]> git.proxmox.com Git - mirror_qemu.git/blame - target-i386/kvm.c
target-i386/hyperv: Hyper-V SynIC SINT routing and vcpu exit
[mirror_qemu.git] / target-i386 / kvm.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15#include <sys/types.h>
16#include <sys/ioctl.h>
17#include <sys/mman.h>
25d2e361 18#include <sys/utsname.h>
05330448
AL
19
20#include <linux/kvm.h>
5802e066 21#include <linux/kvm_para.h>
05330448
AL
22
23#include "qemu-common.h"
9c17d615 24#include "sysemu/sysemu.h"
6410848b 25#include "sysemu/kvm_int.h"
1d31f66b 26#include "kvm_i386.h"
05330448 27#include "cpu.h"
50efe82c
AS
28#include "hyperv.h"
29
022c62cb 30#include "exec/gdbstub.h"
1de7afc9
PB
31#include "qemu/host-utils.h"
32#include "qemu/config-file.h"
1c4a55db 33#include "qemu/error-report.h"
0d09e41a
PB
34#include "hw/i386/pc.h"
35#include "hw/i386/apic.h"
e0723c45
PB
36#include "hw/i386/apic_internal.h"
37#include "hw/i386/apic-msidef.h"
50efe82c 38
022c62cb 39#include "exec/ioport.h"
73aa529a 40#include "standard-headers/asm-x86/hyperv.h"
a2cb15b0 41#include "hw/pci/pci.h"
68bfd0ad 42#include "migration/migration.h"
4c663752 43#include "exec/memattrs.h"
05330448
AL
44
45//#define DEBUG_KVM
46
47#ifdef DEBUG_KVM
8c0d577e 48#define DPRINTF(fmt, ...) \
05330448
AL
49 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
50#else
8c0d577e 51#define DPRINTF(fmt, ...) \
05330448
AL
52 do { } while (0)
53#endif
54
1a03675d
GC
55#define MSR_KVM_WALL_CLOCK 0x11
56#define MSR_KVM_SYSTEM_TIME 0x12
57
c0532a76
MT
58#ifndef BUS_MCEERR_AR
59#define BUS_MCEERR_AR 4
60#endif
61#ifndef BUS_MCEERR_AO
62#define BUS_MCEERR_AO 5
63#endif
64
94a8d39a
JK
65const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
66 KVM_CAP_INFO(SET_TSS_ADDR),
67 KVM_CAP_INFO(EXT_CPUID),
68 KVM_CAP_INFO(MP_STATE),
69 KVM_CAP_LAST_INFO
70};
25d2e361 71
c3a3a7d3
JK
72static bool has_msr_star;
73static bool has_msr_hsave_pa;
c9b8f6b6 74static bool has_msr_tsc_aux;
f28558d3 75static bool has_msr_tsc_adjust;
aa82ba54 76static bool has_msr_tsc_deadline;
df67696e 77static bool has_msr_feature_control;
c5999bfc 78static bool has_msr_async_pf_en;
bc9a839d 79static bool has_msr_pv_eoi_en;
21e87c46 80static bool has_msr_misc_enable;
fc12d72e 81static bool has_msr_smbase;
79e9ebeb 82static bool has_msr_bndcfgs;
917367aa 83static bool has_msr_kvm_steal_time;
25d2e361 84static int lm_capable_kernel;
7bc3d711
PB
85static bool has_msr_hv_hypercall;
86static bool has_msr_hv_vapic;
48a5f3bc 87static bool has_msr_hv_tsc;
f2a53c9e 88static bool has_msr_hv_crash;
744b8a94 89static bool has_msr_hv_reset;
8c145d7c 90static bool has_msr_hv_vpindex;
46eb8f98 91static bool has_msr_hv_runtime;
866eea9a 92static bool has_msr_hv_synic;
d1ae67f6 93static bool has_msr_mtrr;
18cd2c17 94static bool has_msr_xss;
b827df58 95
0d894367
PB
96static bool has_msr_architectural_pmu;
97static uint32_t num_architectural_pmu_counters;
98
28143b40
TH
99static int has_xsave;
100static int has_xcrs;
101static int has_pit_state2;
102
103int kvm_has_pit_state2(void)
104{
105 return has_pit_state2;
106}
107
355023f2
PB
108bool kvm_has_smm(void)
109{
110 return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM);
111}
112
1d31f66b
PM
113bool kvm_allows_irq0_override(void)
114{
115 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
116}
117
0fd7e098
LL
118static int kvm_get_tsc(CPUState *cs)
119{
120 X86CPU *cpu = X86_CPU(cs);
121 CPUX86State *env = &cpu->env;
122 struct {
123 struct kvm_msrs info;
124 struct kvm_msr_entry entries[1];
125 } msr_data;
126 int ret;
127
128 if (env->tsc_valid) {
129 return 0;
130 }
131
132 msr_data.info.nmsrs = 1;
133 msr_data.entries[0].index = MSR_IA32_TSC;
134 env->tsc_valid = !runstate_is_running();
135
136 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
137 if (ret < 0) {
138 return ret;
139 }
140
141 env->tsc = msr_data.entries[0].data;
142 return 0;
143}
144
145static inline void do_kvm_synchronize_tsc(void *arg)
146{
147 CPUState *cpu = arg;
148
149 kvm_get_tsc(cpu);
150}
151
152void kvm_synchronize_all_tsc(void)
153{
154 CPUState *cpu;
155
156 if (kvm_enabled()) {
157 CPU_FOREACH(cpu) {
158 run_on_cpu(cpu, do_kvm_synchronize_tsc, cpu);
159 }
160 }
161}
162
b827df58
AK
163static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
164{
165 struct kvm_cpuid2 *cpuid;
166 int r, size;
167
168 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
e42a92ae 169 cpuid = g_malloc0(size);
b827df58
AK
170 cpuid->nent = max;
171 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
76ae317f
MM
172 if (r == 0 && cpuid->nent >= max) {
173 r = -E2BIG;
174 }
b827df58
AK
175 if (r < 0) {
176 if (r == -E2BIG) {
7267c094 177 g_free(cpuid);
b827df58
AK
178 return NULL;
179 } else {
180 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
181 strerror(-r));
182 exit(1);
183 }
184 }
185 return cpuid;
186}
187
dd87f8a6
EH
188/* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
189 * for all entries.
190 */
191static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
192{
193 struct kvm_cpuid2 *cpuid;
194 int max = 1;
195 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
196 max *= 2;
197 }
198 return cpuid;
199}
200
a443bc34 201static const struct kvm_para_features {
0c31b744
GC
202 int cap;
203 int feature;
204} para_features[] = {
205 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
206 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
207 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
0c31b744 208 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
0c31b744
GC
209};
210
ba9bc59e 211static int get_para_features(KVMState *s)
0c31b744
GC
212{
213 int i, features = 0;
214
8e03c100 215 for (i = 0; i < ARRAY_SIZE(para_features); i++) {
ba9bc59e 216 if (kvm_check_extension(s, para_features[i].cap)) {
0c31b744
GC
217 features |= (1 << para_features[i].feature);
218 }
219 }
220
221 return features;
222}
0c31b744
GC
223
224
829ae2f9
EH
225/* Returns the value for a specific register on the cpuid entry
226 */
227static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
228{
229 uint32_t ret = 0;
230 switch (reg) {
231 case R_EAX:
232 ret = entry->eax;
233 break;
234 case R_EBX:
235 ret = entry->ebx;
236 break;
237 case R_ECX:
238 ret = entry->ecx;
239 break;
240 case R_EDX:
241 ret = entry->edx;
242 break;
243 }
244 return ret;
245}
246
4fb73f1d
EH
247/* Find matching entry for function/index on kvm_cpuid2 struct
248 */
249static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
250 uint32_t function,
251 uint32_t index)
252{
253 int i;
254 for (i = 0; i < cpuid->nent; ++i) {
255 if (cpuid->entries[i].function == function &&
256 cpuid->entries[i].index == index) {
257 return &cpuid->entries[i];
258 }
259 }
260 /* not found: */
261 return NULL;
262}
263
ba9bc59e 264uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
c958a8bd 265 uint32_t index, int reg)
b827df58
AK
266{
267 struct kvm_cpuid2 *cpuid;
b827df58
AK
268 uint32_t ret = 0;
269 uint32_t cpuid_1_edx;
8c723b79 270 bool found = false;
b827df58 271
dd87f8a6 272 cpuid = get_supported_cpuid(s);
b827df58 273
4fb73f1d
EH
274 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
275 if (entry) {
276 found = true;
277 ret = cpuid_entry_get_reg(entry, reg);
b827df58
AK
278 }
279
7b46e5ce
EH
280 /* Fixups for the data returned by KVM, below */
281
c2acb022
EH
282 if (function == 1 && reg == R_EDX) {
283 /* KVM before 2.6.30 misreports the following features */
284 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
84bd945c
EH
285 } else if (function == 1 && reg == R_ECX) {
286 /* We can set the hypervisor flag, even if KVM does not return it on
287 * GET_SUPPORTED_CPUID
288 */
289 ret |= CPUID_EXT_HYPERVISOR;
ac67ee26
EH
290 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
291 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
292 * and the irqchip is in the kernel.
293 */
294 if (kvm_irqchip_in_kernel() &&
295 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
296 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
297 }
41e5e76d
EH
298
299 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
300 * without the in-kernel irqchip
301 */
302 if (!kvm_irqchip_in_kernel()) {
303 ret &= ~CPUID_EXT_X2APIC;
b827df58 304 }
28b8e4d0
JK
305 } else if (function == 6 && reg == R_EAX) {
306 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
c2acb022
EH
307 } else if (function == 0x80000001 && reg == R_EDX) {
308 /* On Intel, kvm returns cpuid according to the Intel spec,
309 * so add missing bits according to the AMD spec:
310 */
311 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
312 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
b827df58
AK
313 }
314
7267c094 315 g_free(cpuid);
b827df58 316
0c31b744 317 /* fallback for older kernels */
8c723b79 318 if ((function == KVM_CPUID_FEATURES) && !found) {
ba9bc59e 319 ret = get_para_features(s);
b9bec74b 320 }
0c31b744
GC
321
322 return ret;
bb0300dc 323}
bb0300dc 324
3c85e74f
HY
325typedef struct HWPoisonPage {
326 ram_addr_t ram_addr;
327 QLIST_ENTRY(HWPoisonPage) list;
328} HWPoisonPage;
329
330static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
331 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
332
333static void kvm_unpoison_all(void *param)
334{
335 HWPoisonPage *page, *next_page;
336
337 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
338 QLIST_REMOVE(page, list);
339 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
7267c094 340 g_free(page);
3c85e74f
HY
341 }
342}
343
3c85e74f
HY
344static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
345{
346 HWPoisonPage *page;
347
348 QLIST_FOREACH(page, &hwpoison_page_list, list) {
349 if (page->ram_addr == ram_addr) {
350 return;
351 }
352 }
ab3ad07f 353 page = g_new(HWPoisonPage, 1);
3c85e74f
HY
354 page->ram_addr = ram_addr;
355 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
356}
357
e7701825
MT
358static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
359 int *max_banks)
360{
361 int r;
362
14a09518 363 r = kvm_check_extension(s, KVM_CAP_MCE);
e7701825
MT
364 if (r > 0) {
365 *max_banks = r;
366 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
367 }
368 return -ENOSYS;
369}
370
bee615d4 371static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
e7701825 372{
bee615d4 373 CPUX86State *env = &cpu->env;
c34d440a
JK
374 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
375 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
376 uint64_t mcg_status = MCG_STATUS_MCIP;
e7701825 377
c34d440a
JK
378 if (code == BUS_MCEERR_AR) {
379 status |= MCI_STATUS_AR | 0x134;
380 mcg_status |= MCG_STATUS_EIPV;
381 } else {
382 status |= 0xc0;
383 mcg_status |= MCG_STATUS_RIPV;
419fb20a 384 }
8c5cf3b6 385 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
c34d440a
JK
386 (MCM_ADDR_PHYS << 6) | 0xc,
387 cpu_x86_support_mca_broadcast(env) ?
388 MCE_INJECT_BROADCAST : 0);
419fb20a 389}
419fb20a
JK
390
391static void hardware_memory_error(void)
392{
393 fprintf(stderr, "Hardware memory error!\n");
394 exit(1);
395}
396
20d695a9 397int kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
419fb20a 398{
20d695a9
AF
399 X86CPU *cpu = X86_CPU(c);
400 CPUX86State *env = &cpu->env;
419fb20a 401 ram_addr_t ram_addr;
a8170e5e 402 hwaddr paddr;
419fb20a
JK
403
404 if ((env->mcg_cap & MCG_SER_P) && addr
c34d440a 405 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
1b5ec234 406 if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL ||
a60f24b5 407 !kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
419fb20a
JK
408 fprintf(stderr, "Hardware memory error for memory used by "
409 "QEMU itself instead of guest system!\n");
410 /* Hope we are lucky for AO MCE */
411 if (code == BUS_MCEERR_AO) {
412 return 0;
413 } else {
414 hardware_memory_error();
415 }
416 }
3c85e74f 417 kvm_hwpoison_page_add(ram_addr);
bee615d4 418 kvm_mce_inject(cpu, paddr, code);
e56ff191 419 } else {
419fb20a
JK
420 if (code == BUS_MCEERR_AO) {
421 return 0;
422 } else if (code == BUS_MCEERR_AR) {
423 hardware_memory_error();
424 } else {
425 return 1;
426 }
427 }
428 return 0;
429}
430
431int kvm_arch_on_sigbus(int code, void *addr)
432{
182735ef
AF
433 X86CPU *cpu = X86_CPU(first_cpu);
434
435 if ((cpu->env.mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
419fb20a 436 ram_addr_t ram_addr;
a8170e5e 437 hwaddr paddr;
419fb20a
JK
438
439 /* Hope we are lucky for AO MCE */
1b5ec234 440 if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL ||
182735ef 441 !kvm_physical_memory_addr_from_host(first_cpu->kvm_state,
a60f24b5 442 addr, &paddr)) {
419fb20a
JK
443 fprintf(stderr, "Hardware memory error for memory used by "
444 "QEMU itself instead of guest system!: %p\n", addr);
445 return 0;
446 }
3c85e74f 447 kvm_hwpoison_page_add(ram_addr);
182735ef 448 kvm_mce_inject(X86_CPU(first_cpu), paddr, code);
e56ff191 449 } else {
419fb20a
JK
450 if (code == BUS_MCEERR_AO) {
451 return 0;
452 } else if (code == BUS_MCEERR_AR) {
453 hardware_memory_error();
454 } else {
455 return 1;
456 }
457 }
458 return 0;
459}
e7701825 460
1bc22652 461static int kvm_inject_mce_oldstyle(X86CPU *cpu)
ab443475 462{
1bc22652
AF
463 CPUX86State *env = &cpu->env;
464
ab443475
JK
465 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
466 unsigned int bank, bank_num = env->mcg_cap & 0xff;
467 struct kvm_x86_mce mce;
468
469 env->exception_injected = -1;
470
471 /*
472 * There must be at least one bank in use if an MCE is pending.
473 * Find it and use its values for the event injection.
474 */
475 for (bank = 0; bank < bank_num; bank++) {
476 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
477 break;
478 }
479 }
480 assert(bank < bank_num);
481
482 mce.bank = bank;
483 mce.status = env->mce_banks[bank * 4 + 1];
484 mce.mcg_status = env->mcg_status;
485 mce.addr = env->mce_banks[bank * 4 + 2];
486 mce.misc = env->mce_banks[bank * 4 + 3];
487
1bc22652 488 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
ab443475 489 }
ab443475
JK
490 return 0;
491}
492
1dfb4dd9 493static void cpu_update_state(void *opaque, int running, RunState state)
b8cc45d6 494{
317ac620 495 CPUX86State *env = opaque;
b8cc45d6
GC
496
497 if (running) {
498 env->tsc_valid = false;
499 }
500}
501
83b17af5 502unsigned long kvm_arch_vcpu_id(CPUState *cs)
b164e48e 503{
83b17af5 504 X86CPU *cpu = X86_CPU(cs);
7e72a45c 505 return cpu->apic_id;
b164e48e
EH
506}
507
92067bf4
IM
508#ifndef KVM_CPUID_SIGNATURE_NEXT
509#define KVM_CPUID_SIGNATURE_NEXT 0x40000100
510#endif
511
512static bool hyperv_hypercall_available(X86CPU *cpu)
513{
514 return cpu->hyperv_vapic ||
515 (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY);
516}
517
518static bool hyperv_enabled(X86CPU *cpu)
519{
7bc3d711
PB
520 CPUState *cs = CPU(cpu);
521 return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 &&
522 (hyperv_hypercall_available(cpu) ||
48a5f3bc 523 cpu->hyperv_time ||
f2a53c9e 524 cpu->hyperv_relaxed_timing ||
744b8a94 525 cpu->hyperv_crash ||
8c145d7c 526 cpu->hyperv_reset ||
46eb8f98 527 cpu->hyperv_vpindex ||
866eea9a
AS
528 cpu->hyperv_runtime ||
529 cpu->hyperv_synic);
92067bf4
IM
530}
531
68bfd0ad
MT
532static Error *invtsc_mig_blocker;
533
f8bb0565 534#define KVM_MAX_CPUID_ENTRIES 100
0893d460 535
20d695a9 536int kvm_arch_init_vcpu(CPUState *cs)
05330448
AL
537{
538 struct {
486bd5a2 539 struct kvm_cpuid2 cpuid;
f8bb0565 540 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
541dc0d4 541 } QEMU_PACKED cpuid_data;
20d695a9
AF
542 X86CPU *cpu = X86_CPU(cs);
543 CPUX86State *env = &cpu->env;
486bd5a2 544 uint32_t limit, i, j, cpuid_i;
a33609ca 545 uint32_t unused;
bb0300dc 546 struct kvm_cpuid_entry2 *c;
bb0300dc 547 uint32_t signature[3];
234cc647 548 int kvm_base = KVM_CPUID_SIGNATURE;
e7429073 549 int r;
05330448 550
ef4cbe14
SW
551 memset(&cpuid_data, 0, sizeof(cpuid_data));
552
05330448
AL
553 cpuid_i = 0;
554
bb0300dc 555 /* Paravirtualization CPUIDs */
234cc647
PB
556 if (hyperv_enabled(cpu)) {
557 c = &cpuid_data.entries[cpuid_i++];
558 c->function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1c4a55db
AW
559 if (!cpu->hyperv_vendor_id) {
560 memcpy(signature, "Microsoft Hv", 12);
561 } else {
562 size_t len = strlen(cpu->hyperv_vendor_id);
563
564 if (len > 12) {
565 error_report("hv-vendor-id truncated to 12 characters");
566 len = 12;
567 }
568 memset(signature, 0, 12);
569 memcpy(signature, cpu->hyperv_vendor_id, len);
570 }
eab70139 571 c->eax = HYPERV_CPUID_MIN;
234cc647
PB
572 c->ebx = signature[0];
573 c->ecx = signature[1];
574 c->edx = signature[2];
0c31b744 575
234cc647
PB
576 c = &cpuid_data.entries[cpuid_i++];
577 c->function = HYPERV_CPUID_INTERFACE;
eab70139
VR
578 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
579 c->eax = signature[0];
234cc647
PB
580 c->ebx = 0;
581 c->ecx = 0;
582 c->edx = 0;
eab70139
VR
583
584 c = &cpuid_data.entries[cpuid_i++];
eab70139
VR
585 c->function = HYPERV_CPUID_VERSION;
586 c->eax = 0x00001bbc;
587 c->ebx = 0x00060001;
588
589 c = &cpuid_data.entries[cpuid_i++];
eab70139 590 c->function = HYPERV_CPUID_FEATURES;
92067bf4 591 if (cpu->hyperv_relaxed_timing) {
eab70139
VR
592 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
593 }
92067bf4 594 if (cpu->hyperv_vapic) {
eab70139
VR
595 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
596 c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
7bc3d711 597 has_msr_hv_vapic = true;
eab70139 598 }
48a5f3bc
VR
599 if (cpu->hyperv_time &&
600 kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
601 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
602 c->eax |= HV_X64_MSR_TIME_REF_COUNT_AVAILABLE;
603 c->eax |= 0x200;
604 has_msr_hv_tsc = true;
605 }
f2a53c9e
AS
606 if (cpu->hyperv_crash && has_msr_hv_crash) {
607 c->edx |= HV_X64_GUEST_CRASH_MSR_AVAILABLE;
608 }
744b8a94
AS
609 if (cpu->hyperv_reset && has_msr_hv_reset) {
610 c->eax |= HV_X64_MSR_RESET_AVAILABLE;
611 }
8c145d7c
AS
612 if (cpu->hyperv_vpindex && has_msr_hv_vpindex) {
613 c->eax |= HV_X64_MSR_VP_INDEX_AVAILABLE;
614 }
46eb8f98
AS
615 if (cpu->hyperv_runtime && has_msr_hv_runtime) {
616 c->eax |= HV_X64_MSR_VP_RUNTIME_AVAILABLE;
617 }
866eea9a
AS
618 if (cpu->hyperv_synic) {
619 int sint;
620
621 if (!has_msr_hv_synic ||
622 kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_SYNIC, 0)) {
623 fprintf(stderr, "Hyper-V SynIC is not supported by kernel\n");
624 return -ENOSYS;
625 }
626
627 c->eax |= HV_X64_MSR_SYNIC_AVAILABLE;
628 env->msr_hv_synic_version = HV_SYNIC_VERSION_1;
629 for (sint = 0; sint < ARRAY_SIZE(env->msr_hv_synic_sint); sint++) {
630 env->msr_hv_synic_sint[sint] = HV_SYNIC_SINT_MASKED;
631 }
632 }
eab70139 633 c = &cpuid_data.entries[cpuid_i++];
eab70139 634 c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
92067bf4 635 if (cpu->hyperv_relaxed_timing) {
eab70139
VR
636 c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
637 }
7bc3d711 638 if (has_msr_hv_vapic) {
eab70139
VR
639 c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
640 }
92067bf4 641 c->ebx = cpu->hyperv_spinlock_attempts;
eab70139
VR
642
643 c = &cpuid_data.entries[cpuid_i++];
eab70139
VR
644 c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
645 c->eax = 0x40;
646 c->ebx = 0x40;
647
234cc647 648 kvm_base = KVM_CPUID_SIGNATURE_NEXT;
7bc3d711 649 has_msr_hv_hypercall = true;
eab70139
VR
650 }
651
f522d2ac
AW
652 if (cpu->expose_kvm) {
653 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
654 c = &cpuid_data.entries[cpuid_i++];
655 c->function = KVM_CPUID_SIGNATURE | kvm_base;
79b6f2f6 656 c->eax = KVM_CPUID_FEATURES | kvm_base;
f522d2ac
AW
657 c->ebx = signature[0];
658 c->ecx = signature[1];
659 c->edx = signature[2];
234cc647 660
f522d2ac
AW
661 c = &cpuid_data.entries[cpuid_i++];
662 c->function = KVM_CPUID_FEATURES | kvm_base;
663 c->eax = env->features[FEAT_KVM];
234cc647 664
f522d2ac 665 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
bb0300dc 666
f522d2ac 667 has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
bc9a839d 668
f522d2ac
AW
669 has_msr_kvm_steal_time = c->eax & (1 << KVM_FEATURE_STEAL_TIME);
670 }
917367aa 671
a33609ca 672 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
05330448
AL
673
674 for (i = 0; i <= limit; i++) {
f8bb0565
IM
675 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
676 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
677 abort();
678 }
bb0300dc 679 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
680
681 switch (i) {
a36b1029
AL
682 case 2: {
683 /* Keep reading function 2 till all the input is received */
684 int times;
685
a36b1029 686 c->function = i;
a33609ca
AL
687 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
688 KVM_CPUID_FLAG_STATE_READ_NEXT;
689 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
690 times = c->eax & 0xff;
a36b1029
AL
691
692 for (j = 1; j < times; ++j) {
f8bb0565
IM
693 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
694 fprintf(stderr, "cpuid_data is full, no space for "
695 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
696 abort();
697 }
a33609ca 698 c = &cpuid_data.entries[cpuid_i++];
a36b1029 699 c->function = i;
a33609ca
AL
700 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
701 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
a36b1029
AL
702 }
703 break;
704 }
486bd5a2
AL
705 case 4:
706 case 0xb:
707 case 0xd:
708 for (j = 0; ; j++) {
31e8c696
AP
709 if (i == 0xd && j == 64) {
710 break;
711 }
486bd5a2
AL
712 c->function = i;
713 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
714 c->index = j;
a33609ca 715 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2 716
b9bec74b 717 if (i == 4 && c->eax == 0) {
486bd5a2 718 break;
b9bec74b
JK
719 }
720 if (i == 0xb && !(c->ecx & 0xff00)) {
486bd5a2 721 break;
b9bec74b
JK
722 }
723 if (i == 0xd && c->eax == 0) {
31e8c696 724 continue;
b9bec74b 725 }
f8bb0565
IM
726 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
727 fprintf(stderr, "cpuid_data is full, no space for "
728 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
729 abort();
730 }
a33609ca 731 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
732 }
733 break;
734 default:
486bd5a2 735 c->function = i;
a33609ca
AL
736 c->flags = 0;
737 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2
AL
738 break;
739 }
05330448 740 }
0d894367
PB
741
742 if (limit >= 0x0a) {
743 uint32_t ver;
744
745 cpu_x86_cpuid(env, 0x0a, 0, &ver, &unused, &unused, &unused);
746 if ((ver & 0xff) > 0) {
747 has_msr_architectural_pmu = true;
748 num_architectural_pmu_counters = (ver & 0xff00) >> 8;
749
750 /* Shouldn't be more than 32, since that's the number of bits
751 * available in EBX to tell us _which_ counters are available.
752 * Play it safe.
753 */
754 if (num_architectural_pmu_counters > MAX_GP_COUNTERS) {
755 num_architectural_pmu_counters = MAX_GP_COUNTERS;
756 }
757 }
758 }
759
a33609ca 760 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
05330448
AL
761
762 for (i = 0x80000000; i <= limit; i++) {
f8bb0565
IM
763 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
764 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
765 abort();
766 }
bb0300dc 767 c = &cpuid_data.entries[cpuid_i++];
05330448 768
05330448 769 c->function = i;
a33609ca
AL
770 c->flags = 0;
771 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
05330448
AL
772 }
773
b3baa152
BW
774 /* Call Centaur's CPUID instructions they are supported. */
775 if (env->cpuid_xlevel2 > 0) {
b3baa152
BW
776 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
777
778 for (i = 0xC0000000; i <= limit; i++) {
f8bb0565
IM
779 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
780 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
781 abort();
782 }
b3baa152
BW
783 c = &cpuid_data.entries[cpuid_i++];
784
785 c->function = i;
786 c->flags = 0;
787 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
788 }
789 }
790
05330448
AL
791 cpuid_data.cpuid.nent = cpuid_i;
792
e7701825 793 if (((env->cpuid_version >> 8)&0xF) >= 6
0514ef2f 794 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
fc7a504c 795 (CPUID_MCE | CPUID_MCA)
a60f24b5 796 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
5120901a 797 uint64_t mcg_cap, unsupported_caps;
e7701825 798 int banks;
32a42024 799 int ret;
e7701825 800
a60f24b5 801 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
75d49497
JK
802 if (ret < 0) {
803 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
804 return ret;
e7701825 805 }
75d49497 806
2590f15b 807 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
49b69cbf 808 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
2590f15b 809 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
49b69cbf 810 return -ENOTSUP;
75d49497 811 }
49b69cbf 812
5120901a
EH
813 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
814 if (unsupported_caps) {
815 error_report("warning: Unsupported MCG_CAP bits: 0x%" PRIx64,
816 unsupported_caps);
817 }
818
2590f15b
EH
819 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
820 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
75d49497
JK
821 if (ret < 0) {
822 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
823 return ret;
824 }
e7701825 825 }
e7701825 826
b8cc45d6
GC
827 qemu_add_vm_change_state_handler(cpu_update_state, env);
828
df67696e
LJ
829 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
830 if (c) {
831 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
832 !!(c->ecx & CPUID_EXT_SMX);
833 }
834
68bfd0ad
MT
835 c = cpuid_find_entry(&cpuid_data.cpuid, 0x80000007, 0);
836 if (c && (c->edx & 1<<8) && invtsc_mig_blocker == NULL) {
837 /* for migration */
838 error_setg(&invtsc_mig_blocker,
839 "State blocked by non-migratable CPU device"
840 " (invtsc flag)");
841 migrate_add_blocker(invtsc_mig_blocker);
842 /* for savevm */
843 vmstate_x86_cpu.unmigratable = 1;
844 }
845
7e680753 846 cpuid_data.cpuid.padding = 0;
1bc22652 847 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
fdc9c41a
JK
848 if (r) {
849 return r;
850 }
e7429073 851
a60f24b5 852 r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL);
e7429073 853 if (r && env->tsc_khz) {
1bc22652 854 r = kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz);
e7429073
JR
855 if (r < 0) {
856 fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
857 return r;
858 }
859 }
e7429073 860
28143b40 861 if (has_xsave) {
fabacc0f
JK
862 env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
863 }
864
d1ae67f6
AW
865 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
866 has_msr_mtrr = true;
867 }
868
e7429073 869 return 0;
05330448
AL
870}
871
50a2c6e5 872void kvm_arch_reset_vcpu(X86CPU *cpu)
caa5af0f 873{
20d695a9 874 CPUX86State *env = &cpu->env;
dd673288 875
e73223a5 876 env->exception_injected = -1;
0e607a80 877 env->interrupt_injected = -1;
1a5e9d2f 878 env->xcr0 = 1;
ddced198 879 if (kvm_irqchip_in_kernel()) {
dd673288 880 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
ddced198
MT
881 KVM_MP_STATE_UNINITIALIZED;
882 } else {
883 env->mp_state = KVM_MP_STATE_RUNNABLE;
884 }
caa5af0f
JK
885}
886
e0723c45
PB
887void kvm_arch_do_init_vcpu(X86CPU *cpu)
888{
889 CPUX86State *env = &cpu->env;
890
891 /* APs get directly into wait-for-SIPI state. */
892 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
893 env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
894 }
895}
896
c3a3a7d3 897static int kvm_get_supported_msrs(KVMState *s)
05330448 898{
75b10c43 899 static int kvm_supported_msrs;
c3a3a7d3 900 int ret = 0;
05330448
AL
901
902 /* first time */
75b10c43 903 if (kvm_supported_msrs == 0) {
05330448
AL
904 struct kvm_msr_list msr_list, *kvm_msr_list;
905
75b10c43 906 kvm_supported_msrs = -1;
05330448
AL
907
908 /* Obtain MSR list from KVM. These are the MSRs that we must
909 * save/restore */
4c9f7372 910 msr_list.nmsrs = 0;
c3a3a7d3 911 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
6fb6d245 912 if (ret < 0 && ret != -E2BIG) {
c3a3a7d3 913 return ret;
6fb6d245 914 }
d9db889f
JK
915 /* Old kernel modules had a bug and could write beyond the provided
916 memory. Allocate at least a safe amount of 1K. */
7267c094 917 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
d9db889f
JK
918 msr_list.nmsrs *
919 sizeof(msr_list.indices[0])));
05330448 920
55308450 921 kvm_msr_list->nmsrs = msr_list.nmsrs;
c3a3a7d3 922 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
05330448
AL
923 if (ret >= 0) {
924 int i;
925
926 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
927 if (kvm_msr_list->indices[i] == MSR_STAR) {
c3a3a7d3 928 has_msr_star = true;
75b10c43
MT
929 continue;
930 }
931 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
c3a3a7d3 932 has_msr_hsave_pa = true;
75b10c43 933 continue;
05330448 934 }
c9b8f6b6
AS
935 if (kvm_msr_list->indices[i] == MSR_TSC_AUX) {
936 has_msr_tsc_aux = true;
937 continue;
938 }
f28558d3
WA
939 if (kvm_msr_list->indices[i] == MSR_TSC_ADJUST) {
940 has_msr_tsc_adjust = true;
941 continue;
942 }
aa82ba54
LJ
943 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
944 has_msr_tsc_deadline = true;
945 continue;
946 }
fc12d72e
PB
947 if (kvm_msr_list->indices[i] == MSR_IA32_SMBASE) {
948 has_msr_smbase = true;
949 continue;
950 }
21e87c46
AK
951 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
952 has_msr_misc_enable = true;
953 continue;
954 }
79e9ebeb
LJ
955 if (kvm_msr_list->indices[i] == MSR_IA32_BNDCFGS) {
956 has_msr_bndcfgs = true;
957 continue;
958 }
18cd2c17
WL
959 if (kvm_msr_list->indices[i] == MSR_IA32_XSS) {
960 has_msr_xss = true;
961 continue;
962 }
f2a53c9e
AS
963 if (kvm_msr_list->indices[i] == HV_X64_MSR_CRASH_CTL) {
964 has_msr_hv_crash = true;
965 continue;
966 }
744b8a94
AS
967 if (kvm_msr_list->indices[i] == HV_X64_MSR_RESET) {
968 has_msr_hv_reset = true;
969 continue;
970 }
8c145d7c
AS
971 if (kvm_msr_list->indices[i] == HV_X64_MSR_VP_INDEX) {
972 has_msr_hv_vpindex = true;
973 continue;
974 }
46eb8f98
AS
975 if (kvm_msr_list->indices[i] == HV_X64_MSR_VP_RUNTIME) {
976 has_msr_hv_runtime = true;
977 continue;
978 }
866eea9a
AS
979 if (kvm_msr_list->indices[i] == HV_X64_MSR_SCONTROL) {
980 has_msr_hv_synic = true;
981 continue;
982 }
05330448
AL
983 }
984 }
985
7267c094 986 g_free(kvm_msr_list);
05330448
AL
987 }
988
c3a3a7d3 989 return ret;
05330448
AL
990}
991
6410848b
PB
992static Notifier smram_machine_done;
993static KVMMemoryListener smram_listener;
994static AddressSpace smram_address_space;
995static MemoryRegion smram_as_root;
996static MemoryRegion smram_as_mem;
997
998static void register_smram_listener(Notifier *n, void *unused)
999{
1000 MemoryRegion *smram =
1001 (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
1002
1003 /* Outer container... */
1004 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
1005 memory_region_set_enabled(&smram_as_root, true);
1006
1007 /* ... with two regions inside: normal system memory with low
1008 * priority, and...
1009 */
1010 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
1011 get_system_memory(), 0, ~0ull);
1012 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
1013 memory_region_set_enabled(&smram_as_mem, true);
1014
1015 if (smram) {
1016 /* ... SMRAM with higher priority */
1017 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
1018 memory_region_set_enabled(smram, true);
1019 }
1020
1021 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
1022 kvm_memory_listener_register(kvm_state, &smram_listener,
1023 &smram_address_space, 1);
1024}
1025
b16565b3 1026int kvm_arch_init(MachineState *ms, KVMState *s)
20420430 1027{
11076198 1028 uint64_t identity_base = 0xfffbc000;
39d6960a 1029 uint64_t shadow_mem;
20420430 1030 int ret;
25d2e361 1031 struct utsname utsname;
20420430 1032
28143b40
TH
1033#ifdef KVM_CAP_XSAVE
1034 has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1035#endif
1036
1037#ifdef KVM_CAP_XCRS
1038 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1039#endif
1040
1041#ifdef KVM_CAP_PIT_STATE2
1042 has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1043#endif
1044
c3a3a7d3 1045 ret = kvm_get_supported_msrs(s);
20420430 1046 if (ret < 0) {
20420430
SY
1047 return ret;
1048 }
25d2e361
MT
1049
1050 uname(&utsname);
1051 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
1052
4c5b10b7 1053 /*
11076198
JK
1054 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
1055 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
1056 * Since these must be part of guest physical memory, we need to allocate
1057 * them, both by setting their start addresses in the kernel and by
1058 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
1059 *
1060 * Older KVM versions may not support setting the identity map base. In
1061 * that case we need to stick with the default, i.e. a 256K maximum BIOS
1062 * size.
4c5b10b7 1063 */
11076198
JK
1064 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
1065 /* Allows up to 16M BIOSes. */
1066 identity_base = 0xfeffc000;
1067
1068 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
1069 if (ret < 0) {
1070 return ret;
1071 }
4c5b10b7 1072 }
e56ff191 1073
11076198
JK
1074 /* Set TSS base one page after EPT identity map. */
1075 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
20420430
SY
1076 if (ret < 0) {
1077 return ret;
1078 }
1079
11076198
JK
1080 /* Tell fw_cfg to notify the BIOS to reserve the range. */
1081 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
20420430 1082 if (ret < 0) {
11076198 1083 fprintf(stderr, "e820_add_entry() table is full\n");
20420430
SY
1084 return ret;
1085 }
3c85e74f 1086 qemu_register_reset(kvm_unpoison_all, NULL);
20420430 1087
4689b77b 1088 shadow_mem = machine_kvm_shadow_mem(ms);
36ad0e94
MA
1089 if (shadow_mem != -1) {
1090 shadow_mem /= 4096;
1091 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
1092 if (ret < 0) {
1093 return ret;
39d6960a
JK
1094 }
1095 }
6410848b
PB
1096
1097 if (kvm_check_extension(s, KVM_CAP_X86_SMM)) {
1098 smram_machine_done.notify = register_smram_listener;
1099 qemu_add_machine_init_done_notifier(&smram_machine_done);
1100 }
11076198 1101 return 0;
05330448 1102}
b9bec74b 1103
05330448
AL
1104static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
1105{
1106 lhs->selector = rhs->selector;
1107 lhs->base = rhs->base;
1108 lhs->limit = rhs->limit;
1109 lhs->type = 3;
1110 lhs->present = 1;
1111 lhs->dpl = 3;
1112 lhs->db = 0;
1113 lhs->s = 1;
1114 lhs->l = 0;
1115 lhs->g = 0;
1116 lhs->avl = 0;
1117 lhs->unusable = 0;
1118}
1119
1120static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
1121{
1122 unsigned flags = rhs->flags;
1123 lhs->selector = rhs->selector;
1124 lhs->base = rhs->base;
1125 lhs->limit = rhs->limit;
1126 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
1127 lhs->present = (flags & DESC_P_MASK) != 0;
acaa7550 1128 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
05330448
AL
1129 lhs->db = (flags >> DESC_B_SHIFT) & 1;
1130 lhs->s = (flags & DESC_S_MASK) != 0;
1131 lhs->l = (flags >> DESC_L_SHIFT) & 1;
1132 lhs->g = (flags & DESC_G_MASK) != 0;
1133 lhs->avl = (flags & DESC_AVL_MASK) != 0;
1134 lhs->unusable = 0;
7e680753 1135 lhs->padding = 0;
05330448
AL
1136}
1137
1138static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
1139{
1140 lhs->selector = rhs->selector;
1141 lhs->base = rhs->base;
1142 lhs->limit = rhs->limit;
b9bec74b
JK
1143 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
1144 (rhs->present * DESC_P_MASK) |
1145 (rhs->dpl << DESC_DPL_SHIFT) |
1146 (rhs->db << DESC_B_SHIFT) |
1147 (rhs->s * DESC_S_MASK) |
1148 (rhs->l << DESC_L_SHIFT) |
1149 (rhs->g * DESC_G_MASK) |
1150 (rhs->avl * DESC_AVL_MASK);
05330448
AL
1151}
1152
1153static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
1154{
b9bec74b 1155 if (set) {
05330448 1156 *kvm_reg = *qemu_reg;
b9bec74b 1157 } else {
05330448 1158 *qemu_reg = *kvm_reg;
b9bec74b 1159 }
05330448
AL
1160}
1161
1bc22652 1162static int kvm_getput_regs(X86CPU *cpu, int set)
05330448 1163{
1bc22652 1164 CPUX86State *env = &cpu->env;
05330448
AL
1165 struct kvm_regs regs;
1166 int ret = 0;
1167
1168 if (!set) {
1bc22652 1169 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
b9bec74b 1170 if (ret < 0) {
05330448 1171 return ret;
b9bec74b 1172 }
05330448
AL
1173 }
1174
1175 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
1176 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
1177 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
1178 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
1179 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
1180 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
1181 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
1182 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
1183#ifdef TARGET_X86_64
1184 kvm_getput_reg(&regs.r8, &env->regs[8], set);
1185 kvm_getput_reg(&regs.r9, &env->regs[9], set);
1186 kvm_getput_reg(&regs.r10, &env->regs[10], set);
1187 kvm_getput_reg(&regs.r11, &env->regs[11], set);
1188 kvm_getput_reg(&regs.r12, &env->regs[12], set);
1189 kvm_getput_reg(&regs.r13, &env->regs[13], set);
1190 kvm_getput_reg(&regs.r14, &env->regs[14], set);
1191 kvm_getput_reg(&regs.r15, &env->regs[15], set);
1192#endif
1193
1194 kvm_getput_reg(&regs.rflags, &env->eflags, set);
1195 kvm_getput_reg(&regs.rip, &env->eip, set);
1196
b9bec74b 1197 if (set) {
1bc22652 1198 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
b9bec74b 1199 }
05330448
AL
1200
1201 return ret;
1202}
1203
1bc22652 1204static int kvm_put_fpu(X86CPU *cpu)
05330448 1205{
1bc22652 1206 CPUX86State *env = &cpu->env;
05330448
AL
1207 struct kvm_fpu fpu;
1208 int i;
1209
1210 memset(&fpu, 0, sizeof fpu);
1211 fpu.fsw = env->fpus & ~(7 << 11);
1212 fpu.fsw |= (env->fpstt & 7) << 11;
1213 fpu.fcw = env->fpuc;
42cc8fa6
JK
1214 fpu.last_opcode = env->fpop;
1215 fpu.last_ip = env->fpip;
1216 fpu.last_dp = env->fpdp;
b9bec74b
JK
1217 for (i = 0; i < 8; ++i) {
1218 fpu.ftwx |= (!env->fptags[i]) << i;
1219 }
05330448 1220 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
bee81887
PB
1221 for (i = 0; i < CPU_NB_REGS; i++) {
1222 stq_p(&fpu.xmm[i][0], env->xmm_regs[i].XMM_Q(0));
1223 stq_p(&fpu.xmm[i][8], env->xmm_regs[i].XMM_Q(1));
1224 }
05330448
AL
1225 fpu.mxcsr = env->mxcsr;
1226
1bc22652 1227 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
05330448
AL
1228}
1229
6b42494b
JK
1230#define XSAVE_FCW_FSW 0
1231#define XSAVE_FTW_FOP 1
f1665b21
SY
1232#define XSAVE_CWD_RIP 2
1233#define XSAVE_CWD_RDP 4
1234#define XSAVE_MXCSR 6
1235#define XSAVE_ST_SPACE 8
1236#define XSAVE_XMM_SPACE 40
1237#define XSAVE_XSTATE_BV 128
1238#define XSAVE_YMMH_SPACE 144
79e9ebeb
LJ
1239#define XSAVE_BNDREGS 240
1240#define XSAVE_BNDCSR 256
9aecd6f8
CP
1241#define XSAVE_OPMASK 272
1242#define XSAVE_ZMM_Hi256 288
1243#define XSAVE_Hi16_ZMM 416
f1665b21 1244
1bc22652 1245static int kvm_put_xsave(X86CPU *cpu)
f1665b21 1246{
1bc22652 1247 CPUX86State *env = &cpu->env;
fabacc0f 1248 struct kvm_xsave* xsave = env->kvm_xsave_buf;
42cc8fa6 1249 uint16_t cwd, swd, twd;
b7711471 1250 uint8_t *xmm, *ymmh, *zmmh;
fabacc0f 1251 int i, r;
f1665b21 1252
28143b40 1253 if (!has_xsave) {
1bc22652 1254 return kvm_put_fpu(cpu);
b9bec74b 1255 }
f1665b21 1256
f1665b21 1257 memset(xsave, 0, sizeof(struct kvm_xsave));
6115c0a8 1258 twd = 0;
f1665b21
SY
1259 swd = env->fpus & ~(7 << 11);
1260 swd |= (env->fpstt & 7) << 11;
1261 cwd = env->fpuc;
b9bec74b 1262 for (i = 0; i < 8; ++i) {
f1665b21 1263 twd |= (!env->fptags[i]) << i;
b9bec74b 1264 }
6b42494b
JK
1265 xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
1266 xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
42cc8fa6
JK
1267 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
1268 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
f1665b21
SY
1269 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
1270 sizeof env->fpregs);
f1665b21
SY
1271 xsave->region[XSAVE_MXCSR] = env->mxcsr;
1272 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
79e9ebeb
LJ
1273 memcpy(&xsave->region[XSAVE_BNDREGS], env->bnd_regs,
1274 sizeof env->bnd_regs);
1275 memcpy(&xsave->region[XSAVE_BNDCSR], &env->bndcs_regs,
1276 sizeof(env->bndcs_regs));
9aecd6f8
CP
1277 memcpy(&xsave->region[XSAVE_OPMASK], env->opmask_regs,
1278 sizeof env->opmask_regs);
bee81887
PB
1279
1280 xmm = (uint8_t *)&xsave->region[XSAVE_XMM_SPACE];
b7711471
PB
1281 ymmh = (uint8_t *)&xsave->region[XSAVE_YMMH_SPACE];
1282 zmmh = (uint8_t *)&xsave->region[XSAVE_ZMM_Hi256];
1283 for (i = 0; i < CPU_NB_REGS; i++, xmm += 16, ymmh += 16, zmmh += 32) {
bee81887
PB
1284 stq_p(xmm, env->xmm_regs[i].XMM_Q(0));
1285 stq_p(xmm+8, env->xmm_regs[i].XMM_Q(1));
b7711471
PB
1286 stq_p(ymmh, env->xmm_regs[i].XMM_Q(2));
1287 stq_p(ymmh+8, env->xmm_regs[i].XMM_Q(3));
1288 stq_p(zmmh, env->xmm_regs[i].XMM_Q(4));
1289 stq_p(zmmh+8, env->xmm_regs[i].XMM_Q(5));
1290 stq_p(zmmh+16, env->xmm_regs[i].XMM_Q(6));
1291 stq_p(zmmh+24, env->xmm_regs[i].XMM_Q(7));
bee81887
PB
1292 }
1293
9aecd6f8 1294#ifdef TARGET_X86_64
b7711471
PB
1295 memcpy(&xsave->region[XSAVE_Hi16_ZMM], &env->xmm_regs[16],
1296 16 * sizeof env->xmm_regs[16]);
9aecd6f8 1297#endif
1bc22652 1298 r = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
0f53994f 1299 return r;
f1665b21
SY
1300}
1301
1bc22652 1302static int kvm_put_xcrs(X86CPU *cpu)
f1665b21 1303{
1bc22652 1304 CPUX86State *env = &cpu->env;
bdfc8480 1305 struct kvm_xcrs xcrs = {};
f1665b21 1306
28143b40 1307 if (!has_xcrs) {
f1665b21 1308 return 0;
b9bec74b 1309 }
f1665b21
SY
1310
1311 xcrs.nr_xcrs = 1;
1312 xcrs.flags = 0;
1313 xcrs.xcrs[0].xcr = 0;
1314 xcrs.xcrs[0].value = env->xcr0;
1bc22652 1315 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
f1665b21
SY
1316}
1317
1bc22652 1318static int kvm_put_sregs(X86CPU *cpu)
05330448 1319{
1bc22652 1320 CPUX86State *env = &cpu->env;
05330448
AL
1321 struct kvm_sregs sregs;
1322
0e607a80
JK
1323 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
1324 if (env->interrupt_injected >= 0) {
1325 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
1326 (uint64_t)1 << (env->interrupt_injected % 64);
1327 }
05330448
AL
1328
1329 if ((env->eflags & VM_MASK)) {
b9bec74b
JK
1330 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
1331 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
1332 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
1333 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
1334 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
1335 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
05330448 1336 } else {
b9bec74b
JK
1337 set_seg(&sregs.cs, &env->segs[R_CS]);
1338 set_seg(&sregs.ds, &env->segs[R_DS]);
1339 set_seg(&sregs.es, &env->segs[R_ES]);
1340 set_seg(&sregs.fs, &env->segs[R_FS]);
1341 set_seg(&sregs.gs, &env->segs[R_GS]);
1342 set_seg(&sregs.ss, &env->segs[R_SS]);
05330448
AL
1343 }
1344
1345 set_seg(&sregs.tr, &env->tr);
1346 set_seg(&sregs.ldt, &env->ldt);
1347
1348 sregs.idt.limit = env->idt.limit;
1349 sregs.idt.base = env->idt.base;
7e680753 1350 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
05330448
AL
1351 sregs.gdt.limit = env->gdt.limit;
1352 sregs.gdt.base = env->gdt.base;
7e680753 1353 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
05330448
AL
1354
1355 sregs.cr0 = env->cr[0];
1356 sregs.cr2 = env->cr[2];
1357 sregs.cr3 = env->cr[3];
1358 sregs.cr4 = env->cr[4];
1359
02e51483
CF
1360 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
1361 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
05330448
AL
1362
1363 sregs.efer = env->efer;
1364
1bc22652 1365 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
05330448
AL
1366}
1367
1368static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
1369 uint32_t index, uint64_t value)
1370{
1371 entry->index = index;
c7fe4b12 1372 entry->reserved = 0;
05330448
AL
1373 entry->data = value;
1374}
1375
7477cd38
MT
1376static int kvm_put_tscdeadline_msr(X86CPU *cpu)
1377{
1378 CPUX86State *env = &cpu->env;
1379 struct {
1380 struct kvm_msrs info;
1381 struct kvm_msr_entry entries[1];
1382 } msr_data;
1383 struct kvm_msr_entry *msrs = msr_data.entries;
1384
1385 if (!has_msr_tsc_deadline) {
1386 return 0;
1387 }
1388
1389 kvm_msr_entry_set(&msrs[0], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
1390
c7fe4b12
CB
1391 msr_data.info = (struct kvm_msrs) {
1392 .nmsrs = 1,
1393 };
7477cd38
MT
1394
1395 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
1396}
1397
6bdf863d
JK
1398/*
1399 * Provide a separate write service for the feature control MSR in order to
1400 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
1401 * before writing any other state because forcibly leaving nested mode
1402 * invalidates the VCPU state.
1403 */
1404static int kvm_put_msr_feature_control(X86CPU *cpu)
1405{
1406 struct {
1407 struct kvm_msrs info;
1408 struct kvm_msr_entry entry;
1409 } msr_data;
1410
1411 kvm_msr_entry_set(&msr_data.entry, MSR_IA32_FEATURE_CONTROL,
1412 cpu->env.msr_ia32_feature_control);
c7fe4b12
CB
1413
1414 msr_data.info = (struct kvm_msrs) {
1415 .nmsrs = 1,
1416 };
1417
6bdf863d
JK
1418 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
1419}
1420
1bc22652 1421static int kvm_put_msrs(X86CPU *cpu, int level)
05330448 1422{
1bc22652 1423 CPUX86State *env = &cpu->env;
05330448
AL
1424 struct {
1425 struct kvm_msrs info;
d1ae67f6 1426 struct kvm_msr_entry entries[150];
05330448
AL
1427 } msr_data;
1428 struct kvm_msr_entry *msrs = msr_data.entries;
0d894367 1429 int n = 0, i;
05330448
AL
1430
1431 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1432 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1433 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
0c03266a 1434 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
c3a3a7d3 1435 if (has_msr_star) {
b9bec74b
JK
1436 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
1437 }
c3a3a7d3 1438 if (has_msr_hsave_pa) {
75b10c43 1439 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
b9bec74b 1440 }
c9b8f6b6
AS
1441 if (has_msr_tsc_aux) {
1442 kvm_msr_entry_set(&msrs[n++], MSR_TSC_AUX, env->tsc_aux);
1443 }
f28558d3
WA
1444 if (has_msr_tsc_adjust) {
1445 kvm_msr_entry_set(&msrs[n++], MSR_TSC_ADJUST, env->tsc_adjust);
1446 }
21e87c46
AK
1447 if (has_msr_misc_enable) {
1448 kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
1449 env->msr_ia32_misc_enable);
1450 }
fc12d72e
PB
1451 if (has_msr_smbase) {
1452 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SMBASE, env->smbase);
1453 }
439d19f2
PB
1454 if (has_msr_bndcfgs) {
1455 kvm_msr_entry_set(&msrs[n++], MSR_IA32_BNDCFGS, env->msr_bndcfgs);
1456 }
18cd2c17
WL
1457 if (has_msr_xss) {
1458 kvm_msr_entry_set(&msrs[n++], MSR_IA32_XSS, env->xss);
1459 }
05330448 1460#ifdef TARGET_X86_64
25d2e361
MT
1461 if (lm_capable_kernel) {
1462 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
1463 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
1464 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
1465 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
1466 }
05330448 1467#endif
ff5c186b 1468 /*
0d894367
PB
1469 * The following MSRs have side effects on the guest or are too heavy
1470 * for normal writeback. Limit them to reset or full state updates.
ff5c186b
JK
1471 */
1472 if (level >= KVM_PUT_RESET_STATE) {
0522604b 1473 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
ea643051
JK
1474 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1475 env->system_time_msr);
1476 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
c5999bfc
JK
1477 if (has_msr_async_pf_en) {
1478 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1479 env->async_pf_en_msr);
1480 }
bc9a839d
MT
1481 if (has_msr_pv_eoi_en) {
1482 kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
1483 env->pv_eoi_en_msr);
1484 }
917367aa
MT
1485 if (has_msr_kvm_steal_time) {
1486 kvm_msr_entry_set(&msrs[n++], MSR_KVM_STEAL_TIME,
1487 env->steal_time_msr);
1488 }
0d894367
PB
1489 if (has_msr_architectural_pmu) {
1490 /* Stop the counter. */
1491 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
1492 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL, 0);
1493
1494 /* Set the counter values. */
1495 for (i = 0; i < MAX_FIXED_COUNTERS; i++) {
1496 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR0 + i,
1497 env->msr_fixed_counters[i]);
1498 }
1499 for (i = 0; i < num_architectural_pmu_counters; i++) {
1500 kvm_msr_entry_set(&msrs[n++], MSR_P6_PERFCTR0 + i,
1501 env->msr_gp_counters[i]);
1502 kvm_msr_entry_set(&msrs[n++], MSR_P6_EVNTSEL0 + i,
1503 env->msr_gp_evtsel[i]);
1504 }
1505 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_STATUS,
1506 env->msr_global_status);
1507 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1508 env->msr_global_ovf_ctrl);
1509
1510 /* Now start the PMU. */
1511 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL,
1512 env->msr_fixed_ctr_ctrl);
1513 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL,
1514 env->msr_global_ctrl);
1515 }
7bc3d711 1516 if (has_msr_hv_hypercall) {
1c90ef26
VR
1517 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID,
1518 env->msr_hv_guest_os_id);
1519 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL,
1520 env->msr_hv_hypercall);
eab70139 1521 }
7bc3d711 1522 if (has_msr_hv_vapic) {
5ef68987
VR
1523 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE,
1524 env->msr_hv_vapic);
eab70139 1525 }
48a5f3bc
VR
1526 if (has_msr_hv_tsc) {
1527 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_REFERENCE_TSC,
1528 env->msr_hv_tsc);
1529 }
f2a53c9e
AS
1530 if (has_msr_hv_crash) {
1531 int j;
1532
1533 for (j = 0; j < HV_X64_MSR_CRASH_PARAMS; j++)
1534 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_CRASH_P0 + j,
1535 env->msr_hv_crash_params[j]);
1536
1537 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_CRASH_CTL,
1538 HV_X64_MSR_CRASH_CTL_NOTIFY);
1539 }
46eb8f98
AS
1540 if (has_msr_hv_runtime) {
1541 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_VP_RUNTIME,
1542 env->msr_hv_runtime);
1543 }
866eea9a
AS
1544 if (cpu->hyperv_synic) {
1545 int j;
1546
1547 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_SCONTROL,
1548 env->msr_hv_synic_control);
1549 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_SVERSION,
1550 env->msr_hv_synic_version);
1551 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_SIEFP,
1552 env->msr_hv_synic_evt_page);
1553 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_SIMP,
1554 env->msr_hv_synic_msg_page);
1555
1556 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
1557 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_SINT0 + j,
1558 env->msr_hv_synic_sint[j]);
1559 }
1560 }
d1ae67f6
AW
1561 if (has_msr_mtrr) {
1562 kvm_msr_entry_set(&msrs[n++], MSR_MTRRdefType, env->mtrr_deftype);
1563 kvm_msr_entry_set(&msrs[n++],
1564 MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
1565 kvm_msr_entry_set(&msrs[n++],
1566 MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
1567 kvm_msr_entry_set(&msrs[n++],
1568 MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
1569 kvm_msr_entry_set(&msrs[n++],
1570 MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
1571 kvm_msr_entry_set(&msrs[n++],
1572 MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
1573 kvm_msr_entry_set(&msrs[n++],
1574 MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
1575 kvm_msr_entry_set(&msrs[n++],
1576 MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
1577 kvm_msr_entry_set(&msrs[n++],
1578 MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
1579 kvm_msr_entry_set(&msrs[n++],
1580 MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
1581 kvm_msr_entry_set(&msrs[n++],
1582 MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
1583 kvm_msr_entry_set(&msrs[n++],
1584 MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
1585 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
1586 kvm_msr_entry_set(&msrs[n++],
1587 MSR_MTRRphysBase(i), env->mtrr_var[i].base);
1588 kvm_msr_entry_set(&msrs[n++],
1589 MSR_MTRRphysMask(i), env->mtrr_var[i].mask);
1590 }
1591 }
6bdf863d
JK
1592
1593 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
1594 * kvm_put_msr_feature_control. */
ea643051 1595 }
57780495 1596 if (env->mcg_cap) {
d8da8574 1597 int i;
b9bec74b 1598
c34d440a
JK
1599 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1600 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1601 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1602 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
57780495
MT
1603 }
1604 }
1a03675d 1605
c7fe4b12
CB
1606 msr_data.info = (struct kvm_msrs) {
1607 .nmsrs = n,
1608 };
05330448 1609
1bc22652 1610 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
05330448
AL
1611
1612}
1613
1614
1bc22652 1615static int kvm_get_fpu(X86CPU *cpu)
05330448 1616{
1bc22652 1617 CPUX86State *env = &cpu->env;
05330448
AL
1618 struct kvm_fpu fpu;
1619 int i, ret;
1620
1bc22652 1621 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
b9bec74b 1622 if (ret < 0) {
05330448 1623 return ret;
b9bec74b 1624 }
05330448
AL
1625
1626 env->fpstt = (fpu.fsw >> 11) & 7;
1627 env->fpus = fpu.fsw;
1628 env->fpuc = fpu.fcw;
42cc8fa6
JK
1629 env->fpop = fpu.last_opcode;
1630 env->fpip = fpu.last_ip;
1631 env->fpdp = fpu.last_dp;
b9bec74b
JK
1632 for (i = 0; i < 8; ++i) {
1633 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1634 }
05330448 1635 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
bee81887
PB
1636 for (i = 0; i < CPU_NB_REGS; i++) {
1637 env->xmm_regs[i].XMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
1638 env->xmm_regs[i].XMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
1639 }
05330448
AL
1640 env->mxcsr = fpu.mxcsr;
1641
1642 return 0;
1643}
1644
1bc22652 1645static int kvm_get_xsave(X86CPU *cpu)
f1665b21 1646{
1bc22652 1647 CPUX86State *env = &cpu->env;
fabacc0f 1648 struct kvm_xsave* xsave = env->kvm_xsave_buf;
f1665b21 1649 int ret, i;
b7711471 1650 const uint8_t *xmm, *ymmh, *zmmh;
42cc8fa6 1651 uint16_t cwd, swd, twd;
f1665b21 1652
28143b40 1653 if (!has_xsave) {
1bc22652 1654 return kvm_get_fpu(cpu);
b9bec74b 1655 }
f1665b21 1656
1bc22652 1657 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
0f53994f 1658 if (ret < 0) {
f1665b21 1659 return ret;
0f53994f 1660 }
f1665b21 1661
6b42494b
JK
1662 cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1663 swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1664 twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1665 env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
f1665b21
SY
1666 env->fpstt = (swd >> 11) & 7;
1667 env->fpus = swd;
1668 env->fpuc = cwd;
b9bec74b 1669 for (i = 0; i < 8; ++i) {
f1665b21 1670 env->fptags[i] = !((twd >> i) & 1);
b9bec74b 1671 }
42cc8fa6
JK
1672 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1673 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
f1665b21
SY
1674 env->mxcsr = xsave->region[XSAVE_MXCSR];
1675 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1676 sizeof env->fpregs);
f1665b21 1677 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
79e9ebeb
LJ
1678 memcpy(env->bnd_regs, &xsave->region[XSAVE_BNDREGS],
1679 sizeof env->bnd_regs);
1680 memcpy(&env->bndcs_regs, &xsave->region[XSAVE_BNDCSR],
1681 sizeof(env->bndcs_regs));
9aecd6f8
CP
1682 memcpy(env->opmask_regs, &xsave->region[XSAVE_OPMASK],
1683 sizeof env->opmask_regs);
bee81887
PB
1684
1685 xmm = (const uint8_t *)&xsave->region[XSAVE_XMM_SPACE];
b7711471
PB
1686 ymmh = (const uint8_t *)&xsave->region[XSAVE_YMMH_SPACE];
1687 zmmh = (const uint8_t *)&xsave->region[XSAVE_ZMM_Hi256];
1688 for (i = 0; i < CPU_NB_REGS; i++, xmm += 16, ymmh += 16, zmmh += 32) {
bee81887
PB
1689 env->xmm_regs[i].XMM_Q(0) = ldq_p(xmm);
1690 env->xmm_regs[i].XMM_Q(1) = ldq_p(xmm+8);
b7711471
PB
1691 env->xmm_regs[i].XMM_Q(2) = ldq_p(ymmh);
1692 env->xmm_regs[i].XMM_Q(3) = ldq_p(ymmh+8);
1693 env->xmm_regs[i].XMM_Q(4) = ldq_p(zmmh);
1694 env->xmm_regs[i].XMM_Q(5) = ldq_p(zmmh+8);
1695 env->xmm_regs[i].XMM_Q(6) = ldq_p(zmmh+16);
1696 env->xmm_regs[i].XMM_Q(7) = ldq_p(zmmh+24);
bee81887
PB
1697 }
1698
9aecd6f8 1699#ifdef TARGET_X86_64
b7711471
PB
1700 memcpy(&env->xmm_regs[16], &xsave->region[XSAVE_Hi16_ZMM],
1701 16 * sizeof env->xmm_regs[16]);
9aecd6f8 1702#endif
f1665b21 1703 return 0;
f1665b21
SY
1704}
1705
1bc22652 1706static int kvm_get_xcrs(X86CPU *cpu)
f1665b21 1707{
1bc22652 1708 CPUX86State *env = &cpu->env;
f1665b21
SY
1709 int i, ret;
1710 struct kvm_xcrs xcrs;
1711
28143b40 1712 if (!has_xcrs) {
f1665b21 1713 return 0;
b9bec74b 1714 }
f1665b21 1715
1bc22652 1716 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
b9bec74b 1717 if (ret < 0) {
f1665b21 1718 return ret;
b9bec74b 1719 }
f1665b21 1720
b9bec74b 1721 for (i = 0; i < xcrs.nr_xcrs; i++) {
f1665b21 1722 /* Only support xcr0 now */
0fd53fec
PB
1723 if (xcrs.xcrs[i].xcr == 0) {
1724 env->xcr0 = xcrs.xcrs[i].value;
f1665b21
SY
1725 break;
1726 }
b9bec74b 1727 }
f1665b21 1728 return 0;
f1665b21
SY
1729}
1730
1bc22652 1731static int kvm_get_sregs(X86CPU *cpu)
05330448 1732{
1bc22652 1733 CPUX86State *env = &cpu->env;
05330448
AL
1734 struct kvm_sregs sregs;
1735 uint32_t hflags;
0e607a80 1736 int bit, i, ret;
05330448 1737
1bc22652 1738 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
b9bec74b 1739 if (ret < 0) {
05330448 1740 return ret;
b9bec74b 1741 }
05330448 1742
0e607a80
JK
1743 /* There can only be one pending IRQ set in the bitmap at a time, so try
1744 to find it and save its number instead (-1 for none). */
1745 env->interrupt_injected = -1;
1746 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1747 if (sregs.interrupt_bitmap[i]) {
1748 bit = ctz64(sregs.interrupt_bitmap[i]);
1749 env->interrupt_injected = i * 64 + bit;
1750 break;
1751 }
1752 }
05330448
AL
1753
1754 get_seg(&env->segs[R_CS], &sregs.cs);
1755 get_seg(&env->segs[R_DS], &sregs.ds);
1756 get_seg(&env->segs[R_ES], &sregs.es);
1757 get_seg(&env->segs[R_FS], &sregs.fs);
1758 get_seg(&env->segs[R_GS], &sregs.gs);
1759 get_seg(&env->segs[R_SS], &sregs.ss);
1760
1761 get_seg(&env->tr, &sregs.tr);
1762 get_seg(&env->ldt, &sregs.ldt);
1763
1764 env->idt.limit = sregs.idt.limit;
1765 env->idt.base = sregs.idt.base;
1766 env->gdt.limit = sregs.gdt.limit;
1767 env->gdt.base = sregs.gdt.base;
1768
1769 env->cr[0] = sregs.cr0;
1770 env->cr[2] = sregs.cr2;
1771 env->cr[3] = sregs.cr3;
1772 env->cr[4] = sregs.cr4;
1773
05330448 1774 env->efer = sregs.efer;
cce47516
JK
1775
1776 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
05330448 1777
b9bec74b
JK
1778#define HFLAG_COPY_MASK \
1779 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1780 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1781 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1782 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
05330448 1783
7125c937 1784 hflags = (env->segs[R_SS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
05330448
AL
1785 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1786 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
b9bec74b 1787 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
05330448
AL
1788 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1789 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
b9bec74b 1790 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
05330448
AL
1791
1792 if (env->efer & MSR_EFER_LMA) {
1793 hflags |= HF_LMA_MASK;
1794 }
1795
1796 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1797 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1798 } else {
1799 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
b9bec74b 1800 (DESC_B_SHIFT - HF_CS32_SHIFT);
05330448 1801 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
b9bec74b
JK
1802 (DESC_B_SHIFT - HF_SS32_SHIFT);
1803 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1804 !(hflags & HF_CS32_MASK)) {
1805 hflags |= HF_ADDSEG_MASK;
1806 } else {
1807 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1808 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1809 }
05330448
AL
1810 }
1811 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
05330448
AL
1812
1813 return 0;
1814}
1815
1bc22652 1816static int kvm_get_msrs(X86CPU *cpu)
05330448 1817{
1bc22652 1818 CPUX86State *env = &cpu->env;
05330448
AL
1819 struct {
1820 struct kvm_msrs info;
d1ae67f6 1821 struct kvm_msr_entry entries[150];
05330448
AL
1822 } msr_data;
1823 struct kvm_msr_entry *msrs = msr_data.entries;
1824 int ret, i, n;
1825
1826 n = 0;
1827 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1828 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1829 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
0c03266a 1830 msrs[n++].index = MSR_PAT;
c3a3a7d3 1831 if (has_msr_star) {
b9bec74b
JK
1832 msrs[n++].index = MSR_STAR;
1833 }
c3a3a7d3 1834 if (has_msr_hsave_pa) {
75b10c43 1835 msrs[n++].index = MSR_VM_HSAVE_PA;
b9bec74b 1836 }
c9b8f6b6
AS
1837 if (has_msr_tsc_aux) {
1838 msrs[n++].index = MSR_TSC_AUX;
1839 }
f28558d3
WA
1840 if (has_msr_tsc_adjust) {
1841 msrs[n++].index = MSR_TSC_ADJUST;
1842 }
aa82ba54
LJ
1843 if (has_msr_tsc_deadline) {
1844 msrs[n++].index = MSR_IA32_TSCDEADLINE;
1845 }
21e87c46
AK
1846 if (has_msr_misc_enable) {
1847 msrs[n++].index = MSR_IA32_MISC_ENABLE;
1848 }
fc12d72e
PB
1849 if (has_msr_smbase) {
1850 msrs[n++].index = MSR_IA32_SMBASE;
1851 }
df67696e
LJ
1852 if (has_msr_feature_control) {
1853 msrs[n++].index = MSR_IA32_FEATURE_CONTROL;
1854 }
79e9ebeb
LJ
1855 if (has_msr_bndcfgs) {
1856 msrs[n++].index = MSR_IA32_BNDCFGS;
1857 }
18cd2c17
WL
1858 if (has_msr_xss) {
1859 msrs[n++].index = MSR_IA32_XSS;
1860 }
1861
b8cc45d6
GC
1862
1863 if (!env->tsc_valid) {
1864 msrs[n++].index = MSR_IA32_TSC;
1354869c 1865 env->tsc_valid = !runstate_is_running();
b8cc45d6
GC
1866 }
1867
05330448 1868#ifdef TARGET_X86_64
25d2e361
MT
1869 if (lm_capable_kernel) {
1870 msrs[n++].index = MSR_CSTAR;
1871 msrs[n++].index = MSR_KERNELGSBASE;
1872 msrs[n++].index = MSR_FMASK;
1873 msrs[n++].index = MSR_LSTAR;
1874 }
05330448 1875#endif
1a03675d
GC
1876 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1877 msrs[n++].index = MSR_KVM_WALL_CLOCK;
c5999bfc
JK
1878 if (has_msr_async_pf_en) {
1879 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1880 }
bc9a839d
MT
1881 if (has_msr_pv_eoi_en) {
1882 msrs[n++].index = MSR_KVM_PV_EOI_EN;
1883 }
917367aa
MT
1884 if (has_msr_kvm_steal_time) {
1885 msrs[n++].index = MSR_KVM_STEAL_TIME;
1886 }
0d894367
PB
1887 if (has_msr_architectural_pmu) {
1888 msrs[n++].index = MSR_CORE_PERF_FIXED_CTR_CTRL;
1889 msrs[n++].index = MSR_CORE_PERF_GLOBAL_CTRL;
1890 msrs[n++].index = MSR_CORE_PERF_GLOBAL_STATUS;
1891 msrs[n++].index = MSR_CORE_PERF_GLOBAL_OVF_CTRL;
1892 for (i = 0; i < MAX_FIXED_COUNTERS; i++) {
1893 msrs[n++].index = MSR_CORE_PERF_FIXED_CTR0 + i;
1894 }
1895 for (i = 0; i < num_architectural_pmu_counters; i++) {
1896 msrs[n++].index = MSR_P6_PERFCTR0 + i;
1897 msrs[n++].index = MSR_P6_EVNTSEL0 + i;
1898 }
1899 }
1a03675d 1900
57780495
MT
1901 if (env->mcg_cap) {
1902 msrs[n++].index = MSR_MCG_STATUS;
1903 msrs[n++].index = MSR_MCG_CTL;
b9bec74b 1904 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
57780495 1905 msrs[n++].index = MSR_MC0_CTL + i;
b9bec74b 1906 }
57780495 1907 }
57780495 1908
1c90ef26
VR
1909 if (has_msr_hv_hypercall) {
1910 msrs[n++].index = HV_X64_MSR_HYPERCALL;
1911 msrs[n++].index = HV_X64_MSR_GUEST_OS_ID;
1912 }
5ef68987
VR
1913 if (has_msr_hv_vapic) {
1914 msrs[n++].index = HV_X64_MSR_APIC_ASSIST_PAGE;
1915 }
48a5f3bc
VR
1916 if (has_msr_hv_tsc) {
1917 msrs[n++].index = HV_X64_MSR_REFERENCE_TSC;
1918 }
f2a53c9e
AS
1919 if (has_msr_hv_crash) {
1920 int j;
1921
1922 for (j = 0; j < HV_X64_MSR_CRASH_PARAMS; j++) {
1923 msrs[n++].index = HV_X64_MSR_CRASH_P0 + j;
1924 }
1925 }
46eb8f98
AS
1926 if (has_msr_hv_runtime) {
1927 msrs[n++].index = HV_X64_MSR_VP_RUNTIME;
1928 }
866eea9a
AS
1929 if (cpu->hyperv_synic) {
1930 uint32_t msr;
1931
1932 msrs[n++].index = HV_X64_MSR_SCONTROL;
1933 msrs[n++].index = HV_X64_MSR_SVERSION;
1934 msrs[n++].index = HV_X64_MSR_SIEFP;
1935 msrs[n++].index = HV_X64_MSR_SIMP;
1936 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
1937 msrs[n++].index = msr;
1938 }
1939 }
d1ae67f6
AW
1940 if (has_msr_mtrr) {
1941 msrs[n++].index = MSR_MTRRdefType;
1942 msrs[n++].index = MSR_MTRRfix64K_00000;
1943 msrs[n++].index = MSR_MTRRfix16K_80000;
1944 msrs[n++].index = MSR_MTRRfix16K_A0000;
1945 msrs[n++].index = MSR_MTRRfix4K_C0000;
1946 msrs[n++].index = MSR_MTRRfix4K_C8000;
1947 msrs[n++].index = MSR_MTRRfix4K_D0000;
1948 msrs[n++].index = MSR_MTRRfix4K_D8000;
1949 msrs[n++].index = MSR_MTRRfix4K_E0000;
1950 msrs[n++].index = MSR_MTRRfix4K_E8000;
1951 msrs[n++].index = MSR_MTRRfix4K_F0000;
1952 msrs[n++].index = MSR_MTRRfix4K_F8000;
1953 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
1954 msrs[n++].index = MSR_MTRRphysBase(i);
1955 msrs[n++].index = MSR_MTRRphysMask(i);
1956 }
1957 }
5ef68987 1958
d19ae73e
CB
1959 msr_data.info = (struct kvm_msrs) {
1960 .nmsrs = n,
1961 };
1962
1bc22652 1963 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
b9bec74b 1964 if (ret < 0) {
05330448 1965 return ret;
b9bec74b 1966 }
05330448
AL
1967
1968 for (i = 0; i < ret; i++) {
0d894367
PB
1969 uint32_t index = msrs[i].index;
1970 switch (index) {
05330448
AL
1971 case MSR_IA32_SYSENTER_CS:
1972 env->sysenter_cs = msrs[i].data;
1973 break;
1974 case MSR_IA32_SYSENTER_ESP:
1975 env->sysenter_esp = msrs[i].data;
1976 break;
1977 case MSR_IA32_SYSENTER_EIP:
1978 env->sysenter_eip = msrs[i].data;
1979 break;
0c03266a
JK
1980 case MSR_PAT:
1981 env->pat = msrs[i].data;
1982 break;
05330448
AL
1983 case MSR_STAR:
1984 env->star = msrs[i].data;
1985 break;
1986#ifdef TARGET_X86_64
1987 case MSR_CSTAR:
1988 env->cstar = msrs[i].data;
1989 break;
1990 case MSR_KERNELGSBASE:
1991 env->kernelgsbase = msrs[i].data;
1992 break;
1993 case MSR_FMASK:
1994 env->fmask = msrs[i].data;
1995 break;
1996 case MSR_LSTAR:
1997 env->lstar = msrs[i].data;
1998 break;
1999#endif
2000 case MSR_IA32_TSC:
2001 env->tsc = msrs[i].data;
2002 break;
c9b8f6b6
AS
2003 case MSR_TSC_AUX:
2004 env->tsc_aux = msrs[i].data;
2005 break;
f28558d3
WA
2006 case MSR_TSC_ADJUST:
2007 env->tsc_adjust = msrs[i].data;
2008 break;
aa82ba54
LJ
2009 case MSR_IA32_TSCDEADLINE:
2010 env->tsc_deadline = msrs[i].data;
2011 break;
aa851e36
MT
2012 case MSR_VM_HSAVE_PA:
2013 env->vm_hsave = msrs[i].data;
2014 break;
1a03675d
GC
2015 case MSR_KVM_SYSTEM_TIME:
2016 env->system_time_msr = msrs[i].data;
2017 break;
2018 case MSR_KVM_WALL_CLOCK:
2019 env->wall_clock_msr = msrs[i].data;
2020 break;
57780495
MT
2021 case MSR_MCG_STATUS:
2022 env->mcg_status = msrs[i].data;
2023 break;
2024 case MSR_MCG_CTL:
2025 env->mcg_ctl = msrs[i].data;
2026 break;
21e87c46
AK
2027 case MSR_IA32_MISC_ENABLE:
2028 env->msr_ia32_misc_enable = msrs[i].data;
2029 break;
fc12d72e
PB
2030 case MSR_IA32_SMBASE:
2031 env->smbase = msrs[i].data;
2032 break;
0779caeb
ACL
2033 case MSR_IA32_FEATURE_CONTROL:
2034 env->msr_ia32_feature_control = msrs[i].data;
df67696e 2035 break;
79e9ebeb
LJ
2036 case MSR_IA32_BNDCFGS:
2037 env->msr_bndcfgs = msrs[i].data;
2038 break;
18cd2c17
WL
2039 case MSR_IA32_XSS:
2040 env->xss = msrs[i].data;
2041 break;
57780495 2042 default:
57780495
MT
2043 if (msrs[i].index >= MSR_MC0_CTL &&
2044 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
2045 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
57780495 2046 }
d8da8574 2047 break;
f6584ee2
GN
2048 case MSR_KVM_ASYNC_PF_EN:
2049 env->async_pf_en_msr = msrs[i].data;
2050 break;
bc9a839d
MT
2051 case MSR_KVM_PV_EOI_EN:
2052 env->pv_eoi_en_msr = msrs[i].data;
2053 break;
917367aa
MT
2054 case MSR_KVM_STEAL_TIME:
2055 env->steal_time_msr = msrs[i].data;
2056 break;
0d894367
PB
2057 case MSR_CORE_PERF_FIXED_CTR_CTRL:
2058 env->msr_fixed_ctr_ctrl = msrs[i].data;
2059 break;
2060 case MSR_CORE_PERF_GLOBAL_CTRL:
2061 env->msr_global_ctrl = msrs[i].data;
2062 break;
2063 case MSR_CORE_PERF_GLOBAL_STATUS:
2064 env->msr_global_status = msrs[i].data;
2065 break;
2066 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
2067 env->msr_global_ovf_ctrl = msrs[i].data;
2068 break;
2069 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
2070 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
2071 break;
2072 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
2073 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
2074 break;
2075 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
2076 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
2077 break;
1c90ef26
VR
2078 case HV_X64_MSR_HYPERCALL:
2079 env->msr_hv_hypercall = msrs[i].data;
2080 break;
2081 case HV_X64_MSR_GUEST_OS_ID:
2082 env->msr_hv_guest_os_id = msrs[i].data;
2083 break;
5ef68987
VR
2084 case HV_X64_MSR_APIC_ASSIST_PAGE:
2085 env->msr_hv_vapic = msrs[i].data;
2086 break;
48a5f3bc
VR
2087 case HV_X64_MSR_REFERENCE_TSC:
2088 env->msr_hv_tsc = msrs[i].data;
2089 break;
f2a53c9e
AS
2090 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2091 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
2092 break;
46eb8f98
AS
2093 case HV_X64_MSR_VP_RUNTIME:
2094 env->msr_hv_runtime = msrs[i].data;
2095 break;
866eea9a
AS
2096 case HV_X64_MSR_SCONTROL:
2097 env->msr_hv_synic_control = msrs[i].data;
2098 break;
2099 case HV_X64_MSR_SVERSION:
2100 env->msr_hv_synic_version = msrs[i].data;
2101 break;
2102 case HV_X64_MSR_SIEFP:
2103 env->msr_hv_synic_evt_page = msrs[i].data;
2104 break;
2105 case HV_X64_MSR_SIMP:
2106 env->msr_hv_synic_msg_page = msrs[i].data;
2107 break;
2108 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
2109 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
2110 break;
d1ae67f6
AW
2111 case MSR_MTRRdefType:
2112 env->mtrr_deftype = msrs[i].data;
2113 break;
2114 case MSR_MTRRfix64K_00000:
2115 env->mtrr_fixed[0] = msrs[i].data;
2116 break;
2117 case MSR_MTRRfix16K_80000:
2118 env->mtrr_fixed[1] = msrs[i].data;
2119 break;
2120 case MSR_MTRRfix16K_A0000:
2121 env->mtrr_fixed[2] = msrs[i].data;
2122 break;
2123 case MSR_MTRRfix4K_C0000:
2124 env->mtrr_fixed[3] = msrs[i].data;
2125 break;
2126 case MSR_MTRRfix4K_C8000:
2127 env->mtrr_fixed[4] = msrs[i].data;
2128 break;
2129 case MSR_MTRRfix4K_D0000:
2130 env->mtrr_fixed[5] = msrs[i].data;
2131 break;
2132 case MSR_MTRRfix4K_D8000:
2133 env->mtrr_fixed[6] = msrs[i].data;
2134 break;
2135 case MSR_MTRRfix4K_E0000:
2136 env->mtrr_fixed[7] = msrs[i].data;
2137 break;
2138 case MSR_MTRRfix4K_E8000:
2139 env->mtrr_fixed[8] = msrs[i].data;
2140 break;
2141 case MSR_MTRRfix4K_F0000:
2142 env->mtrr_fixed[9] = msrs[i].data;
2143 break;
2144 case MSR_MTRRfix4K_F8000:
2145 env->mtrr_fixed[10] = msrs[i].data;
2146 break;
2147 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
2148 if (index & 1) {
2149 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data;
2150 } else {
2151 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
2152 }
2153 break;
05330448
AL
2154 }
2155 }
2156
2157 return 0;
2158}
2159
1bc22652 2160static int kvm_put_mp_state(X86CPU *cpu)
9bdbe550 2161{
1bc22652 2162 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
9bdbe550 2163
1bc22652 2164 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
9bdbe550
HB
2165}
2166
23d02d9b 2167static int kvm_get_mp_state(X86CPU *cpu)
9bdbe550 2168{
259186a7 2169 CPUState *cs = CPU(cpu);
23d02d9b 2170 CPUX86State *env = &cpu->env;
9bdbe550
HB
2171 struct kvm_mp_state mp_state;
2172 int ret;
2173
259186a7 2174 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
9bdbe550
HB
2175 if (ret < 0) {
2176 return ret;
2177 }
2178 env->mp_state = mp_state.mp_state;
c14750e8 2179 if (kvm_irqchip_in_kernel()) {
259186a7 2180 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
c14750e8 2181 }
9bdbe550
HB
2182 return 0;
2183}
2184
1bc22652 2185static int kvm_get_apic(X86CPU *cpu)
680c1c6f 2186{
02e51483 2187 DeviceState *apic = cpu->apic_state;
680c1c6f
JK
2188 struct kvm_lapic_state kapic;
2189 int ret;
2190
3d4b2649 2191 if (apic && kvm_irqchip_in_kernel()) {
1bc22652 2192 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
680c1c6f
JK
2193 if (ret < 0) {
2194 return ret;
2195 }
2196
2197 kvm_get_apic_state(apic, &kapic);
2198 }
2199 return 0;
2200}
2201
1bc22652 2202static int kvm_put_apic(X86CPU *cpu)
680c1c6f 2203{
02e51483 2204 DeviceState *apic = cpu->apic_state;
680c1c6f
JK
2205 struct kvm_lapic_state kapic;
2206
3d4b2649 2207 if (apic && kvm_irqchip_in_kernel()) {
680c1c6f
JK
2208 kvm_put_apic_state(apic, &kapic);
2209
1bc22652 2210 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_LAPIC, &kapic);
680c1c6f
JK
2211 }
2212 return 0;
2213}
2214
1bc22652 2215static int kvm_put_vcpu_events(X86CPU *cpu, int level)
a0fb002c 2216{
fc12d72e 2217 CPUState *cs = CPU(cpu);
1bc22652 2218 CPUX86State *env = &cpu->env;
076796f8 2219 struct kvm_vcpu_events events = {};
a0fb002c
JK
2220
2221 if (!kvm_has_vcpu_events()) {
2222 return 0;
2223 }
2224
31827373
JK
2225 events.exception.injected = (env->exception_injected >= 0);
2226 events.exception.nr = env->exception_injected;
a0fb002c
JK
2227 events.exception.has_error_code = env->has_error_code;
2228 events.exception.error_code = env->error_code;
7e680753 2229 events.exception.pad = 0;
a0fb002c
JK
2230
2231 events.interrupt.injected = (env->interrupt_injected >= 0);
2232 events.interrupt.nr = env->interrupt_injected;
2233 events.interrupt.soft = env->soft_interrupt;
2234
2235 events.nmi.injected = env->nmi_injected;
2236 events.nmi.pending = env->nmi_pending;
2237 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
7e680753 2238 events.nmi.pad = 0;
a0fb002c
JK
2239
2240 events.sipi_vector = env->sipi_vector;
2241
fc12d72e
PB
2242 if (has_msr_smbase) {
2243 events.smi.smm = !!(env->hflags & HF_SMM_MASK);
2244 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
2245 if (kvm_irqchip_in_kernel()) {
2246 /* As soon as these are moved to the kernel, remove them
2247 * from cs->interrupt_request.
2248 */
2249 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
2250 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
2251 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
2252 } else {
2253 /* Keep these in cs->interrupt_request. */
2254 events.smi.pending = 0;
2255 events.smi.latched_init = 0;
2256 }
2257 events.flags |= KVM_VCPUEVENT_VALID_SMM;
2258 }
2259
ea643051
JK
2260 events.flags = 0;
2261 if (level >= KVM_PUT_RESET_STATE) {
2262 events.flags |=
2263 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
2264 }
aee028b9 2265
1bc22652 2266 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
a0fb002c
JK
2267}
2268
1bc22652 2269static int kvm_get_vcpu_events(X86CPU *cpu)
a0fb002c 2270{
1bc22652 2271 CPUX86State *env = &cpu->env;
a0fb002c
JK
2272 struct kvm_vcpu_events events;
2273 int ret;
2274
2275 if (!kvm_has_vcpu_events()) {
2276 return 0;
2277 }
2278
fc12d72e 2279 memset(&events, 0, sizeof(events));
1bc22652 2280 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
a0fb002c
JK
2281 if (ret < 0) {
2282 return ret;
2283 }
31827373 2284 env->exception_injected =
a0fb002c
JK
2285 events.exception.injected ? events.exception.nr : -1;
2286 env->has_error_code = events.exception.has_error_code;
2287 env->error_code = events.exception.error_code;
2288
2289 env->interrupt_injected =
2290 events.interrupt.injected ? events.interrupt.nr : -1;
2291 env->soft_interrupt = events.interrupt.soft;
2292
2293 env->nmi_injected = events.nmi.injected;
2294 env->nmi_pending = events.nmi.pending;
2295 if (events.nmi.masked) {
2296 env->hflags2 |= HF2_NMI_MASK;
2297 } else {
2298 env->hflags2 &= ~HF2_NMI_MASK;
2299 }
2300
fc12d72e
PB
2301 if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
2302 if (events.smi.smm) {
2303 env->hflags |= HF_SMM_MASK;
2304 } else {
2305 env->hflags &= ~HF_SMM_MASK;
2306 }
2307 if (events.smi.pending) {
2308 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
2309 } else {
2310 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
2311 }
2312 if (events.smi.smm_inside_nmi) {
2313 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
2314 } else {
2315 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
2316 }
2317 if (events.smi.latched_init) {
2318 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
2319 } else {
2320 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
2321 }
2322 }
2323
a0fb002c 2324 env->sipi_vector = events.sipi_vector;
a0fb002c
JK
2325
2326 return 0;
2327}
2328
1bc22652 2329static int kvm_guest_debug_workarounds(X86CPU *cpu)
b0b1d690 2330{
ed2803da 2331 CPUState *cs = CPU(cpu);
1bc22652 2332 CPUX86State *env = &cpu->env;
b0b1d690 2333 int ret = 0;
b0b1d690
JK
2334 unsigned long reinject_trap = 0;
2335
2336 if (!kvm_has_vcpu_events()) {
2337 if (env->exception_injected == 1) {
2338 reinject_trap = KVM_GUESTDBG_INJECT_DB;
2339 } else if (env->exception_injected == 3) {
2340 reinject_trap = KVM_GUESTDBG_INJECT_BP;
2341 }
2342 env->exception_injected = -1;
2343 }
2344
2345 /*
2346 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
2347 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
2348 * by updating the debug state once again if single-stepping is on.
2349 * Another reason to call kvm_update_guest_debug here is a pending debug
2350 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
2351 * reinject them via SET_GUEST_DEBUG.
2352 */
2353 if (reinject_trap ||
ed2803da 2354 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
38e478ec 2355 ret = kvm_update_guest_debug(cs, reinject_trap);
b0b1d690 2356 }
b0b1d690
JK
2357 return ret;
2358}
2359
1bc22652 2360static int kvm_put_debugregs(X86CPU *cpu)
ff44f1a3 2361{
1bc22652 2362 CPUX86State *env = &cpu->env;
ff44f1a3
JK
2363 struct kvm_debugregs dbgregs;
2364 int i;
2365
2366 if (!kvm_has_debugregs()) {
2367 return 0;
2368 }
2369
2370 for (i = 0; i < 4; i++) {
2371 dbgregs.db[i] = env->dr[i];
2372 }
2373 dbgregs.dr6 = env->dr[6];
2374 dbgregs.dr7 = env->dr[7];
2375 dbgregs.flags = 0;
2376
1bc22652 2377 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
ff44f1a3
JK
2378}
2379
1bc22652 2380static int kvm_get_debugregs(X86CPU *cpu)
ff44f1a3 2381{
1bc22652 2382 CPUX86State *env = &cpu->env;
ff44f1a3
JK
2383 struct kvm_debugregs dbgregs;
2384 int i, ret;
2385
2386 if (!kvm_has_debugregs()) {
2387 return 0;
2388 }
2389
1bc22652 2390 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
ff44f1a3 2391 if (ret < 0) {
b9bec74b 2392 return ret;
ff44f1a3
JK
2393 }
2394 for (i = 0; i < 4; i++) {
2395 env->dr[i] = dbgregs.db[i];
2396 }
2397 env->dr[4] = env->dr[6] = dbgregs.dr6;
2398 env->dr[5] = env->dr[7] = dbgregs.dr7;
ff44f1a3
JK
2399
2400 return 0;
2401}
2402
20d695a9 2403int kvm_arch_put_registers(CPUState *cpu, int level)
05330448 2404{
20d695a9 2405 X86CPU *x86_cpu = X86_CPU(cpu);
05330448
AL
2406 int ret;
2407
2fa45344 2408 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
dbaa07c4 2409
6bdf863d
JK
2410 if (level >= KVM_PUT_RESET_STATE && has_msr_feature_control) {
2411 ret = kvm_put_msr_feature_control(x86_cpu);
2412 if (ret < 0) {
2413 return ret;
2414 }
2415 }
2416
1bc22652 2417 ret = kvm_getput_regs(x86_cpu, 1);
b9bec74b 2418 if (ret < 0) {
05330448 2419 return ret;
b9bec74b 2420 }
1bc22652 2421 ret = kvm_put_xsave(x86_cpu);
b9bec74b 2422 if (ret < 0) {
f1665b21 2423 return ret;
b9bec74b 2424 }
1bc22652 2425 ret = kvm_put_xcrs(x86_cpu);
b9bec74b 2426 if (ret < 0) {
05330448 2427 return ret;
b9bec74b 2428 }
1bc22652 2429 ret = kvm_put_sregs(x86_cpu);
b9bec74b 2430 if (ret < 0) {
05330448 2431 return ret;
b9bec74b 2432 }
ab443475 2433 /* must be before kvm_put_msrs */
1bc22652 2434 ret = kvm_inject_mce_oldstyle(x86_cpu);
ab443475
JK
2435 if (ret < 0) {
2436 return ret;
2437 }
1bc22652 2438 ret = kvm_put_msrs(x86_cpu, level);
b9bec74b 2439 if (ret < 0) {
05330448 2440 return ret;
b9bec74b 2441 }
ea643051 2442 if (level >= KVM_PUT_RESET_STATE) {
1bc22652 2443 ret = kvm_put_mp_state(x86_cpu);
b9bec74b 2444 if (ret < 0) {
ea643051 2445 return ret;
b9bec74b 2446 }
1bc22652 2447 ret = kvm_put_apic(x86_cpu);
680c1c6f
JK
2448 if (ret < 0) {
2449 return ret;
2450 }
ea643051 2451 }
7477cd38
MT
2452
2453 ret = kvm_put_tscdeadline_msr(x86_cpu);
2454 if (ret < 0) {
2455 return ret;
2456 }
2457
1bc22652 2458 ret = kvm_put_vcpu_events(x86_cpu, level);
b9bec74b 2459 if (ret < 0) {
a0fb002c 2460 return ret;
b9bec74b 2461 }
1bc22652 2462 ret = kvm_put_debugregs(x86_cpu);
b9bec74b 2463 if (ret < 0) {
b0b1d690 2464 return ret;
b9bec74b 2465 }
b0b1d690 2466 /* must be last */
1bc22652 2467 ret = kvm_guest_debug_workarounds(x86_cpu);
b9bec74b 2468 if (ret < 0) {
ff44f1a3 2469 return ret;
b9bec74b 2470 }
05330448
AL
2471 return 0;
2472}
2473
20d695a9 2474int kvm_arch_get_registers(CPUState *cs)
05330448 2475{
20d695a9 2476 X86CPU *cpu = X86_CPU(cs);
05330448
AL
2477 int ret;
2478
20d695a9 2479 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
dbaa07c4 2480
1bc22652 2481 ret = kvm_getput_regs(cpu, 0);
b9bec74b 2482 if (ret < 0) {
05330448 2483 return ret;
b9bec74b 2484 }
1bc22652 2485 ret = kvm_get_xsave(cpu);
b9bec74b 2486 if (ret < 0) {
f1665b21 2487 return ret;
b9bec74b 2488 }
1bc22652 2489 ret = kvm_get_xcrs(cpu);
b9bec74b 2490 if (ret < 0) {
05330448 2491 return ret;
b9bec74b 2492 }
1bc22652 2493 ret = kvm_get_sregs(cpu);
b9bec74b 2494 if (ret < 0) {
05330448 2495 return ret;
b9bec74b 2496 }
1bc22652 2497 ret = kvm_get_msrs(cpu);
b9bec74b 2498 if (ret < 0) {
05330448 2499 return ret;
b9bec74b 2500 }
23d02d9b 2501 ret = kvm_get_mp_state(cpu);
b9bec74b 2502 if (ret < 0) {
5a2e3c2e 2503 return ret;
b9bec74b 2504 }
1bc22652 2505 ret = kvm_get_apic(cpu);
680c1c6f
JK
2506 if (ret < 0) {
2507 return ret;
2508 }
1bc22652 2509 ret = kvm_get_vcpu_events(cpu);
b9bec74b 2510 if (ret < 0) {
a0fb002c 2511 return ret;
b9bec74b 2512 }
1bc22652 2513 ret = kvm_get_debugregs(cpu);
b9bec74b 2514 if (ret < 0) {
ff44f1a3 2515 return ret;
b9bec74b 2516 }
05330448
AL
2517 return 0;
2518}
2519
20d695a9 2520void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
05330448 2521{
20d695a9
AF
2522 X86CPU *x86_cpu = X86_CPU(cpu);
2523 CPUX86State *env = &x86_cpu->env;
ce377af3
JK
2524 int ret;
2525
276ce815 2526 /* Inject NMI */
fc12d72e
PB
2527 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
2528 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
2529 qemu_mutex_lock_iothread();
2530 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
2531 qemu_mutex_unlock_iothread();
2532 DPRINTF("injected NMI\n");
2533 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
2534 if (ret < 0) {
2535 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
2536 strerror(-ret));
2537 }
2538 }
2539 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
2540 qemu_mutex_lock_iothread();
2541 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
2542 qemu_mutex_unlock_iothread();
2543 DPRINTF("injected SMI\n");
2544 ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
2545 if (ret < 0) {
2546 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
2547 strerror(-ret));
2548 }
ce377af3 2549 }
276ce815
LJ
2550 }
2551
4b8523ee
JK
2552 if (!kvm_irqchip_in_kernel()) {
2553 qemu_mutex_lock_iothread();
2554 }
2555
e0723c45
PB
2556 /* Force the VCPU out of its inner loop to process any INIT requests
2557 * or (for userspace APIC, but it is cheap to combine the checks here)
2558 * pending TPR access reports.
2559 */
2560 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
fc12d72e
PB
2561 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
2562 !(env->hflags & HF_SMM_MASK)) {
2563 cpu->exit_request = 1;
2564 }
2565 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
2566 cpu->exit_request = 1;
2567 }
e0723c45 2568 }
05330448 2569
e0723c45 2570 if (!kvm_irqchip_in_kernel()) {
db1669bc
JK
2571 /* Try to inject an interrupt if the guest can accept it */
2572 if (run->ready_for_interrupt_injection &&
259186a7 2573 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
db1669bc
JK
2574 (env->eflags & IF_MASK)) {
2575 int irq;
2576
259186a7 2577 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
db1669bc
JK
2578 irq = cpu_get_pic_interrupt(env);
2579 if (irq >= 0) {
2580 struct kvm_interrupt intr;
2581
2582 intr.irq = irq;
db1669bc 2583 DPRINTF("injected interrupt %d\n", irq);
1bc22652 2584 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
ce377af3
JK
2585 if (ret < 0) {
2586 fprintf(stderr,
2587 "KVM: injection failed, interrupt lost (%s)\n",
2588 strerror(-ret));
2589 }
db1669bc
JK
2590 }
2591 }
05330448 2592
db1669bc
JK
2593 /* If we have an interrupt but the guest is not ready to receive an
2594 * interrupt, request an interrupt window exit. This will
2595 * cause a return to userspace as soon as the guest is ready to
2596 * receive interrupts. */
259186a7 2597 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
db1669bc
JK
2598 run->request_interrupt_window = 1;
2599 } else {
2600 run->request_interrupt_window = 0;
2601 }
2602
2603 DPRINTF("setting tpr\n");
02e51483 2604 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
4b8523ee
JK
2605
2606 qemu_mutex_unlock_iothread();
db1669bc 2607 }
05330448
AL
2608}
2609
4c663752 2610MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
05330448 2611{
20d695a9
AF
2612 X86CPU *x86_cpu = X86_CPU(cpu);
2613 CPUX86State *env = &x86_cpu->env;
2614
fc12d72e
PB
2615 if (run->flags & KVM_RUN_X86_SMM) {
2616 env->hflags |= HF_SMM_MASK;
2617 } else {
2618 env->hflags &= HF_SMM_MASK;
2619 }
b9bec74b 2620 if (run->if_flag) {
05330448 2621 env->eflags |= IF_MASK;
b9bec74b 2622 } else {
05330448 2623 env->eflags &= ~IF_MASK;
b9bec74b 2624 }
4b8523ee
JK
2625
2626 /* We need to protect the apic state against concurrent accesses from
2627 * different threads in case the userspace irqchip is used. */
2628 if (!kvm_irqchip_in_kernel()) {
2629 qemu_mutex_lock_iothread();
2630 }
02e51483
CF
2631 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
2632 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
4b8523ee
JK
2633 if (!kvm_irqchip_in_kernel()) {
2634 qemu_mutex_unlock_iothread();
2635 }
f794aa4a 2636 return cpu_get_mem_attrs(env);
05330448
AL
2637}
2638
20d695a9 2639int kvm_arch_process_async_events(CPUState *cs)
0af691d7 2640{
20d695a9
AF
2641 X86CPU *cpu = X86_CPU(cs);
2642 CPUX86State *env = &cpu->env;
232fc23b 2643
259186a7 2644 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
ab443475
JK
2645 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
2646 assert(env->mcg_cap);
2647
259186a7 2648 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
ab443475 2649
dd1750d7 2650 kvm_cpu_synchronize_state(cs);
ab443475
JK
2651
2652 if (env->exception_injected == EXCP08_DBLE) {
2653 /* this means triple fault */
2654 qemu_system_reset_request();
fcd7d003 2655 cs->exit_request = 1;
ab443475
JK
2656 return 0;
2657 }
2658 env->exception_injected = EXCP12_MCHK;
2659 env->has_error_code = 0;
2660
259186a7 2661 cs->halted = 0;
ab443475
JK
2662 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
2663 env->mp_state = KVM_MP_STATE_RUNNABLE;
2664 }
2665 }
2666
fc12d72e
PB
2667 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
2668 !(env->hflags & HF_SMM_MASK)) {
e0723c45
PB
2669 kvm_cpu_synchronize_state(cs);
2670 do_cpu_init(cpu);
2671 }
2672
db1669bc
JK
2673 if (kvm_irqchip_in_kernel()) {
2674 return 0;
2675 }
2676
259186a7
AF
2677 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
2678 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
02e51483 2679 apic_poll_irq(cpu->apic_state);
5d62c43a 2680 }
259186a7 2681 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4601f7b0 2682 (env->eflags & IF_MASK)) ||
259186a7
AF
2683 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
2684 cs->halted = 0;
6792a57b 2685 }
259186a7 2686 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
dd1750d7 2687 kvm_cpu_synchronize_state(cs);
232fc23b 2688 do_cpu_sipi(cpu);
0af691d7 2689 }
259186a7
AF
2690 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
2691 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
dd1750d7 2692 kvm_cpu_synchronize_state(cs);
02e51483 2693 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
d362e757
JK
2694 env->tpr_access_type);
2695 }
0af691d7 2696
259186a7 2697 return cs->halted;
0af691d7
MT
2698}
2699
839b5630 2700static int kvm_handle_halt(X86CPU *cpu)
05330448 2701{
259186a7 2702 CPUState *cs = CPU(cpu);
839b5630
AF
2703 CPUX86State *env = &cpu->env;
2704
259186a7 2705 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
05330448 2706 (env->eflags & IF_MASK)) &&
259186a7
AF
2707 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
2708 cs->halted = 1;
bb4ea393 2709 return EXCP_HLT;
05330448
AL
2710 }
2711
bb4ea393 2712 return 0;
05330448
AL
2713}
2714
f7575c96 2715static int kvm_handle_tpr_access(X86CPU *cpu)
d362e757 2716{
f7575c96
AF
2717 CPUState *cs = CPU(cpu);
2718 struct kvm_run *run = cs->kvm_run;
d362e757 2719
02e51483 2720 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
d362e757
JK
2721 run->tpr_access.is_write ? TPR_ACCESS_WRITE
2722 : TPR_ACCESS_READ);
2723 return 1;
2724}
2725
f17ec444 2726int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
e22a25c9 2727{
38972938 2728 static const uint8_t int3 = 0xcc;
64bf3f4e 2729
f17ec444
AF
2730 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
2731 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
e22a25c9 2732 return -EINVAL;
b9bec74b 2733 }
e22a25c9
AL
2734 return 0;
2735}
2736
f17ec444 2737int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
e22a25c9
AL
2738{
2739 uint8_t int3;
2740
f17ec444
AF
2741 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
2742 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
e22a25c9 2743 return -EINVAL;
b9bec74b 2744 }
e22a25c9
AL
2745 return 0;
2746}
2747
2748static struct {
2749 target_ulong addr;
2750 int len;
2751 int type;
2752} hw_breakpoint[4];
2753
2754static int nb_hw_breakpoint;
2755
2756static int find_hw_breakpoint(target_ulong addr, int len, int type)
2757{
2758 int n;
2759
b9bec74b 2760 for (n = 0; n < nb_hw_breakpoint; n++) {
e22a25c9 2761 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
b9bec74b 2762 (hw_breakpoint[n].len == len || len == -1)) {
e22a25c9 2763 return n;
b9bec74b
JK
2764 }
2765 }
e22a25c9
AL
2766 return -1;
2767}
2768
2769int kvm_arch_insert_hw_breakpoint(target_ulong addr,
2770 target_ulong len, int type)
2771{
2772 switch (type) {
2773 case GDB_BREAKPOINT_HW:
2774 len = 1;
2775 break;
2776 case GDB_WATCHPOINT_WRITE:
2777 case GDB_WATCHPOINT_ACCESS:
2778 switch (len) {
2779 case 1:
2780 break;
2781 case 2:
2782 case 4:
2783 case 8:
b9bec74b 2784 if (addr & (len - 1)) {
e22a25c9 2785 return -EINVAL;
b9bec74b 2786 }
e22a25c9
AL
2787 break;
2788 default:
2789 return -EINVAL;
2790 }
2791 break;
2792 default:
2793 return -ENOSYS;
2794 }
2795
b9bec74b 2796 if (nb_hw_breakpoint == 4) {
e22a25c9 2797 return -ENOBUFS;
b9bec74b
JK
2798 }
2799 if (find_hw_breakpoint(addr, len, type) >= 0) {
e22a25c9 2800 return -EEXIST;
b9bec74b 2801 }
e22a25c9
AL
2802 hw_breakpoint[nb_hw_breakpoint].addr = addr;
2803 hw_breakpoint[nb_hw_breakpoint].len = len;
2804 hw_breakpoint[nb_hw_breakpoint].type = type;
2805 nb_hw_breakpoint++;
2806
2807 return 0;
2808}
2809
2810int kvm_arch_remove_hw_breakpoint(target_ulong addr,
2811 target_ulong len, int type)
2812{
2813 int n;
2814
2815 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
b9bec74b 2816 if (n < 0) {
e22a25c9 2817 return -ENOENT;
b9bec74b 2818 }
e22a25c9
AL
2819 nb_hw_breakpoint--;
2820 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
2821
2822 return 0;
2823}
2824
2825void kvm_arch_remove_all_hw_breakpoints(void)
2826{
2827 nb_hw_breakpoint = 0;
2828}
2829
2830static CPUWatchpoint hw_watchpoint;
2831
a60f24b5 2832static int kvm_handle_debug(X86CPU *cpu,
48405526 2833 struct kvm_debug_exit_arch *arch_info)
e22a25c9 2834{
ed2803da 2835 CPUState *cs = CPU(cpu);
a60f24b5 2836 CPUX86State *env = &cpu->env;
f2574737 2837 int ret = 0;
e22a25c9
AL
2838 int n;
2839
2840 if (arch_info->exception == 1) {
2841 if (arch_info->dr6 & (1 << 14)) {
ed2803da 2842 if (cs->singlestep_enabled) {
f2574737 2843 ret = EXCP_DEBUG;
b9bec74b 2844 }
e22a25c9 2845 } else {
b9bec74b
JK
2846 for (n = 0; n < 4; n++) {
2847 if (arch_info->dr6 & (1 << n)) {
e22a25c9
AL
2848 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
2849 case 0x0:
f2574737 2850 ret = EXCP_DEBUG;
e22a25c9
AL
2851 break;
2852 case 0x1:
f2574737 2853 ret = EXCP_DEBUG;
ff4700b0 2854 cs->watchpoint_hit = &hw_watchpoint;
e22a25c9
AL
2855 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2856 hw_watchpoint.flags = BP_MEM_WRITE;
2857 break;
2858 case 0x3:
f2574737 2859 ret = EXCP_DEBUG;
ff4700b0 2860 cs->watchpoint_hit = &hw_watchpoint;
e22a25c9
AL
2861 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2862 hw_watchpoint.flags = BP_MEM_ACCESS;
2863 break;
2864 }
b9bec74b
JK
2865 }
2866 }
e22a25c9 2867 }
ff4700b0 2868 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
f2574737 2869 ret = EXCP_DEBUG;
b9bec74b 2870 }
f2574737 2871 if (ret == 0) {
ff4700b0 2872 cpu_synchronize_state(cs);
48405526 2873 assert(env->exception_injected == -1);
b0b1d690 2874
f2574737 2875 /* pass to guest */
48405526
BS
2876 env->exception_injected = arch_info->exception;
2877 env->has_error_code = 0;
b0b1d690 2878 }
e22a25c9 2879
f2574737 2880 return ret;
e22a25c9
AL
2881}
2882
20d695a9 2883void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
e22a25c9
AL
2884{
2885 const uint8_t type_code[] = {
2886 [GDB_BREAKPOINT_HW] = 0x0,
2887 [GDB_WATCHPOINT_WRITE] = 0x1,
2888 [GDB_WATCHPOINT_ACCESS] = 0x3
2889 };
2890 const uint8_t len_code[] = {
2891 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
2892 };
2893 int n;
2894
a60f24b5 2895 if (kvm_sw_breakpoints_active(cpu)) {
e22a25c9 2896 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
b9bec74b 2897 }
e22a25c9
AL
2898 if (nb_hw_breakpoint > 0) {
2899 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
2900 dbg->arch.debugreg[7] = 0x0600;
2901 for (n = 0; n < nb_hw_breakpoint; n++) {
2902 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
2903 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
2904 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
95c077c9 2905 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
e22a25c9
AL
2906 }
2907 }
2908}
4513d923 2909
2a4dac83
JK
2910static bool host_supports_vmx(void)
2911{
2912 uint32_t ecx, unused;
2913
2914 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
2915 return ecx & CPUID_EXT_VMX;
2916}
2917
2918#define VMX_INVALID_GUEST_STATE 0x80000021
2919
20d695a9 2920int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
2a4dac83 2921{
20d695a9 2922 X86CPU *cpu = X86_CPU(cs);
2a4dac83
JK
2923 uint64_t code;
2924 int ret;
2925
2926 switch (run->exit_reason) {
2927 case KVM_EXIT_HLT:
2928 DPRINTF("handle_hlt\n");
4b8523ee 2929 qemu_mutex_lock_iothread();
839b5630 2930 ret = kvm_handle_halt(cpu);
4b8523ee 2931 qemu_mutex_unlock_iothread();
2a4dac83
JK
2932 break;
2933 case KVM_EXIT_SET_TPR:
2934 ret = 0;
2935 break;
d362e757 2936 case KVM_EXIT_TPR_ACCESS:
4b8523ee 2937 qemu_mutex_lock_iothread();
f7575c96 2938 ret = kvm_handle_tpr_access(cpu);
4b8523ee 2939 qemu_mutex_unlock_iothread();
d362e757 2940 break;
2a4dac83
JK
2941 case KVM_EXIT_FAIL_ENTRY:
2942 code = run->fail_entry.hardware_entry_failure_reason;
2943 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
2944 code);
2945 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
2946 fprintf(stderr,
12619721 2947 "\nIf you're running a guest on an Intel machine without "
2a4dac83
JK
2948 "unrestricted mode\n"
2949 "support, the failure can be most likely due to the guest "
2950 "entering an invalid\n"
2951 "state for Intel VT. For example, the guest maybe running "
2952 "in big real mode\n"
2953 "which is not supported on less recent Intel processors."
2954 "\n\n");
2955 }
2956 ret = -1;
2957 break;
2958 case KVM_EXIT_EXCEPTION:
2959 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
2960 run->ex.exception, run->ex.error_code);
2961 ret = -1;
2962 break;
f2574737
JK
2963 case KVM_EXIT_DEBUG:
2964 DPRINTF("kvm_exit_debug\n");
4b8523ee 2965 qemu_mutex_lock_iothread();
a60f24b5 2966 ret = kvm_handle_debug(cpu, &run->debug.arch);
4b8523ee 2967 qemu_mutex_unlock_iothread();
f2574737 2968 break;
50efe82c
AS
2969 case KVM_EXIT_HYPERV:
2970 ret = kvm_hv_handle_exit(cpu, &run->hyperv);
2971 break;
2a4dac83
JK
2972 default:
2973 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2974 ret = -1;
2975 break;
2976 }
2977
2978 return ret;
2979}
2980
20d695a9 2981bool kvm_arch_stop_on_emulation_error(CPUState *cs)
4513d923 2982{
20d695a9
AF
2983 X86CPU *cpu = X86_CPU(cs);
2984 CPUX86State *env = &cpu->env;
2985
dd1750d7 2986 kvm_cpu_synchronize_state(cs);
b9bec74b
JK
2987 return !(env->cr[0] & CR0_PE_MASK) ||
2988 ((env->segs[R_CS].selector & 3) != 3);
4513d923 2989}
84b058d7
JK
2990
2991void kvm_arch_init_irq_routing(KVMState *s)
2992{
2993 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2994 /* If kernel can't do irq routing, interrupt source
2995 * override 0->2 cannot be set up as required by HPET.
2996 * So we have to disable it.
2997 */
2998 no_hpet = 1;
2999 }
cc7e0ddf 3000 /* We know at this point that we're using the in-kernel
614e41bc 3001 * irqchip, so we can use irqfds, and on x86 we know
f3e1bed8 3002 * we can use msi via irqfd and GSI routing.
cc7e0ddf 3003 */
614e41bc 3004 kvm_msi_via_irqfd_allowed = true;
f3e1bed8 3005 kvm_gsi_routing_allowed = true;
84b058d7 3006}
b139bd30
JK
3007
3008/* Classic KVM device assignment interface. Will remain x86 only. */
3009int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
3010 uint32_t flags, uint32_t *dev_id)
3011{
3012 struct kvm_assigned_pci_dev dev_data = {
3013 .segnr = dev_addr->domain,
3014 .busnr = dev_addr->bus,
3015 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
3016 .flags = flags,
3017 };
3018 int ret;
3019
3020 dev_data.assigned_dev_id =
3021 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
3022
3023 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
3024 if (ret < 0) {
3025 return ret;
3026 }
3027
3028 *dev_id = dev_data.assigned_dev_id;
3029
3030 return 0;
3031}
3032
3033int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
3034{
3035 struct kvm_assigned_pci_dev dev_data = {
3036 .assigned_dev_id = dev_id,
3037 };
3038
3039 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
3040}
3041
3042static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
3043 uint32_t irq_type, uint32_t guest_irq)
3044{
3045 struct kvm_assigned_irq assigned_irq = {
3046 .assigned_dev_id = dev_id,
3047 .guest_irq = guest_irq,
3048 .flags = irq_type,
3049 };
3050
3051 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
3052 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
3053 } else {
3054 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
3055 }
3056}
3057
3058int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
3059 uint32_t guest_irq)
3060{
3061 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
3062 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
3063
3064 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
3065}
3066
3067int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
3068{
3069 struct kvm_assigned_pci_dev dev_data = {
3070 .assigned_dev_id = dev_id,
3071 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
3072 };
3073
3074 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
3075}
3076
3077static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
3078 uint32_t type)
3079{
3080 struct kvm_assigned_irq assigned_irq = {
3081 .assigned_dev_id = dev_id,
3082 .flags = type,
3083 };
3084
3085 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
3086}
3087
3088int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
3089{
3090 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
3091 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
3092}
3093
3094int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
3095{
3096 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
3097 KVM_DEV_IRQ_GUEST_MSI, virq);
3098}
3099
3100int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
3101{
3102 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
3103 KVM_DEV_IRQ_HOST_MSI);
3104}
3105
3106bool kvm_device_msix_supported(KVMState *s)
3107{
3108 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
3109 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
3110 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
3111}
3112
3113int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
3114 uint32_t nr_vectors)
3115{
3116 struct kvm_assigned_msix_nr msix_nr = {
3117 .assigned_dev_id = dev_id,
3118 .entry_nr = nr_vectors,
3119 };
3120
3121 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
3122}
3123
3124int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
3125 int virq)
3126{
3127 struct kvm_assigned_msix_entry msix_entry = {
3128 .assigned_dev_id = dev_id,
3129 .gsi = virq,
3130 .entry = vector,
3131 };
3132
3133 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
3134}
3135
3136int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
3137{
3138 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
3139 KVM_DEV_IRQ_GUEST_MSIX, 0);
3140}
3141
3142int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
3143{
3144 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
3145 KVM_DEV_IRQ_HOST_MSIX);
3146}
9e03a040
FB
3147
3148int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
dc9f06ca 3149 uint64_t address, uint32_t data, PCIDevice *dev)
9e03a040
FB
3150{
3151 return 0;
3152}
1850b6b7
EA
3153
3154int kvm_arch_msi_data_to_gsi(uint32_t data)
3155{
3156 abort();
3157}