]> git.proxmox.com Git - mirror_qemu.git/blame - target-i386/kvm.c
x86: Drop some superfluous casts from void *
[mirror_qemu.git] / target-i386 / kvm.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15#include <sys/types.h>
16#include <sys/ioctl.h>
17#include <sys/mman.h>
25d2e361 18#include <sys/utsname.h>
05330448
AL
19
20#include <linux/kvm.h>
5802e066 21#include <linux/kvm_para.h>
05330448
AL
22
23#include "qemu-common.h"
9c17d615
PB
24#include "sysemu/sysemu.h"
25#include "sysemu/kvm.h"
1d31f66b 26#include "kvm_i386.h"
05330448 27#include "cpu.h"
022c62cb 28#include "exec/gdbstub.h"
1de7afc9
PB
29#include "qemu/host-utils.h"
30#include "qemu/config-file.h"
0d09e41a
PB
31#include "hw/i386/pc.h"
32#include "hw/i386/apic.h"
e0723c45
PB
33#include "hw/i386/apic_internal.h"
34#include "hw/i386/apic-msidef.h"
022c62cb 35#include "exec/ioport.h"
92067bf4 36#include <asm/hyperv.h>
a2cb15b0 37#include "hw/pci/pci.h"
68bfd0ad
MT
38#include "migration/migration.h"
39#include "qapi/qmp/qerror.h"
05330448
AL
40
41//#define DEBUG_KVM
42
43#ifdef DEBUG_KVM
8c0d577e 44#define DPRINTF(fmt, ...) \
05330448
AL
45 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
46#else
8c0d577e 47#define DPRINTF(fmt, ...) \
05330448
AL
48 do { } while (0)
49#endif
50
1a03675d
GC
51#define MSR_KVM_WALL_CLOCK 0x11
52#define MSR_KVM_SYSTEM_TIME 0x12
53
c0532a76
MT
54#ifndef BUS_MCEERR_AR
55#define BUS_MCEERR_AR 4
56#endif
57#ifndef BUS_MCEERR_AO
58#define BUS_MCEERR_AO 5
59#endif
60
94a8d39a
JK
61const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
62 KVM_CAP_INFO(SET_TSS_ADDR),
63 KVM_CAP_INFO(EXT_CPUID),
64 KVM_CAP_INFO(MP_STATE),
65 KVM_CAP_LAST_INFO
66};
25d2e361 67
c3a3a7d3
JK
68static bool has_msr_star;
69static bool has_msr_hsave_pa;
f28558d3 70static bool has_msr_tsc_adjust;
aa82ba54 71static bool has_msr_tsc_deadline;
df67696e 72static bool has_msr_feature_control;
c5999bfc 73static bool has_msr_async_pf_en;
bc9a839d 74static bool has_msr_pv_eoi_en;
21e87c46 75static bool has_msr_misc_enable;
79e9ebeb 76static bool has_msr_bndcfgs;
917367aa 77static bool has_msr_kvm_steal_time;
25d2e361 78static int lm_capable_kernel;
7bc3d711
PB
79static bool has_msr_hv_hypercall;
80static bool has_msr_hv_vapic;
48a5f3bc 81static bool has_msr_hv_tsc;
d1ae67f6 82static bool has_msr_mtrr;
18cd2c17 83static bool has_msr_xss;
b827df58 84
0d894367
PB
85static bool has_msr_architectural_pmu;
86static uint32_t num_architectural_pmu_counters;
87
1d31f66b
PM
88bool kvm_allows_irq0_override(void)
89{
90 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
91}
92
b827df58
AK
93static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
94{
95 struct kvm_cpuid2 *cpuid;
96 int r, size;
97
98 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
e42a92ae 99 cpuid = g_malloc0(size);
b827df58
AK
100 cpuid->nent = max;
101 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
76ae317f
MM
102 if (r == 0 && cpuid->nent >= max) {
103 r = -E2BIG;
104 }
b827df58
AK
105 if (r < 0) {
106 if (r == -E2BIG) {
7267c094 107 g_free(cpuid);
b827df58
AK
108 return NULL;
109 } else {
110 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
111 strerror(-r));
112 exit(1);
113 }
114 }
115 return cpuid;
116}
117
dd87f8a6
EH
118/* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
119 * for all entries.
120 */
121static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
122{
123 struct kvm_cpuid2 *cpuid;
124 int max = 1;
125 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
126 max *= 2;
127 }
128 return cpuid;
129}
130
a443bc34 131static const struct kvm_para_features {
0c31b744
GC
132 int cap;
133 int feature;
134} para_features[] = {
135 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
136 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
137 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
0c31b744 138 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
0c31b744
GC
139};
140
ba9bc59e 141static int get_para_features(KVMState *s)
0c31b744
GC
142{
143 int i, features = 0;
144
8e03c100 145 for (i = 0; i < ARRAY_SIZE(para_features); i++) {
ba9bc59e 146 if (kvm_check_extension(s, para_features[i].cap)) {
0c31b744
GC
147 features |= (1 << para_features[i].feature);
148 }
149 }
150
151 return features;
152}
0c31b744
GC
153
154
829ae2f9
EH
155/* Returns the value for a specific register on the cpuid entry
156 */
157static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
158{
159 uint32_t ret = 0;
160 switch (reg) {
161 case R_EAX:
162 ret = entry->eax;
163 break;
164 case R_EBX:
165 ret = entry->ebx;
166 break;
167 case R_ECX:
168 ret = entry->ecx;
169 break;
170 case R_EDX:
171 ret = entry->edx;
172 break;
173 }
174 return ret;
175}
176
4fb73f1d
EH
177/* Find matching entry for function/index on kvm_cpuid2 struct
178 */
179static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
180 uint32_t function,
181 uint32_t index)
182{
183 int i;
184 for (i = 0; i < cpuid->nent; ++i) {
185 if (cpuid->entries[i].function == function &&
186 cpuid->entries[i].index == index) {
187 return &cpuid->entries[i];
188 }
189 }
190 /* not found: */
191 return NULL;
192}
193
ba9bc59e 194uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
c958a8bd 195 uint32_t index, int reg)
b827df58
AK
196{
197 struct kvm_cpuid2 *cpuid;
b827df58
AK
198 uint32_t ret = 0;
199 uint32_t cpuid_1_edx;
8c723b79 200 bool found = false;
b827df58 201
dd87f8a6 202 cpuid = get_supported_cpuid(s);
b827df58 203
4fb73f1d
EH
204 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
205 if (entry) {
206 found = true;
207 ret = cpuid_entry_get_reg(entry, reg);
b827df58
AK
208 }
209
7b46e5ce
EH
210 /* Fixups for the data returned by KVM, below */
211
c2acb022
EH
212 if (function == 1 && reg == R_EDX) {
213 /* KVM before 2.6.30 misreports the following features */
214 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
84bd945c
EH
215 } else if (function == 1 && reg == R_ECX) {
216 /* We can set the hypervisor flag, even if KVM does not return it on
217 * GET_SUPPORTED_CPUID
218 */
219 ret |= CPUID_EXT_HYPERVISOR;
ac67ee26
EH
220 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
221 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
222 * and the irqchip is in the kernel.
223 */
224 if (kvm_irqchip_in_kernel() &&
225 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
226 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
227 }
41e5e76d
EH
228
229 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
230 * without the in-kernel irqchip
231 */
232 if (!kvm_irqchip_in_kernel()) {
233 ret &= ~CPUID_EXT_X2APIC;
b827df58 234 }
c2acb022
EH
235 } else if (function == 0x80000001 && reg == R_EDX) {
236 /* On Intel, kvm returns cpuid according to the Intel spec,
237 * so add missing bits according to the AMD spec:
238 */
239 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
240 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
b827df58
AK
241 }
242
7267c094 243 g_free(cpuid);
b827df58 244
0c31b744 245 /* fallback for older kernels */
8c723b79 246 if ((function == KVM_CPUID_FEATURES) && !found) {
ba9bc59e 247 ret = get_para_features(s);
b9bec74b 248 }
0c31b744
GC
249
250 return ret;
bb0300dc 251}
bb0300dc 252
3c85e74f
HY
253typedef struct HWPoisonPage {
254 ram_addr_t ram_addr;
255 QLIST_ENTRY(HWPoisonPage) list;
256} HWPoisonPage;
257
258static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
259 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
260
261static void kvm_unpoison_all(void *param)
262{
263 HWPoisonPage *page, *next_page;
264
265 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
266 QLIST_REMOVE(page, list);
267 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
7267c094 268 g_free(page);
3c85e74f
HY
269 }
270}
271
3c85e74f
HY
272static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
273{
274 HWPoisonPage *page;
275
276 QLIST_FOREACH(page, &hwpoison_page_list, list) {
277 if (page->ram_addr == ram_addr) {
278 return;
279 }
280 }
ab3ad07f 281 page = g_new(HWPoisonPage, 1);
3c85e74f
HY
282 page->ram_addr = ram_addr;
283 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
284}
285
e7701825
MT
286static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
287 int *max_banks)
288{
289 int r;
290
14a09518 291 r = kvm_check_extension(s, KVM_CAP_MCE);
e7701825
MT
292 if (r > 0) {
293 *max_banks = r;
294 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
295 }
296 return -ENOSYS;
297}
298
bee615d4 299static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
e7701825 300{
bee615d4 301 CPUX86State *env = &cpu->env;
c34d440a
JK
302 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
303 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
304 uint64_t mcg_status = MCG_STATUS_MCIP;
e7701825 305
c34d440a
JK
306 if (code == BUS_MCEERR_AR) {
307 status |= MCI_STATUS_AR | 0x134;
308 mcg_status |= MCG_STATUS_EIPV;
309 } else {
310 status |= 0xc0;
311 mcg_status |= MCG_STATUS_RIPV;
419fb20a 312 }
8c5cf3b6 313 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
c34d440a
JK
314 (MCM_ADDR_PHYS << 6) | 0xc,
315 cpu_x86_support_mca_broadcast(env) ?
316 MCE_INJECT_BROADCAST : 0);
419fb20a 317}
419fb20a
JK
318
319static void hardware_memory_error(void)
320{
321 fprintf(stderr, "Hardware memory error!\n");
322 exit(1);
323}
324
20d695a9 325int kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
419fb20a 326{
20d695a9
AF
327 X86CPU *cpu = X86_CPU(c);
328 CPUX86State *env = &cpu->env;
419fb20a 329 ram_addr_t ram_addr;
a8170e5e 330 hwaddr paddr;
419fb20a
JK
331
332 if ((env->mcg_cap & MCG_SER_P) && addr
c34d440a 333 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
1b5ec234 334 if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL ||
a60f24b5 335 !kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
419fb20a
JK
336 fprintf(stderr, "Hardware memory error for memory used by "
337 "QEMU itself instead of guest system!\n");
338 /* Hope we are lucky for AO MCE */
339 if (code == BUS_MCEERR_AO) {
340 return 0;
341 } else {
342 hardware_memory_error();
343 }
344 }
3c85e74f 345 kvm_hwpoison_page_add(ram_addr);
bee615d4 346 kvm_mce_inject(cpu, paddr, code);
e56ff191 347 } else {
419fb20a
JK
348 if (code == BUS_MCEERR_AO) {
349 return 0;
350 } else if (code == BUS_MCEERR_AR) {
351 hardware_memory_error();
352 } else {
353 return 1;
354 }
355 }
356 return 0;
357}
358
359int kvm_arch_on_sigbus(int code, void *addr)
360{
182735ef
AF
361 X86CPU *cpu = X86_CPU(first_cpu);
362
363 if ((cpu->env.mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
419fb20a 364 ram_addr_t ram_addr;
a8170e5e 365 hwaddr paddr;
419fb20a
JK
366
367 /* Hope we are lucky for AO MCE */
1b5ec234 368 if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL ||
182735ef 369 !kvm_physical_memory_addr_from_host(first_cpu->kvm_state,
a60f24b5 370 addr, &paddr)) {
419fb20a
JK
371 fprintf(stderr, "Hardware memory error for memory used by "
372 "QEMU itself instead of guest system!: %p\n", addr);
373 return 0;
374 }
3c85e74f 375 kvm_hwpoison_page_add(ram_addr);
182735ef 376 kvm_mce_inject(X86_CPU(first_cpu), paddr, code);
e56ff191 377 } else {
419fb20a
JK
378 if (code == BUS_MCEERR_AO) {
379 return 0;
380 } else if (code == BUS_MCEERR_AR) {
381 hardware_memory_error();
382 } else {
383 return 1;
384 }
385 }
386 return 0;
387}
e7701825 388
1bc22652 389static int kvm_inject_mce_oldstyle(X86CPU *cpu)
ab443475 390{
1bc22652
AF
391 CPUX86State *env = &cpu->env;
392
ab443475
JK
393 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
394 unsigned int bank, bank_num = env->mcg_cap & 0xff;
395 struct kvm_x86_mce mce;
396
397 env->exception_injected = -1;
398
399 /*
400 * There must be at least one bank in use if an MCE is pending.
401 * Find it and use its values for the event injection.
402 */
403 for (bank = 0; bank < bank_num; bank++) {
404 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
405 break;
406 }
407 }
408 assert(bank < bank_num);
409
410 mce.bank = bank;
411 mce.status = env->mce_banks[bank * 4 + 1];
412 mce.mcg_status = env->mcg_status;
413 mce.addr = env->mce_banks[bank * 4 + 2];
414 mce.misc = env->mce_banks[bank * 4 + 3];
415
1bc22652 416 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
ab443475 417 }
ab443475
JK
418 return 0;
419}
420
1dfb4dd9 421static void cpu_update_state(void *opaque, int running, RunState state)
b8cc45d6 422{
317ac620 423 CPUX86State *env = opaque;
b8cc45d6
GC
424
425 if (running) {
426 env->tsc_valid = false;
427 }
428}
429
83b17af5 430unsigned long kvm_arch_vcpu_id(CPUState *cs)
b164e48e 431{
83b17af5
EH
432 X86CPU *cpu = X86_CPU(cs);
433 return cpu->env.cpuid_apic_id;
b164e48e
EH
434}
435
92067bf4
IM
436#ifndef KVM_CPUID_SIGNATURE_NEXT
437#define KVM_CPUID_SIGNATURE_NEXT 0x40000100
438#endif
439
440static bool hyperv_hypercall_available(X86CPU *cpu)
441{
442 return cpu->hyperv_vapic ||
443 (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY);
444}
445
446static bool hyperv_enabled(X86CPU *cpu)
447{
7bc3d711
PB
448 CPUState *cs = CPU(cpu);
449 return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 &&
450 (hyperv_hypercall_available(cpu) ||
48a5f3bc 451 cpu->hyperv_time ||
7bc3d711 452 cpu->hyperv_relaxed_timing);
92067bf4
IM
453}
454
68bfd0ad
MT
455static Error *invtsc_mig_blocker;
456
f8bb0565 457#define KVM_MAX_CPUID_ENTRIES 100
0893d460 458
20d695a9 459int kvm_arch_init_vcpu(CPUState *cs)
05330448
AL
460{
461 struct {
486bd5a2 462 struct kvm_cpuid2 cpuid;
f8bb0565 463 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
541dc0d4 464 } QEMU_PACKED cpuid_data;
20d695a9
AF
465 X86CPU *cpu = X86_CPU(cs);
466 CPUX86State *env = &cpu->env;
486bd5a2 467 uint32_t limit, i, j, cpuid_i;
a33609ca 468 uint32_t unused;
bb0300dc 469 struct kvm_cpuid_entry2 *c;
bb0300dc 470 uint32_t signature[3];
234cc647 471 int kvm_base = KVM_CPUID_SIGNATURE;
e7429073 472 int r;
05330448 473
ef4cbe14
SW
474 memset(&cpuid_data, 0, sizeof(cpuid_data));
475
05330448
AL
476 cpuid_i = 0;
477
bb0300dc 478 /* Paravirtualization CPUIDs */
234cc647
PB
479 if (hyperv_enabled(cpu)) {
480 c = &cpuid_data.entries[cpuid_i++];
481 c->function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
eab70139
VR
482 memcpy(signature, "Microsoft Hv", 12);
483 c->eax = HYPERV_CPUID_MIN;
234cc647
PB
484 c->ebx = signature[0];
485 c->ecx = signature[1];
486 c->edx = signature[2];
0c31b744 487
234cc647
PB
488 c = &cpuid_data.entries[cpuid_i++];
489 c->function = HYPERV_CPUID_INTERFACE;
eab70139
VR
490 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
491 c->eax = signature[0];
234cc647
PB
492 c->ebx = 0;
493 c->ecx = 0;
494 c->edx = 0;
eab70139
VR
495
496 c = &cpuid_data.entries[cpuid_i++];
eab70139
VR
497 c->function = HYPERV_CPUID_VERSION;
498 c->eax = 0x00001bbc;
499 c->ebx = 0x00060001;
500
501 c = &cpuid_data.entries[cpuid_i++];
eab70139 502 c->function = HYPERV_CPUID_FEATURES;
92067bf4 503 if (cpu->hyperv_relaxed_timing) {
eab70139
VR
504 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
505 }
92067bf4 506 if (cpu->hyperv_vapic) {
eab70139
VR
507 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
508 c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
7bc3d711 509 has_msr_hv_vapic = true;
eab70139 510 }
48a5f3bc
VR
511 if (cpu->hyperv_time &&
512 kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
513 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
514 c->eax |= HV_X64_MSR_TIME_REF_COUNT_AVAILABLE;
515 c->eax |= 0x200;
516 has_msr_hv_tsc = true;
517 }
eab70139 518 c = &cpuid_data.entries[cpuid_i++];
eab70139 519 c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
92067bf4 520 if (cpu->hyperv_relaxed_timing) {
eab70139
VR
521 c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
522 }
7bc3d711 523 if (has_msr_hv_vapic) {
eab70139
VR
524 c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
525 }
92067bf4 526 c->ebx = cpu->hyperv_spinlock_attempts;
eab70139
VR
527
528 c = &cpuid_data.entries[cpuid_i++];
eab70139
VR
529 c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
530 c->eax = 0x40;
531 c->ebx = 0x40;
532
234cc647 533 kvm_base = KVM_CPUID_SIGNATURE_NEXT;
7bc3d711 534 has_msr_hv_hypercall = true;
eab70139
VR
535 }
536
f522d2ac
AW
537 if (cpu->expose_kvm) {
538 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
539 c = &cpuid_data.entries[cpuid_i++];
540 c->function = KVM_CPUID_SIGNATURE | kvm_base;
79b6f2f6 541 c->eax = KVM_CPUID_FEATURES | kvm_base;
f522d2ac
AW
542 c->ebx = signature[0];
543 c->ecx = signature[1];
544 c->edx = signature[2];
234cc647 545
f522d2ac
AW
546 c = &cpuid_data.entries[cpuid_i++];
547 c->function = KVM_CPUID_FEATURES | kvm_base;
548 c->eax = env->features[FEAT_KVM];
234cc647 549
f522d2ac 550 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
bb0300dc 551
f522d2ac 552 has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
bc9a839d 553
f522d2ac
AW
554 has_msr_kvm_steal_time = c->eax & (1 << KVM_FEATURE_STEAL_TIME);
555 }
917367aa 556
a33609ca 557 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
05330448
AL
558
559 for (i = 0; i <= limit; i++) {
f8bb0565
IM
560 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
561 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
562 abort();
563 }
bb0300dc 564 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
565
566 switch (i) {
a36b1029
AL
567 case 2: {
568 /* Keep reading function 2 till all the input is received */
569 int times;
570
a36b1029 571 c->function = i;
a33609ca
AL
572 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
573 KVM_CPUID_FLAG_STATE_READ_NEXT;
574 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
575 times = c->eax & 0xff;
a36b1029
AL
576
577 for (j = 1; j < times; ++j) {
f8bb0565
IM
578 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
579 fprintf(stderr, "cpuid_data is full, no space for "
580 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
581 abort();
582 }
a33609ca 583 c = &cpuid_data.entries[cpuid_i++];
a36b1029 584 c->function = i;
a33609ca
AL
585 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
586 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
a36b1029
AL
587 }
588 break;
589 }
486bd5a2
AL
590 case 4:
591 case 0xb:
592 case 0xd:
593 for (j = 0; ; j++) {
31e8c696
AP
594 if (i == 0xd && j == 64) {
595 break;
596 }
486bd5a2
AL
597 c->function = i;
598 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
599 c->index = j;
a33609ca 600 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2 601
b9bec74b 602 if (i == 4 && c->eax == 0) {
486bd5a2 603 break;
b9bec74b
JK
604 }
605 if (i == 0xb && !(c->ecx & 0xff00)) {
486bd5a2 606 break;
b9bec74b
JK
607 }
608 if (i == 0xd && c->eax == 0) {
31e8c696 609 continue;
b9bec74b 610 }
f8bb0565
IM
611 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
612 fprintf(stderr, "cpuid_data is full, no space for "
613 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
614 abort();
615 }
a33609ca 616 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
617 }
618 break;
619 default:
486bd5a2 620 c->function = i;
a33609ca
AL
621 c->flags = 0;
622 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2
AL
623 break;
624 }
05330448 625 }
0d894367
PB
626
627 if (limit >= 0x0a) {
628 uint32_t ver;
629
630 cpu_x86_cpuid(env, 0x0a, 0, &ver, &unused, &unused, &unused);
631 if ((ver & 0xff) > 0) {
632 has_msr_architectural_pmu = true;
633 num_architectural_pmu_counters = (ver & 0xff00) >> 8;
634
635 /* Shouldn't be more than 32, since that's the number of bits
636 * available in EBX to tell us _which_ counters are available.
637 * Play it safe.
638 */
639 if (num_architectural_pmu_counters > MAX_GP_COUNTERS) {
640 num_architectural_pmu_counters = MAX_GP_COUNTERS;
641 }
642 }
643 }
644
a33609ca 645 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
05330448
AL
646
647 for (i = 0x80000000; i <= limit; i++) {
f8bb0565
IM
648 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
649 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
650 abort();
651 }
bb0300dc 652 c = &cpuid_data.entries[cpuid_i++];
05330448 653
05330448 654 c->function = i;
a33609ca
AL
655 c->flags = 0;
656 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
05330448
AL
657 }
658
b3baa152
BW
659 /* Call Centaur's CPUID instructions they are supported. */
660 if (env->cpuid_xlevel2 > 0) {
b3baa152
BW
661 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
662
663 for (i = 0xC0000000; i <= limit; i++) {
f8bb0565
IM
664 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
665 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
666 abort();
667 }
b3baa152
BW
668 c = &cpuid_data.entries[cpuid_i++];
669
670 c->function = i;
671 c->flags = 0;
672 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
673 }
674 }
675
05330448
AL
676 cpuid_data.cpuid.nent = cpuid_i;
677
e7701825 678 if (((env->cpuid_version >> 8)&0xF) >= 6
0514ef2f 679 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
fc7a504c 680 (CPUID_MCE | CPUID_MCA)
a60f24b5 681 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
e7701825
MT
682 uint64_t mcg_cap;
683 int banks;
32a42024 684 int ret;
e7701825 685
a60f24b5 686 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
75d49497
JK
687 if (ret < 0) {
688 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
689 return ret;
e7701825 690 }
75d49497
JK
691
692 if (banks > MCE_BANKS_DEF) {
693 banks = MCE_BANKS_DEF;
694 }
695 mcg_cap &= MCE_CAP_DEF;
696 mcg_cap |= banks;
1bc22652 697 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &mcg_cap);
75d49497
JK
698 if (ret < 0) {
699 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
700 return ret;
701 }
702
703 env->mcg_cap = mcg_cap;
e7701825 704 }
e7701825 705
b8cc45d6
GC
706 qemu_add_vm_change_state_handler(cpu_update_state, env);
707
df67696e
LJ
708 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
709 if (c) {
710 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
711 !!(c->ecx & CPUID_EXT_SMX);
712 }
713
68bfd0ad
MT
714 c = cpuid_find_entry(&cpuid_data.cpuid, 0x80000007, 0);
715 if (c && (c->edx & 1<<8) && invtsc_mig_blocker == NULL) {
716 /* for migration */
717 error_setg(&invtsc_mig_blocker,
718 "State blocked by non-migratable CPU device"
719 " (invtsc flag)");
720 migrate_add_blocker(invtsc_mig_blocker);
721 /* for savevm */
722 vmstate_x86_cpu.unmigratable = 1;
723 }
724
7e680753 725 cpuid_data.cpuid.padding = 0;
1bc22652 726 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
fdc9c41a
JK
727 if (r) {
728 return r;
729 }
e7429073 730
a60f24b5 731 r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL);
e7429073 732 if (r && env->tsc_khz) {
1bc22652 733 r = kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz);
e7429073
JR
734 if (r < 0) {
735 fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
736 return r;
737 }
738 }
e7429073 739
fabacc0f
JK
740 if (kvm_has_xsave()) {
741 env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
742 }
743
d1ae67f6
AW
744 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
745 has_msr_mtrr = true;
746 }
747
e7429073 748 return 0;
05330448
AL
749}
750
50a2c6e5 751void kvm_arch_reset_vcpu(X86CPU *cpu)
caa5af0f 752{
20d695a9 753 CPUX86State *env = &cpu->env;
dd673288 754
e73223a5 755 env->exception_injected = -1;
0e607a80 756 env->interrupt_injected = -1;
1a5e9d2f 757 env->xcr0 = 1;
ddced198 758 if (kvm_irqchip_in_kernel()) {
dd673288 759 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
ddced198
MT
760 KVM_MP_STATE_UNINITIALIZED;
761 } else {
762 env->mp_state = KVM_MP_STATE_RUNNABLE;
763 }
caa5af0f
JK
764}
765
e0723c45
PB
766void kvm_arch_do_init_vcpu(X86CPU *cpu)
767{
768 CPUX86State *env = &cpu->env;
769
770 /* APs get directly into wait-for-SIPI state. */
771 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
772 env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
773 }
774}
775
c3a3a7d3 776static int kvm_get_supported_msrs(KVMState *s)
05330448 777{
75b10c43 778 static int kvm_supported_msrs;
c3a3a7d3 779 int ret = 0;
05330448
AL
780
781 /* first time */
75b10c43 782 if (kvm_supported_msrs == 0) {
05330448
AL
783 struct kvm_msr_list msr_list, *kvm_msr_list;
784
75b10c43 785 kvm_supported_msrs = -1;
05330448
AL
786
787 /* Obtain MSR list from KVM. These are the MSRs that we must
788 * save/restore */
4c9f7372 789 msr_list.nmsrs = 0;
c3a3a7d3 790 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
6fb6d245 791 if (ret < 0 && ret != -E2BIG) {
c3a3a7d3 792 return ret;
6fb6d245 793 }
d9db889f
JK
794 /* Old kernel modules had a bug and could write beyond the provided
795 memory. Allocate at least a safe amount of 1K. */
7267c094 796 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
d9db889f
JK
797 msr_list.nmsrs *
798 sizeof(msr_list.indices[0])));
05330448 799
55308450 800 kvm_msr_list->nmsrs = msr_list.nmsrs;
c3a3a7d3 801 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
05330448
AL
802 if (ret >= 0) {
803 int i;
804
805 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
806 if (kvm_msr_list->indices[i] == MSR_STAR) {
c3a3a7d3 807 has_msr_star = true;
75b10c43
MT
808 continue;
809 }
810 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
c3a3a7d3 811 has_msr_hsave_pa = true;
75b10c43 812 continue;
05330448 813 }
f28558d3
WA
814 if (kvm_msr_list->indices[i] == MSR_TSC_ADJUST) {
815 has_msr_tsc_adjust = true;
816 continue;
817 }
aa82ba54
LJ
818 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
819 has_msr_tsc_deadline = true;
820 continue;
821 }
21e87c46
AK
822 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
823 has_msr_misc_enable = true;
824 continue;
825 }
79e9ebeb
LJ
826 if (kvm_msr_list->indices[i] == MSR_IA32_BNDCFGS) {
827 has_msr_bndcfgs = true;
828 continue;
829 }
18cd2c17
WL
830 if (kvm_msr_list->indices[i] == MSR_IA32_XSS) {
831 has_msr_xss = true;
832 continue;
833 }
05330448
AL
834 }
835 }
836
7267c094 837 g_free(kvm_msr_list);
05330448
AL
838 }
839
c3a3a7d3 840 return ret;
05330448
AL
841}
842
cad1e282 843int kvm_arch_init(KVMState *s)
20420430 844{
11076198 845 uint64_t identity_base = 0xfffbc000;
39d6960a 846 uint64_t shadow_mem;
20420430 847 int ret;
25d2e361 848 struct utsname utsname;
20420430 849
c3a3a7d3 850 ret = kvm_get_supported_msrs(s);
20420430 851 if (ret < 0) {
20420430
SY
852 return ret;
853 }
25d2e361
MT
854
855 uname(&utsname);
856 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
857
4c5b10b7 858 /*
11076198
JK
859 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
860 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
861 * Since these must be part of guest physical memory, we need to allocate
862 * them, both by setting their start addresses in the kernel and by
863 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
864 *
865 * Older KVM versions may not support setting the identity map base. In
866 * that case we need to stick with the default, i.e. a 256K maximum BIOS
867 * size.
4c5b10b7 868 */
11076198
JK
869 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
870 /* Allows up to 16M BIOSes. */
871 identity_base = 0xfeffc000;
872
873 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
874 if (ret < 0) {
875 return ret;
876 }
4c5b10b7 877 }
e56ff191 878
11076198
JK
879 /* Set TSS base one page after EPT identity map. */
880 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
20420430
SY
881 if (ret < 0) {
882 return ret;
883 }
884
11076198
JK
885 /* Tell fw_cfg to notify the BIOS to reserve the range. */
886 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
20420430 887 if (ret < 0) {
11076198 888 fprintf(stderr, "e820_add_entry() table is full\n");
20420430
SY
889 return ret;
890 }
3c85e74f 891 qemu_register_reset(kvm_unpoison_all, NULL);
20420430 892
36ad0e94
MA
893 shadow_mem = qemu_opt_get_size(qemu_get_machine_opts(),
894 "kvm_shadow_mem", -1);
895 if (shadow_mem != -1) {
896 shadow_mem /= 4096;
897 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
898 if (ret < 0) {
899 return ret;
39d6960a
JK
900 }
901 }
11076198 902 return 0;
05330448 903}
b9bec74b 904
05330448
AL
905static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
906{
907 lhs->selector = rhs->selector;
908 lhs->base = rhs->base;
909 lhs->limit = rhs->limit;
910 lhs->type = 3;
911 lhs->present = 1;
912 lhs->dpl = 3;
913 lhs->db = 0;
914 lhs->s = 1;
915 lhs->l = 0;
916 lhs->g = 0;
917 lhs->avl = 0;
918 lhs->unusable = 0;
919}
920
921static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
922{
923 unsigned flags = rhs->flags;
924 lhs->selector = rhs->selector;
925 lhs->base = rhs->base;
926 lhs->limit = rhs->limit;
927 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
928 lhs->present = (flags & DESC_P_MASK) != 0;
acaa7550 929 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
05330448
AL
930 lhs->db = (flags >> DESC_B_SHIFT) & 1;
931 lhs->s = (flags & DESC_S_MASK) != 0;
932 lhs->l = (flags >> DESC_L_SHIFT) & 1;
933 lhs->g = (flags & DESC_G_MASK) != 0;
934 lhs->avl = (flags & DESC_AVL_MASK) != 0;
935 lhs->unusable = 0;
7e680753 936 lhs->padding = 0;
05330448
AL
937}
938
939static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
940{
941 lhs->selector = rhs->selector;
942 lhs->base = rhs->base;
943 lhs->limit = rhs->limit;
b9bec74b
JK
944 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
945 (rhs->present * DESC_P_MASK) |
946 (rhs->dpl << DESC_DPL_SHIFT) |
947 (rhs->db << DESC_B_SHIFT) |
948 (rhs->s * DESC_S_MASK) |
949 (rhs->l << DESC_L_SHIFT) |
950 (rhs->g * DESC_G_MASK) |
951 (rhs->avl * DESC_AVL_MASK);
05330448
AL
952}
953
954static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
955{
b9bec74b 956 if (set) {
05330448 957 *kvm_reg = *qemu_reg;
b9bec74b 958 } else {
05330448 959 *qemu_reg = *kvm_reg;
b9bec74b 960 }
05330448
AL
961}
962
1bc22652 963static int kvm_getput_regs(X86CPU *cpu, int set)
05330448 964{
1bc22652 965 CPUX86State *env = &cpu->env;
05330448
AL
966 struct kvm_regs regs;
967 int ret = 0;
968
969 if (!set) {
1bc22652 970 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
b9bec74b 971 if (ret < 0) {
05330448 972 return ret;
b9bec74b 973 }
05330448
AL
974 }
975
976 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
977 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
978 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
979 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
980 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
981 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
982 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
983 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
984#ifdef TARGET_X86_64
985 kvm_getput_reg(&regs.r8, &env->regs[8], set);
986 kvm_getput_reg(&regs.r9, &env->regs[9], set);
987 kvm_getput_reg(&regs.r10, &env->regs[10], set);
988 kvm_getput_reg(&regs.r11, &env->regs[11], set);
989 kvm_getput_reg(&regs.r12, &env->regs[12], set);
990 kvm_getput_reg(&regs.r13, &env->regs[13], set);
991 kvm_getput_reg(&regs.r14, &env->regs[14], set);
992 kvm_getput_reg(&regs.r15, &env->regs[15], set);
993#endif
994
995 kvm_getput_reg(&regs.rflags, &env->eflags, set);
996 kvm_getput_reg(&regs.rip, &env->eip, set);
997
b9bec74b 998 if (set) {
1bc22652 999 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
b9bec74b 1000 }
05330448
AL
1001
1002 return ret;
1003}
1004
1bc22652 1005static int kvm_put_fpu(X86CPU *cpu)
05330448 1006{
1bc22652 1007 CPUX86State *env = &cpu->env;
05330448
AL
1008 struct kvm_fpu fpu;
1009 int i;
1010
1011 memset(&fpu, 0, sizeof fpu);
1012 fpu.fsw = env->fpus & ~(7 << 11);
1013 fpu.fsw |= (env->fpstt & 7) << 11;
1014 fpu.fcw = env->fpuc;
42cc8fa6
JK
1015 fpu.last_opcode = env->fpop;
1016 fpu.last_ip = env->fpip;
1017 fpu.last_dp = env->fpdp;
b9bec74b
JK
1018 for (i = 0; i < 8; ++i) {
1019 fpu.ftwx |= (!env->fptags[i]) << i;
1020 }
05330448
AL
1021 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
1022 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
1023 fpu.mxcsr = env->mxcsr;
1024
1bc22652 1025 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
05330448
AL
1026}
1027
6b42494b
JK
1028#define XSAVE_FCW_FSW 0
1029#define XSAVE_FTW_FOP 1
f1665b21
SY
1030#define XSAVE_CWD_RIP 2
1031#define XSAVE_CWD_RDP 4
1032#define XSAVE_MXCSR 6
1033#define XSAVE_ST_SPACE 8
1034#define XSAVE_XMM_SPACE 40
1035#define XSAVE_XSTATE_BV 128
1036#define XSAVE_YMMH_SPACE 144
79e9ebeb
LJ
1037#define XSAVE_BNDREGS 240
1038#define XSAVE_BNDCSR 256
9aecd6f8
CP
1039#define XSAVE_OPMASK 272
1040#define XSAVE_ZMM_Hi256 288
1041#define XSAVE_Hi16_ZMM 416
f1665b21 1042
1bc22652 1043static int kvm_put_xsave(X86CPU *cpu)
f1665b21 1044{
1bc22652 1045 CPUX86State *env = &cpu->env;
fabacc0f 1046 struct kvm_xsave* xsave = env->kvm_xsave_buf;
42cc8fa6 1047 uint16_t cwd, swd, twd;
fabacc0f 1048 int i, r;
f1665b21 1049
b9bec74b 1050 if (!kvm_has_xsave()) {
1bc22652 1051 return kvm_put_fpu(cpu);
b9bec74b 1052 }
f1665b21 1053
f1665b21 1054 memset(xsave, 0, sizeof(struct kvm_xsave));
6115c0a8 1055 twd = 0;
f1665b21
SY
1056 swd = env->fpus & ~(7 << 11);
1057 swd |= (env->fpstt & 7) << 11;
1058 cwd = env->fpuc;
b9bec74b 1059 for (i = 0; i < 8; ++i) {
f1665b21 1060 twd |= (!env->fptags[i]) << i;
b9bec74b 1061 }
6b42494b
JK
1062 xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
1063 xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
42cc8fa6
JK
1064 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
1065 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
f1665b21
SY
1066 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
1067 sizeof env->fpregs);
1068 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
1069 sizeof env->xmm_regs);
1070 xsave->region[XSAVE_MXCSR] = env->mxcsr;
1071 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
1072 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
1073 sizeof env->ymmh_regs);
79e9ebeb
LJ
1074 memcpy(&xsave->region[XSAVE_BNDREGS], env->bnd_regs,
1075 sizeof env->bnd_regs);
1076 memcpy(&xsave->region[XSAVE_BNDCSR], &env->bndcs_regs,
1077 sizeof(env->bndcs_regs));
9aecd6f8
CP
1078 memcpy(&xsave->region[XSAVE_OPMASK], env->opmask_regs,
1079 sizeof env->opmask_regs);
1080 memcpy(&xsave->region[XSAVE_ZMM_Hi256], env->zmmh_regs,
1081 sizeof env->zmmh_regs);
1082#ifdef TARGET_X86_64
1083 memcpy(&xsave->region[XSAVE_Hi16_ZMM], env->hi16_zmm_regs,
1084 sizeof env->hi16_zmm_regs);
1085#endif
1bc22652 1086 r = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
0f53994f 1087 return r;
f1665b21
SY
1088}
1089
1bc22652 1090static int kvm_put_xcrs(X86CPU *cpu)
f1665b21 1091{
1bc22652 1092 CPUX86State *env = &cpu->env;
bdfc8480 1093 struct kvm_xcrs xcrs = {};
f1665b21 1094
b9bec74b 1095 if (!kvm_has_xcrs()) {
f1665b21 1096 return 0;
b9bec74b 1097 }
f1665b21
SY
1098
1099 xcrs.nr_xcrs = 1;
1100 xcrs.flags = 0;
1101 xcrs.xcrs[0].xcr = 0;
1102 xcrs.xcrs[0].value = env->xcr0;
1bc22652 1103 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
f1665b21
SY
1104}
1105
1bc22652 1106static int kvm_put_sregs(X86CPU *cpu)
05330448 1107{
1bc22652 1108 CPUX86State *env = &cpu->env;
05330448
AL
1109 struct kvm_sregs sregs;
1110
0e607a80
JK
1111 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
1112 if (env->interrupt_injected >= 0) {
1113 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
1114 (uint64_t)1 << (env->interrupt_injected % 64);
1115 }
05330448
AL
1116
1117 if ((env->eflags & VM_MASK)) {
b9bec74b
JK
1118 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
1119 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
1120 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
1121 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
1122 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
1123 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
05330448 1124 } else {
b9bec74b
JK
1125 set_seg(&sregs.cs, &env->segs[R_CS]);
1126 set_seg(&sregs.ds, &env->segs[R_DS]);
1127 set_seg(&sregs.es, &env->segs[R_ES]);
1128 set_seg(&sregs.fs, &env->segs[R_FS]);
1129 set_seg(&sregs.gs, &env->segs[R_GS]);
1130 set_seg(&sregs.ss, &env->segs[R_SS]);
05330448
AL
1131 }
1132
1133 set_seg(&sregs.tr, &env->tr);
1134 set_seg(&sregs.ldt, &env->ldt);
1135
1136 sregs.idt.limit = env->idt.limit;
1137 sregs.idt.base = env->idt.base;
7e680753 1138 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
05330448
AL
1139 sregs.gdt.limit = env->gdt.limit;
1140 sregs.gdt.base = env->gdt.base;
7e680753 1141 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
05330448
AL
1142
1143 sregs.cr0 = env->cr[0];
1144 sregs.cr2 = env->cr[2];
1145 sregs.cr3 = env->cr[3];
1146 sregs.cr4 = env->cr[4];
1147
02e51483
CF
1148 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
1149 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
05330448
AL
1150
1151 sregs.efer = env->efer;
1152
1bc22652 1153 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
05330448
AL
1154}
1155
1156static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
1157 uint32_t index, uint64_t value)
1158{
1159 entry->index = index;
c7fe4b12 1160 entry->reserved = 0;
05330448
AL
1161 entry->data = value;
1162}
1163
7477cd38
MT
1164static int kvm_put_tscdeadline_msr(X86CPU *cpu)
1165{
1166 CPUX86State *env = &cpu->env;
1167 struct {
1168 struct kvm_msrs info;
1169 struct kvm_msr_entry entries[1];
1170 } msr_data;
1171 struct kvm_msr_entry *msrs = msr_data.entries;
1172
1173 if (!has_msr_tsc_deadline) {
1174 return 0;
1175 }
1176
1177 kvm_msr_entry_set(&msrs[0], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
1178
c7fe4b12
CB
1179 msr_data.info = (struct kvm_msrs) {
1180 .nmsrs = 1,
1181 };
7477cd38
MT
1182
1183 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
1184}
1185
6bdf863d
JK
1186/*
1187 * Provide a separate write service for the feature control MSR in order to
1188 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
1189 * before writing any other state because forcibly leaving nested mode
1190 * invalidates the VCPU state.
1191 */
1192static int kvm_put_msr_feature_control(X86CPU *cpu)
1193{
1194 struct {
1195 struct kvm_msrs info;
1196 struct kvm_msr_entry entry;
1197 } msr_data;
1198
1199 kvm_msr_entry_set(&msr_data.entry, MSR_IA32_FEATURE_CONTROL,
1200 cpu->env.msr_ia32_feature_control);
c7fe4b12
CB
1201
1202 msr_data.info = (struct kvm_msrs) {
1203 .nmsrs = 1,
1204 };
1205
6bdf863d
JK
1206 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
1207}
1208
1bc22652 1209static int kvm_put_msrs(X86CPU *cpu, int level)
05330448 1210{
1bc22652 1211 CPUX86State *env = &cpu->env;
05330448
AL
1212 struct {
1213 struct kvm_msrs info;
d1ae67f6 1214 struct kvm_msr_entry entries[150];
05330448
AL
1215 } msr_data;
1216 struct kvm_msr_entry *msrs = msr_data.entries;
0d894367 1217 int n = 0, i;
05330448
AL
1218
1219 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1220 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1221 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
0c03266a 1222 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
c3a3a7d3 1223 if (has_msr_star) {
b9bec74b
JK
1224 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
1225 }
c3a3a7d3 1226 if (has_msr_hsave_pa) {
75b10c43 1227 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
b9bec74b 1228 }
f28558d3
WA
1229 if (has_msr_tsc_adjust) {
1230 kvm_msr_entry_set(&msrs[n++], MSR_TSC_ADJUST, env->tsc_adjust);
1231 }
21e87c46
AK
1232 if (has_msr_misc_enable) {
1233 kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
1234 env->msr_ia32_misc_enable);
1235 }
439d19f2
PB
1236 if (has_msr_bndcfgs) {
1237 kvm_msr_entry_set(&msrs[n++], MSR_IA32_BNDCFGS, env->msr_bndcfgs);
1238 }
18cd2c17
WL
1239 if (has_msr_xss) {
1240 kvm_msr_entry_set(&msrs[n++], MSR_IA32_XSS, env->xss);
1241 }
05330448 1242#ifdef TARGET_X86_64
25d2e361
MT
1243 if (lm_capable_kernel) {
1244 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
1245 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
1246 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
1247 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
1248 }
05330448 1249#endif
ff5c186b 1250 /*
0d894367
PB
1251 * The following MSRs have side effects on the guest or are too heavy
1252 * for normal writeback. Limit them to reset or full state updates.
ff5c186b
JK
1253 */
1254 if (level >= KVM_PUT_RESET_STATE) {
0522604b 1255 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
ea643051
JK
1256 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1257 env->system_time_msr);
1258 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
c5999bfc
JK
1259 if (has_msr_async_pf_en) {
1260 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1261 env->async_pf_en_msr);
1262 }
bc9a839d
MT
1263 if (has_msr_pv_eoi_en) {
1264 kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
1265 env->pv_eoi_en_msr);
1266 }
917367aa
MT
1267 if (has_msr_kvm_steal_time) {
1268 kvm_msr_entry_set(&msrs[n++], MSR_KVM_STEAL_TIME,
1269 env->steal_time_msr);
1270 }
0d894367
PB
1271 if (has_msr_architectural_pmu) {
1272 /* Stop the counter. */
1273 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
1274 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL, 0);
1275
1276 /* Set the counter values. */
1277 for (i = 0; i < MAX_FIXED_COUNTERS; i++) {
1278 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR0 + i,
1279 env->msr_fixed_counters[i]);
1280 }
1281 for (i = 0; i < num_architectural_pmu_counters; i++) {
1282 kvm_msr_entry_set(&msrs[n++], MSR_P6_PERFCTR0 + i,
1283 env->msr_gp_counters[i]);
1284 kvm_msr_entry_set(&msrs[n++], MSR_P6_EVNTSEL0 + i,
1285 env->msr_gp_evtsel[i]);
1286 }
1287 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_STATUS,
1288 env->msr_global_status);
1289 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1290 env->msr_global_ovf_ctrl);
1291
1292 /* Now start the PMU. */
1293 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL,
1294 env->msr_fixed_ctr_ctrl);
1295 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL,
1296 env->msr_global_ctrl);
1297 }
7bc3d711 1298 if (has_msr_hv_hypercall) {
1c90ef26
VR
1299 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID,
1300 env->msr_hv_guest_os_id);
1301 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL,
1302 env->msr_hv_hypercall);
eab70139 1303 }
7bc3d711 1304 if (has_msr_hv_vapic) {
5ef68987
VR
1305 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE,
1306 env->msr_hv_vapic);
eab70139 1307 }
48a5f3bc
VR
1308 if (has_msr_hv_tsc) {
1309 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_REFERENCE_TSC,
1310 env->msr_hv_tsc);
1311 }
d1ae67f6
AW
1312 if (has_msr_mtrr) {
1313 kvm_msr_entry_set(&msrs[n++], MSR_MTRRdefType, env->mtrr_deftype);
1314 kvm_msr_entry_set(&msrs[n++],
1315 MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
1316 kvm_msr_entry_set(&msrs[n++],
1317 MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
1318 kvm_msr_entry_set(&msrs[n++],
1319 MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
1320 kvm_msr_entry_set(&msrs[n++],
1321 MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
1322 kvm_msr_entry_set(&msrs[n++],
1323 MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
1324 kvm_msr_entry_set(&msrs[n++],
1325 MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
1326 kvm_msr_entry_set(&msrs[n++],
1327 MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
1328 kvm_msr_entry_set(&msrs[n++],
1329 MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
1330 kvm_msr_entry_set(&msrs[n++],
1331 MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
1332 kvm_msr_entry_set(&msrs[n++],
1333 MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
1334 kvm_msr_entry_set(&msrs[n++],
1335 MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
1336 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
1337 kvm_msr_entry_set(&msrs[n++],
1338 MSR_MTRRphysBase(i), env->mtrr_var[i].base);
1339 kvm_msr_entry_set(&msrs[n++],
1340 MSR_MTRRphysMask(i), env->mtrr_var[i].mask);
1341 }
1342 }
6bdf863d
JK
1343
1344 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
1345 * kvm_put_msr_feature_control. */
ea643051 1346 }
57780495 1347 if (env->mcg_cap) {
d8da8574 1348 int i;
b9bec74b 1349
c34d440a
JK
1350 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1351 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1352 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1353 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
57780495
MT
1354 }
1355 }
1a03675d 1356
c7fe4b12
CB
1357 msr_data.info = (struct kvm_msrs) {
1358 .nmsrs = n,
1359 };
05330448 1360
1bc22652 1361 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
05330448
AL
1362
1363}
1364
1365
1bc22652 1366static int kvm_get_fpu(X86CPU *cpu)
05330448 1367{
1bc22652 1368 CPUX86State *env = &cpu->env;
05330448
AL
1369 struct kvm_fpu fpu;
1370 int i, ret;
1371
1bc22652 1372 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
b9bec74b 1373 if (ret < 0) {
05330448 1374 return ret;
b9bec74b 1375 }
05330448
AL
1376
1377 env->fpstt = (fpu.fsw >> 11) & 7;
1378 env->fpus = fpu.fsw;
1379 env->fpuc = fpu.fcw;
42cc8fa6
JK
1380 env->fpop = fpu.last_opcode;
1381 env->fpip = fpu.last_ip;
1382 env->fpdp = fpu.last_dp;
b9bec74b
JK
1383 for (i = 0; i < 8; ++i) {
1384 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1385 }
05330448
AL
1386 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1387 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1388 env->mxcsr = fpu.mxcsr;
1389
1390 return 0;
1391}
1392
1bc22652 1393static int kvm_get_xsave(X86CPU *cpu)
f1665b21 1394{
1bc22652 1395 CPUX86State *env = &cpu->env;
fabacc0f 1396 struct kvm_xsave* xsave = env->kvm_xsave_buf;
f1665b21 1397 int ret, i;
42cc8fa6 1398 uint16_t cwd, swd, twd;
f1665b21 1399
b9bec74b 1400 if (!kvm_has_xsave()) {
1bc22652 1401 return kvm_get_fpu(cpu);
b9bec74b 1402 }
f1665b21 1403
1bc22652 1404 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
0f53994f 1405 if (ret < 0) {
f1665b21 1406 return ret;
0f53994f 1407 }
f1665b21 1408
6b42494b
JK
1409 cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1410 swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1411 twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1412 env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
f1665b21
SY
1413 env->fpstt = (swd >> 11) & 7;
1414 env->fpus = swd;
1415 env->fpuc = cwd;
b9bec74b 1416 for (i = 0; i < 8; ++i) {
f1665b21 1417 env->fptags[i] = !((twd >> i) & 1);
b9bec74b 1418 }
42cc8fa6
JK
1419 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1420 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
f1665b21
SY
1421 env->mxcsr = xsave->region[XSAVE_MXCSR];
1422 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1423 sizeof env->fpregs);
1424 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1425 sizeof env->xmm_regs);
1426 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1427 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1428 sizeof env->ymmh_regs);
79e9ebeb
LJ
1429 memcpy(env->bnd_regs, &xsave->region[XSAVE_BNDREGS],
1430 sizeof env->bnd_regs);
1431 memcpy(&env->bndcs_regs, &xsave->region[XSAVE_BNDCSR],
1432 sizeof(env->bndcs_regs));
9aecd6f8
CP
1433 memcpy(env->opmask_regs, &xsave->region[XSAVE_OPMASK],
1434 sizeof env->opmask_regs);
1435 memcpy(env->zmmh_regs, &xsave->region[XSAVE_ZMM_Hi256],
1436 sizeof env->zmmh_regs);
1437#ifdef TARGET_X86_64
1438 memcpy(env->hi16_zmm_regs, &xsave->region[XSAVE_Hi16_ZMM],
1439 sizeof env->hi16_zmm_regs);
1440#endif
f1665b21 1441 return 0;
f1665b21
SY
1442}
1443
1bc22652 1444static int kvm_get_xcrs(X86CPU *cpu)
f1665b21 1445{
1bc22652 1446 CPUX86State *env = &cpu->env;
f1665b21
SY
1447 int i, ret;
1448 struct kvm_xcrs xcrs;
1449
b9bec74b 1450 if (!kvm_has_xcrs()) {
f1665b21 1451 return 0;
b9bec74b 1452 }
f1665b21 1453
1bc22652 1454 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
b9bec74b 1455 if (ret < 0) {
f1665b21 1456 return ret;
b9bec74b 1457 }
f1665b21 1458
b9bec74b 1459 for (i = 0; i < xcrs.nr_xcrs; i++) {
f1665b21 1460 /* Only support xcr0 now */
0fd53fec
PB
1461 if (xcrs.xcrs[i].xcr == 0) {
1462 env->xcr0 = xcrs.xcrs[i].value;
f1665b21
SY
1463 break;
1464 }
b9bec74b 1465 }
f1665b21 1466 return 0;
f1665b21
SY
1467}
1468
1bc22652 1469static int kvm_get_sregs(X86CPU *cpu)
05330448 1470{
1bc22652 1471 CPUX86State *env = &cpu->env;
05330448
AL
1472 struct kvm_sregs sregs;
1473 uint32_t hflags;
0e607a80 1474 int bit, i, ret;
05330448 1475
1bc22652 1476 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
b9bec74b 1477 if (ret < 0) {
05330448 1478 return ret;
b9bec74b 1479 }
05330448 1480
0e607a80
JK
1481 /* There can only be one pending IRQ set in the bitmap at a time, so try
1482 to find it and save its number instead (-1 for none). */
1483 env->interrupt_injected = -1;
1484 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1485 if (sregs.interrupt_bitmap[i]) {
1486 bit = ctz64(sregs.interrupt_bitmap[i]);
1487 env->interrupt_injected = i * 64 + bit;
1488 break;
1489 }
1490 }
05330448
AL
1491
1492 get_seg(&env->segs[R_CS], &sregs.cs);
1493 get_seg(&env->segs[R_DS], &sregs.ds);
1494 get_seg(&env->segs[R_ES], &sregs.es);
1495 get_seg(&env->segs[R_FS], &sregs.fs);
1496 get_seg(&env->segs[R_GS], &sregs.gs);
1497 get_seg(&env->segs[R_SS], &sregs.ss);
1498
1499 get_seg(&env->tr, &sregs.tr);
1500 get_seg(&env->ldt, &sregs.ldt);
1501
1502 env->idt.limit = sregs.idt.limit;
1503 env->idt.base = sregs.idt.base;
1504 env->gdt.limit = sregs.gdt.limit;
1505 env->gdt.base = sregs.gdt.base;
1506
1507 env->cr[0] = sregs.cr0;
1508 env->cr[2] = sregs.cr2;
1509 env->cr[3] = sregs.cr3;
1510 env->cr[4] = sregs.cr4;
1511
05330448 1512 env->efer = sregs.efer;
cce47516
JK
1513
1514 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
05330448 1515
b9bec74b
JK
1516#define HFLAG_COPY_MASK \
1517 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1518 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1519 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1520 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
05330448 1521
7125c937 1522 hflags = (env->segs[R_SS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
05330448
AL
1523 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1524 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
b9bec74b 1525 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
05330448
AL
1526 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1527 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
b9bec74b 1528 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
05330448
AL
1529
1530 if (env->efer & MSR_EFER_LMA) {
1531 hflags |= HF_LMA_MASK;
1532 }
1533
1534 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1535 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1536 } else {
1537 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
b9bec74b 1538 (DESC_B_SHIFT - HF_CS32_SHIFT);
05330448 1539 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
b9bec74b
JK
1540 (DESC_B_SHIFT - HF_SS32_SHIFT);
1541 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1542 !(hflags & HF_CS32_MASK)) {
1543 hflags |= HF_ADDSEG_MASK;
1544 } else {
1545 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1546 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1547 }
05330448
AL
1548 }
1549 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
05330448
AL
1550
1551 return 0;
1552}
1553
1bc22652 1554static int kvm_get_msrs(X86CPU *cpu)
05330448 1555{
1bc22652 1556 CPUX86State *env = &cpu->env;
05330448
AL
1557 struct {
1558 struct kvm_msrs info;
d1ae67f6 1559 struct kvm_msr_entry entries[150];
05330448
AL
1560 } msr_data;
1561 struct kvm_msr_entry *msrs = msr_data.entries;
1562 int ret, i, n;
1563
1564 n = 0;
1565 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1566 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1567 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
0c03266a 1568 msrs[n++].index = MSR_PAT;
c3a3a7d3 1569 if (has_msr_star) {
b9bec74b
JK
1570 msrs[n++].index = MSR_STAR;
1571 }
c3a3a7d3 1572 if (has_msr_hsave_pa) {
75b10c43 1573 msrs[n++].index = MSR_VM_HSAVE_PA;
b9bec74b 1574 }
f28558d3
WA
1575 if (has_msr_tsc_adjust) {
1576 msrs[n++].index = MSR_TSC_ADJUST;
1577 }
aa82ba54
LJ
1578 if (has_msr_tsc_deadline) {
1579 msrs[n++].index = MSR_IA32_TSCDEADLINE;
1580 }
21e87c46
AK
1581 if (has_msr_misc_enable) {
1582 msrs[n++].index = MSR_IA32_MISC_ENABLE;
1583 }
df67696e
LJ
1584 if (has_msr_feature_control) {
1585 msrs[n++].index = MSR_IA32_FEATURE_CONTROL;
1586 }
79e9ebeb
LJ
1587 if (has_msr_bndcfgs) {
1588 msrs[n++].index = MSR_IA32_BNDCFGS;
1589 }
18cd2c17
WL
1590 if (has_msr_xss) {
1591 msrs[n++].index = MSR_IA32_XSS;
1592 }
1593
b8cc45d6
GC
1594
1595 if (!env->tsc_valid) {
1596 msrs[n++].index = MSR_IA32_TSC;
1354869c 1597 env->tsc_valid = !runstate_is_running();
b8cc45d6
GC
1598 }
1599
05330448 1600#ifdef TARGET_X86_64
25d2e361
MT
1601 if (lm_capable_kernel) {
1602 msrs[n++].index = MSR_CSTAR;
1603 msrs[n++].index = MSR_KERNELGSBASE;
1604 msrs[n++].index = MSR_FMASK;
1605 msrs[n++].index = MSR_LSTAR;
1606 }
05330448 1607#endif
1a03675d
GC
1608 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1609 msrs[n++].index = MSR_KVM_WALL_CLOCK;
c5999bfc
JK
1610 if (has_msr_async_pf_en) {
1611 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1612 }
bc9a839d
MT
1613 if (has_msr_pv_eoi_en) {
1614 msrs[n++].index = MSR_KVM_PV_EOI_EN;
1615 }
917367aa
MT
1616 if (has_msr_kvm_steal_time) {
1617 msrs[n++].index = MSR_KVM_STEAL_TIME;
1618 }
0d894367
PB
1619 if (has_msr_architectural_pmu) {
1620 msrs[n++].index = MSR_CORE_PERF_FIXED_CTR_CTRL;
1621 msrs[n++].index = MSR_CORE_PERF_GLOBAL_CTRL;
1622 msrs[n++].index = MSR_CORE_PERF_GLOBAL_STATUS;
1623 msrs[n++].index = MSR_CORE_PERF_GLOBAL_OVF_CTRL;
1624 for (i = 0; i < MAX_FIXED_COUNTERS; i++) {
1625 msrs[n++].index = MSR_CORE_PERF_FIXED_CTR0 + i;
1626 }
1627 for (i = 0; i < num_architectural_pmu_counters; i++) {
1628 msrs[n++].index = MSR_P6_PERFCTR0 + i;
1629 msrs[n++].index = MSR_P6_EVNTSEL0 + i;
1630 }
1631 }
1a03675d 1632
57780495
MT
1633 if (env->mcg_cap) {
1634 msrs[n++].index = MSR_MCG_STATUS;
1635 msrs[n++].index = MSR_MCG_CTL;
b9bec74b 1636 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
57780495 1637 msrs[n++].index = MSR_MC0_CTL + i;
b9bec74b 1638 }
57780495 1639 }
57780495 1640
1c90ef26
VR
1641 if (has_msr_hv_hypercall) {
1642 msrs[n++].index = HV_X64_MSR_HYPERCALL;
1643 msrs[n++].index = HV_X64_MSR_GUEST_OS_ID;
1644 }
5ef68987
VR
1645 if (has_msr_hv_vapic) {
1646 msrs[n++].index = HV_X64_MSR_APIC_ASSIST_PAGE;
1647 }
48a5f3bc
VR
1648 if (has_msr_hv_tsc) {
1649 msrs[n++].index = HV_X64_MSR_REFERENCE_TSC;
1650 }
d1ae67f6
AW
1651 if (has_msr_mtrr) {
1652 msrs[n++].index = MSR_MTRRdefType;
1653 msrs[n++].index = MSR_MTRRfix64K_00000;
1654 msrs[n++].index = MSR_MTRRfix16K_80000;
1655 msrs[n++].index = MSR_MTRRfix16K_A0000;
1656 msrs[n++].index = MSR_MTRRfix4K_C0000;
1657 msrs[n++].index = MSR_MTRRfix4K_C8000;
1658 msrs[n++].index = MSR_MTRRfix4K_D0000;
1659 msrs[n++].index = MSR_MTRRfix4K_D8000;
1660 msrs[n++].index = MSR_MTRRfix4K_E0000;
1661 msrs[n++].index = MSR_MTRRfix4K_E8000;
1662 msrs[n++].index = MSR_MTRRfix4K_F0000;
1663 msrs[n++].index = MSR_MTRRfix4K_F8000;
1664 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
1665 msrs[n++].index = MSR_MTRRphysBase(i);
1666 msrs[n++].index = MSR_MTRRphysMask(i);
1667 }
1668 }
5ef68987 1669
d19ae73e
CB
1670 msr_data.info = (struct kvm_msrs) {
1671 .nmsrs = n,
1672 };
1673
1bc22652 1674 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
b9bec74b 1675 if (ret < 0) {
05330448 1676 return ret;
b9bec74b 1677 }
05330448
AL
1678
1679 for (i = 0; i < ret; i++) {
0d894367
PB
1680 uint32_t index = msrs[i].index;
1681 switch (index) {
05330448
AL
1682 case MSR_IA32_SYSENTER_CS:
1683 env->sysenter_cs = msrs[i].data;
1684 break;
1685 case MSR_IA32_SYSENTER_ESP:
1686 env->sysenter_esp = msrs[i].data;
1687 break;
1688 case MSR_IA32_SYSENTER_EIP:
1689 env->sysenter_eip = msrs[i].data;
1690 break;
0c03266a
JK
1691 case MSR_PAT:
1692 env->pat = msrs[i].data;
1693 break;
05330448
AL
1694 case MSR_STAR:
1695 env->star = msrs[i].data;
1696 break;
1697#ifdef TARGET_X86_64
1698 case MSR_CSTAR:
1699 env->cstar = msrs[i].data;
1700 break;
1701 case MSR_KERNELGSBASE:
1702 env->kernelgsbase = msrs[i].data;
1703 break;
1704 case MSR_FMASK:
1705 env->fmask = msrs[i].data;
1706 break;
1707 case MSR_LSTAR:
1708 env->lstar = msrs[i].data;
1709 break;
1710#endif
1711 case MSR_IA32_TSC:
1712 env->tsc = msrs[i].data;
1713 break;
f28558d3
WA
1714 case MSR_TSC_ADJUST:
1715 env->tsc_adjust = msrs[i].data;
1716 break;
aa82ba54
LJ
1717 case MSR_IA32_TSCDEADLINE:
1718 env->tsc_deadline = msrs[i].data;
1719 break;
aa851e36
MT
1720 case MSR_VM_HSAVE_PA:
1721 env->vm_hsave = msrs[i].data;
1722 break;
1a03675d
GC
1723 case MSR_KVM_SYSTEM_TIME:
1724 env->system_time_msr = msrs[i].data;
1725 break;
1726 case MSR_KVM_WALL_CLOCK:
1727 env->wall_clock_msr = msrs[i].data;
1728 break;
57780495
MT
1729 case MSR_MCG_STATUS:
1730 env->mcg_status = msrs[i].data;
1731 break;
1732 case MSR_MCG_CTL:
1733 env->mcg_ctl = msrs[i].data;
1734 break;
21e87c46
AK
1735 case MSR_IA32_MISC_ENABLE:
1736 env->msr_ia32_misc_enable = msrs[i].data;
1737 break;
0779caeb
ACL
1738 case MSR_IA32_FEATURE_CONTROL:
1739 env->msr_ia32_feature_control = msrs[i].data;
df67696e 1740 break;
79e9ebeb
LJ
1741 case MSR_IA32_BNDCFGS:
1742 env->msr_bndcfgs = msrs[i].data;
1743 break;
18cd2c17
WL
1744 case MSR_IA32_XSS:
1745 env->xss = msrs[i].data;
1746 break;
57780495 1747 default:
57780495
MT
1748 if (msrs[i].index >= MSR_MC0_CTL &&
1749 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1750 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
57780495 1751 }
d8da8574 1752 break;
f6584ee2
GN
1753 case MSR_KVM_ASYNC_PF_EN:
1754 env->async_pf_en_msr = msrs[i].data;
1755 break;
bc9a839d
MT
1756 case MSR_KVM_PV_EOI_EN:
1757 env->pv_eoi_en_msr = msrs[i].data;
1758 break;
917367aa
MT
1759 case MSR_KVM_STEAL_TIME:
1760 env->steal_time_msr = msrs[i].data;
1761 break;
0d894367
PB
1762 case MSR_CORE_PERF_FIXED_CTR_CTRL:
1763 env->msr_fixed_ctr_ctrl = msrs[i].data;
1764 break;
1765 case MSR_CORE_PERF_GLOBAL_CTRL:
1766 env->msr_global_ctrl = msrs[i].data;
1767 break;
1768 case MSR_CORE_PERF_GLOBAL_STATUS:
1769 env->msr_global_status = msrs[i].data;
1770 break;
1771 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
1772 env->msr_global_ovf_ctrl = msrs[i].data;
1773 break;
1774 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
1775 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
1776 break;
1777 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
1778 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
1779 break;
1780 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
1781 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
1782 break;
1c90ef26
VR
1783 case HV_X64_MSR_HYPERCALL:
1784 env->msr_hv_hypercall = msrs[i].data;
1785 break;
1786 case HV_X64_MSR_GUEST_OS_ID:
1787 env->msr_hv_guest_os_id = msrs[i].data;
1788 break;
5ef68987
VR
1789 case HV_X64_MSR_APIC_ASSIST_PAGE:
1790 env->msr_hv_vapic = msrs[i].data;
1791 break;
48a5f3bc
VR
1792 case HV_X64_MSR_REFERENCE_TSC:
1793 env->msr_hv_tsc = msrs[i].data;
1794 break;
d1ae67f6
AW
1795 case MSR_MTRRdefType:
1796 env->mtrr_deftype = msrs[i].data;
1797 break;
1798 case MSR_MTRRfix64K_00000:
1799 env->mtrr_fixed[0] = msrs[i].data;
1800 break;
1801 case MSR_MTRRfix16K_80000:
1802 env->mtrr_fixed[1] = msrs[i].data;
1803 break;
1804 case MSR_MTRRfix16K_A0000:
1805 env->mtrr_fixed[2] = msrs[i].data;
1806 break;
1807 case MSR_MTRRfix4K_C0000:
1808 env->mtrr_fixed[3] = msrs[i].data;
1809 break;
1810 case MSR_MTRRfix4K_C8000:
1811 env->mtrr_fixed[4] = msrs[i].data;
1812 break;
1813 case MSR_MTRRfix4K_D0000:
1814 env->mtrr_fixed[5] = msrs[i].data;
1815 break;
1816 case MSR_MTRRfix4K_D8000:
1817 env->mtrr_fixed[6] = msrs[i].data;
1818 break;
1819 case MSR_MTRRfix4K_E0000:
1820 env->mtrr_fixed[7] = msrs[i].data;
1821 break;
1822 case MSR_MTRRfix4K_E8000:
1823 env->mtrr_fixed[8] = msrs[i].data;
1824 break;
1825 case MSR_MTRRfix4K_F0000:
1826 env->mtrr_fixed[9] = msrs[i].data;
1827 break;
1828 case MSR_MTRRfix4K_F8000:
1829 env->mtrr_fixed[10] = msrs[i].data;
1830 break;
1831 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
1832 if (index & 1) {
1833 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data;
1834 } else {
1835 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
1836 }
1837 break;
05330448
AL
1838 }
1839 }
1840
1841 return 0;
1842}
1843
1bc22652 1844static int kvm_put_mp_state(X86CPU *cpu)
9bdbe550 1845{
1bc22652 1846 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
9bdbe550 1847
1bc22652 1848 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
9bdbe550
HB
1849}
1850
23d02d9b 1851static int kvm_get_mp_state(X86CPU *cpu)
9bdbe550 1852{
259186a7 1853 CPUState *cs = CPU(cpu);
23d02d9b 1854 CPUX86State *env = &cpu->env;
9bdbe550
HB
1855 struct kvm_mp_state mp_state;
1856 int ret;
1857
259186a7 1858 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
9bdbe550
HB
1859 if (ret < 0) {
1860 return ret;
1861 }
1862 env->mp_state = mp_state.mp_state;
c14750e8 1863 if (kvm_irqchip_in_kernel()) {
259186a7 1864 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
c14750e8 1865 }
9bdbe550
HB
1866 return 0;
1867}
1868
1bc22652 1869static int kvm_get_apic(X86CPU *cpu)
680c1c6f 1870{
02e51483 1871 DeviceState *apic = cpu->apic_state;
680c1c6f
JK
1872 struct kvm_lapic_state kapic;
1873 int ret;
1874
3d4b2649 1875 if (apic && kvm_irqchip_in_kernel()) {
1bc22652 1876 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
680c1c6f
JK
1877 if (ret < 0) {
1878 return ret;
1879 }
1880
1881 kvm_get_apic_state(apic, &kapic);
1882 }
1883 return 0;
1884}
1885
1bc22652 1886static int kvm_put_apic(X86CPU *cpu)
680c1c6f 1887{
02e51483 1888 DeviceState *apic = cpu->apic_state;
680c1c6f
JK
1889 struct kvm_lapic_state kapic;
1890
3d4b2649 1891 if (apic && kvm_irqchip_in_kernel()) {
680c1c6f
JK
1892 kvm_put_apic_state(apic, &kapic);
1893
1bc22652 1894 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_LAPIC, &kapic);
680c1c6f
JK
1895 }
1896 return 0;
1897}
1898
1bc22652 1899static int kvm_put_vcpu_events(X86CPU *cpu, int level)
a0fb002c 1900{
1bc22652 1901 CPUX86State *env = &cpu->env;
076796f8 1902 struct kvm_vcpu_events events = {};
a0fb002c
JK
1903
1904 if (!kvm_has_vcpu_events()) {
1905 return 0;
1906 }
1907
31827373
JK
1908 events.exception.injected = (env->exception_injected >= 0);
1909 events.exception.nr = env->exception_injected;
a0fb002c
JK
1910 events.exception.has_error_code = env->has_error_code;
1911 events.exception.error_code = env->error_code;
7e680753 1912 events.exception.pad = 0;
a0fb002c
JK
1913
1914 events.interrupt.injected = (env->interrupt_injected >= 0);
1915 events.interrupt.nr = env->interrupt_injected;
1916 events.interrupt.soft = env->soft_interrupt;
1917
1918 events.nmi.injected = env->nmi_injected;
1919 events.nmi.pending = env->nmi_pending;
1920 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
7e680753 1921 events.nmi.pad = 0;
a0fb002c
JK
1922
1923 events.sipi_vector = env->sipi_vector;
1924
ea643051
JK
1925 events.flags = 0;
1926 if (level >= KVM_PUT_RESET_STATE) {
1927 events.flags |=
1928 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1929 }
aee028b9 1930
1bc22652 1931 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
a0fb002c
JK
1932}
1933
1bc22652 1934static int kvm_get_vcpu_events(X86CPU *cpu)
a0fb002c 1935{
1bc22652 1936 CPUX86State *env = &cpu->env;
a0fb002c
JK
1937 struct kvm_vcpu_events events;
1938 int ret;
1939
1940 if (!kvm_has_vcpu_events()) {
1941 return 0;
1942 }
1943
1bc22652 1944 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
a0fb002c
JK
1945 if (ret < 0) {
1946 return ret;
1947 }
31827373 1948 env->exception_injected =
a0fb002c
JK
1949 events.exception.injected ? events.exception.nr : -1;
1950 env->has_error_code = events.exception.has_error_code;
1951 env->error_code = events.exception.error_code;
1952
1953 env->interrupt_injected =
1954 events.interrupt.injected ? events.interrupt.nr : -1;
1955 env->soft_interrupt = events.interrupt.soft;
1956
1957 env->nmi_injected = events.nmi.injected;
1958 env->nmi_pending = events.nmi.pending;
1959 if (events.nmi.masked) {
1960 env->hflags2 |= HF2_NMI_MASK;
1961 } else {
1962 env->hflags2 &= ~HF2_NMI_MASK;
1963 }
1964
1965 env->sipi_vector = events.sipi_vector;
a0fb002c
JK
1966
1967 return 0;
1968}
1969
1bc22652 1970static int kvm_guest_debug_workarounds(X86CPU *cpu)
b0b1d690 1971{
ed2803da 1972 CPUState *cs = CPU(cpu);
1bc22652 1973 CPUX86State *env = &cpu->env;
b0b1d690 1974 int ret = 0;
b0b1d690
JK
1975 unsigned long reinject_trap = 0;
1976
1977 if (!kvm_has_vcpu_events()) {
1978 if (env->exception_injected == 1) {
1979 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1980 } else if (env->exception_injected == 3) {
1981 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1982 }
1983 env->exception_injected = -1;
1984 }
1985
1986 /*
1987 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1988 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1989 * by updating the debug state once again if single-stepping is on.
1990 * Another reason to call kvm_update_guest_debug here is a pending debug
1991 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1992 * reinject them via SET_GUEST_DEBUG.
1993 */
1994 if (reinject_trap ||
ed2803da 1995 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
38e478ec 1996 ret = kvm_update_guest_debug(cs, reinject_trap);
b0b1d690 1997 }
b0b1d690
JK
1998 return ret;
1999}
2000
1bc22652 2001static int kvm_put_debugregs(X86CPU *cpu)
ff44f1a3 2002{
1bc22652 2003 CPUX86State *env = &cpu->env;
ff44f1a3
JK
2004 struct kvm_debugregs dbgregs;
2005 int i;
2006
2007 if (!kvm_has_debugregs()) {
2008 return 0;
2009 }
2010
2011 for (i = 0; i < 4; i++) {
2012 dbgregs.db[i] = env->dr[i];
2013 }
2014 dbgregs.dr6 = env->dr[6];
2015 dbgregs.dr7 = env->dr[7];
2016 dbgregs.flags = 0;
2017
1bc22652 2018 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
ff44f1a3
JK
2019}
2020
1bc22652 2021static int kvm_get_debugregs(X86CPU *cpu)
ff44f1a3 2022{
1bc22652 2023 CPUX86State *env = &cpu->env;
ff44f1a3
JK
2024 struct kvm_debugregs dbgregs;
2025 int i, ret;
2026
2027 if (!kvm_has_debugregs()) {
2028 return 0;
2029 }
2030
1bc22652 2031 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
ff44f1a3 2032 if (ret < 0) {
b9bec74b 2033 return ret;
ff44f1a3
JK
2034 }
2035 for (i = 0; i < 4; i++) {
2036 env->dr[i] = dbgregs.db[i];
2037 }
2038 env->dr[4] = env->dr[6] = dbgregs.dr6;
2039 env->dr[5] = env->dr[7] = dbgregs.dr7;
ff44f1a3
JK
2040
2041 return 0;
2042}
2043
20d695a9 2044int kvm_arch_put_registers(CPUState *cpu, int level)
05330448 2045{
20d695a9 2046 X86CPU *x86_cpu = X86_CPU(cpu);
05330448
AL
2047 int ret;
2048
2fa45344 2049 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
dbaa07c4 2050
6bdf863d
JK
2051 if (level >= KVM_PUT_RESET_STATE && has_msr_feature_control) {
2052 ret = kvm_put_msr_feature_control(x86_cpu);
2053 if (ret < 0) {
2054 return ret;
2055 }
2056 }
2057
1bc22652 2058 ret = kvm_getput_regs(x86_cpu, 1);
b9bec74b 2059 if (ret < 0) {
05330448 2060 return ret;
b9bec74b 2061 }
1bc22652 2062 ret = kvm_put_xsave(x86_cpu);
b9bec74b 2063 if (ret < 0) {
f1665b21 2064 return ret;
b9bec74b 2065 }
1bc22652 2066 ret = kvm_put_xcrs(x86_cpu);
b9bec74b 2067 if (ret < 0) {
05330448 2068 return ret;
b9bec74b 2069 }
1bc22652 2070 ret = kvm_put_sregs(x86_cpu);
b9bec74b 2071 if (ret < 0) {
05330448 2072 return ret;
b9bec74b 2073 }
ab443475 2074 /* must be before kvm_put_msrs */
1bc22652 2075 ret = kvm_inject_mce_oldstyle(x86_cpu);
ab443475
JK
2076 if (ret < 0) {
2077 return ret;
2078 }
1bc22652 2079 ret = kvm_put_msrs(x86_cpu, level);
b9bec74b 2080 if (ret < 0) {
05330448 2081 return ret;
b9bec74b 2082 }
ea643051 2083 if (level >= KVM_PUT_RESET_STATE) {
1bc22652 2084 ret = kvm_put_mp_state(x86_cpu);
b9bec74b 2085 if (ret < 0) {
ea643051 2086 return ret;
b9bec74b 2087 }
1bc22652 2088 ret = kvm_put_apic(x86_cpu);
680c1c6f
JK
2089 if (ret < 0) {
2090 return ret;
2091 }
ea643051 2092 }
7477cd38
MT
2093
2094 ret = kvm_put_tscdeadline_msr(x86_cpu);
2095 if (ret < 0) {
2096 return ret;
2097 }
2098
1bc22652 2099 ret = kvm_put_vcpu_events(x86_cpu, level);
b9bec74b 2100 if (ret < 0) {
a0fb002c 2101 return ret;
b9bec74b 2102 }
1bc22652 2103 ret = kvm_put_debugregs(x86_cpu);
b9bec74b 2104 if (ret < 0) {
b0b1d690 2105 return ret;
b9bec74b 2106 }
b0b1d690 2107 /* must be last */
1bc22652 2108 ret = kvm_guest_debug_workarounds(x86_cpu);
b9bec74b 2109 if (ret < 0) {
ff44f1a3 2110 return ret;
b9bec74b 2111 }
05330448
AL
2112 return 0;
2113}
2114
20d695a9 2115int kvm_arch_get_registers(CPUState *cs)
05330448 2116{
20d695a9 2117 X86CPU *cpu = X86_CPU(cs);
05330448
AL
2118 int ret;
2119
20d695a9 2120 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
dbaa07c4 2121
1bc22652 2122 ret = kvm_getput_regs(cpu, 0);
b9bec74b 2123 if (ret < 0) {
05330448 2124 return ret;
b9bec74b 2125 }
1bc22652 2126 ret = kvm_get_xsave(cpu);
b9bec74b 2127 if (ret < 0) {
f1665b21 2128 return ret;
b9bec74b 2129 }
1bc22652 2130 ret = kvm_get_xcrs(cpu);
b9bec74b 2131 if (ret < 0) {
05330448 2132 return ret;
b9bec74b 2133 }
1bc22652 2134 ret = kvm_get_sregs(cpu);
b9bec74b 2135 if (ret < 0) {
05330448 2136 return ret;
b9bec74b 2137 }
1bc22652 2138 ret = kvm_get_msrs(cpu);
b9bec74b 2139 if (ret < 0) {
05330448 2140 return ret;
b9bec74b 2141 }
23d02d9b 2142 ret = kvm_get_mp_state(cpu);
b9bec74b 2143 if (ret < 0) {
5a2e3c2e 2144 return ret;
b9bec74b 2145 }
1bc22652 2146 ret = kvm_get_apic(cpu);
680c1c6f
JK
2147 if (ret < 0) {
2148 return ret;
2149 }
1bc22652 2150 ret = kvm_get_vcpu_events(cpu);
b9bec74b 2151 if (ret < 0) {
a0fb002c 2152 return ret;
b9bec74b 2153 }
1bc22652 2154 ret = kvm_get_debugregs(cpu);
b9bec74b 2155 if (ret < 0) {
ff44f1a3 2156 return ret;
b9bec74b 2157 }
05330448
AL
2158 return 0;
2159}
2160
20d695a9 2161void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
05330448 2162{
20d695a9
AF
2163 X86CPU *x86_cpu = X86_CPU(cpu);
2164 CPUX86State *env = &x86_cpu->env;
ce377af3
JK
2165 int ret;
2166
276ce815 2167 /* Inject NMI */
259186a7
AF
2168 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
2169 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
276ce815 2170 DPRINTF("injected NMI\n");
1bc22652 2171 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
ce377af3
JK
2172 if (ret < 0) {
2173 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
2174 strerror(-ret));
2175 }
276ce815
LJ
2176 }
2177
e0723c45
PB
2178 /* Force the VCPU out of its inner loop to process any INIT requests
2179 * or (for userspace APIC, but it is cheap to combine the checks here)
2180 * pending TPR access reports.
2181 */
2182 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
2183 cpu->exit_request = 1;
2184 }
05330448 2185
e0723c45 2186 if (!kvm_irqchip_in_kernel()) {
db1669bc
JK
2187 /* Try to inject an interrupt if the guest can accept it */
2188 if (run->ready_for_interrupt_injection &&
259186a7 2189 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
db1669bc
JK
2190 (env->eflags & IF_MASK)) {
2191 int irq;
2192
259186a7 2193 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
db1669bc
JK
2194 irq = cpu_get_pic_interrupt(env);
2195 if (irq >= 0) {
2196 struct kvm_interrupt intr;
2197
2198 intr.irq = irq;
db1669bc 2199 DPRINTF("injected interrupt %d\n", irq);
1bc22652 2200 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
ce377af3
JK
2201 if (ret < 0) {
2202 fprintf(stderr,
2203 "KVM: injection failed, interrupt lost (%s)\n",
2204 strerror(-ret));
2205 }
db1669bc
JK
2206 }
2207 }
05330448 2208
db1669bc
JK
2209 /* If we have an interrupt but the guest is not ready to receive an
2210 * interrupt, request an interrupt window exit. This will
2211 * cause a return to userspace as soon as the guest is ready to
2212 * receive interrupts. */
259186a7 2213 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
db1669bc
JK
2214 run->request_interrupt_window = 1;
2215 } else {
2216 run->request_interrupt_window = 0;
2217 }
2218
2219 DPRINTF("setting tpr\n");
02e51483 2220 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
db1669bc 2221 }
05330448
AL
2222}
2223
20d695a9 2224void kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
05330448 2225{
20d695a9
AF
2226 X86CPU *x86_cpu = X86_CPU(cpu);
2227 CPUX86State *env = &x86_cpu->env;
2228
b9bec74b 2229 if (run->if_flag) {
05330448 2230 env->eflags |= IF_MASK;
b9bec74b 2231 } else {
05330448 2232 env->eflags &= ~IF_MASK;
b9bec74b 2233 }
02e51483
CF
2234 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
2235 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
05330448
AL
2236}
2237
20d695a9 2238int kvm_arch_process_async_events(CPUState *cs)
0af691d7 2239{
20d695a9
AF
2240 X86CPU *cpu = X86_CPU(cs);
2241 CPUX86State *env = &cpu->env;
232fc23b 2242
259186a7 2243 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
ab443475
JK
2244 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
2245 assert(env->mcg_cap);
2246
259186a7 2247 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
ab443475 2248
dd1750d7 2249 kvm_cpu_synchronize_state(cs);
ab443475
JK
2250
2251 if (env->exception_injected == EXCP08_DBLE) {
2252 /* this means triple fault */
2253 qemu_system_reset_request();
fcd7d003 2254 cs->exit_request = 1;
ab443475
JK
2255 return 0;
2256 }
2257 env->exception_injected = EXCP12_MCHK;
2258 env->has_error_code = 0;
2259
259186a7 2260 cs->halted = 0;
ab443475
JK
2261 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
2262 env->mp_state = KVM_MP_STATE_RUNNABLE;
2263 }
2264 }
2265
e0723c45
PB
2266 if (cs->interrupt_request & CPU_INTERRUPT_INIT) {
2267 kvm_cpu_synchronize_state(cs);
2268 do_cpu_init(cpu);
2269 }
2270
db1669bc
JK
2271 if (kvm_irqchip_in_kernel()) {
2272 return 0;
2273 }
2274
259186a7
AF
2275 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
2276 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
02e51483 2277 apic_poll_irq(cpu->apic_state);
5d62c43a 2278 }
259186a7 2279 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4601f7b0 2280 (env->eflags & IF_MASK)) ||
259186a7
AF
2281 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
2282 cs->halted = 0;
6792a57b 2283 }
259186a7 2284 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
dd1750d7 2285 kvm_cpu_synchronize_state(cs);
232fc23b 2286 do_cpu_sipi(cpu);
0af691d7 2287 }
259186a7
AF
2288 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
2289 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
dd1750d7 2290 kvm_cpu_synchronize_state(cs);
02e51483 2291 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
d362e757
JK
2292 env->tpr_access_type);
2293 }
0af691d7 2294
259186a7 2295 return cs->halted;
0af691d7
MT
2296}
2297
839b5630 2298static int kvm_handle_halt(X86CPU *cpu)
05330448 2299{
259186a7 2300 CPUState *cs = CPU(cpu);
839b5630
AF
2301 CPUX86State *env = &cpu->env;
2302
259186a7 2303 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
05330448 2304 (env->eflags & IF_MASK)) &&
259186a7
AF
2305 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
2306 cs->halted = 1;
bb4ea393 2307 return EXCP_HLT;
05330448
AL
2308 }
2309
bb4ea393 2310 return 0;
05330448
AL
2311}
2312
f7575c96 2313static int kvm_handle_tpr_access(X86CPU *cpu)
d362e757 2314{
f7575c96
AF
2315 CPUState *cs = CPU(cpu);
2316 struct kvm_run *run = cs->kvm_run;
d362e757 2317
02e51483 2318 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
d362e757
JK
2319 run->tpr_access.is_write ? TPR_ACCESS_WRITE
2320 : TPR_ACCESS_READ);
2321 return 1;
2322}
2323
f17ec444 2324int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
e22a25c9 2325{
38972938 2326 static const uint8_t int3 = 0xcc;
64bf3f4e 2327
f17ec444
AF
2328 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
2329 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
e22a25c9 2330 return -EINVAL;
b9bec74b 2331 }
e22a25c9
AL
2332 return 0;
2333}
2334
f17ec444 2335int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
e22a25c9
AL
2336{
2337 uint8_t int3;
2338
f17ec444
AF
2339 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
2340 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
e22a25c9 2341 return -EINVAL;
b9bec74b 2342 }
e22a25c9
AL
2343 return 0;
2344}
2345
2346static struct {
2347 target_ulong addr;
2348 int len;
2349 int type;
2350} hw_breakpoint[4];
2351
2352static int nb_hw_breakpoint;
2353
2354static int find_hw_breakpoint(target_ulong addr, int len, int type)
2355{
2356 int n;
2357
b9bec74b 2358 for (n = 0; n < nb_hw_breakpoint; n++) {
e22a25c9 2359 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
b9bec74b 2360 (hw_breakpoint[n].len == len || len == -1)) {
e22a25c9 2361 return n;
b9bec74b
JK
2362 }
2363 }
e22a25c9
AL
2364 return -1;
2365}
2366
2367int kvm_arch_insert_hw_breakpoint(target_ulong addr,
2368 target_ulong len, int type)
2369{
2370 switch (type) {
2371 case GDB_BREAKPOINT_HW:
2372 len = 1;
2373 break;
2374 case GDB_WATCHPOINT_WRITE:
2375 case GDB_WATCHPOINT_ACCESS:
2376 switch (len) {
2377 case 1:
2378 break;
2379 case 2:
2380 case 4:
2381 case 8:
b9bec74b 2382 if (addr & (len - 1)) {
e22a25c9 2383 return -EINVAL;
b9bec74b 2384 }
e22a25c9
AL
2385 break;
2386 default:
2387 return -EINVAL;
2388 }
2389 break;
2390 default:
2391 return -ENOSYS;
2392 }
2393
b9bec74b 2394 if (nb_hw_breakpoint == 4) {
e22a25c9 2395 return -ENOBUFS;
b9bec74b
JK
2396 }
2397 if (find_hw_breakpoint(addr, len, type) >= 0) {
e22a25c9 2398 return -EEXIST;
b9bec74b 2399 }
e22a25c9
AL
2400 hw_breakpoint[nb_hw_breakpoint].addr = addr;
2401 hw_breakpoint[nb_hw_breakpoint].len = len;
2402 hw_breakpoint[nb_hw_breakpoint].type = type;
2403 nb_hw_breakpoint++;
2404
2405 return 0;
2406}
2407
2408int kvm_arch_remove_hw_breakpoint(target_ulong addr,
2409 target_ulong len, int type)
2410{
2411 int n;
2412
2413 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
b9bec74b 2414 if (n < 0) {
e22a25c9 2415 return -ENOENT;
b9bec74b 2416 }
e22a25c9
AL
2417 nb_hw_breakpoint--;
2418 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
2419
2420 return 0;
2421}
2422
2423void kvm_arch_remove_all_hw_breakpoints(void)
2424{
2425 nb_hw_breakpoint = 0;
2426}
2427
2428static CPUWatchpoint hw_watchpoint;
2429
a60f24b5 2430static int kvm_handle_debug(X86CPU *cpu,
48405526 2431 struct kvm_debug_exit_arch *arch_info)
e22a25c9 2432{
ed2803da 2433 CPUState *cs = CPU(cpu);
a60f24b5 2434 CPUX86State *env = &cpu->env;
f2574737 2435 int ret = 0;
e22a25c9
AL
2436 int n;
2437
2438 if (arch_info->exception == 1) {
2439 if (arch_info->dr6 & (1 << 14)) {
ed2803da 2440 if (cs->singlestep_enabled) {
f2574737 2441 ret = EXCP_DEBUG;
b9bec74b 2442 }
e22a25c9 2443 } else {
b9bec74b
JK
2444 for (n = 0; n < 4; n++) {
2445 if (arch_info->dr6 & (1 << n)) {
e22a25c9
AL
2446 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
2447 case 0x0:
f2574737 2448 ret = EXCP_DEBUG;
e22a25c9
AL
2449 break;
2450 case 0x1:
f2574737 2451 ret = EXCP_DEBUG;
ff4700b0 2452 cs->watchpoint_hit = &hw_watchpoint;
e22a25c9
AL
2453 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2454 hw_watchpoint.flags = BP_MEM_WRITE;
2455 break;
2456 case 0x3:
f2574737 2457 ret = EXCP_DEBUG;
ff4700b0 2458 cs->watchpoint_hit = &hw_watchpoint;
e22a25c9
AL
2459 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2460 hw_watchpoint.flags = BP_MEM_ACCESS;
2461 break;
2462 }
b9bec74b
JK
2463 }
2464 }
e22a25c9 2465 }
ff4700b0 2466 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
f2574737 2467 ret = EXCP_DEBUG;
b9bec74b 2468 }
f2574737 2469 if (ret == 0) {
ff4700b0 2470 cpu_synchronize_state(cs);
48405526 2471 assert(env->exception_injected == -1);
b0b1d690 2472
f2574737 2473 /* pass to guest */
48405526
BS
2474 env->exception_injected = arch_info->exception;
2475 env->has_error_code = 0;
b0b1d690 2476 }
e22a25c9 2477
f2574737 2478 return ret;
e22a25c9
AL
2479}
2480
20d695a9 2481void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
e22a25c9
AL
2482{
2483 const uint8_t type_code[] = {
2484 [GDB_BREAKPOINT_HW] = 0x0,
2485 [GDB_WATCHPOINT_WRITE] = 0x1,
2486 [GDB_WATCHPOINT_ACCESS] = 0x3
2487 };
2488 const uint8_t len_code[] = {
2489 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
2490 };
2491 int n;
2492
a60f24b5 2493 if (kvm_sw_breakpoints_active(cpu)) {
e22a25c9 2494 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
b9bec74b 2495 }
e22a25c9
AL
2496 if (nb_hw_breakpoint > 0) {
2497 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
2498 dbg->arch.debugreg[7] = 0x0600;
2499 for (n = 0; n < nb_hw_breakpoint; n++) {
2500 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
2501 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
2502 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
95c077c9 2503 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
e22a25c9
AL
2504 }
2505 }
2506}
4513d923 2507
2a4dac83
JK
2508static bool host_supports_vmx(void)
2509{
2510 uint32_t ecx, unused;
2511
2512 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
2513 return ecx & CPUID_EXT_VMX;
2514}
2515
2516#define VMX_INVALID_GUEST_STATE 0x80000021
2517
20d695a9 2518int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
2a4dac83 2519{
20d695a9 2520 X86CPU *cpu = X86_CPU(cs);
2a4dac83
JK
2521 uint64_t code;
2522 int ret;
2523
2524 switch (run->exit_reason) {
2525 case KVM_EXIT_HLT:
2526 DPRINTF("handle_hlt\n");
839b5630 2527 ret = kvm_handle_halt(cpu);
2a4dac83
JK
2528 break;
2529 case KVM_EXIT_SET_TPR:
2530 ret = 0;
2531 break;
d362e757 2532 case KVM_EXIT_TPR_ACCESS:
f7575c96 2533 ret = kvm_handle_tpr_access(cpu);
d362e757 2534 break;
2a4dac83
JK
2535 case KVM_EXIT_FAIL_ENTRY:
2536 code = run->fail_entry.hardware_entry_failure_reason;
2537 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
2538 code);
2539 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
2540 fprintf(stderr,
12619721 2541 "\nIf you're running a guest on an Intel machine without "
2a4dac83
JK
2542 "unrestricted mode\n"
2543 "support, the failure can be most likely due to the guest "
2544 "entering an invalid\n"
2545 "state for Intel VT. For example, the guest maybe running "
2546 "in big real mode\n"
2547 "which is not supported on less recent Intel processors."
2548 "\n\n");
2549 }
2550 ret = -1;
2551 break;
2552 case KVM_EXIT_EXCEPTION:
2553 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
2554 run->ex.exception, run->ex.error_code);
2555 ret = -1;
2556 break;
f2574737
JK
2557 case KVM_EXIT_DEBUG:
2558 DPRINTF("kvm_exit_debug\n");
a60f24b5 2559 ret = kvm_handle_debug(cpu, &run->debug.arch);
f2574737 2560 break;
2a4dac83
JK
2561 default:
2562 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2563 ret = -1;
2564 break;
2565 }
2566
2567 return ret;
2568}
2569
20d695a9 2570bool kvm_arch_stop_on_emulation_error(CPUState *cs)
4513d923 2571{
20d695a9
AF
2572 X86CPU *cpu = X86_CPU(cs);
2573 CPUX86State *env = &cpu->env;
2574
dd1750d7 2575 kvm_cpu_synchronize_state(cs);
b9bec74b
JK
2576 return !(env->cr[0] & CR0_PE_MASK) ||
2577 ((env->segs[R_CS].selector & 3) != 3);
4513d923 2578}
84b058d7
JK
2579
2580void kvm_arch_init_irq_routing(KVMState *s)
2581{
2582 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2583 /* If kernel can't do irq routing, interrupt source
2584 * override 0->2 cannot be set up as required by HPET.
2585 * So we have to disable it.
2586 */
2587 no_hpet = 1;
2588 }
cc7e0ddf 2589 /* We know at this point that we're using the in-kernel
614e41bc 2590 * irqchip, so we can use irqfds, and on x86 we know
f3e1bed8 2591 * we can use msi via irqfd and GSI routing.
cc7e0ddf 2592 */
614e41bc 2593 kvm_msi_via_irqfd_allowed = true;
f3e1bed8 2594 kvm_gsi_routing_allowed = true;
84b058d7 2595}
b139bd30
JK
2596
2597/* Classic KVM device assignment interface. Will remain x86 only. */
2598int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
2599 uint32_t flags, uint32_t *dev_id)
2600{
2601 struct kvm_assigned_pci_dev dev_data = {
2602 .segnr = dev_addr->domain,
2603 .busnr = dev_addr->bus,
2604 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
2605 .flags = flags,
2606 };
2607 int ret;
2608
2609 dev_data.assigned_dev_id =
2610 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
2611
2612 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
2613 if (ret < 0) {
2614 return ret;
2615 }
2616
2617 *dev_id = dev_data.assigned_dev_id;
2618
2619 return 0;
2620}
2621
2622int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
2623{
2624 struct kvm_assigned_pci_dev dev_data = {
2625 .assigned_dev_id = dev_id,
2626 };
2627
2628 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
2629}
2630
2631static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
2632 uint32_t irq_type, uint32_t guest_irq)
2633{
2634 struct kvm_assigned_irq assigned_irq = {
2635 .assigned_dev_id = dev_id,
2636 .guest_irq = guest_irq,
2637 .flags = irq_type,
2638 };
2639
2640 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
2641 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
2642 } else {
2643 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
2644 }
2645}
2646
2647int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
2648 uint32_t guest_irq)
2649{
2650 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
2651 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
2652
2653 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
2654}
2655
2656int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
2657{
2658 struct kvm_assigned_pci_dev dev_data = {
2659 .assigned_dev_id = dev_id,
2660 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
2661 };
2662
2663 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
2664}
2665
2666static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
2667 uint32_t type)
2668{
2669 struct kvm_assigned_irq assigned_irq = {
2670 .assigned_dev_id = dev_id,
2671 .flags = type,
2672 };
2673
2674 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
2675}
2676
2677int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
2678{
2679 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
2680 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
2681}
2682
2683int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
2684{
2685 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
2686 KVM_DEV_IRQ_GUEST_MSI, virq);
2687}
2688
2689int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
2690{
2691 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
2692 KVM_DEV_IRQ_HOST_MSI);
2693}
2694
2695bool kvm_device_msix_supported(KVMState *s)
2696{
2697 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
2698 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
2699 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
2700}
2701
2702int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
2703 uint32_t nr_vectors)
2704{
2705 struct kvm_assigned_msix_nr msix_nr = {
2706 .assigned_dev_id = dev_id,
2707 .entry_nr = nr_vectors,
2708 };
2709
2710 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
2711}
2712
2713int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
2714 int virq)
2715{
2716 struct kvm_assigned_msix_entry msix_entry = {
2717 .assigned_dev_id = dev_id,
2718 .gsi = virq,
2719 .entry = vector,
2720 };
2721
2722 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
2723}
2724
2725int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
2726{
2727 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
2728 KVM_DEV_IRQ_GUEST_MSIX, 0);
2729}
2730
2731int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
2732{
2733 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
2734 KVM_DEV_IRQ_HOST_MSIX);
2735}