]> git.proxmox.com Git - qemu.git/blame - qemu-doc.texi
iscsi: reorganize code for parse_initiator_name
[qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
e080e785
SW
4
5@documentlanguage en
6@documentencoding UTF-8
7
8f40c388 8@settitle QEMU Emulator User Documentation
debc7065
FB
9@exampleindent 0
10@paragraphindent 0
11@c %**end of header
386405f7 12
a1a32b05
SW
13@ifinfo
14@direntry
15* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
16@end direntry
17@end ifinfo
18
0806e3f6 19@iftex
386405f7
FB
20@titlepage
21@sp 7
8f40c388 22@center @titlefont{QEMU Emulator}
debc7065
FB
23@sp 1
24@center @titlefont{User Documentation}
386405f7
FB
25@sp 3
26@end titlepage
0806e3f6 27@end iftex
386405f7 28
debc7065
FB
29@ifnottex
30@node Top
31@top
32
33@menu
34* Introduction::
35* Installation::
36* QEMU PC System emulator::
37* QEMU System emulator for non PC targets::
83195237 38* QEMU User space emulator::
debc7065 39* compilation:: Compilation from the sources
7544a042 40* License::
debc7065
FB
41* Index::
42@end menu
43@end ifnottex
44
45@contents
46
47@node Introduction
386405f7
FB
48@chapter Introduction
49
debc7065
FB
50@menu
51* intro_features:: Features
52@end menu
53
54@node intro_features
322d0c66 55@section Features
386405f7 56
1f673135
FB
57QEMU is a FAST! processor emulator using dynamic translation to
58achieve good emulation speed.
1eb20527
FB
59
60QEMU has two operating modes:
0806e3f6 61
d7e5edca 62@itemize
7544a042 63@cindex operating modes
0806e3f6 64
5fafdf24 65@item
7544a042 66@cindex system emulation
1f673135 67Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
68example a PC), including one or several processors and various
69peripherals. It can be used to launch different Operating Systems
70without rebooting the PC or to debug system code.
1eb20527 71
5fafdf24 72@item
7544a042 73@cindex user mode emulation
83195237
FB
74User mode emulation. In this mode, QEMU can launch
75processes compiled for one CPU on another CPU. It can be used to
1f673135
FB
76launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77to ease cross-compilation and cross-debugging.
1eb20527
FB
78
79@end itemize
80
e1b4382c 81QEMU can run without a host kernel driver and yet gives acceptable
5fafdf24 82performance.
322d0c66 83
52c00a5f
FB
84For system emulation, the following hardware targets are supported:
85@itemize
7544a042
SW
86@cindex emulated target systems
87@cindex supported target systems
9d0a8e6f 88@item PC (x86 or x86_64 processor)
3f9f3aa1 89@item ISA PC (old style PC without PCI bus)
52c00a5f 90@item PREP (PowerPC processor)
d45952a0 91@item G3 Beige PowerMac (PowerPC processor)
9d0a8e6f 92@item Mac99 PowerMac (PowerPC processor, in progress)
ee76f82e 93@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
c7ba218d 94@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
d9aedc32 95@item Malta board (32-bit and 64-bit MIPS processors)
88cb0a02 96@item MIPS Magnum (64-bit MIPS processor)
9ee6e8bb
PB
97@item ARM Integrator/CP (ARM)
98@item ARM Versatile baseboard (ARM)
0ef849d7 99@item ARM RealView Emulation/Platform baseboard (ARM)
ef4c3856 100@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
9ee6e8bb
PB
101@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
707e011b 103@item Freescale MCF5208EVB (ColdFire V2).
209a4e69 104@item Arnewsh MCF5206 evaluation board (ColdFire V2).
02645926 105@item Palm Tungsten|E PDA (OMAP310 processor)
c30bb264 106@item N800 and N810 tablets (OMAP2420 processor)
57cd6e97 107@item MusicPal (MV88W8618 ARM processor)
ef4c3856
AZ
108@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109@item Siemens SX1 smartphone (OMAP310 processor)
48c50a62
EI
110@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
111@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
3aeaea65 112@item Avnet LX60/LX110/LX200 boards (Xtensa)
52c00a5f 113@end itemize
386405f7 114
7544a042
SW
115@cindex supported user mode targets
116For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
117ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
118Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
0806e3f6 119
debc7065 120@node Installation
5b9f457a
FB
121@chapter Installation
122
15a34c63
FB
123If you want to compile QEMU yourself, see @ref{compilation}.
124
debc7065
FB
125@menu
126* install_linux:: Linux
127* install_windows:: Windows
128* install_mac:: Macintosh
129@end menu
130
131@node install_linux
1f673135 132@section Linux
7544a042 133@cindex installation (Linux)
1f673135 134
7c3fc84d
FB
135If a precompiled package is available for your distribution - you just
136have to install it. Otherwise, see @ref{compilation}.
5b9f457a 137
debc7065 138@node install_windows
1f673135 139@section Windows
7544a042 140@cindex installation (Windows)
8cd0ac2f 141
15a34c63 142Download the experimental binary installer at
debc7065 143@url{http://www.free.oszoo.org/@/download.html}.
7544a042 144TODO (no longer available)
d691f669 145
debc7065 146@node install_mac
1f673135 147@section Mac OS X
d691f669 148
15a34c63 149Download the experimental binary installer at
debc7065 150@url{http://www.free.oszoo.org/@/download.html}.
7544a042 151TODO (no longer available)
df0f11a0 152
debc7065 153@node QEMU PC System emulator
3f9f3aa1 154@chapter QEMU PC System emulator
7544a042 155@cindex system emulation (PC)
1eb20527 156
debc7065
FB
157@menu
158* pcsys_introduction:: Introduction
159* pcsys_quickstart:: Quick Start
160* sec_invocation:: Invocation
161* pcsys_keys:: Keys
162* pcsys_monitor:: QEMU Monitor
163* disk_images:: Disk Images
164* pcsys_network:: Network emulation
576fd0a1 165* pcsys_other_devs:: Other Devices
debc7065
FB
166* direct_linux_boot:: Direct Linux Boot
167* pcsys_usb:: USB emulation
f858dcae 168* vnc_security:: VNC security
debc7065
FB
169* gdb_usage:: GDB usage
170* pcsys_os_specific:: Target OS specific information
171@end menu
172
173@node pcsys_introduction
0806e3f6
FB
174@section Introduction
175
176@c man begin DESCRIPTION
177
3f9f3aa1
FB
178The QEMU PC System emulator simulates the
179following peripherals:
0806e3f6
FB
180
181@itemize @minus
5fafdf24 182@item
15a34c63 183i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 184@item
15a34c63
FB
185Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
186extensions (hardware level, including all non standard modes).
0806e3f6
FB
187@item
188PS/2 mouse and keyboard
5fafdf24 189@item
15a34c63 1902 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
191@item
192Floppy disk
5fafdf24 193@item
3a2eeac0 194PCI and ISA network adapters
0806e3f6 195@item
05d5818c
FB
196Serial ports
197@item
c0fe3827
FB
198Creative SoundBlaster 16 sound card
199@item
200ENSONIQ AudioPCI ES1370 sound card
201@item
e5c9a13e
AZ
202Intel 82801AA AC97 Audio compatible sound card
203@item
7d72e762
GH
204Intel HD Audio Controller and HDA codec
205@item
2d983446 206Adlib (OPL2) - Yamaha YM3812 compatible chip
b389dbfb 207@item
26463dbc
AZ
208Gravis Ultrasound GF1 sound card
209@item
cc53d26d 210CS4231A compatible sound card
211@item
b389dbfb 212PCI UHCI USB controller and a virtual USB hub.
0806e3f6
FB
213@end itemize
214
3f9f3aa1
FB
215SMP is supported with up to 255 CPUs.
216
1d1f8c33 217Note that adlib, gus and cs4231a are only available when QEMU was
218configured with --audio-card-list option containing the name(s) of
e5178e8d 219required card(s).
c0fe3827 220
15a34c63
FB
221QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
222VGA BIOS.
223
c0fe3827
FB
224QEMU uses YM3812 emulation by Tatsuyuki Satoh.
225
2d983446 226QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
26463dbc 227by Tibor "TS" Schütz.
423d65f4 228
1a1a0e20 229Note that, by default, GUS shares IRQ(7) with parallel ports and so
b65ee4fa 230QEMU must be told to not have parallel ports to have working GUS.
720036a5 231
232@example
3804da9d 233qemu-system-i386 dos.img -soundhw gus -parallel none
720036a5 234@end example
235
236Alternatively:
237@example
3804da9d 238qemu-system-i386 dos.img -device gus,irq=5
720036a5 239@end example
240
241Or some other unclaimed IRQ.
242
cc53d26d 243CS4231A is the chip used in Windows Sound System and GUSMAX products
244
0806e3f6
FB
245@c man end
246
debc7065 247@node pcsys_quickstart
1eb20527 248@section Quick Start
7544a042 249@cindex quick start
1eb20527 250
285dc330 251Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
252
253@example
3804da9d 254qemu-system-i386 linux.img
0806e3f6
FB
255@end example
256
257Linux should boot and give you a prompt.
258
6cc721cf 259@node sec_invocation
ec410fc9
FB
260@section Invocation
261
262@example
0806e3f6 263@c man begin SYNOPSIS
3804da9d 264usage: qemu-system-i386 [options] [@var{disk_image}]
0806e3f6 265@c man end
ec410fc9
FB
266@end example
267
0806e3f6 268@c man begin OPTIONS
d2c639d6
BS
269@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
270targets do not need a disk image.
ec410fc9 271
5824d651 272@include qemu-options.texi
ec410fc9 273
3e11db9a
FB
274@c man end
275
debc7065 276@node pcsys_keys
3e11db9a
FB
277@section Keys
278
279@c man begin OPTIONS
280
de1db2a1
BH
281During the graphical emulation, you can use special key combinations to change
282modes. The default key mappings are shown below, but if you use @code{-alt-grab}
283then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
284@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
285
a1b74fe8 286@table @key
f9859310 287@item Ctrl-Alt-f
7544a042 288@kindex Ctrl-Alt-f
a1b74fe8 289Toggle full screen
a0a821a4 290
d6a65ba3
JK
291@item Ctrl-Alt-+
292@kindex Ctrl-Alt-+
293Enlarge the screen
294
295@item Ctrl-Alt--
296@kindex Ctrl-Alt--
297Shrink the screen
298
c4a735f9 299@item Ctrl-Alt-u
7544a042 300@kindex Ctrl-Alt-u
c4a735f9 301Restore the screen's un-scaled dimensions
302
f9859310 303@item Ctrl-Alt-n
7544a042 304@kindex Ctrl-Alt-n
a0a821a4
FB
305Switch to virtual console 'n'. Standard console mappings are:
306@table @emph
307@item 1
308Target system display
309@item 2
310Monitor
311@item 3
312Serial port
a1b74fe8
FB
313@end table
314
f9859310 315@item Ctrl-Alt
7544a042 316@kindex Ctrl-Alt
a0a821a4
FB
317Toggle mouse and keyboard grab.
318@end table
319
7544a042
SW
320@kindex Ctrl-Up
321@kindex Ctrl-Down
322@kindex Ctrl-PageUp
323@kindex Ctrl-PageDown
3e11db9a
FB
324In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
325@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
326
7544a042 327@kindex Ctrl-a h
a0a821a4
FB
328During emulation, if you are using the @option{-nographic} option, use
329@key{Ctrl-a h} to get terminal commands:
ec410fc9
FB
330
331@table @key
a1b74fe8 332@item Ctrl-a h
7544a042 333@kindex Ctrl-a h
d2c639d6 334@item Ctrl-a ?
7544a042 335@kindex Ctrl-a ?
ec410fc9 336Print this help
3b46e624 337@item Ctrl-a x
7544a042 338@kindex Ctrl-a x
366dfc52 339Exit emulator
3b46e624 340@item Ctrl-a s
7544a042 341@kindex Ctrl-a s
1f47a922 342Save disk data back to file (if -snapshot)
20d8a3ed 343@item Ctrl-a t
7544a042 344@kindex Ctrl-a t
d2c639d6 345Toggle console timestamps
a1b74fe8 346@item Ctrl-a b
7544a042 347@kindex Ctrl-a b
1f673135 348Send break (magic sysrq in Linux)
a1b74fe8 349@item Ctrl-a c
7544a042 350@kindex Ctrl-a c
1f673135 351Switch between console and monitor
a1b74fe8 352@item Ctrl-a Ctrl-a
7544a042 353@kindex Ctrl-a a
a1b74fe8 354Send Ctrl-a
ec410fc9 355@end table
0806e3f6
FB
356@c man end
357
358@ignore
359
1f673135
FB
360@c man begin SEEALSO
361The HTML documentation of QEMU for more precise information and Linux
362user mode emulator invocation.
363@c man end
364
365@c man begin AUTHOR
366Fabrice Bellard
367@c man end
368
369@end ignore
370
debc7065 371@node pcsys_monitor
1f673135 372@section QEMU Monitor
7544a042 373@cindex QEMU monitor
1f673135
FB
374
375The QEMU monitor is used to give complex commands to the QEMU
376emulator. You can use it to:
377
378@itemize @minus
379
380@item
e598752a 381Remove or insert removable media images
89dfe898 382(such as CD-ROM or floppies).
1f673135 383
5fafdf24 384@item
1f673135
FB
385Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
386from a disk file.
387
388@item Inspect the VM state without an external debugger.
389
390@end itemize
391
392@subsection Commands
393
394The following commands are available:
395
2313086a 396@include qemu-monitor.texi
0806e3f6 397
1f673135
FB
398@subsection Integer expressions
399
400The monitor understands integers expressions for every integer
401argument. You can use register names to get the value of specifics
402CPU registers by prefixing them with @emph{$}.
ec410fc9 403
1f47a922
FB
404@node disk_images
405@section Disk Images
406
acd935ef
FB
407Since version 0.6.1, QEMU supports many disk image formats, including
408growable disk images (their size increase as non empty sectors are
13a2e80f
FB
409written), compressed and encrypted disk images. Version 0.8.3 added
410the new qcow2 disk image format which is essential to support VM
411snapshots.
1f47a922 412
debc7065
FB
413@menu
414* disk_images_quickstart:: Quick start for disk image creation
415* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 416* vm_snapshots:: VM snapshots
debc7065 417* qemu_img_invocation:: qemu-img Invocation
975b092b 418* qemu_nbd_invocation:: qemu-nbd Invocation
19cb3738 419* host_drives:: Using host drives
debc7065 420* disk_images_fat_images:: Virtual FAT disk images
75818250 421* disk_images_nbd:: NBD access
42af9c30 422* disk_images_sheepdog:: Sheepdog disk images
00984e39 423* disk_images_iscsi:: iSCSI LUNs
debc7065
FB
424@end menu
425
426@node disk_images_quickstart
acd935ef
FB
427@subsection Quick start for disk image creation
428
429You can create a disk image with the command:
1f47a922 430@example
acd935ef 431qemu-img create myimage.img mysize
1f47a922 432@end example
acd935ef
FB
433where @var{myimage.img} is the disk image filename and @var{mysize} is its
434size in kilobytes. You can add an @code{M} suffix to give the size in
435megabytes and a @code{G} suffix for gigabytes.
436
debc7065 437See @ref{qemu_img_invocation} for more information.
1f47a922 438
debc7065 439@node disk_images_snapshot_mode
1f47a922
FB
440@subsection Snapshot mode
441
442If you use the option @option{-snapshot}, all disk images are
443considered as read only. When sectors in written, they are written in
444a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
445write back to the raw disk images by using the @code{commit} monitor
446command (or @key{C-a s} in the serial console).
1f47a922 447
13a2e80f
FB
448@node vm_snapshots
449@subsection VM snapshots
450
451VM snapshots are snapshots of the complete virtual machine including
452CPU state, RAM, device state and the content of all the writable
453disks. In order to use VM snapshots, you must have at least one non
454removable and writable block device using the @code{qcow2} disk image
455format. Normally this device is the first virtual hard drive.
456
457Use the monitor command @code{savevm} to create a new VM snapshot or
458replace an existing one. A human readable name can be assigned to each
19d36792 459snapshot in addition to its numerical ID.
13a2e80f
FB
460
461Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
462a VM snapshot. @code{info snapshots} lists the available snapshots
463with their associated information:
464
465@example
466(qemu) info snapshots
467Snapshot devices: hda
468Snapshot list (from hda):
469ID TAG VM SIZE DATE VM CLOCK
4701 start 41M 2006-08-06 12:38:02 00:00:14.954
4712 40M 2006-08-06 12:43:29 00:00:18.633
4723 msys 40M 2006-08-06 12:44:04 00:00:23.514
473@end example
474
475A VM snapshot is made of a VM state info (its size is shown in
476@code{info snapshots}) and a snapshot of every writable disk image.
477The VM state info is stored in the first @code{qcow2} non removable
478and writable block device. The disk image snapshots are stored in
479every disk image. The size of a snapshot in a disk image is difficult
480to evaluate and is not shown by @code{info snapshots} because the
481associated disk sectors are shared among all the snapshots to save
19d36792
FB
482disk space (otherwise each snapshot would need a full copy of all the
483disk images).
13a2e80f
FB
484
485When using the (unrelated) @code{-snapshot} option
486(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
487but they are deleted as soon as you exit QEMU.
488
489VM snapshots currently have the following known limitations:
490@itemize
5fafdf24 491@item
13a2e80f
FB
492They cannot cope with removable devices if they are removed or
493inserted after a snapshot is done.
5fafdf24 494@item
13a2e80f
FB
495A few device drivers still have incomplete snapshot support so their
496state is not saved or restored properly (in particular USB).
497@end itemize
498
acd935ef
FB
499@node qemu_img_invocation
500@subsection @code{qemu-img} Invocation
1f47a922 501
acd935ef 502@include qemu-img.texi
05efe46e 503
975b092b
TS
504@node qemu_nbd_invocation
505@subsection @code{qemu-nbd} Invocation
506
507@include qemu-nbd.texi
508
19cb3738
FB
509@node host_drives
510@subsection Using host drives
511
512In addition to disk image files, QEMU can directly access host
513devices. We describe here the usage for QEMU version >= 0.8.3.
514
515@subsubsection Linux
516
517On Linux, you can directly use the host device filename instead of a
4be456f1 518disk image filename provided you have enough privileges to access
19cb3738
FB
519it. For example, use @file{/dev/cdrom} to access to the CDROM or
520@file{/dev/fd0} for the floppy.
521
f542086d 522@table @code
19cb3738
FB
523@item CD
524You can specify a CDROM device even if no CDROM is loaded. QEMU has
525specific code to detect CDROM insertion or removal. CDROM ejection by
526the guest OS is supported. Currently only data CDs are supported.
527@item Floppy
528You can specify a floppy device even if no floppy is loaded. Floppy
529removal is currently not detected accurately (if you change floppy
530without doing floppy access while the floppy is not loaded, the guest
531OS will think that the same floppy is loaded).
532@item Hard disks
533Hard disks can be used. Normally you must specify the whole disk
534(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
535see it as a partitioned disk. WARNING: unless you know what you do, it
536is better to only make READ-ONLY accesses to the hard disk otherwise
537you may corrupt your host data (use the @option{-snapshot} command
538line option or modify the device permissions accordingly).
539@end table
540
541@subsubsection Windows
542
01781963
FB
543@table @code
544@item CD
4be456f1 545The preferred syntax is the drive letter (e.g. @file{d:}). The
01781963
FB
546alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
547supported as an alias to the first CDROM drive.
19cb3738 548
e598752a 549Currently there is no specific code to handle removable media, so it
19cb3738
FB
550is better to use the @code{change} or @code{eject} monitor commands to
551change or eject media.
01781963 552@item Hard disks
89dfe898 553Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
01781963
FB
554where @var{N} is the drive number (0 is the first hard disk).
555
556WARNING: unless you know what you do, it is better to only make
557READ-ONLY accesses to the hard disk otherwise you may corrupt your
558host data (use the @option{-snapshot} command line so that the
559modifications are written in a temporary file).
560@end table
561
19cb3738
FB
562
563@subsubsection Mac OS X
564
5fafdf24 565@file{/dev/cdrom} is an alias to the first CDROM.
19cb3738 566
e598752a 567Currently there is no specific code to handle removable media, so it
19cb3738
FB
568is better to use the @code{change} or @code{eject} monitor commands to
569change or eject media.
570
debc7065 571@node disk_images_fat_images
2c6cadd4
FB
572@subsection Virtual FAT disk images
573
574QEMU can automatically create a virtual FAT disk image from a
575directory tree. In order to use it, just type:
576
5fafdf24 577@example
3804da9d 578qemu-system-i386 linux.img -hdb fat:/my_directory
2c6cadd4
FB
579@end example
580
581Then you access access to all the files in the @file{/my_directory}
582directory without having to copy them in a disk image or to export
583them via SAMBA or NFS. The default access is @emph{read-only}.
584
585Floppies can be emulated with the @code{:floppy:} option:
586
5fafdf24 587@example
3804da9d 588qemu-system-i386 linux.img -fda fat:floppy:/my_directory
2c6cadd4
FB
589@end example
590
591A read/write support is available for testing (beta stage) with the
592@code{:rw:} option:
593
5fafdf24 594@example
3804da9d 595qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
2c6cadd4
FB
596@end example
597
598What you should @emph{never} do:
599@itemize
600@item use non-ASCII filenames ;
601@item use "-snapshot" together with ":rw:" ;
85b2c688
FB
602@item expect it to work when loadvm'ing ;
603@item write to the FAT directory on the host system while accessing it with the guest system.
2c6cadd4
FB
604@end itemize
605
75818250
TS
606@node disk_images_nbd
607@subsection NBD access
608
609QEMU can access directly to block device exported using the Network Block Device
610protocol.
611
612@example
3804da9d 613qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
75818250
TS
614@end example
615
616If the NBD server is located on the same host, you can use an unix socket instead
617of an inet socket:
618
619@example
3804da9d 620qemu-system-i386 linux.img -hdb nbd:unix:/tmp/my_socket
75818250
TS
621@end example
622
623In this case, the block device must be exported using qemu-nbd:
624
625@example
626qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
627@end example
628
629The use of qemu-nbd allows to share a disk between several guests:
630@example
631qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
632@end example
633
634and then you can use it with two guests:
635@example
3804da9d
SW
636qemu-system-i386 linux1.img -hdb nbd:unix:/tmp/my_socket
637qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
75818250
TS
638@end example
639
1d45f8b5
LV
640If the nbd-server uses named exports (since NBD 2.9.18), you must use the
641"exportname" option:
642@example
3804da9d
SW
643qemu-system-i386 -cdrom nbd:localhost:exportname=debian-500-ppc-netinst
644qemu-system-i386 -cdrom nbd:localhost:exportname=openSUSE-11.1-ppc-netinst
1d45f8b5
LV
645@end example
646
42af9c30
MK
647@node disk_images_sheepdog
648@subsection Sheepdog disk images
649
650Sheepdog is a distributed storage system for QEMU. It provides highly
651available block level storage volumes that can be attached to
652QEMU-based virtual machines.
653
654You can create a Sheepdog disk image with the command:
655@example
656qemu-img create sheepdog:@var{image} @var{size}
657@end example
658where @var{image} is the Sheepdog image name and @var{size} is its
659size.
660
661To import the existing @var{filename} to Sheepdog, you can use a
662convert command.
663@example
664qemu-img convert @var{filename} sheepdog:@var{image}
665@end example
666
667You can boot from the Sheepdog disk image with the command:
668@example
3804da9d 669qemu-system-i386 sheepdog:@var{image}
42af9c30
MK
670@end example
671
672You can also create a snapshot of the Sheepdog image like qcow2.
673@example
674qemu-img snapshot -c @var{tag} sheepdog:@var{image}
675@end example
676where @var{tag} is a tag name of the newly created snapshot.
677
678To boot from the Sheepdog snapshot, specify the tag name of the
679snapshot.
680@example
3804da9d 681qemu-system-i386 sheepdog:@var{image}:@var{tag}
42af9c30
MK
682@end example
683
684You can create a cloned image from the existing snapshot.
685@example
686qemu-img create -b sheepdog:@var{base}:@var{tag} sheepdog:@var{image}
687@end example
688where @var{base} is a image name of the source snapshot and @var{tag}
689is its tag name.
690
691If the Sheepdog daemon doesn't run on the local host, you need to
692specify one of the Sheepdog servers to connect to.
693@example
694qemu-img create sheepdog:@var{hostname}:@var{port}:@var{image} @var{size}
3804da9d 695qemu-system-i386 sheepdog:@var{hostname}:@var{port}:@var{image}
42af9c30
MK
696@end example
697
00984e39
RS
698@node disk_images_iscsi
699@subsection iSCSI LUNs
700
701iSCSI is a popular protocol used to access SCSI devices across a computer
702network.
703
704There are two different ways iSCSI devices can be used by QEMU.
705
706The first method is to mount the iSCSI LUN on the host, and make it appear as
707any other ordinary SCSI device on the host and then to access this device as a
708/dev/sd device from QEMU. How to do this differs between host OSes.
709
710The second method involves using the iSCSI initiator that is built into
711QEMU. This provides a mechanism that works the same way regardless of which
712host OS you are running QEMU on. This section will describe this second method
713of using iSCSI together with QEMU.
714
715In QEMU, iSCSI devices are described using special iSCSI URLs
716
717@example
718URL syntax:
719iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
720@end example
721
722Username and password are optional and only used if your target is set up
723using CHAP authentication for access control.
724Alternatively the username and password can also be set via environment
725variables to have these not show up in the process list
726
727@example
728export LIBISCSI_CHAP_USERNAME=<username>
729export LIBISCSI_CHAP_PASSWORD=<password>
730iscsi://<host>/<target-iqn-name>/<lun>
731@end example
732
f9dadc98
RS
733Various session related parameters can be set via special options, either
734in a configuration file provided via '-readconfig' or directly on the
735command line.
736
737@example
738Setting a specific initiator name to use when logging in to the target
739-iscsi initiator-name=iqn.qemu.test:my-initiator
740@end example
741
742@example
743Controlling which type of header digest to negotiate with the target
744-iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
745@end example
746
747These can also be set via a configuration file
748@example
749[iscsi]
750 user = "CHAP username"
751 password = "CHAP password"
752 initiator-name = "iqn.qemu.test:my-initiator"
753 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
754 header-digest = "CRC32C"
755@end example
756
757
758Setting the target name allows different options for different targets
759@example
760[iscsi "iqn.target.name"]
761 user = "CHAP username"
762 password = "CHAP password"
763 initiator-name = "iqn.qemu.test:my-initiator"
764 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
765 header-digest = "CRC32C"
766@end example
767
768
769Howto use a configuration file to set iSCSI configuration options:
770@example
771cat >iscsi.conf <<EOF
772[iscsi]
773 user = "me"
774 password = "my password"
775 initiator-name = "iqn.qemu.test:my-initiator"
776 header-digest = "CRC32C"
777EOF
778
779qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
780 -readconfig iscsi.conf
781@end example
782
783
00984e39
RS
784Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
785@example
786This example shows how to set up an iSCSI target with one CDROM and one DISK
787using the Linux STGT software target. This target is available on Red Hat based
788systems as the package 'scsi-target-utils'.
789
790tgtd --iscsi portal=127.0.0.1:3260
791tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
792tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
793 -b /IMAGES/disk.img --device-type=disk
794tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
795 -b /IMAGES/cd.iso --device-type=cd
796tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
797
f9dadc98
RS
798qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
799 -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
00984e39
RS
800 -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
801@end example
802
803
804
debc7065 805@node pcsys_network
9d4fb82e
FB
806@section Network emulation
807
4be456f1 808QEMU can simulate several network cards (PCI or ISA cards on the PC
41d03949
FB
809target) and can connect them to an arbitrary number of Virtual Local
810Area Networks (VLANs). Host TAP devices can be connected to any QEMU
811VLAN. VLAN can be connected between separate instances of QEMU to
4be456f1 812simulate large networks. For simpler usage, a non privileged user mode
41d03949
FB
813network stack can replace the TAP device to have a basic network
814connection.
815
816@subsection VLANs
9d4fb82e 817
41d03949
FB
818QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
819connection between several network devices. These devices can be for
820example QEMU virtual Ethernet cards or virtual Host ethernet devices
821(TAP devices).
9d4fb82e 822
41d03949
FB
823@subsection Using TAP network interfaces
824
825This is the standard way to connect QEMU to a real network. QEMU adds
826a virtual network device on your host (called @code{tapN}), and you
827can then configure it as if it was a real ethernet card.
9d4fb82e 828
8f40c388
FB
829@subsubsection Linux host
830
9d4fb82e
FB
831As an example, you can download the @file{linux-test-xxx.tar.gz}
832archive and copy the script @file{qemu-ifup} in @file{/etc} and
833configure properly @code{sudo} so that the command @code{ifconfig}
834contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 835that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
836device @file{/dev/net/tun} must be present.
837
ee0f4751
FB
838See @ref{sec_invocation} to have examples of command lines using the
839TAP network interfaces.
9d4fb82e 840
8f40c388
FB
841@subsubsection Windows host
842
843There is a virtual ethernet driver for Windows 2000/XP systems, called
844TAP-Win32. But it is not included in standard QEMU for Windows,
845so you will need to get it separately. It is part of OpenVPN package,
846so download OpenVPN from : @url{http://openvpn.net/}.
847
9d4fb82e
FB
848@subsection Using the user mode network stack
849
41d03949
FB
850By using the option @option{-net user} (default configuration if no
851@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 852network stack (you don't need root privilege to use the virtual
41d03949 853network). The virtual network configuration is the following:
9d4fb82e
FB
854
855@example
856
41d03949
FB
857 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
858 | (10.0.2.2)
9d4fb82e 859 |
2518bd0d 860 ----> DNS server (10.0.2.3)
3b46e624 861 |
2518bd0d 862 ----> SMB server (10.0.2.4)
9d4fb82e
FB
863@end example
864
865The QEMU VM behaves as if it was behind a firewall which blocks all
866incoming connections. You can use a DHCP client to automatically
41d03949
FB
867configure the network in the QEMU VM. The DHCP server assign addresses
868to the hosts starting from 10.0.2.15.
9d4fb82e
FB
869
870In order to check that the user mode network is working, you can ping
871the address 10.0.2.2 and verify that you got an address in the range
87210.0.2.x from the QEMU virtual DHCP server.
873
b415a407 874Note that @code{ping} is not supported reliably to the internet as it
4be456f1 875would require root privileges. It means you can only ping the local
b415a407
FB
876router (10.0.2.2).
877
9bf05444
FB
878When using the built-in TFTP server, the router is also the TFTP
879server.
880
881When using the @option{-redir} option, TCP or UDP connections can be
882redirected from the host to the guest. It allows for example to
883redirect X11, telnet or SSH connections.
443f1376 884
41d03949
FB
885@subsection Connecting VLANs between QEMU instances
886
887Using the @option{-net socket} option, it is possible to make VLANs
888that span several QEMU instances. See @ref{sec_invocation} to have a
889basic example.
890
576fd0a1 891@node pcsys_other_devs
6cbf4c8c
CM
892@section Other Devices
893
894@subsection Inter-VM Shared Memory device
895
896With KVM enabled on a Linux host, a shared memory device is available. Guests
897map a POSIX shared memory region into the guest as a PCI device that enables
898zero-copy communication to the application level of the guests. The basic
899syntax is:
900
901@example
3804da9d 902qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]
6cbf4c8c
CM
903@end example
904
905If desired, interrupts can be sent between guest VMs accessing the same shared
906memory region. Interrupt support requires using a shared memory server and
907using a chardev socket to connect to it. The code for the shared memory server
908is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
909memory server is:
910
911@example
3804da9d
SW
912qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,chardev=<id>]
913 [,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master]
914qemu-system-i386 -chardev socket,path=<path>,id=<id>
6cbf4c8c
CM
915@end example
916
917When using the server, the guest will be assigned a VM ID (>=0) that allows guests
918using the same server to communicate via interrupts. Guests can read their
919VM ID from a device register (see example code). Since receiving the shared
920memory region from the server is asynchronous, there is a (small) chance the
921guest may boot before the shared memory is attached. To allow an application
922to ensure shared memory is attached, the VM ID register will return -1 (an
923invalid VM ID) until the memory is attached. Once the shared memory is
924attached, the VM ID will return the guest's valid VM ID. With these semantics,
925the guest application can check to ensure the shared memory is attached to the
926guest before proceeding.
927
928The @option{role} argument can be set to either master or peer and will affect
929how the shared memory is migrated. With @option{role=master}, the guest will
930copy the shared memory on migration to the destination host. With
931@option{role=peer}, the guest will not be able to migrate with the device attached.
932With the @option{peer} case, the device should be detached and then reattached
933after migration using the PCI hotplug support.
934
9d4fb82e
FB
935@node direct_linux_boot
936@section Direct Linux Boot
1f673135
FB
937
938This section explains how to launch a Linux kernel inside QEMU without
939having to make a full bootable image. It is very useful for fast Linux
ee0f4751 940kernel testing.
1f673135 941
ee0f4751 942The syntax is:
1f673135 943@example
3804da9d 944qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
945@end example
946
ee0f4751
FB
947Use @option{-kernel} to provide the Linux kernel image and
948@option{-append} to give the kernel command line arguments. The
949@option{-initrd} option can be used to provide an INITRD image.
1f673135 950
ee0f4751
FB
951When using the direct Linux boot, a disk image for the first hard disk
952@file{hda} is required because its boot sector is used to launch the
953Linux kernel.
1f673135 954
ee0f4751
FB
955If you do not need graphical output, you can disable it and redirect
956the virtual serial port and the QEMU monitor to the console with the
957@option{-nographic} option. The typical command line is:
1f673135 958@example
3804da9d
SW
959qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
960 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
961@end example
962
ee0f4751
FB
963Use @key{Ctrl-a c} to switch between the serial console and the
964monitor (@pxref{pcsys_keys}).
1f673135 965
debc7065 966@node pcsys_usb
b389dbfb
FB
967@section USB emulation
968
0aff66b5
PB
969QEMU emulates a PCI UHCI USB controller. You can virtually plug
970virtual USB devices or real host USB devices (experimental, works only
071c9394 971on Linux hosts). QEMU will automatically create and connect virtual USB hubs
f542086d 972as necessary to connect multiple USB devices.
b389dbfb 973
0aff66b5
PB
974@menu
975* usb_devices::
976* host_usb_devices::
977@end menu
978@node usb_devices
979@subsection Connecting USB devices
b389dbfb 980
0aff66b5
PB
981USB devices can be connected with the @option{-usbdevice} commandline option
982or the @code{usb_add} monitor command. Available devices are:
b389dbfb 983
db380c06
AZ
984@table @code
985@item mouse
0aff66b5 986Virtual Mouse. This will override the PS/2 mouse emulation when activated.
db380c06 987@item tablet
c6d46c20 988Pointer device that uses absolute coordinates (like a touchscreen).
b65ee4fa 989This means QEMU is able to report the mouse position without having
0aff66b5 990to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
db380c06 991@item disk:@var{file}
0aff66b5 992Mass storage device based on @var{file} (@pxref{disk_images})
db380c06 993@item host:@var{bus.addr}
0aff66b5
PB
994Pass through the host device identified by @var{bus.addr}
995(Linux only)
db380c06 996@item host:@var{vendor_id:product_id}
0aff66b5
PB
997Pass through the host device identified by @var{vendor_id:product_id}
998(Linux only)
db380c06 999@item wacom-tablet
f6d2a316
AZ
1000Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1001above but it can be used with the tslib library because in addition to touch
1002coordinates it reports touch pressure.
db380c06 1003@item keyboard
47b2d338 1004Standard USB keyboard. Will override the PS/2 keyboard (if present).
db380c06
AZ
1005@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1006Serial converter. This emulates an FTDI FT232BM chip connected to host character
1007device @var{dev}. The available character devices are the same as for the
1008@code{-serial} option. The @code{vendorid} and @code{productid} options can be
0d6753e5 1009used to override the default 0403:6001. For instance,
db380c06
AZ
1010@example
1011usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1012@end example
1013will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1014serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
2e4d9fb1
AJ
1015@item braille
1016Braille device. This will use BrlAPI to display the braille output on a real
1017or fake device.
9ad97e65
AZ
1018@item net:@var{options}
1019Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
1020specifies NIC options as with @code{-net nic,}@var{options} (see description).
1021For instance, user-mode networking can be used with
6c9f886c 1022@example
3804da9d 1023qemu-system-i386 [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
6c9f886c
AZ
1024@end example
1025Currently this cannot be used in machines that support PCI NICs.
2d564691
AZ
1026@item bt[:@var{hci-type}]
1027Bluetooth dongle whose type is specified in the same format as with
1028the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
1029no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1030This USB device implements the USB Transport Layer of HCI. Example
1031usage:
1032@example
3804da9d 1033qemu-system-i386 [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
2d564691 1034@end example
0aff66b5 1035@end table
b389dbfb 1036
0aff66b5 1037@node host_usb_devices
b389dbfb
FB
1038@subsection Using host USB devices on a Linux host
1039
1040WARNING: this is an experimental feature. QEMU will slow down when
1041using it. USB devices requiring real time streaming (i.e. USB Video
1042Cameras) are not supported yet.
1043
1044@enumerate
5fafdf24 1045@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
1046is actually using the USB device. A simple way to do that is simply to
1047disable the corresponding kernel module by renaming it from @file{mydriver.o}
1048to @file{mydriver.o.disabled}.
1049
1050@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1051@example
1052ls /proc/bus/usb
1053001 devices drivers
1054@end example
1055
1056@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1057@example
1058chown -R myuid /proc/bus/usb
1059@end example
1060
1061@item Launch QEMU and do in the monitor:
5fafdf24 1062@example
b389dbfb
FB
1063info usbhost
1064 Device 1.2, speed 480 Mb/s
1065 Class 00: USB device 1234:5678, USB DISK
1066@end example
1067You should see the list of the devices you can use (Never try to use
1068hubs, it won't work).
1069
1070@item Add the device in QEMU by using:
5fafdf24 1071@example
b389dbfb
FB
1072usb_add host:1234:5678
1073@end example
1074
1075Normally the guest OS should report that a new USB device is
1076plugged. You can use the option @option{-usbdevice} to do the same.
1077
1078@item Now you can try to use the host USB device in QEMU.
1079
1080@end enumerate
1081
1082When relaunching QEMU, you may have to unplug and plug again the USB
1083device to make it work again (this is a bug).
1084
f858dcae
TS
1085@node vnc_security
1086@section VNC security
1087
1088The VNC server capability provides access to the graphical console
1089of the guest VM across the network. This has a number of security
1090considerations depending on the deployment scenarios.
1091
1092@menu
1093* vnc_sec_none::
1094* vnc_sec_password::
1095* vnc_sec_certificate::
1096* vnc_sec_certificate_verify::
1097* vnc_sec_certificate_pw::
2f9606b3
AL
1098* vnc_sec_sasl::
1099* vnc_sec_certificate_sasl::
f858dcae 1100* vnc_generate_cert::
2f9606b3 1101* vnc_setup_sasl::
f858dcae
TS
1102@end menu
1103@node vnc_sec_none
1104@subsection Without passwords
1105
1106The simplest VNC server setup does not include any form of authentication.
1107For this setup it is recommended to restrict it to listen on a UNIX domain
1108socket only. For example
1109
1110@example
3804da9d 1111qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
f858dcae
TS
1112@end example
1113
1114This ensures that only users on local box with read/write access to that
1115path can access the VNC server. To securely access the VNC server from a
1116remote machine, a combination of netcat+ssh can be used to provide a secure
1117tunnel.
1118
1119@node vnc_sec_password
1120@subsection With passwords
1121
1122The VNC protocol has limited support for password based authentication. Since
1123the protocol limits passwords to 8 characters it should not be considered
1124to provide high security. The password can be fairly easily brute-forced by
1125a client making repeat connections. For this reason, a VNC server using password
1126authentication should be restricted to only listen on the loopback interface
0f66998f
PM
1127or UNIX domain sockets. Password authentication is not supported when operating
1128in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1129authentication is requested with the @code{password} option, and then once QEMU
1130is running the password is set with the monitor. Until the monitor is used to
1131set the password all clients will be rejected.
f858dcae
TS
1132
1133@example
3804da9d 1134qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
f858dcae
TS
1135(qemu) change vnc password
1136Password: ********
1137(qemu)
1138@end example
1139
1140@node vnc_sec_certificate
1141@subsection With x509 certificates
1142
1143The QEMU VNC server also implements the VeNCrypt extension allowing use of
1144TLS for encryption of the session, and x509 certificates for authentication.
1145The use of x509 certificates is strongly recommended, because TLS on its
1146own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1147support provides a secure session, but no authentication. This allows any
1148client to connect, and provides an encrypted session.
1149
1150@example
3804da9d 1151qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
f858dcae
TS
1152@end example
1153
1154In the above example @code{/etc/pki/qemu} should contain at least three files,
1155@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1156users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1157NB the @code{server-key.pem} file should be protected with file mode 0600 to
1158only be readable by the user owning it.
1159
1160@node vnc_sec_certificate_verify
1161@subsection With x509 certificates and client verification
1162
1163Certificates can also provide a means to authenticate the client connecting.
1164The server will request that the client provide a certificate, which it will
1165then validate against the CA certificate. This is a good choice if deploying
1166in an environment with a private internal certificate authority.
1167
1168@example
3804da9d 1169qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1170@end example
1171
1172
1173@node vnc_sec_certificate_pw
1174@subsection With x509 certificates, client verification and passwords
1175
1176Finally, the previous method can be combined with VNC password authentication
1177to provide two layers of authentication for clients.
1178
1179@example
3804da9d 1180qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1181(qemu) change vnc password
1182Password: ********
1183(qemu)
1184@end example
1185
2f9606b3
AL
1186
1187@node vnc_sec_sasl
1188@subsection With SASL authentication
1189
1190The SASL authentication method is a VNC extension, that provides an
1191easily extendable, pluggable authentication method. This allows for
1192integration with a wide range of authentication mechanisms, such as
1193PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1194The strength of the authentication depends on the exact mechanism
1195configured. If the chosen mechanism also provides a SSF layer, then
1196it will encrypt the datastream as well.
1197
1198Refer to the later docs on how to choose the exact SASL mechanism
1199used for authentication, but assuming use of one supporting SSF,
1200then QEMU can be launched with:
1201
1202@example
3804da9d 1203qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
2f9606b3
AL
1204@end example
1205
1206@node vnc_sec_certificate_sasl
1207@subsection With x509 certificates and SASL authentication
1208
1209If the desired SASL authentication mechanism does not supported
1210SSF layers, then it is strongly advised to run it in combination
1211with TLS and x509 certificates. This provides securely encrypted
1212data stream, avoiding risk of compromising of the security
1213credentials. This can be enabled, by combining the 'sasl' option
1214with the aforementioned TLS + x509 options:
1215
1216@example
3804da9d 1217qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
2f9606b3
AL
1218@end example
1219
1220
f858dcae
TS
1221@node vnc_generate_cert
1222@subsection Generating certificates for VNC
1223
1224The GNU TLS packages provides a command called @code{certtool} which can
1225be used to generate certificates and keys in PEM format. At a minimum it
40c5c6cd 1226is necessary to setup a certificate authority, and issue certificates to
f858dcae
TS
1227each server. If using certificates for authentication, then each client
1228will also need to be issued a certificate. The recommendation is for the
1229server to keep its certificates in either @code{/etc/pki/qemu} or for
1230unprivileged users in @code{$HOME/.pki/qemu}.
1231
1232@menu
1233* vnc_generate_ca::
1234* vnc_generate_server::
1235* vnc_generate_client::
1236@end menu
1237@node vnc_generate_ca
1238@subsubsection Setup the Certificate Authority
1239
1240This step only needs to be performed once per organization / organizational
1241unit. First the CA needs a private key. This key must be kept VERY secret
1242and secure. If this key is compromised the entire trust chain of the certificates
1243issued with it is lost.
1244
1245@example
1246# certtool --generate-privkey > ca-key.pem
1247@end example
1248
1249A CA needs to have a public certificate. For simplicity it can be a self-signed
1250certificate, or one issue by a commercial certificate issuing authority. To
1251generate a self-signed certificate requires one core piece of information, the
1252name of the organization.
1253
1254@example
1255# cat > ca.info <<EOF
1256cn = Name of your organization
1257ca
1258cert_signing_key
1259EOF
1260# certtool --generate-self-signed \
1261 --load-privkey ca-key.pem
1262 --template ca.info \
1263 --outfile ca-cert.pem
1264@end example
1265
1266The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1267TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1268
1269@node vnc_generate_server
1270@subsubsection Issuing server certificates
1271
1272Each server (or host) needs to be issued with a key and certificate. When connecting
1273the certificate is sent to the client which validates it against the CA certificate.
1274The core piece of information for a server certificate is the hostname. This should
1275be the fully qualified hostname that the client will connect with, since the client
1276will typically also verify the hostname in the certificate. On the host holding the
1277secure CA private key:
1278
1279@example
1280# cat > server.info <<EOF
1281organization = Name of your organization
1282cn = server.foo.example.com
1283tls_www_server
1284encryption_key
1285signing_key
1286EOF
1287# certtool --generate-privkey > server-key.pem
1288# certtool --generate-certificate \
1289 --load-ca-certificate ca-cert.pem \
1290 --load-ca-privkey ca-key.pem \
1291 --load-privkey server server-key.pem \
1292 --template server.info \
1293 --outfile server-cert.pem
1294@end example
1295
1296The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1297to the server for which they were generated. The @code{server-key.pem} is security
1298sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1299
1300@node vnc_generate_client
1301@subsubsection Issuing client certificates
1302
1303If the QEMU VNC server is to use the @code{x509verify} option to validate client
1304certificates as its authentication mechanism, each client also needs to be issued
1305a certificate. The client certificate contains enough metadata to uniquely identify
1306the client, typically organization, state, city, building, etc. On the host holding
1307the secure CA private key:
1308
1309@example
1310# cat > client.info <<EOF
1311country = GB
1312state = London
1313locality = London
1314organiazation = Name of your organization
1315cn = client.foo.example.com
1316tls_www_client
1317encryption_key
1318signing_key
1319EOF
1320# certtool --generate-privkey > client-key.pem
1321# certtool --generate-certificate \
1322 --load-ca-certificate ca-cert.pem \
1323 --load-ca-privkey ca-key.pem \
1324 --load-privkey client-key.pem \
1325 --template client.info \
1326 --outfile client-cert.pem
1327@end example
1328
1329The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1330copied to the client for which they were generated.
1331
2f9606b3
AL
1332
1333@node vnc_setup_sasl
1334
1335@subsection Configuring SASL mechanisms
1336
1337The following documentation assumes use of the Cyrus SASL implementation on a
1338Linux host, but the principals should apply to any other SASL impl. When SASL
1339is enabled, the mechanism configuration will be loaded from system default
1340SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1341unprivileged user, an environment variable SASL_CONF_PATH can be used
1342to make it search alternate locations for the service config.
1343
1344The default configuration might contain
1345
1346@example
1347mech_list: digest-md5
1348sasldb_path: /etc/qemu/passwd.db
1349@end example
1350
1351This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1352Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1353in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1354command. While this mechanism is easy to configure and use, it is not
1355considered secure by modern standards, so only suitable for developers /
1356ad-hoc testing.
1357
1358A more serious deployment might use Kerberos, which is done with the 'gssapi'
1359mechanism
1360
1361@example
1362mech_list: gssapi
1363keytab: /etc/qemu/krb5.tab
1364@end example
1365
1366For this to work the administrator of your KDC must generate a Kerberos
1367principal for the server, with a name of 'qemu/somehost.example.com@@EXAMPLE.COM'
1368replacing 'somehost.example.com' with the fully qualified host name of the
40c5c6cd 1369machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
2f9606b3
AL
1370
1371Other configurations will be left as an exercise for the reader. It should
1372be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1373encryption. For all other mechanisms, VNC should always be configured to
1374use TLS and x509 certificates to protect security credentials from snooping.
1375
0806e3f6 1376@node gdb_usage
da415d54
FB
1377@section GDB usage
1378
1379QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1380'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1381
b65ee4fa 1382In order to use gdb, launch QEMU with the '-s' option. It will wait for a
da415d54
FB
1383gdb connection:
1384@example
3804da9d
SW
1385qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1386 -append "root=/dev/hda"
da415d54
FB
1387Connected to host network interface: tun0
1388Waiting gdb connection on port 1234
1389@end example
1390
1391Then launch gdb on the 'vmlinux' executable:
1392@example
1393> gdb vmlinux
1394@end example
1395
1396In gdb, connect to QEMU:
1397@example
6c9bf893 1398(gdb) target remote localhost:1234
da415d54
FB
1399@end example
1400
1401Then you can use gdb normally. For example, type 'c' to launch the kernel:
1402@example
1403(gdb) c
1404@end example
1405
0806e3f6
FB
1406Here are some useful tips in order to use gdb on system code:
1407
1408@enumerate
1409@item
1410Use @code{info reg} to display all the CPU registers.
1411@item
1412Use @code{x/10i $eip} to display the code at the PC position.
1413@item
1414Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1415@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1416@end enumerate
1417
60897d36
EI
1418Advanced debugging options:
1419
1420The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 1421@table @code
60897d36
EI
1422@item maintenance packet qqemu.sstepbits
1423
1424This will display the MASK bits used to control the single stepping IE:
1425@example
1426(gdb) maintenance packet qqemu.sstepbits
1427sending: "qqemu.sstepbits"
1428received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1429@end example
1430@item maintenance packet qqemu.sstep
1431
1432This will display the current value of the mask used when single stepping IE:
1433@example
1434(gdb) maintenance packet qqemu.sstep
1435sending: "qqemu.sstep"
1436received: "0x7"
1437@end example
1438@item maintenance packet Qqemu.sstep=HEX_VALUE
1439
1440This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1441@example
1442(gdb) maintenance packet Qqemu.sstep=0x5
1443sending: "qemu.sstep=0x5"
1444received: "OK"
1445@end example
94d45e44 1446@end table
60897d36 1447
debc7065 1448@node pcsys_os_specific
1a084f3d
FB
1449@section Target OS specific information
1450
1451@subsection Linux
1452
15a34c63
FB
1453To have access to SVGA graphic modes under X11, use the @code{vesa} or
1454the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1455color depth in the guest and the host OS.
1a084f3d 1456
e3371e62
FB
1457When using a 2.6 guest Linux kernel, you should add the option
1458@code{clock=pit} on the kernel command line because the 2.6 Linux
1459kernels make very strict real time clock checks by default that QEMU
1460cannot simulate exactly.
1461
7c3fc84d
FB
1462When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1463not activated because QEMU is slower with this patch. The QEMU
1464Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1465Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1466patch by default. Newer kernels don't have it.
1467
1a084f3d
FB
1468@subsection Windows
1469
1470If you have a slow host, using Windows 95 is better as it gives the
1471best speed. Windows 2000 is also a good choice.
1472
e3371e62
FB
1473@subsubsection SVGA graphic modes support
1474
1475QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1476card. All Windows versions starting from Windows 95 should recognize
1477and use this graphic card. For optimal performances, use 16 bit color
1478depth in the guest and the host OS.
1a084f3d 1479
3cb0853a
FB
1480If you are using Windows XP as guest OS and if you want to use high
1481resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
14821280x1024x16), then you should use the VESA VBE virtual graphic card
1483(option @option{-std-vga}).
1484
e3371e62
FB
1485@subsubsection CPU usage reduction
1486
1487Windows 9x does not correctly use the CPU HLT
15a34c63
FB
1488instruction. The result is that it takes host CPU cycles even when
1489idle. You can install the utility from
1490@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1491problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 1492
9d0a8e6f 1493@subsubsection Windows 2000 disk full problem
e3371e62 1494
9d0a8e6f
FB
1495Windows 2000 has a bug which gives a disk full problem during its
1496installation. When installing it, use the @option{-win2k-hack} QEMU
1497option to enable a specific workaround. After Windows 2000 is
1498installed, you no longer need this option (this option slows down the
1499IDE transfers).
e3371e62 1500
6cc721cf
FB
1501@subsubsection Windows 2000 shutdown
1502
1503Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1504can. It comes from the fact that Windows 2000 does not automatically
1505use the APM driver provided by the BIOS.
1506
1507In order to correct that, do the following (thanks to Struan
1508Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1509Add/Troubleshoot a device => Add a new device & Next => No, select the
1510hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1511(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 1512correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
1513
1514@subsubsection Share a directory between Unix and Windows
1515
1516See @ref{sec_invocation} about the help of the option @option{-smb}.
1517
2192c332 1518@subsubsection Windows XP security problem
e3371e62
FB
1519
1520Some releases of Windows XP install correctly but give a security
1521error when booting:
1522@example
1523A problem is preventing Windows from accurately checking the
1524license for this computer. Error code: 0x800703e6.
1525@end example
e3371e62 1526
2192c332
FB
1527The workaround is to install a service pack for XP after a boot in safe
1528mode. Then reboot, and the problem should go away. Since there is no
1529network while in safe mode, its recommended to download the full
1530installation of SP1 or SP2 and transfer that via an ISO or using the
1531vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 1532
a0a821a4
FB
1533@subsection MS-DOS and FreeDOS
1534
1535@subsubsection CPU usage reduction
1536
1537DOS does not correctly use the CPU HLT instruction. The result is that
1538it takes host CPU cycles even when idle. You can install the utility
1539from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1540problem.
1541
debc7065 1542@node QEMU System emulator for non PC targets
3f9f3aa1
FB
1543@chapter QEMU System emulator for non PC targets
1544
1545QEMU is a generic emulator and it emulates many non PC
1546machines. Most of the options are similar to the PC emulator. The
4be456f1 1547differences are mentioned in the following sections.
3f9f3aa1 1548
debc7065 1549@menu
7544a042 1550* PowerPC System emulator::
24d4de45
TS
1551* Sparc32 System emulator::
1552* Sparc64 System emulator::
1553* MIPS System emulator::
1554* ARM System emulator::
1555* ColdFire System emulator::
7544a042
SW
1556* Cris System emulator::
1557* Microblaze System emulator::
1558* SH4 System emulator::
3aeaea65 1559* Xtensa System emulator::
debc7065
FB
1560@end menu
1561
7544a042
SW
1562@node PowerPC System emulator
1563@section PowerPC System emulator
1564@cindex system emulation (PowerPC)
1a084f3d 1565
15a34c63
FB
1566Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1567or PowerMac PowerPC system.
1a084f3d 1568
b671f9ed 1569QEMU emulates the following PowerMac peripherals:
1a084f3d 1570
15a34c63 1571@itemize @minus
5fafdf24 1572@item
006f3a48 1573UniNorth or Grackle PCI Bridge
15a34c63
FB
1574@item
1575PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1576@item
15a34c63 15772 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 1578@item
15a34c63
FB
1579NE2000 PCI adapters
1580@item
1581Non Volatile RAM
1582@item
1583VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
1584@end itemize
1585
b671f9ed 1586QEMU emulates the following PREP peripherals:
52c00a5f
FB
1587
1588@itemize @minus
5fafdf24 1589@item
15a34c63
FB
1590PCI Bridge
1591@item
1592PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1593@item
52c00a5f
FB
15942 IDE interfaces with hard disk and CD-ROM support
1595@item
1596Floppy disk
5fafdf24 1597@item
15a34c63 1598NE2000 network adapters
52c00a5f
FB
1599@item
1600Serial port
1601@item
1602PREP Non Volatile RAM
15a34c63
FB
1603@item
1604PC compatible keyboard and mouse.
52c00a5f
FB
1605@end itemize
1606
15a34c63 1607QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 1608@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 1609
992e5acd 1610Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
006f3a48
BS
1611for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1612v2) portable firmware implementation. The goal is to implement a 100%
1613IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 1614
15a34c63
FB
1615@c man begin OPTIONS
1616
1617The following options are specific to the PowerPC emulation:
1618
1619@table @option
1620
4e257e5e 1621@item -g @var{W}x@var{H}[x@var{DEPTH}]
15a34c63
FB
1622
1623Set the initial VGA graphic mode. The default is 800x600x15.
1624
4e257e5e 1625@item -prom-env @var{string}
95efd11c
BS
1626
1627Set OpenBIOS variables in NVRAM, for example:
1628
1629@example
1630qemu-system-ppc -prom-env 'auto-boot?=false' \
1631 -prom-env 'boot-device=hd:2,\yaboot' \
1632 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1633@end example
1634
1635These variables are not used by Open Hack'Ware.
1636
15a34c63
FB
1637@end table
1638
5fafdf24 1639@c man end
15a34c63
FB
1640
1641
52c00a5f 1642More information is available at
3f9f3aa1 1643@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 1644
24d4de45
TS
1645@node Sparc32 System emulator
1646@section Sparc32 System emulator
7544a042 1647@cindex system emulation (Sparc32)
e80cfcfc 1648
34a3d239
BS
1649Use the executable @file{qemu-system-sparc} to simulate the following
1650Sun4m architecture machines:
1651@itemize @minus
1652@item
1653SPARCstation 4
1654@item
1655SPARCstation 5
1656@item
1657SPARCstation 10
1658@item
1659SPARCstation 20
1660@item
1661SPARCserver 600MP
1662@item
1663SPARCstation LX
1664@item
1665SPARCstation Voyager
1666@item
1667SPARCclassic
1668@item
1669SPARCbook
1670@end itemize
1671
1672The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1673but Linux limits the number of usable CPUs to 4.
e80cfcfc 1674
34a3d239
BS
1675It's also possible to simulate a SPARCstation 2 (sun4c architecture),
1676SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
1677emulators are not usable yet.
1678
1679QEMU emulates the following sun4m/sun4c/sun4d peripherals:
e80cfcfc
FB
1680
1681@itemize @minus
3475187d 1682@item
7d85892b 1683IOMMU or IO-UNITs
e80cfcfc
FB
1684@item
1685TCX Frame buffer
5fafdf24 1686@item
e80cfcfc
FB
1687Lance (Am7990) Ethernet
1688@item
34a3d239 1689Non Volatile RAM M48T02/M48T08
e80cfcfc 1690@item
3475187d
FB
1691Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1692and power/reset logic
1693@item
1694ESP SCSI controller with hard disk and CD-ROM support
1695@item
6a3b9cc9 1696Floppy drive (not on SS-600MP)
a2502b58
BS
1697@item
1698CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
1699@end itemize
1700
6a3b9cc9
BS
1701The number of peripherals is fixed in the architecture. Maximum
1702memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 1703others 2047MB.
3475187d 1704
30a604f3 1705Since version 0.8.2, QEMU uses OpenBIOS
0986ac3b
FB
1706@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1707firmware implementation. The goal is to implement a 100% IEEE
17081275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
1709
1710A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239
BS
1711the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1712some kernel versions work. Please note that currently Solaris kernels
1713don't work probably due to interface issues between OpenBIOS and
1714Solaris.
3475187d
FB
1715
1716@c man begin OPTIONS
1717
a2502b58 1718The following options are specific to the Sparc32 emulation:
3475187d
FB
1719
1720@table @option
1721
4e257e5e 1722@item -g @var{W}x@var{H}x[x@var{DEPTH}]
3475187d 1723
a2502b58
BS
1724Set the initial TCX graphic mode. The default is 1024x768x8, currently
1725the only other possible mode is 1024x768x24.
3475187d 1726
4e257e5e 1727@item -prom-env @var{string}
66508601
BS
1728
1729Set OpenBIOS variables in NVRAM, for example:
1730
1731@example
1732qemu-system-sparc -prom-env 'auto-boot?=false' \
1733 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1734@end example
1735
609c1dac 1736@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook|SS-2|SS-1000|SS-2000]
a2502b58
BS
1737
1738Set the emulated machine type. Default is SS-5.
1739
3475187d
FB
1740@end table
1741
5fafdf24 1742@c man end
3475187d 1743
24d4de45
TS
1744@node Sparc64 System emulator
1745@section Sparc64 System emulator
7544a042 1746@cindex system emulation (Sparc64)
e80cfcfc 1747
34a3d239
BS
1748Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1749(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1750Niagara (T1) machine. The emulator is not usable for anything yet, but
1751it can launch some kernels.
b756921a 1752
c7ba218d 1753QEMU emulates the following peripherals:
83469015
FB
1754
1755@itemize @minus
1756@item
5fafdf24 1757UltraSparc IIi APB PCI Bridge
83469015
FB
1758@item
1759PCI VGA compatible card with VESA Bochs Extensions
1760@item
34a3d239
BS
1761PS/2 mouse and keyboard
1762@item
83469015
FB
1763Non Volatile RAM M48T59
1764@item
1765PC-compatible serial ports
c7ba218d
BS
1766@item
17672 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
1768@item
1769Floppy disk
83469015
FB
1770@end itemize
1771
c7ba218d
BS
1772@c man begin OPTIONS
1773
1774The following options are specific to the Sparc64 emulation:
1775
1776@table @option
1777
4e257e5e 1778@item -prom-env @var{string}
34a3d239
BS
1779
1780Set OpenBIOS variables in NVRAM, for example:
1781
1782@example
1783qemu-system-sparc64 -prom-env 'auto-boot?=false'
1784@end example
1785
1786@item -M [sun4u|sun4v|Niagara]
c7ba218d
BS
1787
1788Set the emulated machine type. The default is sun4u.
1789
1790@end table
1791
1792@c man end
1793
24d4de45
TS
1794@node MIPS System emulator
1795@section MIPS System emulator
7544a042 1796@cindex system emulation (MIPS)
9d0a8e6f 1797
d9aedc32
TS
1798Four executables cover simulation of 32 and 64-bit MIPS systems in
1799both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1800@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 1801Five different machine types are emulated:
24d4de45
TS
1802
1803@itemize @minus
1804@item
1805A generic ISA PC-like machine "mips"
1806@item
1807The MIPS Malta prototype board "malta"
1808@item
d9aedc32 1809An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 1810@item
f0fc6f8f 1811MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
1812@item
1813A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
1814@end itemize
1815
1816The generic emulation is supported by Debian 'Etch' and is able to
1817install Debian into a virtual disk image. The following devices are
1818emulated:
3f9f3aa1
FB
1819
1820@itemize @minus
5fafdf24 1821@item
6bf5b4e8 1822A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
1823@item
1824PC style serial port
1825@item
24d4de45
TS
1826PC style IDE disk
1827@item
3f9f3aa1
FB
1828NE2000 network card
1829@end itemize
1830
24d4de45
TS
1831The Malta emulation supports the following devices:
1832
1833@itemize @minus
1834@item
0b64d008 1835Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
1836@item
1837PIIX4 PCI/USB/SMbus controller
1838@item
1839The Multi-I/O chip's serial device
1840@item
3a2eeac0 1841PCI network cards (PCnet32 and others)
24d4de45
TS
1842@item
1843Malta FPGA serial device
1844@item
1f605a76 1845Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
1846@end itemize
1847
1848The ACER Pica emulation supports:
1849
1850@itemize @minus
1851@item
1852MIPS R4000 CPU
1853@item
1854PC-style IRQ and DMA controllers
1855@item
1856PC Keyboard
1857@item
1858IDE controller
1859@end itemize
3f9f3aa1 1860
b5e4946f 1861The mipssim pseudo board emulation provides an environment similar
f0fc6f8f
TS
1862to what the proprietary MIPS emulator uses for running Linux.
1863It supports:
6bf5b4e8
TS
1864
1865@itemize @minus
1866@item
1867A range of MIPS CPUs, default is the 24Kf
1868@item
1869PC style serial port
1870@item
1871MIPSnet network emulation
1872@end itemize
1873
88cb0a02
AJ
1874The MIPS Magnum R4000 emulation supports:
1875
1876@itemize @minus
1877@item
1878MIPS R4000 CPU
1879@item
1880PC-style IRQ controller
1881@item
1882PC Keyboard
1883@item
1884SCSI controller
1885@item
1886G364 framebuffer
1887@end itemize
1888
1889
24d4de45
TS
1890@node ARM System emulator
1891@section ARM System emulator
7544a042 1892@cindex system emulation (ARM)
3f9f3aa1
FB
1893
1894Use the executable @file{qemu-system-arm} to simulate a ARM
1895machine. The ARM Integrator/CP board is emulated with the following
1896devices:
1897
1898@itemize @minus
1899@item
9ee6e8bb 1900ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
1901@item
1902Two PL011 UARTs
5fafdf24 1903@item
3f9f3aa1 1904SMC 91c111 Ethernet adapter
00a9bf19
PB
1905@item
1906PL110 LCD controller
1907@item
1908PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
1909@item
1910PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
1911@end itemize
1912
1913The ARM Versatile baseboard is emulated with the following devices:
1914
1915@itemize @minus
1916@item
9ee6e8bb 1917ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
1918@item
1919PL190 Vectored Interrupt Controller
1920@item
1921Four PL011 UARTs
5fafdf24 1922@item
00a9bf19
PB
1923SMC 91c111 Ethernet adapter
1924@item
1925PL110 LCD controller
1926@item
1927PL050 KMI with PS/2 keyboard and mouse.
1928@item
1929PCI host bridge. Note the emulated PCI bridge only provides access to
1930PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
1931This means some devices (eg. ne2k_pci NIC) are not usable, and others
1932(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 1933mapped control registers.
e6de1bad
PB
1934@item
1935PCI OHCI USB controller.
1936@item
1937LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
1938@item
1939PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
1940@end itemize
1941
21a88941
PB
1942Several variants of the ARM RealView baseboard are emulated,
1943including the EB, PB-A8 and PBX-A9. Due to interactions with the
1944bootloader, only certain Linux kernel configurations work out
1945of the box on these boards.
1946
1947Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1948enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
1949should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1950disabled and expect 1024M RAM.
1951
40c5c6cd 1952The following devices are emulated:
d7739d75
PB
1953
1954@itemize @minus
1955@item
f7c70325 1956ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
d7739d75
PB
1957@item
1958ARM AMBA Generic/Distributed Interrupt Controller
1959@item
1960Four PL011 UARTs
5fafdf24 1961@item
0ef849d7 1962SMC 91c111 or SMSC LAN9118 Ethernet adapter
d7739d75
PB
1963@item
1964PL110 LCD controller
1965@item
1966PL050 KMI with PS/2 keyboard and mouse
1967@item
1968PCI host bridge
1969@item
1970PCI OHCI USB controller
1971@item
1972LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
1973@item
1974PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
1975@end itemize
1976
b00052e4
AZ
1977The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
1978and "Terrier") emulation includes the following peripherals:
1979
1980@itemize @minus
1981@item
1982Intel PXA270 System-on-chip (ARM V5TE core)
1983@item
1984NAND Flash memory
1985@item
1986IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
1987@item
1988On-chip OHCI USB controller
1989@item
1990On-chip LCD controller
1991@item
1992On-chip Real Time Clock
1993@item
1994TI ADS7846 touchscreen controller on SSP bus
1995@item
1996Maxim MAX1111 analog-digital converter on I@math{^2}C bus
1997@item
1998GPIO-connected keyboard controller and LEDs
1999@item
549444e1 2000Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
2001@item
2002Three on-chip UARTs
2003@item
2004WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2005@end itemize
2006
02645926
AZ
2007The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2008following elements:
2009
2010@itemize @minus
2011@item
2012Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2013@item
2014ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2015@item
2016On-chip LCD controller
2017@item
2018On-chip Real Time Clock
2019@item
2020TI TSC2102i touchscreen controller / analog-digital converter / Audio
2021CODEC, connected through MicroWire and I@math{^2}S busses
2022@item
2023GPIO-connected matrix keypad
2024@item
2025Secure Digital card connected to OMAP MMC/SD host
2026@item
2027Three on-chip UARTs
2028@end itemize
2029
c30bb264
AZ
2030Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2031emulation supports the following elements:
2032
2033@itemize @minus
2034@item
2035Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2036@item
2037RAM and non-volatile OneNAND Flash memories
2038@item
2039Display connected to EPSON remote framebuffer chip and OMAP on-chip
2040display controller and a LS041y3 MIPI DBI-C controller
2041@item
2042TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2043driven through SPI bus
2044@item
2045National Semiconductor LM8323-controlled qwerty keyboard driven
2046through I@math{^2}C bus
2047@item
2048Secure Digital card connected to OMAP MMC/SD host
2049@item
2050Three OMAP on-chip UARTs and on-chip STI debugging console
2051@item
40c5c6cd 2052A Bluetooth(R) transceiver and HCI connected to an UART
2d564691 2053@item
c30bb264
AZ
2054Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2055TUSB6010 chip - only USB host mode is supported
2056@item
2057TI TMP105 temperature sensor driven through I@math{^2}C bus
2058@item
2059TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2060@item
2061Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2062through CBUS
2063@end itemize
2064
9ee6e8bb
PB
2065The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2066devices:
2067
2068@itemize @minus
2069@item
2070Cortex-M3 CPU core.
2071@item
207264k Flash and 8k SRAM.
2073@item
2074Timers, UARTs, ADC and I@math{^2}C interface.
2075@item
2076OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2077@end itemize
2078
2079The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2080devices:
2081
2082@itemize @minus
2083@item
2084Cortex-M3 CPU core.
2085@item
2086256k Flash and 64k SRAM.
2087@item
2088Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2089@item
2090OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2091@end itemize
2092
57cd6e97
AZ
2093The Freecom MusicPal internet radio emulation includes the following
2094elements:
2095
2096@itemize @minus
2097@item
2098Marvell MV88W8618 ARM core.
2099@item
210032 MB RAM, 256 KB SRAM, 8 MB flash.
2101@item
2102Up to 2 16550 UARTs
2103@item
2104MV88W8xx8 Ethernet controller
2105@item
2106MV88W8618 audio controller, WM8750 CODEC and mixer
2107@item
e080e785 2108128×64 display with brightness control
57cd6e97
AZ
2109@item
21102 buttons, 2 navigation wheels with button function
2111@end itemize
2112
997641a8 2113The Siemens SX1 models v1 and v2 (default) basic emulation.
40c5c6cd 2114The emulation includes the following elements:
997641a8
AZ
2115
2116@itemize @minus
2117@item
2118Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2119@item
2120ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2121V1
21221 Flash of 16MB and 1 Flash of 8MB
2123V2
21241 Flash of 32MB
2125@item
2126On-chip LCD controller
2127@item
2128On-chip Real Time Clock
2129@item
2130Secure Digital card connected to OMAP MMC/SD host
2131@item
2132Three on-chip UARTs
2133@end itemize
2134
3f9f3aa1
FB
2135A Linux 2.6 test image is available on the QEMU web site. More
2136information is available in the QEMU mailing-list archive.
9d0a8e6f 2137
d2c639d6
BS
2138@c man begin OPTIONS
2139
2140The following options are specific to the ARM emulation:
2141
2142@table @option
2143
2144@item -semihosting
2145Enable semihosting syscall emulation.
2146
2147On ARM this implements the "Angel" interface.
2148
2149Note that this allows guest direct access to the host filesystem,
2150so should only be used with trusted guest OS.
2151
2152@end table
2153
24d4de45
TS
2154@node ColdFire System emulator
2155@section ColdFire System emulator
7544a042
SW
2156@cindex system emulation (ColdFire)
2157@cindex system emulation (M68K)
209a4e69
PB
2158
2159Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2160The emulator is able to boot a uClinux kernel.
707e011b
PB
2161
2162The M5208EVB emulation includes the following devices:
2163
2164@itemize @minus
5fafdf24 2165@item
707e011b
PB
2166MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2167@item
2168Three Two on-chip UARTs.
2169@item
2170Fast Ethernet Controller (FEC)
2171@end itemize
2172
2173The AN5206 emulation includes the following devices:
209a4e69
PB
2174
2175@itemize @minus
5fafdf24 2176@item
209a4e69
PB
2177MCF5206 ColdFire V2 Microprocessor.
2178@item
2179Two on-chip UARTs.
2180@end itemize
2181
d2c639d6
BS
2182@c man begin OPTIONS
2183
7544a042 2184The following options are specific to the ColdFire emulation:
d2c639d6
BS
2185
2186@table @option
2187
2188@item -semihosting
2189Enable semihosting syscall emulation.
2190
2191On M68K this implements the "ColdFire GDB" interface used by libgloss.
2192
2193Note that this allows guest direct access to the host filesystem,
2194so should only be used with trusted guest OS.
2195
2196@end table
2197
7544a042
SW
2198@node Cris System emulator
2199@section Cris System emulator
2200@cindex system emulation (Cris)
2201
2202TODO
2203
2204@node Microblaze System emulator
2205@section Microblaze System emulator
2206@cindex system emulation (Microblaze)
2207
2208TODO
2209
2210@node SH4 System emulator
2211@section SH4 System emulator
2212@cindex system emulation (SH4)
2213
2214TODO
2215
3aeaea65
MF
2216@node Xtensa System emulator
2217@section Xtensa System emulator
2218@cindex system emulation (Xtensa)
2219
2220Two executables cover simulation of both Xtensa endian options,
2221@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2222Two different machine types are emulated:
2223
2224@itemize @minus
2225@item
2226Xtensa emulator pseudo board "sim"
2227@item
2228Avnet LX60/LX110/LX200 board
2229@end itemize
2230
b5e4946f 2231The sim pseudo board emulation provides an environment similar
3aeaea65
MF
2232to one provided by the proprietary Tensilica ISS.
2233It supports:
2234
2235@itemize @minus
2236@item
2237A range of Xtensa CPUs, default is the DC232B
2238@item
2239Console and filesystem access via semihosting calls
2240@end itemize
2241
2242The Avnet LX60/LX110/LX200 emulation supports:
2243
2244@itemize @minus
2245@item
2246A range of Xtensa CPUs, default is the DC232B
2247@item
224816550 UART
2249@item
2250OpenCores 10/100 Mbps Ethernet MAC
2251@end itemize
2252
2253@c man begin OPTIONS
2254
2255The following options are specific to the Xtensa emulation:
2256
2257@table @option
2258
2259@item -semihosting
2260Enable semihosting syscall emulation.
2261
2262Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2263Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2264
2265Note that this allows guest direct access to the host filesystem,
2266so should only be used with trusted guest OS.
2267
2268@end table
5fafdf24
TS
2269@node QEMU User space emulator
2270@chapter QEMU User space emulator
83195237
FB
2271
2272@menu
2273* Supported Operating Systems ::
2274* Linux User space emulator::
84778508 2275* BSD User space emulator ::
83195237
FB
2276@end menu
2277
2278@node Supported Operating Systems
2279@section Supported Operating Systems
2280
2281The following OS are supported in user space emulation:
2282
2283@itemize @minus
2284@item
4be456f1 2285Linux (referred as qemu-linux-user)
83195237 2286@item
84778508 2287BSD (referred as qemu-bsd-user)
83195237
FB
2288@end itemize
2289
2290@node Linux User space emulator
2291@section Linux User space emulator
386405f7 2292
debc7065
FB
2293@menu
2294* Quick Start::
2295* Wine launch::
2296* Command line options::
79737e4a 2297* Other binaries::
debc7065
FB
2298@end menu
2299
2300@node Quick Start
83195237 2301@subsection Quick Start
df0f11a0 2302
1f673135 2303In order to launch a Linux process, QEMU needs the process executable
5fafdf24 2304itself and all the target (x86) dynamic libraries used by it.
386405f7 2305
1f673135 2306@itemize
386405f7 2307
1f673135
FB
2308@item On x86, you can just try to launch any process by using the native
2309libraries:
386405f7 2310
5fafdf24 2311@example
1f673135
FB
2312qemu-i386 -L / /bin/ls
2313@end example
386405f7 2314
1f673135
FB
2315@code{-L /} tells that the x86 dynamic linker must be searched with a
2316@file{/} prefix.
386405f7 2317
b65ee4fa
SW
2318@item Since QEMU is also a linux process, you can launch QEMU with
2319QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
386405f7 2320
5fafdf24 2321@example
1f673135
FB
2322qemu-i386 -L / qemu-i386 -L / /bin/ls
2323@end example
386405f7 2324
1f673135
FB
2325@item On non x86 CPUs, you need first to download at least an x86 glibc
2326(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2327@code{LD_LIBRARY_PATH} is not set:
df0f11a0 2328
1f673135 2329@example
5fafdf24 2330unset LD_LIBRARY_PATH
1f673135 2331@end example
1eb87257 2332
1f673135 2333Then you can launch the precompiled @file{ls} x86 executable:
1eb87257 2334
1f673135
FB
2335@example
2336qemu-i386 tests/i386/ls
2337@end example
4c3b5a48 2338You can look at @file{scripts/qemu-binfmt-conf.sh} so that
1f673135
FB
2339QEMU is automatically launched by the Linux kernel when you try to
2340launch x86 executables. It requires the @code{binfmt_misc} module in the
2341Linux kernel.
1eb87257 2342
1f673135
FB
2343@item The x86 version of QEMU is also included. You can try weird things such as:
2344@example
debc7065
FB
2345qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2346 /usr/local/qemu-i386/bin/ls-i386
1f673135 2347@end example
1eb20527 2348
1f673135 2349@end itemize
1eb20527 2350
debc7065 2351@node Wine launch
83195237 2352@subsection Wine launch
1eb20527 2353
1f673135 2354@itemize
386405f7 2355
1f673135
FB
2356@item Ensure that you have a working QEMU with the x86 glibc
2357distribution (see previous section). In order to verify it, you must be
2358able to do:
386405f7 2359
1f673135
FB
2360@example
2361qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2362@end example
386405f7 2363
1f673135 2364@item Download the binary x86 Wine install
5fafdf24 2365(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
386405f7 2366
1f673135 2367@item Configure Wine on your account. Look at the provided script
debc7065 2368@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1f673135 2369@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
386405f7 2370
1f673135 2371@item Then you can try the example @file{putty.exe}:
386405f7 2372
1f673135 2373@example
debc7065
FB
2374qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2375 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1f673135 2376@end example
386405f7 2377
1f673135 2378@end itemize
fd429f2f 2379
debc7065 2380@node Command line options
83195237 2381@subsection Command line options
1eb20527 2382
1f673135 2383@example
68a1c816 2384usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
1f673135 2385@end example
1eb20527 2386
1f673135
FB
2387@table @option
2388@item -h
2389Print the help
3b46e624 2390@item -L path
1f673135
FB
2391Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2392@item -s size
2393Set the x86 stack size in bytes (default=524288)
34a3d239 2394@item -cpu model
c8057f95 2395Select CPU model (-cpu help for list and additional feature selection)
f66724c9
SW
2396@item -ignore-environment
2397Start with an empty environment. Without this option,
40c5c6cd 2398the initial environment is a copy of the caller's environment.
f66724c9
SW
2399@item -E @var{var}=@var{value}
2400Set environment @var{var} to @var{value}.
2401@item -U @var{var}
2402Remove @var{var} from the environment.
379f6698
PB
2403@item -B offset
2404Offset guest address by the specified number of bytes. This is useful when
1f5c3f8c
SW
2405the address region required by guest applications is reserved on the host.
2406This option is currently only supported on some hosts.
68a1c816
PB
2407@item -R size
2408Pre-allocate a guest virtual address space of the given size (in bytes).
0d6753e5 2409"G", "M", and "k" suffixes may be used when specifying the size.
386405f7
FB
2410@end table
2411
1f673135 2412Debug options:
386405f7 2413
1f673135
FB
2414@table @option
2415@item -d
2416Activate log (logfile=/tmp/qemu.log)
2417@item -p pagesize
2418Act as if the host page size was 'pagesize' bytes
34a3d239
BS
2419@item -g port
2420Wait gdb connection to port
1b530a6d
AJ
2421@item -singlestep
2422Run the emulation in single step mode.
1f673135 2423@end table
386405f7 2424
b01bcae6
AZ
2425Environment variables:
2426
2427@table @env
2428@item QEMU_STRACE
2429Print system calls and arguments similar to the 'strace' program
2430(NOTE: the actual 'strace' program will not work because the user
2431space emulator hasn't implemented ptrace). At the moment this is
2432incomplete. All system calls that don't have a specific argument
2433format are printed with information for six arguments. Many
2434flag-style arguments don't have decoders and will show up as numbers.
5cfdf930 2435@end table
b01bcae6 2436
79737e4a 2437@node Other binaries
83195237 2438@subsection Other binaries
79737e4a 2439
7544a042
SW
2440@cindex user mode (Alpha)
2441@command{qemu-alpha} TODO.
2442
2443@cindex user mode (ARM)
2444@command{qemu-armeb} TODO.
2445
2446@cindex user mode (ARM)
79737e4a
PB
2447@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2448binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2449configurations), and arm-uclinux bFLT format binaries.
2450
7544a042
SW
2451@cindex user mode (ColdFire)
2452@cindex user mode (M68K)
e6e5906b
PB
2453@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2454(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2455coldfire uClinux bFLT format binaries.
2456
79737e4a
PB
2457The binary format is detected automatically.
2458
7544a042
SW
2459@cindex user mode (Cris)
2460@command{qemu-cris} TODO.
2461
2462@cindex user mode (i386)
2463@command{qemu-i386} TODO.
2464@command{qemu-x86_64} TODO.
2465
2466@cindex user mode (Microblaze)
2467@command{qemu-microblaze} TODO.
2468
2469@cindex user mode (MIPS)
2470@command{qemu-mips} TODO.
2471@command{qemu-mipsel} TODO.
2472
2473@cindex user mode (PowerPC)
2474@command{qemu-ppc64abi32} TODO.
2475@command{qemu-ppc64} TODO.
2476@command{qemu-ppc} TODO.
2477
2478@cindex user mode (SH4)
2479@command{qemu-sh4eb} TODO.
2480@command{qemu-sh4} TODO.
2481
2482@cindex user mode (SPARC)
34a3d239
BS
2483@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2484
a785e42e
BS
2485@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2486(Sparc64 CPU, 32 bit ABI).
2487
2488@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2489SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2490
84778508
BS
2491@node BSD User space emulator
2492@section BSD User space emulator
2493
2494@menu
2495* BSD Status::
2496* BSD Quick Start::
2497* BSD Command line options::
2498@end menu
2499
2500@node BSD Status
2501@subsection BSD Status
2502
2503@itemize @minus
2504@item
2505target Sparc64 on Sparc64: Some trivial programs work.
2506@end itemize
2507
2508@node BSD Quick Start
2509@subsection Quick Start
2510
2511In order to launch a BSD process, QEMU needs the process executable
2512itself and all the target dynamic libraries used by it.
2513
2514@itemize
2515
2516@item On Sparc64, you can just try to launch any process by using the native
2517libraries:
2518
2519@example
2520qemu-sparc64 /bin/ls
2521@end example
2522
2523@end itemize
2524
2525@node BSD Command line options
2526@subsection Command line options
2527
2528@example
2529usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2530@end example
2531
2532@table @option
2533@item -h
2534Print the help
2535@item -L path
2536Set the library root path (default=/)
2537@item -s size
2538Set the stack size in bytes (default=524288)
f66724c9
SW
2539@item -ignore-environment
2540Start with an empty environment. Without this option,
40c5c6cd 2541the initial environment is a copy of the caller's environment.
f66724c9
SW
2542@item -E @var{var}=@var{value}
2543Set environment @var{var} to @var{value}.
2544@item -U @var{var}
2545Remove @var{var} from the environment.
84778508
BS
2546@item -bsd type
2547Set the type of the emulated BSD Operating system. Valid values are
2548FreeBSD, NetBSD and OpenBSD (default).
2549@end table
2550
2551Debug options:
2552
2553@table @option
2554@item -d
2555Activate log (logfile=/tmp/qemu.log)
2556@item -p pagesize
2557Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
2558@item -singlestep
2559Run the emulation in single step mode.
84778508
BS
2560@end table
2561
15a34c63
FB
2562@node compilation
2563@chapter Compilation from the sources
2564
debc7065
FB
2565@menu
2566* Linux/Unix::
2567* Windows::
2568* Cross compilation for Windows with Linux::
2569* Mac OS X::
47eacb4f 2570* Make targets::
debc7065
FB
2571@end menu
2572
2573@node Linux/Unix
7c3fc84d
FB
2574@section Linux/Unix
2575
2576@subsection Compilation
2577
2578First you must decompress the sources:
2579@example
2580cd /tmp
2581tar zxvf qemu-x.y.z.tar.gz
2582cd qemu-x.y.z
2583@end example
2584
2585Then you configure QEMU and build it (usually no options are needed):
2586@example
2587./configure
2588make
2589@end example
2590
2591Then type as root user:
2592@example
2593make install
2594@end example
2595to install QEMU in @file{/usr/local}.
2596
debc7065 2597@node Windows
15a34c63
FB
2598@section Windows
2599
2600@itemize
2601@item Install the current versions of MSYS and MinGW from
2602@url{http://www.mingw.org/}. You can find detailed installation
2603instructions in the download section and the FAQ.
2604
5fafdf24 2605@item Download
15a34c63 2606the MinGW development library of SDL 1.2.x
debc7065 2607(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
d0a96f3d
ST
2608@url{http://www.libsdl.org}. Unpack it in a temporary place and
2609edit the @file{sdl-config} script so that it gives the
15a34c63
FB
2610correct SDL directory when invoked.
2611
d0a96f3d
ST
2612@item Install the MinGW version of zlib and make sure
2613@file{zlib.h} and @file{libz.dll.a} are in
40c5c6cd 2614MinGW's default header and linker search paths.
d0a96f3d 2615
15a34c63 2616@item Extract the current version of QEMU.
5fafdf24 2617
15a34c63
FB
2618@item Start the MSYS shell (file @file{msys.bat}).
2619
5fafdf24 2620@item Change to the QEMU directory. Launch @file{./configure} and
15a34c63
FB
2621@file{make}. If you have problems using SDL, verify that
2622@file{sdl-config} can be launched from the MSYS command line.
2623
c5ec15ea 2624@item You can install QEMU in @file{Program Files/QEMU} by typing
15a34c63 2625@file{make install}. Don't forget to copy @file{SDL.dll} in
c5ec15ea 2626@file{Program Files/QEMU}.
15a34c63
FB
2627
2628@end itemize
2629
debc7065 2630@node Cross compilation for Windows with Linux
15a34c63
FB
2631@section Cross compilation for Windows with Linux
2632
2633@itemize
2634@item
2635Install the MinGW cross compilation tools available at
2636@url{http://www.mingw.org/}.
2637
d0a96f3d
ST
2638@item Download
2639the MinGW development library of SDL 1.2.x
2640(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2641@url{http://www.libsdl.org}. Unpack it in a temporary place and
2642edit the @file{sdl-config} script so that it gives the
2643correct SDL directory when invoked. Set up the @code{PATH} environment
2644variable so that @file{sdl-config} can be launched by
15a34c63
FB
2645the QEMU configuration script.
2646
d0a96f3d
ST
2647@item Install the MinGW version of zlib and make sure
2648@file{zlib.h} and @file{libz.dll.a} are in
40c5c6cd 2649MinGW's default header and linker search paths.
d0a96f3d 2650
5fafdf24 2651@item
15a34c63
FB
2652Configure QEMU for Windows cross compilation:
2653@example
d0a96f3d
ST
2654PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
2655@end example
2656The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
2657MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
40c5c6cd 2658We set the @code{PATH} environment variable to ensure the MinGW version of @file{sdl-config} is used and
d0a96f3d 2659use --cross-prefix to specify the name of the cross compiler.
c5ec15ea 2660You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/QEMU}.
d0a96f3d
ST
2661
2662Under Fedora Linux, you can run:
2663@example
2664yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
15a34c63 2665@end example
d0a96f3d 2666to get a suitable cross compilation environment.
15a34c63 2667
5fafdf24 2668@item You can install QEMU in the installation directory by typing
d0a96f3d 2669@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
5fafdf24 2670installation directory.
15a34c63
FB
2671
2672@end itemize
2673
3804da9d
SW
2674Wine can be used to launch the resulting qemu-system-i386.exe
2675and all other qemu-system-@var{target}.exe compiled for Win32.
15a34c63 2676
debc7065 2677@node Mac OS X
15a34c63
FB
2678@section Mac OS X
2679
2680The Mac OS X patches are not fully merged in QEMU, so you should look
2681at the QEMU mailing list archive to have all the necessary
2682information.
2683
47eacb4f
SW
2684@node Make targets
2685@section Make targets
2686
2687@table @code
2688
2689@item make
2690@item make all
2691Make everything which is typically needed.
2692
2693@item install
2694TODO
2695
2696@item install-doc
2697TODO
2698
2699@item make clean
2700Remove most files which were built during make.
2701
2702@item make distclean
2703Remove everything which was built during make.
2704
2705@item make dvi
2706@item make html
2707@item make info
2708@item make pdf
2709Create documentation in dvi, html, info or pdf format.
2710
2711@item make cscope
2712TODO
2713
2714@item make defconfig
2715(Re-)create some build configuration files.
2716User made changes will be overwritten.
2717
2718@item tar
2719@item tarbin
2720TODO
2721
2722@end table
2723
7544a042
SW
2724@node License
2725@appendix License
2726
2727QEMU is a trademark of Fabrice Bellard.
2728
2729QEMU is released under the GNU General Public License (TODO: add link).
2730Parts of QEMU have specific licenses, see file LICENSE.
2731
2732TODO (refer to file LICENSE, include it, include the GPL?)
2733
debc7065 2734@node Index
7544a042
SW
2735@appendix Index
2736@menu
2737* Concept Index::
2738* Function Index::
2739* Keystroke Index::
2740* Program Index::
2741* Data Type Index::
2742* Variable Index::
2743@end menu
2744
2745@node Concept Index
2746@section Concept Index
2747This is the main index. Should we combine all keywords in one index? TODO
debc7065
FB
2748@printindex cp
2749
7544a042
SW
2750@node Function Index
2751@section Function Index
2752This index could be used for command line options and monitor functions.
2753@printindex fn
2754
2755@node Keystroke Index
2756@section Keystroke Index
2757
2758This is a list of all keystrokes which have a special function
2759in system emulation.
2760
2761@printindex ky
2762
2763@node Program Index
2764@section Program Index
2765@printindex pg
2766
2767@node Data Type Index
2768@section Data Type Index
2769
2770This index could be used for qdev device names and options.
2771
2772@printindex tp
2773
2774@node Variable Index
2775@section Variable Index
2776@printindex vr
2777
debc7065 2778@bye