]> git.proxmox.com Git - qemu.git/blame - qemu-doc.texi
Merge remote-tracking branch 'awilliam/tags/vfio-pci-for-qemu-1.3.0-rc0' into staging
[qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
e080e785
SW
4
5@documentlanguage en
6@documentencoding UTF-8
7
8f40c388 8@settitle QEMU Emulator User Documentation
debc7065
FB
9@exampleindent 0
10@paragraphindent 0
11@c %**end of header
386405f7 12
a1a32b05
SW
13@ifinfo
14@direntry
15* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
16@end direntry
17@end ifinfo
18
0806e3f6 19@iftex
386405f7
FB
20@titlepage
21@sp 7
8f40c388 22@center @titlefont{QEMU Emulator}
debc7065
FB
23@sp 1
24@center @titlefont{User Documentation}
386405f7
FB
25@sp 3
26@end titlepage
0806e3f6 27@end iftex
386405f7 28
debc7065
FB
29@ifnottex
30@node Top
31@top
32
33@menu
34* Introduction::
35* Installation::
36* QEMU PC System emulator::
37* QEMU System emulator for non PC targets::
83195237 38* QEMU User space emulator::
debc7065 39* compilation:: Compilation from the sources
7544a042 40* License::
debc7065
FB
41* Index::
42@end menu
43@end ifnottex
44
45@contents
46
47@node Introduction
386405f7
FB
48@chapter Introduction
49
debc7065
FB
50@menu
51* intro_features:: Features
52@end menu
53
54@node intro_features
322d0c66 55@section Features
386405f7 56
1f673135
FB
57QEMU is a FAST! processor emulator using dynamic translation to
58achieve good emulation speed.
1eb20527
FB
59
60QEMU has two operating modes:
0806e3f6 61
d7e5edca 62@itemize
7544a042 63@cindex operating modes
0806e3f6 64
5fafdf24 65@item
7544a042 66@cindex system emulation
1f673135 67Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
68example a PC), including one or several processors and various
69peripherals. It can be used to launch different Operating Systems
70without rebooting the PC or to debug system code.
1eb20527 71
5fafdf24 72@item
7544a042 73@cindex user mode emulation
83195237
FB
74User mode emulation. In this mode, QEMU can launch
75processes compiled for one CPU on another CPU. It can be used to
1f673135
FB
76launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77to ease cross-compilation and cross-debugging.
1eb20527
FB
78
79@end itemize
80
e1b4382c 81QEMU can run without a host kernel driver and yet gives acceptable
5fafdf24 82performance.
322d0c66 83
52c00a5f
FB
84For system emulation, the following hardware targets are supported:
85@itemize
7544a042
SW
86@cindex emulated target systems
87@cindex supported target systems
9d0a8e6f 88@item PC (x86 or x86_64 processor)
3f9f3aa1 89@item ISA PC (old style PC without PCI bus)
52c00a5f 90@item PREP (PowerPC processor)
d45952a0 91@item G3 Beige PowerMac (PowerPC processor)
9d0a8e6f 92@item Mac99 PowerMac (PowerPC processor, in progress)
ee76f82e 93@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
c7ba218d 94@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
d9aedc32 95@item Malta board (32-bit and 64-bit MIPS processors)
88cb0a02 96@item MIPS Magnum (64-bit MIPS processor)
9ee6e8bb
PB
97@item ARM Integrator/CP (ARM)
98@item ARM Versatile baseboard (ARM)
0ef849d7 99@item ARM RealView Emulation/Platform baseboard (ARM)
ef4c3856 100@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
9ee6e8bb
PB
101@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
707e011b 103@item Freescale MCF5208EVB (ColdFire V2).
209a4e69 104@item Arnewsh MCF5206 evaluation board (ColdFire V2).
02645926 105@item Palm Tungsten|E PDA (OMAP310 processor)
c30bb264 106@item N800 and N810 tablets (OMAP2420 processor)
57cd6e97 107@item MusicPal (MV88W8618 ARM processor)
ef4c3856
AZ
108@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109@item Siemens SX1 smartphone (OMAP310 processor)
48c50a62
EI
110@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
111@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
3aeaea65 112@item Avnet LX60/LX110/LX200 boards (Xtensa)
52c00a5f 113@end itemize
386405f7 114
7544a042
SW
115@cindex supported user mode targets
116For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
117ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
118Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
0806e3f6 119
debc7065 120@node Installation
5b9f457a
FB
121@chapter Installation
122
15a34c63
FB
123If you want to compile QEMU yourself, see @ref{compilation}.
124
debc7065
FB
125@menu
126* install_linux:: Linux
127* install_windows:: Windows
128* install_mac:: Macintosh
129@end menu
130
131@node install_linux
1f673135 132@section Linux
7544a042 133@cindex installation (Linux)
1f673135 134
7c3fc84d
FB
135If a precompiled package is available for your distribution - you just
136have to install it. Otherwise, see @ref{compilation}.
5b9f457a 137
debc7065 138@node install_windows
1f673135 139@section Windows
7544a042 140@cindex installation (Windows)
8cd0ac2f 141
15a34c63 142Download the experimental binary installer at
debc7065 143@url{http://www.free.oszoo.org/@/download.html}.
7544a042 144TODO (no longer available)
d691f669 145
debc7065 146@node install_mac
1f673135 147@section Mac OS X
d691f669 148
15a34c63 149Download the experimental binary installer at
debc7065 150@url{http://www.free.oszoo.org/@/download.html}.
7544a042 151TODO (no longer available)
df0f11a0 152
debc7065 153@node QEMU PC System emulator
3f9f3aa1 154@chapter QEMU PC System emulator
7544a042 155@cindex system emulation (PC)
1eb20527 156
debc7065
FB
157@menu
158* pcsys_introduction:: Introduction
159* pcsys_quickstart:: Quick Start
160* sec_invocation:: Invocation
161* pcsys_keys:: Keys
162* pcsys_monitor:: QEMU Monitor
163* disk_images:: Disk Images
164* pcsys_network:: Network emulation
576fd0a1 165* pcsys_other_devs:: Other Devices
debc7065
FB
166* direct_linux_boot:: Direct Linux Boot
167* pcsys_usb:: USB emulation
f858dcae 168* vnc_security:: VNC security
debc7065
FB
169* gdb_usage:: GDB usage
170* pcsys_os_specific:: Target OS specific information
171@end menu
172
173@node pcsys_introduction
0806e3f6
FB
174@section Introduction
175
176@c man begin DESCRIPTION
177
3f9f3aa1
FB
178The QEMU PC System emulator simulates the
179following peripherals:
0806e3f6
FB
180
181@itemize @minus
5fafdf24 182@item
15a34c63 183i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 184@item
15a34c63
FB
185Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
186extensions (hardware level, including all non standard modes).
0806e3f6
FB
187@item
188PS/2 mouse and keyboard
5fafdf24 189@item
15a34c63 1902 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
191@item
192Floppy disk
5fafdf24 193@item
3a2eeac0 194PCI and ISA network adapters
0806e3f6 195@item
05d5818c
FB
196Serial ports
197@item
c0fe3827
FB
198Creative SoundBlaster 16 sound card
199@item
200ENSONIQ AudioPCI ES1370 sound card
201@item
e5c9a13e
AZ
202Intel 82801AA AC97 Audio compatible sound card
203@item
7d72e762
GH
204Intel HD Audio Controller and HDA codec
205@item
2d983446 206Adlib (OPL2) - Yamaha YM3812 compatible chip
b389dbfb 207@item
26463dbc
AZ
208Gravis Ultrasound GF1 sound card
209@item
cc53d26d 210CS4231A compatible sound card
211@item
b389dbfb 212PCI UHCI USB controller and a virtual USB hub.
0806e3f6
FB
213@end itemize
214
3f9f3aa1
FB
215SMP is supported with up to 255 CPUs.
216
1d1f8c33 217Note that adlib, gus and cs4231a are only available when QEMU was
218configured with --audio-card-list option containing the name(s) of
e5178e8d 219required card(s).
c0fe3827 220
15a34c63
FB
221QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
222VGA BIOS.
223
c0fe3827
FB
224QEMU uses YM3812 emulation by Tatsuyuki Satoh.
225
2d983446 226QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
26463dbc 227by Tibor "TS" Schütz.
423d65f4 228
1a1a0e20 229Note that, by default, GUS shares IRQ(7) with parallel ports and so
b65ee4fa 230QEMU must be told to not have parallel ports to have working GUS.
720036a5 231
232@example
3804da9d 233qemu-system-i386 dos.img -soundhw gus -parallel none
720036a5 234@end example
235
236Alternatively:
237@example
3804da9d 238qemu-system-i386 dos.img -device gus,irq=5
720036a5 239@end example
240
241Or some other unclaimed IRQ.
242
cc53d26d 243CS4231A is the chip used in Windows Sound System and GUSMAX products
244
0806e3f6
FB
245@c man end
246
debc7065 247@node pcsys_quickstart
1eb20527 248@section Quick Start
7544a042 249@cindex quick start
1eb20527 250
285dc330 251Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
252
253@example
3804da9d 254qemu-system-i386 linux.img
0806e3f6
FB
255@end example
256
257Linux should boot and give you a prompt.
258
6cc721cf 259@node sec_invocation
ec410fc9
FB
260@section Invocation
261
262@example
0806e3f6 263@c man begin SYNOPSIS
3804da9d 264usage: qemu-system-i386 [options] [@var{disk_image}]
0806e3f6 265@c man end
ec410fc9
FB
266@end example
267
0806e3f6 268@c man begin OPTIONS
d2c639d6
BS
269@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
270targets do not need a disk image.
ec410fc9 271
5824d651 272@include qemu-options.texi
ec410fc9 273
3e11db9a
FB
274@c man end
275
debc7065 276@node pcsys_keys
3e11db9a
FB
277@section Keys
278
279@c man begin OPTIONS
280
de1db2a1
BH
281During the graphical emulation, you can use special key combinations to change
282modes. The default key mappings are shown below, but if you use @code{-alt-grab}
283then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
284@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
285
a1b74fe8 286@table @key
f9859310 287@item Ctrl-Alt-f
7544a042 288@kindex Ctrl-Alt-f
a1b74fe8 289Toggle full screen
a0a821a4 290
d6a65ba3
JK
291@item Ctrl-Alt-+
292@kindex Ctrl-Alt-+
293Enlarge the screen
294
295@item Ctrl-Alt--
296@kindex Ctrl-Alt--
297Shrink the screen
298
c4a735f9 299@item Ctrl-Alt-u
7544a042 300@kindex Ctrl-Alt-u
c4a735f9 301Restore the screen's un-scaled dimensions
302
f9859310 303@item Ctrl-Alt-n
7544a042 304@kindex Ctrl-Alt-n
a0a821a4
FB
305Switch to virtual console 'n'. Standard console mappings are:
306@table @emph
307@item 1
308Target system display
309@item 2
310Monitor
311@item 3
312Serial port
a1b74fe8
FB
313@end table
314
f9859310 315@item Ctrl-Alt
7544a042 316@kindex Ctrl-Alt
a0a821a4
FB
317Toggle mouse and keyboard grab.
318@end table
319
7544a042
SW
320@kindex Ctrl-Up
321@kindex Ctrl-Down
322@kindex Ctrl-PageUp
323@kindex Ctrl-PageDown
3e11db9a
FB
324In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
325@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
326
7544a042 327@kindex Ctrl-a h
a0a821a4
FB
328During emulation, if you are using the @option{-nographic} option, use
329@key{Ctrl-a h} to get terminal commands:
ec410fc9
FB
330
331@table @key
a1b74fe8 332@item Ctrl-a h
7544a042 333@kindex Ctrl-a h
d2c639d6 334@item Ctrl-a ?
7544a042 335@kindex Ctrl-a ?
ec410fc9 336Print this help
3b46e624 337@item Ctrl-a x
7544a042 338@kindex Ctrl-a x
366dfc52 339Exit emulator
3b46e624 340@item Ctrl-a s
7544a042 341@kindex Ctrl-a s
1f47a922 342Save disk data back to file (if -snapshot)
20d8a3ed 343@item Ctrl-a t
7544a042 344@kindex Ctrl-a t
d2c639d6 345Toggle console timestamps
a1b74fe8 346@item Ctrl-a b
7544a042 347@kindex Ctrl-a b
1f673135 348Send break (magic sysrq in Linux)
a1b74fe8 349@item Ctrl-a c
7544a042 350@kindex Ctrl-a c
1f673135 351Switch between console and monitor
a1b74fe8 352@item Ctrl-a Ctrl-a
7544a042 353@kindex Ctrl-a a
a1b74fe8 354Send Ctrl-a
ec410fc9 355@end table
0806e3f6
FB
356@c man end
357
358@ignore
359
1f673135
FB
360@c man begin SEEALSO
361The HTML documentation of QEMU for more precise information and Linux
362user mode emulator invocation.
363@c man end
364
365@c man begin AUTHOR
366Fabrice Bellard
367@c man end
368
369@end ignore
370
debc7065 371@node pcsys_monitor
1f673135 372@section QEMU Monitor
7544a042 373@cindex QEMU monitor
1f673135
FB
374
375The QEMU monitor is used to give complex commands to the QEMU
376emulator. You can use it to:
377
378@itemize @minus
379
380@item
e598752a 381Remove or insert removable media images
89dfe898 382(such as CD-ROM or floppies).
1f673135 383
5fafdf24 384@item
1f673135
FB
385Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
386from a disk file.
387
388@item Inspect the VM state without an external debugger.
389
390@end itemize
391
392@subsection Commands
393
394The following commands are available:
395
2313086a 396@include qemu-monitor.texi
0806e3f6 397
1f673135
FB
398@subsection Integer expressions
399
400The monitor understands integers expressions for every integer
401argument. You can use register names to get the value of specifics
402CPU registers by prefixing them with @emph{$}.
ec410fc9 403
1f47a922
FB
404@node disk_images
405@section Disk Images
406
acd935ef
FB
407Since version 0.6.1, QEMU supports many disk image formats, including
408growable disk images (their size increase as non empty sectors are
13a2e80f
FB
409written), compressed and encrypted disk images. Version 0.8.3 added
410the new qcow2 disk image format which is essential to support VM
411snapshots.
1f47a922 412
debc7065
FB
413@menu
414* disk_images_quickstart:: Quick start for disk image creation
415* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 416* vm_snapshots:: VM snapshots
debc7065 417* qemu_img_invocation:: qemu-img Invocation
975b092b 418* qemu_nbd_invocation:: qemu-nbd Invocation
19cb3738 419* host_drives:: Using host drives
debc7065 420* disk_images_fat_images:: Virtual FAT disk images
75818250 421* disk_images_nbd:: NBD access
42af9c30 422* disk_images_sheepdog:: Sheepdog disk images
00984e39 423* disk_images_iscsi:: iSCSI LUNs
debc7065
FB
424@end menu
425
426@node disk_images_quickstart
acd935ef
FB
427@subsection Quick start for disk image creation
428
429You can create a disk image with the command:
1f47a922 430@example
acd935ef 431qemu-img create myimage.img mysize
1f47a922 432@end example
acd935ef
FB
433where @var{myimage.img} is the disk image filename and @var{mysize} is its
434size in kilobytes. You can add an @code{M} suffix to give the size in
435megabytes and a @code{G} suffix for gigabytes.
436
debc7065 437See @ref{qemu_img_invocation} for more information.
1f47a922 438
debc7065 439@node disk_images_snapshot_mode
1f47a922
FB
440@subsection Snapshot mode
441
442If you use the option @option{-snapshot}, all disk images are
443considered as read only. When sectors in written, they are written in
444a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
445write back to the raw disk images by using the @code{commit} monitor
446command (or @key{C-a s} in the serial console).
1f47a922 447
13a2e80f
FB
448@node vm_snapshots
449@subsection VM snapshots
450
451VM snapshots are snapshots of the complete virtual machine including
452CPU state, RAM, device state and the content of all the writable
453disks. In order to use VM snapshots, you must have at least one non
454removable and writable block device using the @code{qcow2} disk image
455format. Normally this device is the first virtual hard drive.
456
457Use the monitor command @code{savevm} to create a new VM snapshot or
458replace an existing one. A human readable name can be assigned to each
19d36792 459snapshot in addition to its numerical ID.
13a2e80f
FB
460
461Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
462a VM snapshot. @code{info snapshots} lists the available snapshots
463with their associated information:
464
465@example
466(qemu) info snapshots
467Snapshot devices: hda
468Snapshot list (from hda):
469ID TAG VM SIZE DATE VM CLOCK
4701 start 41M 2006-08-06 12:38:02 00:00:14.954
4712 40M 2006-08-06 12:43:29 00:00:18.633
4723 msys 40M 2006-08-06 12:44:04 00:00:23.514
473@end example
474
475A VM snapshot is made of a VM state info (its size is shown in
476@code{info snapshots}) and a snapshot of every writable disk image.
477The VM state info is stored in the first @code{qcow2} non removable
478and writable block device. The disk image snapshots are stored in
479every disk image. The size of a snapshot in a disk image is difficult
480to evaluate and is not shown by @code{info snapshots} because the
481associated disk sectors are shared among all the snapshots to save
19d36792
FB
482disk space (otherwise each snapshot would need a full copy of all the
483disk images).
13a2e80f
FB
484
485When using the (unrelated) @code{-snapshot} option
486(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
487but they are deleted as soon as you exit QEMU.
488
489VM snapshots currently have the following known limitations:
490@itemize
5fafdf24 491@item
13a2e80f
FB
492They cannot cope with removable devices if they are removed or
493inserted after a snapshot is done.
5fafdf24 494@item
13a2e80f
FB
495A few device drivers still have incomplete snapshot support so their
496state is not saved or restored properly (in particular USB).
497@end itemize
498
acd935ef
FB
499@node qemu_img_invocation
500@subsection @code{qemu-img} Invocation
1f47a922 501
acd935ef 502@include qemu-img.texi
05efe46e 503
975b092b
TS
504@node qemu_nbd_invocation
505@subsection @code{qemu-nbd} Invocation
506
507@include qemu-nbd.texi
508
19cb3738
FB
509@node host_drives
510@subsection Using host drives
511
512In addition to disk image files, QEMU can directly access host
513devices. We describe here the usage for QEMU version >= 0.8.3.
514
515@subsubsection Linux
516
517On Linux, you can directly use the host device filename instead of a
4be456f1 518disk image filename provided you have enough privileges to access
19cb3738
FB
519it. For example, use @file{/dev/cdrom} to access to the CDROM or
520@file{/dev/fd0} for the floppy.
521
f542086d 522@table @code
19cb3738
FB
523@item CD
524You can specify a CDROM device even if no CDROM is loaded. QEMU has
525specific code to detect CDROM insertion or removal. CDROM ejection by
526the guest OS is supported. Currently only data CDs are supported.
527@item Floppy
528You can specify a floppy device even if no floppy is loaded. Floppy
529removal is currently not detected accurately (if you change floppy
530without doing floppy access while the floppy is not loaded, the guest
531OS will think that the same floppy is loaded).
532@item Hard disks
533Hard disks can be used. Normally you must specify the whole disk
534(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
535see it as a partitioned disk. WARNING: unless you know what you do, it
536is better to only make READ-ONLY accesses to the hard disk otherwise
537you may corrupt your host data (use the @option{-snapshot} command
538line option or modify the device permissions accordingly).
539@end table
540
541@subsubsection Windows
542
01781963
FB
543@table @code
544@item CD
4be456f1 545The preferred syntax is the drive letter (e.g. @file{d:}). The
01781963
FB
546alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
547supported as an alias to the first CDROM drive.
19cb3738 548
e598752a 549Currently there is no specific code to handle removable media, so it
19cb3738
FB
550is better to use the @code{change} or @code{eject} monitor commands to
551change or eject media.
01781963 552@item Hard disks
89dfe898 553Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
01781963
FB
554where @var{N} is the drive number (0 is the first hard disk).
555
556WARNING: unless you know what you do, it is better to only make
557READ-ONLY accesses to the hard disk otherwise you may corrupt your
558host data (use the @option{-snapshot} command line so that the
559modifications are written in a temporary file).
560@end table
561
19cb3738
FB
562
563@subsubsection Mac OS X
564
5fafdf24 565@file{/dev/cdrom} is an alias to the first CDROM.
19cb3738 566
e598752a 567Currently there is no specific code to handle removable media, so it
19cb3738
FB
568is better to use the @code{change} or @code{eject} monitor commands to
569change or eject media.
570
debc7065 571@node disk_images_fat_images
2c6cadd4
FB
572@subsection Virtual FAT disk images
573
574QEMU can automatically create a virtual FAT disk image from a
575directory tree. In order to use it, just type:
576
5fafdf24 577@example
3804da9d 578qemu-system-i386 linux.img -hdb fat:/my_directory
2c6cadd4
FB
579@end example
580
581Then you access access to all the files in the @file{/my_directory}
582directory without having to copy them in a disk image or to export
583them via SAMBA or NFS. The default access is @emph{read-only}.
584
585Floppies can be emulated with the @code{:floppy:} option:
586
5fafdf24 587@example
3804da9d 588qemu-system-i386 linux.img -fda fat:floppy:/my_directory
2c6cadd4
FB
589@end example
590
591A read/write support is available for testing (beta stage) with the
592@code{:rw:} option:
593
5fafdf24 594@example
3804da9d 595qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
2c6cadd4
FB
596@end example
597
598What you should @emph{never} do:
599@itemize
600@item use non-ASCII filenames ;
601@item use "-snapshot" together with ":rw:" ;
85b2c688
FB
602@item expect it to work when loadvm'ing ;
603@item write to the FAT directory on the host system while accessing it with the guest system.
2c6cadd4
FB
604@end itemize
605
75818250
TS
606@node disk_images_nbd
607@subsection NBD access
608
609QEMU can access directly to block device exported using the Network Block Device
610protocol.
611
612@example
1d7d2a9d 613qemu-system-i386 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/
75818250
TS
614@end example
615
616If the NBD server is located on the same host, you can use an unix socket instead
617of an inet socket:
618
619@example
1d7d2a9d 620qemu-system-i386 linux.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
621@end example
622
623In this case, the block device must be exported using qemu-nbd:
624
625@example
626qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
627@end example
628
629The use of qemu-nbd allows to share a disk between several guests:
630@example
631qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
632@end example
633
1d7d2a9d 634@noindent
75818250
TS
635and then you can use it with two guests:
636@example
1d7d2a9d
PB
637qemu-system-i386 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket
638qemu-system-i386 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
639@end example
640
1d7d2a9d
PB
641If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's
642own embedded NBD server), you must specify an export name in the URI:
1d45f8b5 643@example
1d7d2a9d
PB
644qemu-system-i386 -cdrom nbd://localhost/debian-500-ppc-netinst
645qemu-system-i386 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst
646@end example
647
648The URI syntax for NBD is supported since QEMU 1.3. An alternative syntax is
649also available. Here are some example of the older syntax:
650@example
651qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
652qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
653qemu-system-i386 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst
1d45f8b5
LV
654@end example
655
42af9c30
MK
656@node disk_images_sheepdog
657@subsection Sheepdog disk images
658
659Sheepdog is a distributed storage system for QEMU. It provides highly
660available block level storage volumes that can be attached to
661QEMU-based virtual machines.
662
663You can create a Sheepdog disk image with the command:
664@example
665qemu-img create sheepdog:@var{image} @var{size}
666@end example
667where @var{image} is the Sheepdog image name and @var{size} is its
668size.
669
670To import the existing @var{filename} to Sheepdog, you can use a
671convert command.
672@example
673qemu-img convert @var{filename} sheepdog:@var{image}
674@end example
675
676You can boot from the Sheepdog disk image with the command:
677@example
3804da9d 678qemu-system-i386 sheepdog:@var{image}
42af9c30
MK
679@end example
680
681You can also create a snapshot of the Sheepdog image like qcow2.
682@example
683qemu-img snapshot -c @var{tag} sheepdog:@var{image}
684@end example
685where @var{tag} is a tag name of the newly created snapshot.
686
687To boot from the Sheepdog snapshot, specify the tag name of the
688snapshot.
689@example
3804da9d 690qemu-system-i386 sheepdog:@var{image}:@var{tag}
42af9c30
MK
691@end example
692
693You can create a cloned image from the existing snapshot.
694@example
695qemu-img create -b sheepdog:@var{base}:@var{tag} sheepdog:@var{image}
696@end example
697where @var{base} is a image name of the source snapshot and @var{tag}
698is its tag name.
699
700If the Sheepdog daemon doesn't run on the local host, you need to
701specify one of the Sheepdog servers to connect to.
702@example
703qemu-img create sheepdog:@var{hostname}:@var{port}:@var{image} @var{size}
3804da9d 704qemu-system-i386 sheepdog:@var{hostname}:@var{port}:@var{image}
42af9c30
MK
705@end example
706
00984e39
RS
707@node disk_images_iscsi
708@subsection iSCSI LUNs
709
710iSCSI is a popular protocol used to access SCSI devices across a computer
711network.
712
713There are two different ways iSCSI devices can be used by QEMU.
714
715The first method is to mount the iSCSI LUN on the host, and make it appear as
716any other ordinary SCSI device on the host and then to access this device as a
717/dev/sd device from QEMU. How to do this differs between host OSes.
718
719The second method involves using the iSCSI initiator that is built into
720QEMU. This provides a mechanism that works the same way regardless of which
721host OS you are running QEMU on. This section will describe this second method
722of using iSCSI together with QEMU.
723
724In QEMU, iSCSI devices are described using special iSCSI URLs
725
726@example
727URL syntax:
728iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
729@end example
730
731Username and password are optional and only used if your target is set up
732using CHAP authentication for access control.
733Alternatively the username and password can also be set via environment
734variables to have these not show up in the process list
735
736@example
737export LIBISCSI_CHAP_USERNAME=<username>
738export LIBISCSI_CHAP_PASSWORD=<password>
739iscsi://<host>/<target-iqn-name>/<lun>
740@end example
741
f9dadc98
RS
742Various session related parameters can be set via special options, either
743in a configuration file provided via '-readconfig' or directly on the
744command line.
745
31459f46
RS
746If the initiator-name is not specified qemu will use a default name
747of 'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the
748virtual machine.
749
750
f9dadc98
RS
751@example
752Setting a specific initiator name to use when logging in to the target
753-iscsi initiator-name=iqn.qemu.test:my-initiator
754@end example
755
756@example
757Controlling which type of header digest to negotiate with the target
758-iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
759@end example
760
761These can also be set via a configuration file
762@example
763[iscsi]
764 user = "CHAP username"
765 password = "CHAP password"
766 initiator-name = "iqn.qemu.test:my-initiator"
767 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
768 header-digest = "CRC32C"
769@end example
770
771
772Setting the target name allows different options for different targets
773@example
774[iscsi "iqn.target.name"]
775 user = "CHAP username"
776 password = "CHAP password"
777 initiator-name = "iqn.qemu.test:my-initiator"
778 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
779 header-digest = "CRC32C"
780@end example
781
782
783Howto use a configuration file to set iSCSI configuration options:
784@example
785cat >iscsi.conf <<EOF
786[iscsi]
787 user = "me"
788 password = "my password"
789 initiator-name = "iqn.qemu.test:my-initiator"
790 header-digest = "CRC32C"
791EOF
792
793qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
794 -readconfig iscsi.conf
795@end example
796
797
00984e39
RS
798Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
799@example
800This example shows how to set up an iSCSI target with one CDROM and one DISK
801using the Linux STGT software target. This target is available on Red Hat based
802systems as the package 'scsi-target-utils'.
803
804tgtd --iscsi portal=127.0.0.1:3260
805tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
806tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
807 -b /IMAGES/disk.img --device-type=disk
808tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
809 -b /IMAGES/cd.iso --device-type=cd
810tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
811
f9dadc98
RS
812qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
813 -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
00984e39
RS
814 -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
815@end example
816
817
818
debc7065 819@node pcsys_network
9d4fb82e
FB
820@section Network emulation
821
4be456f1 822QEMU can simulate several network cards (PCI or ISA cards on the PC
41d03949
FB
823target) and can connect them to an arbitrary number of Virtual Local
824Area Networks (VLANs). Host TAP devices can be connected to any QEMU
825VLAN. VLAN can be connected between separate instances of QEMU to
4be456f1 826simulate large networks. For simpler usage, a non privileged user mode
41d03949
FB
827network stack can replace the TAP device to have a basic network
828connection.
829
830@subsection VLANs
9d4fb82e 831
41d03949
FB
832QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
833connection between several network devices. These devices can be for
834example QEMU virtual Ethernet cards or virtual Host ethernet devices
835(TAP devices).
9d4fb82e 836
41d03949
FB
837@subsection Using TAP network interfaces
838
839This is the standard way to connect QEMU to a real network. QEMU adds
840a virtual network device on your host (called @code{tapN}), and you
841can then configure it as if it was a real ethernet card.
9d4fb82e 842
8f40c388
FB
843@subsubsection Linux host
844
9d4fb82e
FB
845As an example, you can download the @file{linux-test-xxx.tar.gz}
846archive and copy the script @file{qemu-ifup} in @file{/etc} and
847configure properly @code{sudo} so that the command @code{ifconfig}
848contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 849that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
850device @file{/dev/net/tun} must be present.
851
ee0f4751
FB
852See @ref{sec_invocation} to have examples of command lines using the
853TAP network interfaces.
9d4fb82e 854
8f40c388
FB
855@subsubsection Windows host
856
857There is a virtual ethernet driver for Windows 2000/XP systems, called
858TAP-Win32. But it is not included in standard QEMU for Windows,
859so you will need to get it separately. It is part of OpenVPN package,
860so download OpenVPN from : @url{http://openvpn.net/}.
861
9d4fb82e
FB
862@subsection Using the user mode network stack
863
41d03949
FB
864By using the option @option{-net user} (default configuration if no
865@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 866network stack (you don't need root privilege to use the virtual
41d03949 867network). The virtual network configuration is the following:
9d4fb82e
FB
868
869@example
870
41d03949
FB
871 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
872 | (10.0.2.2)
9d4fb82e 873 |
2518bd0d 874 ----> DNS server (10.0.2.3)
3b46e624 875 |
2518bd0d 876 ----> SMB server (10.0.2.4)
9d4fb82e
FB
877@end example
878
879The QEMU VM behaves as if it was behind a firewall which blocks all
880incoming connections. You can use a DHCP client to automatically
41d03949
FB
881configure the network in the QEMU VM. The DHCP server assign addresses
882to the hosts starting from 10.0.2.15.
9d4fb82e
FB
883
884In order to check that the user mode network is working, you can ping
885the address 10.0.2.2 and verify that you got an address in the range
88610.0.2.x from the QEMU virtual DHCP server.
887
b415a407 888Note that @code{ping} is not supported reliably to the internet as it
4be456f1 889would require root privileges. It means you can only ping the local
b415a407
FB
890router (10.0.2.2).
891
9bf05444
FB
892When using the built-in TFTP server, the router is also the TFTP
893server.
894
895When using the @option{-redir} option, TCP or UDP connections can be
896redirected from the host to the guest. It allows for example to
897redirect X11, telnet or SSH connections.
443f1376 898
41d03949
FB
899@subsection Connecting VLANs between QEMU instances
900
901Using the @option{-net socket} option, it is possible to make VLANs
902that span several QEMU instances. See @ref{sec_invocation} to have a
903basic example.
904
576fd0a1 905@node pcsys_other_devs
6cbf4c8c
CM
906@section Other Devices
907
908@subsection Inter-VM Shared Memory device
909
910With KVM enabled on a Linux host, a shared memory device is available. Guests
911map a POSIX shared memory region into the guest as a PCI device that enables
912zero-copy communication to the application level of the guests. The basic
913syntax is:
914
915@example
3804da9d 916qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]
6cbf4c8c
CM
917@end example
918
919If desired, interrupts can be sent between guest VMs accessing the same shared
920memory region. Interrupt support requires using a shared memory server and
921using a chardev socket to connect to it. The code for the shared memory server
922is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
923memory server is:
924
925@example
3804da9d
SW
926qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,chardev=<id>]
927 [,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master]
928qemu-system-i386 -chardev socket,path=<path>,id=<id>
6cbf4c8c
CM
929@end example
930
931When using the server, the guest will be assigned a VM ID (>=0) that allows guests
932using the same server to communicate via interrupts. Guests can read their
933VM ID from a device register (see example code). Since receiving the shared
934memory region from the server is asynchronous, there is a (small) chance the
935guest may boot before the shared memory is attached. To allow an application
936to ensure shared memory is attached, the VM ID register will return -1 (an
937invalid VM ID) until the memory is attached. Once the shared memory is
938attached, the VM ID will return the guest's valid VM ID. With these semantics,
939the guest application can check to ensure the shared memory is attached to the
940guest before proceeding.
941
942The @option{role} argument can be set to either master or peer and will affect
943how the shared memory is migrated. With @option{role=master}, the guest will
944copy the shared memory on migration to the destination host. With
945@option{role=peer}, the guest will not be able to migrate with the device attached.
946With the @option{peer} case, the device should be detached and then reattached
947after migration using the PCI hotplug support.
948
9d4fb82e
FB
949@node direct_linux_boot
950@section Direct Linux Boot
1f673135
FB
951
952This section explains how to launch a Linux kernel inside QEMU without
953having to make a full bootable image. It is very useful for fast Linux
ee0f4751 954kernel testing.
1f673135 955
ee0f4751 956The syntax is:
1f673135 957@example
3804da9d 958qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
959@end example
960
ee0f4751
FB
961Use @option{-kernel} to provide the Linux kernel image and
962@option{-append} to give the kernel command line arguments. The
963@option{-initrd} option can be used to provide an INITRD image.
1f673135 964
ee0f4751
FB
965When using the direct Linux boot, a disk image for the first hard disk
966@file{hda} is required because its boot sector is used to launch the
967Linux kernel.
1f673135 968
ee0f4751
FB
969If you do not need graphical output, you can disable it and redirect
970the virtual serial port and the QEMU monitor to the console with the
971@option{-nographic} option. The typical command line is:
1f673135 972@example
3804da9d
SW
973qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
974 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
975@end example
976
ee0f4751
FB
977Use @key{Ctrl-a c} to switch between the serial console and the
978monitor (@pxref{pcsys_keys}).
1f673135 979
debc7065 980@node pcsys_usb
b389dbfb
FB
981@section USB emulation
982
0aff66b5
PB
983QEMU emulates a PCI UHCI USB controller. You can virtually plug
984virtual USB devices or real host USB devices (experimental, works only
071c9394 985on Linux hosts). QEMU will automatically create and connect virtual USB hubs
f542086d 986as necessary to connect multiple USB devices.
b389dbfb 987
0aff66b5
PB
988@menu
989* usb_devices::
990* host_usb_devices::
991@end menu
992@node usb_devices
993@subsection Connecting USB devices
b389dbfb 994
0aff66b5
PB
995USB devices can be connected with the @option{-usbdevice} commandline option
996or the @code{usb_add} monitor command. Available devices are:
b389dbfb 997
db380c06
AZ
998@table @code
999@item mouse
0aff66b5 1000Virtual Mouse. This will override the PS/2 mouse emulation when activated.
db380c06 1001@item tablet
c6d46c20 1002Pointer device that uses absolute coordinates (like a touchscreen).
b65ee4fa 1003This means QEMU is able to report the mouse position without having
0aff66b5 1004to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
db380c06 1005@item disk:@var{file}
0aff66b5 1006Mass storage device based on @var{file} (@pxref{disk_images})
db380c06 1007@item host:@var{bus.addr}
0aff66b5
PB
1008Pass through the host device identified by @var{bus.addr}
1009(Linux only)
db380c06 1010@item host:@var{vendor_id:product_id}
0aff66b5
PB
1011Pass through the host device identified by @var{vendor_id:product_id}
1012(Linux only)
db380c06 1013@item wacom-tablet
f6d2a316
AZ
1014Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1015above but it can be used with the tslib library because in addition to touch
1016coordinates it reports touch pressure.
db380c06 1017@item keyboard
47b2d338 1018Standard USB keyboard. Will override the PS/2 keyboard (if present).
db380c06
AZ
1019@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1020Serial converter. This emulates an FTDI FT232BM chip connected to host character
1021device @var{dev}. The available character devices are the same as for the
1022@code{-serial} option. The @code{vendorid} and @code{productid} options can be
0d6753e5 1023used to override the default 0403:6001. For instance,
db380c06
AZ
1024@example
1025usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1026@end example
1027will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1028serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
2e4d9fb1
AJ
1029@item braille
1030Braille device. This will use BrlAPI to display the braille output on a real
1031or fake device.
9ad97e65
AZ
1032@item net:@var{options}
1033Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
1034specifies NIC options as with @code{-net nic,}@var{options} (see description).
1035For instance, user-mode networking can be used with
6c9f886c 1036@example
3804da9d 1037qemu-system-i386 [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
6c9f886c
AZ
1038@end example
1039Currently this cannot be used in machines that support PCI NICs.
2d564691
AZ
1040@item bt[:@var{hci-type}]
1041Bluetooth dongle whose type is specified in the same format as with
1042the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
1043no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1044This USB device implements the USB Transport Layer of HCI. Example
1045usage:
1046@example
3804da9d 1047qemu-system-i386 [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
2d564691 1048@end example
0aff66b5 1049@end table
b389dbfb 1050
0aff66b5 1051@node host_usb_devices
b389dbfb
FB
1052@subsection Using host USB devices on a Linux host
1053
1054WARNING: this is an experimental feature. QEMU will slow down when
1055using it. USB devices requiring real time streaming (i.e. USB Video
1056Cameras) are not supported yet.
1057
1058@enumerate
5fafdf24 1059@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
1060is actually using the USB device. A simple way to do that is simply to
1061disable the corresponding kernel module by renaming it from @file{mydriver.o}
1062to @file{mydriver.o.disabled}.
1063
1064@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1065@example
1066ls /proc/bus/usb
1067001 devices drivers
1068@end example
1069
1070@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1071@example
1072chown -R myuid /proc/bus/usb
1073@end example
1074
1075@item Launch QEMU and do in the monitor:
5fafdf24 1076@example
b389dbfb
FB
1077info usbhost
1078 Device 1.2, speed 480 Mb/s
1079 Class 00: USB device 1234:5678, USB DISK
1080@end example
1081You should see the list of the devices you can use (Never try to use
1082hubs, it won't work).
1083
1084@item Add the device in QEMU by using:
5fafdf24 1085@example
b389dbfb
FB
1086usb_add host:1234:5678
1087@end example
1088
1089Normally the guest OS should report that a new USB device is
1090plugged. You can use the option @option{-usbdevice} to do the same.
1091
1092@item Now you can try to use the host USB device in QEMU.
1093
1094@end enumerate
1095
1096When relaunching QEMU, you may have to unplug and plug again the USB
1097device to make it work again (this is a bug).
1098
f858dcae
TS
1099@node vnc_security
1100@section VNC security
1101
1102The VNC server capability provides access to the graphical console
1103of the guest VM across the network. This has a number of security
1104considerations depending on the deployment scenarios.
1105
1106@menu
1107* vnc_sec_none::
1108* vnc_sec_password::
1109* vnc_sec_certificate::
1110* vnc_sec_certificate_verify::
1111* vnc_sec_certificate_pw::
2f9606b3
AL
1112* vnc_sec_sasl::
1113* vnc_sec_certificate_sasl::
f858dcae 1114* vnc_generate_cert::
2f9606b3 1115* vnc_setup_sasl::
f858dcae
TS
1116@end menu
1117@node vnc_sec_none
1118@subsection Without passwords
1119
1120The simplest VNC server setup does not include any form of authentication.
1121For this setup it is recommended to restrict it to listen on a UNIX domain
1122socket only. For example
1123
1124@example
3804da9d 1125qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
f858dcae
TS
1126@end example
1127
1128This ensures that only users on local box with read/write access to that
1129path can access the VNC server. To securely access the VNC server from a
1130remote machine, a combination of netcat+ssh can be used to provide a secure
1131tunnel.
1132
1133@node vnc_sec_password
1134@subsection With passwords
1135
1136The VNC protocol has limited support for password based authentication. Since
1137the protocol limits passwords to 8 characters it should not be considered
1138to provide high security. The password can be fairly easily brute-forced by
1139a client making repeat connections. For this reason, a VNC server using password
1140authentication should be restricted to only listen on the loopback interface
0f66998f
PM
1141or UNIX domain sockets. Password authentication is not supported when operating
1142in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1143authentication is requested with the @code{password} option, and then once QEMU
1144is running the password is set with the monitor. Until the monitor is used to
1145set the password all clients will be rejected.
f858dcae
TS
1146
1147@example
3804da9d 1148qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
f858dcae
TS
1149(qemu) change vnc password
1150Password: ********
1151(qemu)
1152@end example
1153
1154@node vnc_sec_certificate
1155@subsection With x509 certificates
1156
1157The QEMU VNC server also implements the VeNCrypt extension allowing use of
1158TLS for encryption of the session, and x509 certificates for authentication.
1159The use of x509 certificates is strongly recommended, because TLS on its
1160own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1161support provides a secure session, but no authentication. This allows any
1162client to connect, and provides an encrypted session.
1163
1164@example
3804da9d 1165qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
f858dcae
TS
1166@end example
1167
1168In the above example @code{/etc/pki/qemu} should contain at least three files,
1169@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1170users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1171NB the @code{server-key.pem} file should be protected with file mode 0600 to
1172only be readable by the user owning it.
1173
1174@node vnc_sec_certificate_verify
1175@subsection With x509 certificates and client verification
1176
1177Certificates can also provide a means to authenticate the client connecting.
1178The server will request that the client provide a certificate, which it will
1179then validate against the CA certificate. This is a good choice if deploying
1180in an environment with a private internal certificate authority.
1181
1182@example
3804da9d 1183qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1184@end example
1185
1186
1187@node vnc_sec_certificate_pw
1188@subsection With x509 certificates, client verification and passwords
1189
1190Finally, the previous method can be combined with VNC password authentication
1191to provide two layers of authentication for clients.
1192
1193@example
3804da9d 1194qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1195(qemu) change vnc password
1196Password: ********
1197(qemu)
1198@end example
1199
2f9606b3
AL
1200
1201@node vnc_sec_sasl
1202@subsection With SASL authentication
1203
1204The SASL authentication method is a VNC extension, that provides an
1205easily extendable, pluggable authentication method. This allows for
1206integration with a wide range of authentication mechanisms, such as
1207PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1208The strength of the authentication depends on the exact mechanism
1209configured. If the chosen mechanism also provides a SSF layer, then
1210it will encrypt the datastream as well.
1211
1212Refer to the later docs on how to choose the exact SASL mechanism
1213used for authentication, but assuming use of one supporting SSF,
1214then QEMU can be launched with:
1215
1216@example
3804da9d 1217qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
2f9606b3
AL
1218@end example
1219
1220@node vnc_sec_certificate_sasl
1221@subsection With x509 certificates and SASL authentication
1222
1223If the desired SASL authentication mechanism does not supported
1224SSF layers, then it is strongly advised to run it in combination
1225with TLS and x509 certificates. This provides securely encrypted
1226data stream, avoiding risk of compromising of the security
1227credentials. This can be enabled, by combining the 'sasl' option
1228with the aforementioned TLS + x509 options:
1229
1230@example
3804da9d 1231qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
2f9606b3
AL
1232@end example
1233
1234
f858dcae
TS
1235@node vnc_generate_cert
1236@subsection Generating certificates for VNC
1237
1238The GNU TLS packages provides a command called @code{certtool} which can
1239be used to generate certificates and keys in PEM format. At a minimum it
40c5c6cd 1240is necessary to setup a certificate authority, and issue certificates to
f858dcae
TS
1241each server. If using certificates for authentication, then each client
1242will also need to be issued a certificate. The recommendation is for the
1243server to keep its certificates in either @code{/etc/pki/qemu} or for
1244unprivileged users in @code{$HOME/.pki/qemu}.
1245
1246@menu
1247* vnc_generate_ca::
1248* vnc_generate_server::
1249* vnc_generate_client::
1250@end menu
1251@node vnc_generate_ca
1252@subsubsection Setup the Certificate Authority
1253
1254This step only needs to be performed once per organization / organizational
1255unit. First the CA needs a private key. This key must be kept VERY secret
1256and secure. If this key is compromised the entire trust chain of the certificates
1257issued with it is lost.
1258
1259@example
1260# certtool --generate-privkey > ca-key.pem
1261@end example
1262
1263A CA needs to have a public certificate. For simplicity it can be a self-signed
1264certificate, or one issue by a commercial certificate issuing authority. To
1265generate a self-signed certificate requires one core piece of information, the
1266name of the organization.
1267
1268@example
1269# cat > ca.info <<EOF
1270cn = Name of your organization
1271ca
1272cert_signing_key
1273EOF
1274# certtool --generate-self-signed \
1275 --load-privkey ca-key.pem
1276 --template ca.info \
1277 --outfile ca-cert.pem
1278@end example
1279
1280The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1281TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1282
1283@node vnc_generate_server
1284@subsubsection Issuing server certificates
1285
1286Each server (or host) needs to be issued with a key and certificate. When connecting
1287the certificate is sent to the client which validates it against the CA certificate.
1288The core piece of information for a server certificate is the hostname. This should
1289be the fully qualified hostname that the client will connect with, since the client
1290will typically also verify the hostname in the certificate. On the host holding the
1291secure CA private key:
1292
1293@example
1294# cat > server.info <<EOF
1295organization = Name of your organization
1296cn = server.foo.example.com
1297tls_www_server
1298encryption_key
1299signing_key
1300EOF
1301# certtool --generate-privkey > server-key.pem
1302# certtool --generate-certificate \
1303 --load-ca-certificate ca-cert.pem \
1304 --load-ca-privkey ca-key.pem \
1305 --load-privkey server server-key.pem \
1306 --template server.info \
1307 --outfile server-cert.pem
1308@end example
1309
1310The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1311to the server for which they were generated. The @code{server-key.pem} is security
1312sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1313
1314@node vnc_generate_client
1315@subsubsection Issuing client certificates
1316
1317If the QEMU VNC server is to use the @code{x509verify} option to validate client
1318certificates as its authentication mechanism, each client also needs to be issued
1319a certificate. The client certificate contains enough metadata to uniquely identify
1320the client, typically organization, state, city, building, etc. On the host holding
1321the secure CA private key:
1322
1323@example
1324# cat > client.info <<EOF
1325country = GB
1326state = London
1327locality = London
1328organiazation = Name of your organization
1329cn = client.foo.example.com
1330tls_www_client
1331encryption_key
1332signing_key
1333EOF
1334# certtool --generate-privkey > client-key.pem
1335# certtool --generate-certificate \
1336 --load-ca-certificate ca-cert.pem \
1337 --load-ca-privkey ca-key.pem \
1338 --load-privkey client-key.pem \
1339 --template client.info \
1340 --outfile client-cert.pem
1341@end example
1342
1343The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1344copied to the client for which they were generated.
1345
2f9606b3
AL
1346
1347@node vnc_setup_sasl
1348
1349@subsection Configuring SASL mechanisms
1350
1351The following documentation assumes use of the Cyrus SASL implementation on a
1352Linux host, but the principals should apply to any other SASL impl. When SASL
1353is enabled, the mechanism configuration will be loaded from system default
1354SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1355unprivileged user, an environment variable SASL_CONF_PATH can be used
1356to make it search alternate locations for the service config.
1357
1358The default configuration might contain
1359
1360@example
1361mech_list: digest-md5
1362sasldb_path: /etc/qemu/passwd.db
1363@end example
1364
1365This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1366Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1367in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1368command. While this mechanism is easy to configure and use, it is not
1369considered secure by modern standards, so only suitable for developers /
1370ad-hoc testing.
1371
1372A more serious deployment might use Kerberos, which is done with the 'gssapi'
1373mechanism
1374
1375@example
1376mech_list: gssapi
1377keytab: /etc/qemu/krb5.tab
1378@end example
1379
1380For this to work the administrator of your KDC must generate a Kerberos
1381principal for the server, with a name of 'qemu/somehost.example.com@@EXAMPLE.COM'
1382replacing 'somehost.example.com' with the fully qualified host name of the
40c5c6cd 1383machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
2f9606b3
AL
1384
1385Other configurations will be left as an exercise for the reader. It should
1386be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1387encryption. For all other mechanisms, VNC should always be configured to
1388use TLS and x509 certificates to protect security credentials from snooping.
1389
0806e3f6 1390@node gdb_usage
da415d54
FB
1391@section GDB usage
1392
1393QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1394'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1395
b65ee4fa 1396In order to use gdb, launch QEMU with the '-s' option. It will wait for a
da415d54
FB
1397gdb connection:
1398@example
3804da9d
SW
1399qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1400 -append "root=/dev/hda"
da415d54
FB
1401Connected to host network interface: tun0
1402Waiting gdb connection on port 1234
1403@end example
1404
1405Then launch gdb on the 'vmlinux' executable:
1406@example
1407> gdb vmlinux
1408@end example
1409
1410In gdb, connect to QEMU:
1411@example
6c9bf893 1412(gdb) target remote localhost:1234
da415d54
FB
1413@end example
1414
1415Then you can use gdb normally. For example, type 'c' to launch the kernel:
1416@example
1417(gdb) c
1418@end example
1419
0806e3f6
FB
1420Here are some useful tips in order to use gdb on system code:
1421
1422@enumerate
1423@item
1424Use @code{info reg} to display all the CPU registers.
1425@item
1426Use @code{x/10i $eip} to display the code at the PC position.
1427@item
1428Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1429@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1430@end enumerate
1431
60897d36
EI
1432Advanced debugging options:
1433
1434The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 1435@table @code
60897d36
EI
1436@item maintenance packet qqemu.sstepbits
1437
1438This will display the MASK bits used to control the single stepping IE:
1439@example
1440(gdb) maintenance packet qqemu.sstepbits
1441sending: "qqemu.sstepbits"
1442received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1443@end example
1444@item maintenance packet qqemu.sstep
1445
1446This will display the current value of the mask used when single stepping IE:
1447@example
1448(gdb) maintenance packet qqemu.sstep
1449sending: "qqemu.sstep"
1450received: "0x7"
1451@end example
1452@item maintenance packet Qqemu.sstep=HEX_VALUE
1453
1454This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1455@example
1456(gdb) maintenance packet Qqemu.sstep=0x5
1457sending: "qemu.sstep=0x5"
1458received: "OK"
1459@end example
94d45e44 1460@end table
60897d36 1461
debc7065 1462@node pcsys_os_specific
1a084f3d
FB
1463@section Target OS specific information
1464
1465@subsection Linux
1466
15a34c63
FB
1467To have access to SVGA graphic modes under X11, use the @code{vesa} or
1468the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1469color depth in the guest and the host OS.
1a084f3d 1470
e3371e62
FB
1471When using a 2.6 guest Linux kernel, you should add the option
1472@code{clock=pit} on the kernel command line because the 2.6 Linux
1473kernels make very strict real time clock checks by default that QEMU
1474cannot simulate exactly.
1475
7c3fc84d
FB
1476When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1477not activated because QEMU is slower with this patch. The QEMU
1478Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1479Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1480patch by default. Newer kernels don't have it.
1481
1a084f3d
FB
1482@subsection Windows
1483
1484If you have a slow host, using Windows 95 is better as it gives the
1485best speed. Windows 2000 is also a good choice.
1486
e3371e62
FB
1487@subsubsection SVGA graphic modes support
1488
1489QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1490card. All Windows versions starting from Windows 95 should recognize
1491and use this graphic card. For optimal performances, use 16 bit color
1492depth in the guest and the host OS.
1a084f3d 1493
3cb0853a
FB
1494If you are using Windows XP as guest OS and if you want to use high
1495resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
14961280x1024x16), then you should use the VESA VBE virtual graphic card
1497(option @option{-std-vga}).
1498
e3371e62
FB
1499@subsubsection CPU usage reduction
1500
1501Windows 9x does not correctly use the CPU HLT
15a34c63
FB
1502instruction. The result is that it takes host CPU cycles even when
1503idle. You can install the utility from
1504@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1505problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 1506
9d0a8e6f 1507@subsubsection Windows 2000 disk full problem
e3371e62 1508
9d0a8e6f
FB
1509Windows 2000 has a bug which gives a disk full problem during its
1510installation. When installing it, use the @option{-win2k-hack} QEMU
1511option to enable a specific workaround. After Windows 2000 is
1512installed, you no longer need this option (this option slows down the
1513IDE transfers).
e3371e62 1514
6cc721cf
FB
1515@subsubsection Windows 2000 shutdown
1516
1517Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1518can. It comes from the fact that Windows 2000 does not automatically
1519use the APM driver provided by the BIOS.
1520
1521In order to correct that, do the following (thanks to Struan
1522Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1523Add/Troubleshoot a device => Add a new device & Next => No, select the
1524hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1525(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 1526correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
1527
1528@subsubsection Share a directory between Unix and Windows
1529
1530See @ref{sec_invocation} about the help of the option @option{-smb}.
1531
2192c332 1532@subsubsection Windows XP security problem
e3371e62
FB
1533
1534Some releases of Windows XP install correctly but give a security
1535error when booting:
1536@example
1537A problem is preventing Windows from accurately checking the
1538license for this computer. Error code: 0x800703e6.
1539@end example
e3371e62 1540
2192c332
FB
1541The workaround is to install a service pack for XP after a boot in safe
1542mode. Then reboot, and the problem should go away. Since there is no
1543network while in safe mode, its recommended to download the full
1544installation of SP1 or SP2 and transfer that via an ISO or using the
1545vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 1546
a0a821a4
FB
1547@subsection MS-DOS and FreeDOS
1548
1549@subsubsection CPU usage reduction
1550
1551DOS does not correctly use the CPU HLT instruction. The result is that
1552it takes host CPU cycles even when idle. You can install the utility
1553from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1554problem.
1555
debc7065 1556@node QEMU System emulator for non PC targets
3f9f3aa1
FB
1557@chapter QEMU System emulator for non PC targets
1558
1559QEMU is a generic emulator and it emulates many non PC
1560machines. Most of the options are similar to the PC emulator. The
4be456f1 1561differences are mentioned in the following sections.
3f9f3aa1 1562
debc7065 1563@menu
7544a042 1564* PowerPC System emulator::
24d4de45
TS
1565* Sparc32 System emulator::
1566* Sparc64 System emulator::
1567* MIPS System emulator::
1568* ARM System emulator::
1569* ColdFire System emulator::
7544a042
SW
1570* Cris System emulator::
1571* Microblaze System emulator::
1572* SH4 System emulator::
3aeaea65 1573* Xtensa System emulator::
debc7065
FB
1574@end menu
1575
7544a042
SW
1576@node PowerPC System emulator
1577@section PowerPC System emulator
1578@cindex system emulation (PowerPC)
1a084f3d 1579
15a34c63
FB
1580Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1581or PowerMac PowerPC system.
1a084f3d 1582
b671f9ed 1583QEMU emulates the following PowerMac peripherals:
1a084f3d 1584
15a34c63 1585@itemize @minus
5fafdf24 1586@item
006f3a48 1587UniNorth or Grackle PCI Bridge
15a34c63
FB
1588@item
1589PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1590@item
15a34c63 15912 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 1592@item
15a34c63
FB
1593NE2000 PCI adapters
1594@item
1595Non Volatile RAM
1596@item
1597VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
1598@end itemize
1599
b671f9ed 1600QEMU emulates the following PREP peripherals:
52c00a5f
FB
1601
1602@itemize @minus
5fafdf24 1603@item
15a34c63
FB
1604PCI Bridge
1605@item
1606PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1607@item
52c00a5f
FB
16082 IDE interfaces with hard disk and CD-ROM support
1609@item
1610Floppy disk
5fafdf24 1611@item
15a34c63 1612NE2000 network adapters
52c00a5f
FB
1613@item
1614Serial port
1615@item
1616PREP Non Volatile RAM
15a34c63
FB
1617@item
1618PC compatible keyboard and mouse.
52c00a5f
FB
1619@end itemize
1620
15a34c63 1621QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 1622@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 1623
992e5acd 1624Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
006f3a48
BS
1625for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1626v2) portable firmware implementation. The goal is to implement a 100%
1627IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 1628
15a34c63
FB
1629@c man begin OPTIONS
1630
1631The following options are specific to the PowerPC emulation:
1632
1633@table @option
1634
4e257e5e 1635@item -g @var{W}x@var{H}[x@var{DEPTH}]
15a34c63
FB
1636
1637Set the initial VGA graphic mode. The default is 800x600x15.
1638
4e257e5e 1639@item -prom-env @var{string}
95efd11c
BS
1640
1641Set OpenBIOS variables in NVRAM, for example:
1642
1643@example
1644qemu-system-ppc -prom-env 'auto-boot?=false' \
1645 -prom-env 'boot-device=hd:2,\yaboot' \
1646 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1647@end example
1648
1649These variables are not used by Open Hack'Ware.
1650
15a34c63
FB
1651@end table
1652
5fafdf24 1653@c man end
15a34c63
FB
1654
1655
52c00a5f 1656More information is available at
3f9f3aa1 1657@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 1658
24d4de45
TS
1659@node Sparc32 System emulator
1660@section Sparc32 System emulator
7544a042 1661@cindex system emulation (Sparc32)
e80cfcfc 1662
34a3d239
BS
1663Use the executable @file{qemu-system-sparc} to simulate the following
1664Sun4m architecture machines:
1665@itemize @minus
1666@item
1667SPARCstation 4
1668@item
1669SPARCstation 5
1670@item
1671SPARCstation 10
1672@item
1673SPARCstation 20
1674@item
1675SPARCserver 600MP
1676@item
1677SPARCstation LX
1678@item
1679SPARCstation Voyager
1680@item
1681SPARCclassic
1682@item
1683SPARCbook
1684@end itemize
1685
1686The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1687but Linux limits the number of usable CPUs to 4.
e80cfcfc 1688
34a3d239
BS
1689It's also possible to simulate a SPARCstation 2 (sun4c architecture),
1690SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
1691emulators are not usable yet.
1692
1693QEMU emulates the following sun4m/sun4c/sun4d peripherals:
e80cfcfc
FB
1694
1695@itemize @minus
3475187d 1696@item
7d85892b 1697IOMMU or IO-UNITs
e80cfcfc
FB
1698@item
1699TCX Frame buffer
5fafdf24 1700@item
e80cfcfc
FB
1701Lance (Am7990) Ethernet
1702@item
34a3d239 1703Non Volatile RAM M48T02/M48T08
e80cfcfc 1704@item
3475187d
FB
1705Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1706and power/reset logic
1707@item
1708ESP SCSI controller with hard disk and CD-ROM support
1709@item
6a3b9cc9 1710Floppy drive (not on SS-600MP)
a2502b58
BS
1711@item
1712CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
1713@end itemize
1714
6a3b9cc9
BS
1715The number of peripherals is fixed in the architecture. Maximum
1716memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 1717others 2047MB.
3475187d 1718
30a604f3 1719Since version 0.8.2, QEMU uses OpenBIOS
0986ac3b
FB
1720@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1721firmware implementation. The goal is to implement a 100% IEEE
17221275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
1723
1724A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239
BS
1725the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1726some kernel versions work. Please note that currently Solaris kernels
1727don't work probably due to interface issues between OpenBIOS and
1728Solaris.
3475187d
FB
1729
1730@c man begin OPTIONS
1731
a2502b58 1732The following options are specific to the Sparc32 emulation:
3475187d
FB
1733
1734@table @option
1735
4e257e5e 1736@item -g @var{W}x@var{H}x[x@var{DEPTH}]
3475187d 1737
a2502b58
BS
1738Set the initial TCX graphic mode. The default is 1024x768x8, currently
1739the only other possible mode is 1024x768x24.
3475187d 1740
4e257e5e 1741@item -prom-env @var{string}
66508601
BS
1742
1743Set OpenBIOS variables in NVRAM, for example:
1744
1745@example
1746qemu-system-sparc -prom-env 'auto-boot?=false' \
1747 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1748@end example
1749
609c1dac 1750@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook|SS-2|SS-1000|SS-2000]
a2502b58
BS
1751
1752Set the emulated machine type. Default is SS-5.
1753
3475187d
FB
1754@end table
1755
5fafdf24 1756@c man end
3475187d 1757
24d4de45
TS
1758@node Sparc64 System emulator
1759@section Sparc64 System emulator
7544a042 1760@cindex system emulation (Sparc64)
e80cfcfc 1761
34a3d239
BS
1762Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1763(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1764Niagara (T1) machine. The emulator is not usable for anything yet, but
1765it can launch some kernels.
b756921a 1766
c7ba218d 1767QEMU emulates the following peripherals:
83469015
FB
1768
1769@itemize @minus
1770@item
5fafdf24 1771UltraSparc IIi APB PCI Bridge
83469015
FB
1772@item
1773PCI VGA compatible card with VESA Bochs Extensions
1774@item
34a3d239
BS
1775PS/2 mouse and keyboard
1776@item
83469015
FB
1777Non Volatile RAM M48T59
1778@item
1779PC-compatible serial ports
c7ba218d
BS
1780@item
17812 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
1782@item
1783Floppy disk
83469015
FB
1784@end itemize
1785
c7ba218d
BS
1786@c man begin OPTIONS
1787
1788The following options are specific to the Sparc64 emulation:
1789
1790@table @option
1791
4e257e5e 1792@item -prom-env @var{string}
34a3d239
BS
1793
1794Set OpenBIOS variables in NVRAM, for example:
1795
1796@example
1797qemu-system-sparc64 -prom-env 'auto-boot?=false'
1798@end example
1799
1800@item -M [sun4u|sun4v|Niagara]
c7ba218d
BS
1801
1802Set the emulated machine type. The default is sun4u.
1803
1804@end table
1805
1806@c man end
1807
24d4de45
TS
1808@node MIPS System emulator
1809@section MIPS System emulator
7544a042 1810@cindex system emulation (MIPS)
9d0a8e6f 1811
d9aedc32
TS
1812Four executables cover simulation of 32 and 64-bit MIPS systems in
1813both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1814@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 1815Five different machine types are emulated:
24d4de45
TS
1816
1817@itemize @minus
1818@item
1819A generic ISA PC-like machine "mips"
1820@item
1821The MIPS Malta prototype board "malta"
1822@item
d9aedc32 1823An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 1824@item
f0fc6f8f 1825MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
1826@item
1827A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
1828@end itemize
1829
1830The generic emulation is supported by Debian 'Etch' and is able to
1831install Debian into a virtual disk image. The following devices are
1832emulated:
3f9f3aa1
FB
1833
1834@itemize @minus
5fafdf24 1835@item
6bf5b4e8 1836A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
1837@item
1838PC style serial port
1839@item
24d4de45
TS
1840PC style IDE disk
1841@item
3f9f3aa1
FB
1842NE2000 network card
1843@end itemize
1844
24d4de45
TS
1845The Malta emulation supports the following devices:
1846
1847@itemize @minus
1848@item
0b64d008 1849Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
1850@item
1851PIIX4 PCI/USB/SMbus controller
1852@item
1853The Multi-I/O chip's serial device
1854@item
3a2eeac0 1855PCI network cards (PCnet32 and others)
24d4de45
TS
1856@item
1857Malta FPGA serial device
1858@item
1f605a76 1859Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
1860@end itemize
1861
1862The ACER Pica emulation supports:
1863
1864@itemize @minus
1865@item
1866MIPS R4000 CPU
1867@item
1868PC-style IRQ and DMA controllers
1869@item
1870PC Keyboard
1871@item
1872IDE controller
1873@end itemize
3f9f3aa1 1874
b5e4946f 1875The mipssim pseudo board emulation provides an environment similar
f0fc6f8f
TS
1876to what the proprietary MIPS emulator uses for running Linux.
1877It supports:
6bf5b4e8
TS
1878
1879@itemize @minus
1880@item
1881A range of MIPS CPUs, default is the 24Kf
1882@item
1883PC style serial port
1884@item
1885MIPSnet network emulation
1886@end itemize
1887
88cb0a02
AJ
1888The MIPS Magnum R4000 emulation supports:
1889
1890@itemize @minus
1891@item
1892MIPS R4000 CPU
1893@item
1894PC-style IRQ controller
1895@item
1896PC Keyboard
1897@item
1898SCSI controller
1899@item
1900G364 framebuffer
1901@end itemize
1902
1903
24d4de45
TS
1904@node ARM System emulator
1905@section ARM System emulator
7544a042 1906@cindex system emulation (ARM)
3f9f3aa1
FB
1907
1908Use the executable @file{qemu-system-arm} to simulate a ARM
1909machine. The ARM Integrator/CP board is emulated with the following
1910devices:
1911
1912@itemize @minus
1913@item
9ee6e8bb 1914ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
1915@item
1916Two PL011 UARTs
5fafdf24 1917@item
3f9f3aa1 1918SMC 91c111 Ethernet adapter
00a9bf19
PB
1919@item
1920PL110 LCD controller
1921@item
1922PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
1923@item
1924PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
1925@end itemize
1926
1927The ARM Versatile baseboard is emulated with the following devices:
1928
1929@itemize @minus
1930@item
9ee6e8bb 1931ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
1932@item
1933PL190 Vectored Interrupt Controller
1934@item
1935Four PL011 UARTs
5fafdf24 1936@item
00a9bf19
PB
1937SMC 91c111 Ethernet adapter
1938@item
1939PL110 LCD controller
1940@item
1941PL050 KMI with PS/2 keyboard and mouse.
1942@item
1943PCI host bridge. Note the emulated PCI bridge only provides access to
1944PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
1945This means some devices (eg. ne2k_pci NIC) are not usable, and others
1946(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 1947mapped control registers.
e6de1bad
PB
1948@item
1949PCI OHCI USB controller.
1950@item
1951LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
1952@item
1953PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
1954@end itemize
1955
21a88941
PB
1956Several variants of the ARM RealView baseboard are emulated,
1957including the EB, PB-A8 and PBX-A9. Due to interactions with the
1958bootloader, only certain Linux kernel configurations work out
1959of the box on these boards.
1960
1961Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1962enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
1963should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1964disabled and expect 1024M RAM.
1965
40c5c6cd 1966The following devices are emulated:
d7739d75
PB
1967
1968@itemize @minus
1969@item
f7c70325 1970ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
d7739d75
PB
1971@item
1972ARM AMBA Generic/Distributed Interrupt Controller
1973@item
1974Four PL011 UARTs
5fafdf24 1975@item
0ef849d7 1976SMC 91c111 or SMSC LAN9118 Ethernet adapter
d7739d75
PB
1977@item
1978PL110 LCD controller
1979@item
1980PL050 KMI with PS/2 keyboard and mouse
1981@item
1982PCI host bridge
1983@item
1984PCI OHCI USB controller
1985@item
1986LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
1987@item
1988PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
1989@end itemize
1990
b00052e4
AZ
1991The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
1992and "Terrier") emulation includes the following peripherals:
1993
1994@itemize @minus
1995@item
1996Intel PXA270 System-on-chip (ARM V5TE core)
1997@item
1998NAND Flash memory
1999@item
2000IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2001@item
2002On-chip OHCI USB controller
2003@item
2004On-chip LCD controller
2005@item
2006On-chip Real Time Clock
2007@item
2008TI ADS7846 touchscreen controller on SSP bus
2009@item
2010Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2011@item
2012GPIO-connected keyboard controller and LEDs
2013@item
549444e1 2014Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
2015@item
2016Three on-chip UARTs
2017@item
2018WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2019@end itemize
2020
02645926
AZ
2021The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2022following elements:
2023
2024@itemize @minus
2025@item
2026Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2027@item
2028ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2029@item
2030On-chip LCD controller
2031@item
2032On-chip Real Time Clock
2033@item
2034TI TSC2102i touchscreen controller / analog-digital converter / Audio
2035CODEC, connected through MicroWire and I@math{^2}S busses
2036@item
2037GPIO-connected matrix keypad
2038@item
2039Secure Digital card connected to OMAP MMC/SD host
2040@item
2041Three on-chip UARTs
2042@end itemize
2043
c30bb264
AZ
2044Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2045emulation supports the following elements:
2046
2047@itemize @minus
2048@item
2049Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2050@item
2051RAM and non-volatile OneNAND Flash memories
2052@item
2053Display connected to EPSON remote framebuffer chip and OMAP on-chip
2054display controller and a LS041y3 MIPI DBI-C controller
2055@item
2056TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2057driven through SPI bus
2058@item
2059National Semiconductor LM8323-controlled qwerty keyboard driven
2060through I@math{^2}C bus
2061@item
2062Secure Digital card connected to OMAP MMC/SD host
2063@item
2064Three OMAP on-chip UARTs and on-chip STI debugging console
2065@item
40c5c6cd 2066A Bluetooth(R) transceiver and HCI connected to an UART
2d564691 2067@item
c30bb264
AZ
2068Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2069TUSB6010 chip - only USB host mode is supported
2070@item
2071TI TMP105 temperature sensor driven through I@math{^2}C bus
2072@item
2073TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2074@item
2075Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2076through CBUS
2077@end itemize
2078
9ee6e8bb
PB
2079The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2080devices:
2081
2082@itemize @minus
2083@item
2084Cortex-M3 CPU core.
2085@item
208664k Flash and 8k SRAM.
2087@item
2088Timers, UARTs, ADC and I@math{^2}C interface.
2089@item
2090OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2091@end itemize
2092
2093The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2094devices:
2095
2096@itemize @minus
2097@item
2098Cortex-M3 CPU core.
2099@item
2100256k Flash and 64k SRAM.
2101@item
2102Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2103@item
2104OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2105@end itemize
2106
57cd6e97
AZ
2107The Freecom MusicPal internet radio emulation includes the following
2108elements:
2109
2110@itemize @minus
2111@item
2112Marvell MV88W8618 ARM core.
2113@item
211432 MB RAM, 256 KB SRAM, 8 MB flash.
2115@item
2116Up to 2 16550 UARTs
2117@item
2118MV88W8xx8 Ethernet controller
2119@item
2120MV88W8618 audio controller, WM8750 CODEC and mixer
2121@item
e080e785 2122128×64 display with brightness control
57cd6e97
AZ
2123@item
21242 buttons, 2 navigation wheels with button function
2125@end itemize
2126
997641a8 2127The Siemens SX1 models v1 and v2 (default) basic emulation.
40c5c6cd 2128The emulation includes the following elements:
997641a8
AZ
2129
2130@itemize @minus
2131@item
2132Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2133@item
2134ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2135V1
21361 Flash of 16MB and 1 Flash of 8MB
2137V2
21381 Flash of 32MB
2139@item
2140On-chip LCD controller
2141@item
2142On-chip Real Time Clock
2143@item
2144Secure Digital card connected to OMAP MMC/SD host
2145@item
2146Three on-chip UARTs
2147@end itemize
2148
3f9f3aa1
FB
2149A Linux 2.6 test image is available on the QEMU web site. More
2150information is available in the QEMU mailing-list archive.
9d0a8e6f 2151
d2c639d6
BS
2152@c man begin OPTIONS
2153
2154The following options are specific to the ARM emulation:
2155
2156@table @option
2157
2158@item -semihosting
2159Enable semihosting syscall emulation.
2160
2161On ARM this implements the "Angel" interface.
2162
2163Note that this allows guest direct access to the host filesystem,
2164so should only be used with trusted guest OS.
2165
2166@end table
2167
24d4de45
TS
2168@node ColdFire System emulator
2169@section ColdFire System emulator
7544a042
SW
2170@cindex system emulation (ColdFire)
2171@cindex system emulation (M68K)
209a4e69
PB
2172
2173Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2174The emulator is able to boot a uClinux kernel.
707e011b
PB
2175
2176The M5208EVB emulation includes the following devices:
2177
2178@itemize @minus
5fafdf24 2179@item
707e011b
PB
2180MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2181@item
2182Three Two on-chip UARTs.
2183@item
2184Fast Ethernet Controller (FEC)
2185@end itemize
2186
2187The AN5206 emulation includes the following devices:
209a4e69
PB
2188
2189@itemize @minus
5fafdf24 2190@item
209a4e69
PB
2191MCF5206 ColdFire V2 Microprocessor.
2192@item
2193Two on-chip UARTs.
2194@end itemize
2195
d2c639d6
BS
2196@c man begin OPTIONS
2197
7544a042 2198The following options are specific to the ColdFire emulation:
d2c639d6
BS
2199
2200@table @option
2201
2202@item -semihosting
2203Enable semihosting syscall emulation.
2204
2205On M68K this implements the "ColdFire GDB" interface used by libgloss.
2206
2207Note that this allows guest direct access to the host filesystem,
2208so should only be used with trusted guest OS.
2209
2210@end table
2211
7544a042
SW
2212@node Cris System emulator
2213@section Cris System emulator
2214@cindex system emulation (Cris)
2215
2216TODO
2217
2218@node Microblaze System emulator
2219@section Microblaze System emulator
2220@cindex system emulation (Microblaze)
2221
2222TODO
2223
2224@node SH4 System emulator
2225@section SH4 System emulator
2226@cindex system emulation (SH4)
2227
2228TODO
2229
3aeaea65
MF
2230@node Xtensa System emulator
2231@section Xtensa System emulator
2232@cindex system emulation (Xtensa)
2233
2234Two executables cover simulation of both Xtensa endian options,
2235@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2236Two different machine types are emulated:
2237
2238@itemize @minus
2239@item
2240Xtensa emulator pseudo board "sim"
2241@item
2242Avnet LX60/LX110/LX200 board
2243@end itemize
2244
b5e4946f 2245The sim pseudo board emulation provides an environment similar
3aeaea65
MF
2246to one provided by the proprietary Tensilica ISS.
2247It supports:
2248
2249@itemize @minus
2250@item
2251A range of Xtensa CPUs, default is the DC232B
2252@item
2253Console and filesystem access via semihosting calls
2254@end itemize
2255
2256The Avnet LX60/LX110/LX200 emulation supports:
2257
2258@itemize @minus
2259@item
2260A range of Xtensa CPUs, default is the DC232B
2261@item
226216550 UART
2263@item
2264OpenCores 10/100 Mbps Ethernet MAC
2265@end itemize
2266
2267@c man begin OPTIONS
2268
2269The following options are specific to the Xtensa emulation:
2270
2271@table @option
2272
2273@item -semihosting
2274Enable semihosting syscall emulation.
2275
2276Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2277Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2278
2279Note that this allows guest direct access to the host filesystem,
2280so should only be used with trusted guest OS.
2281
2282@end table
5fafdf24
TS
2283@node QEMU User space emulator
2284@chapter QEMU User space emulator
83195237
FB
2285
2286@menu
2287* Supported Operating Systems ::
2288* Linux User space emulator::
84778508 2289* BSD User space emulator ::
83195237
FB
2290@end menu
2291
2292@node Supported Operating Systems
2293@section Supported Operating Systems
2294
2295The following OS are supported in user space emulation:
2296
2297@itemize @minus
2298@item
4be456f1 2299Linux (referred as qemu-linux-user)
83195237 2300@item
84778508 2301BSD (referred as qemu-bsd-user)
83195237
FB
2302@end itemize
2303
2304@node Linux User space emulator
2305@section Linux User space emulator
386405f7 2306
debc7065
FB
2307@menu
2308* Quick Start::
2309* Wine launch::
2310* Command line options::
79737e4a 2311* Other binaries::
debc7065
FB
2312@end menu
2313
2314@node Quick Start
83195237 2315@subsection Quick Start
df0f11a0 2316
1f673135 2317In order to launch a Linux process, QEMU needs the process executable
5fafdf24 2318itself and all the target (x86) dynamic libraries used by it.
386405f7 2319
1f673135 2320@itemize
386405f7 2321
1f673135
FB
2322@item On x86, you can just try to launch any process by using the native
2323libraries:
386405f7 2324
5fafdf24 2325@example
1f673135
FB
2326qemu-i386 -L / /bin/ls
2327@end example
386405f7 2328
1f673135
FB
2329@code{-L /} tells that the x86 dynamic linker must be searched with a
2330@file{/} prefix.
386405f7 2331
b65ee4fa
SW
2332@item Since QEMU is also a linux process, you can launch QEMU with
2333QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
386405f7 2334
5fafdf24 2335@example
1f673135
FB
2336qemu-i386 -L / qemu-i386 -L / /bin/ls
2337@end example
386405f7 2338
1f673135
FB
2339@item On non x86 CPUs, you need first to download at least an x86 glibc
2340(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2341@code{LD_LIBRARY_PATH} is not set:
df0f11a0 2342
1f673135 2343@example
5fafdf24 2344unset LD_LIBRARY_PATH
1f673135 2345@end example
1eb87257 2346
1f673135 2347Then you can launch the precompiled @file{ls} x86 executable:
1eb87257 2348
1f673135
FB
2349@example
2350qemu-i386 tests/i386/ls
2351@end example
4c3b5a48 2352You can look at @file{scripts/qemu-binfmt-conf.sh} so that
1f673135
FB
2353QEMU is automatically launched by the Linux kernel when you try to
2354launch x86 executables. It requires the @code{binfmt_misc} module in the
2355Linux kernel.
1eb87257 2356
1f673135
FB
2357@item The x86 version of QEMU is also included. You can try weird things such as:
2358@example
debc7065
FB
2359qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2360 /usr/local/qemu-i386/bin/ls-i386
1f673135 2361@end example
1eb20527 2362
1f673135 2363@end itemize
1eb20527 2364
debc7065 2365@node Wine launch
83195237 2366@subsection Wine launch
1eb20527 2367
1f673135 2368@itemize
386405f7 2369
1f673135
FB
2370@item Ensure that you have a working QEMU with the x86 glibc
2371distribution (see previous section). In order to verify it, you must be
2372able to do:
386405f7 2373
1f673135
FB
2374@example
2375qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2376@end example
386405f7 2377
1f673135 2378@item Download the binary x86 Wine install
5fafdf24 2379(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
386405f7 2380
1f673135 2381@item Configure Wine on your account. Look at the provided script
debc7065 2382@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1f673135 2383@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
386405f7 2384
1f673135 2385@item Then you can try the example @file{putty.exe}:
386405f7 2386
1f673135 2387@example
debc7065
FB
2388qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2389 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1f673135 2390@end example
386405f7 2391
1f673135 2392@end itemize
fd429f2f 2393
debc7065 2394@node Command line options
83195237 2395@subsection Command line options
1eb20527 2396
1f673135 2397@example
68a1c816 2398usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
1f673135 2399@end example
1eb20527 2400
1f673135
FB
2401@table @option
2402@item -h
2403Print the help
3b46e624 2404@item -L path
1f673135
FB
2405Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2406@item -s size
2407Set the x86 stack size in bytes (default=524288)
34a3d239 2408@item -cpu model
c8057f95 2409Select CPU model (-cpu help for list and additional feature selection)
f66724c9
SW
2410@item -ignore-environment
2411Start with an empty environment. Without this option,
40c5c6cd 2412the initial environment is a copy of the caller's environment.
f66724c9
SW
2413@item -E @var{var}=@var{value}
2414Set environment @var{var} to @var{value}.
2415@item -U @var{var}
2416Remove @var{var} from the environment.
379f6698
PB
2417@item -B offset
2418Offset guest address by the specified number of bytes. This is useful when
1f5c3f8c
SW
2419the address region required by guest applications is reserved on the host.
2420This option is currently only supported on some hosts.
68a1c816
PB
2421@item -R size
2422Pre-allocate a guest virtual address space of the given size (in bytes).
0d6753e5 2423"G", "M", and "k" suffixes may be used when specifying the size.
386405f7
FB
2424@end table
2425
1f673135 2426Debug options:
386405f7 2427
1f673135
FB
2428@table @option
2429@item -d
2430Activate log (logfile=/tmp/qemu.log)
2431@item -p pagesize
2432Act as if the host page size was 'pagesize' bytes
34a3d239
BS
2433@item -g port
2434Wait gdb connection to port
1b530a6d
AJ
2435@item -singlestep
2436Run the emulation in single step mode.
1f673135 2437@end table
386405f7 2438
b01bcae6
AZ
2439Environment variables:
2440
2441@table @env
2442@item QEMU_STRACE
2443Print system calls and arguments similar to the 'strace' program
2444(NOTE: the actual 'strace' program will not work because the user
2445space emulator hasn't implemented ptrace). At the moment this is
2446incomplete. All system calls that don't have a specific argument
2447format are printed with information for six arguments. Many
2448flag-style arguments don't have decoders and will show up as numbers.
5cfdf930 2449@end table
b01bcae6 2450
79737e4a 2451@node Other binaries
83195237 2452@subsection Other binaries
79737e4a 2453
7544a042
SW
2454@cindex user mode (Alpha)
2455@command{qemu-alpha} TODO.
2456
2457@cindex user mode (ARM)
2458@command{qemu-armeb} TODO.
2459
2460@cindex user mode (ARM)
79737e4a
PB
2461@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2462binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2463configurations), and arm-uclinux bFLT format binaries.
2464
7544a042
SW
2465@cindex user mode (ColdFire)
2466@cindex user mode (M68K)
e6e5906b
PB
2467@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2468(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2469coldfire uClinux bFLT format binaries.
2470
79737e4a
PB
2471The binary format is detected automatically.
2472
7544a042
SW
2473@cindex user mode (Cris)
2474@command{qemu-cris} TODO.
2475
2476@cindex user mode (i386)
2477@command{qemu-i386} TODO.
2478@command{qemu-x86_64} TODO.
2479
2480@cindex user mode (Microblaze)
2481@command{qemu-microblaze} TODO.
2482
2483@cindex user mode (MIPS)
2484@command{qemu-mips} TODO.
2485@command{qemu-mipsel} TODO.
2486
2487@cindex user mode (PowerPC)
2488@command{qemu-ppc64abi32} TODO.
2489@command{qemu-ppc64} TODO.
2490@command{qemu-ppc} TODO.
2491
2492@cindex user mode (SH4)
2493@command{qemu-sh4eb} TODO.
2494@command{qemu-sh4} TODO.
2495
2496@cindex user mode (SPARC)
34a3d239
BS
2497@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2498
a785e42e
BS
2499@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2500(Sparc64 CPU, 32 bit ABI).
2501
2502@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2503SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2504
84778508
BS
2505@node BSD User space emulator
2506@section BSD User space emulator
2507
2508@menu
2509* BSD Status::
2510* BSD Quick Start::
2511* BSD Command line options::
2512@end menu
2513
2514@node BSD Status
2515@subsection BSD Status
2516
2517@itemize @minus
2518@item
2519target Sparc64 on Sparc64: Some trivial programs work.
2520@end itemize
2521
2522@node BSD Quick Start
2523@subsection Quick Start
2524
2525In order to launch a BSD process, QEMU needs the process executable
2526itself and all the target dynamic libraries used by it.
2527
2528@itemize
2529
2530@item On Sparc64, you can just try to launch any process by using the native
2531libraries:
2532
2533@example
2534qemu-sparc64 /bin/ls
2535@end example
2536
2537@end itemize
2538
2539@node BSD Command line options
2540@subsection Command line options
2541
2542@example
2543usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2544@end example
2545
2546@table @option
2547@item -h
2548Print the help
2549@item -L path
2550Set the library root path (default=/)
2551@item -s size
2552Set the stack size in bytes (default=524288)
f66724c9
SW
2553@item -ignore-environment
2554Start with an empty environment. Without this option,
40c5c6cd 2555the initial environment is a copy of the caller's environment.
f66724c9
SW
2556@item -E @var{var}=@var{value}
2557Set environment @var{var} to @var{value}.
2558@item -U @var{var}
2559Remove @var{var} from the environment.
84778508
BS
2560@item -bsd type
2561Set the type of the emulated BSD Operating system. Valid values are
2562FreeBSD, NetBSD and OpenBSD (default).
2563@end table
2564
2565Debug options:
2566
2567@table @option
2568@item -d
2569Activate log (logfile=/tmp/qemu.log)
2570@item -p pagesize
2571Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
2572@item -singlestep
2573Run the emulation in single step mode.
84778508
BS
2574@end table
2575
15a34c63
FB
2576@node compilation
2577@chapter Compilation from the sources
2578
debc7065
FB
2579@menu
2580* Linux/Unix::
2581* Windows::
2582* Cross compilation for Windows with Linux::
2583* Mac OS X::
47eacb4f 2584* Make targets::
debc7065
FB
2585@end menu
2586
2587@node Linux/Unix
7c3fc84d
FB
2588@section Linux/Unix
2589
2590@subsection Compilation
2591
2592First you must decompress the sources:
2593@example
2594cd /tmp
2595tar zxvf qemu-x.y.z.tar.gz
2596cd qemu-x.y.z
2597@end example
2598
2599Then you configure QEMU and build it (usually no options are needed):
2600@example
2601./configure
2602make
2603@end example
2604
2605Then type as root user:
2606@example
2607make install
2608@end example
2609to install QEMU in @file{/usr/local}.
2610
debc7065 2611@node Windows
15a34c63
FB
2612@section Windows
2613
2614@itemize
2615@item Install the current versions of MSYS and MinGW from
2616@url{http://www.mingw.org/}. You can find detailed installation
2617instructions in the download section and the FAQ.
2618
5fafdf24 2619@item Download
15a34c63 2620the MinGW development library of SDL 1.2.x
debc7065 2621(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
d0a96f3d
ST
2622@url{http://www.libsdl.org}. Unpack it in a temporary place and
2623edit the @file{sdl-config} script so that it gives the
15a34c63
FB
2624correct SDL directory when invoked.
2625
d0a96f3d
ST
2626@item Install the MinGW version of zlib and make sure
2627@file{zlib.h} and @file{libz.dll.a} are in
40c5c6cd 2628MinGW's default header and linker search paths.
d0a96f3d 2629
15a34c63 2630@item Extract the current version of QEMU.
5fafdf24 2631
15a34c63
FB
2632@item Start the MSYS shell (file @file{msys.bat}).
2633
5fafdf24 2634@item Change to the QEMU directory. Launch @file{./configure} and
15a34c63
FB
2635@file{make}. If you have problems using SDL, verify that
2636@file{sdl-config} can be launched from the MSYS command line.
2637
c5ec15ea 2638@item You can install QEMU in @file{Program Files/QEMU} by typing
15a34c63 2639@file{make install}. Don't forget to copy @file{SDL.dll} in
c5ec15ea 2640@file{Program Files/QEMU}.
15a34c63
FB
2641
2642@end itemize
2643
debc7065 2644@node Cross compilation for Windows with Linux
15a34c63
FB
2645@section Cross compilation for Windows with Linux
2646
2647@itemize
2648@item
2649Install the MinGW cross compilation tools available at
2650@url{http://www.mingw.org/}.
2651
d0a96f3d
ST
2652@item Download
2653the MinGW development library of SDL 1.2.x
2654(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2655@url{http://www.libsdl.org}. Unpack it in a temporary place and
2656edit the @file{sdl-config} script so that it gives the
2657correct SDL directory when invoked. Set up the @code{PATH} environment
2658variable so that @file{sdl-config} can be launched by
15a34c63
FB
2659the QEMU configuration script.
2660
d0a96f3d
ST
2661@item Install the MinGW version of zlib and make sure
2662@file{zlib.h} and @file{libz.dll.a} are in
40c5c6cd 2663MinGW's default header and linker search paths.
d0a96f3d 2664
5fafdf24 2665@item
15a34c63
FB
2666Configure QEMU for Windows cross compilation:
2667@example
d0a96f3d
ST
2668PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
2669@end example
2670The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
2671MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
40c5c6cd 2672We set the @code{PATH} environment variable to ensure the MinGW version of @file{sdl-config} is used and
d0a96f3d 2673use --cross-prefix to specify the name of the cross compiler.
c5ec15ea 2674You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/QEMU}.
d0a96f3d
ST
2675
2676Under Fedora Linux, you can run:
2677@example
2678yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
15a34c63 2679@end example
d0a96f3d 2680to get a suitable cross compilation environment.
15a34c63 2681
5fafdf24 2682@item You can install QEMU in the installation directory by typing
d0a96f3d 2683@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
5fafdf24 2684installation directory.
15a34c63
FB
2685
2686@end itemize
2687
3804da9d
SW
2688Wine can be used to launch the resulting qemu-system-i386.exe
2689and all other qemu-system-@var{target}.exe compiled for Win32.
15a34c63 2690
debc7065 2691@node Mac OS X
15a34c63
FB
2692@section Mac OS X
2693
2694The Mac OS X patches are not fully merged in QEMU, so you should look
2695at the QEMU mailing list archive to have all the necessary
2696information.
2697
47eacb4f
SW
2698@node Make targets
2699@section Make targets
2700
2701@table @code
2702
2703@item make
2704@item make all
2705Make everything which is typically needed.
2706
2707@item install
2708TODO
2709
2710@item install-doc
2711TODO
2712
2713@item make clean
2714Remove most files which were built during make.
2715
2716@item make distclean
2717Remove everything which was built during make.
2718
2719@item make dvi
2720@item make html
2721@item make info
2722@item make pdf
2723Create documentation in dvi, html, info or pdf format.
2724
2725@item make cscope
2726TODO
2727
2728@item make defconfig
2729(Re-)create some build configuration files.
2730User made changes will be overwritten.
2731
2732@item tar
2733@item tarbin
2734TODO
2735
2736@end table
2737
7544a042
SW
2738@node License
2739@appendix License
2740
2741QEMU is a trademark of Fabrice Bellard.
2742
2743QEMU is released under the GNU General Public License (TODO: add link).
2744Parts of QEMU have specific licenses, see file LICENSE.
2745
2746TODO (refer to file LICENSE, include it, include the GPL?)
2747
debc7065 2748@node Index
7544a042
SW
2749@appendix Index
2750@menu
2751* Concept Index::
2752* Function Index::
2753* Keystroke Index::
2754* Program Index::
2755* Data Type Index::
2756* Variable Index::
2757@end menu
2758
2759@node Concept Index
2760@section Concept Index
2761This is the main index. Should we combine all keywords in one index? TODO
debc7065
FB
2762@printindex cp
2763
7544a042
SW
2764@node Function Index
2765@section Function Index
2766This index could be used for command line options and monitor functions.
2767@printindex fn
2768
2769@node Keystroke Index
2770@section Keystroke Index
2771
2772This is a list of all keystrokes which have a special function
2773in system emulation.
2774
2775@printindex ky
2776
2777@node Program Index
2778@section Program Index
2779@printindex pg
2780
2781@node Data Type Index
2782@section Data Type Index
2783
2784This index could be used for qdev device names and options.
2785
2786@printindex tp
2787
2788@node Variable Index
2789@section Variable Index
2790@printindex vr
2791
debc7065 2792@bye