]> git.proxmox.com Git - mirror_qemu.git/blame - qemu-doc.texi
Update version for v2.3.0-rc0 release
[mirror_qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
e080e785
SW
4
5@documentlanguage en
6@documentencoding UTF-8
7
8f40c388 8@settitle QEMU Emulator User Documentation
debc7065
FB
9@exampleindent 0
10@paragraphindent 0
11@c %**end of header
386405f7 12
a1a32b05
SW
13@ifinfo
14@direntry
15* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
16@end direntry
17@end ifinfo
18
0806e3f6 19@iftex
386405f7
FB
20@titlepage
21@sp 7
8f40c388 22@center @titlefont{QEMU Emulator}
debc7065
FB
23@sp 1
24@center @titlefont{User Documentation}
386405f7
FB
25@sp 3
26@end titlepage
0806e3f6 27@end iftex
386405f7 28
debc7065
FB
29@ifnottex
30@node Top
31@top
32
33@menu
34* Introduction::
35* Installation::
36* QEMU PC System emulator::
37* QEMU System emulator for non PC targets::
83195237 38* QEMU User space emulator::
debc7065 39* compilation:: Compilation from the sources
7544a042 40* License::
debc7065
FB
41* Index::
42@end menu
43@end ifnottex
44
45@contents
46
47@node Introduction
386405f7
FB
48@chapter Introduction
49
debc7065
FB
50@menu
51* intro_features:: Features
52@end menu
53
54@node intro_features
322d0c66 55@section Features
386405f7 56
1f673135
FB
57QEMU is a FAST! processor emulator using dynamic translation to
58achieve good emulation speed.
1eb20527
FB
59
60QEMU has two operating modes:
0806e3f6 61
d7e5edca 62@itemize
7544a042 63@cindex operating modes
0806e3f6 64
5fafdf24 65@item
7544a042 66@cindex system emulation
1f673135 67Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
68example a PC), including one or several processors and various
69peripherals. It can be used to launch different Operating Systems
70without rebooting the PC or to debug system code.
1eb20527 71
5fafdf24 72@item
7544a042 73@cindex user mode emulation
83195237
FB
74User mode emulation. In this mode, QEMU can launch
75processes compiled for one CPU on another CPU. It can be used to
1f673135
FB
76launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77to ease cross-compilation and cross-debugging.
1eb20527
FB
78
79@end itemize
80
e1b4382c 81QEMU can run without a host kernel driver and yet gives acceptable
5fafdf24 82performance.
322d0c66 83
52c00a5f
FB
84For system emulation, the following hardware targets are supported:
85@itemize
7544a042
SW
86@cindex emulated target systems
87@cindex supported target systems
9d0a8e6f 88@item PC (x86 or x86_64 processor)
3f9f3aa1 89@item ISA PC (old style PC without PCI bus)
52c00a5f 90@item PREP (PowerPC processor)
d45952a0 91@item G3 Beige PowerMac (PowerPC processor)
9d0a8e6f 92@item Mac99 PowerMac (PowerPC processor, in progress)
ee76f82e 93@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
c7ba218d 94@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
d9aedc32 95@item Malta board (32-bit and 64-bit MIPS processors)
88cb0a02 96@item MIPS Magnum (64-bit MIPS processor)
9ee6e8bb
PB
97@item ARM Integrator/CP (ARM)
98@item ARM Versatile baseboard (ARM)
0ef849d7 99@item ARM RealView Emulation/Platform baseboard (ARM)
ef4c3856 100@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
9ee6e8bb
PB
101@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
707e011b 103@item Freescale MCF5208EVB (ColdFire V2).
209a4e69 104@item Arnewsh MCF5206 evaluation board (ColdFire V2).
02645926 105@item Palm Tungsten|E PDA (OMAP310 processor)
c30bb264 106@item N800 and N810 tablets (OMAP2420 processor)
57cd6e97 107@item MusicPal (MV88W8618 ARM processor)
ef4c3856
AZ
108@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109@item Siemens SX1 smartphone (OMAP310 processor)
48c50a62
EI
110@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
111@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
3aeaea65 112@item Avnet LX60/LX110/LX200 boards (Xtensa)
52c00a5f 113@end itemize
386405f7 114
7544a042
SW
115@cindex supported user mode targets
116For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
117ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
118Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
0806e3f6 119
debc7065 120@node Installation
5b9f457a
FB
121@chapter Installation
122
15a34c63
FB
123If you want to compile QEMU yourself, see @ref{compilation}.
124
debc7065
FB
125@menu
126* install_linux:: Linux
127* install_windows:: Windows
128* install_mac:: Macintosh
129@end menu
130
131@node install_linux
1f673135 132@section Linux
7544a042 133@cindex installation (Linux)
1f673135 134
7c3fc84d
FB
135If a precompiled package is available for your distribution - you just
136have to install it. Otherwise, see @ref{compilation}.
5b9f457a 137
debc7065 138@node install_windows
1f673135 139@section Windows
7544a042 140@cindex installation (Windows)
8cd0ac2f 141
15a34c63 142Download the experimental binary installer at
debc7065 143@url{http://www.free.oszoo.org/@/download.html}.
7544a042 144TODO (no longer available)
d691f669 145
debc7065 146@node install_mac
1f673135 147@section Mac OS X
d691f669 148
15a34c63 149Download the experimental binary installer at
debc7065 150@url{http://www.free.oszoo.org/@/download.html}.
7544a042 151TODO (no longer available)
df0f11a0 152
debc7065 153@node QEMU PC System emulator
3f9f3aa1 154@chapter QEMU PC System emulator
7544a042 155@cindex system emulation (PC)
1eb20527 156
debc7065
FB
157@menu
158* pcsys_introduction:: Introduction
159* pcsys_quickstart:: Quick Start
160* sec_invocation:: Invocation
161* pcsys_keys:: Keys
162* pcsys_monitor:: QEMU Monitor
163* disk_images:: Disk Images
164* pcsys_network:: Network emulation
576fd0a1 165* pcsys_other_devs:: Other Devices
debc7065
FB
166* direct_linux_boot:: Direct Linux Boot
167* pcsys_usb:: USB emulation
f858dcae 168* vnc_security:: VNC security
debc7065
FB
169* gdb_usage:: GDB usage
170* pcsys_os_specific:: Target OS specific information
171@end menu
172
173@node pcsys_introduction
0806e3f6
FB
174@section Introduction
175
176@c man begin DESCRIPTION
177
3f9f3aa1
FB
178The QEMU PC System emulator simulates the
179following peripherals:
0806e3f6
FB
180
181@itemize @minus
5fafdf24 182@item
15a34c63 183i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 184@item
15a34c63
FB
185Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
186extensions (hardware level, including all non standard modes).
0806e3f6
FB
187@item
188PS/2 mouse and keyboard
5fafdf24 189@item
15a34c63 1902 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
191@item
192Floppy disk
5fafdf24 193@item
3a2eeac0 194PCI and ISA network adapters
0806e3f6 195@item
05d5818c
FB
196Serial ports
197@item
c0fe3827
FB
198Creative SoundBlaster 16 sound card
199@item
200ENSONIQ AudioPCI ES1370 sound card
201@item
e5c9a13e
AZ
202Intel 82801AA AC97 Audio compatible sound card
203@item
7d72e762
GH
204Intel HD Audio Controller and HDA codec
205@item
2d983446 206Adlib (OPL2) - Yamaha YM3812 compatible chip
b389dbfb 207@item
26463dbc
AZ
208Gravis Ultrasound GF1 sound card
209@item
cc53d26d 210CS4231A compatible sound card
211@item
b389dbfb 212PCI UHCI USB controller and a virtual USB hub.
0806e3f6
FB
213@end itemize
214
3f9f3aa1
FB
215SMP is supported with up to 255 CPUs.
216
a8ad4159 217QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
15a34c63
FB
218VGA BIOS.
219
c0fe3827
FB
220QEMU uses YM3812 emulation by Tatsuyuki Satoh.
221
2d983446 222QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
26463dbc 223by Tibor "TS" Schütz.
423d65f4 224
1a1a0e20 225Note that, by default, GUS shares IRQ(7) with parallel ports and so
b65ee4fa 226QEMU must be told to not have parallel ports to have working GUS.
720036a5 227
228@example
3804da9d 229qemu-system-i386 dos.img -soundhw gus -parallel none
720036a5 230@end example
231
232Alternatively:
233@example
3804da9d 234qemu-system-i386 dos.img -device gus,irq=5
720036a5 235@end example
236
237Or some other unclaimed IRQ.
238
cc53d26d 239CS4231A is the chip used in Windows Sound System and GUSMAX products
240
0806e3f6
FB
241@c man end
242
debc7065 243@node pcsys_quickstart
1eb20527 244@section Quick Start
7544a042 245@cindex quick start
1eb20527 246
285dc330 247Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
248
249@example
3804da9d 250qemu-system-i386 linux.img
0806e3f6
FB
251@end example
252
253Linux should boot and give you a prompt.
254
6cc721cf 255@node sec_invocation
ec410fc9
FB
256@section Invocation
257
258@example
0806e3f6 259@c man begin SYNOPSIS
3804da9d 260usage: qemu-system-i386 [options] [@var{disk_image}]
0806e3f6 261@c man end
ec410fc9
FB
262@end example
263
0806e3f6 264@c man begin OPTIONS
d2c639d6
BS
265@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
266targets do not need a disk image.
ec410fc9 267
5824d651 268@include qemu-options.texi
ec410fc9 269
3e11db9a
FB
270@c man end
271
debc7065 272@node pcsys_keys
3e11db9a
FB
273@section Keys
274
275@c man begin OPTIONS
276
de1db2a1
BH
277During the graphical emulation, you can use special key combinations to change
278modes. The default key mappings are shown below, but if you use @code{-alt-grab}
279then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
280@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
281
a1b74fe8 282@table @key
f9859310 283@item Ctrl-Alt-f
7544a042 284@kindex Ctrl-Alt-f
a1b74fe8 285Toggle full screen
a0a821a4 286
d6a65ba3
JK
287@item Ctrl-Alt-+
288@kindex Ctrl-Alt-+
289Enlarge the screen
290
291@item Ctrl-Alt--
292@kindex Ctrl-Alt--
293Shrink the screen
294
c4a735f9 295@item Ctrl-Alt-u
7544a042 296@kindex Ctrl-Alt-u
c4a735f9 297Restore the screen's un-scaled dimensions
298
f9859310 299@item Ctrl-Alt-n
7544a042 300@kindex Ctrl-Alt-n
a0a821a4
FB
301Switch to virtual console 'n'. Standard console mappings are:
302@table @emph
303@item 1
304Target system display
305@item 2
306Monitor
307@item 3
308Serial port
a1b74fe8
FB
309@end table
310
f9859310 311@item Ctrl-Alt
7544a042 312@kindex Ctrl-Alt
a0a821a4
FB
313Toggle mouse and keyboard grab.
314@end table
315
7544a042
SW
316@kindex Ctrl-Up
317@kindex Ctrl-Down
318@kindex Ctrl-PageUp
319@kindex Ctrl-PageDown
3e11db9a
FB
320In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
321@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
322
7544a042 323@kindex Ctrl-a h
a0a821a4
FB
324During emulation, if you are using the @option{-nographic} option, use
325@key{Ctrl-a h} to get terminal commands:
ec410fc9
FB
326
327@table @key
a1b74fe8 328@item Ctrl-a h
7544a042 329@kindex Ctrl-a h
d2c639d6 330@item Ctrl-a ?
7544a042 331@kindex Ctrl-a ?
ec410fc9 332Print this help
3b46e624 333@item Ctrl-a x
7544a042 334@kindex Ctrl-a x
366dfc52 335Exit emulator
3b46e624 336@item Ctrl-a s
7544a042 337@kindex Ctrl-a s
1f47a922 338Save disk data back to file (if -snapshot)
20d8a3ed 339@item Ctrl-a t
7544a042 340@kindex Ctrl-a t
d2c639d6 341Toggle console timestamps
a1b74fe8 342@item Ctrl-a b
7544a042 343@kindex Ctrl-a b
1f673135 344Send break (magic sysrq in Linux)
a1b74fe8 345@item Ctrl-a c
7544a042 346@kindex Ctrl-a c
1f673135 347Switch between console and monitor
a1b74fe8 348@item Ctrl-a Ctrl-a
7544a042 349@kindex Ctrl-a a
a1b74fe8 350Send Ctrl-a
ec410fc9 351@end table
0806e3f6
FB
352@c man end
353
354@ignore
355
1f673135
FB
356@c man begin SEEALSO
357The HTML documentation of QEMU for more precise information and Linux
358user mode emulator invocation.
359@c man end
360
361@c man begin AUTHOR
362Fabrice Bellard
363@c man end
364
365@end ignore
366
debc7065 367@node pcsys_monitor
1f673135 368@section QEMU Monitor
7544a042 369@cindex QEMU monitor
1f673135
FB
370
371The QEMU monitor is used to give complex commands to the QEMU
372emulator. You can use it to:
373
374@itemize @minus
375
376@item
e598752a 377Remove or insert removable media images
89dfe898 378(such as CD-ROM or floppies).
1f673135 379
5fafdf24 380@item
1f673135
FB
381Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
382from a disk file.
383
384@item Inspect the VM state without an external debugger.
385
386@end itemize
387
388@subsection Commands
389
390The following commands are available:
391
2313086a 392@include qemu-monitor.texi
0806e3f6 393
1f673135
FB
394@subsection Integer expressions
395
396The monitor understands integers expressions for every integer
397argument. You can use register names to get the value of specifics
398CPU registers by prefixing them with @emph{$}.
ec410fc9 399
1f47a922
FB
400@node disk_images
401@section Disk Images
402
acd935ef
FB
403Since version 0.6.1, QEMU supports many disk image formats, including
404growable disk images (their size increase as non empty sectors are
13a2e80f
FB
405written), compressed and encrypted disk images. Version 0.8.3 added
406the new qcow2 disk image format which is essential to support VM
407snapshots.
1f47a922 408
debc7065
FB
409@menu
410* disk_images_quickstart:: Quick start for disk image creation
411* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 412* vm_snapshots:: VM snapshots
debc7065 413* qemu_img_invocation:: qemu-img Invocation
975b092b 414* qemu_nbd_invocation:: qemu-nbd Invocation
d3067b02 415* disk_images_formats:: Disk image file formats
19cb3738 416* host_drives:: Using host drives
debc7065 417* disk_images_fat_images:: Virtual FAT disk images
75818250 418* disk_images_nbd:: NBD access
42af9c30 419* disk_images_sheepdog:: Sheepdog disk images
00984e39 420* disk_images_iscsi:: iSCSI LUNs
8809e289 421* disk_images_gluster:: GlusterFS disk images
0a12ec87 422* disk_images_ssh:: Secure Shell (ssh) disk images
debc7065
FB
423@end menu
424
425@node disk_images_quickstart
acd935ef
FB
426@subsection Quick start for disk image creation
427
428You can create a disk image with the command:
1f47a922 429@example
acd935ef 430qemu-img create myimage.img mysize
1f47a922 431@end example
acd935ef
FB
432where @var{myimage.img} is the disk image filename and @var{mysize} is its
433size in kilobytes. You can add an @code{M} suffix to give the size in
434megabytes and a @code{G} suffix for gigabytes.
435
debc7065 436See @ref{qemu_img_invocation} for more information.
1f47a922 437
debc7065 438@node disk_images_snapshot_mode
1f47a922
FB
439@subsection Snapshot mode
440
441If you use the option @option{-snapshot}, all disk images are
442considered as read only. When sectors in written, they are written in
443a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
444write back to the raw disk images by using the @code{commit} monitor
445command (or @key{C-a s} in the serial console).
1f47a922 446
13a2e80f
FB
447@node vm_snapshots
448@subsection VM snapshots
449
450VM snapshots are snapshots of the complete virtual machine including
451CPU state, RAM, device state and the content of all the writable
452disks. In order to use VM snapshots, you must have at least one non
453removable and writable block device using the @code{qcow2} disk image
454format. Normally this device is the first virtual hard drive.
455
456Use the monitor command @code{savevm} to create a new VM snapshot or
457replace an existing one. A human readable name can be assigned to each
19d36792 458snapshot in addition to its numerical ID.
13a2e80f
FB
459
460Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
461a VM snapshot. @code{info snapshots} lists the available snapshots
462with their associated information:
463
464@example
465(qemu) info snapshots
466Snapshot devices: hda
467Snapshot list (from hda):
468ID TAG VM SIZE DATE VM CLOCK
4691 start 41M 2006-08-06 12:38:02 00:00:14.954
4702 40M 2006-08-06 12:43:29 00:00:18.633
4713 msys 40M 2006-08-06 12:44:04 00:00:23.514
472@end example
473
474A VM snapshot is made of a VM state info (its size is shown in
475@code{info snapshots}) and a snapshot of every writable disk image.
476The VM state info is stored in the first @code{qcow2} non removable
477and writable block device. The disk image snapshots are stored in
478every disk image. The size of a snapshot in a disk image is difficult
479to evaluate and is not shown by @code{info snapshots} because the
480associated disk sectors are shared among all the snapshots to save
19d36792
FB
481disk space (otherwise each snapshot would need a full copy of all the
482disk images).
13a2e80f
FB
483
484When using the (unrelated) @code{-snapshot} option
485(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
486but they are deleted as soon as you exit QEMU.
487
488VM snapshots currently have the following known limitations:
489@itemize
5fafdf24 490@item
13a2e80f
FB
491They cannot cope with removable devices if they are removed or
492inserted after a snapshot is done.
5fafdf24 493@item
13a2e80f
FB
494A few device drivers still have incomplete snapshot support so their
495state is not saved or restored properly (in particular USB).
496@end itemize
497
acd935ef
FB
498@node qemu_img_invocation
499@subsection @code{qemu-img} Invocation
1f47a922 500
acd935ef 501@include qemu-img.texi
05efe46e 502
975b092b
TS
503@node qemu_nbd_invocation
504@subsection @code{qemu-nbd} Invocation
505
506@include qemu-nbd.texi
507
d3067b02
KW
508@node disk_images_formats
509@subsection Disk image file formats
510
511QEMU supports many image file formats that can be used with VMs as well as with
512any of the tools (like @code{qemu-img}). This includes the preferred formats
513raw and qcow2 as well as formats that are supported for compatibility with
514older QEMU versions or other hypervisors.
515
516Depending on the image format, different options can be passed to
517@code{qemu-img create} and @code{qemu-img convert} using the @code{-o} option.
518This section describes each format and the options that are supported for it.
519
520@table @option
521@item raw
522
523Raw disk image format. This format has the advantage of
524being simple and easily exportable to all other emulators. If your
525file system supports @emph{holes} (for example in ext2 or ext3 on
526Linux or NTFS on Windows), then only the written sectors will reserve
527space. Use @code{qemu-img info} to know the real size used by the
528image or @code{ls -ls} on Unix/Linux.
529
06247428
HT
530Supported options:
531@table @code
532@item preallocation
533Preallocation mode (allowed values: @code{off}, @code{falloc}, @code{full}).
534@code{falloc} mode preallocates space for image by calling posix_fallocate().
535@code{full} mode preallocates space for image by writing zeros to underlying
536storage.
537@end table
538
d3067b02
KW
539@item qcow2
540QEMU image format, the most versatile format. Use it to have smaller
541images (useful if your filesystem does not supports holes, for example
a1f688f4
MA
542on Windows), zlib based compression and support of multiple VM
543snapshots.
d3067b02
KW
544
545Supported options:
546@table @code
547@item compat
7fa9e1f9
SH
548Determines the qcow2 version to use. @code{compat=0.10} uses the
549traditional image format that can be read by any QEMU since 0.10.
d3067b02 550@code{compat=1.1} enables image format extensions that only QEMU 1.1 and
7fa9e1f9
SH
551newer understand (this is the default). Amongst others, this includes
552zero clusters, which allow efficient copy-on-read for sparse images.
d3067b02
KW
553
554@item backing_file
555File name of a base image (see @option{create} subcommand)
556@item backing_fmt
557Image format of the base image
558@item encryption
136cd19d 559If this option is set to @code{on}, the image is encrypted with 128-bit AES-CBC.
d3067b02 560
136cd19d
DB
561The use of encryption in qcow and qcow2 images is considered to be flawed by
562modern cryptography standards, suffering from a number of design problems:
563
564@itemize @minus
565@item The AES-CBC cipher is used with predictable initialization vectors based
566on the sector number. This makes it vulnerable to chosen plaintext attacks
567which can reveal the existence of encrypted data.
568@item The user passphrase is directly used as the encryption key. A poorly
569chosen or short passphrase will compromise the security of the encryption.
570@item In the event of the passphrase being compromised there is no way to
571change the passphrase to protect data in any qcow images. The files must
572be cloned, using a different encryption passphrase in the new file. The
573original file must then be securely erased using a program like shred,
574though even this is ineffective with many modern storage technologies.
575@end itemize
576
a1f688f4
MA
577Use of qcow / qcow2 encryption with QEMU is deprecated, and support for
578it will go away in a future release. Users are recommended to use an
579alternative encryption technology such as the Linux dm-crypt / LUKS
580system.
d3067b02
KW
581
582@item cluster_size
583Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster
584sizes can improve the image file size whereas larger cluster sizes generally
585provide better performance.
586
587@item preallocation
0e4271b7
HT
588Preallocation mode (allowed values: @code{off}, @code{metadata}, @code{falloc},
589@code{full}). An image with preallocated metadata is initially larger but can
590improve performance when the image needs to grow. @code{falloc} and @code{full}
591preallocations are like the same options of @code{raw} format, but sets up
592metadata also.
d3067b02
KW
593
594@item lazy_refcounts
595If this option is set to @code{on}, reference count updates are postponed with
596the goal of avoiding metadata I/O and improving performance. This is
597particularly interesting with @option{cache=writethrough} which doesn't batch
598metadata updates. The tradeoff is that after a host crash, the reference count
599tables must be rebuilt, i.e. on the next open an (automatic) @code{qemu-img
600check -r all} is required, which may take some time.
601
602This option can only be enabled if @code{compat=1.1} is specified.
603
4ab15590 604@item nocow
bc3a7f90 605If this option is set to @code{on}, it will turn off COW of the file. It's only
4ab15590
CL
606valid on btrfs, no effect on other file systems.
607
608Btrfs has low performance when hosting a VM image file, even more when the guest
609on the VM also using btrfs as file system. Turning off COW is a way to mitigate
610this bad performance. Generally there are two ways to turn off COW on btrfs:
611a) Disable it by mounting with nodatacow, then all newly created files will be
612NOCOW. b) For an empty file, add the NOCOW file attribute. That's what this option
613does.
614
615Note: this option is only valid to new or empty files. If there is an existing
616file which is COW and has data blocks already, it couldn't be changed to NOCOW
617by setting @code{nocow=on}. One can issue @code{lsattr filename} to check if
bc3a7f90 618the NOCOW flag is set or not (Capital 'C' is NOCOW flag).
4ab15590 619
d3067b02
KW
620@end table
621
622@item qed
623Old QEMU image format with support for backing files and compact image files
624(when your filesystem or transport medium does not support holes).
625
626When converting QED images to qcow2, you might want to consider using the
627@code{lazy_refcounts=on} option to get a more QED-like behaviour.
628
629Supported options:
630@table @code
631@item backing_file
632File name of a base image (see @option{create} subcommand).
633@item backing_fmt
634Image file format of backing file (optional). Useful if the format cannot be
635autodetected because it has no header, like some vhd/vpc files.
636@item cluster_size
637Changes the cluster size (must be power-of-2 between 4K and 64K). Smaller
638cluster sizes can improve the image file size whereas larger cluster sizes
639generally provide better performance.
640@item table_size
641Changes the number of clusters per L1/L2 table (must be power-of-2 between 1
642and 16). There is normally no need to change this value but this option can be
643used for performance benchmarking.
644@end table
645
646@item qcow
647Old QEMU image format with support for backing files, compact image files,
648encryption and compression.
649
650Supported options:
651@table @code
652@item backing_file
653File name of a base image (see @option{create} subcommand)
654@item encryption
655If this option is set to @code{on}, the image is encrypted.
656@end table
657
d3067b02
KW
658@item vdi
659VirtualBox 1.1 compatible image format.
660Supported options:
661@table @code
662@item static
663If this option is set to @code{on}, the image is created with metadata
664preallocation.
665@end table
666
667@item vmdk
668VMware 3 and 4 compatible image format.
669
670Supported options:
671@table @code
672@item backing_file
673File name of a base image (see @option{create} subcommand).
674@item compat6
675Create a VMDK version 6 image (instead of version 4)
676@item subformat
677Specifies which VMDK subformat to use. Valid options are
678@code{monolithicSparse} (default),
679@code{monolithicFlat},
680@code{twoGbMaxExtentSparse},
681@code{twoGbMaxExtentFlat} and
682@code{streamOptimized}.
683@end table
684
685@item vpc
686VirtualPC compatible image format (VHD).
687Supported options:
688@table @code
689@item subformat
690Specifies which VHD subformat to use. Valid options are
691@code{dynamic} (default) and @code{fixed}.
692@end table
8282db1b
JC
693
694@item VHDX
695Hyper-V compatible image format (VHDX).
696Supported options:
697@table @code
698@item subformat
699Specifies which VHDX subformat to use. Valid options are
700@code{dynamic} (default) and @code{fixed}.
701@item block_state_zero
30af51ce
JC
702Force use of payload blocks of type 'ZERO'. Can be set to @code{on} (default)
703or @code{off}. When set to @code{off}, new blocks will be created as
704@code{PAYLOAD_BLOCK_NOT_PRESENT}, which means parsers are free to return
705arbitrary data for those blocks. Do not set to @code{off} when using
706@code{qemu-img convert} with @code{subformat=dynamic}.
8282db1b
JC
707@item block_size
708Block size; min 1 MB, max 256 MB. 0 means auto-calculate based on image size.
709@item log_size
710Log size; min 1 MB.
711@end table
d3067b02
KW
712@end table
713
714@subsubsection Read-only formats
715More disk image file formats are supported in a read-only mode.
716@table @option
717@item bochs
718Bochs images of @code{growing} type.
719@item cloop
720Linux Compressed Loop image, useful only to reuse directly compressed
721CD-ROM images present for example in the Knoppix CD-ROMs.
722@item dmg
723Apple disk image.
724@item parallels
725Parallels disk image format.
726@end table
727
728
19cb3738
FB
729@node host_drives
730@subsection Using host drives
731
732In addition to disk image files, QEMU can directly access host
733devices. We describe here the usage for QEMU version >= 0.8.3.
734
735@subsubsection Linux
736
737On Linux, you can directly use the host device filename instead of a
4be456f1 738disk image filename provided you have enough privileges to access
19cb3738
FB
739it. For example, use @file{/dev/cdrom} to access to the CDROM or
740@file{/dev/fd0} for the floppy.
741
f542086d 742@table @code
19cb3738
FB
743@item CD
744You can specify a CDROM device even if no CDROM is loaded. QEMU has
745specific code to detect CDROM insertion or removal. CDROM ejection by
746the guest OS is supported. Currently only data CDs are supported.
747@item Floppy
748You can specify a floppy device even if no floppy is loaded. Floppy
749removal is currently not detected accurately (if you change floppy
750without doing floppy access while the floppy is not loaded, the guest
751OS will think that the same floppy is loaded).
752@item Hard disks
753Hard disks can be used. Normally you must specify the whole disk
754(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
755see it as a partitioned disk. WARNING: unless you know what you do, it
756is better to only make READ-ONLY accesses to the hard disk otherwise
757you may corrupt your host data (use the @option{-snapshot} command
758line option or modify the device permissions accordingly).
759@end table
760
761@subsubsection Windows
762
01781963
FB
763@table @code
764@item CD
4be456f1 765The preferred syntax is the drive letter (e.g. @file{d:}). The
01781963
FB
766alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
767supported as an alias to the first CDROM drive.
19cb3738 768
e598752a 769Currently there is no specific code to handle removable media, so it
19cb3738
FB
770is better to use the @code{change} or @code{eject} monitor commands to
771change or eject media.
01781963 772@item Hard disks
89dfe898 773Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
01781963
FB
774where @var{N} is the drive number (0 is the first hard disk).
775
776WARNING: unless you know what you do, it is better to only make
777READ-ONLY accesses to the hard disk otherwise you may corrupt your
778host data (use the @option{-snapshot} command line so that the
779modifications are written in a temporary file).
780@end table
781
19cb3738
FB
782
783@subsubsection Mac OS X
784
5fafdf24 785@file{/dev/cdrom} is an alias to the first CDROM.
19cb3738 786
e598752a 787Currently there is no specific code to handle removable media, so it
19cb3738
FB
788is better to use the @code{change} or @code{eject} monitor commands to
789change or eject media.
790
debc7065 791@node disk_images_fat_images
2c6cadd4
FB
792@subsection Virtual FAT disk images
793
794QEMU can automatically create a virtual FAT disk image from a
795directory tree. In order to use it, just type:
796
5fafdf24 797@example
3804da9d 798qemu-system-i386 linux.img -hdb fat:/my_directory
2c6cadd4
FB
799@end example
800
801Then you access access to all the files in the @file{/my_directory}
802directory without having to copy them in a disk image or to export
803them via SAMBA or NFS. The default access is @emph{read-only}.
804
805Floppies can be emulated with the @code{:floppy:} option:
806
5fafdf24 807@example
3804da9d 808qemu-system-i386 linux.img -fda fat:floppy:/my_directory
2c6cadd4
FB
809@end example
810
811A read/write support is available for testing (beta stage) with the
812@code{:rw:} option:
813
5fafdf24 814@example
3804da9d 815qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
2c6cadd4
FB
816@end example
817
818What you should @emph{never} do:
819@itemize
820@item use non-ASCII filenames ;
821@item use "-snapshot" together with ":rw:" ;
85b2c688
FB
822@item expect it to work when loadvm'ing ;
823@item write to the FAT directory on the host system while accessing it with the guest system.
2c6cadd4
FB
824@end itemize
825
75818250
TS
826@node disk_images_nbd
827@subsection NBD access
828
829QEMU can access directly to block device exported using the Network Block Device
830protocol.
831
832@example
1d7d2a9d 833qemu-system-i386 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/
75818250
TS
834@end example
835
836If the NBD server is located on the same host, you can use an unix socket instead
837of an inet socket:
838
839@example
1d7d2a9d 840qemu-system-i386 linux.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
841@end example
842
843In this case, the block device must be exported using qemu-nbd:
844
845@example
846qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
847@end example
848
9d85d557 849The use of qemu-nbd allows sharing of a disk between several guests:
75818250
TS
850@example
851qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
852@end example
853
1d7d2a9d 854@noindent
75818250
TS
855and then you can use it with two guests:
856@example
1d7d2a9d
PB
857qemu-system-i386 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket
858qemu-system-i386 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
859@end example
860
1d7d2a9d
PB
861If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's
862own embedded NBD server), you must specify an export name in the URI:
1d45f8b5 863@example
1d7d2a9d
PB
864qemu-system-i386 -cdrom nbd://localhost/debian-500-ppc-netinst
865qemu-system-i386 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst
866@end example
867
868The URI syntax for NBD is supported since QEMU 1.3. An alternative syntax is
869also available. Here are some example of the older syntax:
870@example
871qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
872qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
873qemu-system-i386 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst
1d45f8b5
LV
874@end example
875
42af9c30
MK
876@node disk_images_sheepdog
877@subsection Sheepdog disk images
878
879Sheepdog is a distributed storage system for QEMU. It provides highly
880available block level storage volumes that can be attached to
881QEMU-based virtual machines.
882
883You can create a Sheepdog disk image with the command:
884@example
5d6768e3 885qemu-img create sheepdog:///@var{image} @var{size}
42af9c30
MK
886@end example
887where @var{image} is the Sheepdog image name and @var{size} is its
888size.
889
890To import the existing @var{filename} to Sheepdog, you can use a
891convert command.
892@example
5d6768e3 893qemu-img convert @var{filename} sheepdog:///@var{image}
42af9c30
MK
894@end example
895
896You can boot from the Sheepdog disk image with the command:
897@example
5d6768e3 898qemu-system-i386 sheepdog:///@var{image}
42af9c30
MK
899@end example
900
901You can also create a snapshot of the Sheepdog image like qcow2.
902@example
5d6768e3 903qemu-img snapshot -c @var{tag} sheepdog:///@var{image}
42af9c30
MK
904@end example
905where @var{tag} is a tag name of the newly created snapshot.
906
907To boot from the Sheepdog snapshot, specify the tag name of the
908snapshot.
909@example
5d6768e3 910qemu-system-i386 sheepdog:///@var{image}#@var{tag}
42af9c30
MK
911@end example
912
913You can create a cloned image from the existing snapshot.
914@example
5d6768e3 915qemu-img create -b sheepdog:///@var{base}#@var{tag} sheepdog:///@var{image}
42af9c30
MK
916@end example
917where @var{base} is a image name of the source snapshot and @var{tag}
918is its tag name.
919
1b8bbb46
MK
920You can use an unix socket instead of an inet socket:
921
922@example
923qemu-system-i386 sheepdog+unix:///@var{image}?socket=@var{path}
924@end example
925
42af9c30
MK
926If the Sheepdog daemon doesn't run on the local host, you need to
927specify one of the Sheepdog servers to connect to.
928@example
5d6768e3
MK
929qemu-img create sheepdog://@var{hostname}:@var{port}/@var{image} @var{size}
930qemu-system-i386 sheepdog://@var{hostname}:@var{port}/@var{image}
42af9c30
MK
931@end example
932
00984e39
RS
933@node disk_images_iscsi
934@subsection iSCSI LUNs
935
936iSCSI is a popular protocol used to access SCSI devices across a computer
937network.
938
939There are two different ways iSCSI devices can be used by QEMU.
940
941The first method is to mount the iSCSI LUN on the host, and make it appear as
942any other ordinary SCSI device on the host and then to access this device as a
943/dev/sd device from QEMU. How to do this differs between host OSes.
944
945The second method involves using the iSCSI initiator that is built into
946QEMU. This provides a mechanism that works the same way regardless of which
947host OS you are running QEMU on. This section will describe this second method
948of using iSCSI together with QEMU.
949
950In QEMU, iSCSI devices are described using special iSCSI URLs
951
952@example
953URL syntax:
954iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
955@end example
956
957Username and password are optional and only used if your target is set up
958using CHAP authentication for access control.
959Alternatively the username and password can also be set via environment
960variables to have these not show up in the process list
961
962@example
963export LIBISCSI_CHAP_USERNAME=<username>
964export LIBISCSI_CHAP_PASSWORD=<password>
965iscsi://<host>/<target-iqn-name>/<lun>
966@end example
967
f9dadc98
RS
968Various session related parameters can be set via special options, either
969in a configuration file provided via '-readconfig' or directly on the
970command line.
971
31459f46
RS
972If the initiator-name is not specified qemu will use a default name
973of 'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the
974virtual machine.
975
976
f9dadc98
RS
977@example
978Setting a specific initiator name to use when logging in to the target
979-iscsi initiator-name=iqn.qemu.test:my-initiator
980@end example
981
982@example
983Controlling which type of header digest to negotiate with the target
984-iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
985@end example
986
987These can also be set via a configuration file
988@example
989[iscsi]
990 user = "CHAP username"
991 password = "CHAP password"
992 initiator-name = "iqn.qemu.test:my-initiator"
993 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
994 header-digest = "CRC32C"
995@end example
996
997
998Setting the target name allows different options for different targets
999@example
1000[iscsi "iqn.target.name"]
1001 user = "CHAP username"
1002 password = "CHAP password"
1003 initiator-name = "iqn.qemu.test:my-initiator"
1004 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
1005 header-digest = "CRC32C"
1006@end example
1007
1008
1009Howto use a configuration file to set iSCSI configuration options:
1010@example
1011cat >iscsi.conf <<EOF
1012[iscsi]
1013 user = "me"
1014 password = "my password"
1015 initiator-name = "iqn.qemu.test:my-initiator"
1016 header-digest = "CRC32C"
1017EOF
1018
1019qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
1020 -readconfig iscsi.conf
1021@end example
1022
1023
00984e39
RS
1024Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
1025@example
1026This example shows how to set up an iSCSI target with one CDROM and one DISK
1027using the Linux STGT software target. This target is available on Red Hat based
1028systems as the package 'scsi-target-utils'.
1029
1030tgtd --iscsi portal=127.0.0.1:3260
1031tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
1032tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
1033 -b /IMAGES/disk.img --device-type=disk
1034tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
1035 -b /IMAGES/cd.iso --device-type=cd
1036tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
1037
f9dadc98
RS
1038qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
1039 -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
00984e39
RS
1040 -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
1041@end example
1042
8809e289
BR
1043@node disk_images_gluster
1044@subsection GlusterFS disk images
00984e39 1045
8809e289
BR
1046GlusterFS is an user space distributed file system.
1047
1048You can boot from the GlusterFS disk image with the command:
1049@example
1050qemu-system-x86_64 -drive file=gluster[+@var{transport}]://[@var{server}[:@var{port}]]/@var{volname}/@var{image}[?socket=...]
1051@end example
1052
1053@var{gluster} is the protocol.
1054
1055@var{transport} specifies the transport type used to connect to gluster
1056management daemon (glusterd). Valid transport types are
1057tcp, unix and rdma. If a transport type isn't specified, then tcp
1058type is assumed.
1059
1060@var{server} specifies the server where the volume file specification for
1061the given volume resides. This can be either hostname, ipv4 address
1062or ipv6 address. ipv6 address needs to be within square brackets [ ].
1063If transport type is unix, then @var{server} field should not be specifed.
1064Instead @var{socket} field needs to be populated with the path to unix domain
1065socket.
1066
1067@var{port} is the port number on which glusterd is listening. This is optional
1068and if not specified, QEMU will send 0 which will make gluster to use the
1069default port. If the transport type is unix, then @var{port} should not be
1070specified.
1071
1072@var{volname} is the name of the gluster volume which contains the disk image.
1073
1074@var{image} is the path to the actual disk image that resides on gluster volume.
1075
1076You can create a GlusterFS disk image with the command:
1077@example
1078qemu-img create gluster://@var{server}/@var{volname}/@var{image} @var{size}
1079@end example
1080
1081Examples
1082@example
1083qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img
1084qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img
1085qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img
1086qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img
1087qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img
1088qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img
1089qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket
1090qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img
1091@end example
00984e39 1092
0a12ec87
RJ
1093@node disk_images_ssh
1094@subsection Secure Shell (ssh) disk images
1095
1096You can access disk images located on a remote ssh server
1097by using the ssh protocol:
1098
1099@example
1100qemu-system-x86_64 -drive file=ssh://[@var{user}@@]@var{server}[:@var{port}]/@var{path}[?host_key_check=@var{host_key_check}]
1101@end example
1102
1103Alternative syntax using properties:
1104
1105@example
1106qemu-system-x86_64 -drive file.driver=ssh[,file.user=@var{user}],file.host=@var{server}[,file.port=@var{port}],file.path=@var{path}[,file.host_key_check=@var{host_key_check}]
1107@end example
1108
1109@var{ssh} is the protocol.
1110
1111@var{user} is the remote user. If not specified, then the local
1112username is tried.
1113
1114@var{server} specifies the remote ssh server. Any ssh server can be
1115used, but it must implement the sftp-server protocol. Most Unix/Linux
1116systems should work without requiring any extra configuration.
1117
1118@var{port} is the port number on which sshd is listening. By default
1119the standard ssh port (22) is used.
1120
1121@var{path} is the path to the disk image.
1122
1123The optional @var{host_key_check} parameter controls how the remote
1124host's key is checked. The default is @code{yes} which means to use
1125the local @file{.ssh/known_hosts} file. Setting this to @code{no}
1126turns off known-hosts checking. Or you can check that the host key
1127matches a specific fingerprint:
1128@code{host_key_check=md5:78:45:8e:14:57:4f:d5:45:83:0a:0e:f3:49:82:c9:c8}
1129(@code{sha1:} can also be used as a prefix, but note that OpenSSH
1130tools only use MD5 to print fingerprints).
1131
1132Currently authentication must be done using ssh-agent. Other
1133authentication methods may be supported in future.
1134
9a2d462e
RJ
1135Note: Many ssh servers do not support an @code{fsync}-style operation.
1136The ssh driver cannot guarantee that disk flush requests are
1137obeyed, and this causes a risk of disk corruption if the remote
1138server or network goes down during writes. The driver will
1139print a warning when @code{fsync} is not supported:
1140
1141warning: ssh server @code{ssh.example.com:22} does not support fsync
1142
1143With sufficiently new versions of libssh2 and OpenSSH, @code{fsync} is
1144supported.
0a12ec87 1145
debc7065 1146@node pcsys_network
9d4fb82e
FB
1147@section Network emulation
1148
4be456f1 1149QEMU can simulate several network cards (PCI or ISA cards on the PC
41d03949
FB
1150target) and can connect them to an arbitrary number of Virtual Local
1151Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1152VLAN. VLAN can be connected between separate instances of QEMU to
4be456f1 1153simulate large networks. For simpler usage, a non privileged user mode
41d03949
FB
1154network stack can replace the TAP device to have a basic network
1155connection.
1156
1157@subsection VLANs
9d4fb82e 1158
41d03949
FB
1159QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1160connection between several network devices. These devices can be for
1161example QEMU virtual Ethernet cards or virtual Host ethernet devices
1162(TAP devices).
9d4fb82e 1163
41d03949
FB
1164@subsection Using TAP network interfaces
1165
1166This is the standard way to connect QEMU to a real network. QEMU adds
1167a virtual network device on your host (called @code{tapN}), and you
1168can then configure it as if it was a real ethernet card.
9d4fb82e 1169
8f40c388
FB
1170@subsubsection Linux host
1171
9d4fb82e
FB
1172As an example, you can download the @file{linux-test-xxx.tar.gz}
1173archive and copy the script @file{qemu-ifup} in @file{/etc} and
1174configure properly @code{sudo} so that the command @code{ifconfig}
1175contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 1176that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
1177device @file{/dev/net/tun} must be present.
1178
ee0f4751
FB
1179See @ref{sec_invocation} to have examples of command lines using the
1180TAP network interfaces.
9d4fb82e 1181
8f40c388
FB
1182@subsubsection Windows host
1183
1184There is a virtual ethernet driver for Windows 2000/XP systems, called
1185TAP-Win32. But it is not included in standard QEMU for Windows,
1186so you will need to get it separately. It is part of OpenVPN package,
1187so download OpenVPN from : @url{http://openvpn.net/}.
1188
9d4fb82e
FB
1189@subsection Using the user mode network stack
1190
41d03949
FB
1191By using the option @option{-net user} (default configuration if no
1192@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 1193network stack (you don't need root privilege to use the virtual
41d03949 1194network). The virtual network configuration is the following:
9d4fb82e
FB
1195
1196@example
1197
41d03949
FB
1198 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
1199 | (10.0.2.2)
9d4fb82e 1200 |
2518bd0d 1201 ----> DNS server (10.0.2.3)
3b46e624 1202 |
2518bd0d 1203 ----> SMB server (10.0.2.4)
9d4fb82e
FB
1204@end example
1205
1206The QEMU VM behaves as if it was behind a firewall which blocks all
1207incoming connections. You can use a DHCP client to automatically
41d03949
FB
1208configure the network in the QEMU VM. The DHCP server assign addresses
1209to the hosts starting from 10.0.2.15.
9d4fb82e
FB
1210
1211In order to check that the user mode network is working, you can ping
1212the address 10.0.2.2 and verify that you got an address in the range
121310.0.2.x from the QEMU virtual DHCP server.
1214
37cbfcce
GH
1215Note that ICMP traffic in general does not work with user mode networking.
1216@code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
1217however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
1218ping sockets to allow @code{ping} to the Internet. The host admin has to set
1219the ping_group_range in order to grant access to those sockets. To allow ping
1220for GID 100 (usually users group):
1221
1222@example
1223echo 100 100 > /proc/sys/net/ipv4/ping_group_range
1224@end example
b415a407 1225
9bf05444
FB
1226When using the built-in TFTP server, the router is also the TFTP
1227server.
1228
1229When using the @option{-redir} option, TCP or UDP connections can be
1230redirected from the host to the guest. It allows for example to
1231redirect X11, telnet or SSH connections.
443f1376 1232
41d03949
FB
1233@subsection Connecting VLANs between QEMU instances
1234
1235Using the @option{-net socket} option, it is possible to make VLANs
1236that span several QEMU instances. See @ref{sec_invocation} to have a
1237basic example.
1238
576fd0a1 1239@node pcsys_other_devs
6cbf4c8c
CM
1240@section Other Devices
1241
1242@subsection Inter-VM Shared Memory device
1243
1244With KVM enabled on a Linux host, a shared memory device is available. Guests
1245map a POSIX shared memory region into the guest as a PCI device that enables
1246zero-copy communication to the application level of the guests. The basic
1247syntax is:
1248
1249@example
3804da9d 1250qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]
6cbf4c8c
CM
1251@end example
1252
1253If desired, interrupts can be sent between guest VMs accessing the same shared
1254memory region. Interrupt support requires using a shared memory server and
1255using a chardev socket to connect to it. The code for the shared memory server
1256is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
1257memory server is:
1258
1259@example
3804da9d
SW
1260qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,chardev=<id>]
1261 [,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master]
1262qemu-system-i386 -chardev socket,path=<path>,id=<id>
6cbf4c8c
CM
1263@end example
1264
1265When using the server, the guest will be assigned a VM ID (>=0) that allows guests
1266using the same server to communicate via interrupts. Guests can read their
1267VM ID from a device register (see example code). Since receiving the shared
1268memory region from the server is asynchronous, there is a (small) chance the
1269guest may boot before the shared memory is attached. To allow an application
1270to ensure shared memory is attached, the VM ID register will return -1 (an
1271invalid VM ID) until the memory is attached. Once the shared memory is
1272attached, the VM ID will return the guest's valid VM ID. With these semantics,
1273the guest application can check to ensure the shared memory is attached to the
1274guest before proceeding.
1275
1276The @option{role} argument can be set to either master or peer and will affect
1277how the shared memory is migrated. With @option{role=master}, the guest will
1278copy the shared memory on migration to the destination host. With
1279@option{role=peer}, the guest will not be able to migrate with the device attached.
1280With the @option{peer} case, the device should be detached and then reattached
1281after migration using the PCI hotplug support.
1282
9d4fb82e
FB
1283@node direct_linux_boot
1284@section Direct Linux Boot
1f673135
FB
1285
1286This section explains how to launch a Linux kernel inside QEMU without
1287having to make a full bootable image. It is very useful for fast Linux
ee0f4751 1288kernel testing.
1f673135 1289
ee0f4751 1290The syntax is:
1f673135 1291@example
3804da9d 1292qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
1293@end example
1294
ee0f4751
FB
1295Use @option{-kernel} to provide the Linux kernel image and
1296@option{-append} to give the kernel command line arguments. The
1297@option{-initrd} option can be used to provide an INITRD image.
1f673135 1298
ee0f4751
FB
1299When using the direct Linux boot, a disk image for the first hard disk
1300@file{hda} is required because its boot sector is used to launch the
1301Linux kernel.
1f673135 1302
ee0f4751
FB
1303If you do not need graphical output, you can disable it and redirect
1304the virtual serial port and the QEMU monitor to the console with the
1305@option{-nographic} option. The typical command line is:
1f673135 1306@example
3804da9d
SW
1307qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1308 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
1309@end example
1310
ee0f4751
FB
1311Use @key{Ctrl-a c} to switch between the serial console and the
1312monitor (@pxref{pcsys_keys}).
1f673135 1313
debc7065 1314@node pcsys_usb
b389dbfb
FB
1315@section USB emulation
1316
0aff66b5
PB
1317QEMU emulates a PCI UHCI USB controller. You can virtually plug
1318virtual USB devices or real host USB devices (experimental, works only
071c9394 1319on Linux hosts). QEMU will automatically create and connect virtual USB hubs
f542086d 1320as necessary to connect multiple USB devices.
b389dbfb 1321
0aff66b5
PB
1322@menu
1323* usb_devices::
1324* host_usb_devices::
1325@end menu
1326@node usb_devices
1327@subsection Connecting USB devices
b389dbfb 1328
0aff66b5
PB
1329USB devices can be connected with the @option{-usbdevice} commandline option
1330or the @code{usb_add} monitor command. Available devices are:
b389dbfb 1331
db380c06
AZ
1332@table @code
1333@item mouse
0aff66b5 1334Virtual Mouse. This will override the PS/2 mouse emulation when activated.
db380c06 1335@item tablet
c6d46c20 1336Pointer device that uses absolute coordinates (like a touchscreen).
b65ee4fa 1337This means QEMU is able to report the mouse position without having
0aff66b5 1338to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
db380c06 1339@item disk:@var{file}
0aff66b5 1340Mass storage device based on @var{file} (@pxref{disk_images})
db380c06 1341@item host:@var{bus.addr}
0aff66b5
PB
1342Pass through the host device identified by @var{bus.addr}
1343(Linux only)
db380c06 1344@item host:@var{vendor_id:product_id}
0aff66b5
PB
1345Pass through the host device identified by @var{vendor_id:product_id}
1346(Linux only)
db380c06 1347@item wacom-tablet
f6d2a316
AZ
1348Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1349above but it can be used with the tslib library because in addition to touch
1350coordinates it reports touch pressure.
db380c06 1351@item keyboard
47b2d338 1352Standard USB keyboard. Will override the PS/2 keyboard (if present).
db380c06
AZ
1353@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1354Serial converter. This emulates an FTDI FT232BM chip connected to host character
1355device @var{dev}. The available character devices are the same as for the
1356@code{-serial} option. The @code{vendorid} and @code{productid} options can be
0d6753e5 1357used to override the default 0403:6001. For instance,
db380c06
AZ
1358@example
1359usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1360@end example
1361will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1362serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
2e4d9fb1
AJ
1363@item braille
1364Braille device. This will use BrlAPI to display the braille output on a real
1365or fake device.
9ad97e65
AZ
1366@item net:@var{options}
1367Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
1368specifies NIC options as with @code{-net nic,}@var{options} (see description).
1369For instance, user-mode networking can be used with
6c9f886c 1370@example
3804da9d 1371qemu-system-i386 [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
6c9f886c
AZ
1372@end example
1373Currently this cannot be used in machines that support PCI NICs.
2d564691
AZ
1374@item bt[:@var{hci-type}]
1375Bluetooth dongle whose type is specified in the same format as with
1376the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
1377no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1378This USB device implements the USB Transport Layer of HCI. Example
1379usage:
1380@example
3804da9d 1381qemu-system-i386 [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
2d564691 1382@end example
0aff66b5 1383@end table
b389dbfb 1384
0aff66b5 1385@node host_usb_devices
b389dbfb
FB
1386@subsection Using host USB devices on a Linux host
1387
1388WARNING: this is an experimental feature. QEMU will slow down when
1389using it. USB devices requiring real time streaming (i.e. USB Video
1390Cameras) are not supported yet.
1391
1392@enumerate
5fafdf24 1393@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
1394is actually using the USB device. A simple way to do that is simply to
1395disable the corresponding kernel module by renaming it from @file{mydriver.o}
1396to @file{mydriver.o.disabled}.
1397
1398@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1399@example
1400ls /proc/bus/usb
1401001 devices drivers
1402@end example
1403
1404@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1405@example
1406chown -R myuid /proc/bus/usb
1407@end example
1408
1409@item Launch QEMU and do in the monitor:
5fafdf24 1410@example
b389dbfb
FB
1411info usbhost
1412 Device 1.2, speed 480 Mb/s
1413 Class 00: USB device 1234:5678, USB DISK
1414@end example
1415You should see the list of the devices you can use (Never try to use
1416hubs, it won't work).
1417
1418@item Add the device in QEMU by using:
5fafdf24 1419@example
b389dbfb
FB
1420usb_add host:1234:5678
1421@end example
1422
1423Normally the guest OS should report that a new USB device is
1424plugged. You can use the option @option{-usbdevice} to do the same.
1425
1426@item Now you can try to use the host USB device in QEMU.
1427
1428@end enumerate
1429
1430When relaunching QEMU, you may have to unplug and plug again the USB
1431device to make it work again (this is a bug).
1432
f858dcae
TS
1433@node vnc_security
1434@section VNC security
1435
1436The VNC server capability provides access to the graphical console
1437of the guest VM across the network. This has a number of security
1438considerations depending on the deployment scenarios.
1439
1440@menu
1441* vnc_sec_none::
1442* vnc_sec_password::
1443* vnc_sec_certificate::
1444* vnc_sec_certificate_verify::
1445* vnc_sec_certificate_pw::
2f9606b3
AL
1446* vnc_sec_sasl::
1447* vnc_sec_certificate_sasl::
f858dcae 1448* vnc_generate_cert::
2f9606b3 1449* vnc_setup_sasl::
f858dcae
TS
1450@end menu
1451@node vnc_sec_none
1452@subsection Without passwords
1453
1454The simplest VNC server setup does not include any form of authentication.
1455For this setup it is recommended to restrict it to listen on a UNIX domain
1456socket only. For example
1457
1458@example
3804da9d 1459qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
f858dcae
TS
1460@end example
1461
1462This ensures that only users on local box with read/write access to that
1463path can access the VNC server. To securely access the VNC server from a
1464remote machine, a combination of netcat+ssh can be used to provide a secure
1465tunnel.
1466
1467@node vnc_sec_password
1468@subsection With passwords
1469
1470The VNC protocol has limited support for password based authentication. Since
1471the protocol limits passwords to 8 characters it should not be considered
1472to provide high security. The password can be fairly easily brute-forced by
1473a client making repeat connections. For this reason, a VNC server using password
1474authentication should be restricted to only listen on the loopback interface
0f66998f
PM
1475or UNIX domain sockets. Password authentication is not supported when operating
1476in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1477authentication is requested with the @code{password} option, and then once QEMU
1478is running the password is set with the monitor. Until the monitor is used to
1479set the password all clients will be rejected.
f858dcae
TS
1480
1481@example
3804da9d 1482qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
f858dcae
TS
1483(qemu) change vnc password
1484Password: ********
1485(qemu)
1486@end example
1487
1488@node vnc_sec_certificate
1489@subsection With x509 certificates
1490
1491The QEMU VNC server also implements the VeNCrypt extension allowing use of
1492TLS for encryption of the session, and x509 certificates for authentication.
1493The use of x509 certificates is strongly recommended, because TLS on its
1494own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1495support provides a secure session, but no authentication. This allows any
1496client to connect, and provides an encrypted session.
1497
1498@example
3804da9d 1499qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
f858dcae
TS
1500@end example
1501
1502In the above example @code{/etc/pki/qemu} should contain at least three files,
1503@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1504users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1505NB the @code{server-key.pem} file should be protected with file mode 0600 to
1506only be readable by the user owning it.
1507
1508@node vnc_sec_certificate_verify
1509@subsection With x509 certificates and client verification
1510
1511Certificates can also provide a means to authenticate the client connecting.
1512The server will request that the client provide a certificate, which it will
1513then validate against the CA certificate. This is a good choice if deploying
1514in an environment with a private internal certificate authority.
1515
1516@example
3804da9d 1517qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1518@end example
1519
1520
1521@node vnc_sec_certificate_pw
1522@subsection With x509 certificates, client verification and passwords
1523
1524Finally, the previous method can be combined with VNC password authentication
1525to provide two layers of authentication for clients.
1526
1527@example
3804da9d 1528qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1529(qemu) change vnc password
1530Password: ********
1531(qemu)
1532@end example
1533
2f9606b3
AL
1534
1535@node vnc_sec_sasl
1536@subsection With SASL authentication
1537
1538The SASL authentication method is a VNC extension, that provides an
1539easily extendable, pluggable authentication method. This allows for
1540integration with a wide range of authentication mechanisms, such as
1541PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1542The strength of the authentication depends on the exact mechanism
1543configured. If the chosen mechanism also provides a SSF layer, then
1544it will encrypt the datastream as well.
1545
1546Refer to the later docs on how to choose the exact SASL mechanism
1547used for authentication, but assuming use of one supporting SSF,
1548then QEMU can be launched with:
1549
1550@example
3804da9d 1551qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
2f9606b3
AL
1552@end example
1553
1554@node vnc_sec_certificate_sasl
1555@subsection With x509 certificates and SASL authentication
1556
1557If the desired SASL authentication mechanism does not supported
1558SSF layers, then it is strongly advised to run it in combination
1559with TLS and x509 certificates. This provides securely encrypted
1560data stream, avoiding risk of compromising of the security
1561credentials. This can be enabled, by combining the 'sasl' option
1562with the aforementioned TLS + x509 options:
1563
1564@example
3804da9d 1565qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
2f9606b3
AL
1566@end example
1567
1568
f858dcae
TS
1569@node vnc_generate_cert
1570@subsection Generating certificates for VNC
1571
1572The GNU TLS packages provides a command called @code{certtool} which can
1573be used to generate certificates and keys in PEM format. At a minimum it
40c5c6cd 1574is necessary to setup a certificate authority, and issue certificates to
f858dcae
TS
1575each server. If using certificates for authentication, then each client
1576will also need to be issued a certificate. The recommendation is for the
1577server to keep its certificates in either @code{/etc/pki/qemu} or for
1578unprivileged users in @code{$HOME/.pki/qemu}.
1579
1580@menu
1581* vnc_generate_ca::
1582* vnc_generate_server::
1583* vnc_generate_client::
1584@end menu
1585@node vnc_generate_ca
1586@subsubsection Setup the Certificate Authority
1587
1588This step only needs to be performed once per organization / organizational
1589unit. First the CA needs a private key. This key must be kept VERY secret
1590and secure. If this key is compromised the entire trust chain of the certificates
1591issued with it is lost.
1592
1593@example
1594# certtool --generate-privkey > ca-key.pem
1595@end example
1596
1597A CA needs to have a public certificate. For simplicity it can be a self-signed
1598certificate, or one issue by a commercial certificate issuing authority. To
1599generate a self-signed certificate requires one core piece of information, the
1600name of the organization.
1601
1602@example
1603# cat > ca.info <<EOF
1604cn = Name of your organization
1605ca
1606cert_signing_key
1607EOF
1608# certtool --generate-self-signed \
1609 --load-privkey ca-key.pem
1610 --template ca.info \
1611 --outfile ca-cert.pem
1612@end example
1613
1614The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1615TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1616
1617@node vnc_generate_server
1618@subsubsection Issuing server certificates
1619
1620Each server (or host) needs to be issued with a key and certificate. When connecting
1621the certificate is sent to the client which validates it against the CA certificate.
1622The core piece of information for a server certificate is the hostname. This should
1623be the fully qualified hostname that the client will connect with, since the client
1624will typically also verify the hostname in the certificate. On the host holding the
1625secure CA private key:
1626
1627@example
1628# cat > server.info <<EOF
1629organization = Name of your organization
1630cn = server.foo.example.com
1631tls_www_server
1632encryption_key
1633signing_key
1634EOF
1635# certtool --generate-privkey > server-key.pem
1636# certtool --generate-certificate \
1637 --load-ca-certificate ca-cert.pem \
1638 --load-ca-privkey ca-key.pem \
63c693f8 1639 --load-privkey server-key.pem \
f858dcae
TS
1640 --template server.info \
1641 --outfile server-cert.pem
1642@end example
1643
1644The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1645to the server for which they were generated. The @code{server-key.pem} is security
1646sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1647
1648@node vnc_generate_client
1649@subsubsection Issuing client certificates
1650
1651If the QEMU VNC server is to use the @code{x509verify} option to validate client
1652certificates as its authentication mechanism, each client also needs to be issued
1653a certificate. The client certificate contains enough metadata to uniquely identify
1654the client, typically organization, state, city, building, etc. On the host holding
1655the secure CA private key:
1656
1657@example
1658# cat > client.info <<EOF
1659country = GB
1660state = London
1661locality = London
63c693f8 1662organization = Name of your organization
f858dcae
TS
1663cn = client.foo.example.com
1664tls_www_client
1665encryption_key
1666signing_key
1667EOF
1668# certtool --generate-privkey > client-key.pem
1669# certtool --generate-certificate \
1670 --load-ca-certificate ca-cert.pem \
1671 --load-ca-privkey ca-key.pem \
1672 --load-privkey client-key.pem \
1673 --template client.info \
1674 --outfile client-cert.pem
1675@end example
1676
1677The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1678copied to the client for which they were generated.
1679
2f9606b3
AL
1680
1681@node vnc_setup_sasl
1682
1683@subsection Configuring SASL mechanisms
1684
1685The following documentation assumes use of the Cyrus SASL implementation on a
1686Linux host, but the principals should apply to any other SASL impl. When SASL
1687is enabled, the mechanism configuration will be loaded from system default
1688SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1689unprivileged user, an environment variable SASL_CONF_PATH can be used
1690to make it search alternate locations for the service config.
1691
1692The default configuration might contain
1693
1694@example
1695mech_list: digest-md5
1696sasldb_path: /etc/qemu/passwd.db
1697@end example
1698
1699This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1700Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1701in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1702command. While this mechanism is easy to configure and use, it is not
1703considered secure by modern standards, so only suitable for developers /
1704ad-hoc testing.
1705
1706A more serious deployment might use Kerberos, which is done with the 'gssapi'
1707mechanism
1708
1709@example
1710mech_list: gssapi
1711keytab: /etc/qemu/krb5.tab
1712@end example
1713
1714For this to work the administrator of your KDC must generate a Kerberos
1715principal for the server, with a name of 'qemu/somehost.example.com@@EXAMPLE.COM'
1716replacing 'somehost.example.com' with the fully qualified host name of the
40c5c6cd 1717machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
2f9606b3
AL
1718
1719Other configurations will be left as an exercise for the reader. It should
1720be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1721encryption. For all other mechanisms, VNC should always be configured to
1722use TLS and x509 certificates to protect security credentials from snooping.
1723
0806e3f6 1724@node gdb_usage
da415d54
FB
1725@section GDB usage
1726
1727QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1728'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1729
b65ee4fa 1730In order to use gdb, launch QEMU with the '-s' option. It will wait for a
da415d54
FB
1731gdb connection:
1732@example
3804da9d
SW
1733qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1734 -append "root=/dev/hda"
da415d54
FB
1735Connected to host network interface: tun0
1736Waiting gdb connection on port 1234
1737@end example
1738
1739Then launch gdb on the 'vmlinux' executable:
1740@example
1741> gdb vmlinux
1742@end example
1743
1744In gdb, connect to QEMU:
1745@example
6c9bf893 1746(gdb) target remote localhost:1234
da415d54
FB
1747@end example
1748
1749Then you can use gdb normally. For example, type 'c' to launch the kernel:
1750@example
1751(gdb) c
1752@end example
1753
0806e3f6
FB
1754Here are some useful tips in order to use gdb on system code:
1755
1756@enumerate
1757@item
1758Use @code{info reg} to display all the CPU registers.
1759@item
1760Use @code{x/10i $eip} to display the code at the PC position.
1761@item
1762Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1763@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1764@end enumerate
1765
60897d36
EI
1766Advanced debugging options:
1767
1768The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 1769@table @code
60897d36
EI
1770@item maintenance packet qqemu.sstepbits
1771
1772This will display the MASK bits used to control the single stepping IE:
1773@example
1774(gdb) maintenance packet qqemu.sstepbits
1775sending: "qqemu.sstepbits"
1776received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1777@end example
1778@item maintenance packet qqemu.sstep
1779
1780This will display the current value of the mask used when single stepping IE:
1781@example
1782(gdb) maintenance packet qqemu.sstep
1783sending: "qqemu.sstep"
1784received: "0x7"
1785@end example
1786@item maintenance packet Qqemu.sstep=HEX_VALUE
1787
1788This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1789@example
1790(gdb) maintenance packet Qqemu.sstep=0x5
1791sending: "qemu.sstep=0x5"
1792received: "OK"
1793@end example
94d45e44 1794@end table
60897d36 1795
debc7065 1796@node pcsys_os_specific
1a084f3d
FB
1797@section Target OS specific information
1798
1799@subsection Linux
1800
15a34c63
FB
1801To have access to SVGA graphic modes under X11, use the @code{vesa} or
1802the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1803color depth in the guest and the host OS.
1a084f3d 1804
e3371e62
FB
1805When using a 2.6 guest Linux kernel, you should add the option
1806@code{clock=pit} on the kernel command line because the 2.6 Linux
1807kernels make very strict real time clock checks by default that QEMU
1808cannot simulate exactly.
1809
7c3fc84d
FB
1810When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1811not activated because QEMU is slower with this patch. The QEMU
1812Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1813Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1814patch by default. Newer kernels don't have it.
1815
1a084f3d
FB
1816@subsection Windows
1817
1818If you have a slow host, using Windows 95 is better as it gives the
1819best speed. Windows 2000 is also a good choice.
1820
e3371e62
FB
1821@subsubsection SVGA graphic modes support
1822
1823QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1824card. All Windows versions starting from Windows 95 should recognize
1825and use this graphic card. For optimal performances, use 16 bit color
1826depth in the guest and the host OS.
1a084f3d 1827
3cb0853a
FB
1828If you are using Windows XP as guest OS and if you want to use high
1829resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
18301280x1024x16), then you should use the VESA VBE virtual graphic card
1831(option @option{-std-vga}).
1832
e3371e62
FB
1833@subsubsection CPU usage reduction
1834
1835Windows 9x does not correctly use the CPU HLT
15a34c63
FB
1836instruction. The result is that it takes host CPU cycles even when
1837idle. You can install the utility from
1838@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1839problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 1840
9d0a8e6f 1841@subsubsection Windows 2000 disk full problem
e3371e62 1842
9d0a8e6f
FB
1843Windows 2000 has a bug which gives a disk full problem during its
1844installation. When installing it, use the @option{-win2k-hack} QEMU
1845option to enable a specific workaround. After Windows 2000 is
1846installed, you no longer need this option (this option slows down the
1847IDE transfers).
e3371e62 1848
6cc721cf
FB
1849@subsubsection Windows 2000 shutdown
1850
1851Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1852can. It comes from the fact that Windows 2000 does not automatically
1853use the APM driver provided by the BIOS.
1854
1855In order to correct that, do the following (thanks to Struan
1856Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1857Add/Troubleshoot a device => Add a new device & Next => No, select the
1858hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1859(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 1860correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
1861
1862@subsubsection Share a directory between Unix and Windows
1863
1864See @ref{sec_invocation} about the help of the option @option{-smb}.
1865
2192c332 1866@subsubsection Windows XP security problem
e3371e62
FB
1867
1868Some releases of Windows XP install correctly but give a security
1869error when booting:
1870@example
1871A problem is preventing Windows from accurately checking the
1872license for this computer. Error code: 0x800703e6.
1873@end example
e3371e62 1874
2192c332
FB
1875The workaround is to install a service pack for XP after a boot in safe
1876mode. Then reboot, and the problem should go away. Since there is no
1877network while in safe mode, its recommended to download the full
1878installation of SP1 or SP2 and transfer that via an ISO or using the
1879vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 1880
a0a821a4
FB
1881@subsection MS-DOS and FreeDOS
1882
1883@subsubsection CPU usage reduction
1884
1885DOS does not correctly use the CPU HLT instruction. The result is that
1886it takes host CPU cycles even when idle. You can install the utility
1887from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1888problem.
1889
debc7065 1890@node QEMU System emulator for non PC targets
3f9f3aa1
FB
1891@chapter QEMU System emulator for non PC targets
1892
1893QEMU is a generic emulator and it emulates many non PC
1894machines. Most of the options are similar to the PC emulator. The
4be456f1 1895differences are mentioned in the following sections.
3f9f3aa1 1896
debc7065 1897@menu
7544a042 1898* PowerPC System emulator::
24d4de45
TS
1899* Sparc32 System emulator::
1900* Sparc64 System emulator::
1901* MIPS System emulator::
1902* ARM System emulator::
1903* ColdFire System emulator::
7544a042
SW
1904* Cris System emulator::
1905* Microblaze System emulator::
1906* SH4 System emulator::
3aeaea65 1907* Xtensa System emulator::
debc7065
FB
1908@end menu
1909
7544a042
SW
1910@node PowerPC System emulator
1911@section PowerPC System emulator
1912@cindex system emulation (PowerPC)
1a084f3d 1913
15a34c63
FB
1914Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1915or PowerMac PowerPC system.
1a084f3d 1916
b671f9ed 1917QEMU emulates the following PowerMac peripherals:
1a084f3d 1918
15a34c63 1919@itemize @minus
5fafdf24 1920@item
006f3a48 1921UniNorth or Grackle PCI Bridge
15a34c63
FB
1922@item
1923PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1924@item
15a34c63 19252 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 1926@item
15a34c63
FB
1927NE2000 PCI adapters
1928@item
1929Non Volatile RAM
1930@item
1931VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
1932@end itemize
1933
b671f9ed 1934QEMU emulates the following PREP peripherals:
52c00a5f
FB
1935
1936@itemize @minus
5fafdf24 1937@item
15a34c63
FB
1938PCI Bridge
1939@item
1940PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1941@item
52c00a5f
FB
19422 IDE interfaces with hard disk and CD-ROM support
1943@item
1944Floppy disk
5fafdf24 1945@item
15a34c63 1946NE2000 network adapters
52c00a5f
FB
1947@item
1948Serial port
1949@item
1950PREP Non Volatile RAM
15a34c63
FB
1951@item
1952PC compatible keyboard and mouse.
52c00a5f
FB
1953@end itemize
1954
15a34c63 1955QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 1956@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 1957
992e5acd 1958Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
006f3a48
BS
1959for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1960v2) portable firmware implementation. The goal is to implement a 100%
1961IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 1962
15a34c63
FB
1963@c man begin OPTIONS
1964
1965The following options are specific to the PowerPC emulation:
1966
1967@table @option
1968
4e257e5e 1969@item -g @var{W}x@var{H}[x@var{DEPTH}]
15a34c63 1970
340fb41b 1971Set the initial VGA graphic mode. The default is 800x600x32.
15a34c63 1972
4e257e5e 1973@item -prom-env @var{string}
95efd11c
BS
1974
1975Set OpenBIOS variables in NVRAM, for example:
1976
1977@example
1978qemu-system-ppc -prom-env 'auto-boot?=false' \
1979 -prom-env 'boot-device=hd:2,\yaboot' \
1980 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1981@end example
1982
1983These variables are not used by Open Hack'Ware.
1984
15a34c63
FB
1985@end table
1986
5fafdf24 1987@c man end
15a34c63
FB
1988
1989
52c00a5f 1990More information is available at
3f9f3aa1 1991@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 1992
24d4de45
TS
1993@node Sparc32 System emulator
1994@section Sparc32 System emulator
7544a042 1995@cindex system emulation (Sparc32)
e80cfcfc 1996
34a3d239
BS
1997Use the executable @file{qemu-system-sparc} to simulate the following
1998Sun4m architecture machines:
1999@itemize @minus
2000@item
2001SPARCstation 4
2002@item
2003SPARCstation 5
2004@item
2005SPARCstation 10
2006@item
2007SPARCstation 20
2008@item
2009SPARCserver 600MP
2010@item
2011SPARCstation LX
2012@item
2013SPARCstation Voyager
2014@item
2015SPARCclassic
2016@item
2017SPARCbook
2018@end itemize
2019
2020The emulation is somewhat complete. SMP up to 16 CPUs is supported,
2021but Linux limits the number of usable CPUs to 4.
e80cfcfc 2022
6a4e1771 2023QEMU emulates the following sun4m peripherals:
e80cfcfc
FB
2024
2025@itemize @minus
3475187d 2026@item
6a4e1771 2027IOMMU
e80cfcfc 2028@item
33632788 2029TCX or cgthree Frame buffer
5fafdf24 2030@item
e80cfcfc
FB
2031Lance (Am7990) Ethernet
2032@item
34a3d239 2033Non Volatile RAM M48T02/M48T08
e80cfcfc 2034@item
3475187d
FB
2035Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2036and power/reset logic
2037@item
2038ESP SCSI controller with hard disk and CD-ROM support
2039@item
6a3b9cc9 2040Floppy drive (not on SS-600MP)
a2502b58
BS
2041@item
2042CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
2043@end itemize
2044
6a3b9cc9
BS
2045The number of peripherals is fixed in the architecture. Maximum
2046memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 2047others 2047MB.
3475187d 2048
30a604f3 2049Since version 0.8.2, QEMU uses OpenBIOS
0986ac3b
FB
2050@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2051firmware implementation. The goal is to implement a 100% IEEE
20521275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
2053
2054A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239 2055the QEMU web site. There are still issues with NetBSD and OpenBSD, but
9bb9f217 2056most kernel versions work. Please note that currently older Solaris kernels
34a3d239
BS
2057don't work probably due to interface issues between OpenBIOS and
2058Solaris.
3475187d
FB
2059
2060@c man begin OPTIONS
2061
a2502b58 2062The following options are specific to the Sparc32 emulation:
3475187d
FB
2063
2064@table @option
2065
4e257e5e 2066@item -g @var{W}x@var{H}x[x@var{DEPTH}]
3475187d 2067
33632788
MCA
2068Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
2069option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
2070of 1152x900x8 for people who wish to use OBP.
3475187d 2071
4e257e5e 2072@item -prom-env @var{string}
66508601
BS
2073
2074Set OpenBIOS variables in NVRAM, for example:
2075
2076@example
2077qemu-system-sparc -prom-env 'auto-boot?=false' \
2078 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2079@end example
2080
6a4e1771 2081@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
a2502b58
BS
2082
2083Set the emulated machine type. Default is SS-5.
2084
3475187d
FB
2085@end table
2086
5fafdf24 2087@c man end
3475187d 2088
24d4de45
TS
2089@node Sparc64 System emulator
2090@section Sparc64 System emulator
7544a042 2091@cindex system emulation (Sparc64)
e80cfcfc 2092
34a3d239
BS
2093Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2094(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
9bb9f217
MCA
2095Niagara (T1) machine. The Sun4u emulator is mostly complete, being
2096able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The
2097Sun4v and Niagara emulators are still a work in progress.
b756921a 2098
c7ba218d 2099QEMU emulates the following peripherals:
83469015
FB
2100
2101@itemize @minus
2102@item
5fafdf24 2103UltraSparc IIi APB PCI Bridge
83469015
FB
2104@item
2105PCI VGA compatible card with VESA Bochs Extensions
2106@item
34a3d239
BS
2107PS/2 mouse and keyboard
2108@item
83469015
FB
2109Non Volatile RAM M48T59
2110@item
2111PC-compatible serial ports
c7ba218d
BS
2112@item
21132 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
2114@item
2115Floppy disk
83469015
FB
2116@end itemize
2117
c7ba218d
BS
2118@c man begin OPTIONS
2119
2120The following options are specific to the Sparc64 emulation:
2121
2122@table @option
2123
4e257e5e 2124@item -prom-env @var{string}
34a3d239
BS
2125
2126Set OpenBIOS variables in NVRAM, for example:
2127
2128@example
2129qemu-system-sparc64 -prom-env 'auto-boot?=false'
2130@end example
2131
2132@item -M [sun4u|sun4v|Niagara]
c7ba218d
BS
2133
2134Set the emulated machine type. The default is sun4u.
2135
2136@end table
2137
2138@c man end
2139
24d4de45
TS
2140@node MIPS System emulator
2141@section MIPS System emulator
7544a042 2142@cindex system emulation (MIPS)
9d0a8e6f 2143
d9aedc32
TS
2144Four executables cover simulation of 32 and 64-bit MIPS systems in
2145both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2146@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 2147Five different machine types are emulated:
24d4de45
TS
2148
2149@itemize @minus
2150@item
2151A generic ISA PC-like machine "mips"
2152@item
2153The MIPS Malta prototype board "malta"
2154@item
d9aedc32 2155An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 2156@item
f0fc6f8f 2157MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
2158@item
2159A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
2160@end itemize
2161
2162The generic emulation is supported by Debian 'Etch' and is able to
2163install Debian into a virtual disk image. The following devices are
2164emulated:
3f9f3aa1
FB
2165
2166@itemize @minus
5fafdf24 2167@item
6bf5b4e8 2168A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
2169@item
2170PC style serial port
2171@item
24d4de45
TS
2172PC style IDE disk
2173@item
3f9f3aa1
FB
2174NE2000 network card
2175@end itemize
2176
24d4de45
TS
2177The Malta emulation supports the following devices:
2178
2179@itemize @minus
2180@item
0b64d008 2181Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
2182@item
2183PIIX4 PCI/USB/SMbus controller
2184@item
2185The Multi-I/O chip's serial device
2186@item
3a2eeac0 2187PCI network cards (PCnet32 and others)
24d4de45
TS
2188@item
2189Malta FPGA serial device
2190@item
1f605a76 2191Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
2192@end itemize
2193
2194The ACER Pica emulation supports:
2195
2196@itemize @minus
2197@item
2198MIPS R4000 CPU
2199@item
2200PC-style IRQ and DMA controllers
2201@item
2202PC Keyboard
2203@item
2204IDE controller
2205@end itemize
3f9f3aa1 2206
b5e4946f 2207The mipssim pseudo board emulation provides an environment similar
f0fc6f8f
TS
2208to what the proprietary MIPS emulator uses for running Linux.
2209It supports:
6bf5b4e8
TS
2210
2211@itemize @minus
2212@item
2213A range of MIPS CPUs, default is the 24Kf
2214@item
2215PC style serial port
2216@item
2217MIPSnet network emulation
2218@end itemize
2219
88cb0a02
AJ
2220The MIPS Magnum R4000 emulation supports:
2221
2222@itemize @minus
2223@item
2224MIPS R4000 CPU
2225@item
2226PC-style IRQ controller
2227@item
2228PC Keyboard
2229@item
2230SCSI controller
2231@item
2232G364 framebuffer
2233@end itemize
2234
2235
24d4de45
TS
2236@node ARM System emulator
2237@section ARM System emulator
7544a042 2238@cindex system emulation (ARM)
3f9f3aa1
FB
2239
2240Use the executable @file{qemu-system-arm} to simulate a ARM
2241machine. The ARM Integrator/CP board is emulated with the following
2242devices:
2243
2244@itemize @minus
2245@item
9ee6e8bb 2246ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
2247@item
2248Two PL011 UARTs
5fafdf24 2249@item
3f9f3aa1 2250SMC 91c111 Ethernet adapter
00a9bf19
PB
2251@item
2252PL110 LCD controller
2253@item
2254PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
2255@item
2256PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
2257@end itemize
2258
2259The ARM Versatile baseboard is emulated with the following devices:
2260
2261@itemize @minus
2262@item
9ee6e8bb 2263ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
2264@item
2265PL190 Vectored Interrupt Controller
2266@item
2267Four PL011 UARTs
5fafdf24 2268@item
00a9bf19
PB
2269SMC 91c111 Ethernet adapter
2270@item
2271PL110 LCD controller
2272@item
2273PL050 KMI with PS/2 keyboard and mouse.
2274@item
2275PCI host bridge. Note the emulated PCI bridge only provides access to
2276PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
2277This means some devices (eg. ne2k_pci NIC) are not usable, and others
2278(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 2279mapped control registers.
e6de1bad
PB
2280@item
2281PCI OHCI USB controller.
2282@item
2283LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
2284@item
2285PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
2286@end itemize
2287
21a88941
PB
2288Several variants of the ARM RealView baseboard are emulated,
2289including the EB, PB-A8 and PBX-A9. Due to interactions with the
2290bootloader, only certain Linux kernel configurations work out
2291of the box on these boards.
2292
2293Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2294enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
2295should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2296disabled and expect 1024M RAM.
2297
40c5c6cd 2298The following devices are emulated:
d7739d75
PB
2299
2300@itemize @minus
2301@item
f7c70325 2302ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
d7739d75
PB
2303@item
2304ARM AMBA Generic/Distributed Interrupt Controller
2305@item
2306Four PL011 UARTs
5fafdf24 2307@item
0ef849d7 2308SMC 91c111 or SMSC LAN9118 Ethernet adapter
d7739d75
PB
2309@item
2310PL110 LCD controller
2311@item
2312PL050 KMI with PS/2 keyboard and mouse
2313@item
2314PCI host bridge
2315@item
2316PCI OHCI USB controller
2317@item
2318LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
2319@item
2320PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
2321@end itemize
2322
b00052e4
AZ
2323The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2324and "Terrier") emulation includes the following peripherals:
2325
2326@itemize @minus
2327@item
2328Intel PXA270 System-on-chip (ARM V5TE core)
2329@item
2330NAND Flash memory
2331@item
2332IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2333@item
2334On-chip OHCI USB controller
2335@item
2336On-chip LCD controller
2337@item
2338On-chip Real Time Clock
2339@item
2340TI ADS7846 touchscreen controller on SSP bus
2341@item
2342Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2343@item
2344GPIO-connected keyboard controller and LEDs
2345@item
549444e1 2346Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
2347@item
2348Three on-chip UARTs
2349@item
2350WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2351@end itemize
2352
02645926
AZ
2353The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2354following elements:
2355
2356@itemize @minus
2357@item
2358Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2359@item
2360ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2361@item
2362On-chip LCD controller
2363@item
2364On-chip Real Time Clock
2365@item
2366TI TSC2102i touchscreen controller / analog-digital converter / Audio
2367CODEC, connected through MicroWire and I@math{^2}S busses
2368@item
2369GPIO-connected matrix keypad
2370@item
2371Secure Digital card connected to OMAP MMC/SD host
2372@item
2373Three on-chip UARTs
2374@end itemize
2375
c30bb264
AZ
2376Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2377emulation supports the following elements:
2378
2379@itemize @minus
2380@item
2381Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2382@item
2383RAM and non-volatile OneNAND Flash memories
2384@item
2385Display connected to EPSON remote framebuffer chip and OMAP on-chip
2386display controller and a LS041y3 MIPI DBI-C controller
2387@item
2388TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2389driven through SPI bus
2390@item
2391National Semiconductor LM8323-controlled qwerty keyboard driven
2392through I@math{^2}C bus
2393@item
2394Secure Digital card connected to OMAP MMC/SD host
2395@item
2396Three OMAP on-chip UARTs and on-chip STI debugging console
2397@item
40c5c6cd 2398A Bluetooth(R) transceiver and HCI connected to an UART
2d564691 2399@item
c30bb264
AZ
2400Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2401TUSB6010 chip - only USB host mode is supported
2402@item
2403TI TMP105 temperature sensor driven through I@math{^2}C bus
2404@item
2405TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2406@item
2407Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2408through CBUS
2409@end itemize
2410
9ee6e8bb
PB
2411The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2412devices:
2413
2414@itemize @minus
2415@item
2416Cortex-M3 CPU core.
2417@item
241864k Flash and 8k SRAM.
2419@item
2420Timers, UARTs, ADC and I@math{^2}C interface.
2421@item
2422OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2423@end itemize
2424
2425The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2426devices:
2427
2428@itemize @minus
2429@item
2430Cortex-M3 CPU core.
2431@item
2432256k Flash and 64k SRAM.
2433@item
2434Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2435@item
2436OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2437@end itemize
2438
57cd6e97
AZ
2439The Freecom MusicPal internet radio emulation includes the following
2440elements:
2441
2442@itemize @minus
2443@item
2444Marvell MV88W8618 ARM core.
2445@item
244632 MB RAM, 256 KB SRAM, 8 MB flash.
2447@item
2448Up to 2 16550 UARTs
2449@item
2450MV88W8xx8 Ethernet controller
2451@item
2452MV88W8618 audio controller, WM8750 CODEC and mixer
2453@item
e080e785 2454128×64 display with brightness control
57cd6e97
AZ
2455@item
24562 buttons, 2 navigation wheels with button function
2457@end itemize
2458
997641a8 2459The Siemens SX1 models v1 and v2 (default) basic emulation.
40c5c6cd 2460The emulation includes the following elements:
997641a8
AZ
2461
2462@itemize @minus
2463@item
2464Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2465@item
2466ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2467V1
24681 Flash of 16MB and 1 Flash of 8MB
2469V2
24701 Flash of 32MB
2471@item
2472On-chip LCD controller
2473@item
2474On-chip Real Time Clock
2475@item
2476Secure Digital card connected to OMAP MMC/SD host
2477@item
2478Three on-chip UARTs
2479@end itemize
2480
3f9f3aa1
FB
2481A Linux 2.6 test image is available on the QEMU web site. More
2482information is available in the QEMU mailing-list archive.
9d0a8e6f 2483
d2c639d6
BS
2484@c man begin OPTIONS
2485
2486The following options are specific to the ARM emulation:
2487
2488@table @option
2489
2490@item -semihosting
2491Enable semihosting syscall emulation.
2492
2493On ARM this implements the "Angel" interface.
2494
2495Note that this allows guest direct access to the host filesystem,
2496so should only be used with trusted guest OS.
2497
2498@end table
2499
24d4de45
TS
2500@node ColdFire System emulator
2501@section ColdFire System emulator
7544a042
SW
2502@cindex system emulation (ColdFire)
2503@cindex system emulation (M68K)
209a4e69
PB
2504
2505Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2506The emulator is able to boot a uClinux kernel.
707e011b
PB
2507
2508The M5208EVB emulation includes the following devices:
2509
2510@itemize @minus
5fafdf24 2511@item
707e011b
PB
2512MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2513@item
2514Three Two on-chip UARTs.
2515@item
2516Fast Ethernet Controller (FEC)
2517@end itemize
2518
2519The AN5206 emulation includes the following devices:
209a4e69
PB
2520
2521@itemize @minus
5fafdf24 2522@item
209a4e69
PB
2523MCF5206 ColdFire V2 Microprocessor.
2524@item
2525Two on-chip UARTs.
2526@end itemize
2527
d2c639d6
BS
2528@c man begin OPTIONS
2529
7544a042 2530The following options are specific to the ColdFire emulation:
d2c639d6
BS
2531
2532@table @option
2533
2534@item -semihosting
2535Enable semihosting syscall emulation.
2536
2537On M68K this implements the "ColdFire GDB" interface used by libgloss.
2538
2539Note that this allows guest direct access to the host filesystem,
2540so should only be used with trusted guest OS.
2541
2542@end table
2543
7544a042
SW
2544@node Cris System emulator
2545@section Cris System emulator
2546@cindex system emulation (Cris)
2547
2548TODO
2549
2550@node Microblaze System emulator
2551@section Microblaze System emulator
2552@cindex system emulation (Microblaze)
2553
2554TODO
2555
2556@node SH4 System emulator
2557@section SH4 System emulator
2558@cindex system emulation (SH4)
2559
2560TODO
2561
3aeaea65
MF
2562@node Xtensa System emulator
2563@section Xtensa System emulator
2564@cindex system emulation (Xtensa)
2565
2566Two executables cover simulation of both Xtensa endian options,
2567@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2568Two different machine types are emulated:
2569
2570@itemize @minus
2571@item
2572Xtensa emulator pseudo board "sim"
2573@item
2574Avnet LX60/LX110/LX200 board
2575@end itemize
2576
b5e4946f 2577The sim pseudo board emulation provides an environment similar
3aeaea65
MF
2578to one provided by the proprietary Tensilica ISS.
2579It supports:
2580
2581@itemize @minus
2582@item
2583A range of Xtensa CPUs, default is the DC232B
2584@item
2585Console and filesystem access via semihosting calls
2586@end itemize
2587
2588The Avnet LX60/LX110/LX200 emulation supports:
2589
2590@itemize @minus
2591@item
2592A range of Xtensa CPUs, default is the DC232B
2593@item
259416550 UART
2595@item
2596OpenCores 10/100 Mbps Ethernet MAC
2597@end itemize
2598
2599@c man begin OPTIONS
2600
2601The following options are specific to the Xtensa emulation:
2602
2603@table @option
2604
2605@item -semihosting
2606Enable semihosting syscall emulation.
2607
2608Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2609Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2610
2611Note that this allows guest direct access to the host filesystem,
2612so should only be used with trusted guest OS.
2613
2614@end table
5fafdf24
TS
2615@node QEMU User space emulator
2616@chapter QEMU User space emulator
83195237
FB
2617
2618@menu
2619* Supported Operating Systems ::
2620* Linux User space emulator::
84778508 2621* BSD User space emulator ::
83195237
FB
2622@end menu
2623
2624@node Supported Operating Systems
2625@section Supported Operating Systems
2626
2627The following OS are supported in user space emulation:
2628
2629@itemize @minus
2630@item
4be456f1 2631Linux (referred as qemu-linux-user)
83195237 2632@item
84778508 2633BSD (referred as qemu-bsd-user)
83195237
FB
2634@end itemize
2635
2636@node Linux User space emulator
2637@section Linux User space emulator
386405f7 2638
debc7065
FB
2639@menu
2640* Quick Start::
2641* Wine launch::
2642* Command line options::
79737e4a 2643* Other binaries::
debc7065
FB
2644@end menu
2645
2646@node Quick Start
83195237 2647@subsection Quick Start
df0f11a0 2648
1f673135 2649In order to launch a Linux process, QEMU needs the process executable
5fafdf24 2650itself and all the target (x86) dynamic libraries used by it.
386405f7 2651
1f673135 2652@itemize
386405f7 2653
1f673135
FB
2654@item On x86, you can just try to launch any process by using the native
2655libraries:
386405f7 2656
5fafdf24 2657@example
1f673135
FB
2658qemu-i386 -L / /bin/ls
2659@end example
386405f7 2660
1f673135
FB
2661@code{-L /} tells that the x86 dynamic linker must be searched with a
2662@file{/} prefix.
386405f7 2663
b65ee4fa
SW
2664@item Since QEMU is also a linux process, you can launch QEMU with
2665QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
386405f7 2666
5fafdf24 2667@example
1f673135
FB
2668qemu-i386 -L / qemu-i386 -L / /bin/ls
2669@end example
386405f7 2670
1f673135
FB
2671@item On non x86 CPUs, you need first to download at least an x86 glibc
2672(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2673@code{LD_LIBRARY_PATH} is not set:
df0f11a0 2674
1f673135 2675@example
5fafdf24 2676unset LD_LIBRARY_PATH
1f673135 2677@end example
1eb87257 2678
1f673135 2679Then you can launch the precompiled @file{ls} x86 executable:
1eb87257 2680
1f673135
FB
2681@example
2682qemu-i386 tests/i386/ls
2683@end example
4c3b5a48 2684You can look at @file{scripts/qemu-binfmt-conf.sh} so that
1f673135
FB
2685QEMU is automatically launched by the Linux kernel when you try to
2686launch x86 executables. It requires the @code{binfmt_misc} module in the
2687Linux kernel.
1eb87257 2688
1f673135
FB
2689@item The x86 version of QEMU is also included. You can try weird things such as:
2690@example
debc7065
FB
2691qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2692 /usr/local/qemu-i386/bin/ls-i386
1f673135 2693@end example
1eb20527 2694
1f673135 2695@end itemize
1eb20527 2696
debc7065 2697@node Wine launch
83195237 2698@subsection Wine launch
1eb20527 2699
1f673135 2700@itemize
386405f7 2701
1f673135
FB
2702@item Ensure that you have a working QEMU with the x86 glibc
2703distribution (see previous section). In order to verify it, you must be
2704able to do:
386405f7 2705
1f673135
FB
2706@example
2707qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2708@end example
386405f7 2709
1f673135 2710@item Download the binary x86 Wine install
5fafdf24 2711(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
386405f7 2712
1f673135 2713@item Configure Wine on your account. Look at the provided script
debc7065 2714@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1f673135 2715@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
386405f7 2716
1f673135 2717@item Then you can try the example @file{putty.exe}:
386405f7 2718
1f673135 2719@example
debc7065
FB
2720qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2721 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1f673135 2722@end example
386405f7 2723
1f673135 2724@end itemize
fd429f2f 2725
debc7065 2726@node Command line options
83195237 2727@subsection Command line options
1eb20527 2728
1f673135 2729@example
68a1c816 2730usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
1f673135 2731@end example
1eb20527 2732
1f673135
FB
2733@table @option
2734@item -h
2735Print the help
3b46e624 2736@item -L path
1f673135
FB
2737Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2738@item -s size
2739Set the x86 stack size in bytes (default=524288)
34a3d239 2740@item -cpu model
c8057f95 2741Select CPU model (-cpu help for list and additional feature selection)
f66724c9
SW
2742@item -E @var{var}=@var{value}
2743Set environment @var{var} to @var{value}.
2744@item -U @var{var}
2745Remove @var{var} from the environment.
379f6698
PB
2746@item -B offset
2747Offset guest address by the specified number of bytes. This is useful when
1f5c3f8c
SW
2748the address region required by guest applications is reserved on the host.
2749This option is currently only supported on some hosts.
68a1c816
PB
2750@item -R size
2751Pre-allocate a guest virtual address space of the given size (in bytes).
0d6753e5 2752"G", "M", and "k" suffixes may be used when specifying the size.
386405f7
FB
2753@end table
2754
1f673135 2755Debug options:
386405f7 2756
1f673135 2757@table @option
989b697d
PM
2758@item -d item1,...
2759Activate logging of the specified items (use '-d help' for a list of log items)
1f673135
FB
2760@item -p pagesize
2761Act as if the host page size was 'pagesize' bytes
34a3d239
BS
2762@item -g port
2763Wait gdb connection to port
1b530a6d
AJ
2764@item -singlestep
2765Run the emulation in single step mode.
1f673135 2766@end table
386405f7 2767
b01bcae6
AZ
2768Environment variables:
2769
2770@table @env
2771@item QEMU_STRACE
2772Print system calls and arguments similar to the 'strace' program
2773(NOTE: the actual 'strace' program will not work because the user
2774space emulator hasn't implemented ptrace). At the moment this is
2775incomplete. All system calls that don't have a specific argument
2776format are printed with information for six arguments. Many
2777flag-style arguments don't have decoders and will show up as numbers.
5cfdf930 2778@end table
b01bcae6 2779
79737e4a 2780@node Other binaries
83195237 2781@subsection Other binaries
79737e4a 2782
7544a042
SW
2783@cindex user mode (Alpha)
2784@command{qemu-alpha} TODO.
2785
2786@cindex user mode (ARM)
2787@command{qemu-armeb} TODO.
2788
2789@cindex user mode (ARM)
79737e4a
PB
2790@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2791binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2792configurations), and arm-uclinux bFLT format binaries.
2793
7544a042
SW
2794@cindex user mode (ColdFire)
2795@cindex user mode (M68K)
e6e5906b
PB
2796@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2797(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2798coldfire uClinux bFLT format binaries.
2799
79737e4a
PB
2800The binary format is detected automatically.
2801
7544a042
SW
2802@cindex user mode (Cris)
2803@command{qemu-cris} TODO.
2804
2805@cindex user mode (i386)
2806@command{qemu-i386} TODO.
2807@command{qemu-x86_64} TODO.
2808
2809@cindex user mode (Microblaze)
2810@command{qemu-microblaze} TODO.
2811
2812@cindex user mode (MIPS)
2813@command{qemu-mips} TODO.
2814@command{qemu-mipsel} TODO.
2815
2816@cindex user mode (PowerPC)
2817@command{qemu-ppc64abi32} TODO.
2818@command{qemu-ppc64} TODO.
2819@command{qemu-ppc} TODO.
2820
2821@cindex user mode (SH4)
2822@command{qemu-sh4eb} TODO.
2823@command{qemu-sh4} TODO.
2824
2825@cindex user mode (SPARC)
34a3d239
BS
2826@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2827
a785e42e
BS
2828@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2829(Sparc64 CPU, 32 bit ABI).
2830
2831@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2832SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2833
84778508
BS
2834@node BSD User space emulator
2835@section BSD User space emulator
2836
2837@menu
2838* BSD Status::
2839* BSD Quick Start::
2840* BSD Command line options::
2841@end menu
2842
2843@node BSD Status
2844@subsection BSD Status
2845
2846@itemize @minus
2847@item
2848target Sparc64 on Sparc64: Some trivial programs work.
2849@end itemize
2850
2851@node BSD Quick Start
2852@subsection Quick Start
2853
2854In order to launch a BSD process, QEMU needs the process executable
2855itself and all the target dynamic libraries used by it.
2856
2857@itemize
2858
2859@item On Sparc64, you can just try to launch any process by using the native
2860libraries:
2861
2862@example
2863qemu-sparc64 /bin/ls
2864@end example
2865
2866@end itemize
2867
2868@node BSD Command line options
2869@subsection Command line options
2870
2871@example
2872usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2873@end example
2874
2875@table @option
2876@item -h
2877Print the help
2878@item -L path
2879Set the library root path (default=/)
2880@item -s size
2881Set the stack size in bytes (default=524288)
f66724c9
SW
2882@item -ignore-environment
2883Start with an empty environment. Without this option,
40c5c6cd 2884the initial environment is a copy of the caller's environment.
f66724c9
SW
2885@item -E @var{var}=@var{value}
2886Set environment @var{var} to @var{value}.
2887@item -U @var{var}
2888Remove @var{var} from the environment.
84778508
BS
2889@item -bsd type
2890Set the type of the emulated BSD Operating system. Valid values are
2891FreeBSD, NetBSD and OpenBSD (default).
2892@end table
2893
2894Debug options:
2895
2896@table @option
989b697d
PM
2897@item -d item1,...
2898Activate logging of the specified items (use '-d help' for a list of log items)
84778508
BS
2899@item -p pagesize
2900Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
2901@item -singlestep
2902Run the emulation in single step mode.
84778508
BS
2903@end table
2904
15a34c63
FB
2905@node compilation
2906@chapter Compilation from the sources
2907
debc7065
FB
2908@menu
2909* Linux/Unix::
2910* Windows::
2911* Cross compilation for Windows with Linux::
2912* Mac OS X::
47eacb4f 2913* Make targets::
debc7065
FB
2914@end menu
2915
2916@node Linux/Unix
7c3fc84d
FB
2917@section Linux/Unix
2918
2919@subsection Compilation
2920
2921First you must decompress the sources:
2922@example
2923cd /tmp
2924tar zxvf qemu-x.y.z.tar.gz
2925cd qemu-x.y.z
2926@end example
2927
2928Then you configure QEMU and build it (usually no options are needed):
2929@example
2930./configure
2931make
2932@end example
2933
2934Then type as root user:
2935@example
2936make install
2937@end example
2938to install QEMU in @file{/usr/local}.
2939
debc7065 2940@node Windows
15a34c63
FB
2941@section Windows
2942
2943@itemize
2944@item Install the current versions of MSYS and MinGW from
2945@url{http://www.mingw.org/}. You can find detailed installation
2946instructions in the download section and the FAQ.
2947
5fafdf24 2948@item Download
15a34c63 2949the MinGW development library of SDL 1.2.x
debc7065 2950(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
d0a96f3d
ST
2951@url{http://www.libsdl.org}. Unpack it in a temporary place and
2952edit the @file{sdl-config} script so that it gives the
15a34c63
FB
2953correct SDL directory when invoked.
2954
d0a96f3d
ST
2955@item Install the MinGW version of zlib and make sure
2956@file{zlib.h} and @file{libz.dll.a} are in
40c5c6cd 2957MinGW's default header and linker search paths.
d0a96f3d 2958
15a34c63 2959@item Extract the current version of QEMU.
5fafdf24 2960
15a34c63
FB
2961@item Start the MSYS shell (file @file{msys.bat}).
2962
5fafdf24 2963@item Change to the QEMU directory. Launch @file{./configure} and
15a34c63
FB
2964@file{make}. If you have problems using SDL, verify that
2965@file{sdl-config} can be launched from the MSYS command line.
2966
c5ec15ea 2967@item You can install QEMU in @file{Program Files/QEMU} by typing
15a34c63 2968@file{make install}. Don't forget to copy @file{SDL.dll} in
c5ec15ea 2969@file{Program Files/QEMU}.
15a34c63
FB
2970
2971@end itemize
2972
debc7065 2973@node Cross compilation for Windows with Linux
15a34c63
FB
2974@section Cross compilation for Windows with Linux
2975
2976@itemize
2977@item
2978Install the MinGW cross compilation tools available at
2979@url{http://www.mingw.org/}.
2980
d0a96f3d
ST
2981@item Download
2982the MinGW development library of SDL 1.2.x
2983(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2984@url{http://www.libsdl.org}. Unpack it in a temporary place and
2985edit the @file{sdl-config} script so that it gives the
2986correct SDL directory when invoked. Set up the @code{PATH} environment
2987variable so that @file{sdl-config} can be launched by
15a34c63
FB
2988the QEMU configuration script.
2989
d0a96f3d
ST
2990@item Install the MinGW version of zlib and make sure
2991@file{zlib.h} and @file{libz.dll.a} are in
40c5c6cd 2992MinGW's default header and linker search paths.
d0a96f3d 2993
5fafdf24 2994@item
15a34c63
FB
2995Configure QEMU for Windows cross compilation:
2996@example
d0a96f3d
ST
2997PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
2998@end example
2999The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
3000MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
40c5c6cd 3001We set the @code{PATH} environment variable to ensure the MinGW version of @file{sdl-config} is used and
d0a96f3d 3002use --cross-prefix to specify the name of the cross compiler.
c5ec15ea 3003You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/QEMU}.
d0a96f3d
ST
3004
3005Under Fedora Linux, you can run:
3006@example
3007yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
15a34c63 3008@end example
d0a96f3d 3009to get a suitable cross compilation environment.
15a34c63 3010
5fafdf24 3011@item You can install QEMU in the installation directory by typing
d0a96f3d 3012@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
5fafdf24 3013installation directory.
15a34c63
FB
3014
3015@end itemize
3016
3804da9d
SW
3017Wine can be used to launch the resulting qemu-system-i386.exe
3018and all other qemu-system-@var{target}.exe compiled for Win32.
15a34c63 3019
debc7065 3020@node Mac OS X
15a34c63
FB
3021@section Mac OS X
3022
3023The Mac OS X patches are not fully merged in QEMU, so you should look
3024at the QEMU mailing list archive to have all the necessary
3025information.
3026
47eacb4f
SW
3027@node Make targets
3028@section Make targets
3029
3030@table @code
3031
3032@item make
3033@item make all
3034Make everything which is typically needed.
3035
3036@item install
3037TODO
3038
3039@item install-doc
3040TODO
3041
3042@item make clean
3043Remove most files which were built during make.
3044
3045@item make distclean
3046Remove everything which was built during make.
3047
3048@item make dvi
3049@item make html
3050@item make info
3051@item make pdf
3052Create documentation in dvi, html, info or pdf format.
3053
3054@item make cscope
3055TODO
3056
3057@item make defconfig
3058(Re-)create some build configuration files.
3059User made changes will be overwritten.
3060
3061@item tar
3062@item tarbin
3063TODO
3064
3065@end table
3066
7544a042
SW
3067@node License
3068@appendix License
3069
3070QEMU is a trademark of Fabrice Bellard.
3071
3072QEMU is released under the GNU General Public License (TODO: add link).
3073Parts of QEMU have specific licenses, see file LICENSE.
3074
3075TODO (refer to file LICENSE, include it, include the GPL?)
3076
debc7065 3077@node Index
7544a042
SW
3078@appendix Index
3079@menu
3080* Concept Index::
3081* Function Index::
3082* Keystroke Index::
3083* Program Index::
3084* Data Type Index::
3085* Variable Index::
3086@end menu
3087
3088@node Concept Index
3089@section Concept Index
3090This is the main index. Should we combine all keywords in one index? TODO
debc7065
FB
3091@printindex cp
3092
7544a042
SW
3093@node Function Index
3094@section Function Index
3095This index could be used for command line options and monitor functions.
3096@printindex fn
3097
3098@node Keystroke Index
3099@section Keystroke Index
3100
3101This is a list of all keystrokes which have a special function
3102in system emulation.
3103
3104@printindex ky
3105
3106@node Program Index
3107@section Program Index
3108@printindex pg
3109
3110@node Data Type Index
3111@section Data Type Index
3112
3113This index could be used for qdev device names and options.
3114
3115@printindex tp
3116
3117@node Variable Index
3118@section Variable Index
3119@printindex vr
3120
debc7065 3121@bye