]> git.proxmox.com Git - qemu.git/blame - qemu-doc.texi
microblaze: Make writes to MMU_ZPR flush the TLB.
[qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
8f40c388 4@settitle QEMU Emulator User Documentation
debc7065
FB
5@exampleindent 0
6@paragraphindent 0
7@c %**end of header
386405f7 8
0806e3f6 9@iftex
386405f7
FB
10@titlepage
11@sp 7
8f40c388 12@center @titlefont{QEMU Emulator}
debc7065
FB
13@sp 1
14@center @titlefont{User Documentation}
386405f7
FB
15@sp 3
16@end titlepage
0806e3f6 17@end iftex
386405f7 18
debc7065
FB
19@ifnottex
20@node Top
21@top
22
23@menu
24* Introduction::
25* Installation::
26* QEMU PC System emulator::
27* QEMU System emulator for non PC targets::
83195237 28* QEMU User space emulator::
debc7065
FB
29* compilation:: Compilation from the sources
30* Index::
31@end menu
32@end ifnottex
33
34@contents
35
36@node Introduction
386405f7
FB
37@chapter Introduction
38
debc7065
FB
39@menu
40* intro_features:: Features
41@end menu
42
43@node intro_features
322d0c66 44@section Features
386405f7 45
1f673135
FB
46QEMU is a FAST! processor emulator using dynamic translation to
47achieve good emulation speed.
1eb20527
FB
48
49QEMU has two operating modes:
0806e3f6
FB
50
51@itemize @minus
52
5fafdf24 53@item
1f673135 54Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
55example a PC), including one or several processors and various
56peripherals. It can be used to launch different Operating Systems
57without rebooting the PC or to debug system code.
1eb20527 58
5fafdf24 59@item
83195237
FB
60User mode emulation. In this mode, QEMU can launch
61processes compiled for one CPU on another CPU. It can be used to
1f673135
FB
62launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63to ease cross-compilation and cross-debugging.
1eb20527
FB
64
65@end itemize
66
7c3fc84d 67QEMU can run without an host kernel driver and yet gives acceptable
5fafdf24 68performance.
322d0c66 69
52c00a5f
FB
70For system emulation, the following hardware targets are supported:
71@itemize
9d0a8e6f 72@item PC (x86 or x86_64 processor)
3f9f3aa1 73@item ISA PC (old style PC without PCI bus)
52c00a5f 74@item PREP (PowerPC processor)
d45952a0 75@item G3 Beige PowerMac (PowerPC processor)
9d0a8e6f 76@item Mac99 PowerMac (PowerPC processor, in progress)
ee76f82e 77@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
c7ba218d 78@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
d9aedc32 79@item Malta board (32-bit and 64-bit MIPS processors)
88cb0a02 80@item MIPS Magnum (64-bit MIPS processor)
9ee6e8bb
PB
81@item ARM Integrator/CP (ARM)
82@item ARM Versatile baseboard (ARM)
83@item ARM RealView Emulation baseboard (ARM)
ef4c3856 84@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
9ee6e8bb
PB
85@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
86@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
707e011b 87@item Freescale MCF5208EVB (ColdFire V2).
209a4e69 88@item Arnewsh MCF5206 evaluation board (ColdFire V2).
02645926 89@item Palm Tungsten|E PDA (OMAP310 processor)
c30bb264 90@item N800 and N810 tablets (OMAP2420 processor)
57cd6e97 91@item MusicPal (MV88W8618 ARM processor)
ef4c3856
AZ
92@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
93@item Siemens SX1 smartphone (OMAP310 processor)
4af39611 94@item Syborg SVP base model (ARM Cortex-A8).
52c00a5f 95@end itemize
386405f7 96
d9aedc32 97For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
0806e3f6 98
debc7065 99@node Installation
5b9f457a
FB
100@chapter Installation
101
15a34c63
FB
102If you want to compile QEMU yourself, see @ref{compilation}.
103
debc7065
FB
104@menu
105* install_linux:: Linux
106* install_windows:: Windows
107* install_mac:: Macintosh
108@end menu
109
110@node install_linux
1f673135
FB
111@section Linux
112
7c3fc84d
FB
113If a precompiled package is available for your distribution - you just
114have to install it. Otherwise, see @ref{compilation}.
5b9f457a 115
debc7065 116@node install_windows
1f673135 117@section Windows
8cd0ac2f 118
15a34c63 119Download the experimental binary installer at
debc7065 120@url{http://www.free.oszoo.org/@/download.html}.
d691f669 121
debc7065 122@node install_mac
1f673135 123@section Mac OS X
d691f669 124
15a34c63 125Download the experimental binary installer at
debc7065 126@url{http://www.free.oszoo.org/@/download.html}.
df0f11a0 127
debc7065 128@node QEMU PC System emulator
3f9f3aa1 129@chapter QEMU PC System emulator
1eb20527 130
debc7065
FB
131@menu
132* pcsys_introduction:: Introduction
133* pcsys_quickstart:: Quick Start
134* sec_invocation:: Invocation
135* pcsys_keys:: Keys
136* pcsys_monitor:: QEMU Monitor
137* disk_images:: Disk Images
138* pcsys_network:: Network emulation
139* direct_linux_boot:: Direct Linux Boot
140* pcsys_usb:: USB emulation
f858dcae 141* vnc_security:: VNC security
debc7065
FB
142* gdb_usage:: GDB usage
143* pcsys_os_specific:: Target OS specific information
144@end menu
145
146@node pcsys_introduction
0806e3f6
FB
147@section Introduction
148
149@c man begin DESCRIPTION
150
3f9f3aa1
FB
151The QEMU PC System emulator simulates the
152following peripherals:
0806e3f6
FB
153
154@itemize @minus
5fafdf24 155@item
15a34c63 156i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 157@item
15a34c63
FB
158Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
159extensions (hardware level, including all non standard modes).
0806e3f6
FB
160@item
161PS/2 mouse and keyboard
5fafdf24 162@item
15a34c63 1632 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
164@item
165Floppy disk
5fafdf24 166@item
c4a7060c 167PCI/ISA PCI network adapters
0806e3f6 168@item
05d5818c
FB
169Serial ports
170@item
c0fe3827
FB
171Creative SoundBlaster 16 sound card
172@item
173ENSONIQ AudioPCI ES1370 sound card
174@item
e5c9a13e
AZ
175Intel 82801AA AC97 Audio compatible sound card
176@item
c0fe3827 177Adlib(OPL2) - Yamaha YM3812 compatible chip
b389dbfb 178@item
26463dbc
AZ
179Gravis Ultrasound GF1 sound card
180@item
cc53d26d 181CS4231A compatible sound card
182@item
b389dbfb 183PCI UHCI USB controller and a virtual USB hub.
0806e3f6
FB
184@end itemize
185
3f9f3aa1
FB
186SMP is supported with up to 255 CPUs.
187
1d1f8c33 188Note that adlib, gus and cs4231a are only available when QEMU was
189configured with --audio-card-list option containing the name(s) of
e5178e8d 190required card(s).
c0fe3827 191
15a34c63
FB
192QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
193VGA BIOS.
194
c0fe3827
FB
195QEMU uses YM3812 emulation by Tatsuyuki Satoh.
196
26463dbc
AZ
197QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
198by Tibor "TS" Schütz.
423d65f4 199
cc53d26d 200CS4231A is the chip used in Windows Sound System and GUSMAX products
201
0806e3f6
FB
202@c man end
203
debc7065 204@node pcsys_quickstart
1eb20527
FB
205@section Quick Start
206
285dc330 207Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
208
209@example
285dc330 210qemu linux.img
0806e3f6
FB
211@end example
212
213Linux should boot and give you a prompt.
214
6cc721cf 215@node sec_invocation
ec410fc9
FB
216@section Invocation
217
218@example
0806e3f6 219@c man begin SYNOPSIS
89dfe898 220usage: qemu [options] [@var{disk_image}]
0806e3f6 221@c man end
ec410fc9
FB
222@end example
223
0806e3f6 224@c man begin OPTIONS
d2c639d6
BS
225@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
226targets do not need a disk image.
ec410fc9 227
5824d651 228@include qemu-options.texi
ec410fc9 229
3e11db9a
FB
230@c man end
231
debc7065 232@node pcsys_keys
3e11db9a
FB
233@section Keys
234
235@c man begin OPTIONS
236
a1b74fe8
FB
237During the graphical emulation, you can use the following keys:
238@table @key
f9859310 239@item Ctrl-Alt-f
a1b74fe8 240Toggle full screen
a0a821a4 241
f9859310 242@item Ctrl-Alt-n
a0a821a4
FB
243Switch to virtual console 'n'. Standard console mappings are:
244@table @emph
245@item 1
246Target system display
247@item 2
248Monitor
249@item 3
250Serial port
a1b74fe8
FB
251@end table
252
f9859310 253@item Ctrl-Alt
a0a821a4
FB
254Toggle mouse and keyboard grab.
255@end table
256
3e11db9a
FB
257In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
258@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
259
a0a821a4
FB
260During emulation, if you are using the @option{-nographic} option, use
261@key{Ctrl-a h} to get terminal commands:
ec410fc9
FB
262
263@table @key
a1b74fe8 264@item Ctrl-a h
d2c639d6 265@item Ctrl-a ?
ec410fc9 266Print this help
3b46e624 267@item Ctrl-a x
366dfc52 268Exit emulator
3b46e624 269@item Ctrl-a s
1f47a922 270Save disk data back to file (if -snapshot)
20d8a3ed 271@item Ctrl-a t
d2c639d6 272Toggle console timestamps
a1b74fe8 273@item Ctrl-a b
1f673135 274Send break (magic sysrq in Linux)
a1b74fe8 275@item Ctrl-a c
1f673135 276Switch between console and monitor
a1b74fe8
FB
277@item Ctrl-a Ctrl-a
278Send Ctrl-a
ec410fc9 279@end table
0806e3f6
FB
280@c man end
281
282@ignore
283
1f673135
FB
284@c man begin SEEALSO
285The HTML documentation of QEMU for more precise information and Linux
286user mode emulator invocation.
287@c man end
288
289@c man begin AUTHOR
290Fabrice Bellard
291@c man end
292
293@end ignore
294
debc7065 295@node pcsys_monitor
1f673135
FB
296@section QEMU Monitor
297
298The QEMU monitor is used to give complex commands to the QEMU
299emulator. You can use it to:
300
301@itemize @minus
302
303@item
e598752a 304Remove or insert removable media images
89dfe898 305(such as CD-ROM or floppies).
1f673135 306
5fafdf24 307@item
1f673135
FB
308Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
309from a disk file.
310
311@item Inspect the VM state without an external debugger.
312
313@end itemize
314
315@subsection Commands
316
317The following commands are available:
318
319@table @option
320
89dfe898 321@item help or ? [@var{cmd}]
1f673135
FB
322Show the help for all commands or just for command @var{cmd}.
323
3b46e624 324@item commit
89dfe898 325Commit changes to the disk images (if -snapshot is used).
1f673135 326
89dfe898
TS
327@item info @var{subcommand}
328Show various information about the system state.
1f673135
FB
329
330@table @option
d2c639d6
BS
331@item info version
332show the version of QEMU
1f673135 333@item info network
41d03949 334show the various VLANs and the associated devices
d2c639d6
BS
335@item info chardev
336show the character devices
1f673135
FB
337@item info block
338show the block devices
d2c639d6
BS
339@item info block
340show block device statistics
1f673135
FB
341@item info registers
342show the cpu registers
d2c639d6
BS
343@item info cpus
344show infos for each CPU
1f673135
FB
345@item info history
346show the command line history
d2c639d6
BS
347@item info irq
348show the interrupts statistics (if available)
349@item info pic
350show i8259 (PIC) state
b389dbfb 351@item info pci
d2c639d6
BS
352show emulated PCI device info
353@item info tlb
354show virtual to physical memory mappings (i386 only)
355@item info mem
356show the active virtual memory mappings (i386 only)
357@item info hpet
358show state of HPET (i386 only)
359@item info kqemu
360show KQEMU information
361@item info kvm
362show KVM information
b389dbfb
FB
363@item info usb
364show USB devices plugged on the virtual USB hub
365@item info usbhost
366show all USB host devices
d2c639d6
BS
367@item info profile
368show profiling information
a3c25997
FB
369@item info capture
370show information about active capturing
13a2e80f
FB
371@item info snapshots
372show list of VM snapshots
d2c639d6
BS
373@item info status
374show the current VM status (running|paused)
375@item info pcmcia
376show guest PCMCIA status
455204eb
TS
377@item info mice
378show which guest mouse is receiving events
d2c639d6
BS
379@item info vnc
380show the vnc server status
381@item info name
382show the current VM name
383@item info uuid
384show the current VM UUID
385@item info cpustats
386show CPU statistics
387@item info slirp
388show SLIRP statistics (if available)
389@item info migrate
390show migration status
391@item info balloon
392show balloon information
1f673135
FB
393@end table
394
395@item q or quit
396Quit the emulator.
397
89dfe898 398@item eject [-f] @var{device}
e598752a 399Eject a removable medium (use -f to force it).
1f673135 400
89dfe898 401@item change @var{device} @var{setting}
f858dcae 402
89dfe898 403Change the configuration of a device.
f858dcae
TS
404
405@table @option
d2c639d6 406@item change @var{diskdevice} @var{filename} [@var{format}]
f858dcae
TS
407Change the medium for a removable disk device to point to @var{filename}. eg
408
409@example
4bf27c24 410(qemu) change ide1-cd0 /path/to/some.iso
f858dcae
TS
411@end example
412
d2c639d6
BS
413@var{format} is optional.
414
89dfe898 415@item change vnc @var{display},@var{options}
f858dcae
TS
416Change the configuration of the VNC server. The valid syntax for @var{display}
417and @var{options} are described at @ref{sec_invocation}. eg
418
419@example
420(qemu) change vnc localhost:1
421@end example
422
2569da0c 423@item change vnc password [@var{password}]
f858dcae 424
2569da0c
AL
425Change the password associated with the VNC server. If the new password is not
426supplied, the monitor will prompt for it to be entered. VNC passwords are only
427significant up to 8 letters. eg
f858dcae
TS
428
429@example
430(qemu) change vnc password
431Password: ********
432@end example
433
434@end table
1f673135 435
76655d6d
AL
436@item acl @var{subcommand} @var{aclname} @var{match} @var{index}
437
438Manage access control lists for network services. There are currently
439two named access control lists, @var{vnc.x509dname} and @var{vnc.username}
440matching on the x509 client certificate distinguished name, and SASL
441username respectively.
442
443@table @option
444@item acl show <aclname>
445list all the match rules in the access control list, and the default
446policy
447@item acl policy <aclname> @code{allow|deny}
448set the default access control list policy, used in the event that
449none of the explicit rules match. The default policy at startup is
450always @code{deny}
451@item acl allow <aclname> <match> [<index>]
452add a match to the access control list, allowing access. The match will
453normally be an exact username or x509 distinguished name, but can
9e995645 454optionally include wildcard globs. eg @code{*@@EXAMPLE.COM} to allow
76655d6d
AL
455all users in the @code{EXAMPLE.COM} kerberos realm. The match will
456normally be appended to the end of the ACL, but can be inserted
457earlier in the list if the optional @code{index} parameter is supplied.
458@item acl deny <aclname> <match> [<index>]
459add a match to the access control list, denying access. The match will
460normally be an exact username or x509 distinguished name, but can
9e995645 461optionally include wildcard globs. eg @code{*@@EXAMPLE.COM} to allow
76655d6d
AL
462all users in the @code{EXAMPLE.COM} kerberos realm. The match will
463normally be appended to the end of the ACL, but can be inserted
464earlier in the list if the optional @code{index} parameter is supplied.
465@item acl remove <aclname> <match>
466remove the specified match rule from the access control list.
467@item acl reset <aclname>
468remove all matches from the access control list, and set the default
469policy back to @code{deny}.
470@end table
471
89dfe898 472@item screendump @var{filename}
1f673135
FB
473Save screen into PPM image @var{filename}.
474
d2c639d6
BS
475@item logfile @var{filename}
476Output logs to @var{filename}.
a3c25997 477
89dfe898 478@item log @var{item1}[,...]
1f673135
FB
479Activate logging of the specified items to @file{/tmp/qemu.log}.
480
89dfe898 481@item savevm [@var{tag}|@var{id}]
13a2e80f
FB
482Create a snapshot of the whole virtual machine. If @var{tag} is
483provided, it is used as human readable identifier. If there is already
484a snapshot with the same tag or ID, it is replaced. More info at
485@ref{vm_snapshots}.
1f673135 486
89dfe898 487@item loadvm @var{tag}|@var{id}
13a2e80f
FB
488Set the whole virtual machine to the snapshot identified by the tag
489@var{tag} or the unique snapshot ID @var{id}.
490
89dfe898 491@item delvm @var{tag}|@var{id}
13a2e80f 492Delete the snapshot identified by @var{tag} or @var{id}.
1f673135 493
1b530a6d
AJ
494@item singlestep [off]
495Run the emulation in single step mode.
496If called with option off, the emulation returns to normal mode.
497
1f673135
FB
498@item stop
499Stop emulation.
500
501@item c or cont
502Resume emulation.
503
89dfe898
TS
504@item gdbserver [@var{port}]
505Start gdbserver session (default @var{port}=1234)
1f673135 506
89dfe898 507@item x/fmt @var{addr}
1f673135
FB
508Virtual memory dump starting at @var{addr}.
509
89dfe898 510@item xp /@var{fmt} @var{addr}
1f673135
FB
511Physical memory dump starting at @var{addr}.
512
513@var{fmt} is a format which tells the command how to format the
514data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
515
516@table @var
5fafdf24 517@item count
1f673135
FB
518is the number of items to be dumped.
519
520@item format
4be456f1 521can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1f673135
FB
522c (char) or i (asm instruction).
523
524@item size
52c00a5f
FB
525can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
526@code{h} or @code{w} can be specified with the @code{i} format to
527respectively select 16 or 32 bit code instruction size.
1f673135
FB
528
529@end table
530
5fafdf24 531Examples:
1f673135
FB
532@itemize
533@item
534Dump 10 instructions at the current instruction pointer:
5fafdf24 535@example
1f673135
FB
536(qemu) x/10i $eip
5370x90107063: ret
5380x90107064: sti
5390x90107065: lea 0x0(%esi,1),%esi
5400x90107069: lea 0x0(%edi,1),%edi
5410x90107070: ret
5420x90107071: jmp 0x90107080
5430x90107073: nop
5440x90107074: nop
5450x90107075: nop
5460x90107076: nop
547@end example
548
549@item
550Dump 80 16 bit values at the start of the video memory.
5fafdf24 551@smallexample
1f673135
FB
552(qemu) xp/80hx 0xb8000
5530x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
5540x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
5550x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
5560x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
5570x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
5580x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
5590x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
5600x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
5610x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
5620x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
debc7065 563@end smallexample
1f673135
FB
564@end itemize
565
89dfe898 566@item p or print/@var{fmt} @var{expr}
1f673135
FB
567
568Print expression value. Only the @var{format} part of @var{fmt} is
569used.
0806e3f6 570
89dfe898 571@item sendkey @var{keys}
a3a91a35 572
54ae1fbd
AJ
573Send @var{keys} to the emulator. @var{keys} could be the name of the
574key or @code{#} followed by the raw value in either decimal or hexadecimal
575format. Use @code{-} to press several keys simultaneously. Example:
a3a91a35
FB
576@example
577sendkey ctrl-alt-f1
578@end example
579
580This command is useful to send keys that your graphical user interface
581intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
582
15a34c63
FB
583@item system_reset
584
585Reset the system.
586
d2c639d6 587@item system_powerdown
0ecdffbb 588
d2c639d6 589Power down the system (if supported).
0ecdffbb 590
d2c639d6
BS
591@item sum @var{addr} @var{size}
592
593Compute the checksum of a memory region.
0ecdffbb 594
89dfe898 595@item usb_add @var{devname}
b389dbfb 596
0aff66b5
PB
597Add the USB device @var{devname}. For details of available devices see
598@ref{usb_devices}
b389dbfb 599
89dfe898 600@item usb_del @var{devname}
b389dbfb
FB
601
602Remove the USB device @var{devname} from the QEMU virtual USB
603hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
604command @code{info usb} to see the devices you can remove.
605
d2c639d6
BS
606@item mouse_move @var{dx} @var{dy} [@var{dz}]
607Move the active mouse to the specified coordinates @var{dx} @var{dy}
608with optional scroll axis @var{dz}.
609
610@item mouse_button @var{val}
611Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
612
613@item mouse_set @var{index}
614Set which mouse device receives events at given @var{index}, index
615can be obtained with
616@example
617info mice
618@end example
619
620@item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
621Capture audio into @var{filename}. Using sample rate @var{frequency}
622bits per sample @var{bits} and number of channels @var{channels}.
623
624Defaults:
625@itemize @minus
626@item Sample rate = 44100 Hz - CD quality
627@item Bits = 16
628@item Number of channels = 2 - Stereo
629@end itemize
630
631@item stopcapture @var{index}
632Stop capture with a given @var{index}, index can be obtained with
633@example
634info capture
635@end example
636
637@item memsave @var{addr} @var{size} @var{file}
638save to disk virtual memory dump starting at @var{addr} of size @var{size}.
639
640@item pmemsave @var{addr} @var{size} @var{file}
641save to disk physical memory dump starting at @var{addr} of size @var{size}.
642
643@item boot_set @var{bootdevicelist}
644
645Define new values for the boot device list. Those values will override
646the values specified on the command line through the @code{-boot} option.
647
648The values that can be specified here depend on the machine type, but are
649the same that can be specified in the @code{-boot} command line option.
650
651@item nmi @var{cpu}
652Inject an NMI on the given CPU.
653
654@item migrate [-d] @var{uri}
655Migrate to @var{uri} (using -d to not wait for completion).
656
657@item migrate_cancel
658Cancel the current VM migration.
659
660@item migrate_set_speed @var{value}
661Set maximum speed to @var{value} (in bytes) for migrations.
662
663@item balloon @var{value}
664Request VM to change its memory allocation to @var{value} (in MB).
665
666@item set_link @var{name} [up|down]
667Set link @var{name} up or down.
668
1f673135 669@end table
0806e3f6 670
1f673135
FB
671@subsection Integer expressions
672
673The monitor understands integers expressions for every integer
674argument. You can use register names to get the value of specifics
675CPU registers by prefixing them with @emph{$}.
ec410fc9 676
1f47a922
FB
677@node disk_images
678@section Disk Images
679
acd935ef
FB
680Since version 0.6.1, QEMU supports many disk image formats, including
681growable disk images (their size increase as non empty sectors are
13a2e80f
FB
682written), compressed and encrypted disk images. Version 0.8.3 added
683the new qcow2 disk image format which is essential to support VM
684snapshots.
1f47a922 685
debc7065
FB
686@menu
687* disk_images_quickstart:: Quick start for disk image creation
688* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 689* vm_snapshots:: VM snapshots
debc7065 690* qemu_img_invocation:: qemu-img Invocation
975b092b 691* qemu_nbd_invocation:: qemu-nbd Invocation
19cb3738 692* host_drives:: Using host drives
debc7065 693* disk_images_fat_images:: Virtual FAT disk images
75818250 694* disk_images_nbd:: NBD access
debc7065
FB
695@end menu
696
697@node disk_images_quickstart
acd935ef
FB
698@subsection Quick start for disk image creation
699
700You can create a disk image with the command:
1f47a922 701@example
acd935ef 702qemu-img create myimage.img mysize
1f47a922 703@end example
acd935ef
FB
704where @var{myimage.img} is the disk image filename and @var{mysize} is its
705size in kilobytes. You can add an @code{M} suffix to give the size in
706megabytes and a @code{G} suffix for gigabytes.
707
debc7065 708See @ref{qemu_img_invocation} for more information.
1f47a922 709
debc7065 710@node disk_images_snapshot_mode
1f47a922
FB
711@subsection Snapshot mode
712
713If you use the option @option{-snapshot}, all disk images are
714considered as read only. When sectors in written, they are written in
715a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
716write back to the raw disk images by using the @code{commit} monitor
717command (or @key{C-a s} in the serial console).
1f47a922 718
13a2e80f
FB
719@node vm_snapshots
720@subsection VM snapshots
721
722VM snapshots are snapshots of the complete virtual machine including
723CPU state, RAM, device state and the content of all the writable
724disks. In order to use VM snapshots, you must have at least one non
725removable and writable block device using the @code{qcow2} disk image
726format. Normally this device is the first virtual hard drive.
727
728Use the monitor command @code{savevm} to create a new VM snapshot or
729replace an existing one. A human readable name can be assigned to each
19d36792 730snapshot in addition to its numerical ID.
13a2e80f
FB
731
732Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
733a VM snapshot. @code{info snapshots} lists the available snapshots
734with their associated information:
735
736@example
737(qemu) info snapshots
738Snapshot devices: hda
739Snapshot list (from hda):
740ID TAG VM SIZE DATE VM CLOCK
7411 start 41M 2006-08-06 12:38:02 00:00:14.954
7422 40M 2006-08-06 12:43:29 00:00:18.633
7433 msys 40M 2006-08-06 12:44:04 00:00:23.514
744@end example
745
746A VM snapshot is made of a VM state info (its size is shown in
747@code{info snapshots}) and a snapshot of every writable disk image.
748The VM state info is stored in the first @code{qcow2} non removable
749and writable block device. The disk image snapshots are stored in
750every disk image. The size of a snapshot in a disk image is difficult
751to evaluate and is not shown by @code{info snapshots} because the
752associated disk sectors are shared among all the snapshots to save
19d36792
FB
753disk space (otherwise each snapshot would need a full copy of all the
754disk images).
13a2e80f
FB
755
756When using the (unrelated) @code{-snapshot} option
757(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
758but they are deleted as soon as you exit QEMU.
759
760VM snapshots currently have the following known limitations:
761@itemize
5fafdf24 762@item
13a2e80f
FB
763They cannot cope with removable devices if they are removed or
764inserted after a snapshot is done.
5fafdf24 765@item
13a2e80f
FB
766A few device drivers still have incomplete snapshot support so their
767state is not saved or restored properly (in particular USB).
768@end itemize
769
acd935ef
FB
770@node qemu_img_invocation
771@subsection @code{qemu-img} Invocation
1f47a922 772
acd935ef 773@include qemu-img.texi
05efe46e 774
975b092b
TS
775@node qemu_nbd_invocation
776@subsection @code{qemu-nbd} Invocation
777
778@include qemu-nbd.texi
779
19cb3738
FB
780@node host_drives
781@subsection Using host drives
782
783In addition to disk image files, QEMU can directly access host
784devices. We describe here the usage for QEMU version >= 0.8.3.
785
786@subsubsection Linux
787
788On Linux, you can directly use the host device filename instead of a
4be456f1 789disk image filename provided you have enough privileges to access
19cb3738
FB
790it. For example, use @file{/dev/cdrom} to access to the CDROM or
791@file{/dev/fd0} for the floppy.
792
f542086d 793@table @code
19cb3738
FB
794@item CD
795You can specify a CDROM device even if no CDROM is loaded. QEMU has
796specific code to detect CDROM insertion or removal. CDROM ejection by
797the guest OS is supported. Currently only data CDs are supported.
798@item Floppy
799You can specify a floppy device even if no floppy is loaded. Floppy
800removal is currently not detected accurately (if you change floppy
801without doing floppy access while the floppy is not loaded, the guest
802OS will think that the same floppy is loaded).
803@item Hard disks
804Hard disks can be used. Normally you must specify the whole disk
805(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
806see it as a partitioned disk. WARNING: unless you know what you do, it
807is better to only make READ-ONLY accesses to the hard disk otherwise
808you may corrupt your host data (use the @option{-snapshot} command
809line option or modify the device permissions accordingly).
810@end table
811
812@subsubsection Windows
813
01781963
FB
814@table @code
815@item CD
4be456f1 816The preferred syntax is the drive letter (e.g. @file{d:}). The
01781963
FB
817alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
818supported as an alias to the first CDROM drive.
19cb3738 819
e598752a 820Currently there is no specific code to handle removable media, so it
19cb3738
FB
821is better to use the @code{change} or @code{eject} monitor commands to
822change or eject media.
01781963 823@item Hard disks
89dfe898 824Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
01781963
FB
825where @var{N} is the drive number (0 is the first hard disk).
826
827WARNING: unless you know what you do, it is better to only make
828READ-ONLY accesses to the hard disk otherwise you may corrupt your
829host data (use the @option{-snapshot} command line so that the
830modifications are written in a temporary file).
831@end table
832
19cb3738
FB
833
834@subsubsection Mac OS X
835
5fafdf24 836@file{/dev/cdrom} is an alias to the first CDROM.
19cb3738 837
e598752a 838Currently there is no specific code to handle removable media, so it
19cb3738
FB
839is better to use the @code{change} or @code{eject} monitor commands to
840change or eject media.
841
debc7065 842@node disk_images_fat_images
2c6cadd4
FB
843@subsection Virtual FAT disk images
844
845QEMU can automatically create a virtual FAT disk image from a
846directory tree. In order to use it, just type:
847
5fafdf24 848@example
2c6cadd4
FB
849qemu linux.img -hdb fat:/my_directory
850@end example
851
852Then you access access to all the files in the @file{/my_directory}
853directory without having to copy them in a disk image or to export
854them via SAMBA or NFS. The default access is @emph{read-only}.
855
856Floppies can be emulated with the @code{:floppy:} option:
857
5fafdf24 858@example
2c6cadd4
FB
859qemu linux.img -fda fat:floppy:/my_directory
860@end example
861
862A read/write support is available for testing (beta stage) with the
863@code{:rw:} option:
864
5fafdf24 865@example
2c6cadd4
FB
866qemu linux.img -fda fat:floppy:rw:/my_directory
867@end example
868
869What you should @emph{never} do:
870@itemize
871@item use non-ASCII filenames ;
872@item use "-snapshot" together with ":rw:" ;
85b2c688
FB
873@item expect it to work when loadvm'ing ;
874@item write to the FAT directory on the host system while accessing it with the guest system.
2c6cadd4
FB
875@end itemize
876
75818250
TS
877@node disk_images_nbd
878@subsection NBD access
879
880QEMU can access directly to block device exported using the Network Block Device
881protocol.
882
883@example
884qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
885@end example
886
887If the NBD server is located on the same host, you can use an unix socket instead
888of an inet socket:
889
890@example
891qemu linux.img -hdb nbd:unix:/tmp/my_socket
892@end example
893
894In this case, the block device must be exported using qemu-nbd:
895
896@example
897qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
898@end example
899
900The use of qemu-nbd allows to share a disk between several guests:
901@example
902qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
903@end example
904
905and then you can use it with two guests:
906@example
907qemu linux1.img -hdb nbd:unix:/tmp/my_socket
908qemu linux2.img -hdb nbd:unix:/tmp/my_socket
909@end example
910
debc7065 911@node pcsys_network
9d4fb82e
FB
912@section Network emulation
913
4be456f1 914QEMU can simulate several network cards (PCI or ISA cards on the PC
41d03949
FB
915target) and can connect them to an arbitrary number of Virtual Local
916Area Networks (VLANs). Host TAP devices can be connected to any QEMU
917VLAN. VLAN can be connected between separate instances of QEMU to
4be456f1 918simulate large networks. For simpler usage, a non privileged user mode
41d03949
FB
919network stack can replace the TAP device to have a basic network
920connection.
921
922@subsection VLANs
9d4fb82e 923
41d03949
FB
924QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
925connection between several network devices. These devices can be for
926example QEMU virtual Ethernet cards or virtual Host ethernet devices
927(TAP devices).
9d4fb82e 928
41d03949
FB
929@subsection Using TAP network interfaces
930
931This is the standard way to connect QEMU to a real network. QEMU adds
932a virtual network device on your host (called @code{tapN}), and you
933can then configure it as if it was a real ethernet card.
9d4fb82e 934
8f40c388
FB
935@subsubsection Linux host
936
9d4fb82e
FB
937As an example, you can download the @file{linux-test-xxx.tar.gz}
938archive and copy the script @file{qemu-ifup} in @file{/etc} and
939configure properly @code{sudo} so that the command @code{ifconfig}
940contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 941that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
942device @file{/dev/net/tun} must be present.
943
ee0f4751
FB
944See @ref{sec_invocation} to have examples of command lines using the
945TAP network interfaces.
9d4fb82e 946
8f40c388
FB
947@subsubsection Windows host
948
949There is a virtual ethernet driver for Windows 2000/XP systems, called
950TAP-Win32. But it is not included in standard QEMU for Windows,
951so you will need to get it separately. It is part of OpenVPN package,
952so download OpenVPN from : @url{http://openvpn.net/}.
953
9d4fb82e
FB
954@subsection Using the user mode network stack
955
41d03949
FB
956By using the option @option{-net user} (default configuration if no
957@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 958network stack (you don't need root privilege to use the virtual
41d03949 959network). The virtual network configuration is the following:
9d4fb82e
FB
960
961@example
962
41d03949
FB
963 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
964 | (10.0.2.2)
9d4fb82e 965 |
2518bd0d 966 ----> DNS server (10.0.2.3)
3b46e624 967 |
2518bd0d 968 ----> SMB server (10.0.2.4)
9d4fb82e
FB
969@end example
970
971The QEMU VM behaves as if it was behind a firewall which blocks all
972incoming connections. You can use a DHCP client to automatically
41d03949
FB
973configure the network in the QEMU VM. The DHCP server assign addresses
974to the hosts starting from 10.0.2.15.
9d4fb82e
FB
975
976In order to check that the user mode network is working, you can ping
977the address 10.0.2.2 and verify that you got an address in the range
97810.0.2.x from the QEMU virtual DHCP server.
979
b415a407 980Note that @code{ping} is not supported reliably to the internet as it
4be456f1 981would require root privileges. It means you can only ping the local
b415a407
FB
982router (10.0.2.2).
983
9bf05444
FB
984When using the built-in TFTP server, the router is also the TFTP
985server.
986
987When using the @option{-redir} option, TCP or UDP connections can be
988redirected from the host to the guest. It allows for example to
989redirect X11, telnet or SSH connections.
443f1376 990
41d03949
FB
991@subsection Connecting VLANs between QEMU instances
992
993Using the @option{-net socket} option, it is possible to make VLANs
994that span several QEMU instances. See @ref{sec_invocation} to have a
995basic example.
996
9d4fb82e
FB
997@node direct_linux_boot
998@section Direct Linux Boot
1f673135
FB
999
1000This section explains how to launch a Linux kernel inside QEMU without
1001having to make a full bootable image. It is very useful for fast Linux
ee0f4751 1002kernel testing.
1f673135 1003
ee0f4751 1004The syntax is:
1f673135 1005@example
ee0f4751 1006qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
1007@end example
1008
ee0f4751
FB
1009Use @option{-kernel} to provide the Linux kernel image and
1010@option{-append} to give the kernel command line arguments. The
1011@option{-initrd} option can be used to provide an INITRD image.
1f673135 1012
ee0f4751
FB
1013When using the direct Linux boot, a disk image for the first hard disk
1014@file{hda} is required because its boot sector is used to launch the
1015Linux kernel.
1f673135 1016
ee0f4751
FB
1017If you do not need graphical output, you can disable it and redirect
1018the virtual serial port and the QEMU monitor to the console with the
1019@option{-nographic} option. The typical command line is:
1f673135 1020@example
ee0f4751
FB
1021qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1022 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
1023@end example
1024
ee0f4751
FB
1025Use @key{Ctrl-a c} to switch between the serial console and the
1026monitor (@pxref{pcsys_keys}).
1f673135 1027
debc7065 1028@node pcsys_usb
b389dbfb
FB
1029@section USB emulation
1030
0aff66b5
PB
1031QEMU emulates a PCI UHCI USB controller. You can virtually plug
1032virtual USB devices or real host USB devices (experimental, works only
1033on Linux hosts). Qemu will automatically create and connect virtual USB hubs
f542086d 1034as necessary to connect multiple USB devices.
b389dbfb 1035
0aff66b5
PB
1036@menu
1037* usb_devices::
1038* host_usb_devices::
1039@end menu
1040@node usb_devices
1041@subsection Connecting USB devices
b389dbfb 1042
0aff66b5
PB
1043USB devices can be connected with the @option{-usbdevice} commandline option
1044or the @code{usb_add} monitor command. Available devices are:
b389dbfb 1045
db380c06
AZ
1046@table @code
1047@item mouse
0aff66b5 1048Virtual Mouse. This will override the PS/2 mouse emulation when activated.
db380c06 1049@item tablet
c6d46c20 1050Pointer device that uses absolute coordinates (like a touchscreen).
0aff66b5
PB
1051This means qemu is able to report the mouse position without having
1052to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
db380c06 1053@item disk:@var{file}
0aff66b5 1054Mass storage device based on @var{file} (@pxref{disk_images})
db380c06 1055@item host:@var{bus.addr}
0aff66b5
PB
1056Pass through the host device identified by @var{bus.addr}
1057(Linux only)
db380c06 1058@item host:@var{vendor_id:product_id}
0aff66b5
PB
1059Pass through the host device identified by @var{vendor_id:product_id}
1060(Linux only)
db380c06 1061@item wacom-tablet
f6d2a316
AZ
1062Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1063above but it can be used with the tslib library because in addition to touch
1064coordinates it reports touch pressure.
db380c06 1065@item keyboard
47b2d338 1066Standard USB keyboard. Will override the PS/2 keyboard (if present).
db380c06
AZ
1067@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1068Serial converter. This emulates an FTDI FT232BM chip connected to host character
1069device @var{dev}. The available character devices are the same as for the
1070@code{-serial} option. The @code{vendorid} and @code{productid} options can be
a11d070e 1071used to override the default 0403:6001. For instance,
db380c06
AZ
1072@example
1073usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1074@end example
1075will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1076serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
2e4d9fb1
AJ
1077@item braille
1078Braille device. This will use BrlAPI to display the braille output on a real
1079or fake device.
9ad97e65
AZ
1080@item net:@var{options}
1081Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
1082specifies NIC options as with @code{-net nic,}@var{options} (see description).
1083For instance, user-mode networking can be used with
6c9f886c 1084@example
9ad97e65 1085qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
6c9f886c
AZ
1086@end example
1087Currently this cannot be used in machines that support PCI NICs.
2d564691
AZ
1088@item bt[:@var{hci-type}]
1089Bluetooth dongle whose type is specified in the same format as with
1090the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
1091no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1092This USB device implements the USB Transport Layer of HCI. Example
1093usage:
1094@example
1095qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
1096@end example
0aff66b5 1097@end table
b389dbfb 1098
0aff66b5 1099@node host_usb_devices
b389dbfb
FB
1100@subsection Using host USB devices on a Linux host
1101
1102WARNING: this is an experimental feature. QEMU will slow down when
1103using it. USB devices requiring real time streaming (i.e. USB Video
1104Cameras) are not supported yet.
1105
1106@enumerate
5fafdf24 1107@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
1108is actually using the USB device. A simple way to do that is simply to
1109disable the corresponding kernel module by renaming it from @file{mydriver.o}
1110to @file{mydriver.o.disabled}.
1111
1112@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1113@example
1114ls /proc/bus/usb
1115001 devices drivers
1116@end example
1117
1118@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1119@example
1120chown -R myuid /proc/bus/usb
1121@end example
1122
1123@item Launch QEMU and do in the monitor:
5fafdf24 1124@example
b389dbfb
FB
1125info usbhost
1126 Device 1.2, speed 480 Mb/s
1127 Class 00: USB device 1234:5678, USB DISK
1128@end example
1129You should see the list of the devices you can use (Never try to use
1130hubs, it won't work).
1131
1132@item Add the device in QEMU by using:
5fafdf24 1133@example
b389dbfb
FB
1134usb_add host:1234:5678
1135@end example
1136
1137Normally the guest OS should report that a new USB device is
1138plugged. You can use the option @option{-usbdevice} to do the same.
1139
1140@item Now you can try to use the host USB device in QEMU.
1141
1142@end enumerate
1143
1144When relaunching QEMU, you may have to unplug and plug again the USB
1145device to make it work again (this is a bug).
1146
f858dcae
TS
1147@node vnc_security
1148@section VNC security
1149
1150The VNC server capability provides access to the graphical console
1151of the guest VM across the network. This has a number of security
1152considerations depending on the deployment scenarios.
1153
1154@menu
1155* vnc_sec_none::
1156* vnc_sec_password::
1157* vnc_sec_certificate::
1158* vnc_sec_certificate_verify::
1159* vnc_sec_certificate_pw::
2f9606b3
AL
1160* vnc_sec_sasl::
1161* vnc_sec_certificate_sasl::
f858dcae 1162* vnc_generate_cert::
2f9606b3 1163* vnc_setup_sasl::
f858dcae
TS
1164@end menu
1165@node vnc_sec_none
1166@subsection Without passwords
1167
1168The simplest VNC server setup does not include any form of authentication.
1169For this setup it is recommended to restrict it to listen on a UNIX domain
1170socket only. For example
1171
1172@example
1173qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1174@end example
1175
1176This ensures that only users on local box with read/write access to that
1177path can access the VNC server. To securely access the VNC server from a
1178remote machine, a combination of netcat+ssh can be used to provide a secure
1179tunnel.
1180
1181@node vnc_sec_password
1182@subsection With passwords
1183
1184The VNC protocol has limited support for password based authentication. Since
1185the protocol limits passwords to 8 characters it should not be considered
1186to provide high security. The password can be fairly easily brute-forced by
1187a client making repeat connections. For this reason, a VNC server using password
1188authentication should be restricted to only listen on the loopback interface
34a3d239 1189or UNIX domain sockets. Password authentication is requested with the @code{password}
f858dcae
TS
1190option, and then once QEMU is running the password is set with the monitor. Until
1191the monitor is used to set the password all clients will be rejected.
1192
1193@example
1194qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1195(qemu) change vnc password
1196Password: ********
1197(qemu)
1198@end example
1199
1200@node vnc_sec_certificate
1201@subsection With x509 certificates
1202
1203The QEMU VNC server also implements the VeNCrypt extension allowing use of
1204TLS for encryption of the session, and x509 certificates for authentication.
1205The use of x509 certificates is strongly recommended, because TLS on its
1206own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1207support provides a secure session, but no authentication. This allows any
1208client to connect, and provides an encrypted session.
1209
1210@example
1211qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1212@end example
1213
1214In the above example @code{/etc/pki/qemu} should contain at least three files,
1215@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1216users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1217NB the @code{server-key.pem} file should be protected with file mode 0600 to
1218only be readable by the user owning it.
1219
1220@node vnc_sec_certificate_verify
1221@subsection With x509 certificates and client verification
1222
1223Certificates can also provide a means to authenticate the client connecting.
1224The server will request that the client provide a certificate, which it will
1225then validate against the CA certificate. This is a good choice if deploying
1226in an environment with a private internal certificate authority.
1227
1228@example
1229qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1230@end example
1231
1232
1233@node vnc_sec_certificate_pw
1234@subsection With x509 certificates, client verification and passwords
1235
1236Finally, the previous method can be combined with VNC password authentication
1237to provide two layers of authentication for clients.
1238
1239@example
1240qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1241(qemu) change vnc password
1242Password: ********
1243(qemu)
1244@end example
1245
2f9606b3
AL
1246
1247@node vnc_sec_sasl
1248@subsection With SASL authentication
1249
1250The SASL authentication method is a VNC extension, that provides an
1251easily extendable, pluggable authentication method. This allows for
1252integration with a wide range of authentication mechanisms, such as
1253PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1254The strength of the authentication depends on the exact mechanism
1255configured. If the chosen mechanism also provides a SSF layer, then
1256it will encrypt the datastream as well.
1257
1258Refer to the later docs on how to choose the exact SASL mechanism
1259used for authentication, but assuming use of one supporting SSF,
1260then QEMU can be launched with:
1261
1262@example
1263qemu [...OPTIONS...] -vnc :1,sasl -monitor stdio
1264@end example
1265
1266@node vnc_sec_certificate_sasl
1267@subsection With x509 certificates and SASL authentication
1268
1269If the desired SASL authentication mechanism does not supported
1270SSF layers, then it is strongly advised to run it in combination
1271with TLS and x509 certificates. This provides securely encrypted
1272data stream, avoiding risk of compromising of the security
1273credentials. This can be enabled, by combining the 'sasl' option
1274with the aforementioned TLS + x509 options:
1275
1276@example
1277qemu [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
1278@end example
1279
1280
f858dcae
TS
1281@node vnc_generate_cert
1282@subsection Generating certificates for VNC
1283
1284The GNU TLS packages provides a command called @code{certtool} which can
1285be used to generate certificates and keys in PEM format. At a minimum it
1286is neccessary to setup a certificate authority, and issue certificates to
1287each server. If using certificates for authentication, then each client
1288will also need to be issued a certificate. The recommendation is for the
1289server to keep its certificates in either @code{/etc/pki/qemu} or for
1290unprivileged users in @code{$HOME/.pki/qemu}.
1291
1292@menu
1293* vnc_generate_ca::
1294* vnc_generate_server::
1295* vnc_generate_client::
1296@end menu
1297@node vnc_generate_ca
1298@subsubsection Setup the Certificate Authority
1299
1300This step only needs to be performed once per organization / organizational
1301unit. First the CA needs a private key. This key must be kept VERY secret
1302and secure. If this key is compromised the entire trust chain of the certificates
1303issued with it is lost.
1304
1305@example
1306# certtool --generate-privkey > ca-key.pem
1307@end example
1308
1309A CA needs to have a public certificate. For simplicity it can be a self-signed
1310certificate, or one issue by a commercial certificate issuing authority. To
1311generate a self-signed certificate requires one core piece of information, the
1312name of the organization.
1313
1314@example
1315# cat > ca.info <<EOF
1316cn = Name of your organization
1317ca
1318cert_signing_key
1319EOF
1320# certtool --generate-self-signed \
1321 --load-privkey ca-key.pem
1322 --template ca.info \
1323 --outfile ca-cert.pem
1324@end example
1325
1326The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1327TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1328
1329@node vnc_generate_server
1330@subsubsection Issuing server certificates
1331
1332Each server (or host) needs to be issued with a key and certificate. When connecting
1333the certificate is sent to the client which validates it against the CA certificate.
1334The core piece of information for a server certificate is the hostname. This should
1335be the fully qualified hostname that the client will connect with, since the client
1336will typically also verify the hostname in the certificate. On the host holding the
1337secure CA private key:
1338
1339@example
1340# cat > server.info <<EOF
1341organization = Name of your organization
1342cn = server.foo.example.com
1343tls_www_server
1344encryption_key
1345signing_key
1346EOF
1347# certtool --generate-privkey > server-key.pem
1348# certtool --generate-certificate \
1349 --load-ca-certificate ca-cert.pem \
1350 --load-ca-privkey ca-key.pem \
1351 --load-privkey server server-key.pem \
1352 --template server.info \
1353 --outfile server-cert.pem
1354@end example
1355
1356The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1357to the server for which they were generated. The @code{server-key.pem} is security
1358sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1359
1360@node vnc_generate_client
1361@subsubsection Issuing client certificates
1362
1363If the QEMU VNC server is to use the @code{x509verify} option to validate client
1364certificates as its authentication mechanism, each client also needs to be issued
1365a certificate. The client certificate contains enough metadata to uniquely identify
1366the client, typically organization, state, city, building, etc. On the host holding
1367the secure CA private key:
1368
1369@example
1370# cat > client.info <<EOF
1371country = GB
1372state = London
1373locality = London
1374organiazation = Name of your organization
1375cn = client.foo.example.com
1376tls_www_client
1377encryption_key
1378signing_key
1379EOF
1380# certtool --generate-privkey > client-key.pem
1381# certtool --generate-certificate \
1382 --load-ca-certificate ca-cert.pem \
1383 --load-ca-privkey ca-key.pem \
1384 --load-privkey client-key.pem \
1385 --template client.info \
1386 --outfile client-cert.pem
1387@end example
1388
1389The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1390copied to the client for which they were generated.
1391
2f9606b3
AL
1392
1393@node vnc_setup_sasl
1394
1395@subsection Configuring SASL mechanisms
1396
1397The following documentation assumes use of the Cyrus SASL implementation on a
1398Linux host, but the principals should apply to any other SASL impl. When SASL
1399is enabled, the mechanism configuration will be loaded from system default
1400SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1401unprivileged user, an environment variable SASL_CONF_PATH can be used
1402to make it search alternate locations for the service config.
1403
1404The default configuration might contain
1405
1406@example
1407mech_list: digest-md5
1408sasldb_path: /etc/qemu/passwd.db
1409@end example
1410
1411This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1412Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1413in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1414command. While this mechanism is easy to configure and use, it is not
1415considered secure by modern standards, so only suitable for developers /
1416ad-hoc testing.
1417
1418A more serious deployment might use Kerberos, which is done with the 'gssapi'
1419mechanism
1420
1421@example
1422mech_list: gssapi
1423keytab: /etc/qemu/krb5.tab
1424@end example
1425
1426For this to work the administrator of your KDC must generate a Kerberos
1427principal for the server, with a name of 'qemu/somehost.example.com@@EXAMPLE.COM'
1428replacing 'somehost.example.com' with the fully qualified host name of the
1429machine running QEMU, and 'EXAMPLE.COM' with the Keberos Realm.
1430
1431Other configurations will be left as an exercise for the reader. It should
1432be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1433encryption. For all other mechanisms, VNC should always be configured to
1434use TLS and x509 certificates to protect security credentials from snooping.
1435
0806e3f6 1436@node gdb_usage
da415d54
FB
1437@section GDB usage
1438
1439QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1440'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1441
9d4520d0 1442In order to use gdb, launch qemu with the '-s' option. It will wait for a
da415d54
FB
1443gdb connection:
1444@example
debc7065
FB
1445> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1446 -append "root=/dev/hda"
da415d54
FB
1447Connected to host network interface: tun0
1448Waiting gdb connection on port 1234
1449@end example
1450
1451Then launch gdb on the 'vmlinux' executable:
1452@example
1453> gdb vmlinux
1454@end example
1455
1456In gdb, connect to QEMU:
1457@example
6c9bf893 1458(gdb) target remote localhost:1234
da415d54
FB
1459@end example
1460
1461Then you can use gdb normally. For example, type 'c' to launch the kernel:
1462@example
1463(gdb) c
1464@end example
1465
0806e3f6
FB
1466Here are some useful tips in order to use gdb on system code:
1467
1468@enumerate
1469@item
1470Use @code{info reg} to display all the CPU registers.
1471@item
1472Use @code{x/10i $eip} to display the code at the PC position.
1473@item
1474Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1475@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1476@end enumerate
1477
60897d36
EI
1478Advanced debugging options:
1479
1480The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 1481@table @code
60897d36
EI
1482@item maintenance packet qqemu.sstepbits
1483
1484This will display the MASK bits used to control the single stepping IE:
1485@example
1486(gdb) maintenance packet qqemu.sstepbits
1487sending: "qqemu.sstepbits"
1488received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1489@end example
1490@item maintenance packet qqemu.sstep
1491
1492This will display the current value of the mask used when single stepping IE:
1493@example
1494(gdb) maintenance packet qqemu.sstep
1495sending: "qqemu.sstep"
1496received: "0x7"
1497@end example
1498@item maintenance packet Qqemu.sstep=HEX_VALUE
1499
1500This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1501@example
1502(gdb) maintenance packet Qqemu.sstep=0x5
1503sending: "qemu.sstep=0x5"
1504received: "OK"
1505@end example
94d45e44 1506@end table
60897d36 1507
debc7065 1508@node pcsys_os_specific
1a084f3d
FB
1509@section Target OS specific information
1510
1511@subsection Linux
1512
15a34c63
FB
1513To have access to SVGA graphic modes under X11, use the @code{vesa} or
1514the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1515color depth in the guest and the host OS.
1a084f3d 1516
e3371e62
FB
1517When using a 2.6 guest Linux kernel, you should add the option
1518@code{clock=pit} on the kernel command line because the 2.6 Linux
1519kernels make very strict real time clock checks by default that QEMU
1520cannot simulate exactly.
1521
7c3fc84d
FB
1522When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1523not activated because QEMU is slower with this patch. The QEMU
1524Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1525Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1526patch by default. Newer kernels don't have it.
1527
1a084f3d
FB
1528@subsection Windows
1529
1530If you have a slow host, using Windows 95 is better as it gives the
1531best speed. Windows 2000 is also a good choice.
1532
e3371e62
FB
1533@subsubsection SVGA graphic modes support
1534
1535QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1536card. All Windows versions starting from Windows 95 should recognize
1537and use this graphic card. For optimal performances, use 16 bit color
1538depth in the guest and the host OS.
1a084f3d 1539
3cb0853a
FB
1540If you are using Windows XP as guest OS and if you want to use high
1541resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
15421280x1024x16), then you should use the VESA VBE virtual graphic card
1543(option @option{-std-vga}).
1544
e3371e62
FB
1545@subsubsection CPU usage reduction
1546
1547Windows 9x does not correctly use the CPU HLT
15a34c63
FB
1548instruction. The result is that it takes host CPU cycles even when
1549idle. You can install the utility from
1550@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1551problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 1552
9d0a8e6f 1553@subsubsection Windows 2000 disk full problem
e3371e62 1554
9d0a8e6f
FB
1555Windows 2000 has a bug which gives a disk full problem during its
1556installation. When installing it, use the @option{-win2k-hack} QEMU
1557option to enable a specific workaround. After Windows 2000 is
1558installed, you no longer need this option (this option slows down the
1559IDE transfers).
e3371e62 1560
6cc721cf
FB
1561@subsubsection Windows 2000 shutdown
1562
1563Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1564can. It comes from the fact that Windows 2000 does not automatically
1565use the APM driver provided by the BIOS.
1566
1567In order to correct that, do the following (thanks to Struan
1568Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1569Add/Troubleshoot a device => Add a new device & Next => No, select the
1570hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1571(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 1572correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
1573
1574@subsubsection Share a directory between Unix and Windows
1575
1576See @ref{sec_invocation} about the help of the option @option{-smb}.
1577
2192c332 1578@subsubsection Windows XP security problem
e3371e62
FB
1579
1580Some releases of Windows XP install correctly but give a security
1581error when booting:
1582@example
1583A problem is preventing Windows from accurately checking the
1584license for this computer. Error code: 0x800703e6.
1585@end example
e3371e62 1586
2192c332
FB
1587The workaround is to install a service pack for XP after a boot in safe
1588mode. Then reboot, and the problem should go away. Since there is no
1589network while in safe mode, its recommended to download the full
1590installation of SP1 or SP2 and transfer that via an ISO or using the
1591vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 1592
a0a821a4
FB
1593@subsection MS-DOS and FreeDOS
1594
1595@subsubsection CPU usage reduction
1596
1597DOS does not correctly use the CPU HLT instruction. The result is that
1598it takes host CPU cycles even when idle. You can install the utility
1599from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1600problem.
1601
debc7065 1602@node QEMU System emulator for non PC targets
3f9f3aa1
FB
1603@chapter QEMU System emulator for non PC targets
1604
1605QEMU is a generic emulator and it emulates many non PC
1606machines. Most of the options are similar to the PC emulator. The
4be456f1 1607differences are mentioned in the following sections.
3f9f3aa1 1608
debc7065
FB
1609@menu
1610* QEMU PowerPC System emulator::
24d4de45
TS
1611* Sparc32 System emulator::
1612* Sparc64 System emulator::
1613* MIPS System emulator::
1614* ARM System emulator::
1615* ColdFire System emulator::
debc7065
FB
1616@end menu
1617
1618@node QEMU PowerPC System emulator
3f9f3aa1 1619@section QEMU PowerPC System emulator
1a084f3d 1620
15a34c63
FB
1621Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1622or PowerMac PowerPC system.
1a084f3d 1623
b671f9ed 1624QEMU emulates the following PowerMac peripherals:
1a084f3d 1625
15a34c63 1626@itemize @minus
5fafdf24 1627@item
006f3a48 1628UniNorth or Grackle PCI Bridge
15a34c63
FB
1629@item
1630PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1631@item
15a34c63 16322 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 1633@item
15a34c63
FB
1634NE2000 PCI adapters
1635@item
1636Non Volatile RAM
1637@item
1638VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
1639@end itemize
1640
b671f9ed 1641QEMU emulates the following PREP peripherals:
52c00a5f
FB
1642
1643@itemize @minus
5fafdf24 1644@item
15a34c63
FB
1645PCI Bridge
1646@item
1647PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1648@item
52c00a5f
FB
16492 IDE interfaces with hard disk and CD-ROM support
1650@item
1651Floppy disk
5fafdf24 1652@item
15a34c63 1653NE2000 network adapters
52c00a5f
FB
1654@item
1655Serial port
1656@item
1657PREP Non Volatile RAM
15a34c63
FB
1658@item
1659PC compatible keyboard and mouse.
52c00a5f
FB
1660@end itemize
1661
15a34c63 1662QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 1663@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 1664
992e5acd 1665Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
006f3a48
BS
1666for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1667v2) portable firmware implementation. The goal is to implement a 100%
1668IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 1669
15a34c63
FB
1670@c man begin OPTIONS
1671
1672The following options are specific to the PowerPC emulation:
1673
1674@table @option
1675
3b46e624 1676@item -g WxH[xDEPTH]
15a34c63
FB
1677
1678Set the initial VGA graphic mode. The default is 800x600x15.
1679
95efd11c
BS
1680@item -prom-env string
1681
1682Set OpenBIOS variables in NVRAM, for example:
1683
1684@example
1685qemu-system-ppc -prom-env 'auto-boot?=false' \
1686 -prom-env 'boot-device=hd:2,\yaboot' \
1687 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1688@end example
1689
1690These variables are not used by Open Hack'Ware.
1691
15a34c63
FB
1692@end table
1693
5fafdf24 1694@c man end
15a34c63
FB
1695
1696
52c00a5f 1697More information is available at
3f9f3aa1 1698@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 1699
24d4de45
TS
1700@node Sparc32 System emulator
1701@section Sparc32 System emulator
e80cfcfc 1702
34a3d239
BS
1703Use the executable @file{qemu-system-sparc} to simulate the following
1704Sun4m architecture machines:
1705@itemize @minus
1706@item
1707SPARCstation 4
1708@item
1709SPARCstation 5
1710@item
1711SPARCstation 10
1712@item
1713SPARCstation 20
1714@item
1715SPARCserver 600MP
1716@item
1717SPARCstation LX
1718@item
1719SPARCstation Voyager
1720@item
1721SPARCclassic
1722@item
1723SPARCbook
1724@end itemize
1725
1726The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1727but Linux limits the number of usable CPUs to 4.
e80cfcfc 1728
34a3d239
BS
1729It's also possible to simulate a SPARCstation 2 (sun4c architecture),
1730SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
1731emulators are not usable yet.
1732
1733QEMU emulates the following sun4m/sun4c/sun4d peripherals:
e80cfcfc
FB
1734
1735@itemize @minus
3475187d 1736@item
7d85892b 1737IOMMU or IO-UNITs
e80cfcfc
FB
1738@item
1739TCX Frame buffer
5fafdf24 1740@item
e80cfcfc
FB
1741Lance (Am7990) Ethernet
1742@item
34a3d239 1743Non Volatile RAM M48T02/M48T08
e80cfcfc 1744@item
3475187d
FB
1745Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1746and power/reset logic
1747@item
1748ESP SCSI controller with hard disk and CD-ROM support
1749@item
6a3b9cc9 1750Floppy drive (not on SS-600MP)
a2502b58
BS
1751@item
1752CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
1753@end itemize
1754
6a3b9cc9
BS
1755The number of peripherals is fixed in the architecture. Maximum
1756memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 1757others 2047MB.
3475187d 1758
30a604f3 1759Since version 0.8.2, QEMU uses OpenBIOS
0986ac3b
FB
1760@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1761firmware implementation. The goal is to implement a 100% IEEE
17621275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
1763
1764A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239
BS
1765the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1766some kernel versions work. Please note that currently Solaris kernels
1767don't work probably due to interface issues between OpenBIOS and
1768Solaris.
3475187d
FB
1769
1770@c man begin OPTIONS
1771
a2502b58 1772The following options are specific to the Sparc32 emulation:
3475187d
FB
1773
1774@table @option
1775
a2502b58 1776@item -g WxHx[xDEPTH]
3475187d 1777
a2502b58
BS
1778Set the initial TCX graphic mode. The default is 1024x768x8, currently
1779the only other possible mode is 1024x768x24.
3475187d 1780
66508601
BS
1781@item -prom-env string
1782
1783Set OpenBIOS variables in NVRAM, for example:
1784
1785@example
1786qemu-system-sparc -prom-env 'auto-boot?=false' \
1787 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1788@end example
1789
34a3d239 1790@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic|SPARCbook|SS-2|SS-1000|SS-2000]
a2502b58
BS
1791
1792Set the emulated machine type. Default is SS-5.
1793
3475187d
FB
1794@end table
1795
5fafdf24 1796@c man end
3475187d 1797
24d4de45
TS
1798@node Sparc64 System emulator
1799@section Sparc64 System emulator
e80cfcfc 1800
34a3d239
BS
1801Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1802(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1803Niagara (T1) machine. The emulator is not usable for anything yet, but
1804it can launch some kernels.
b756921a 1805
c7ba218d 1806QEMU emulates the following peripherals:
83469015
FB
1807
1808@itemize @minus
1809@item
5fafdf24 1810UltraSparc IIi APB PCI Bridge
83469015
FB
1811@item
1812PCI VGA compatible card with VESA Bochs Extensions
1813@item
34a3d239
BS
1814PS/2 mouse and keyboard
1815@item
83469015
FB
1816Non Volatile RAM M48T59
1817@item
1818PC-compatible serial ports
c7ba218d
BS
1819@item
18202 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
1821@item
1822Floppy disk
83469015
FB
1823@end itemize
1824
c7ba218d
BS
1825@c man begin OPTIONS
1826
1827The following options are specific to the Sparc64 emulation:
1828
1829@table @option
1830
34a3d239
BS
1831@item -prom-env string
1832
1833Set OpenBIOS variables in NVRAM, for example:
1834
1835@example
1836qemu-system-sparc64 -prom-env 'auto-boot?=false'
1837@end example
1838
1839@item -M [sun4u|sun4v|Niagara]
c7ba218d
BS
1840
1841Set the emulated machine type. The default is sun4u.
1842
1843@end table
1844
1845@c man end
1846
24d4de45
TS
1847@node MIPS System emulator
1848@section MIPS System emulator
9d0a8e6f 1849
d9aedc32
TS
1850Four executables cover simulation of 32 and 64-bit MIPS systems in
1851both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1852@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 1853Five different machine types are emulated:
24d4de45
TS
1854
1855@itemize @minus
1856@item
1857A generic ISA PC-like machine "mips"
1858@item
1859The MIPS Malta prototype board "malta"
1860@item
d9aedc32 1861An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 1862@item
f0fc6f8f 1863MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
1864@item
1865A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
1866@end itemize
1867
1868The generic emulation is supported by Debian 'Etch' and is able to
1869install Debian into a virtual disk image. The following devices are
1870emulated:
3f9f3aa1
FB
1871
1872@itemize @minus
5fafdf24 1873@item
6bf5b4e8 1874A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
1875@item
1876PC style serial port
1877@item
24d4de45
TS
1878PC style IDE disk
1879@item
3f9f3aa1
FB
1880NE2000 network card
1881@end itemize
1882
24d4de45
TS
1883The Malta emulation supports the following devices:
1884
1885@itemize @minus
1886@item
0b64d008 1887Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
1888@item
1889PIIX4 PCI/USB/SMbus controller
1890@item
1891The Multi-I/O chip's serial device
1892@item
1893PCnet32 PCI network card
1894@item
1895Malta FPGA serial device
1896@item
1f605a76 1897Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
1898@end itemize
1899
1900The ACER Pica emulation supports:
1901
1902@itemize @minus
1903@item
1904MIPS R4000 CPU
1905@item
1906PC-style IRQ and DMA controllers
1907@item
1908PC Keyboard
1909@item
1910IDE controller
1911@end itemize
3f9f3aa1 1912
f0fc6f8f
TS
1913The mipssim pseudo board emulation provides an environment similiar
1914to what the proprietary MIPS emulator uses for running Linux.
1915It supports:
6bf5b4e8
TS
1916
1917@itemize @minus
1918@item
1919A range of MIPS CPUs, default is the 24Kf
1920@item
1921PC style serial port
1922@item
1923MIPSnet network emulation
1924@end itemize
1925
88cb0a02
AJ
1926The MIPS Magnum R4000 emulation supports:
1927
1928@itemize @minus
1929@item
1930MIPS R4000 CPU
1931@item
1932PC-style IRQ controller
1933@item
1934PC Keyboard
1935@item
1936SCSI controller
1937@item
1938G364 framebuffer
1939@end itemize
1940
1941
24d4de45
TS
1942@node ARM System emulator
1943@section ARM System emulator
3f9f3aa1
FB
1944
1945Use the executable @file{qemu-system-arm} to simulate a ARM
1946machine. The ARM Integrator/CP board is emulated with the following
1947devices:
1948
1949@itemize @minus
1950@item
9ee6e8bb 1951ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
1952@item
1953Two PL011 UARTs
5fafdf24 1954@item
3f9f3aa1 1955SMC 91c111 Ethernet adapter
00a9bf19
PB
1956@item
1957PL110 LCD controller
1958@item
1959PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
1960@item
1961PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
1962@end itemize
1963
1964The ARM Versatile baseboard is emulated with the following devices:
1965
1966@itemize @minus
1967@item
9ee6e8bb 1968ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
1969@item
1970PL190 Vectored Interrupt Controller
1971@item
1972Four PL011 UARTs
5fafdf24 1973@item
00a9bf19
PB
1974SMC 91c111 Ethernet adapter
1975@item
1976PL110 LCD controller
1977@item
1978PL050 KMI with PS/2 keyboard and mouse.
1979@item
1980PCI host bridge. Note the emulated PCI bridge only provides access to
1981PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
1982This means some devices (eg. ne2k_pci NIC) are not usable, and others
1983(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 1984mapped control registers.
e6de1bad
PB
1985@item
1986PCI OHCI USB controller.
1987@item
1988LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
1989@item
1990PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
1991@end itemize
1992
d7739d75
PB
1993The ARM RealView Emulation baseboard is emulated with the following devices:
1994
1995@itemize @minus
1996@item
9ee6e8bb 1997ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
d7739d75
PB
1998@item
1999ARM AMBA Generic/Distributed Interrupt Controller
2000@item
2001Four PL011 UARTs
5fafdf24 2002@item
d7739d75
PB
2003SMC 91c111 Ethernet adapter
2004@item
2005PL110 LCD controller
2006@item
2007PL050 KMI with PS/2 keyboard and mouse
2008@item
2009PCI host bridge
2010@item
2011PCI OHCI USB controller
2012@item
2013LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
2014@item
2015PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
2016@end itemize
2017
b00052e4
AZ
2018The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2019and "Terrier") emulation includes the following peripherals:
2020
2021@itemize @minus
2022@item
2023Intel PXA270 System-on-chip (ARM V5TE core)
2024@item
2025NAND Flash memory
2026@item
2027IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2028@item
2029On-chip OHCI USB controller
2030@item
2031On-chip LCD controller
2032@item
2033On-chip Real Time Clock
2034@item
2035TI ADS7846 touchscreen controller on SSP bus
2036@item
2037Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2038@item
2039GPIO-connected keyboard controller and LEDs
2040@item
549444e1 2041Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
2042@item
2043Three on-chip UARTs
2044@item
2045WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2046@end itemize
2047
02645926
AZ
2048The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2049following elements:
2050
2051@itemize @minus
2052@item
2053Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2054@item
2055ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2056@item
2057On-chip LCD controller
2058@item
2059On-chip Real Time Clock
2060@item
2061TI TSC2102i touchscreen controller / analog-digital converter / Audio
2062CODEC, connected through MicroWire and I@math{^2}S busses
2063@item
2064GPIO-connected matrix keypad
2065@item
2066Secure Digital card connected to OMAP MMC/SD host
2067@item
2068Three on-chip UARTs
2069@end itemize
2070
c30bb264
AZ
2071Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2072emulation supports the following elements:
2073
2074@itemize @minus
2075@item
2076Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2077@item
2078RAM and non-volatile OneNAND Flash memories
2079@item
2080Display connected to EPSON remote framebuffer chip and OMAP on-chip
2081display controller and a LS041y3 MIPI DBI-C controller
2082@item
2083TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2084driven through SPI bus
2085@item
2086National Semiconductor LM8323-controlled qwerty keyboard driven
2087through I@math{^2}C bus
2088@item
2089Secure Digital card connected to OMAP MMC/SD host
2090@item
2091Three OMAP on-chip UARTs and on-chip STI debugging console
2092@item
2d564691
AZ
2093A Bluetooth(R) transciever and HCI connected to an UART
2094@item
c30bb264
AZ
2095Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2096TUSB6010 chip - only USB host mode is supported
2097@item
2098TI TMP105 temperature sensor driven through I@math{^2}C bus
2099@item
2100TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2101@item
2102Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2103through CBUS
2104@end itemize
2105
9ee6e8bb
PB
2106The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2107devices:
2108
2109@itemize @minus
2110@item
2111Cortex-M3 CPU core.
2112@item
211364k Flash and 8k SRAM.
2114@item
2115Timers, UARTs, ADC and I@math{^2}C interface.
2116@item
2117OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2118@end itemize
2119
2120The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2121devices:
2122
2123@itemize @minus
2124@item
2125Cortex-M3 CPU core.
2126@item
2127256k Flash and 64k SRAM.
2128@item
2129Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2130@item
2131OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2132@end itemize
2133
57cd6e97
AZ
2134The Freecom MusicPal internet radio emulation includes the following
2135elements:
2136
2137@itemize @minus
2138@item
2139Marvell MV88W8618 ARM core.
2140@item
214132 MB RAM, 256 KB SRAM, 8 MB flash.
2142@item
2143Up to 2 16550 UARTs
2144@item
2145MV88W8xx8 Ethernet controller
2146@item
2147MV88W8618 audio controller, WM8750 CODEC and mixer
2148@item
2149