]> git.proxmox.com Git - qemu.git/blame - target-arm/helper.c
target-arm: Set Invalid flag for NaN in float-to-int conversions
[qemu.git] / target-arm / helper.c
CommitLineData
b5ff1b31
FB
1#include <stdio.h>
2#include <stdlib.h>
3#include <string.h>
4
5#include "cpu.h"
6#include "exec-all.h"
9ee6e8bb 7#include "gdbstub.h"
7b59220e 8#include "helper.h"
ca10f867 9#include "qemu-common.h"
7bbcb0af 10#include "host-utils.h"
4f78c9ad 11#if !defined(CONFIG_USER_ONLY)
983fe826 12#include "hw/loader.h"
4f78c9ad 13#endif
9ee6e8bb 14
10055562
PB
15static uint32_t cortexa9_cp15_c0_c1[8] =
16{ 0x1031, 0x11, 0x000, 0, 0x00100103, 0x20000000, 0x01230000, 0x00002111 };
17
18static uint32_t cortexa9_cp15_c0_c2[8] =
19{ 0x00101111, 0x13112111, 0x21232041, 0x11112131, 0x00111142, 0, 0, 0 };
20
9ee6e8bb
PB
21static uint32_t cortexa8_cp15_c0_c1[8] =
22{ 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 };
23
24static uint32_t cortexa8_cp15_c0_c2[8] =
25{ 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 };
26
27static uint32_t mpcore_cp15_c0_c1[8] =
28{ 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 };
29
30static uint32_t mpcore_cp15_c0_c2[8] =
31{ 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 };
32
33static uint32_t arm1136_cp15_c0_c1[8] =
34{ 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 };
35
36static uint32_t arm1136_cp15_c0_c2[8] =
37{ 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 };
b5ff1b31 38
aaed909a
FB
39static uint32_t cpu_arm_find_by_name(const char *name);
40
f3d6b95e
PB
41static inline void set_feature(CPUARMState *env, int feature)
42{
43 env->features |= 1u << feature;
44}
45
46static void cpu_reset_model_id(CPUARMState *env, uint32_t id)
47{
48 env->cp15.c0_cpuid = id;
49 switch (id) {
50 case ARM_CPUID_ARM926:
be5e7a76
DES
51 set_feature(env, ARM_FEATURE_V4T);
52 set_feature(env, ARM_FEATURE_V5);
f3d6b95e
PB
53 set_feature(env, ARM_FEATURE_VFP);
54 env->vfp.xregs[ARM_VFP_FPSID] = 0x41011090;
c1713132 55 env->cp15.c0_cachetype = 0x1dd20d2;
610c3c8a 56 env->cp15.c1_sys = 0x00090078;
f3d6b95e 57 break;
ce819861 58 case ARM_CPUID_ARM946:
be5e7a76
DES
59 set_feature(env, ARM_FEATURE_V4T);
60 set_feature(env, ARM_FEATURE_V5);
ce819861
PB
61 set_feature(env, ARM_FEATURE_MPU);
62 env->cp15.c0_cachetype = 0x0f004006;
610c3c8a 63 env->cp15.c1_sys = 0x00000078;
ce819861 64 break;
f3d6b95e 65 case ARM_CPUID_ARM1026:
be5e7a76
DES
66 set_feature(env, ARM_FEATURE_V4T);
67 set_feature(env, ARM_FEATURE_V5);
f3d6b95e
PB
68 set_feature(env, ARM_FEATURE_VFP);
69 set_feature(env, ARM_FEATURE_AUXCR);
70 env->vfp.xregs[ARM_VFP_FPSID] = 0x410110a0;
c1713132 71 env->cp15.c0_cachetype = 0x1dd20d2;
610c3c8a 72 env->cp15.c1_sys = 0x00090078;
c1713132 73 break;
827df9f3 74 case ARM_CPUID_ARM1136_R2:
9ee6e8bb 75 case ARM_CPUID_ARM1136:
be5e7a76
DES
76 set_feature(env, ARM_FEATURE_V4T);
77 set_feature(env, ARM_FEATURE_V5);
9ee6e8bb
PB
78 set_feature(env, ARM_FEATURE_V6);
79 set_feature(env, ARM_FEATURE_VFP);
80 set_feature(env, ARM_FEATURE_AUXCR);
81 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
82 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
83 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
84 memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c1, 8 * sizeof(uint32_t));
22478e79 85 memcpy(env->cp15.c0_c2, arm1136_cp15_c0_c2, 8 * sizeof(uint32_t));
9ee6e8bb 86 env->cp15.c0_cachetype = 0x1dd20d2;
16440c5f 87 env->cp15.c1_sys = 0x00050078;
9ee6e8bb
PB
88 break;
89 case ARM_CPUID_ARM11MPCORE:
be5e7a76
DES
90 set_feature(env, ARM_FEATURE_V4T);
91 set_feature(env, ARM_FEATURE_V5);
9ee6e8bb
PB
92 set_feature(env, ARM_FEATURE_V6);
93 set_feature(env, ARM_FEATURE_V6K);
94 set_feature(env, ARM_FEATURE_VFP);
95 set_feature(env, ARM_FEATURE_AUXCR);
96 env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
97 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
98 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
99 memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c1, 8 * sizeof(uint32_t));
22478e79 100 memcpy(env->cp15.c0_c2, mpcore_cp15_c0_c2, 8 * sizeof(uint32_t));
9ee6e8bb
PB
101 env->cp15.c0_cachetype = 0x1dd20d2;
102 break;
103 case ARM_CPUID_CORTEXA8:
be5e7a76
DES
104 set_feature(env, ARM_FEATURE_V4T);
105 set_feature(env, ARM_FEATURE_V5);
9ee6e8bb
PB
106 set_feature(env, ARM_FEATURE_V6);
107 set_feature(env, ARM_FEATURE_V6K);
108 set_feature(env, ARM_FEATURE_V7);
109 set_feature(env, ARM_FEATURE_AUXCR);
110 set_feature(env, ARM_FEATURE_THUMB2);
111 set_feature(env, ARM_FEATURE_VFP);
112 set_feature(env, ARM_FEATURE_VFP3);
113 set_feature(env, ARM_FEATURE_NEON);
fe1479c3 114 set_feature(env, ARM_FEATURE_THUMB2EE);
9ee6e8bb
PB
115 env->vfp.xregs[ARM_VFP_FPSID] = 0x410330c0;
116 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
117 env->vfp.xregs[ARM_VFP_MVFR1] = 0x00011100;
118 memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c1, 8 * sizeof(uint32_t));
22478e79 119 memcpy(env->cp15.c0_c2, cortexa8_cp15_c0_c2, 8 * sizeof(uint32_t));
a49ea279
PB
120 env->cp15.c0_cachetype = 0x82048004;
121 env->cp15.c0_clid = (1 << 27) | (2 << 24) | 3;
122 env->cp15.c0_ccsid[0] = 0xe007e01a; /* 16k L1 dcache. */
123 env->cp15.c0_ccsid[1] = 0x2007e01a; /* 16k L1 icache. */
124 env->cp15.c0_ccsid[2] = 0xf0000000; /* No L2 icache. */
9c486ad6 125 env->cp15.c1_sys = 0x00c50078;
9ee6e8bb 126 break;
10055562 127 case ARM_CPUID_CORTEXA9:
be5e7a76
DES
128 set_feature(env, ARM_FEATURE_V4T);
129 set_feature(env, ARM_FEATURE_V5);
10055562
PB
130 set_feature(env, ARM_FEATURE_V6);
131 set_feature(env, ARM_FEATURE_V6K);
132 set_feature(env, ARM_FEATURE_V7);
133 set_feature(env, ARM_FEATURE_AUXCR);
134 set_feature(env, ARM_FEATURE_THUMB2);
135 set_feature(env, ARM_FEATURE_VFP);
136 set_feature(env, ARM_FEATURE_VFP3);
137 set_feature(env, ARM_FEATURE_VFP_FP16);
138 set_feature(env, ARM_FEATURE_NEON);
139 set_feature(env, ARM_FEATURE_THUMB2EE);
e1bbf446
PM
140 /* Note that A9 supports the MP extensions even for
141 * A9UP and single-core A9MP (which are both different
142 * and valid configurations; we don't model A9UP).
143 */
144 set_feature(env, ARM_FEATURE_V7MP);
10055562
PB
145 env->vfp.xregs[ARM_VFP_FPSID] = 0x41034000; /* Guess */
146 env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
147 env->vfp.xregs[ARM_VFP_MVFR1] = 0x01111111;
148 memcpy(env->cp15.c0_c1, cortexa9_cp15_c0_c1, 8 * sizeof(uint32_t));
149 memcpy(env->cp15.c0_c2, cortexa9_cp15_c0_c2, 8 * sizeof(uint32_t));
150 env->cp15.c0_cachetype = 0x80038003;
151 env->cp15.c0_clid = (1 << 27) | (1 << 24) | 3;
152 env->cp15.c0_ccsid[0] = 0xe00fe015; /* 16k L1 dcache. */
153 env->cp15.c0_ccsid[1] = 0x200fe015; /* 16k L1 icache. */
16440c5f 154 env->cp15.c1_sys = 0x00c50078;
10055562 155 break;
9ee6e8bb 156 case ARM_CPUID_CORTEXM3:
be5e7a76
DES
157 set_feature(env, ARM_FEATURE_V4T);
158 set_feature(env, ARM_FEATURE_V5);
9ee6e8bb
PB
159 set_feature(env, ARM_FEATURE_V6);
160 set_feature(env, ARM_FEATURE_THUMB2);
161 set_feature(env, ARM_FEATURE_V7);
162 set_feature(env, ARM_FEATURE_M);
163 set_feature(env, ARM_FEATURE_DIV);
164 break;
165 case ARM_CPUID_ANY: /* For userspace emulation. */
be5e7a76
DES
166 set_feature(env, ARM_FEATURE_V4T);
167 set_feature(env, ARM_FEATURE_V5);
9ee6e8bb
PB
168 set_feature(env, ARM_FEATURE_V6);
169 set_feature(env, ARM_FEATURE_V6K);
170 set_feature(env, ARM_FEATURE_V7);
171 set_feature(env, ARM_FEATURE_THUMB2);
172 set_feature(env, ARM_FEATURE_VFP);
173 set_feature(env, ARM_FEATURE_VFP3);
60011498 174 set_feature(env, ARM_FEATURE_VFP_FP16);
9ee6e8bb 175 set_feature(env, ARM_FEATURE_NEON);
fe1479c3 176 set_feature(env, ARM_FEATURE_THUMB2EE);
9ee6e8bb 177 set_feature(env, ARM_FEATURE_DIV);
e1bbf446 178 set_feature(env, ARM_FEATURE_V7MP);
9ee6e8bb 179 break;
c3d2689d
AZ
180 case ARM_CPUID_TI915T:
181 case ARM_CPUID_TI925T:
be5e7a76 182 set_feature(env, ARM_FEATURE_V4T);
c3d2689d
AZ
183 set_feature(env, ARM_FEATURE_OMAPCP);
184 env->cp15.c0_cpuid = ARM_CPUID_TI925T; /* Depends on wiring. */
185 env->cp15.c0_cachetype = 0x5109149;
186 env->cp15.c1_sys = 0x00000070;
187 env->cp15.c15_i_max = 0x000;
188 env->cp15.c15_i_min = 0xff0;
189 break;
c1713132
AZ
190 case ARM_CPUID_PXA250:
191 case ARM_CPUID_PXA255:
192 case ARM_CPUID_PXA260:
193 case ARM_CPUID_PXA261:
194 case ARM_CPUID_PXA262:
be5e7a76
DES
195 set_feature(env, ARM_FEATURE_V4T);
196 set_feature(env, ARM_FEATURE_V5);
c1713132
AZ
197 set_feature(env, ARM_FEATURE_XSCALE);
198 /* JTAG_ID is ((id << 28) | 0x09265013) */
199 env->cp15.c0_cachetype = 0xd172172;
610c3c8a 200 env->cp15.c1_sys = 0x00000078;
c1713132
AZ
201 break;
202 case ARM_CPUID_PXA270_A0:
203 case ARM_CPUID_PXA270_A1:
204 case ARM_CPUID_PXA270_B0:
205 case ARM_CPUID_PXA270_B1:
206 case ARM_CPUID_PXA270_C0:
207 case ARM_CPUID_PXA270_C5:
be5e7a76
DES
208 set_feature(env, ARM_FEATURE_V4T);
209 set_feature(env, ARM_FEATURE_V5);
c1713132
AZ
210 set_feature(env, ARM_FEATURE_XSCALE);
211 /* JTAG_ID is ((id << 28) | 0x09265013) */
18c9b560
AZ
212 set_feature(env, ARM_FEATURE_IWMMXT);
213 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
c1713132 214 env->cp15.c0_cachetype = 0xd172172;
610c3c8a 215 env->cp15.c1_sys = 0x00000078;
f3d6b95e 216 break;
5bc95aa2
DES
217 case ARM_CPUID_SA1100:
218 case ARM_CPUID_SA1110:
219 set_feature(env, ARM_FEATURE_STRONGARM);
220 env->cp15.c1_sys = 0x00000070;
221 break;
f3d6b95e
PB
222 default:
223 cpu_abort(env, "Bad CPU ID: %x\n", id);
224 break;
225 }
226}
227
40f137e1
PB
228void cpu_reset(CPUARMState *env)
229{
f3d6b95e 230 uint32_t id;
eca1bdf4
AL
231
232 if (qemu_loglevel_mask(CPU_LOG_RESET)) {
233 qemu_log("CPU Reset (CPU %d)\n", env->cpu_index);
234 log_cpu_state(env, 0);
235 }
236
f3d6b95e
PB
237 id = env->cp15.c0_cpuid;
238 memset(env, 0, offsetof(CPUARMState, breakpoints));
239 if (id)
240 cpu_reset_model_id(env, id);
40f137e1
PB
241#if defined (CONFIG_USER_ONLY)
242 env->uncached_cpsr = ARM_CPU_MODE_USR;
3a807dec 243 /* For user mode we must enable access to coprocessors */
40f137e1 244 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
3a807dec
PM
245 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
246 env->cp15.c15_cpar = 3;
247 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
248 env->cp15.c15_cpar = 1;
249 }
40f137e1
PB
250#else
251 /* SVC mode with interrupts disabled. */
252 env->uncached_cpsr = ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
9ee6e8bb 253 /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
983fe826
PB
254 clear at reset. Initial SP and PC are loaded from ROM. */
255 if (IS_M(env)) {
256 uint32_t pc;
257 uint8_t *rom;
9ee6e8bb 258 env->uncached_cpsr &= ~CPSR_I;
983fe826
PB
259 rom = rom_ptr(0);
260 if (rom) {
261 /* We should really use ldl_phys here, in case the guest
262 modified flash and reset itself. However images
263 loaded via -kenrel have not been copied yet, so load the
264 values directly from there. */
265 env->regs[13] = ldl_p(rom);
266 pc = ldl_p(rom + 4);
267 env->thumb = pc & 1;
268 env->regs[15] = pc & ~1;
269 }
270 }
40f137e1 271 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
b2fa1797 272 env->cp15.c2_base_mask = 0xffffc000u;
40f137e1 273#endif
3a492f3a
PM
274 set_flush_to_zero(1, &env->vfp.standard_fp_status);
275 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
276 set_default_nan_mode(1, &env->vfp.standard_fp_status);
9df38c47
PM
277 set_float_detect_tininess(float_tininess_before_rounding,
278 &env->vfp.fp_status);
279 set_float_detect_tininess(float_tininess_before_rounding,
280 &env->vfp.standard_fp_status);
f3d6b95e 281 tlb_flush(env, 1);
40f137e1
PB
282}
283
56aebc89
PB
284static int vfp_gdb_get_reg(CPUState *env, uint8_t *buf, int reg)
285{
286 int nregs;
287
288 /* VFP data registers are always little-endian. */
289 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
290 if (reg < nregs) {
291 stfq_le_p(buf, env->vfp.regs[reg]);
292 return 8;
293 }
294 if (arm_feature(env, ARM_FEATURE_NEON)) {
295 /* Aliases for Q regs. */
296 nregs += 16;
297 if (reg < nregs) {
298 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
299 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
300 return 16;
301 }
302 }
303 switch (reg - nregs) {
304 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
305 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
306 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
307 }
308 return 0;
309}
310
311static int vfp_gdb_set_reg(CPUState *env, uint8_t *buf, int reg)
312{
313 int nregs;
314
315 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
316 if (reg < nregs) {
317 env->vfp.regs[reg] = ldfq_le_p(buf);
318 return 8;
319 }
320 if (arm_feature(env, ARM_FEATURE_NEON)) {
321 nregs += 16;
322 if (reg < nregs) {
323 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
324 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
325 return 16;
326 }
327 }
328 switch (reg - nregs) {
329 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
330 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
71b3c3de 331 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
56aebc89
PB
332 }
333 return 0;
334}
335
aaed909a 336CPUARMState *cpu_arm_init(const char *cpu_model)
40f137e1
PB
337{
338 CPUARMState *env;
aaed909a 339 uint32_t id;
b26eefb6 340 static int inited = 0;
40f137e1 341
aaed909a
FB
342 id = cpu_arm_find_by_name(cpu_model);
343 if (id == 0)
344 return NULL;
40f137e1 345 env = qemu_mallocz(sizeof(CPUARMState));
40f137e1 346 cpu_exec_init(env);
b26eefb6
PB
347 if (!inited) {
348 inited = 1;
349 arm_translate_init();
350 }
351
01ba9816 352 env->cpu_model_str = cpu_model;
aaed909a 353 env->cp15.c0_cpuid = id;
40f137e1 354 cpu_reset(env);
56aebc89
PB
355 if (arm_feature(env, ARM_FEATURE_NEON)) {
356 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
357 51, "arm-neon.xml", 0);
358 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
359 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
360 35, "arm-vfp3.xml", 0);
361 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
362 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
363 19, "arm-vfp.xml", 0);
364 }
0bf46a40 365 qemu_init_vcpu(env);
40f137e1
PB
366 return env;
367}
368
3371d272
PB
369struct arm_cpu_t {
370 uint32_t id;
371 const char *name;
372};
373
374static const struct arm_cpu_t arm_cpu_names[] = {
375 { ARM_CPUID_ARM926, "arm926"},
ce819861 376 { ARM_CPUID_ARM946, "arm946"},
3371d272 377 { ARM_CPUID_ARM1026, "arm1026"},
9ee6e8bb 378 { ARM_CPUID_ARM1136, "arm1136"},
827df9f3 379 { ARM_CPUID_ARM1136_R2, "arm1136-r2"},
9ee6e8bb
PB
380 { ARM_CPUID_ARM11MPCORE, "arm11mpcore"},
381 { ARM_CPUID_CORTEXM3, "cortex-m3"},
382 { ARM_CPUID_CORTEXA8, "cortex-a8"},
10055562 383 { ARM_CPUID_CORTEXA9, "cortex-a9"},
c3d2689d 384 { ARM_CPUID_TI925T, "ti925t" },
c1713132 385 { ARM_CPUID_PXA250, "pxa250" },
5bc95aa2
DES
386 { ARM_CPUID_SA1100, "sa1100" },
387 { ARM_CPUID_SA1110, "sa1110" },
c1713132
AZ
388 { ARM_CPUID_PXA255, "pxa255" },
389 { ARM_CPUID_PXA260, "pxa260" },
390 { ARM_CPUID_PXA261, "pxa261" },
391 { ARM_CPUID_PXA262, "pxa262" },
392 { ARM_CPUID_PXA270, "pxa270" },
393 { ARM_CPUID_PXA270_A0, "pxa270-a0" },
394 { ARM_CPUID_PXA270_A1, "pxa270-a1" },
395 { ARM_CPUID_PXA270_B0, "pxa270-b0" },
396 { ARM_CPUID_PXA270_B1, "pxa270-b1" },
397 { ARM_CPUID_PXA270_C0, "pxa270-c0" },
398 { ARM_CPUID_PXA270_C5, "pxa270-c5" },
9ee6e8bb 399 { ARM_CPUID_ANY, "any"},
3371d272
PB
400 { 0, NULL}
401};
402
9a78eead 403void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
5adb4839
PB
404{
405 int i;
406
c732abe2 407 (*cpu_fprintf)(f, "Available CPUs:\n");
5adb4839 408 for (i = 0; arm_cpu_names[i].name; i++) {
c732abe2 409 (*cpu_fprintf)(f, " %s\n", arm_cpu_names[i].name);
5adb4839
PB
410 }
411}
412
aaed909a
FB
413/* return 0 if not found */
414static uint32_t cpu_arm_find_by_name(const char *name)
40f137e1 415{
3371d272
PB
416 int i;
417 uint32_t id;
418
419 id = 0;
3371d272
PB
420 for (i = 0; arm_cpu_names[i].name; i++) {
421 if (strcmp(name, arm_cpu_names[i].name) == 0) {
422 id = arm_cpu_names[i].id;
423 break;
424 }
425 }
aaed909a 426 return id;
40f137e1
PB
427}
428
429void cpu_arm_close(CPUARMState *env)
430{
431 free(env);
432}
433
2f4a40e5
AZ
434uint32_t cpsr_read(CPUARMState *env)
435{
436 int ZF;
6fbe23d5
PB
437 ZF = (env->ZF == 0);
438 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
2f4a40e5
AZ
439 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
440 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
441 | ((env->condexec_bits & 0xfc) << 8)
442 | (env->GE << 16);
443}
444
445void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
446{
2f4a40e5 447 if (mask & CPSR_NZCV) {
6fbe23d5
PB
448 env->ZF = (~val) & CPSR_Z;
449 env->NF = val;
2f4a40e5
AZ
450 env->CF = (val >> 29) & 1;
451 env->VF = (val << 3) & 0x80000000;
452 }
453 if (mask & CPSR_Q)
454 env->QF = ((val & CPSR_Q) != 0);
455 if (mask & CPSR_T)
456 env->thumb = ((val & CPSR_T) != 0);
457 if (mask & CPSR_IT_0_1) {
458 env->condexec_bits &= ~3;
459 env->condexec_bits |= (val >> 25) & 3;
460 }
461 if (mask & CPSR_IT_2_7) {
462 env->condexec_bits &= 3;
463 env->condexec_bits |= (val >> 8) & 0xfc;
464 }
465 if (mask & CPSR_GE) {
466 env->GE = (val >> 16) & 0xf;
467 }
468
469 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
470 switch_mode(env, val & CPSR_M);
471 }
472 mask &= ~CACHED_CPSR_BITS;
473 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
474}
475
b26eefb6
PB
476/* Sign/zero extend */
477uint32_t HELPER(sxtb16)(uint32_t x)
478{
479 uint32_t res;
480 res = (uint16_t)(int8_t)x;
481 res |= (uint32_t)(int8_t)(x >> 16) << 16;
482 return res;
483}
484
485uint32_t HELPER(uxtb16)(uint32_t x)
486{
487 uint32_t res;
488 res = (uint16_t)(uint8_t)x;
489 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
490 return res;
491}
492
f51bbbfe
PB
493uint32_t HELPER(clz)(uint32_t x)
494{
7bbcb0af 495 return clz32(x);
f51bbbfe
PB
496}
497
3670669c
PB
498int32_t HELPER(sdiv)(int32_t num, int32_t den)
499{
500 if (den == 0)
501 return 0;
686eeb93
AJ
502 if (num == INT_MIN && den == -1)
503 return INT_MIN;
3670669c
PB
504 return num / den;
505}
506
507uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
508{
509 if (den == 0)
510 return 0;
511 return num / den;
512}
513
514uint32_t HELPER(rbit)(uint32_t x)
515{
516 x = ((x & 0xff000000) >> 24)
517 | ((x & 0x00ff0000) >> 8)
518 | ((x & 0x0000ff00) << 8)
519 | ((x & 0x000000ff) << 24);
520 x = ((x & 0xf0f0f0f0) >> 4)
521 | ((x & 0x0f0f0f0f) << 4);
522 x = ((x & 0x88888888) >> 3)
523 | ((x & 0x44444444) >> 1)
524 | ((x & 0x22222222) << 1)
525 | ((x & 0x11111111) << 3);
526 return x;
527}
528
ad69471c
PB
529uint32_t HELPER(abs)(uint32_t x)
530{
531 return ((int32_t)x < 0) ? -x : x;
532}
533
5fafdf24 534#if defined(CONFIG_USER_ONLY)
b5ff1b31
FB
535
536void do_interrupt (CPUState *env)
537{
538 env->exception_index = -1;
539}
540
541int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
6ebbf390 542 int mmu_idx, int is_softmmu)
b5ff1b31
FB
543{
544 if (rw == 2) {
545 env->exception_index = EXCP_PREFETCH_ABORT;
546 env->cp15.c6_insn = address;
547 } else {
548 env->exception_index = EXCP_DATA_ABORT;
549 env->cp15.c6_data = address;
550 }
551 return 1;
552}
553
b5ff1b31 554/* These should probably raise undefined insn exceptions. */
8984bd2e 555void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
c1713132
AZ
556{
557 int op1 = (insn >> 8) & 0xf;
558 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
559 return;
560}
561
8984bd2e 562uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
c1713132
AZ
563{
564 int op1 = (insn >> 8) & 0xf;
565 cpu_abort(env, "cp%i insn %08x\n", op1, insn);
566 return 0;
567}
568
8984bd2e 569void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
b5ff1b31
FB
570{
571 cpu_abort(env, "cp15 insn %08x\n", insn);
572}
573
8984bd2e 574uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
b5ff1b31
FB
575{
576 cpu_abort(env, "cp15 insn %08x\n", insn);
b5ff1b31
FB
577}
578
9ee6e8bb 579/* These should probably raise undefined insn exceptions. */
8984bd2e 580void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
9ee6e8bb
PB
581{
582 cpu_abort(env, "v7m_mrs %d\n", reg);
583}
584
8984bd2e 585uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
9ee6e8bb
PB
586{
587 cpu_abort(env, "v7m_mrs %d\n", reg);
588 return 0;
589}
590
b5ff1b31
FB
591void switch_mode(CPUState *env, int mode)
592{
593 if (mode != ARM_CPU_MODE_USR)
594 cpu_abort(env, "Tried to switch out of user mode\n");
595}
596
b0109805 597void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
9ee6e8bb
PB
598{
599 cpu_abort(env, "banked r13 write\n");
600}
601
b0109805 602uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
9ee6e8bb
PB
603{
604 cpu_abort(env, "banked r13 read\n");
605 return 0;
606}
607
b5ff1b31
FB
608#else
609
8e71621f
PB
610extern int semihosting_enabled;
611
b5ff1b31
FB
612/* Map CPU modes onto saved register banks. */
613static inline int bank_number (int mode)
614{
615 switch (mode) {
616 case ARM_CPU_MODE_USR:
617 case ARM_CPU_MODE_SYS:
618 return 0;
619 case ARM_CPU_MODE_SVC:
620 return 1;
621 case ARM_CPU_MODE_ABT:
622 return 2;
623 case ARM_CPU_MODE_UND:
624 return 3;
625 case ARM_CPU_MODE_IRQ:
626 return 4;
627 case ARM_CPU_MODE_FIQ:
628 return 5;
629 }
630 cpu_abort(cpu_single_env, "Bad mode %x\n", mode);
631 return -1;
632}
633
634void switch_mode(CPUState *env, int mode)
635{
636 int old_mode;
637 int i;
638
639 old_mode = env->uncached_cpsr & CPSR_M;
640 if (mode == old_mode)
641 return;
642
643 if (old_mode == ARM_CPU_MODE_FIQ) {
644 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
8637c67f 645 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
b5ff1b31
FB
646 } else if (mode == ARM_CPU_MODE_FIQ) {
647 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
8637c67f 648 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
b5ff1b31
FB
649 }
650
651 i = bank_number(old_mode);
652 env->banked_r13[i] = env->regs[13];
653 env->banked_r14[i] = env->regs[14];
654 env->banked_spsr[i] = env->spsr;
655
656 i = bank_number(mode);
657 env->regs[13] = env->banked_r13[i];
658 env->regs[14] = env->banked_r14[i];
659 env->spsr = env->banked_spsr[i];
660}
661
9ee6e8bb
PB
662static void v7m_push(CPUARMState *env, uint32_t val)
663{
664 env->regs[13] -= 4;
665 stl_phys(env->regs[13], val);
666}
667
668static uint32_t v7m_pop(CPUARMState *env)
669{
670 uint32_t val;
671 val = ldl_phys(env->regs[13]);
672 env->regs[13] += 4;
673 return val;
674}
675
676/* Switch to V7M main or process stack pointer. */
677static void switch_v7m_sp(CPUARMState *env, int process)
678{
679 uint32_t tmp;
680 if (env->v7m.current_sp != process) {
681 tmp = env->v7m.other_sp;
682 env->v7m.other_sp = env->regs[13];
683 env->regs[13] = tmp;
684 env->v7m.current_sp = process;
685 }
686}
687
688static void do_v7m_exception_exit(CPUARMState *env)
689{
690 uint32_t type;
691 uint32_t xpsr;
692
693 type = env->regs[15];
694 if (env->v7m.exception != 0)
983fe826 695 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
9ee6e8bb
PB
696
697 /* Switch to the target stack. */
698 switch_v7m_sp(env, (type & 4) != 0);
699 /* Pop registers. */
700 env->regs[0] = v7m_pop(env);
701 env->regs[1] = v7m_pop(env);
702 env->regs[2] = v7m_pop(env);
703 env->regs[3] = v7m_pop(env);
704 env->regs[12] = v7m_pop(env);
705 env->regs[14] = v7m_pop(env);
706 env->regs[15] = v7m_pop(env);
707 xpsr = v7m_pop(env);
708 xpsr_write(env, xpsr, 0xfffffdff);
709 /* Undo stack alignment. */
710 if (xpsr & 0x200)
711 env->regs[13] |= 4;
712 /* ??? The exception return type specifies Thread/Handler mode. However
713 this is also implied by the xPSR value. Not sure what to do
714 if there is a mismatch. */
715 /* ??? Likewise for mismatches between the CONTROL register and the stack
716 pointer. */
717}
718
2b3ea315 719static void do_interrupt_v7m(CPUARMState *env)
9ee6e8bb
PB
720{
721 uint32_t xpsr = xpsr_read(env);
722 uint32_t lr;
723 uint32_t addr;
724
725 lr = 0xfffffff1;
726 if (env->v7m.current_sp)
727 lr |= 4;
728 if (env->v7m.exception == 0)
729 lr |= 8;
730
731 /* For exceptions we just mark as pending on the NVIC, and let that
732 handle it. */
733 /* TODO: Need to escalate if the current priority is higher than the
734 one we're raising. */
735 switch (env->exception_index) {
736 case EXCP_UDEF:
983fe826 737 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
9ee6e8bb
PB
738 return;
739 case EXCP_SWI:
740 env->regs[15] += 2;
983fe826 741 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
9ee6e8bb
PB
742 return;
743 case EXCP_PREFETCH_ABORT:
744 case EXCP_DATA_ABORT:
983fe826 745 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
9ee6e8bb
PB
746 return;
747 case EXCP_BKPT:
2ad207d4
PB
748 if (semihosting_enabled) {
749 int nr;
750 nr = lduw_code(env->regs[15]) & 0xff;
751 if (nr == 0xab) {
752 env->regs[15] += 2;
753 env->regs[0] = do_arm_semihosting(env);
754 return;
755 }
756 }
983fe826 757 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
9ee6e8bb
PB
758 return;
759 case EXCP_IRQ:
983fe826 760 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
9ee6e8bb
PB
761 break;
762 case EXCP_EXCEPTION_EXIT:
763 do_v7m_exception_exit(env);
764 return;
765 default:
766 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
767 return; /* Never happens. Keep compiler happy. */
768 }
769
770 /* Align stack pointer. */
771 /* ??? Should only do this if Configuration Control Register
772 STACKALIGN bit is set. */
773 if (env->regs[13] & 4) {
ab19b0ec 774 env->regs[13] -= 4;
9ee6e8bb
PB
775 xpsr |= 0x200;
776 }
6c95676b 777 /* Switch to the handler mode. */
9ee6e8bb
PB
778 v7m_push(env, xpsr);
779 v7m_push(env, env->regs[15]);
780 v7m_push(env, env->regs[14]);
781 v7m_push(env, env->regs[12]);
782 v7m_push(env, env->regs[3]);
783 v7m_push(env, env->regs[2]);
784 v7m_push(env, env->regs[1]);
785 v7m_push(env, env->regs[0]);
786 switch_v7m_sp(env, 0);
787 env->uncached_cpsr &= ~CPSR_IT;
788 env->regs[14] = lr;
789 addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
790 env->regs[15] = addr & 0xfffffffe;
791 env->thumb = addr & 1;
792}
793
b5ff1b31
FB
794/* Handle a CPU exception. */
795void do_interrupt(CPUARMState *env)
796{
797 uint32_t addr;
798 uint32_t mask;
799 int new_mode;
800 uint32_t offset;
801
9ee6e8bb
PB
802 if (IS_M(env)) {
803 do_interrupt_v7m(env);
804 return;
805 }
b5ff1b31
FB
806 /* TODO: Vectored interrupt controller. */
807 switch (env->exception_index) {
808 case EXCP_UDEF:
809 new_mode = ARM_CPU_MODE_UND;
810 addr = 0x04;
811 mask = CPSR_I;
812 if (env->thumb)
813 offset = 2;
814 else
815 offset = 4;
816 break;
817 case EXCP_SWI:
8e71621f
PB
818 if (semihosting_enabled) {
819 /* Check for semihosting interrupt. */
820 if (env->thumb) {
821 mask = lduw_code(env->regs[15] - 2) & 0xff;
822 } else {
823 mask = ldl_code(env->regs[15] - 4) & 0xffffff;
824 }
825 /* Only intercept calls from privileged modes, to provide some
826 semblance of security. */
827 if (((mask == 0x123456 && !env->thumb)
828 || (mask == 0xab && env->thumb))
829 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
830 env->regs[0] = do_arm_semihosting(env);
831 return;
832 }
833 }
b5ff1b31
FB
834 new_mode = ARM_CPU_MODE_SVC;
835 addr = 0x08;
836 mask = CPSR_I;
601d70b9 837 /* The PC already points to the next instruction. */
b5ff1b31
FB
838 offset = 0;
839 break;
06c949e6 840 case EXCP_BKPT:
9ee6e8bb 841 /* See if this is a semihosting syscall. */
2ad207d4 842 if (env->thumb && semihosting_enabled) {
9ee6e8bb
PB
843 mask = lduw_code(env->regs[15]) & 0xff;
844 if (mask == 0xab
845 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
846 env->regs[15] += 2;
847 env->regs[0] = do_arm_semihosting(env);
848 return;
849 }
850 }
851 /* Fall through to prefetch abort. */
852 case EXCP_PREFETCH_ABORT:
b5ff1b31
FB
853 new_mode = ARM_CPU_MODE_ABT;
854 addr = 0x0c;
855 mask = CPSR_A | CPSR_I;
856 offset = 4;
857 break;
858 case EXCP_DATA_ABORT:
859 new_mode = ARM_CPU_MODE_ABT;
860 addr = 0x10;
861 mask = CPSR_A | CPSR_I;
862 offset = 8;
863 break;
864 case EXCP_IRQ:
865 new_mode = ARM_CPU_MODE_IRQ;
866 addr = 0x18;
867 /* Disable IRQ and imprecise data aborts. */
868 mask = CPSR_A | CPSR_I;
869 offset = 4;
870 break;
871 case EXCP_FIQ:
872 new_mode = ARM_CPU_MODE_FIQ;
873 addr = 0x1c;
874 /* Disable FIQ, IRQ and imprecise data aborts. */
875 mask = CPSR_A | CPSR_I | CPSR_F;
876 offset = 4;
877 break;
878 default:
879 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
880 return; /* Never happens. Keep compiler happy. */
881 }
882 /* High vectors. */
883 if (env->cp15.c1_sys & (1 << 13)) {
884 addr += 0xffff0000;
885 }
886 switch_mode (env, new_mode);
887 env->spsr = cpsr_read(env);
9ee6e8bb
PB
888 /* Clear IT bits. */
889 env->condexec_bits = 0;
30a8cac1 890 /* Switch to the new mode, and to the correct instruction set. */
6d7e6326 891 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
b5ff1b31 892 env->uncached_cpsr |= mask;
be5e7a76
DES
893 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
894 * and we should just guard the thumb mode on V4 */
895 if (arm_feature(env, ARM_FEATURE_V4T)) {
896 env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
897 }
b5ff1b31
FB
898 env->regs[14] = env->regs[15] + offset;
899 env->regs[15] = addr;
900 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
901}
902
903/* Check section/page access permissions.
904 Returns the page protection flags, or zero if the access is not
905 permitted. */
906static inline int check_ap(CPUState *env, int ap, int domain, int access_type,
907 int is_user)
908{
9ee6e8bb
PB
909 int prot_ro;
910
b5ff1b31
FB
911 if (domain == 3)
912 return PAGE_READ | PAGE_WRITE;
913
9ee6e8bb
PB
914 if (access_type == 1)
915 prot_ro = 0;
916 else
917 prot_ro = PAGE_READ;
918
b5ff1b31
FB
919 switch (ap) {
920 case 0:
78600320 921 if (access_type == 1)
b5ff1b31
FB
922 return 0;
923 switch ((env->cp15.c1_sys >> 8) & 3) {
924 case 1:
925 return is_user ? 0 : PAGE_READ;
926 case 2:
927 return PAGE_READ;
928 default:
929 return 0;
930 }
931 case 1:
932 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
933 case 2:
934 if (is_user)
9ee6e8bb 935 return prot_ro;
b5ff1b31
FB
936 else
937 return PAGE_READ | PAGE_WRITE;
938 case 3:
939 return PAGE_READ | PAGE_WRITE;
d4934d18 940 case 4: /* Reserved. */
9ee6e8bb
PB
941 return 0;
942 case 5:
943 return is_user ? 0 : prot_ro;
944 case 6:
945 return prot_ro;
d4934d18
PB
946 case 7:
947 if (!arm_feature (env, ARM_FEATURE_V7))
948 return 0;
949 return prot_ro;
b5ff1b31
FB
950 default:
951 abort();
952 }
953}
954
b2fa1797
PB
955static uint32_t get_level1_table_address(CPUState *env, uint32_t address)
956{
957 uint32_t table;
958
959 if (address & env->cp15.c2_mask)
960 table = env->cp15.c2_base1 & 0xffffc000;
961 else
962 table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
963
964 table |= (address >> 18) & 0x3ffc;
965 return table;
966}
967
9ee6e8bb 968static int get_phys_addr_v5(CPUState *env, uint32_t address, int access_type,
d4c430a8
PB
969 int is_user, uint32_t *phys_ptr, int *prot,
970 target_ulong *page_size)
b5ff1b31
FB
971{
972 int code;
973 uint32_t table;
974 uint32_t desc;
975 int type;
976 int ap;
977 int domain;
978 uint32_t phys_addr;
979
9ee6e8bb
PB
980 /* Pagetable walk. */
981 /* Lookup l1 descriptor. */
b2fa1797 982 table = get_level1_table_address(env, address);
9ee6e8bb
PB
983 desc = ldl_phys(table);
984 type = (desc & 3);
985 domain = (env->cp15.c3 >> ((desc >> 4) & 0x1e)) & 3;
986 if (type == 0) {
601d70b9 987 /* Section translation fault. */
9ee6e8bb
PB
988 code = 5;
989 goto do_fault;
990 }
991 if (domain == 0 || domain == 2) {
992 if (type == 2)
993 code = 9; /* Section domain fault. */
994 else
995 code = 11; /* Page domain fault. */
996 goto do_fault;
997 }
998 if (type == 2) {
999 /* 1Mb section. */
1000 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1001 ap = (desc >> 10) & 3;
1002 code = 13;
d4c430a8 1003 *page_size = 1024 * 1024;
9ee6e8bb
PB
1004 } else {
1005 /* Lookup l2 entry. */
1006 if (type == 1) {
1007 /* Coarse pagetable. */
1008 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1009 } else {
1010 /* Fine pagetable. */
1011 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
1012 }
1013 desc = ldl_phys(table);
1014 switch (desc & 3) {
1015 case 0: /* Page translation fault. */
1016 code = 7;
1017 goto do_fault;
1018 case 1: /* 64k page. */
1019 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1020 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
d4c430a8 1021 *page_size = 0x10000;
ce819861 1022 break;
9ee6e8bb
PB
1023 case 2: /* 4k page. */
1024 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1025 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
d4c430a8 1026 *page_size = 0x1000;
ce819861 1027 break;
9ee6e8bb
PB
1028 case 3: /* 1k page. */
1029 if (type == 1) {
1030 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1031 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1032 } else {
1033 /* Page translation fault. */
1034 code = 7;
1035 goto do_fault;
1036 }
1037 } else {
1038 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
1039 }
1040 ap = (desc >> 4) & 3;
d4c430a8 1041 *page_size = 0x400;
ce819861
PB
1042 break;
1043 default:
9ee6e8bb
PB
1044 /* Never happens, but compiler isn't smart enough to tell. */
1045 abort();
ce819861 1046 }
9ee6e8bb
PB
1047 code = 15;
1048 }
1049 *prot = check_ap(env, ap, domain, access_type, is_user);
1050 if (!*prot) {
1051 /* Access permission fault. */
1052 goto do_fault;
1053 }
3ad493fc 1054 *prot |= PAGE_EXEC;
9ee6e8bb
PB
1055 *phys_ptr = phys_addr;
1056 return 0;
1057do_fault:
1058 return code | (domain << 4);
1059}
1060
1061static int get_phys_addr_v6(CPUState *env, uint32_t address, int access_type,
d4c430a8
PB
1062 int is_user, uint32_t *phys_ptr, int *prot,
1063 target_ulong *page_size)
9ee6e8bb
PB
1064{
1065 int code;
1066 uint32_t table;
1067 uint32_t desc;
1068 uint32_t xn;
1069 int type;
1070 int ap;
1071 int domain;
1072 uint32_t phys_addr;
1073
1074 /* Pagetable walk. */
1075 /* Lookup l1 descriptor. */
b2fa1797 1076 table = get_level1_table_address(env, address);
9ee6e8bb
PB
1077 desc = ldl_phys(table);
1078 type = (desc & 3);
1079 if (type == 0) {
601d70b9 1080 /* Section translation fault. */
9ee6e8bb
PB
1081 code = 5;
1082 domain = 0;
1083 goto do_fault;
1084 } else if (type == 2 && (desc & (1 << 18))) {
1085 /* Supersection. */
1086 domain = 0;
b5ff1b31 1087 } else {
9ee6e8bb
PB
1088 /* Section or page. */
1089 domain = (desc >> 4) & 0x1e;
1090 }
1091 domain = (env->cp15.c3 >> domain) & 3;
1092 if (domain == 0 || domain == 2) {
1093 if (type == 2)
1094 code = 9; /* Section domain fault. */
1095 else
1096 code = 11; /* Page domain fault. */
1097 goto do_fault;
1098 }
1099 if (type == 2) {
1100 if (desc & (1 << 18)) {
1101 /* Supersection. */
1102 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
d4c430a8 1103 *page_size = 0x1000000;
b5ff1b31 1104 } else {
9ee6e8bb
PB
1105 /* Section. */
1106 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
d4c430a8 1107 *page_size = 0x100000;
b5ff1b31 1108 }
9ee6e8bb
PB
1109 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1110 xn = desc & (1 << 4);
1111 code = 13;
1112 } else {
1113 /* Lookup l2 entry. */
1114 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1115 desc = ldl_phys(table);
1116 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1117 switch (desc & 3) {
1118 case 0: /* Page translation fault. */
1119 code = 7;
b5ff1b31 1120 goto do_fault;
9ee6e8bb
PB
1121 case 1: /* 64k page. */
1122 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1123 xn = desc & (1 << 15);
d4c430a8 1124 *page_size = 0x10000;
9ee6e8bb
PB
1125 break;
1126 case 2: case 3: /* 4k page. */
1127 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1128 xn = desc & 1;
d4c430a8 1129 *page_size = 0x1000;
9ee6e8bb
PB
1130 break;
1131 default:
1132 /* Never happens, but compiler isn't smart enough to tell. */
1133 abort();
b5ff1b31 1134 }
9ee6e8bb
PB
1135 code = 15;
1136 }
c0034328
JR
1137 if (domain == 3) {
1138 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1139 } else {
1140 if (xn && access_type == 2)
1141 goto do_fault;
9ee6e8bb 1142
c0034328
JR
1143 /* The simplified model uses AP[0] as an access control bit. */
1144 if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
1145 /* Access flag fault. */
1146 code = (code == 15) ? 6 : 3;
1147 goto do_fault;
1148 }
1149 *prot = check_ap(env, ap, domain, access_type, is_user);
1150 if (!*prot) {
1151 /* Access permission fault. */
1152 goto do_fault;
1153 }
1154 if (!xn) {
1155 *prot |= PAGE_EXEC;
1156 }
3ad493fc 1157 }
9ee6e8bb 1158 *phys_ptr = phys_addr;
b5ff1b31
FB
1159 return 0;
1160do_fault:
1161 return code | (domain << 4);
1162}
1163
9ee6e8bb
PB
1164static int get_phys_addr_mpu(CPUState *env, uint32_t address, int access_type,
1165 int is_user, uint32_t *phys_ptr, int *prot)
1166{
1167 int n;
1168 uint32_t mask;
1169 uint32_t base;
1170
1171 *phys_ptr = address;
1172 for (n = 7; n >= 0; n--) {
1173 base = env->cp15.c6_region[n];
1174 if ((base & 1) == 0)
1175 continue;
1176 mask = 1 << ((base >> 1) & 0x1f);
1177 /* Keep this shift separate from the above to avoid an
1178 (undefined) << 32. */
1179 mask = (mask << 1) - 1;
1180 if (((base ^ address) & ~mask) == 0)
1181 break;
1182 }
1183 if (n < 0)
1184 return 2;
1185
1186 if (access_type == 2) {
1187 mask = env->cp15.c5_insn;
1188 } else {
1189 mask = env->cp15.c5_data;
1190 }
1191 mask = (mask >> (n * 4)) & 0xf;
1192 switch (mask) {
1193 case 0:
1194 return 1;
1195 case 1:
1196 if (is_user)
1197 return 1;
1198 *prot = PAGE_READ | PAGE_WRITE;
1199 break;
1200 case 2:
1201 *prot = PAGE_READ;
1202 if (!is_user)
1203 *prot |= PAGE_WRITE;
1204 break;
1205 case 3:
1206 *prot = PAGE_READ | PAGE_WRITE;
1207 break;
1208 case 5:
1209 if (is_user)
1210 return 1;
1211 *prot = PAGE_READ;
1212 break;
1213 case 6:
1214 *prot = PAGE_READ;
1215 break;
1216 default:
1217 /* Bad permission. */
1218 return 1;
1219 }
3ad493fc 1220 *prot |= PAGE_EXEC;
9ee6e8bb
PB
1221 return 0;
1222}
1223
1224static inline int get_phys_addr(CPUState *env, uint32_t address,
1225 int access_type, int is_user,
d4c430a8
PB
1226 uint32_t *phys_ptr, int *prot,
1227 target_ulong *page_size)
9ee6e8bb
PB
1228{
1229 /* Fast Context Switch Extension. */
1230 if (address < 0x02000000)
1231 address += env->cp15.c13_fcse;
1232
1233 if ((env->cp15.c1_sys & 1) == 0) {
1234 /* MMU/MPU disabled. */
1235 *phys_ptr = address;
3ad493fc 1236 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
d4c430a8 1237 *page_size = TARGET_PAGE_SIZE;
9ee6e8bb
PB
1238 return 0;
1239 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
d4c430a8 1240 *page_size = TARGET_PAGE_SIZE;
9ee6e8bb
PB
1241 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
1242 prot);
1243 } else if (env->cp15.c1_sys & (1 << 23)) {
1244 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
d4c430a8 1245 prot, page_size);
9ee6e8bb
PB
1246 } else {
1247 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
d4c430a8 1248 prot, page_size);
9ee6e8bb
PB
1249 }
1250}
1251
b5ff1b31 1252int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address,
6ebbf390 1253 int access_type, int mmu_idx, int is_softmmu)
b5ff1b31
FB
1254{
1255 uint32_t phys_addr;
d4c430a8 1256 target_ulong page_size;
b5ff1b31 1257 int prot;
6ebbf390 1258 int ret, is_user;
b5ff1b31 1259
6ebbf390 1260 is_user = mmu_idx == MMU_USER_IDX;
d4c430a8
PB
1261 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
1262 &page_size);
b5ff1b31
FB
1263 if (ret == 0) {
1264 /* Map a single [sub]page. */
1265 phys_addr &= ~(uint32_t)0x3ff;
1266 address &= ~(uint32_t)0x3ff;
3ad493fc 1267 tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
d4c430a8 1268 return 0;
b5ff1b31
FB
1269 }
1270
1271 if (access_type == 2) {
1272 env->cp15.c5_insn = ret;
1273 env->cp15.c6_insn = address;
1274 env->exception_index = EXCP_PREFETCH_ABORT;
1275 } else {
1276 env->cp15.c5_data = ret;
9ee6e8bb
PB
1277 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
1278 env->cp15.c5_data |= (1 << 11);
b5ff1b31
FB
1279 env->cp15.c6_data = address;
1280 env->exception_index = EXCP_DATA_ABORT;
1281 }
1282 return 1;
1283}
1284
c227f099 1285target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
b5ff1b31
FB
1286{
1287 uint32_t phys_addr;
d4c430a8 1288 target_ulong page_size;
b5ff1b31
FB
1289 int prot;
1290 int ret;
1291
d4c430a8 1292 ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot, &page_size);
b5ff1b31
FB
1293
1294 if (ret != 0)
1295 return -1;
1296
1297 return phys_addr;
1298}
1299
8984bd2e 1300void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
c1713132
AZ
1301{
1302 int cp_num = (insn >> 8) & 0xf;
1303 int cp_info = (insn >> 5) & 7;
1304 int src = (insn >> 16) & 0xf;
1305 int operand = insn & 0xf;
1306
1307 if (env->cp[cp_num].cp_write)
1308 env->cp[cp_num].cp_write(env->cp[cp_num].opaque,
1309 cp_info, src, operand, val);
1310}
1311
8984bd2e 1312uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
c1713132
AZ
1313{
1314 int cp_num = (insn >> 8) & 0xf;
1315 int cp_info = (insn >> 5) & 7;
1316 int dest = (insn >> 16) & 0xf;
1317 int operand = insn & 0xf;
1318
1319 if (env->cp[cp_num].cp_read)
1320 return env->cp[cp_num].cp_read(env->cp[cp_num].opaque,
1321 cp_info, dest, operand);
1322 return 0;
1323}
1324
ce819861
PB
1325/* Return basic MPU access permission bits. */
1326static uint32_t simple_mpu_ap_bits(uint32_t val)
1327{
1328 uint32_t ret;
1329 uint32_t mask;
1330 int i;
1331 ret = 0;
1332 mask = 3;
1333 for (i = 0; i < 16; i += 2) {
1334 ret |= (val >> i) & mask;
1335 mask <<= 2;
1336 }
1337 return ret;
1338}
1339
1340/* Pad basic MPU access permission bits to extended format. */
1341static uint32_t extended_mpu_ap_bits(uint32_t val)
1342{
1343 uint32_t ret;
1344 uint32_t mask;
1345 int i;
1346 ret = 0;
1347 mask = 3;
1348 for (i = 0; i < 16; i += 2) {
1349 ret |= (val & mask) << i;
1350 mask <<= 2;
1351 }
1352 return ret;
1353}
1354
8984bd2e 1355void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
b5ff1b31 1356{
9ee6e8bb
PB
1357 int op1;
1358 int op2;
1359 int crm;
b5ff1b31 1360
9ee6e8bb 1361 op1 = (insn >> 21) & 7;
b5ff1b31 1362 op2 = (insn >> 5) & 7;
ce819861 1363 crm = insn & 0xf;
b5ff1b31 1364 switch ((insn >> 16) & 0xf) {
9ee6e8bb 1365 case 0:
9ee6e8bb 1366 /* ID codes. */
610c3c8a
AZ
1367 if (arm_feature(env, ARM_FEATURE_XSCALE))
1368 break;
c3d2689d
AZ
1369 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1370 break;
a49ea279
PB
1371 if (arm_feature(env, ARM_FEATURE_V7)
1372 && op1 == 2 && crm == 0 && op2 == 0) {
1373 env->cp15.c0_cssel = val & 0xf;
1374 break;
1375 }
b5ff1b31
FB
1376 goto bad_reg;
1377 case 1: /* System configuration. */
c3d2689d
AZ
1378 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1379 op2 = 0;
b5ff1b31
FB
1380 switch (op2) {
1381 case 0:
ce819861 1382 if (!arm_feature(env, ARM_FEATURE_XSCALE) || crm == 0)
c1713132 1383 env->cp15.c1_sys = val;
b5ff1b31
FB
1384 /* ??? Lots of these bits are not implemented. */
1385 /* This may enable/disable the MMU, so do a TLB flush. */
1386 tlb_flush(env, 1);
1387 break;
61cc8701 1388 case 1: /* Auxiliary control register. */
610c3c8a
AZ
1389 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1390 env->cp15.c1_xscaleauxcr = val;
c1713132 1391 break;
610c3c8a 1392 }
9ee6e8bb
PB
1393 /* Not implemented. */
1394 break;
b5ff1b31 1395 case 2:
610c3c8a
AZ
1396 if (arm_feature(env, ARM_FEATURE_XSCALE))
1397 goto bad_reg;
4be27dbb
PB
1398 if (env->cp15.c1_coproc != val) {
1399 env->cp15.c1_coproc = val;
1400 /* ??? Is this safe when called from within a TB? */
1401 tb_flush(env);
1402 }
c1713132 1403 break;
b5ff1b31
FB
1404 default:
1405 goto bad_reg;
1406 }
1407 break;
ce819861
PB
1408 case 2: /* MMU Page table control / MPU cache control. */
1409 if (arm_feature(env, ARM_FEATURE_MPU)) {
1410 switch (op2) {
1411 case 0:
1412 env->cp15.c2_data = val;
1413 break;
1414 case 1:
1415 env->cp15.c2_insn = val;
1416 break;
1417 default:
1418 goto bad_reg;
1419 }
1420 } else {
9ee6e8bb
PB
1421 switch (op2) {
1422 case 0:
1423 env->cp15.c2_base0 = val;
1424 break;
1425 case 1:
1426 env->cp15.c2_base1 = val;
1427 break;
1428 case 2:
b2fa1797
PB
1429 val &= 7;
1430 env->cp15.c2_control = val;
9ee6e8bb 1431 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val);
b2fa1797 1432 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> val);
9ee6e8bb
PB
1433 break;
1434 default:
1435 goto bad_reg;
1436 }
ce819861 1437 }
b5ff1b31 1438 break;
ce819861 1439 case 3: /* MMU Domain access control / MPU write buffer control. */
b5ff1b31 1440 env->cp15.c3 = val;
405ee3ad 1441 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
b5ff1b31
FB
1442 break;
1443 case 4: /* Reserved. */
1444 goto bad_reg;
ce819861 1445 case 5: /* MMU Fault status / MPU access permission. */
c3d2689d
AZ
1446 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1447 op2 = 0;
b5ff1b31
FB
1448 switch (op2) {
1449 case 0:
ce819861
PB
1450 if (arm_feature(env, ARM_FEATURE_MPU))
1451 val = extended_mpu_ap_bits(val);
b5ff1b31
FB
1452 env->cp15.c5_data = val;
1453 break;
1454 case 1:
ce819861
PB
1455 if (arm_feature(env, ARM_FEATURE_MPU))
1456 val = extended_mpu_ap_bits(val);
b5ff1b31
FB
1457 env->cp15.c5_insn = val;
1458 break;
ce819861
PB
1459 case 2:
1460 if (!arm_feature(env, ARM_FEATURE_MPU))
1461 goto bad_reg;
1462 env->cp15.c5_data = val;
b5ff1b31 1463 break;
ce819861
PB
1464 case 3:
1465 if (!arm_feature(env, ARM_FEATURE_MPU))
1466 goto bad_reg;
1467 env->cp15.c5_insn = val;
b5ff1b31
FB
1468 break;
1469 default:
1470 goto bad_reg;
1471 }
1472 break;
ce819861
PB
1473 case 6: /* MMU Fault address / MPU base/size. */
1474 if (arm_feature(env, ARM_FEATURE_MPU)) {
1475 if (crm >= 8)
1476 goto bad_reg;
1477 env->cp15.c6_region[crm] = val;
1478 } else {
c3d2689d
AZ
1479 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1480 op2 = 0;
ce819861
PB
1481 switch (op2) {
1482 case 0:
1483 env->cp15.c6_data = val;
1484 break;
9ee6e8bb
PB
1485 case 1: /* ??? This is WFAR on armv6 */
1486 case 2:
ce819861
PB
1487 env->cp15.c6_insn = val;
1488 break;
1489 default:
1490 goto bad_reg;
1491 }
1492 }
1493 break;
b5ff1b31 1494 case 7: /* Cache control. */
c3d2689d
AZ
1495 env->cp15.c15_i_max = 0x000;
1496 env->cp15.c15_i_min = 0xff0;
f8bf8606
AL
1497 if (op1 != 0) {
1498 goto bad_reg;
1499 }
1500 /* No cache, so nothing to do except VA->PA translations. */
1501 if (arm_feature(env, ARM_FEATURE_V6K)) {
1502 switch (crm) {
1503 case 4:
1504 if (arm_feature(env, ARM_FEATURE_V7)) {
1505 env->cp15.c7_par = val & 0xfffff6ff;
1506 } else {
1507 env->cp15.c7_par = val & 0xfffff1ff;
1508 }
1509 break;
1510 case 8: {
1511 uint32_t phys_addr;
1512 target_ulong page_size;
1513 int prot;
1514 int ret, is_user = op2 & 2;
1515 int access_type = op2 & 1;
1516
1517 if (op2 & 4) {
1518 /* Other states are only available with TrustZone */
1519 goto bad_reg;
1520 }
1521 ret = get_phys_addr(env, val, access_type, is_user,
1522 &phys_addr, &prot, &page_size);
1523 if (ret == 0) {
1524 /* We do not set any attribute bits in the PAR */
1525 if (page_size == (1 << 24)
1526 && arm_feature(env, ARM_FEATURE_V7)) {
1527 env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
1528 } else {
1529 env->cp15.c7_par = phys_addr & 0xfffff000;
1530 }
1531 } else {
1532 env->cp15.c7_par = ((ret & (10 << 1)) >> 5) |
1533 ((ret & (12 << 1)) >> 6) |
1534 ((ret & 0xf) << 1) | 1;
1535 }
1536 break;
1537 }
1538 }
1539 }
b5ff1b31
FB
1540 break;
1541 case 8: /* MMU TLB control. */
1542 switch (op2) {
1543 case 0: /* Invalidate all. */
1544 tlb_flush(env, 0);
1545 break;
1546 case 1: /* Invalidate single TLB entry. */
d4c430a8 1547 tlb_flush_page(env, val & TARGET_PAGE_MASK);
b5ff1b31 1548 break;
9ee6e8bb
PB
1549 case 2: /* Invalidate on ASID. */
1550 tlb_flush(env, val == 0);
1551 break;
1552 case 3: /* Invalidate single entry on MVA. */
1553 /* ??? This is like case 1, but ignores ASID. */
1554 tlb_flush(env, 1);
1555 break;
b5ff1b31
FB
1556 default:
1557 goto bad_reg;
1558 }
1559 break;
ce819861 1560 case 9:
c3d2689d
AZ
1561 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1562 break;
5bc95aa2
DES
1563 if (arm_feature(env, ARM_FEATURE_STRONGARM))
1564 break; /* Ignore ReadBuffer access */
ce819861
PB
1565 switch (crm) {
1566 case 0: /* Cache lockdown. */
9ee6e8bb
PB
1567 switch (op1) {
1568 case 0: /* L1 cache. */
1569 switch (op2) {
1570 case 0:
1571 env->cp15.c9_data = val;
1572 break;
1573 case 1:
1574 env->cp15.c9_insn = val;
1575 break;
1576 default:
1577 goto bad_reg;
1578 }
1579 break;
1580 case 1: /* L2 cache. */
1581 /* Ignore writes to L2 lockdown/auxiliary registers. */
1582 break;
1583 default:
1584 goto bad_reg;
1585 }
1586 break;
ce819861
PB
1587 case 1: /* TCM memory region registers. */
1588 /* Not implemented. */
1589 goto bad_reg;
b5ff1b31
FB
1590 default:
1591 goto bad_reg;
1592 }
1593 break;
1594 case 10: /* MMU TLB lockdown. */
1595 /* ??? TLB lockdown not implemented. */
1596 break;
b5ff1b31
FB
1597 case 12: /* Reserved. */
1598 goto bad_reg;
1599 case 13: /* Process ID. */
1600 switch (op2) {
1601 case 0:
d07edbfa
PB
1602 /* Unlike real hardware the qemu TLB uses virtual addresses,
1603 not modified virtual addresses, so this causes a TLB flush.
1604 */
1605 if (env->cp15.c13_fcse != val)
1606 tlb_flush(env, 1);
1607 env->cp15.c13_fcse = val;
b5ff1b31
FB
1608 break;
1609 case 1:
d07edbfa 1610 /* This changes the ASID, so do a TLB flush. */
ce819861
PB
1611 if (env->cp15.c13_context != val
1612 && !arm_feature(env, ARM_FEATURE_MPU))
d07edbfa
PB
1613 tlb_flush(env, 0);
1614 env->cp15.c13_context = val;
b5ff1b31
FB
1615 break;
1616 default:
1617 goto bad_reg;
1618 }
1619 break;
1620 case 14: /* Reserved. */
1621 goto bad_reg;
1622 case 15: /* Implementation specific. */
c1713132 1623 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
ce819861 1624 if (op2 == 0 && crm == 1) {
2e23213f
AZ
1625 if (env->cp15.c15_cpar != (val & 0x3fff)) {
1626 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1627 tb_flush(env);
1628 env->cp15.c15_cpar = val & 0x3fff;
1629 }
c1713132
AZ
1630 break;
1631 }
1632 goto bad_reg;
1633 }
c3d2689d
AZ
1634 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1635 switch (crm) {
1636 case 0:
1637 break;
1638 case 1: /* Set TI925T configuration. */
1639 env->cp15.c15_ticonfig = val & 0xe7;
1640 env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */
1641 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1642 break;
1643 case 2: /* Set I_max. */
1644 env->cp15.c15_i_max = val;
1645 break;
1646 case 3: /* Set I_min. */
1647 env->cp15.c15_i_min = val;
1648 break;
1649 case 4: /* Set thread-ID. */
1650 env->cp15.c15_threadid = val & 0xffff;
1651 break;
1652 case 8: /* Wait-for-interrupt (deprecated). */
1653 cpu_interrupt(env, CPU_INTERRUPT_HALT);
1654 break;
1655 default:
1656 goto bad_reg;
1657 }
1658 }
b5ff1b31
FB
1659 break;
1660 }
1661 return;
1662bad_reg:
1663 /* ??? For debugging only. Should raise illegal instruction exception. */
9ee6e8bb
PB
1664 cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
1665 (insn >> 16) & 0xf, crm, op1, op2);
b5ff1b31
FB
1666}
1667
8984bd2e 1668uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
b5ff1b31 1669{
9ee6e8bb
PB
1670 int op1;
1671 int op2;
1672 int crm;
b5ff1b31 1673
9ee6e8bb 1674 op1 = (insn >> 21) & 7;
b5ff1b31 1675 op2 = (insn >> 5) & 7;
c3d2689d 1676 crm = insn & 0xf;
b5ff1b31
FB
1677 switch ((insn >> 16) & 0xf) {
1678 case 0: /* ID codes. */
9ee6e8bb
PB
1679 switch (op1) {
1680 case 0:
1681 switch (crm) {
1682 case 0:
1683 switch (op2) {
1684 case 0: /* Device ID. */
1685 return env->cp15.c0_cpuid;
1686 case 1: /* Cache Type. */
1687 return env->cp15.c0_cachetype;
1688 case 2: /* TCM status. */
1689 return 0;
1690 case 3: /* TLB type register. */
1691 return 0; /* No lockable TLB entries. */
607b4b08
PM
1692 case 5: /* MPIDR */
1693 /* The MPIDR was standardised in v7; prior to
1694 * this it was implemented only in the 11MPCore.
1695 * For all other pre-v7 cores it does not exist.
1696 */
1697 if (arm_feature(env, ARM_FEATURE_V7) ||
1698 ARM_CPUID(env) == ARM_CPUID_ARM11MPCORE) {
1699 int mpidr = env->cpu_index;
1700 /* We don't support setting cluster ID ([8..11])
1701 * so these bits always RAZ.
1702 */
1703 if (arm_feature(env, ARM_FEATURE_V7MP)) {
1704 mpidr |= (1 << 31);
1705 /* Cores which are uniprocessor (non-coherent)
1706 * but still implement the MP extensions set
1707 * bit 30. (For instance, A9UP.) However we do
1708 * not currently model any of those cores.
1709 */
1710 }
1711 return mpidr;
10055562 1712 }
607b4b08 1713 /* otherwise fall through to the unimplemented-reg case */
9ee6e8bb
PB
1714 default:
1715 goto bad_reg;
1716 }
1717 case 1:
1718 if (!arm_feature(env, ARM_FEATURE_V6))
1719 goto bad_reg;
1720 return env->cp15.c0_c1[op2];
1721 case 2:
1722 if (!arm_feature(env, ARM_FEATURE_V6))
1723 goto bad_reg;
1724 return env->cp15.c0_c2[op2];
1725 case 3: case 4: case 5: case 6: case 7:
1726 return 0;
1727 default:
1728 goto bad_reg;
1729 }
1730 case 1:
1731 /* These registers aren't documented on arm11 cores. However
1732 Linux looks at them anyway. */
1733 if (!arm_feature(env, ARM_FEATURE_V6))
1734 goto bad_reg;
1735 if (crm != 0)
1736 goto bad_reg;
a49ea279
PB
1737 if (!arm_feature(env, ARM_FEATURE_V7))
1738 return 0;
1739
1740 switch (op2) {
1741 case 0:
1742 return env->cp15.c0_ccsid[env->cp15.c0_cssel];
1743 case 1:
1744 return env->cp15.c0_clid;
1745 case 7:
1746 return 0;
1747 }
1748 goto bad_reg;
1749 case 2:
1750 if (op2 != 0 || crm != 0)
610c3c8a 1751 goto bad_reg;
a49ea279 1752 return env->cp15.c0_cssel;
9ee6e8bb
PB
1753 default:
1754 goto bad_reg;
b5ff1b31
FB
1755 }
1756 case 1: /* System configuration. */
c3d2689d
AZ
1757 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1758 op2 = 0;
b5ff1b31
FB
1759 switch (op2) {
1760 case 0: /* Control register. */
1761 return env->cp15.c1_sys;
1762 case 1: /* Auxiliary control register. */
c1713132 1763 if (arm_feature(env, ARM_FEATURE_XSCALE))
610c3c8a 1764 return env->cp15.c1_xscaleauxcr;
9ee6e8bb
PB
1765 if (!arm_feature(env, ARM_FEATURE_AUXCR))
1766 goto bad_reg;
1767 switch (ARM_CPUID(env)) {
1768 case ARM_CPUID_ARM1026:
1769 return 1;
1770 case ARM_CPUID_ARM1136:
827df9f3 1771 case ARM_CPUID_ARM1136_R2:
9ee6e8bb
PB
1772 return 7;
1773 case ARM_CPUID_ARM11MPCORE:
1774 return 1;
1775 case ARM_CPUID_CORTEXA8:
533d177a 1776 return 2;
10055562
PB
1777 case ARM_CPUID_CORTEXA9:
1778 return 0;
9ee6e8bb
PB
1779 default:
1780 goto bad_reg;
1781 }
b5ff1b31 1782 case 2: /* Coprocessor access register. */
610c3c8a
AZ
1783 if (arm_feature(env, ARM_FEATURE_XSCALE))
1784 goto bad_reg;
b5ff1b31
FB
1785 return env->cp15.c1_coproc;
1786 default:
1787 goto bad_reg;
1788 }
ce819861
PB
1789 case 2: /* MMU Page table control / MPU cache control. */
1790 if (arm_feature(env, ARM_FEATURE_MPU)) {
1791 switch (op2) {
1792 case 0:
1793 return env->cp15.c2_data;
1794 break;
1795 case 1:
1796 return env->cp15.c2_insn;
1797 break;
1798 default:
1799 goto bad_reg;
1800 }
1801 } else {
9ee6e8bb
PB
1802 switch (op2) {
1803 case 0:
1804 return env->cp15.c2_base0;
1805 case 1:
1806 return env->cp15.c2_base1;
1807 case 2:
b2fa1797 1808 return env->cp15.c2_control;
9ee6e8bb
PB
1809 default:
1810 goto bad_reg;
1811 }
1812 }
ce819861 1813 case 3: /* MMU Domain access control / MPU write buffer control. */
b5ff1b31
FB
1814 return env->cp15.c3;
1815 case 4: /* Reserved. */
1816 goto bad_reg;
ce819861 1817 case 5: /* MMU Fault status / MPU access permission. */
c3d2689d
AZ
1818 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1819 op2 = 0;
b5ff1b31
FB
1820 switch (op2) {
1821 case 0:
ce819861
PB
1822 if (arm_feature(env, ARM_FEATURE_MPU))
1823 return simple_mpu_ap_bits(env->cp15.c5_data);
b5ff1b31
FB
1824 return env->cp15.c5_data;
1825 case 1:
ce819861
PB
1826 if (arm_feature(env, ARM_FEATURE_MPU))
1827 return simple_mpu_ap_bits(env->cp15.c5_data);
1828 return env->cp15.c5_insn;
1829 case 2:
1830 if (!arm_feature(env, ARM_FEATURE_MPU))
1831 goto bad_reg;
1832 return env->cp15.c5_data;
1833 case 3:
1834 if (!arm_feature(env, ARM_FEATURE_MPU))
1835 goto bad_reg;
b5ff1b31
FB
1836 return env->cp15.c5_insn;
1837 default:
1838 goto bad_reg;
1839 }
9ee6e8bb 1840 case 6: /* MMU Fault address. */
ce819861 1841 if (arm_feature(env, ARM_FEATURE_MPU)) {
9ee6e8bb 1842 if (crm >= 8)
ce819861 1843 goto bad_reg;
9ee6e8bb 1844 return env->cp15.c6_region[crm];
ce819861 1845 } else {
c3d2689d
AZ
1846 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1847 op2 = 0;
9ee6e8bb
PB
1848 switch (op2) {
1849 case 0:
1850 return env->cp15.c6_data;
1851 case 1:
1852 if (arm_feature(env, ARM_FEATURE_V6)) {
1853 /* Watchpoint Fault Adrress. */
1854 return 0; /* Not implemented. */
1855 } else {
1856 /* Instruction Fault Adrress. */
1857 /* Arm9 doesn't have an IFAR, but implementing it anyway
1858 shouldn't do any harm. */
1859 return env->cp15.c6_insn;
1860 }
1861 case 2:
1862 if (arm_feature(env, ARM_FEATURE_V6)) {
1863 /* Instruction Fault Adrress. */
1864 return env->cp15.c6_insn;
1865 } else {
1866 goto bad_reg;
1867 }
1868 default:
1869 goto bad_reg;
1870 }
b5ff1b31
FB
1871 }
1872 case 7: /* Cache control. */
f8bf8606
AL
1873 if (crm == 4 && op1 == 0 && op2 == 0) {
1874 return env->cp15.c7_par;
1875 }
6fbe23d5
PB
1876 /* FIXME: Should only clear Z flag if destination is r15. */
1877 env->ZF = 0;
b5ff1b31
FB
1878 return 0;
1879 case 8: /* MMU TLB control. */
1880 goto bad_reg;
1881 case 9: /* Cache lockdown. */
9ee6e8bb
PB
1882 switch (op1) {
1883 case 0: /* L1 cache. */
1884 if (arm_feature(env, ARM_FEATURE_OMAPCP))
1885 return 0;
1886 switch (op2) {
1887 case 0:
1888 return env->cp15.c9_data;
1889 case 1:
1890 return env->cp15.c9_insn;
1891 default:
1892 goto bad_reg;
1893 }
1894 case 1: /* L2 cache */
1895 if (crm != 0)
1896 goto bad_reg;
1897 /* L2 Lockdown and Auxiliary control. */
c3d2689d 1898 return 0;
b5ff1b31
FB
1899 default:
1900 goto bad_reg;
1901 }
1902 case 10: /* MMU TLB lockdown. */
1903 /* ??? TLB lockdown not implemented. */
1904 return 0;
1905 case 11: /* TCM DMA control. */
1906 case 12: /* Reserved. */
1907 goto bad_reg;
1908 case 13: /* Process ID. */
1909 switch (op2) {
1910 case 0:
1911 return env->cp15.c13_fcse;
1912 case 1:
1913 return env->cp15.c13_context;
1914 default:
1915 goto bad_reg;
1916 }
1917 case 14: /* Reserved. */
1918 goto bad_reg;
1919 case 15: /* Implementation specific. */
c1713132 1920 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
c3d2689d 1921 if (op2 == 0 && crm == 1)
c1713132
AZ
1922 return env->cp15.c15_cpar;
1923
1924 goto bad_reg;
1925 }
c3d2689d
AZ
1926 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1927 switch (crm) {
1928 case 0:
1929 return 0;
1930 case 1: /* Read TI925T configuration. */
1931 return env->cp15.c15_ticonfig;
1932 case 2: /* Read I_max. */
1933 return env->cp15.c15_i_max;
1934 case 3: /* Read I_min. */
1935 return env->cp15.c15_i_min;
1936 case 4: /* Read thread-ID. */
1937 return env->cp15.c15_threadid;
1938 case 8: /* TI925T_status */
1939 return 0;
1940 }
827df9f3
AZ
1941 /* TODO: Peripheral port remap register:
1942 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
1943 * controller base address at $rn & ~0xfff and map size of
1944 * 0x200 << ($rn & 0xfff), when MMU is off. */
c3d2689d
AZ
1945 goto bad_reg;
1946 }
b5ff1b31
FB
1947 return 0;
1948 }
1949bad_reg:
1950 /* ??? For debugging only. Should raise illegal instruction exception. */
9ee6e8bb
PB
1951 cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
1952 (insn >> 16) & 0xf, crm, op1, op2);
b5ff1b31
FB
1953 return 0;
1954}
1955
b0109805 1956void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
9ee6e8bb 1957{
39ea3d4e
PM
1958 if ((env->uncached_cpsr & CPSR_M) == mode) {
1959 env->regs[13] = val;
1960 } else {
1961 env->banked_r13[bank_number(mode)] = val;
1962 }
9ee6e8bb
PB
1963}
1964
b0109805 1965uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
9ee6e8bb 1966{
39ea3d4e
PM
1967 if ((env->uncached_cpsr & CPSR_M) == mode) {
1968 return env->regs[13];
1969 } else {
1970 return env->banked_r13[bank_number(mode)];
1971 }
9ee6e8bb
PB
1972}
1973
8984bd2e 1974uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
9ee6e8bb
PB
1975{
1976 switch (reg) {
1977 case 0: /* APSR */
1978 return xpsr_read(env) & 0xf8000000;
1979 case 1: /* IAPSR */
1980 return xpsr_read(env) & 0xf80001ff;
1981 case 2: /* EAPSR */
1982 return xpsr_read(env) & 0xff00fc00;
1983 case 3: /* xPSR */
1984 return xpsr_read(env) & 0xff00fdff;
1985 case 5: /* IPSR */
1986 return xpsr_read(env) & 0x000001ff;
1987 case 6: /* EPSR */
1988 return xpsr_read(env) & 0x0700fc00;
1989 case 7: /* IEPSR */
1990 return xpsr_read(env) & 0x0700edff;
1991 case 8: /* MSP */
1992 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
1993 case 9: /* PSP */
1994 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
1995 case 16: /* PRIMASK */
1996 return (env->uncached_cpsr & CPSR_I) != 0;
1997 case 17: /* FAULTMASK */
1998 return (env->uncached_cpsr & CPSR_F) != 0;
1999 case 18: /* BASEPRI */
2000 case 19: /* BASEPRI_MAX */
2001 return env->v7m.basepri;
2002 case 20: /* CONTROL */
2003 return env->v7m.control;
2004 default:
2005 /* ??? For debugging only. */
2006 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
2007 return 0;
2008 }
2009}
2010
8984bd2e 2011void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
9ee6e8bb
PB
2012{
2013 switch (reg) {
2014 case 0: /* APSR */
2015 xpsr_write(env, val, 0xf8000000);
2016 break;
2017 case 1: /* IAPSR */
2018 xpsr_write(env, val, 0xf8000000);
2019 break;
2020 case 2: /* EAPSR */
2021 xpsr_write(env, val, 0xfe00fc00);
2022 break;
2023 case 3: /* xPSR */
2024 xpsr_write(env, val, 0xfe00fc00);
2025 break;
2026 case 5: /* IPSR */
2027 /* IPSR bits are readonly. */
2028 break;
2029 case 6: /* EPSR */
2030 xpsr_write(env, val, 0x0600fc00);
2031 break;
2032 case 7: /* IEPSR */
2033 xpsr_write(env, val, 0x0600fc00);
2034 break;
2035 case 8: /* MSP */
2036 if (env->v7m.current_sp)
2037 env->v7m.other_sp = val;
2038 else
2039 env->regs[13] = val;
2040 break;
2041 case 9: /* PSP */
2042 if (env->v7m.current_sp)
2043 env->regs[13] = val;
2044 else
2045 env->v7m.other_sp = val;
2046 break;
2047 case 16: /* PRIMASK */
2048 if (val & 1)
2049 env->uncached_cpsr |= CPSR_I;
2050 else
2051 env->uncached_cpsr &= ~CPSR_I;
2052 break;
2053 case 17: /* FAULTMASK */
2054 if (val & 1)
2055 env->uncached_cpsr |= CPSR_F;
2056 else
2057 env->uncached_cpsr &= ~CPSR_F;
2058 break;
2059 case 18: /* BASEPRI */
2060 env->v7m.basepri = val & 0xff;
2061 break;
2062 case 19: /* BASEPRI_MAX */
2063 val &= 0xff;
2064 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
2065 env->v7m.basepri = val;
2066 break;
2067 case 20: /* CONTROL */
2068 env->v7m.control = val & 3;
2069 switch_v7m_sp(env, (val & 2) != 0);
2070 break;
2071 default:
2072 /* ??? For debugging only. */
2073 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
2074 return;
2075 }
2076}
2077
c1713132
AZ
2078void cpu_arm_set_cp_io(CPUARMState *env, int cpnum,
2079 ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write,
2080 void *opaque)
2081{
2082 if (cpnum < 0 || cpnum > 14) {
2083 cpu_abort(env, "Bad coprocessor number: %i\n", cpnum);
2084 return;
2085 }
2086
2087 env->cp[cpnum].cp_read = cp_read;
2088 env->cp[cpnum].cp_write = cp_write;
2089 env->cp[cpnum].opaque = opaque;
2090}
2091
b5ff1b31 2092#endif
6ddbc6e4
PB
2093
2094/* Note that signed overflow is undefined in C. The following routines are
2095 careful to use unsigned types where modulo arithmetic is required.
2096 Failure to do so _will_ break on newer gcc. */
2097
2098/* Signed saturating arithmetic. */
2099
1654b2d6 2100/* Perform 16-bit signed saturating addition. */
6ddbc6e4
PB
2101static inline uint16_t add16_sat(uint16_t a, uint16_t b)
2102{
2103 uint16_t res;
2104
2105 res = a + b;
2106 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
2107 if (a & 0x8000)
2108 res = 0x8000;
2109 else
2110 res = 0x7fff;
2111 }
2112 return res;
2113}
2114
1654b2d6 2115/* Perform 8-bit signed saturating addition. */
6ddbc6e4
PB
2116static inline uint8_t add8_sat(uint8_t a, uint8_t b)
2117{
2118 uint8_t res;
2119
2120 res = a + b;
2121 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
2122 if (a & 0x80)
2123 res = 0x80;
2124 else
2125 res = 0x7f;
2126 }
2127 return res;
2128}
2129
1654b2d6 2130/* Perform 16-bit signed saturating subtraction. */
6ddbc6e4
PB
2131static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
2132{
2133 uint16_t res;
2134
2135 res = a - b;
2136 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
2137 if (a & 0x8000)
2138 res = 0x8000;
2139 else
2140 res = 0x7fff;
2141 }
2142 return res;
2143}
2144
1654b2d6 2145/* Perform 8-bit signed saturating subtraction. */
6ddbc6e4
PB
2146static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
2147{
2148 uint8_t res;
2149
2150 res = a - b;
2151 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2152 if (a & 0x80)
2153 res = 0x80;
2154 else
2155 res = 0x7f;
2156 }
2157 return res;
2158}
2159
2160#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2161#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2162#define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
2163#define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
2164#define PFX q
2165
2166#include "op_addsub.h"
2167
2168/* Unsigned saturating arithmetic. */
460a09c1 2169static inline uint16_t add16_usat(uint16_t a, uint16_t b)
6ddbc6e4
PB
2170{
2171 uint16_t res;
2172 res = a + b;
2173 if (res < a)
2174 res = 0xffff;
2175 return res;
2176}
2177
460a09c1 2178static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
6ddbc6e4 2179{
4c4fd3f8 2180 if (a > b)
6ddbc6e4
PB
2181 return a - b;
2182 else
2183 return 0;
2184}
2185
2186static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2187{
2188 uint8_t res;
2189 res = a + b;
2190 if (res < a)
2191 res = 0xff;
2192 return res;
2193}
2194
2195static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2196{
4c4fd3f8 2197 if (a > b)
6ddbc6e4
PB
2198 return a - b;
2199 else
2200 return 0;
2201}
2202
2203#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2204#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2205#define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
2206#define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
2207#define PFX uq
2208
2209#include "op_addsub.h"
2210
2211/* Signed modulo arithmetic. */
2212#define SARITH16(a, b, n, op) do { \
2213 int32_t sum; \
db6e2e65 2214 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
6ddbc6e4
PB
2215 RESULT(sum, n, 16); \
2216 if (sum >= 0) \
2217 ge |= 3 << (n * 2); \
2218 } while(0)
2219
2220#define SARITH8(a, b, n, op) do { \
2221 int32_t sum; \
db6e2e65 2222 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
6ddbc6e4
PB
2223 RESULT(sum, n, 8); \
2224 if (sum >= 0) \
2225 ge |= 1 << n; \
2226 } while(0)
2227
2228
2229#define ADD16(a, b, n) SARITH16(a, b, n, +)
2230#define SUB16(a, b, n) SARITH16(a, b, n, -)
2231#define ADD8(a, b, n) SARITH8(a, b, n, +)
2232#define SUB8(a, b, n) SARITH8(a, b, n, -)
2233#define PFX s
2234#define ARITH_GE
2235
2236#include "op_addsub.h"
2237
2238/* Unsigned modulo arithmetic. */
2239#define ADD16(a, b, n) do { \
2240 uint32_t sum; \
2241 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2242 RESULT(sum, n, 16); \
a87aa10b 2243 if ((sum >> 16) == 1) \
6ddbc6e4
PB
2244 ge |= 3 << (n * 2); \
2245 } while(0)
2246
2247#define ADD8(a, b, n) do { \
2248 uint32_t sum; \
2249 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2250 RESULT(sum, n, 8); \
a87aa10b
AZ
2251 if ((sum >> 8) == 1) \
2252 ge |= 1 << n; \
6ddbc6e4
PB
2253 } while(0)
2254
2255#define SUB16(a, b, n) do { \
2256 uint32_t sum; \
2257 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2258 RESULT(sum, n, 16); \
2259 if ((sum >> 16) == 0) \
2260 ge |= 3 << (n * 2); \
2261 } while(0)
2262
2263#define SUB8(a, b, n) do { \
2264 uint32_t sum; \
2265 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2266 RESULT(sum, n, 8); \
2267 if ((sum >> 8) == 0) \
a87aa10b 2268 ge |= 1 << n; \
6ddbc6e4
PB
2269 } while(0)
2270
2271#define PFX u
2272#define ARITH_GE
2273
2274#include "op_addsub.h"
2275
2276/* Halved signed arithmetic. */
2277#define ADD16(a, b, n) \
2278 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2279#define SUB16(a, b, n) \
2280 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2281#define ADD8(a, b, n) \
2282 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2283#define SUB8(a, b, n) \
2284 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2285#define PFX sh
2286
2287#include "op_addsub.h"
2288
2289/* Halved unsigned arithmetic. */
2290#define ADD16(a, b, n) \
2291 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2292#define SUB16(a, b, n) \
2293 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2294#define ADD8(a, b, n) \
2295 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2296#define SUB8(a, b, n) \
2297 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2298#define PFX uh
2299
2300#include "op_addsub.h"
2301
2302static inline uint8_t do_usad(uint8_t a, uint8_t b)
2303{
2304 if (a > b)
2305 return a - b;
2306 else
2307 return b - a;
2308}
2309
2310/* Unsigned sum of absolute byte differences. */
2311uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
2312{
2313 uint32_t sum;
2314 sum = do_usad(a, b);
2315 sum += do_usad(a >> 8, b >> 8);
2316 sum += do_usad(a >> 16, b >>16);
2317 sum += do_usad(a >> 24, b >> 24);
2318 return sum;
2319}
2320
2321/* For ARMv6 SEL instruction. */
2322uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
2323{
2324 uint32_t mask;
2325
2326 mask = 0;
2327 if (flags & 1)
2328 mask |= 0xff;
2329 if (flags & 2)
2330 mask |= 0xff00;
2331 if (flags & 4)
2332 mask |= 0xff0000;
2333 if (flags & 8)
2334 mask |= 0xff000000;
2335 return (a & mask) | (b & ~mask);
2336}
2337
5e3f878a
PB
2338uint32_t HELPER(logicq_cc)(uint64_t val)
2339{
2340 return (val >> 32) | (val != 0);
2341}
4373f3ce
PB
2342
2343/* VFP support. We follow the convention used for VFP instrunctions:
2344 Single precition routines have a "s" suffix, double precision a
2345 "d" suffix. */
2346
2347/* Convert host exception flags to vfp form. */
2348static inline int vfp_exceptbits_from_host(int host_bits)
2349{
2350 int target_bits = 0;
2351
2352 if (host_bits & float_flag_invalid)
2353 target_bits |= 1;
2354 if (host_bits & float_flag_divbyzero)
2355 target_bits |= 2;
2356 if (host_bits & float_flag_overflow)
2357 target_bits |= 4;
2358 if (host_bits & float_flag_underflow)
2359 target_bits |= 8;
2360 if (host_bits & float_flag_inexact)
2361 target_bits |= 0x10;
cecd8504
PM
2362 if (host_bits & float_flag_input_denormal)
2363 target_bits |= 0x80;
4373f3ce
PB
2364 return target_bits;
2365}
2366
2367uint32_t HELPER(vfp_get_fpscr)(CPUState *env)
2368{
2369 int i;
2370 uint32_t fpscr;
2371
2372 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
2373 | (env->vfp.vec_len << 16)
2374 | (env->vfp.vec_stride << 20);
2375 i = get_float_exception_flags(&env->vfp.fp_status);
3a492f3a 2376 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
4373f3ce
PB
2377 fpscr |= vfp_exceptbits_from_host(i);
2378 return fpscr;
2379}
2380
01653295
PM
2381uint32_t vfp_get_fpscr(CPUState *env)
2382{
2383 return HELPER(vfp_get_fpscr)(env);
2384}
2385
4373f3ce
PB
2386/* Convert vfp exception flags to target form. */
2387static inline int vfp_exceptbits_to_host(int target_bits)
2388{
2389 int host_bits = 0;
2390
2391 if (target_bits & 1)
2392 host_bits |= float_flag_invalid;
2393 if (target_bits & 2)
2394 host_bits |= float_flag_divbyzero;
2395 if (target_bits & 4)
2396 host_bits |= float_flag_overflow;
2397 if (target_bits & 8)
2398 host_bits |= float_flag_underflow;
2399 if (target_bits & 0x10)
2400 host_bits |= float_flag_inexact;
cecd8504
PM
2401 if (target_bits & 0x80)
2402 host_bits |= float_flag_input_denormal;
4373f3ce
PB
2403 return host_bits;
2404}
2405
2406void HELPER(vfp_set_fpscr)(CPUState *env, uint32_t val)
2407{
2408 int i;
2409 uint32_t changed;
2410
2411 changed = env->vfp.xregs[ARM_VFP_FPSCR];
2412 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
2413 env->vfp.vec_len = (val >> 16) & 7;
2414 env->vfp.vec_stride = (val >> 20) & 3;
2415
2416 changed ^= val;
2417 if (changed & (3 << 22)) {
2418 i = (val >> 22) & 3;
2419 switch (i) {
2420 case 0:
2421 i = float_round_nearest_even;
2422 break;
2423 case 1:
2424 i = float_round_up;
2425 break;
2426 case 2:
2427 i = float_round_down;
2428 break;
2429 case 3:
2430 i = float_round_to_zero;
2431 break;
2432 }
2433 set_float_rounding_mode(i, &env->vfp.fp_status);
2434 }
cecd8504 2435 if (changed & (1 << 24)) {
fe76d976 2436 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
cecd8504
PM
2437 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2438 }
5c7908ed
PB
2439 if (changed & (1 << 25))
2440 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
4373f3ce 2441
b12c390b 2442 i = vfp_exceptbits_to_host(val);
4373f3ce 2443 set_float_exception_flags(i, &env->vfp.fp_status);
3a492f3a 2444 set_float_exception_flags(0, &env->vfp.standard_fp_status);
4373f3ce
PB
2445}
2446
01653295
PM
2447void vfp_set_fpscr(CPUState *env, uint32_t val)
2448{
2449 HELPER(vfp_set_fpscr)(env, val);
2450}
2451
4373f3ce
PB
2452#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2453
2454#define VFP_BINOP(name) \
2455float32 VFP_HELPER(name, s)(float32 a, float32 b, CPUState *env) \
2456{ \
2457 return float32_ ## name (a, b, &env->vfp.fp_status); \
2458} \
2459float64 VFP_HELPER(name, d)(float64 a, float64 b, CPUState *env) \
2460{ \
2461 return float64_ ## name (a, b, &env->vfp.fp_status); \
2462}
2463VFP_BINOP(add)
2464VFP_BINOP(sub)
2465VFP_BINOP(mul)
2466VFP_BINOP(div)
2467#undef VFP_BINOP
2468
2469float32 VFP_HELPER(neg, s)(float32 a)
2470{
2471 return float32_chs(a);
2472}
2473
2474float64 VFP_HELPER(neg, d)(float64 a)
2475{
66230e0d 2476 return float64_chs(a);
4373f3ce
PB
2477}
2478
2479float32 VFP_HELPER(abs, s)(float32 a)
2480{
2481 return float32_abs(a);
2482}
2483
2484float64 VFP_HELPER(abs, d)(float64 a)
2485{
66230e0d 2486 return float64_abs(a);
4373f3ce
PB
2487}
2488
2489float32 VFP_HELPER(sqrt, s)(float32 a, CPUState *env)
2490{
2491 return float32_sqrt(a, &env->vfp.fp_status);
2492}
2493
2494float64 VFP_HELPER(sqrt, d)(float64 a, CPUState *env)
2495{
2496 return float64_sqrt(a, &env->vfp.fp_status);
2497}
2498
2499/* XXX: check quiet/signaling case */
2500#define DO_VFP_cmp(p, type) \
2501void VFP_HELPER(cmp, p)(type a, type b, CPUState *env) \
2502{ \
2503 uint32_t flags; \
2504 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2505 case 0: flags = 0x6; break; \
2506 case -1: flags = 0x8; break; \
2507 case 1: flags = 0x2; break; \
2508 default: case 2: flags = 0x3; break; \
2509 } \
2510 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2511 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2512} \
2513void VFP_HELPER(cmpe, p)(type a, type b, CPUState *env) \
2514{ \
2515 uint32_t flags; \
2516 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2517 case 0: flags = 0x6; break; \
2518 case -1: flags = 0x8; break; \
2519 case 1: flags = 0x2; break; \
2520 default: case 2: flags = 0x3; break; \
2521 } \
2522 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2523 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2524}
2525DO_VFP_cmp(s, float32)
2526DO_VFP_cmp(d, float64)
2527#undef DO_VFP_cmp
2528
4373f3ce 2529/* Integer to float conversion. */
622465e1 2530float32 VFP_HELPER(uito, s)(uint32_t x, CPUState *env)
4373f3ce 2531{
622465e1 2532 return uint32_to_float32(x, &env->vfp.fp_status);
4373f3ce
PB
2533}
2534
622465e1 2535float64 VFP_HELPER(uito, d)(uint32_t x, CPUState *env)
4373f3ce 2536{
622465e1 2537 return uint32_to_float64(x, &env->vfp.fp_status);
4373f3ce
PB
2538}
2539
622465e1 2540float32 VFP_HELPER(sito, s)(uint32_t x, CPUState *env)
4373f3ce 2541{
622465e1 2542 return int32_to_float32(x, &env->vfp.fp_status);
4373f3ce
PB
2543}
2544
622465e1 2545float64 VFP_HELPER(sito, d)(uint32_t x, CPUState *env)
4373f3ce 2546{
622465e1 2547 return int32_to_float64(x, &env->vfp.fp_status);
4373f3ce
PB
2548}
2549
2550/* Float to integer conversion. */
622465e1 2551uint32_t VFP_HELPER(toui, s)(float32 x, CPUState *env)
4373f3ce 2552{
09d9487f 2553 if (float32_is_any_nan(x)) {
ec444452 2554 float_raise(float_flag_invalid, &env->vfp.fp_status);
622465e1 2555 return 0;
09d9487f 2556 }
622465e1 2557 return float32_to_uint32(x, &env->vfp.fp_status);
4373f3ce
PB
2558}
2559
622465e1 2560uint32_t VFP_HELPER(toui, d)(float64 x, CPUState *env)
4373f3ce 2561{
09d9487f 2562 if (float64_is_any_nan(x)) {
ec444452 2563 float_raise(float_flag_invalid, &env->vfp.fp_status);
622465e1 2564 return 0;
09d9487f 2565 }
622465e1 2566 return float64_to_uint32(x, &env->vfp.fp_status);
4373f3ce
PB
2567}
2568
622465e1 2569uint32_t VFP_HELPER(tosi, s)(float32 x, CPUState *env)
4373f3ce 2570{
09d9487f 2571 if (float32_is_any_nan(x)) {
ec444452 2572 float_raise(float_flag_invalid, &env->vfp.fp_status);
622465e1 2573 return 0;
09d9487f 2574 }
622465e1 2575 return float32_to_int32(x, &env->vfp.fp_status);
4373f3ce
PB
2576}
2577
622465e1 2578uint32_t VFP_HELPER(tosi, d)(float64 x, CPUState *env)
4373f3ce 2579{
09d9487f 2580 if (float64_is_any_nan(x)) {
ec444452 2581 float_raise(float_flag_invalid, &env->vfp.fp_status);
622465e1 2582 return 0;
09d9487f 2583 }
622465e1 2584 return float64_to_int32(x, &env->vfp.fp_status);
4373f3ce
PB
2585}
2586
622465e1 2587uint32_t VFP_HELPER(touiz, s)(float32 x, CPUState *env)
4373f3ce 2588{
09d9487f 2589 if (float32_is_any_nan(x)) {
ec444452 2590 float_raise(float_flag_invalid, &env->vfp.fp_status);
622465e1 2591 return 0;
09d9487f 2592 }
622465e1 2593 return float32_to_uint32_round_to_zero(x, &env->vfp.fp_status);
4373f3ce
PB
2594}
2595
622465e1 2596uint32_t VFP_HELPER(touiz, d)(float64 x, CPUState *env)
4373f3ce 2597{
09d9487f 2598 if (float64_is_any_nan(x)) {
ec444452 2599 float_raise(float_flag_invalid, &env->vfp.fp_status);
622465e1 2600 return 0;
09d9487f 2601 }
622465e1 2602 return float64_to_uint32_round_to_zero(x, &env->vfp.fp_status);
4373f3ce
PB
2603}
2604
622465e1 2605uint32_t VFP_HELPER(tosiz, s)(float32 x, CPUState *env)
4373f3ce 2606{
09d9487f 2607 if (float32_is_any_nan(x)) {
ec444452 2608 float_raise(float_flag_invalid, &env->vfp.fp_status);
622465e1 2609 return 0;
09d9487f 2610 }
622465e1 2611 return float32_to_int32_round_to_zero(x, &env->vfp.fp_status);
4373f3ce
PB
2612}
2613
622465e1 2614uint32_t VFP_HELPER(tosiz, d)(float64 x, CPUState *env)
4373f3ce 2615{
09d9487f 2616 if (float64_is_any_nan(x)) {
ec444452 2617 float_raise(float_flag_invalid, &env->vfp.fp_status);
622465e1 2618 return 0;
09d9487f 2619 }
622465e1 2620 return float64_to_int32_round_to_zero(x, &env->vfp.fp_status);
4373f3ce
PB
2621}
2622
2623/* floating point conversion */
2624float64 VFP_HELPER(fcvtd, s)(float32 x, CPUState *env)
2625{
2d627737
PM
2626 float64 r = float32_to_float64(x, &env->vfp.fp_status);
2627 /* ARM requires that S<->D conversion of any kind of NaN generates
2628 * a quiet NaN by forcing the most significant frac bit to 1.
2629 */
2630 return float64_maybe_silence_nan(r);
4373f3ce
PB
2631}
2632
2633float32 VFP_HELPER(fcvts, d)(float64 x, CPUState *env)
2634{
2d627737
PM
2635 float32 r = float64_to_float32(x, &env->vfp.fp_status);
2636 /* ARM requires that S<->D conversion of any kind of NaN generates
2637 * a quiet NaN by forcing the most significant frac bit to 1.
2638 */
2639 return float32_maybe_silence_nan(r);
4373f3ce
PB
2640}
2641
2642/* VFP3 fixed point conversion. */
622465e1
PM
2643#define VFP_CONV_FIX(name, p, fsz, itype, sign) \
2644float##fsz VFP_HELPER(name##to, p)(uint##fsz##_t x, uint32_t shift, \
2645 CPUState *env) \
4373f3ce 2646{ \
622465e1
PM
2647 float##fsz tmp; \
2648 tmp = sign##int32_to_##float##fsz ((itype##_t)x, &env->vfp.fp_status); \
2649 return float##fsz##_scalbn(tmp, -(int)shift, &env->vfp.fp_status); \
4373f3ce 2650} \
622465e1
PM
2651uint##fsz##_t VFP_HELPER(to##name, p)(float##fsz x, uint32_t shift, \
2652 CPUState *env) \
4373f3ce 2653{ \
622465e1
PM
2654 float##fsz tmp; \
2655 if (float##fsz##_is_any_nan(x)) { \
ec444452 2656 float_raise(float_flag_invalid, &env->vfp.fp_status); \
622465e1 2657 return 0; \
09d9487f 2658 } \
622465e1
PM
2659 tmp = float##fsz##_scalbn(x, shift, &env->vfp.fp_status); \
2660 return float##fsz##_to_##itype##_round_to_zero(tmp, &env->vfp.fp_status); \
2661}
2662
2663VFP_CONV_FIX(sh, d, 64, int16, )
2664VFP_CONV_FIX(sl, d, 64, int32, )
2665VFP_CONV_FIX(uh, d, 64, uint16, u)
2666VFP_CONV_FIX(ul, d, 64, uint32, u)
2667VFP_CONV_FIX(sh, s, 32, int16, )
2668VFP_CONV_FIX(sl, s, 32, int32, )
2669VFP_CONV_FIX(uh, s, 32, uint16, u)
2670VFP_CONV_FIX(ul, s, 32, uint32, u)
4373f3ce
PB
2671#undef VFP_CONV_FIX
2672
60011498 2673/* Half precision conversions. */
2d981da7 2674static float32 do_fcvt_f16_to_f32(uint32_t a, CPUState *env, float_status *s)
60011498 2675{
60011498 2676 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
fb91678d
PM
2677 float32 r = float16_to_float32(make_float16(a), ieee, s);
2678 if (ieee) {
2679 return float32_maybe_silence_nan(r);
2680 }
2681 return r;
60011498
PB
2682}
2683
2d981da7 2684static uint32_t do_fcvt_f32_to_f16(float32 a, CPUState *env, float_status *s)
60011498 2685{
60011498 2686 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
fb91678d
PM
2687 float16 r = float32_to_float16(a, ieee, s);
2688 if (ieee) {
2689 r = float16_maybe_silence_nan(r);
2690 }
2691 return float16_val(r);
60011498
PB
2692}
2693
2d981da7
PM
2694float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUState *env)
2695{
2696 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
2697}
2698
2699uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUState *env)
2700{
2701 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
2702}
2703
2704float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUState *env)
2705{
2706 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
2707}
2708
2709uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUState *env)
2710{
2711 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
2712}
2713
dda3ec49 2714#define float32_two make_float32(0x40000000)
6aae3df1
PM
2715#define float32_three make_float32(0x40400000)
2716#define float32_one_point_five make_float32(0x3fc00000)
dda3ec49 2717
4373f3ce
PB
2718float32 HELPER(recps_f32)(float32 a, float32 b, CPUState *env)
2719{
dda3ec49
PM
2720 float_status *s = &env->vfp.standard_fp_status;
2721 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
2722 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
2723 return float32_two;
2724 }
2725 return float32_sub(float32_two, float32_mul(a, b, s), s);
4373f3ce
PB
2726}
2727
2728float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUState *env)
2729{
71826966 2730 float_status *s = &env->vfp.standard_fp_status;
9ea62f57
PM
2731 float32 product;
2732 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
2733 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
6aae3df1 2734 return float32_one_point_five;
9ea62f57 2735 }
6aae3df1
PM
2736 product = float32_mul(a, b, s);
2737 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
4373f3ce
PB
2738}
2739
8f8e3aa4
PB
2740/* NEON helpers. */
2741
56bf4fe2
CL
2742/* Constants 256 and 512 are used in some helpers; we avoid relying on
2743 * int->float conversions at run-time. */
2744#define float64_256 make_float64(0x4070000000000000LL)
2745#define float64_512 make_float64(0x4080000000000000LL)
2746
fe0e4872
CL
2747/* The algorithm that must be used to calculate the estimate
2748 * is specified by the ARM ARM.
2749 */
2750static float64 recip_estimate(float64 a, CPUState *env)
2751{
2752 float_status *s = &env->vfp.standard_fp_status;
2753 /* q = (int)(a * 512.0) */
2754 float64 q = float64_mul(float64_512, a, s);
2755 int64_t q_int = float64_to_int64_round_to_zero(q, s);
2756
2757 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
2758 q = int64_to_float64(q_int, s);
2759 q = float64_add(q, float64_half, s);
2760 q = float64_div(q, float64_512, s);
2761 q = float64_div(float64_one, q, s);
2762
2763 /* s = (int)(256.0 * r + 0.5) */
2764 q = float64_mul(q, float64_256, s);
2765 q = float64_add(q, float64_half, s);
2766 q_int = float64_to_int64_round_to_zero(q, s);
2767
2768 /* return (double)s / 256.0 */
2769 return float64_div(int64_to_float64(q_int, s), float64_256, s);
2770}
2771
4373f3ce
PB
2772float32 HELPER(recpe_f32)(float32 a, CPUState *env)
2773{
fe0e4872
CL
2774 float_status *s = &env->vfp.standard_fp_status;
2775 float64 f64;
2776 uint32_t val32 = float32_val(a);
2777
2778 int result_exp;
2779 int a_exp = (val32 & 0x7f800000) >> 23;
2780 int sign = val32 & 0x80000000;
2781
2782 if (float32_is_any_nan(a)) {
2783 if (float32_is_signaling_nan(a)) {
2784 float_raise(float_flag_invalid, s);
2785 }
2786 return float32_default_nan;
2787 } else if (float32_is_infinity(a)) {
2788 return float32_set_sign(float32_zero, float32_is_neg(a));
2789 } else if (float32_is_zero_or_denormal(a)) {
2790 float_raise(float_flag_divbyzero, s);
2791 return float32_set_sign(float32_infinity, float32_is_neg(a));
2792 } else if (a_exp >= 253) {
2793 float_raise(float_flag_underflow, s);
2794 return float32_set_sign(float32_zero, float32_is_neg(a));
2795 }
2796
2797 f64 = make_float64((0x3feULL << 52)
2798 | ((int64_t)(val32 & 0x7fffff) << 29));
2799
2800 result_exp = 253 - a_exp;
2801
2802 f64 = recip_estimate(f64, env);
2803
2804 val32 = sign
2805 | ((result_exp & 0xff) << 23)
2806 | ((float64_val(f64) >> 29) & 0x7fffff);
2807 return make_float32(val32);
4373f3ce
PB
2808}
2809
e07be5d2
CL
2810/* The algorithm that must be used to calculate the estimate
2811 * is specified by the ARM ARM.
2812 */
2813static float64 recip_sqrt_estimate(float64 a, CPUState *env)
2814{
2815 float_status *s = &env->vfp.standard_fp_status;
2816 float64 q;
2817 int64_t q_int;
2818
2819 if (float64_lt(a, float64_half, s)) {
2820 /* range 0.25 <= a < 0.5 */
2821
2822 /* a in units of 1/512 rounded down */
2823 /* q0 = (int)(a * 512.0); */
2824 q = float64_mul(float64_512, a, s);
2825 q_int = float64_to_int64_round_to_zero(q, s);
2826
2827 /* reciprocal root r */
2828 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
2829 q = int64_to_float64(q_int, s);
2830 q = float64_add(q, float64_half, s);
2831 q = float64_div(q, float64_512, s);
2832 q = float64_sqrt(q, s);
2833 q = float64_div(float64_one, q, s);
2834 } else {
2835 /* range 0.5 <= a < 1.0 */
2836
2837 /* a in units of 1/256 rounded down */
2838 /* q1 = (int)(a * 256.0); */
2839 q = float64_mul(float64_256, a, s);
2840 int64_t q_int = float64_to_int64_round_to_zero(q, s);
2841
2842 /* reciprocal root r */
2843 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
2844 q = int64_to_float64(q_int, s);
2845 q = float64_add(q, float64_half, s);
2846 q = float64_div(q, float64_256, s);
2847 q = float64_sqrt(q, s);
2848 q = float64_div(float64_one, q, s);
2849 }
2850 /* r in units of 1/256 rounded to nearest */
2851 /* s = (int)(256.0 * r + 0.5); */
2852
2853 q = float64_mul(q, float64_256,s );
2854 q = float64_add(q, float64_half, s);
2855 q_int = float64_to_int64_round_to_zero(q, s);
2856
2857 /* return (double)s / 256.0;*/
2858 return float64_div(int64_to_float64(q_int, s), float64_256, s);
2859}
2860
4373f3ce
PB
2861float32 HELPER(rsqrte_f32)(float32 a, CPUState *env)
2862{
e07be5d2
CL
2863 float_status *s = &env->vfp.standard_fp_status;
2864 int result_exp;
2865 float64 f64;
2866 uint32_t val;
2867 uint64_t val64;
2868
2869 val = float32_val(a);
2870
2871 if (float32_is_any_nan(a)) {
2872 if (float32_is_signaling_nan(a)) {
2873 float_raise(float_flag_invalid, s);
2874 }
2875 return float32_default_nan;
2876 } else if (float32_is_zero_or_denormal(a)) {
2877 float_raise(float_flag_divbyzero, s);
2878 return float32_set_sign(float32_infinity, float32_is_neg(a));
2879 } else if (float32_is_neg(a)) {
2880 float_raise(float_flag_invalid, s);
2881 return float32_default_nan;
2882 } else if (float32_is_infinity(a)) {
2883 return float32_zero;
2884 }
2885
2886 /* Normalize to a double-precision value between 0.25 and 1.0,
2887 * preserving the parity of the exponent. */
2888 if ((val & 0x800000) == 0) {
2889 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
2890 | (0x3feULL << 52)
2891 | ((uint64_t)(val & 0x7fffff) << 29));
2892 } else {
2893 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
2894 | (0x3fdULL << 52)
2895 | ((uint64_t)(val & 0x7fffff) << 29));
2896 }
2897
2898 result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;
2899
2900 f64 = recip_sqrt_estimate(f64, env);
2901
2902 val64 = float64_val(f64);
2903
2904 val = ((val64 >> 63) & 0x80000000)
2905 | ((result_exp & 0xff) << 23)
2906 | ((val64 >> 29) & 0x7fffff);
2907 return make_float32(val);
4373f3ce
PB
2908}
2909
2910uint32_t HELPER(recpe_u32)(uint32_t a, CPUState *env)
2911{
fe0e4872
CL
2912 float64 f64;
2913
2914 if ((a & 0x80000000) == 0) {
2915 return 0xffffffff;
2916 }
2917
2918 f64 = make_float64((0x3feULL << 52)
2919 | ((int64_t)(a & 0x7fffffff) << 21));
2920
2921 f64 = recip_estimate (f64, env);
2922
2923 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4373f3ce
PB
2924}
2925
2926uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUState *env)
2927{
e07be5d2
CL
2928 float64 f64;
2929
2930 if ((a & 0xc0000000) == 0) {
2931 return 0xffffffff;
2932 }
2933
2934 if (a & 0x80000000) {
2935 f64 = make_float64((0x3feULL << 52)
2936 | ((uint64_t)(a & 0x7fffffff) << 21));
2937 } else { /* bits 31-30 == '01' */
2938 f64 = make_float64((0x3fdULL << 52)
2939 | ((uint64_t)(a & 0x3fffffff) << 22));
2940 }
2941
2942 f64 = recip_sqrt_estimate(f64, env);
2943
2944 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4373f3ce 2945}
fe1479c3
PB
2946
2947void HELPER(set_teecr)(CPUState *env, uint32_t val)
2948{
2949 val &= 1;
2950 if (env->teecr != val) {
2951 env->teecr = val;
2952 tb_flush(env);
2953 }
2954}