC System emulator
1913@cindex system emulation (PowerPC)
1a084f3d 1914
15a34c63
FB
1915Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1916or PowerMac PowerPC system.
1a084f3d 1917
b671f9ed 1918QEMU emulates the following PowerMac peripherals:
1a084f3d 1919
15a34c63 1920@itemize @minus
5fafdf24 1921@item
006f3a48 1922UniNorth or Grackle PCI Bridge
15a34c63
FB
1923@item
1924PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1925@item
15a34c63 19262 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 1927@item
15a34c63
FB
1928NE2000 PCI adapters
1929@item
1930Non Volatile RAM
1931@item
1932VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
1933@end itemize
1934
b671f9ed 1935QEMU emulates the following PREP peripherals:
52c00a5f
FB
1936
1937@itemize @minus
5fafdf24 1938@item
15a34c63
FB
1939PCI Bridge
1940@item
1941PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1942@item
52c00a5f
FB
19432 IDE interfaces with hard disk and CD-ROM support
1944@item
1945Floppy disk
5fafdf24 1946@item
15a34c63 1947NE2000 network adapters
52c00a5f
FB
1948@item
1949Serial port
1950@item
1951PREP Non Volatile RAM
15a34c63
FB
1952@item
1953PC compatible keyboard and mouse.
52c00a5f
FB
1954@end itemize
1955
15a34c63 1956QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 1957@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 1958
992e5acd 1959Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
006f3a48
BS
1960for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1961v2) portable firmware implementation. The goal is to implement a 100%
1962IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 1963
15a34c63
FB
1964@c man begin OPTIONS
1965
1966The following options are specific to the PowerPC emulation:
1967
1968@table @option
1969
4e257e5e 1970@item -g @var{W}x@var{H}[x@var{DEPTH}]
15a34c63 1971
340fb41b 1972Set the initial VGA graphic mode. The default is 800x600x32.
15a34c63 1973
4e257e5e 1974@item -prom-env @var{string}
95efd11c
BS
1975
1976Set OpenBIOS variables in NVRAM, for example:
1977
1978@example
1979qemu-system-ppc -prom-env 'auto-boot?=false' \
1980 -prom-env 'boot-device=hd:2,\yaboot' \
1981 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1982@end example
1983
1984These variables are not used by Open Hack'Ware.
1985
15a34c63
FB
1986@end table
1987
5fafdf24 1988@c man end
15a34c63
FB
1989
1990
52c00a5f 1991More information is available at
3f9f3aa1 1992@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 1993
24d4de45
TS
1994@node Sparc32 System emulator
1995@section Sparc32 System emulator
7544a042 1996@cindex system emulation (Sparc32)
e80cfcfc 1997
34a3d239
BS
1998Use the executable @file{qemu-system-sparc} to simulate the following
1999Sun4m architecture machines:
2000@itemize @minus
2001@item
2002SPARCstation 4
2003@item
2004SPARCstation 5
2005@item
2006SPARCstation 10
2007@item
2008SPARCstation 20
2009@item
2010SPARCserver 600MP
2011@item
2012SPARCstation LX
2013@item
2014SPARCstation Voyager
2015@item
2016SPARCclassic
2017@item
2018SPARCbook
2019@end itemize
2020
2021The emulation is somewhat complete. SMP up to 16 CPUs is supported,
2022but Linux limits the number of usable CPUs to 4.
e80cfcfc 2023
6a4e1771 2024QEMU emulates the following sun4m peripherals:
e80cfcfc
FB
2025
2026@itemize @minus
3475187d 2027@item
6a4e1771 2028IOMMU
e80cfcfc 2029@item
33632788 2030TCX or cgthree Frame buffer
5fafdf24 2031@item
e80cfcfc
FB
2032Lance (Am7990) Ethernet
2033@item
34a3d239 2034Non Volatile RAM M48T02/M48T08
e80cfcfc 2035@item
3475187d
FB
2036Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2037and power/reset logic
2038@item
2039ESP SCSI controller with hard disk and CD-ROM support
2040@item
6a3b9cc9 2041Floppy drive (not on SS-600MP)
a2502b58
BS
2042@item
2043CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
2044@end itemize
2045
6a3b9cc9
BS
2046The number of peripherals is fixed in the architecture. Maximum
2047memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 2048others 2047MB.
3475187d 2049
30a604f3 2050Since version 0.8.2, QEMU uses OpenBIOS
0986ac3b
FB
2051@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2052firmware implementation. The goal is to implement a 100% IEEE
20531275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
2054
2055A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239 2056the QEMU web site. There are still issues with NetBSD and OpenBSD, but
9bb9f217 2057most kernel versions work. Please note that currently older Solaris kernels
34a3d239
BS
2058don't work probably due to interface issues between OpenBIOS and
2059Solaris.
3475187d
FB
2060
2061@c man begin OPTIONS
2062
a2502b58 2063The following options are specific to the Sparc32 emulation:
3475187d
FB
2064
2065@table @option
2066
4e257e5e 2067@item -g @var{W}x@var{H}x[x@var{DEPTH}]
3475187d 2068
33632788
MCA
2069Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
2070option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
2071of 1152x900x8 for people who wish to use OBP.
3475187d 2072
4e257e5e 2073@item -prom-env @var{string}
66508601
BS
2074
2075Set OpenBIOS variables in NVRAM, for example:
2076
2077@example
2078qemu-system-sparc -prom-env 'auto-boot?=false' \
2079 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2080@end example
2081
6a4e1771 2082@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
a2502b58
BS
2083
2084Set the emulated machine type. Default is SS-5.
2085
3475187d
FB
2086@end table
2087
5fafdf24 2088@c man end
3475187d 2089
24d4de45
TS
2090@node Sparc64 System emulator
2091@section Sparc64 System emulator
7544a042 2092@cindex system emulation (Sparc64)
e80cfcfc 2093
34a3d239
BS
2094Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2095(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
9bb9f217
MCA
2096Niagara (T1) machine. The Sun4u emulator is mostly complete, being
2097able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The
2098Sun4v and Niagara emulators are still a work in progress.
b756921a 2099
c7ba218d 2100QEMU emulates the following peripherals:
83469015
FB
2101
2102@itemize @minus
2103@item
5fafdf24 2104UltraSparc IIi APB PCI Bridge
83469015
FB
2105@item
2106PCI VGA compatible card with VESA Bochs Extensions
2107@item
34a3d239
BS
2108PS/2 mouse and keyboard
2109@item
83469015
FB
2110Non Volatile RAM M48T59
2111@item
2112PC-compatible serial ports
c7ba218d
BS
2113@item
21142 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
2115@item
2116Floppy disk
83469015
FB
2117@end itemize
2118
c7ba218d
BS
2119@c man begin OPTIONS
2120
2121The following options are specific to the Sparc64 emulation:
2122
2123@table @option
2124
4e257e5e 2125@item -prom-env @var{string}
34a3d239
BS
2126
2127Set OpenBIOS variables in NVRAM, for example:
2128
2129@example
2130qemu-system-sparc64 -prom-env 'auto-boot?=false'
2131@end example
2132
2133@item -M [sun4u|sun4v|Niagara]
c7ba218d
BS
2134
2135Set the emulated machine type. The default is sun4u.
2136
2137@end table
2138
2139@c man end
2140
24d4de45
TS
2141@node MIPS System emulator
2142@section MIPS System emulator
7544a042 2143@cindex system emulation (MIPS)
9d0a8e6f 2144
d9aedc32
TS
2145Four executables cover simulation of 32 and 64-bit MIPS systems in
2146both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2147@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 2148Five different machine types are emulated:
24d4de45
TS
2149
2150@itemize @minus
2151@item
2152A generic ISA PC-like machine "mips"
2153@item
2154The MIPS Malta prototype board "malta"
2155@item
d9aedc32 2156An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 2157@item
f0fc6f8f 2158MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
2159@item
2160A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
2161@end itemize
2162
2163The generic emulation is supported by Debian 'Etch' and is able to
2164install Debian into a virtual disk image. The following devices are
2165emulated:
3f9f3aa1
FB
2166
2167@itemize @minus
5fafdf24 2168@item
6bf5b4e8 2169A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
2170@item
2171PC style serial port
2172@item
24d4de45
TS
2173PC style IDE disk
2174@item
3f9f3aa1
FB
2175NE2000 network card
2176@end itemize
2177
24d4de45
TS
2178The Malta emulation supports the following devices:
2179
2180@itemize @minus
2181@item
0b64d008 2182Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
2183@item
2184PIIX4 PCI/USB/SMbus controller
2185@item
2186The Multi-I/O chip's serial device
2187@item
3a2eeac0 2188PCI network cards (PCnet32 and others)
24d4de45
TS
2189@item
2190Malta FPGA serial device
2191@item
1f605a76 2192Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
2193@end itemize
2194
2195The ACER Pica emulation supports:
2196
2197@itemize @minus
2198@item
2199MIPS R4000 CPU
2200@item
2201PC-style IRQ and DMA controllers
2202@item
2203PC Keyboard
2204@item
2205IDE controller
2206@end itemize
3f9f3aa1 2207
b5e4946f 2208The mipssim pseudo board emulation provides an environment similar
f0fc6f8f
TS
2209to what the proprietary MIPS emulator uses for running Linux.
2210It supports:
6bf5b4e8
TS
2211
2212@itemize @minus
2213@item
2214A range of MIPS CPUs, default is the 24Kf
2215@item
2216PC style serial port
2217@item
2218MIPSnet network emulation
2219@end itemize
2220
88cb0a02
AJ
2221The MIPS Magnum R4000 emulation supports:
2222
2223@itemize @minus
2224@item
2225MIPS R4000 CPU
2226@item
2227PC-style IRQ controller
2228@item
2229PC Keyboard
2230@item
2231SCSI controller
2232@item
2233G364 framebuffer
2234@end itemize
2235
2236
24d4de45
TS
2237@node ARM System emulator
2238@section ARM System emulator
7544a042 2239@cindex system emulation (ARM)
3f9f3aa1
FB
2240
2241Use the executable @file{qemu-system-arm} to simulate a ARM
2242machine. The ARM Integrator/CP board is emulated with the following
2243devices:
2244
2245@itemize @minus
2246@item
9ee6e8bb 2247ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
2248@item
2249Two PL011 UARTs
5fafdf24 2250@item
3f9f3aa1 2251SMC 91c111 Ethernet adapter
00a9bf19
PB
2252@item
2253PL110 LCD controller
2254@item
2255PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
2256@item
2257PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
2258@end itemize
2259
2260The ARM Versatile baseboard is emulated with the following devices:
2261
2262@itemize @minus
2263@item
9ee6e8bb 2264ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
2265@item
2266PL190 Vectored Interrupt Controller
2267@item
2268Four PL011 UARTs
5fafdf24 2269@item
00a9bf19
PB
2270SMC 91c111 Ethernet adapter
2271@item
2272PL110 LCD controller
2273@item
2274PL050 KMI with PS/2 keyboard and mouse.
2275@item
2276PCI host bridge. Note the emulated PCI bridge only provides access to
2277PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
2278This means some devices (eg. ne2k_pci NIC) are not usable, and others
2279(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 2280mapped control registers.
e6de1bad
PB
2281@item
2282PCI OHCI USB controller.
2283@item
2284LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
2285@item
2286PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
2287@end itemize
2288
21a88941
PB
2289Several variants of the ARM RealView baseboard are emulated,
2290including the EB, PB-A8 and PBX-A9. Due to interactions with the
2291bootloader, only certain Linux kernel configurations work out
2292of the box on these boards.
2293
2294Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2295enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
2296should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2297disabled and expect 1024M RAM.
2298
40c5c6cd 2299The following devices are emulated:
d7739d75
PB
2300
2301@itemize @minus
2302@item
f7c70325 2303ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
d7739d75
PB
2304@item
2305ARM AMBA Generic/Distributed Interrupt Controller
2306@item
2307Four PL011 UARTs
5fafdf24 2308@item
0ef849d7 2309SMC 91c111 or SMSC LAN9118 Ethernet adapter
d7739d75
PB
2310@item
2311PL110 LCD controller
2312@item
2313PL050 KMI with PS/2 keyboard and mouse
2314@item
2315PCI host bridge
2316@item
2317PCI OHCI USB controller
2318@item
2319LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
2320@item
2321PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
2322@end itemize
2323
b00052e4
AZ
2324The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2325and "Terrier") emulation includes the following peripherals:
2326
2327@itemize @minus
2328@item
2329Intel PXA270 System-on-chip (ARM V5TE core)
2330@item
2331NAND Flash memory
2332@item
2333IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2334@item
2335On-chip OHCI USB controller
2336@item
2337On-chip LCD controller
2338@item
2339On-chip Real Time Clock
2340@item
2341TI ADS7846 touchscreen controller on SSP bus
2342@item
2343Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2344@item
2345GPIO-connected keyboard controller and LEDs
2346@item
549444e1 2347Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
2348@item
2349Three on-chip UARTs
2350@item
2351WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2352@end itemize
2353
02645926
AZ
2354The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2355following elements:
2356
2357@itemize @minus
2358@item
2359Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2360@item
2361ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2362@item
2363On-chip LCD controller
2364@item
2365On-chip Real Time Clock
2366@item
2367TI TSC2102i touchscreen controller / analog-digital converter / Audio
2368CODEC, connected through MicroWire and I@math{^2}S busses
2369@item
2370GPIO-connected matrix keypad
2371@item
2372Secure Digital card connected to OMAP MMC/SD host
2373@item
2374Three on-chip UARTs
2375@end itemize
2376
c30bb264
AZ
2377Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2378emulation supports the following elements:
2379
2380@itemize @minus
2381@item
2382Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2383@item
2384RAM and non-volatile OneNAND Flash memories
2385@item
2386Display connected to EPSON remote framebuffer chip and OMAP on-chip
2387display controller and a LS041y3 MIPI DBI-C controller
2388@item
2389TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2390driven through SPI bus
2391@item
2392National Semiconductor LM8323-controlled qwerty keyboard driven
2393through I@math{^2}C bus
2394@item
2395Secure Digital card connected to OMAP MMC/SD host
2396@item
2397Three OMAP on-chip UARTs and on-chip STI debugging console
2398@item
40c5c6cd 2399A Bluetooth(R) transceiver and HCI connected to an UART
2d564691 2400@item
c30bb264
AZ
2401Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2402TUSB6010 chip - only USB host mode is supported
2403@item
2404TI TMP105 temperature sensor driven through I@math{^2}C bus
2405@item
2406TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2407@item
2408Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2409through CBUS
2410@end itemize
2411
9ee6e8bb
PB
2412The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2413devices:
2414
2415@itemize @minus
2416@item
2417Cortex-M3 CPU core.
2418@item
241964k Flash and 8k SRAM.
2420@item
2421Timers, UARTs, ADC and I@math{^2}C interface.
2422@item
2423OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2424@end itemize
2425
2426The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2427devices:
2428
2429@itemize @minus
2430@item
2431Cortex-M3 CPU core.
2432@item
2433256k Flash and 64k SRAM.
2434@item
2435Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2436@item
2437OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2438@end itemize
2439
57cd6e97
AZ
2440The Freecom MusicPal internet radio emulation includes the following
2441elements:
2442
2443@itemize @minus
2444@item
2445Marvell MV88W8618 ARM core.
2446@item
244732 MB RAM, 256 KB SRAM, 8 MB flash.
2448@item
2449Up to 2 16550 UARTs
2450@item
2451MV88W8xx8 Ethernet controller
2452@item
2453MV88W8618 audio controller, WM8750 CODEC and mixer
2454@item
e080e785 2455128×64 display with brightness control
57cd6e97
AZ
2456@item
24572 buttons, 2 navigation wheels with button function
2458@end itemize
2459
997641a8 2460The Siemens SX1 models v1 and v2 (default) basic emulation.
40c5c6cd 2461The emulation includes the following elements:
997641a8
AZ
2462
2463@itemize @minus
2464@item
2465Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2466@item
2467ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2468V1
24691 Flash of 16MB and 1 Flash of 8MB
2470V2
24711 Flash of 32MB
2472@item
2473On-chip LCD controller
2474@item
2475On-chip Real Time Clock
2476@item
2477Secure Digital card connected to OMAP MMC/SD host
2478@item
2479Three on-chip UARTs
2480@end itemize
2481
3f9f3aa1
FB
2482A Linux 2.6 test image is available on the QEMU web site. More
2483information is available in the QEMU mailing-list archive.
9d0a8e6f 2484
d2c639d6
BS
2485@c man begin OPTIONS
2486
2487The following options are specific to the ARM emulation:
2488
2489@table @option
2490
2491@item -semihosting
2492Enable semihosting syscall emulation.
2493
2494On ARM this implements the "Angel" interface.
2495
2496Note that this allows guest direct access to the host filesystem,
2497so should only be used with trusted guest OS.
2498
2499@end table
2500
24d4de45
TS
2501@node ColdFire System emulator
2502@section ColdFire System emulator
7544a042
SW
2503@cindex system emulation (ColdFire)
2504@cindex system emulation (M68K)
209a4e69
PB
2505
2506Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2507The emulator is able to boot a uClinux kernel.
707e011b
PB
2508
2509The M5208EVB emulation includes the following devices:
2510
2511@itemize @minus
5fafdf24 2512@item
707e011b
PB
2513MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2514@item
2515Three Two on-chip UARTs.
2516@item
2517Fast Ethernet Controller (FEC)
2518@end itemize
2519
2520The AN5206 emulation includes the following devices:
209a4e69
PB
2521
2522@itemize @minus
5fafdf24 2523@item
209a4e69
PB
2524MCF5206 ColdFire V2 Microprocessor.
2525@item
2526Two on-chip UARTs.
2527@end itemize
2528
d2c639d6
BS
2529@c man begin OPTIONS
2530
7544a042 2531The following options are specific to the ColdFire emulation:
d2c639d6
BS
2532
2533@table @option
2534
2535@item -semihosting
2536Enable semihosting syscall emulation.
2537
2538On M68K this implements the "ColdFire GDB" interface used by libgloss.
2539
2540Note that this allows guest direct access to the host filesystem,
2541so should only be used with trusted guest OS.
2542
2543@end table
2544
7544a042
SW
2545@node Cris System emulator
2546@section Cris System emulator
2547@cindex system emulation (Cris)
2548
2549TODO
2550
2551@node Microblaze System emulator
2552@section Microblaze System emulator
2553@cindex system emulation (Microblaze)
2554
2555TODO
2556
2557@node SH4 System emulator
2558@section SH4 System emulator
2559@cindex system emulation (SH4)
2560
2561TODO
2562
3aeaea65
MF
2563@node Xtensa System emulator
2564@section Xtensa System emulator
2565@cindex system emulation (Xtensa)
2566
2567Two executables cover simulation of both Xtensa endian options,
2568@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2569Two different machine types are emulated:
2570
2571@itemize @minus
2572@item
2573Xtensa emulator pseudo board "sim"
2574@item
2575Avnet LX60/LX110/LX200 board
2576@end itemize
2577
b5e4946f 2578The sim pseudo board emulation provides an environment similar
3aeaea65
MF
2579to one provided by the proprietary Tensilica ISS.
2580It supports:
2581
2582@itemize @minus
2583@item
2584A range of Xtensa CPUs, default is the DC232B
2585@item
2586Console and filesystem access via semihosting calls
2587@end itemize
2588
2589The Avnet LX60/LX110/LX200 emulation supports:
2590
2591@itemize @minus
2592@item
2593A range of Xtensa CPUs, default is the DC232B
2594@item
259516550 UART
2596@item
2597OpenCores 10/100 Mbps Ethernet MAC
2598@end itemize
2599
2600@c man begin OPTIONS
2601
2602The following options are specific to the Xtensa emulation:
2603
2604@table @option
2605
2606@item -semihosting
2607Enable semihosting syscall emulation.
2608
2609Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2610Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2611
2612Note that this allows guest direct access to the host filesystem,
2613so should only be used with trusted guest OS.
2614
2615@end table
5fafdf24
TS
2616@node QEMU User space emulator
2617@chapter QEMU User space emulator
83195237
FB
2618
2619@menu
2620* Supported Operating Systems ::
2621* Linux User space emulator::
84778508 2622* BSD User space emulator ::
83195237
FB
2623@end menu
2624
2625@node Supported Operating Systems
2626@section Supported Operating Systems
2627
2628The following OS are supported in user space emulation:
2629
2630@itemize @minus
2631@item
4be456f1 2632Linux (referred as qemu-linux-user)
83195237 2633@item
84778508 2634BSD (referred as qemu-bsd-user)
83195237
FB
2635@end itemize
2636
2637@node Linux User space emulator
2638@section Linux User space emulator
386405f7 2639
debc7065
FB
2640@menu
2641* Quick Start::
2642* Wine launch::
2643* Command line options::
79737e4a 2644* Other binaries::
debc7065
FB
2645@end menu
2646
2647@node Quick Start
83195237 2648@subsection Quick Start
df0f11a0 2649
1f673135 2650In order to launch a Linux process, QEMU needs the process executable
5fafdf24 2651itself and all the target (x86) dynamic libraries used by it.
386405f7 2652
1f673135 2653@itemize
386405f7 2654
1f673135
FB
2655@item On x86, you can just try to launch any process by using the native
2656libraries:
386405f7 2657
5fafdf24 2658@example
1f673135
FB
2659qemu-i386 -L / /bin/ls
2660@end example
386405f7 2661
1f673135
FB
2662@code{-L /} tells that the x86 dynamic linker must be searched with a
2663@file{/} prefix.
386405f7 2664
b65ee4fa
SW
2665@item Since QEMU is also a linux process, you can launch QEMU with
2666QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
386405f7 2667
5fafdf24 2668@example
1f673135
FB
2669qemu-i386 -L / qemu-i386 -L / /bin/ls
2670@end example
386405f7 2671
1f673135
FB
2672@item On non x86 CPUs, you need first to download at least an x86 glibc
2673(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2674@code{LD_LIBRARY_PATH} is not set:
df0f11a0 2675
1f673135 2676@example
5fafdf24 2677unset LD_LIBRARY_PATH
1f673135 2678@end example
1eb87257 2679
1f673135 2680Then you can launch the precompiled @file{ls} x86 executable:
1eb87257 2681
1f673135
FB
2682@example
2683qemu-i386 tests/i386/ls
2684@end example
4c3b5a48 2685You can look at @file{scripts/qemu-binfmt-conf.sh} so that
1f673135
FB
2686QEMU is automatically launched by the Linux kernel when you try to
2687launch x86 executables. It requires the @code{binfmt_misc} module in the
2688Linux kernel.
1eb87257 2689
1f673135
FB
2690@item The x86 version of QEMU is also included. You can try weird things such as:
2691@example
debc7065
FB
2692qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2693 /usr/local/qemu-i386/bin/ls-i386
1f673135 2694@end example
1eb20527 2695
1f673135 2696@end itemize
1eb20527 2697
debc7065 2698@node Wine launch
83195237 2699@subsection Wine launch
1eb20527 2700
1f673135 2701@itemize
386405f7 2702
1f673135
FB
2703@item Ensure that you have a working QEMU with the x86 glibc
2704distribution (see previous section). In order to verify it, you must be
2705able to do:
386405f7 2706
1f673135
FB
2707@example
2708qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2709@end example
386405f7 2710
1f673135 2711@item Download the binary x86 Wine install
5fafdf24 2712(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
386405f7 2713
1f673135 2714@item Configure Wine on your account. Look at the provided script
debc7065 2715@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1f673135 2716@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
386405f7 2717
1f673135 2718@item Then you can try the example @file{putty.exe}:
386405f7 2719
1f673135 2720@example
debc7065
FB
2721qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2722 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1f673135 2723@end example
386405f7 2724
1f673135 2725@end itemize
fd429f2f 2726
debc7065 2727@node Command line options
83195237 2728@subsection Command line options
1eb20527 2729
1f673135 2730@example
68a1c816 2731usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
1f673135 2732@end example
1eb20527 2733
1f673135
FB
2734@table @option
2735@item -h
2736Print the help
3b46e624 2737@item -L path
1f673135
FB
2738Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2739@item -s size
2740Set the x86 stack size in bytes (default=524288)
34a3d239 2741@item -cpu model
c8057f95 2742Select CPU model (-cpu help for list and additional feature selection)
f66724c9
SW
2743@item -E @var{var}=@var{value}
2744Set environment @var{var} to @var{value}.
2745@item -U @var{var}
2746Remove @var{var} from the environment.
379f6698
PB
2747@item -B offset
2748Offset guest address by the specified number of bytes. This is useful when
1f5c3f8c
SW
2749the address region required by guest applications is reserved on the host.
2750This option is currently only supported on some hosts.
68a1c816
PB
2751@item -R size
2752Pre-allocate a guest virtual address space of the given size (in bytes).
0d6753e5 2753"G", "M", and "k" suffixes may be used when specifying the size.
386405f7
FB
2754@end table
2755
1f673135 2756Debug options:
386405f7 2757
1f673135 2758@table @option
989b697d
PM
2759@item -d item1,...
2760Activate logging of the specified items (use '-d help' for a list of log items)
1f673135
FB
2761@item -p pagesize
2762Act as if the host page size was 'pagesize' bytes
34a3d239
BS
2763@item -g port
2764Wait gdb connection to port
1b530a6d
AJ
2765@item -singlestep
2766Run the emulation in single step mode.
1f673135 2767@end table
386405f7 2768
b01bcae6
AZ
2769Environment variables:
2770
2771@table @env
2772@item QEMU_STRACE
2773Print system calls and arguments similar to the 'strace' program
2774(NOTE: the actual 'strace' program will not work because the user
2775space emulator hasn't implemented ptrace). At the moment this is
2776incomplete. All system calls that don't have a specific argument
2777format are printed with information for six arguments. Many
2778flag-style arguments don't have decoders and will show up as numbers.
5cfdf930 2779@end table
b01bcae6 2780
79737e4a 2781@node Other binaries
83195237 2782@subsection Other binaries
79737e4a 2783
7544a042
SW
2784@cindex user mode (Alpha)
2785@command{qemu-alpha} TODO.
2786
2787@cindex user mode (ARM)
2788@command{qemu-armeb} TODO.
2789
2790@cindex user mode (ARM)
79737e4a
PB
2791@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2792binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2793configurations), and arm-uclinux bFLT format binaries.
2794
7544a042
SW
2795@cindex user mode (ColdFire)
2796@cindex user mode (M68K)
e6e5906b
PB
2797@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2798(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2799coldfire uClinux bFLT format binaries.
2800
79737e4a
PB
2801The binary format is detected automatically.
2802
7544a042
SW
2803@cindex user mode (Cris)
2804@command{qemu-cris} TODO.
2805
2806@cindex user mode (i386)
2807@command{qemu-i386} TODO.
2808@command{qemu-x86_64} TODO.
2809
2810@cindex user mode (Microblaze)
2811@command{qemu-microblaze} TODO.
2812
2813@cindex user mode (MIPS)
2814@command{qemu-mips} TODO.
2815@command{qemu-mipsel} TODO.
2816
2817@cindex user mode (PowerPC)
2818@command{qemu-ppc64abi32} TODO.
2819@command{qemu-ppc64} TODO.
2820@command{qemu-ppc} TODO.
2821
2822@cindex user mode (SH4)
2823@command{qemu-sh4eb} TODO.
2824@command{qemu-sh4} TODO.
2825
2826@cindex user mode (SPARC)
34a3d239
BS
2827@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2828
a785e42e
BS
2829@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2830(Sparc64 CPU, 32 bit ABI).
2831
2832@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2833SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2834
84778508
BS
2835@node BSD User space emulator
2836@section BSD User space emulator
2837
2838@menu
2839* BSD Status::
2840* BSD Quick Start::
2841* BSD Command line options::
2842@end menu
2843
2844@node BSD Status
2845@subsection BSD Status
2846
2847@itemize @minus
2848@item
2849target Sparc64 on Sparc64: Some trivial programs work.
2850@end itemize
2851
2852@node BSD Quick Start
2853@subsection Quick Start
2854
2855In order to launch a BSD process, QEMU needs the process executable
2856itself and all the target dynamic libraries used by it.
2857
2858@itemize
2859
2860@item On Sparc64, you can just try to launch any process by using the native
2861libraries:
2862
2863@example
2864qemu-sparc64 /bin/ls
2865@end example
2866
2867@end itemize
2868
2869@node BSD Command line options
2870@subsection Command line options
2871
2872@example
2873usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2874@end example
2875
2876@table @option
2877@item -h
2878Print the help
2879@item -L path
2880Set the library root path (default=/)
2881@item -s size
2882Set the stack size in bytes (default=524288)
f66724c9
SW
2883@item -ignore-environment
2884Start with an empty environment. Without this option,
40c5c6cd 2885the initial environment is a copy of the caller's environment.
f66724c9
SW
2886@item -E @var{var}=@var{value}
2887Set environment @var{var} to @var{value}.
2888@item -U @var{var}
2889Remove @var{var} from the environment.
84778508
BS
2890@item -bsd type
2891Set the type of the emulated BSD Operating system. Valid values are
2892FreeBSD, NetBSD and OpenBSD (default).
2893@end table
2894
2895Debug options:
2896
2897@table @option
989b697d
PM
2898@item -d item1,...
2899Activate logging of the specified items (use '-d help' for a list of log items)
84778508
BS
2900@item -p pagesize
2901Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
2902@item -singlestep
2903Run the emulation in single step mode.
84778508
BS
2904@end table
2905
15a34c63
FB
2906@node compilation
2907@chapter Compilation from the sources
2908
debc7065
FB
2909@menu
2910* Linux/Unix::
2911* Windows::
2912* Cross compilation for Windows with Linux::
2913* Mac OS X::
47eacb4f 2914* Make targets::
debc7065
FB
2915@end menu
2916
2917@node Linux/Unix
7c3fc84d
FB
2918@section Linux/Unix
2919
2920@subsection Compilation
2921
2922First you must decompress the sources:
2923@example
2924cd /tmp
2925tar zxvf qemu-x.y.z.tar.gz
2926cd qemu-x.y.z
2927@end example
2928
2929Then you configure QEMU and build it (usually no options are needed):
2930@example
2931./configure
2932make
2933@end example
2934
2935Then type as root user:
2936@example
2937make install
2938@end example
2939to install QEMU in @file{/usr/local}.
2940
debc7065 2941@node Windows
15a34c63
FB
2942@section Windows
2943
2944@itemize
2945@item Install the current versions of MSYS and MinGW from
2946@url{http://www.mingw.org/}. You can find detailed installation
2947instructions in the download section and the FAQ.
2948
5fafdf24 2949@item Download
15a34c63 2950the MinGW development library of SDL 1.2.x
debc7065 2951(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
d0a96f3d
ST
2952@url{http://www.libsdl.org}. Unpack it in a temporary place and
2953edit the @file{sdl-config} script so that it gives the
15a34c63
FB
2954correct SDL directory when invoked.
2955
d0a96f3d
ST
2956@item Install the MinGW version of zlib and make sure
2957@file{zlib.h} and @file{libz.dll.a} are in
40c5c6cd 2958MinGW's default header and linker search paths.
d0a96f3d 2959
15a34c63 2960@item Extract the current version of QEMU.
5fafdf24 2961
15a34c63
FB
2962@item Start the MSYS shell (file @file{msys.bat}).
2963
5fafdf24 2964@item Change to the QEMU directory. Launch @file{./configure} and
15a34c63
FB
2965@file{make}. If you have problems using SDL, verify that
2966@file{sdl-config} can be launched from the MSYS command line.
2967
c5ec15ea 2968@item You can install QEMU in @file{Program Files/QEMU} by typing
15a34c63 2969@file{make install}. Don't forget to copy @file{SDL.dll} in
c5ec15ea 2970@file{Program Files/QEMU}.
15a34c63
FB
2971
2972@end itemize
2973
debc7065 2974@node Cross compilation for Windows with Linux
15a34c63
FB
2975@section Cross compilation for Windows with Linux
2976
2977@itemize
2978@item
2979Install the MinGW cross compilation tools available at
2980@url{http://www.mingw.org/}.
2981
d0a96f3d
ST
2982@item Download
2983the MinGW development library of SDL 1.2.x
2984(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2985@url{http://www.libsdl.org}. Unpack it in a temporary place and
2986edit the @file{sdl-config} script so that it gives the
2987correct SDL directory when invoked. Set up the @code{PATH} environment
2988variable so that @file{sdl-config} can be launched by
15a34c63
FB
2989the QEMU configuration script.
2990
d0a96f3d
ST
2991@item Install the MinGW version of zlib and make sure
2992@file{zlib.h} and @file{libz.dll.a} are in
40c5c6cd 2993MinGW's default header and linker search paths.
d0a96f3d 2994
5fafdf24 2995@item
15a34c63
FB
2996Configure QEMU for Windows cross compilation:
2997@example
d0a96f3d
ST
2998PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
2999@end example
3000The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
3001MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
40c5c6cd 3002We set the @code{PATH} environment variable to ensure the MinGW version of @file{sdl-config} is used and
d0a96f3d 3003use --cross-prefix to specify the name of the cross compiler.
c5ec15ea 3004You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/QEMU}.
d0a96f3d
ST
3005
3006Under Fedora Linux, you can run:
3007@example
3008yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
15a34c63 3009@end example
d0a96f3d 3010to get a suitable cross compilation environment.
15a34c63 3011
5fafdf24 3012@item You can install QEMU in the installation directory by typing
d0a96f3d 3013@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
5fafdf24 3014installation directory.
15a34c63
FB
3015
3016@end itemize
3017
3804da9d
SW
3018Wine can be used to launch the resulting qemu-system-i386.exe
3019and all other qemu-system-@var{target}.exe compiled for Win32.
15a34c63 3020
debc7065 3021@node Mac OS X
15a34c63
FB
3022@section Mac OS X
3023
b352153f
JA
3024System Requirements:
3025@itemize
3026@item Mac OS 10.5 or higher
3027@item The clang compiler shipped with Xcode 4.2 or higher,
3028or GCC 4.3 or higher
3029@end itemize
3030
3031Additional Requirements (install in order):
3032@enumerate
3033@item libffi: @uref{https://sourceware.org/libffi/}
3034@item gettext: @uref{http://www.gnu.org/software/gettext/}
3035@item glib: @uref{http://ftp.gnome.org/pub/GNOME/sources/glib/}
3036@item pkg-config: @uref{http://www.freedesktop.org/wiki/Software/pkg-config/}
3037@item autoconf: @uref{http://www.gnu.org/software/autoconf/autoconf.html}
3038@item automake: @uref{http://www.gnu.org/software/automake/}
3039@item libtool: @uref{http://www.gnu.org/software/libtool/}
3040@item pixman: @uref{http://www.pixman.org/}
3041@end enumerate
3042
3043* You may find it easiest to get these from a third-party packager
3044such as Homebrew, Macports, or Fink.
3045
3046After downloading the QEMU source code, double-click it to expand it.
3047
3048Then configure and make QEMU:
3049@example
3050./configure
3051make
3052@end example
3053
3054If you have a recent version of Mac OS X (OSX 10.7 or better
3055with Xcode 4.2 or better) we recommend building QEMU with the
3056default compiler provided by Apple, for your version of Mac OS X
3057(which will be 'clang'). The configure script will
3058automatically pick this.
3059
3060Note: If after the configure step you see a message like this:
3061@example
3062ERROR: Your compiler does not support the __thread specifier for
3063 Thread-Local Storage (TLS). Please upgrade to a version that does.
3064@end example
3065You may have to build your own version of gcc from source. Expect that to take
3066several hours. More information can be found here:
3067@uref{https://gcc.gnu.org/install/} @*
3068
3069These are some of the third party binaries of gcc available for download:
3070@itemize
3071@item Homebrew: @uref{http://brew.sh/}
3072@item @uref{https://www.litebeam.net/gcc/gcc_472.pkg}
3073@item @uref{http://www.macports.org/ports.php?by=name&substr=gcc}
3074@end itemize
3075
3076You can have several versions of GCC on your system. To specify a certain version,
3077use the --cc and --cxx options.
3078@example
3079./configure --cxx=<path of your c++ compiler> --cc=<path of your c compiler> <other options>
3080@end example
15a34c63 3081
47eacb4f
SW
3082@node Make targets
3083@section Make targets
3084
3085@table @code
3086
3087@item make
3088@item make all
3089Make everything which is typically needed.
3090
3091@item install
3092TODO
3093
3094@item install-doc
3095TODO
3096
3097@item make clean
3098Remove most files which were built during make.
3099
3100@item make distclean
3101Remove everything which was built during make.
3102
3103@item make dvi
3104@item make html
3105@item make info
3106@item make pdf
3107Create documentation in dvi, html, info or pdf format.
3108
3109@item make cscope
3110TODO
3111
3112@item make defconfig
3113(Re-)create some build configuration files.
3114User made changes will be overwritten.
3115
3116@item tar
3117@item tarbin
3118TODO
3119
3120@end table
3121
7544a042
SW
3122@node License
3123@appendix License
3124
3125QEMU is a trademark of Fabrice Bellard.
3126
3127QEMU is released under the GNU General Public License (TODO: add link).
3128Parts of QEMU have specific licenses, see file LICENSE.
3129
3130TODO (refer to file LICENSE, include it, include the GPL?)
3131
debc7065 3132@node Index
7544a042
SW
3133@appendix Index
3134@menu
3135* Concept Index::
3136* Function Index::
3137* Keystroke Index::
3138* Program Index::
3139* Data Type Index::
3140* Variable Index::
3141@end menu
3142
3143@node Concept Index
3144@section Concept Index
3145This is the main index. Should we combine all keywords in one index? TODO
debc7065
FB
3146@printindex cp
3147
7544a042
SW
3148@node Function Index
3149@section Function Index
3150This index could be used for command line options and monitor functions.
3151@printindex fn
3152
3153@node Keystroke Index
3154@section Keystroke Index
3155
3156This is a list of all keystrokes which have a special function
3157in system emulation.
3158
3159@printindex ky
3160
3161@node Program Index
3162@section Program Index
3163@printindex pg
3164
3165@node Data Type Index
3166@section Data Type Index
3167
3168This index could be used for qdev device names and options.
3169
3170@printindex tp
3171
3172@node Variable Index
3173@section Variable Index
3174@printindex vr
3175
debc7065 3176@bye