]> git.proxmox.com Git - mirror_zfs.git/blame - zfs/lib/libumem/umem.c
Rebase to OpenSolaris b103, in the process we are removing any code which did not...
[mirror_zfs.git] / zfs / lib / libumem / umem.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
b128c09f
BB
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
34dc7c2f
BB
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
b128c09f 21
34dc7c2f 22/*
b128c09f 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
34dc7c2f
BB
24 * Use is subject to license terms.
25 */
34dc7c2f 26
b128c09f 27#pragma ident "%Z%%M% %I% %E% SMI"
34dc7c2f 28
b128c09f 29/*
34dc7c2f
BB
30 * based on usr/src/uts/common/os/kmem.c r1.64 from 2001/12/18
31 *
32 * The slab allocator, as described in the following two papers:
33 *
34 * Jeff Bonwick,
35 * The Slab Allocator: An Object-Caching Kernel Memory Allocator.
36 * Proceedings of the Summer 1994 Usenix Conference.
37 * Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf.
38 *
39 * Jeff Bonwick and Jonathan Adams,
40 * Magazines and vmem: Extending the Slab Allocator to Many CPUs and
41 * Arbitrary Resources.
42 * Proceedings of the 2001 Usenix Conference.
43 * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf.
44 *
45 * 1. Overview
46 * -----------
47 * umem is very close to kmem in implementation. There are four major
48 * areas of divergence:
49 *
50 * * Initialization
51 *
52 * * CPU handling
53 *
54 * * umem_update()
55 *
56 * * KM_SLEEP v.s. UMEM_NOFAIL
57 *
b128c09f 58 * * lock ordering
34dc7c2f
BB
59 *
60 * 2. Initialization
61 * -----------------
62 * kmem is initialized early on in boot, and knows that no one will call
63 * into it before it is ready. umem does not have these luxuries. Instead,
64 * initialization is divided into two phases:
65 *
66 * * library initialization, and
67 *
68 * * first use
69 *
70 * umem's full initialization happens at the time of the first allocation
71 * request (via malloc() and friends, umem_alloc(), or umem_zalloc()),
72 * or the first call to umem_cache_create().
73 *
74 * umem_free(), and umem_cache_alloc() do not require special handling,
75 * since the only way to get valid arguments for them is to successfully
76 * call a function from the first group.
77 *
78 * 2.1. Library Initialization: umem_startup()
79 * -------------------------------------------
80 * umem_startup() is libumem.so's .init section. It calls pthread_atfork()
81 * to install the handlers necessary for umem's Fork1-Safety. Because of
82 * race condition issues, all other pre-umem_init() initialization is done
83 * statically (i.e. by the dynamic linker).
84 *
85 * For standalone use, umem_startup() returns everything to its initial
86 * state.
87 *
88 * 2.2. First use: umem_init()
89 * ------------------------------
90 * The first time any memory allocation function is used, we have to
91 * create the backing caches and vmem arenas which are needed for it.
92 * umem_init() is the central point for that task. When it completes,
93 * umem_ready is either UMEM_READY (all set) or UMEM_READY_INIT_FAILED (unable
94 * to initialize, probably due to lack of memory).
95 *
96 * There are four different paths from which umem_init() is called:
97 *
98 * * from umem_alloc() or umem_zalloc(), with 0 < size < UMEM_MAXBUF,
99 *
100 * * from umem_alloc() or umem_zalloc(), with size > UMEM_MAXBUF,
101 *
102 * * from umem_cache_create(), and
103 *
104 * * from memalign(), with align > UMEM_ALIGN.
105 *
106 * The last three just check if umem is initialized, and call umem_init()
107 * if it is not. For performance reasons, the first case is more complicated.
108 *
109 * 2.2.1. umem_alloc()/umem_zalloc(), with 0 < size < UMEM_MAXBUF
110 * -----------------------------------------------------------------
111 * In this case, umem_cache_alloc(&umem_null_cache, ...) is called.
112 * There is special case code in which causes any allocation on
113 * &umem_null_cache to fail by returning (NULL), regardless of the
114 * flags argument.
115 *
116 * So umem_cache_alloc() returns NULL, and umem_alloc()/umem_zalloc() call
117 * umem_alloc_retry(). umem_alloc_retry() sees that the allocation
118 * was agains &umem_null_cache, and calls umem_init().
119 *
120 * If initialization is successful, umem_alloc_retry() returns 1, which
121 * causes umem_alloc()/umem_zalloc() to start over, which causes it to load
122 * the (now valid) cache pointer from umem_alloc_table.
123 *
124 * 2.2.2. Dealing with race conditions
125 * -----------------------------------
126 * There are a couple race conditions resulting from the initialization
127 * code that we have to guard against:
128 *
129 * * In umem_cache_create(), there is a special UMC_INTERNAL cflag
130 * that is passed for caches created during initialization. It
131 * is illegal for a user to try to create a UMC_INTERNAL cache.
132 * This allows initialization to proceed, but any other
133 * umem_cache_create()s will block by calling umem_init().
134 *
135 * * Since umem_null_cache has a 1-element cache_cpu, it's cache_cpu_mask
136 * is always zero. umem_cache_alloc uses cp->cache_cpu_mask to
137 * mask the cpu number. This prevents a race between grabbing a
138 * cache pointer out of umem_alloc_table and growing the cpu array.
139 *
140 *
141 * 3. CPU handling
142 * ---------------
143 * kmem uses the CPU's sequence number to determine which "cpu cache" to
144 * use for an allocation. Currently, there is no way to get the sequence
145 * number in userspace.
146 *
147 * umem keeps track of cpu information in umem_cpus, an array of umem_max_ncpus
148 * umem_cpu_t structures. CURCPU() is a a "hint" function, which we then mask
149 * with either umem_cpu_mask or cp->cache_cpu_mask to find the actual "cpu" id.
150 * The mechanics of this is all in the CPU(mask) macro.
151 *
152 * Currently, umem uses _lwp_self() as its hint.
153 *
154 *
155 * 4. The update thread
156 * --------------------
157 * kmem uses a task queue, kmem_taskq, to do periodic maintenance on
158 * every kmem cache. vmem has a periodic timeout for hash table resizing.
159 * The kmem_taskq also provides a separate context for kmem_cache_reap()'s
160 * to be done in, avoiding issues of the context of kmem_reap() callers.
161 *
162 * Instead, umem has the concept of "updates", which are asynchronous requests
163 * for work attached to single caches. All caches with pending work are
164 * on a doubly linked list rooted at the umem_null_cache. All update state
165 * is protected by the umem_update_lock mutex, and the umem_update_cv is used
166 * for notification between threads.
167 *
168 * 4.1. Cache states with regards to updates
169 * -----------------------------------------
170 * A given cache is in one of three states:
171 *
172 * Inactive cache_uflags is zero, cache_u{next,prev} are NULL
173 *
174 * Work Requested cache_uflags is non-zero (but UMU_ACTIVE is not set),
175 * cache_u{next,prev} link the cache onto the global
176 * update list
177 *
178 * Active cache_uflags has UMU_ACTIVE set, cache_u{next,prev}
179 * are NULL, and either umem_update_thr or
180 * umem_st_update_thr are actively doing work on the
181 * cache.
182 *
183 * An update can be added to any cache in any state -- if the cache is
184 * Inactive, it transitions to being Work Requested. If the cache is
185 * Active, the worker will notice the new update and act on it before
186 * transitioning the cache to the Inactive state.
187 *
188 * If a cache is in the Active state, UMU_NOTIFY can be set, which asks
189 * the worker to broadcast the umem_update_cv when it has finished.
190 *
191 * 4.2. Update interface
192 * ---------------------
193 * umem_add_update() adds an update to a particular cache.
194 * umem_updateall() adds an update to all caches.
195 * umem_remove_updates() returns a cache to the Inactive state.
196 *
197 * umem_process_updates() process all caches in the Work Requested state.
198 *
199 * 4.3. Reaping
200 * ------------
201 * When umem_reap() is called (at the time of heap growth), it schedule
202 * UMU_REAP updates on every cache. It then checks to see if the update
203 * thread exists (umem_update_thr != 0). If it is, it broadcasts
204 * the umem_update_cv to wake the update thread up, and returns.
205 *
206 * If the update thread does not exist (umem_update_thr == 0), and the
207 * program currently has multiple threads, umem_reap() attempts to create
208 * a new update thread.
209 *
210 * If the process is not multithreaded, or the creation fails, umem_reap()
211 * calls umem_st_update() to do an inline update.
212 *
213 * 4.4. The update thread
214 * ----------------------
215 * The update thread spends most of its time in cond_timedwait() on the
216 * umem_update_cv. It wakes up under two conditions:
217 *
218 * * The timedwait times out, in which case it needs to run a global
219 * update, or
220 *
221 * * someone cond_broadcast(3THR)s the umem_update_cv, in which case
222 * it needs to check if there are any caches in the Work Requested
223 * state.
224 *
225 * When it is time for another global update, umem calls umem_cache_update()
226 * on every cache, then calls vmem_update(), which tunes the vmem structures.
227 * umem_cache_update() can request further work using umem_add_update().
228 *
229 * After any work from the global update completes, the update timer is
230 * reset to umem_reap_interval seconds in the future. This makes the
231 * updates self-throttling.
232 *
233 * Reaps are similarly self-throttling. After a UMU_REAP update has
234 * been scheduled on all caches, umem_reap() sets a flag and wakes up the
235 * update thread. The update thread notices the flag, and resets the
236 * reap state.
237 *
238 * 4.5. Inline updates
239 * -------------------
240 * If the update thread is not running, umem_st_update() is used instead. It
241 * immediately does a global update (as above), then calls
242 * umem_process_updates() to process both the reaps that umem_reap() added and
243 * any work generated by the global update. Afterwards, it resets the reap
244 * state.
245 *
246 * While the umem_st_update() is running, umem_st_update_thr holds the thread
247 * id of the thread performing the update.
248 *
249 * 4.6. Updates and fork1()
250 * ------------------------
251 * umem has fork1() pre- and post-handlers which lock up (and release) every
252 * mutex in every cache. They also lock up the umem_update_lock. Since
253 * fork1() only copies over a single lwp, other threads (including the update
254 * thread) could have been actively using a cache in the parent. This
255 * can lead to inconsistencies in the child process.
256 *
257 * Because we locked all of the mutexes, the only possible inconsistancies are:
258 *
259 * * a umem_cache_alloc() could leak its buffer.
260 *
261 * * a caller of umem_depot_alloc() could leak a magazine, and all the
262 * buffers contained in it.
263 *
264 * * a cache could be in the Active update state. In the child, there
265 * would be no thread actually working on it.
266 *
267 * * a umem_hash_rescale() could leak the new hash table.
268 *
269 * * a umem_magazine_resize() could be in progress.
270 *
271 * * a umem_reap() could be in progress.
272 *
273 * The memory leaks we can't do anything about. umem_release_child() resets
274 * the update state, moves any caches in the Active state to the Work Requested
275 * state. This might cause some updates to be re-run, but UMU_REAP and
276 * UMU_HASH_RESCALE are effectively idempotent, and the worst that can
277 * happen from umem_magazine_resize() is resizing the magazine twice in close
278 * succession.
279 *
280 * Much of the cleanup in umem_release_child() is skipped if
281 * umem_st_update_thr == thr_self(). This is so that applications which call
282 * fork1() from a cache callback does not break. Needless to say, any such
283 * application is tremendously broken.
284 *
285 *
286 * 5. KM_SLEEP v.s. UMEM_NOFAIL
287 * ----------------------------
288 * Allocations against kmem and vmem have two basic modes: SLEEP and
289 * NOSLEEP. A sleeping allocation is will go to sleep (waiting for
290 * more memory) instead of failing (returning NULL).
291 *
292 * SLEEP allocations presume an extremely multithreaded model, with
293 * a lot of allocation and deallocation activity. umem cannot presume
294 * that its clients have any particular type of behavior. Instead,
295 * it provides two types of allocations:
296 *
297 * * UMEM_DEFAULT, equivalent to KM_NOSLEEP (i.e. return NULL on
298 * failure)
299 *
300 * * UMEM_NOFAIL, which, on failure, calls an optional callback
301 * (registered with umem_nofail_callback()).
302 *
303 * The callback is invoked with no locks held, and can do an arbitrary
304 * amount of work. It then has a choice between:
305 *
306 * * Returning UMEM_CALLBACK_RETRY, which will cause the allocation
307 * to be restarted.
308 *
309 * * Returning UMEM_CALLBACK_EXIT(status), which will cause exit(2)
310 * to be invoked with status. If multiple threads attempt to do
311 * this simultaneously, only one will call exit(2).
312 *
313 * * Doing some kind of non-local exit (thr_exit(3thr), longjmp(3C),
314 * etc.)
315 *
316 * The default callback returns UMEM_CALLBACK_EXIT(255).
317 *
318 * To have these callbacks without risk of state corruption (in the case of
319 * a non-local exit), we have to ensure that the callbacks get invoked
320 * close to the original allocation, with no inconsistent state or held
321 * locks. The following steps are taken:
322 *
323 * * All invocations of vmem are VM_NOSLEEP.
324 *
325 * * All constructor callbacks (which can themselves to allocations)
326 * are passed UMEM_DEFAULT as their required allocation argument. This
327 * way, the constructor will fail, allowing the highest-level allocation
328 * invoke the nofail callback.
329 *
330 * If a constructor callback _does_ do a UMEM_NOFAIL allocation, and
331 * the nofail callback does a non-local exit, we will leak the
332 * partially-constructed buffer.
b128c09f
BB
333 *
334 *
335 * 6. Lock Ordering
336 * ----------------
337 * umem has a few more locks than kmem does, mostly in the update path. The
338 * overall lock ordering (earlier locks must be acquired first) is:
339 *
340 * umem_init_lock
341 *
342 * vmem_list_lock
343 * vmem_nosleep_lock.vmpl_mutex
344 * vmem_t's:
345 * vm_lock
346 * sbrk_lock
347 *
348 * umem_cache_lock
349 * umem_update_lock
350 * umem_flags_lock
351 * umem_cache_t's:
352 * cache_cpu[*].cc_lock
353 * cache_depot_lock
354 * cache_lock
355 * umem_log_header_t's:
356 * lh_cpu[*].clh_lock
357 * lh_lock
34dc7c2f
BB
358 */
359
34dc7c2f
BB
360#include <umem_impl.h>
361#include <sys/vmem_impl_user.h>
362#include "umem_base.h"
363#include "vmem_base.h"
364
34dc7c2f 365#include <sys/processor.h>
34dc7c2f 366#include <sys/sysmacros.h>
34dc7c2f 367
34dc7c2f 368#include <alloca.h>
34dc7c2f
BB
369#include <errno.h>
370#include <limits.h>
371#include <stdio.h>
372#include <stdlib.h>
373#include <string.h>
34dc7c2f 374#include <strings.h>
34dc7c2f 375#include <signal.h>
34dc7c2f 376#include <unistd.h>
34dc7c2f 377#include <atomic.h>
34dc7c2f
BB
378
379#include "misc.h"
380
381#define UMEM_VMFLAGS(umflag) (VM_NOSLEEP)
382
383size_t pagesize;
384
385/*
386 * The default set of caches to back umem_alloc().
387 * These sizes should be reevaluated periodically.
388 *
389 * We want allocations that are multiples of the coherency granularity
390 * (64 bytes) to be satisfied from a cache which is a multiple of 64
391 * bytes, so that it will be 64-byte aligned. For all multiples of 64,
392 * the next kmem_cache_size greater than or equal to it must be a
393 * multiple of 64.
b128c09f
BB
394 *
395 * This table must be in sorted order, from smallest to highest. The
396 * highest slot must be UMEM_MAXBUF, and every slot afterwards must be
397 * zero.
34dc7c2f 398 */
b128c09f 399static int umem_alloc_sizes[] = {
34dc7c2f
BB
400#ifdef _LP64
401 1 * 8,
402 1 * 16,
403 2 * 16,
404 3 * 16,
405#else
406 1 * 8,
407 2 * 8,
408 3 * 8,
409 4 * 8, 5 * 8, 6 * 8, 7 * 8,
410#endif
411 4 * 16, 5 * 16, 6 * 16, 7 * 16,
412 4 * 32, 5 * 32, 6 * 32, 7 * 32,
413 4 * 64, 5 * 64, 6 * 64, 7 * 64,
414 4 * 128, 5 * 128, 6 * 128, 7 * 128,
415 P2ALIGN(8192 / 7, 64),
416 P2ALIGN(8192 / 6, 64),
417 P2ALIGN(8192 / 5, 64),
b128c09f 418 P2ALIGN(8192 / 4, 64), 2304,
34dc7c2f 419 P2ALIGN(8192 / 3, 64),
b128c09f
BB
420 P2ALIGN(8192 / 2, 64), 4544,
421 P2ALIGN(8192 / 1, 64), 9216,
34dc7c2f 422 4096 * 3,
b128c09f
BB
423 UMEM_MAXBUF, /* = 8192 * 2 */
424 /* 24 slots for user expansion */
425 0, 0, 0, 0, 0, 0, 0, 0,
426 0, 0, 0, 0, 0, 0, 0, 0,
427 0, 0, 0, 0, 0, 0, 0, 0,
34dc7c2f
BB
428};
429#define NUM_ALLOC_SIZES (sizeof (umem_alloc_sizes) / sizeof (*umem_alloc_sizes))
430
34dc7c2f
BB
431static umem_magtype_t umem_magtype[] = {
432 { 1, 8, 3200, 65536 },
433 { 3, 16, 256, 32768 },
434 { 7, 32, 64, 16384 },
435 { 15, 64, 0, 8192 },
436 { 31, 64, 0, 4096 },
437 { 47, 64, 0, 2048 },
438 { 63, 64, 0, 1024 },
439 { 95, 64, 0, 512 },
440 { 143, 64, 0, 0 },
441};
442
443/*
444 * umem tunables
445 */
446uint32_t umem_max_ncpus; /* # of CPU caches. */
447
448uint32_t umem_stack_depth = 15; /* # stack frames in a bufctl_audit */
449uint32_t umem_reap_interval = 10; /* max reaping rate (seconds) */
450uint_t umem_depot_contention = 2; /* max failed trylocks per real interval */
451uint_t umem_abort = 1; /* whether to abort on error */
452uint_t umem_output = 0; /* whether to write to standard error */
453uint_t umem_logging = 0; /* umem_log_enter() override */
454uint32_t umem_mtbf = 0; /* mean time between failures [default: off] */
455size_t umem_transaction_log_size; /* size of transaction log */
456size_t umem_content_log_size; /* size of content log */
457size_t umem_failure_log_size; /* failure log [4 pages per CPU] */
458size_t umem_slab_log_size; /* slab create log [4 pages per CPU] */
459size_t umem_content_maxsave = 256; /* UMF_CONTENTS max bytes to log */
460size_t umem_lite_minsize = 0; /* minimum buffer size for UMF_LITE */
461size_t umem_lite_maxalign = 1024; /* maximum buffer alignment for UMF_LITE */
462size_t umem_maxverify; /* maximum bytes to inspect in debug routines */
463size_t umem_minfirewall; /* hardware-enforced redzone threshold */
464
465uint_t umem_flags = 0;
466
b128c09f
BB
467mutex_t umem_init_lock; /* locks initialization */
468cond_t umem_init_cv; /* initialization CV */
34dc7c2f
BB
469thread_t umem_init_thr; /* thread initializing */
470int umem_init_env_ready; /* environ pre-initted */
471int umem_ready = UMEM_READY_STARTUP;
472
473static umem_nofail_callback_t *nofail_callback;
b128c09f 474static mutex_t umem_nofail_exit_lock;
34dc7c2f
BB
475static thread_t umem_nofail_exit_thr;
476
477static umem_cache_t *umem_slab_cache;
478static umem_cache_t *umem_bufctl_cache;
479static umem_cache_t *umem_bufctl_audit_cache;
480
b128c09f 481mutex_t umem_flags_lock;
34dc7c2f
BB
482
483static vmem_t *heap_arena;
484static vmem_alloc_t *heap_alloc;
485static vmem_free_t *heap_free;
486
487static vmem_t *umem_internal_arena;
488static vmem_t *umem_cache_arena;
489static vmem_t *umem_hash_arena;
490static vmem_t *umem_log_arena;
491static vmem_t *umem_oversize_arena;
492static vmem_t *umem_va_arena;
493static vmem_t *umem_default_arena;
494static vmem_t *umem_firewall_va_arena;
495static vmem_t *umem_firewall_arena;
496
497vmem_t *umem_memalign_arena;
498
499umem_log_header_t *umem_transaction_log;
500umem_log_header_t *umem_content_log;
501umem_log_header_t *umem_failure_log;
502umem_log_header_t *umem_slab_log;
503
b128c09f 504#define CPUHINT() (thr_self())
34dc7c2f
BB
505#define CPUHINT_MAX() INT_MAX
506
507#define CPU(mask) (umem_cpus + (CPUHINT() & (mask)))
508static umem_cpu_t umem_startup_cpu = { /* initial, single, cpu */
509 UMEM_CACHE_SIZE(0),
510 0
511};
512
513static uint32_t umem_cpu_mask = 0; /* global cpu mask */
514static umem_cpu_t *umem_cpus = &umem_startup_cpu; /* cpu list */
515
516volatile uint32_t umem_reaping;
517
518thread_t umem_update_thr;
519struct timeval umem_update_next; /* timeofday of next update */
520volatile thread_t umem_st_update_thr; /* only used when single-thd */
521
522#define IN_UPDATE() (thr_self() == umem_update_thr || \
523 thr_self() == umem_st_update_thr)
524#define IN_REAP() IN_UPDATE()
525
b128c09f
BB
526mutex_t umem_update_lock; /* cache_u{next,prev,flags} */
527cond_t umem_update_cv;
34dc7c2f
BB
528
529volatile hrtime_t umem_reap_next; /* min hrtime of next reap */
530
b128c09f 531mutex_t umem_cache_lock; /* inter-cache linkage only */
34dc7c2f
BB
532
533#ifdef UMEM_STANDALONE
534umem_cache_t umem_null_cache;
535static const umem_cache_t umem_null_cache_template = {
536#else
537umem_cache_t umem_null_cache = {
538#endif
539 0, 0, 0, 0, 0,
540 0, 0,
541 0, 0,
542 0, 0,
543 "invalid_cache",
544 0, 0,
545 NULL, NULL, NULL, NULL,
546 NULL,
547 0, 0, 0, 0,
548 &umem_null_cache, &umem_null_cache,
549 &umem_null_cache, &umem_null_cache,
550 0,
551 DEFAULTMUTEX, /* start of slab layer */
552 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
553 &umem_null_cache.cache_nullslab,
554 {
555 &umem_null_cache,
556 NULL,
557 &umem_null_cache.cache_nullslab,
558 &umem_null_cache.cache_nullslab,
559 NULL,
560 -1,
561 0
562 },
563 NULL,
564 NULL,
565 DEFAULTMUTEX, /* start of depot layer */
566 NULL, {
567 NULL, 0, 0, 0, 0
568 }, {
569 NULL, 0, 0, 0, 0
570 }, {
571 {
572 DEFAULTMUTEX, /* start of CPU cache */
573 0, 0, NULL, NULL, -1, -1, 0
574 }
575 }
576};
577
578#define ALLOC_TABLE_4 \
579 &umem_null_cache, &umem_null_cache, &umem_null_cache, &umem_null_cache
580
581#define ALLOC_TABLE_64 \
582 ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, \
583 ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, \
584 ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, \
585 ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4
586
587#define ALLOC_TABLE_1024 \
588 ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, \
589 ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, \
590 ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, \
591 ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64
592
593static umem_cache_t *umem_alloc_table[UMEM_MAXBUF >> UMEM_ALIGN_SHIFT] = {
594 ALLOC_TABLE_1024,
595 ALLOC_TABLE_1024
596};
597
598
599/* Used to constrain audit-log stack traces */
600caddr_t umem_min_stack;
601caddr_t umem_max_stack;
602
603
34dc7c2f
BB
604#define UMERR_MODIFIED 0 /* buffer modified while on freelist */
605#define UMERR_REDZONE 1 /* redzone violation (write past end of buf) */
606#define UMERR_DUPFREE 2 /* freed a buffer twice */
607#define UMERR_BADADDR 3 /* freed a bad (unallocated) address */
608#define UMERR_BADBUFTAG 4 /* buftag corrupted */
609#define UMERR_BADBUFCTL 5 /* bufctl corrupted */
610#define UMERR_BADCACHE 6 /* freed a buffer to the wrong cache */
611#define UMERR_BADSIZE 7 /* alloc size != free size */
612#define UMERR_BADBASE 8 /* buffer base address wrong */
613
614struct {
615 hrtime_t ump_timestamp; /* timestamp of error */
616 int ump_error; /* type of umem error (UMERR_*) */
617 void *ump_buffer; /* buffer that induced abort */
618 void *ump_realbuf; /* real start address for buffer */
619 umem_cache_t *ump_cache; /* buffer's cache according to client */
620 umem_cache_t *ump_realcache; /* actual cache containing buffer */
621 umem_slab_t *ump_slab; /* slab accoring to umem_findslab() */
622 umem_bufctl_t *ump_bufctl; /* bufctl */
623} umem_abort_info;
624
625static void
626copy_pattern(uint64_t pattern, void *buf_arg, size_t size)
627{
628 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
629 uint64_t *buf = buf_arg;
630
631 while (buf < bufend)
632 *buf++ = pattern;
633}
634
635static void *
636verify_pattern(uint64_t pattern, void *buf_arg, size_t size)
637{
638 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
639 uint64_t *buf;
640
641 for (buf = buf_arg; buf < bufend; buf++)
642 if (*buf != pattern)
643 return (buf);
644 return (NULL);
645}
646
647static void *
648verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size)
649{
650 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
651 uint64_t *buf;
652
653 for (buf = buf_arg; buf < bufend; buf++) {
654 if (*buf != old) {
655 copy_pattern(old, buf_arg,
656 (char *)buf - (char *)buf_arg);
657 return (buf);
658 }
659 *buf = new;
660 }
661
662 return (NULL);
663}
664
665void
666umem_cache_applyall(void (*func)(umem_cache_t *))
667{
668 umem_cache_t *cp;
669
670 (void) mutex_lock(&umem_cache_lock);
671 for (cp = umem_null_cache.cache_next; cp != &umem_null_cache;
672 cp = cp->cache_next)
673 func(cp);
674 (void) mutex_unlock(&umem_cache_lock);
675}
676
677static void
678umem_add_update_unlocked(umem_cache_t *cp, int flags)
679{
680 umem_cache_t *cnext, *cprev;
681
682 flags &= ~UMU_ACTIVE;
683
684 if (!flags)
685 return;
686
687 if (cp->cache_uflags & UMU_ACTIVE) {
688 cp->cache_uflags |= flags;
689 } else {
690 if (cp->cache_unext != NULL) {
691 ASSERT(cp->cache_uflags != 0);
692 cp->cache_uflags |= flags;
693 } else {
694 ASSERT(cp->cache_uflags == 0);
695 cp->cache_uflags = flags;
696 cp->cache_unext = cnext = &umem_null_cache;
697 cp->cache_uprev = cprev = umem_null_cache.cache_uprev;
698 cnext->cache_uprev = cp;
699 cprev->cache_unext = cp;
700 }
701 }
702}
703
704static void
705umem_add_update(umem_cache_t *cp, int flags)
706{
707 (void) mutex_lock(&umem_update_lock);
708
709 umem_add_update_unlocked(cp, flags);
710
711 if (!IN_UPDATE())
712 (void) cond_broadcast(&umem_update_cv);
713
714 (void) mutex_unlock(&umem_update_lock);
715}
716
717/*
718 * Remove a cache from the update list, waiting for any in-progress work to
719 * complete first.
720 */
721static void
722umem_remove_updates(umem_cache_t *cp)
723{
724 (void) mutex_lock(&umem_update_lock);
725
726 /*
727 * Get it out of the active state
728 */
729 while (cp->cache_uflags & UMU_ACTIVE) {
b128c09f
BB
730 int cancel_state;
731
34dc7c2f
BB
732 ASSERT(cp->cache_unext == NULL);
733
734 cp->cache_uflags |= UMU_NOTIFY;
735
736 /*
737 * Make sure the update state is sane, before we wait
738 */
739 ASSERT(umem_update_thr != 0 || umem_st_update_thr != 0);
740 ASSERT(umem_update_thr != thr_self() &&
741 umem_st_update_thr != thr_self());
742
b128c09f
BB
743 (void) pthread_setcancelstate(PTHREAD_CANCEL_DISABLE,
744 &cancel_state);
745 (void) cond_wait(&umem_update_cv, &umem_update_lock);
746 (void) pthread_setcancelstate(cancel_state, NULL);
34dc7c2f
BB
747 }
748 /*
749 * Get it out of the Work Requested state
750 */
751 if (cp->cache_unext != NULL) {
752 cp->cache_uprev->cache_unext = cp->cache_unext;
753 cp->cache_unext->cache_uprev = cp->cache_uprev;
754 cp->cache_uprev = cp->cache_unext = NULL;
755 cp->cache_uflags = 0;
756 }
757 /*
758 * Make sure it is in the Inactive state
759 */
760 ASSERT(cp->cache_unext == NULL && cp->cache_uflags == 0);
761 (void) mutex_unlock(&umem_update_lock);
762}
763
764static void
765umem_updateall(int flags)
766{
767 umem_cache_t *cp;
768
769 /*
770 * NOTE: To prevent deadlock, umem_cache_lock is always acquired first.
771 *
772 * (umem_add_update is called from things run via umem_cache_applyall)
773 */
774 (void) mutex_lock(&umem_cache_lock);
775 (void) mutex_lock(&umem_update_lock);
776
777 for (cp = umem_null_cache.cache_next; cp != &umem_null_cache;
778 cp = cp->cache_next)
779 umem_add_update_unlocked(cp, flags);
780
781 if (!IN_UPDATE())
782 (void) cond_broadcast(&umem_update_cv);
783
784 (void) mutex_unlock(&umem_update_lock);
785 (void) mutex_unlock(&umem_cache_lock);
786}
787
788/*
789 * Debugging support. Given a buffer address, find its slab.
790 */
791static umem_slab_t *
792umem_findslab(umem_cache_t *cp, void *buf)
793{
794 umem_slab_t *sp;
795
796 (void) mutex_lock(&cp->cache_lock);
797 for (sp = cp->cache_nullslab.slab_next;
798 sp != &cp->cache_nullslab; sp = sp->slab_next) {
799 if (UMEM_SLAB_MEMBER(sp, buf)) {
800 (void) mutex_unlock(&cp->cache_lock);
801 return (sp);
802 }
803 }
804 (void) mutex_unlock(&cp->cache_lock);
805
806 return (NULL);
807}
808
809static void
810umem_error(int error, umem_cache_t *cparg, void *bufarg)
811{
812 umem_buftag_t *btp = NULL;
813 umem_bufctl_t *bcp = NULL;
814 umem_cache_t *cp = cparg;
815 umem_slab_t *sp;
816 uint64_t *off;
817 void *buf = bufarg;
818
819 int old_logging = umem_logging;
820
821 umem_logging = 0; /* stop logging when a bad thing happens */
822
823 umem_abort_info.ump_timestamp = gethrtime();
824
825 sp = umem_findslab(cp, buf);
826 if (sp == NULL) {
827 for (cp = umem_null_cache.cache_prev; cp != &umem_null_cache;
828 cp = cp->cache_prev) {
829 if ((sp = umem_findslab(cp, buf)) != NULL)
830 break;
831 }
832 }
833
834 if (sp == NULL) {
835 cp = NULL;
836 error = UMERR_BADADDR;
837 } else {
838 if (cp != cparg)
839 error = UMERR_BADCACHE;
840 else
841 buf = (char *)bufarg - ((uintptr_t)bufarg -
842 (uintptr_t)sp->slab_base) % cp->cache_chunksize;
843 if (buf != bufarg)
844 error = UMERR_BADBASE;
845 if (cp->cache_flags & UMF_BUFTAG)
846 btp = UMEM_BUFTAG(cp, buf);
847 if (cp->cache_flags & UMF_HASH) {
848 (void) mutex_lock(&cp->cache_lock);
849 for (bcp = *UMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next)
850 if (bcp->bc_addr == buf)
851 break;
852 (void) mutex_unlock(&cp->cache_lock);
853 if (bcp == NULL && btp != NULL)
854 bcp = btp->bt_bufctl;
855 if (umem_findslab(cp->cache_bufctl_cache, bcp) ==
856 NULL || P2PHASE((uintptr_t)bcp, UMEM_ALIGN) ||
857 bcp->bc_addr != buf) {
858 error = UMERR_BADBUFCTL;
859 bcp = NULL;
860 }
861 }
862 }
863
864 umem_abort_info.ump_error = error;
865 umem_abort_info.ump_buffer = bufarg;
866 umem_abort_info.ump_realbuf = buf;
867 umem_abort_info.ump_cache = cparg;
868 umem_abort_info.ump_realcache = cp;
869 umem_abort_info.ump_slab = sp;
870 umem_abort_info.ump_bufctl = bcp;
871
872 umem_printf("umem allocator: ");
873
874 switch (error) {
875
876 case UMERR_MODIFIED:
877 umem_printf("buffer modified after being freed\n");
878 off = verify_pattern(UMEM_FREE_PATTERN, buf, cp->cache_verify);
879 if (off == NULL) /* shouldn't happen */
880 off = buf;
881 umem_printf("modification occurred at offset 0x%lx "
882 "(0x%llx replaced by 0x%llx)\n",
883 (uintptr_t)off - (uintptr_t)buf,
884 (longlong_t)UMEM_FREE_PATTERN, (longlong_t)*off);
885 break;
886
887 case UMERR_REDZONE:
888 umem_printf("redzone violation: write past end of buffer\n");
889 break;
890
891 case UMERR_BADADDR:
892 umem_printf("invalid free: buffer not in cache\n");
893 break;
894
895 case UMERR_DUPFREE:
896 umem_printf("duplicate free: buffer freed twice\n");
897 break;
898
899 case UMERR_BADBUFTAG:
900 umem_printf("boundary tag corrupted\n");
901 umem_printf("bcp ^ bxstat = %lx, should be %lx\n",
902 (intptr_t)btp->bt_bufctl ^ btp->bt_bxstat,
903 UMEM_BUFTAG_FREE);
904 break;
905
906 case UMERR_BADBUFCTL:
907 umem_printf("bufctl corrupted\n");
908 break;
909
910 case UMERR_BADCACHE:
911 umem_printf("buffer freed to wrong cache\n");
912 umem_printf("buffer was allocated from %s,\n", cp->cache_name);
913 umem_printf("caller attempting free to %s.\n",
914 cparg->cache_name);
915 break;
916
917 case UMERR_BADSIZE:
918 umem_printf("bad free: free size (%u) != alloc size (%u)\n",
919 UMEM_SIZE_DECODE(((uint32_t *)btp)[0]),
920 UMEM_SIZE_DECODE(((uint32_t *)btp)[1]));
921 break;
922
923 case UMERR_BADBASE:
924 umem_printf("bad free: free address (%p) != alloc address "
925 "(%p)\n", bufarg, buf);
926 break;
927 }
928
929 umem_printf("buffer=%p bufctl=%p cache: %s\n",
930 bufarg, (void *)bcp, cparg->cache_name);
931
932 if (bcp != NULL && (cp->cache_flags & UMF_AUDIT) &&
933 error != UMERR_BADBUFCTL) {
934 int d;
935 timespec_t ts;
936 hrtime_t diff;
937 umem_bufctl_audit_t *bcap = (umem_bufctl_audit_t *)bcp;
938
939 diff = umem_abort_info.ump_timestamp - bcap->bc_timestamp;
940 ts.tv_sec = diff / NANOSEC;
941 ts.tv_nsec = diff % NANOSEC;
942
943 umem_printf("previous transaction on buffer %p:\n", buf);
944 umem_printf("thread=%p time=T-%ld.%09ld slab=%p cache: %s\n",
945 (void *)(intptr_t)bcap->bc_thread, ts.tv_sec, ts.tv_nsec,
946 (void *)sp, cp->cache_name);
947 for (d = 0; d < MIN(bcap->bc_depth, umem_stack_depth); d++) {
948 (void) print_sym((void *)bcap->bc_stack[d]);
949 umem_printf("\n");
950 }
951 }
952
953 umem_err_recoverable("umem: heap corruption detected");
954
955 umem_logging = old_logging; /* resume logging */
956}
957
958void
959umem_nofail_callback(umem_nofail_callback_t *cb)
960{
961 nofail_callback = cb;
962}
963
964static int
965umem_alloc_retry(umem_cache_t *cp, int umflag)
966{
967 if (cp == &umem_null_cache) {
968 if (umem_init())
969 return (1); /* retry */
970 /*
971 * Initialization failed. Do normal failure processing.
972 */
973 }
974 if (umflag & UMEM_NOFAIL) {
975 int def_result = UMEM_CALLBACK_EXIT(255);
976 int result = def_result;
977 umem_nofail_callback_t *callback = nofail_callback;
978
979 if (callback != NULL)
980 result = callback();
981
982 if (result == UMEM_CALLBACK_RETRY)
983 return (1);
984
985 if ((result & ~0xFF) != UMEM_CALLBACK_EXIT(0)) {
986 log_message("nofail callback returned %x\n", result);
987 result = def_result;
988 }
989
990 /*
991 * only one thread will call exit
992 */
993 if (umem_nofail_exit_thr == thr_self())
994 umem_panic("recursive UMEM_CALLBACK_EXIT()\n");
995
996 (void) mutex_lock(&umem_nofail_exit_lock);
997 umem_nofail_exit_thr = thr_self();
998 exit(result & 0xFF);
999 /*NOTREACHED*/
1000 }
1001 return (0);
1002}
1003
1004static umem_log_header_t *
1005umem_log_init(size_t logsize)
1006{
1007 umem_log_header_t *lhp;
1008 int nchunks = 4 * umem_max_ncpus;
1009 size_t lhsize = offsetof(umem_log_header_t, lh_cpu[umem_max_ncpus]);
1010 int i;
1011
1012 if (logsize == 0)
1013 return (NULL);
1014
1015 /*
1016 * Make sure that lhp->lh_cpu[] is nicely aligned
1017 * to prevent false sharing of cache lines.
1018 */
1019 lhsize = P2ROUNDUP(lhsize, UMEM_ALIGN);
1020 lhp = vmem_xalloc(umem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0,
1021 NULL, NULL, VM_NOSLEEP);
1022 if (lhp == NULL)
1023 goto fail;
1024
1025 bzero(lhp, lhsize);
1026
1027 (void) mutex_init(&lhp->lh_lock, USYNC_THREAD, NULL);
1028 lhp->lh_nchunks = nchunks;
1029 lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks, PAGESIZE);
1030 if (lhp->lh_chunksize == 0)
1031 lhp->lh_chunksize = PAGESIZE;
1032
1033 lhp->lh_base = vmem_alloc(umem_log_arena,
1034 lhp->lh_chunksize * nchunks, VM_NOSLEEP);
1035 if (lhp->lh_base == NULL)
1036 goto fail;
1037
1038 lhp->lh_free = vmem_alloc(umem_log_arena,
1039 nchunks * sizeof (int), VM_NOSLEEP);
1040 if (lhp->lh_free == NULL)
1041 goto fail;
1042
1043 bzero(lhp->lh_base, lhp->lh_chunksize * nchunks);
1044
1045 for (i = 0; i < umem_max_ncpus; i++) {
1046 umem_cpu_log_header_t *clhp = &lhp->lh_cpu[i];
1047 (void) mutex_init(&clhp->clh_lock, USYNC_THREAD, NULL);
1048 clhp->clh_chunk = i;
1049 }
1050
1051 for (i = umem_max_ncpus; i < nchunks; i++)
1052 lhp->lh_free[i] = i;
1053
1054 lhp->lh_head = umem_max_ncpus;
1055 lhp->lh_tail = 0;
1056
1057 return (lhp);
1058
1059fail:
1060 if (lhp != NULL) {
1061 if (lhp->lh_base != NULL)
1062 vmem_free(umem_log_arena, lhp->lh_base,
1063 lhp->lh_chunksize * nchunks);
1064
1065 vmem_xfree(umem_log_arena, lhp, lhsize);
1066 }
1067 return (NULL);
1068}
1069
1070static void *
1071umem_log_enter(umem_log_header_t *lhp, void *data, size_t size)
1072{
1073 void *logspace;
1074 umem_cpu_log_header_t *clhp =
b128c09f 1075 &lhp->lh_cpu[CPU(umem_cpu_mask)->cpu_number];
34dc7c2f
BB
1076
1077 if (lhp == NULL || umem_logging == 0)
1078 return (NULL);
1079
1080 (void) mutex_lock(&clhp->clh_lock);
1081 clhp->clh_hits++;
1082 if (size > clhp->clh_avail) {
1083 (void) mutex_lock(&lhp->lh_lock);
1084 lhp->lh_hits++;
1085 lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk;
1086 lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks;
1087 clhp->clh_chunk = lhp->lh_free[lhp->lh_head];
1088 lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks;
1089 clhp->clh_current = lhp->lh_base +
1090 clhp->clh_chunk * lhp->lh_chunksize;
1091 clhp->clh_avail = lhp->lh_chunksize;
1092 if (size > lhp->lh_chunksize)
1093 size = lhp->lh_chunksize;
1094 (void) mutex_unlock(&lhp->lh_lock);
1095 }
1096 logspace = clhp->clh_current;
1097 clhp->clh_current += size;
1098 clhp->clh_avail -= size;
1099 bcopy(data, logspace, size);
1100 (void) mutex_unlock(&clhp->clh_lock);
1101 return (logspace);
1102}
1103
1104#define UMEM_AUDIT(lp, cp, bcp) \
1105{ \
1106 umem_bufctl_audit_t *_bcp = (umem_bufctl_audit_t *)(bcp); \
1107 _bcp->bc_timestamp = gethrtime(); \
1108 _bcp->bc_thread = thr_self(); \
1109 _bcp->bc_depth = getpcstack(_bcp->bc_stack, umem_stack_depth, \
1110 (cp != NULL) && (cp->cache_flags & UMF_CHECKSIGNAL)); \
1111 _bcp->bc_lastlog = umem_log_enter((lp), _bcp, \
1112 UMEM_BUFCTL_AUDIT_SIZE); \
1113}
1114
1115static void
1116umem_log_event(umem_log_header_t *lp, umem_cache_t *cp,
1117 umem_slab_t *sp, void *addr)
1118{
1119 umem_bufctl_audit_t *bcp;
1120 UMEM_LOCAL_BUFCTL_AUDIT(&bcp);
1121
1122 bzero(bcp, UMEM_BUFCTL_AUDIT_SIZE);
1123 bcp->bc_addr = addr;
1124 bcp->bc_slab = sp;
1125 bcp->bc_cache = cp;
1126 UMEM_AUDIT(lp, cp, bcp);
1127}
1128
1129/*
1130 * Create a new slab for cache cp.
1131 */
1132static umem_slab_t *
1133umem_slab_create(umem_cache_t *cp, int umflag)
1134{
1135 size_t slabsize = cp->cache_slabsize;
1136 size_t chunksize = cp->cache_chunksize;
1137 int cache_flags = cp->cache_flags;
1138 size_t color, chunks;
1139 char *buf, *slab;
1140 umem_slab_t *sp;
1141 umem_bufctl_t *bcp;
1142 vmem_t *vmp = cp->cache_arena;
1143
1144 color = cp->cache_color + cp->cache_align;
1145 if (color > cp->cache_maxcolor)
1146 color = cp->cache_mincolor;
1147 cp->cache_color = color;
1148
1149 slab = vmem_alloc(vmp, slabsize, UMEM_VMFLAGS(umflag));
1150
1151 if (slab == NULL)
1152 goto vmem_alloc_failure;
1153
1154 ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0);
1155
1156 if (!(cp->cache_cflags & UMC_NOTOUCH) &&
1157 (cp->cache_flags & UMF_DEADBEEF))
1158 copy_pattern(UMEM_UNINITIALIZED_PATTERN, slab, slabsize);
1159
1160 if (cache_flags & UMF_HASH) {
1161 if ((sp = _umem_cache_alloc(umem_slab_cache, umflag)) == NULL)
1162 goto slab_alloc_failure;
1163 chunks = (slabsize - color) / chunksize;
1164 } else {
1165 sp = UMEM_SLAB(cp, slab);
1166 chunks = (slabsize - sizeof (umem_slab_t) - color) / chunksize;
1167 }
1168
1169 sp->slab_cache = cp;
1170 sp->slab_head = NULL;
1171 sp->slab_refcnt = 0;
1172 sp->slab_base = buf = slab + color;
1173 sp->slab_chunks = chunks;
1174
1175 ASSERT(chunks > 0);
1176 while (chunks-- != 0) {
1177 if (cache_flags & UMF_HASH) {
1178 bcp = _umem_cache_alloc(cp->cache_bufctl_cache, umflag);
1179 if (bcp == NULL)
1180 goto bufctl_alloc_failure;
1181 if (cache_flags & UMF_AUDIT) {
1182 umem_bufctl_audit_t *bcap =
1183 (umem_bufctl_audit_t *)bcp;
1184 bzero(bcap, UMEM_BUFCTL_AUDIT_SIZE);
1185 bcap->bc_cache = cp;
1186 }
1187 bcp->bc_addr = buf;
1188 bcp->bc_slab = sp;
1189 } else {
1190 bcp = UMEM_BUFCTL(cp, buf);
1191 }
1192 if (cache_flags & UMF_BUFTAG) {
1193 umem_buftag_t *btp = UMEM_BUFTAG(cp, buf);
1194 btp->bt_redzone = UMEM_REDZONE_PATTERN;
1195 btp->bt_bufctl = bcp;
1196 btp->bt_bxstat = (intptr_t)bcp ^ UMEM_BUFTAG_FREE;
1197 if (cache_flags & UMF_DEADBEEF) {
1198 copy_pattern(UMEM_FREE_PATTERN, buf,
1199 cp->cache_verify);
1200 }
1201 }
1202 bcp->bc_next = sp->slab_head;
1203 sp->slab_head = bcp;
1204 buf += chunksize;
1205 }
1206
1207 umem_log_event(umem_slab_log, cp, sp, slab);
1208
1209 return (sp);
1210
1211bufctl_alloc_failure:
1212
1213 while ((bcp = sp->slab_head) != NULL) {
1214 sp->slab_head = bcp->bc_next;
1215 _umem_cache_free(cp->cache_bufctl_cache, bcp);
1216 }
1217 _umem_cache_free(umem_slab_cache, sp);
1218
1219slab_alloc_failure:
1220
1221 vmem_free(vmp, slab, slabsize);
1222
1223vmem_alloc_failure:
1224
1225 umem_log_event(umem_failure_log, cp, NULL, NULL);
1226 atomic_add_64(&cp->cache_alloc_fail, 1);
1227
1228 return (NULL);
1229}
1230
1231/*
1232 * Destroy a slab.
1233 */
1234static void
1235umem_slab_destroy(umem_cache_t *cp, umem_slab_t *sp)
1236{
1237 vmem_t *vmp = cp->cache_arena;
1238 void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum);
1239
1240 if (cp->cache_flags & UMF_HASH) {
1241 umem_bufctl_t *bcp;
1242 while ((bcp = sp->slab_head) != NULL) {
1243 sp->slab_head = bcp->bc_next;
1244 _umem_cache_free(cp->cache_bufctl_cache, bcp);
1245 }
1246 _umem_cache_free(umem_slab_cache, sp);
1247 }
1248 vmem_free(vmp, slab, cp->cache_slabsize);
1249}
1250
1251/*
1252 * Allocate a raw (unconstructed) buffer from cp's slab layer.
1253 */
1254static void *
1255umem_slab_alloc(umem_cache_t *cp, int umflag)
1256{
1257 umem_bufctl_t *bcp, **hash_bucket;
1258 umem_slab_t *sp;
1259 void *buf;
1260
1261 (void) mutex_lock(&cp->cache_lock);
1262 cp->cache_slab_alloc++;
1263 sp = cp->cache_freelist;
1264 ASSERT(sp->slab_cache == cp);
1265 if (sp->slab_head == NULL) {
1266 /*
1267 * The freelist is empty. Create a new slab.
1268 */
1269 (void) mutex_unlock(&cp->cache_lock);
1270 if (cp == &umem_null_cache)
1271 return (NULL);
1272 if ((sp = umem_slab_create(cp, umflag)) == NULL)
1273 return (NULL);
1274 (void) mutex_lock(&cp->cache_lock);
1275 cp->cache_slab_create++;
1276 if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax)
1277 cp->cache_bufmax = cp->cache_buftotal;
1278 sp->slab_next = cp->cache_freelist;
1279 sp->slab_prev = cp->cache_freelist->slab_prev;
1280 sp->slab_next->slab_prev = sp;
1281 sp->slab_prev->slab_next = sp;
1282 cp->cache_freelist = sp;
1283 }
1284
1285 sp->slab_refcnt++;
1286 ASSERT(sp->slab_refcnt <= sp->slab_chunks);
1287
1288 /*
1289 * If we're taking the last buffer in the slab,
1290 * remove the slab from the cache's freelist.
1291 */
1292 bcp = sp->slab_head;
1293 if ((sp->slab_head = bcp->bc_next) == NULL) {
1294 cp->cache_freelist = sp->slab_next;
1295 ASSERT(sp->slab_refcnt == sp->slab_chunks);
1296 }
1297
1298 if (cp->cache_flags & UMF_HASH) {
1299 /*
1300 * Add buffer to allocated-address hash table.
1301 */
1302 buf = bcp->bc_addr;
1303 hash_bucket = UMEM_HASH(cp, buf);
1304 bcp->bc_next = *hash_bucket;
1305 *hash_bucket = bcp;
1306 if ((cp->cache_flags & (UMF_AUDIT | UMF_BUFTAG)) == UMF_AUDIT) {
1307 UMEM_AUDIT(umem_transaction_log, cp, bcp);
1308 }
1309 } else {
1310 buf = UMEM_BUF(cp, bcp);
1311 }
1312
1313 ASSERT(UMEM_SLAB_MEMBER(sp, buf));
1314
1315 (void) mutex_unlock(&cp->cache_lock);
1316
1317 return (buf);
1318}
1319
1320/*
1321 * Free a raw (unconstructed) buffer to cp's slab layer.
1322 */
1323static void
1324umem_slab_free(umem_cache_t *cp, void *buf)
1325{
1326 umem_slab_t *sp;
1327 umem_bufctl_t *bcp, **prev_bcpp;
1328
1329 ASSERT(buf != NULL);
1330
1331 (void) mutex_lock(&cp->cache_lock);
1332 cp->cache_slab_free++;
1333
1334 if (cp->cache_flags & UMF_HASH) {
1335 /*
1336 * Look up buffer in allocated-address hash table.
1337 */
1338 prev_bcpp = UMEM_HASH(cp, buf);
1339 while ((bcp = *prev_bcpp) != NULL) {
1340 if (bcp->bc_addr == buf) {
1341 *prev_bcpp = bcp->bc_next;
1342 sp = bcp->bc_slab;
1343 break;
1344 }
1345 cp->cache_lookup_depth++;
1346 prev_bcpp = &bcp->bc_next;
1347 }
1348 } else {
1349 bcp = UMEM_BUFCTL(cp, buf);
1350 sp = UMEM_SLAB(cp, buf);
1351 }
1352
1353 if (bcp == NULL || sp->slab_cache != cp || !UMEM_SLAB_MEMBER(sp, buf)) {
1354 (void) mutex_unlock(&cp->cache_lock);
1355 umem_error(UMERR_BADADDR, cp, buf);
1356 return;
1357 }
1358
1359 if ((cp->cache_flags & (UMF_AUDIT | UMF_BUFTAG)) == UMF_AUDIT) {
1360 if (cp->cache_flags & UMF_CONTENTS)
1361 ((umem_bufctl_audit_t *)bcp)->bc_contents =
1362 umem_log_enter(umem_content_log, buf,
1363 cp->cache_contents);
1364 UMEM_AUDIT(umem_transaction_log, cp, bcp);
1365 }
1366
1367 /*
1368 * If this slab isn't currently on the freelist, put it there.
1369 */
1370 if (sp->slab_head == NULL) {
1371 ASSERT(sp->slab_refcnt == sp->slab_chunks);
1372 ASSERT(cp->cache_freelist != sp);
1373 sp->slab_next->slab_prev = sp->slab_prev;
1374 sp->slab_prev->slab_next = sp->slab_next;
1375 sp->slab_next = cp->cache_freelist;
1376 sp->slab_prev = cp->cache_freelist->slab_prev;
1377 sp->slab_next->slab_prev = sp;
1378 sp->slab_prev->slab_next = sp;
1379 cp->cache_freelist = sp;
1380 }
1381
1382 bcp->bc_next = sp->slab_head;
1383 sp->slab_head = bcp;
1384
1385 ASSERT(sp->slab_refcnt >= 1);
1386 if (--sp->slab_refcnt == 0) {
1387 /*
1388 * There are no outstanding allocations from this slab,
1389 * so we can reclaim the memory.
1390 */
1391 sp->slab_next->slab_prev = sp->slab_prev;
1392 sp->slab_prev->slab_next = sp->slab_next;
1393 if (sp == cp->cache_freelist)
1394 cp->cache_freelist = sp->slab_next;
1395 cp->cache_slab_destroy++;
1396 cp->cache_buftotal -= sp->slab_chunks;
1397 (void) mutex_unlock(&cp->cache_lock);
1398 umem_slab_destroy(cp, sp);
1399 return;
1400 }
1401 (void) mutex_unlock(&cp->cache_lock);
1402}
1403
1404static int
1405umem_cache_alloc_debug(umem_cache_t *cp, void *buf, int umflag)
1406{
1407 umem_buftag_t *btp = UMEM_BUFTAG(cp, buf);
1408 umem_bufctl_audit_t *bcp = (umem_bufctl_audit_t *)btp->bt_bufctl;
1409 uint32_t mtbf;
1410 int flags_nfatal;
1411
1412 if (btp->bt_bxstat != ((intptr_t)bcp ^ UMEM_BUFTAG_FREE)) {
1413 umem_error(UMERR_BADBUFTAG, cp, buf);
1414 return (-1);
1415 }
1416
1417 btp->bt_bxstat = (intptr_t)bcp ^ UMEM_BUFTAG_ALLOC;
1418
1419 if ((cp->cache_flags & UMF_HASH) && bcp->bc_addr != buf) {
1420 umem_error(UMERR_BADBUFCTL, cp, buf);
1421 return (-1);
1422 }
1423
1424 btp->bt_redzone = UMEM_REDZONE_PATTERN;
1425
1426 if (cp->cache_flags & UMF_DEADBEEF) {
1427 if (verify_and_copy_pattern(UMEM_FREE_PATTERN,
1428 UMEM_UNINITIALIZED_PATTERN, buf, cp->cache_verify)) {
1429 umem_error(UMERR_MODIFIED, cp, buf);
1430 return (-1);
1431 }
1432 }
1433
1434 if ((mtbf = umem_mtbf | cp->cache_mtbf) != 0 &&
1435 gethrtime() % mtbf == 0 &&
1436 (umflag & (UMEM_FATAL_FLAGS)) == 0) {
1437 umem_log_event(umem_failure_log, cp, NULL, NULL);
1438 } else {
1439 mtbf = 0;
1440 }
1441
1442 /*
1443 * We do not pass fatal flags on to the constructor. This prevents
1444 * leaking buffers in the event of a subordinate constructor failing.
1445 */
1446 flags_nfatal = UMEM_DEFAULT;
1447 if (mtbf || (cp->cache_constructor != NULL &&
1448 cp->cache_constructor(buf, cp->cache_private, flags_nfatal) != 0)) {
1449 atomic_add_64(&cp->cache_alloc_fail, 1);
1450 btp->bt_bxstat = (intptr_t)bcp ^ UMEM_BUFTAG_FREE;
1451 copy_pattern(UMEM_FREE_PATTERN, buf, cp->cache_verify);
1452 umem_slab_free(cp, buf);
1453 return (-1);
1454 }
1455
1456 if (cp->cache_flags & UMF_AUDIT) {
1457 UMEM_AUDIT(umem_transaction_log, cp, bcp);
1458 }
1459
1460 return (0);
1461}
1462
1463static int
1464umem_cache_free_debug(umem_cache_t *cp, void *buf)
1465{
1466 umem_buftag_t *btp = UMEM_BUFTAG(cp, buf);
1467 umem_bufctl_audit_t *bcp = (umem_bufctl_audit_t *)btp->bt_bufctl;
1468 umem_slab_t *sp;
1469
1470 if (btp->bt_bxstat != ((intptr_t)bcp ^ UMEM_BUFTAG_ALLOC)) {
1471 if (btp->bt_bxstat == ((intptr_t)bcp ^ UMEM_BUFTAG_FREE)) {
1472 umem_error(UMERR_DUPFREE, cp, buf);
1473 return (-1);
1474 }
1475 sp = umem_findslab(cp, buf);
1476 if (sp == NULL || sp->slab_cache != cp)
1477 umem_error(UMERR_BADADDR, cp, buf);
1478 else
1479 umem_error(UMERR_REDZONE, cp, buf);
1480 return (-1);
1481 }
1482
1483 btp->bt_bxstat = (intptr_t)bcp ^ UMEM_BUFTAG_FREE;
1484
1485 if ((cp->cache_flags & UMF_HASH) && bcp->bc_addr != buf) {
1486 umem_error(UMERR_BADBUFCTL, cp, buf);
1487 return (-1);
1488 }
1489
1490 if (btp->bt_redzone != UMEM_REDZONE_PATTERN) {
1491 umem_error(UMERR_REDZONE, cp, buf);
1492 return (-1);
1493 }
1494
1495 if (cp->cache_flags & UMF_AUDIT) {
1496 if (cp->cache_flags & UMF_CONTENTS)
1497 bcp->bc_contents = umem_log_enter(umem_content_log,
1498 buf, cp->cache_contents);
1499 UMEM_AUDIT(umem_transaction_log, cp, bcp);
1500 }
1501
1502 if (cp->cache_destructor != NULL)
1503 cp->cache_destructor(buf, cp->cache_private);
1504
1505 if (cp->cache_flags & UMF_DEADBEEF)
1506 copy_pattern(UMEM_FREE_PATTERN, buf, cp->cache_verify);
1507
1508 return (0);
1509}
1510
1511/*
1512 * Free each object in magazine mp to cp's slab layer, and free mp itself.
1513 */
1514static void
1515umem_magazine_destroy(umem_cache_t *cp, umem_magazine_t *mp, int nrounds)
1516{
1517 int round;
1518
1519 ASSERT(cp->cache_next == NULL || IN_UPDATE());
1520
1521 for (round = 0; round < nrounds; round++) {
1522 void *buf = mp->mag_round[round];
1523
1524 if ((cp->cache_flags & UMF_DEADBEEF) &&
1525 verify_pattern(UMEM_FREE_PATTERN, buf,
1526 cp->cache_verify) != NULL) {
1527 umem_error(UMERR_MODIFIED, cp, buf);
1528 continue;
1529 }
1530
1531 if (!(cp->cache_flags & UMF_BUFTAG) &&
1532 cp->cache_destructor != NULL)
1533 cp->cache_destructor(buf, cp->cache_private);
1534
1535 umem_slab_free(cp, buf);
1536 }
1537 ASSERT(UMEM_MAGAZINE_VALID(cp, mp));
1538 _umem_cache_free(cp->cache_magtype->mt_cache, mp);
1539}
1540
1541/*
1542 * Allocate a magazine from the depot.
1543 */
1544static umem_magazine_t *
1545umem_depot_alloc(umem_cache_t *cp, umem_maglist_t *mlp)
1546{
1547 umem_magazine_t *mp;
1548
1549 /*
1550 * If we can't get the depot lock without contention,
1551 * update our contention count. We use the depot
1552 * contention rate to determine whether we need to
1553 * increase the magazine size for better scalability.
1554 */
1555 if (mutex_trylock(&cp->cache_depot_lock) != 0) {
1556 (void) mutex_lock(&cp->cache_depot_lock);
1557 cp->cache_depot_contention++;
1558 }
1559
1560 if ((mp = mlp->ml_list) != NULL) {
1561 ASSERT(UMEM_MAGAZINE_VALID(cp, mp));
1562 mlp->ml_list = mp->mag_next;
1563 if (--mlp->ml_total < mlp->ml_min)
1564 mlp->ml_min = mlp->ml_total;
1565 mlp->ml_alloc++;
1566 }
1567
1568 (void) mutex_unlock(&cp->cache_depot_lock);
1569
1570 return (mp);
1571}
1572
1573/*
1574 * Free a magazine to the depot.
1575 */
1576static void
1577umem_depot_free(umem_cache_t *cp, umem_maglist_t *mlp, umem_magazine_t *mp)
1578{
1579 (void) mutex_lock(&cp->cache_depot_lock);
1580 ASSERT(UMEM_MAGAZINE_VALID(cp, mp));
1581 mp->mag_next = mlp->ml_list;
1582 mlp->ml_list = mp;
1583 mlp->ml_total++;
1584 (void) mutex_unlock(&cp->cache_depot_lock);
1585}
1586
1587/*
1588 * Update the working set statistics for cp's depot.
1589 */
1590static void
1591umem_depot_ws_update(umem_cache_t *cp)
1592{
1593 (void) mutex_lock(&cp->cache_depot_lock);
1594 cp->cache_full.ml_reaplimit = cp->cache_full.ml_min;
1595 cp->cache_full.ml_min = cp->cache_full.ml_total;
1596 cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min;
1597 cp->cache_empty.ml_min = cp->cache_empty.ml_total;
1598 (void) mutex_unlock(&cp->cache_depot_lock);
1599}
1600
1601/*
1602 * Reap all magazines that have fallen out of the depot's working set.
1603 */
1604static void
1605umem_depot_ws_reap(umem_cache_t *cp)
1606{
1607 long reap;
1608 umem_magazine_t *mp;
1609
1610 ASSERT(cp->cache_next == NULL || IN_REAP());
1611
1612 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
1613 while (reap-- && (mp = umem_depot_alloc(cp, &cp->cache_full)) != NULL)
1614 umem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize);
1615
1616 reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min);
1617 while (reap-- && (mp = umem_depot_alloc(cp, &cp->cache_empty)) != NULL)
1618 umem_magazine_destroy(cp, mp, 0);
1619}
1620
1621static void
1622umem_cpu_reload(umem_cpu_cache_t *ccp, umem_magazine_t *mp, int rounds)
1623{
1624 ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) ||
1625 (ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize));
1626 ASSERT(ccp->cc_magsize > 0);
1627
1628 ccp->cc_ploaded = ccp->cc_loaded;
1629 ccp->cc_prounds = ccp->cc_rounds;
1630 ccp->cc_loaded = mp;
1631 ccp->cc_rounds = rounds;
1632}
1633
1634/*
1635 * Allocate a constructed object from cache cp.
1636 */
34dc7c2f 1637#pragma weak umem_cache_alloc = _umem_cache_alloc
34dc7c2f
BB
1638void *
1639_umem_cache_alloc(umem_cache_t *cp, int umflag)
1640{
1641 umem_cpu_cache_t *ccp;
1642 umem_magazine_t *fmp;
1643 void *buf;
1644 int flags_nfatal;
1645
1646retry:
1647 ccp = UMEM_CPU_CACHE(cp, CPU(cp->cache_cpu_mask));
1648 (void) mutex_lock(&ccp->cc_lock);
1649 for (;;) {
1650 /*
1651 * If there's an object available in the current CPU's
1652 * loaded magazine, just take it and return.
1653 */
1654 if (ccp->cc_rounds > 0) {
1655 buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds];
1656 ccp->cc_alloc++;
1657 (void) mutex_unlock(&ccp->cc_lock);
1658 if ((ccp->cc_flags & UMF_BUFTAG) &&
1659 umem_cache_alloc_debug(cp, buf, umflag) == -1) {
1660 if (umem_alloc_retry(cp, umflag)) {
1661 goto retry;
1662 }
1663
1664 return (NULL);
1665 }
1666 return (buf);
1667 }
1668
1669 /*
1670 * The loaded magazine is empty. If the previously loaded
1671 * magazine was full, exchange them and try again.
1672 */
1673 if (ccp->cc_prounds > 0) {
1674 umem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
1675 continue;
1676 }
1677
1678 /*
1679 * If the magazine layer is disabled, break out now.
1680 */
1681 if (ccp->cc_magsize == 0)
1682 break;
1683
1684 /*
1685 * Try to get a full magazine from the depot.
1686 */
1687 fmp = umem_depot_alloc(cp, &cp->cache_full);
1688 if (fmp != NULL) {
1689 if (ccp->cc_ploaded != NULL)
1690 umem_depot_free(cp, &cp->cache_empty,
1691 ccp->cc_ploaded);
1692 umem_cpu_reload(ccp, fmp, ccp->cc_magsize);
1693 continue;
1694 }
1695
1696 /*
1697 * There are no full magazines in the depot,
1698 * so fall through to the slab layer.
1699 */
1700 break;
1701 }
1702 (void) mutex_unlock(&ccp->cc_lock);
1703
1704 /*
1705 * We couldn't allocate a constructed object from the magazine layer,
1706 * so get a raw buffer from the slab layer and apply its constructor.
1707 */
1708 buf = umem_slab_alloc(cp, umflag);
1709
1710 if (buf == NULL) {
1711 if (cp == &umem_null_cache)
1712 return (NULL);
1713 if (umem_alloc_retry(cp, umflag)) {
1714 goto retry;
1715 }
1716
1717 return (NULL);
1718 }
1719
1720 if (cp->cache_flags & UMF_BUFTAG) {
1721 /*
1722 * Let umem_cache_alloc_debug() apply the constructor for us.
1723 */
1724 if (umem_cache_alloc_debug(cp, buf, umflag) == -1) {
1725 if (umem_alloc_retry(cp, umflag)) {
1726 goto retry;
1727 }
1728 return (NULL);
1729 }
1730 return (buf);
1731 }
1732
1733 /*
1734 * We do not pass fatal flags on to the constructor. This prevents
1735 * leaking buffers in the event of a subordinate constructor failing.
1736 */
1737 flags_nfatal = UMEM_DEFAULT;
1738 if (cp->cache_constructor != NULL &&
1739 cp->cache_constructor(buf, cp->cache_private, flags_nfatal) != 0) {
1740 atomic_add_64(&cp->cache_alloc_fail, 1);
1741 umem_slab_free(cp, buf);
1742
1743 if (umem_alloc_retry(cp, umflag)) {
1744 goto retry;
1745 }
1746 return (NULL);
1747 }
1748
1749 return (buf);
1750}
1751
1752/*
1753 * Free a constructed object to cache cp.
1754 */
34dc7c2f 1755#pragma weak umem_cache_free = _umem_cache_free
34dc7c2f
BB
1756void
1757_umem_cache_free(umem_cache_t *cp, void *buf)
1758{
1759 umem_cpu_cache_t *ccp = UMEM_CPU_CACHE(cp, CPU(cp->cache_cpu_mask));
1760 umem_magazine_t *emp;
1761 umem_magtype_t *mtp;
1762
1763 if (ccp->cc_flags & UMF_BUFTAG)
1764 if (umem_cache_free_debug(cp, buf) == -1)
1765 return;
1766
1767 (void) mutex_lock(&ccp->cc_lock);
1768 for (;;) {
1769 /*
1770 * If there's a slot available in the current CPU's
1771 * loaded magazine, just put the object there and return.
1772 */
1773 if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) {
1774 ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf;
1775 ccp->cc_free++;
1776 (void) mutex_unlock(&ccp->cc_lock);
1777 return;
1778 }
1779
1780 /*
1781 * The loaded magazine is full. If the previously loaded
1782 * magazine was empty, exchange them and try again.
1783 */
1784 if (ccp->cc_prounds == 0) {
1785 umem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
1786 continue;
1787 }
1788
1789 /*
1790 * If the magazine layer is disabled, break out now.
1791 */
1792 if (ccp->cc_magsize == 0)
1793 break;
1794
1795 /*
1796 * Try to get an empty magazine from the depot.
1797 */
1798 emp = umem_depot_alloc(cp, &cp->cache_empty);
1799 if (emp != NULL) {
1800 if (ccp->cc_ploaded != NULL)
1801 umem_depot_free(cp, &cp->cache_full,
1802 ccp->cc_ploaded);
1803 umem_cpu_reload(ccp, emp, 0);
1804 continue;
1805 }
1806
1807 /*
1808 * There are no empty magazines in the depot,
1809 * so try to allocate a new one. We must drop all locks
1810 * across umem_cache_alloc() because lower layers may
1811 * attempt to allocate from this cache.
1812 */
1813 mtp = cp->cache_magtype;
1814 (void) mutex_unlock(&ccp->cc_lock);
1815 emp = _umem_cache_alloc(mtp->mt_cache, UMEM_DEFAULT);
1816 (void) mutex_lock(&ccp->cc_lock);
1817
1818 if (emp != NULL) {
1819 /*
1820 * We successfully allocated an empty magazine.
1821 * However, we had to drop ccp->cc_lock to do it,
1822 * so the cache's magazine size may have changed.
1823 * If so, free the magazine and try again.
1824 */
1825 if (ccp->cc_magsize != mtp->mt_magsize) {
1826 (void) mutex_unlock(&ccp->cc_lock);
1827 _umem_cache_free(mtp->mt_cache, emp);
1828 (void) mutex_lock(&ccp->cc_lock);
1829 continue;
1830 }
1831
1832 /*
1833 * We got a magazine of the right size. Add it to
1834 * the depot and try the whole dance again.
1835 */
1836 umem_depot_free(cp, &cp->cache_empty, emp);
1837 continue;
1838 }
1839
1840 /*
1841 * We couldn't allocate an empty magazine,
1842 * so fall through to the slab layer.
1843 */
1844 break;
1845 }
1846 (void) mutex_unlock(&ccp->cc_lock);
1847
1848 /*
1849 * We couldn't free our constructed object to the magazine layer,
1850 * so apply its destructor and free it to the slab layer.
1851 * Note that if UMF_BUFTAG is in effect, umem_cache_free_debug()
1852 * will have already applied the destructor.
1853 */
1854 if (!(cp->cache_flags & UMF_BUFTAG) && cp->cache_destructor != NULL)
1855 cp->cache_destructor(buf, cp->cache_private);
1856
1857 umem_slab_free(cp, buf);
1858}
1859
34dc7c2f 1860#pragma weak umem_zalloc = _umem_zalloc
34dc7c2f
BB
1861void *
1862_umem_zalloc(size_t size, int umflag)
1863{
1864 size_t index = (size - 1) >> UMEM_ALIGN_SHIFT;
1865 void *buf;
1866
1867retry:
1868 if (index < UMEM_MAXBUF >> UMEM_ALIGN_SHIFT) {
1869 umem_cache_t *cp = umem_alloc_table[index];
1870 buf = _umem_cache_alloc(cp, umflag);
1871 if (buf != NULL) {
1872 if (cp->cache_flags & UMF_BUFTAG) {
1873 umem_buftag_t *btp = UMEM_BUFTAG(cp, buf);
1874 ((uint8_t *)buf)[size] = UMEM_REDZONE_BYTE;
1875 ((uint32_t *)btp)[1] = UMEM_SIZE_ENCODE(size);
1876 }
1877 bzero(buf, size);
1878 } else if (umem_alloc_retry(cp, umflag))
1879 goto retry;
1880 } else {
1881 buf = _umem_alloc(size, umflag); /* handles failure */
1882 if (buf != NULL)
1883 bzero(buf, size);
1884 }
1885 return (buf);
1886}
1887
34dc7c2f 1888#pragma weak umem_alloc = _umem_alloc
34dc7c2f
BB
1889void *
1890_umem_alloc(size_t size, int umflag)
1891{
1892 size_t index = (size - 1) >> UMEM_ALIGN_SHIFT;
1893 void *buf;
1894umem_alloc_retry:
1895 if (index < UMEM_MAXBUF >> UMEM_ALIGN_SHIFT) {
1896 umem_cache_t *cp = umem_alloc_table[index];
1897 buf = _umem_cache_alloc(cp, umflag);
1898 if ((cp->cache_flags & UMF_BUFTAG) && buf != NULL) {
1899 umem_buftag_t *btp = UMEM_BUFTAG(cp, buf);
1900 ((uint8_t *)buf)[size] = UMEM_REDZONE_BYTE;
1901 ((uint32_t *)btp)[1] = UMEM_SIZE_ENCODE(size);
1902 }
1903 if (buf == NULL && umem_alloc_retry(cp, umflag))
1904 goto umem_alloc_retry;
1905 return (buf);
1906 }
1907 if (size == 0)
1908 return (NULL);
1909 if (umem_oversize_arena == NULL) {
1910 if (umem_init())
1911 ASSERT(umem_oversize_arena != NULL);
1912 else
1913 return (NULL);
1914 }
1915 buf = vmem_alloc(umem_oversize_arena, size, UMEM_VMFLAGS(umflag));
1916 if (buf == NULL) {
1917 umem_log_event(umem_failure_log, NULL, NULL, (void *)size);
1918 if (umem_alloc_retry(NULL, umflag))
1919 goto umem_alloc_retry;
1920 }
1921 return (buf);
1922}
1923
34dc7c2f 1924#pragma weak umem_alloc_align = _umem_alloc_align
34dc7c2f
BB
1925void *
1926_umem_alloc_align(size_t size, size_t align, int umflag)
1927{
1928 void *buf;
1929
1930 if (size == 0)
1931 return (NULL);
1932 if ((align & (align - 1)) != 0)
1933 return (NULL);
1934 if (align < UMEM_ALIGN)
1935 align = UMEM_ALIGN;
1936
1937umem_alloc_align_retry:
1938 if (umem_memalign_arena == NULL) {
1939 if (umem_init())
1940 ASSERT(umem_oversize_arena != NULL);
1941 else
1942 return (NULL);
1943 }
1944 buf = vmem_xalloc(umem_memalign_arena, size, align, 0, 0, NULL, NULL,
1945 UMEM_VMFLAGS(umflag));
1946 if (buf == NULL) {
1947 umem_log_event(umem_failure_log, NULL, NULL, (void *)size);
1948 if (umem_alloc_retry(NULL, umflag))
1949 goto umem_alloc_align_retry;
1950 }
1951 return (buf);
1952}
1953
34dc7c2f 1954#pragma weak umem_free = _umem_free
34dc7c2f
BB
1955void
1956_umem_free(void *buf, size_t size)
1957{
1958 size_t index = (size - 1) >> UMEM_ALIGN_SHIFT;
1959
1960 if (index < UMEM_MAXBUF >> UMEM_ALIGN_SHIFT) {
1961 umem_cache_t *cp = umem_alloc_table[index];
1962 if (cp->cache_flags & UMF_BUFTAG) {
1963 umem_buftag_t *btp = UMEM_BUFTAG(cp, buf);
1964 uint32_t *ip = (uint32_t *)btp;
1965 if (ip[1] != UMEM_SIZE_ENCODE(size)) {
1966 if (*(uint64_t *)buf == UMEM_FREE_PATTERN) {
1967 umem_error(UMERR_DUPFREE, cp, buf);
1968 return;
1969 }
1970 if (UMEM_SIZE_VALID(ip[1])) {
1971 ip[0] = UMEM_SIZE_ENCODE(size);
1972 umem_error(UMERR_BADSIZE, cp, buf);
1973 } else {
1974 umem_error(UMERR_REDZONE, cp, buf);
1975 }
1976 return;
1977 }
1978 if (((uint8_t *)buf)[size] != UMEM_REDZONE_BYTE) {
1979 umem_error(UMERR_REDZONE, cp, buf);
1980 return;
1981 }
1982 btp->bt_redzone = UMEM_REDZONE_PATTERN;
1983 }
1984 _umem_cache_free(cp, buf);
1985 } else {
1986 if (buf == NULL && size == 0)
1987 return;
1988 vmem_free(umem_oversize_arena, buf, size);
1989 }
1990}
1991
34dc7c2f 1992#pragma weak umem_free_align = _umem_free_align
34dc7c2f
BB
1993void
1994_umem_free_align(void *buf, size_t size)
1995{
1996 if (buf == NULL && size == 0)
1997 return;
1998 vmem_xfree(umem_memalign_arena, buf, size);
1999}
2000
2001static void *
2002umem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag)
2003{
2004 size_t realsize = size + vmp->vm_quantum;
2005
2006 /*
2007 * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding
2008 * vm_quantum will cause integer wraparound. Check for this, and
2009 * blow off the firewall page in this case. Note that such a
2010 * giant allocation (the entire address space) can never be
2011 * satisfied, so it will either fail immediately (VM_NOSLEEP)
2012 * or sleep forever (VM_SLEEP). Thus, there is no need for a
2013 * corresponding check in umem_firewall_va_free().
2014 */
2015 if (realsize < size)
2016 realsize = size;
2017
2018 return (vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT));
2019}
2020
2021static void
2022umem_firewall_va_free(vmem_t *vmp, void *addr, size_t size)
2023{
2024 vmem_free(vmp, addr, size + vmp->vm_quantum);
2025}
2026
2027/*
2028 * Reclaim all unused memory from a cache.
2029 */
2030static void
2031umem_cache_reap(umem_cache_t *cp)
2032{
2033 /*
2034 * Ask the cache's owner to free some memory if possible.
2035 * The idea is to handle things like the inode cache, which
2036 * typically sits on a bunch of memory that it doesn't truly
2037 * *need*. Reclaim policy is entirely up to the owner; this
2038 * callback is just an advisory plea for help.
2039 */
2040 if (cp->cache_reclaim != NULL)
2041 cp->cache_reclaim(cp->cache_private);
2042
2043 umem_depot_ws_reap(cp);
2044}
2045
2046/*
2047 * Purge all magazines from a cache and set its magazine limit to zero.
2048 * All calls are serialized by being done by the update thread, except for
2049 * the final call from umem_cache_destroy().
2050 */
2051static void
2052umem_cache_magazine_purge(umem_cache_t *cp)
2053{
2054 umem_cpu_cache_t *ccp;
2055 umem_magazine_t *mp, *pmp;
2056 int rounds, prounds, cpu_seqid;
2057
2058 ASSERT(cp->cache_next == NULL || IN_UPDATE());
2059
2060 for (cpu_seqid = 0; cpu_seqid < umem_max_ncpus; cpu_seqid++) {
2061 ccp = &cp->cache_cpu[cpu_seqid];
2062
2063 (void) mutex_lock(&ccp->cc_lock);
2064 mp = ccp->cc_loaded;
2065 pmp = ccp->cc_ploaded;
2066 rounds = ccp->cc_rounds;
2067 prounds = ccp->cc_prounds;
2068 ccp->cc_loaded = NULL;
2069 ccp->cc_ploaded = NULL;
2070 ccp->cc_rounds = -1;
2071 ccp->cc_prounds = -1;
2072 ccp->cc_magsize = 0;
2073 (void) mutex_unlock(&ccp->cc_lock);
2074
2075 if (mp)
2076 umem_magazine_destroy(cp, mp, rounds);
2077 if (pmp)
2078 umem_magazine_destroy(cp, pmp, prounds);
2079 }
2080
2081 /*
2082 * Updating the working set statistics twice in a row has the
2083 * effect of setting the working set size to zero, so everything
2084 * is eligible for reaping.
2085 */
2086 umem_depot_ws_update(cp);
2087 umem_depot_ws_update(cp);
2088
2089 umem_depot_ws_reap(cp);
2090}
2091
2092/*
2093 * Enable per-cpu magazines on a cache.
2094 */
2095static void
2096umem_cache_magazine_enable(umem_cache_t *cp)
2097{
2098 int cpu_seqid;
2099
2100 if (cp->cache_flags & UMF_NOMAGAZINE)
2101 return;
2102
2103 for (cpu_seqid = 0; cpu_seqid < umem_max_ncpus; cpu_seqid++) {
2104 umem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
2105 (void) mutex_lock(&ccp->cc_lock);
2106 ccp->cc_magsize = cp->cache_magtype->mt_magsize;
2107 (void) mutex_unlock(&ccp->cc_lock);
2108 }
2109
2110}
2111
2112/*
2113 * Recompute a cache's magazine size. The trade-off is that larger magazines
2114 * provide a higher transfer rate with the depot, while smaller magazines
2115 * reduce memory consumption. Magazine resizing is an expensive operation;
2116 * it should not be done frequently.
2117 *
2118 * Changes to the magazine size are serialized by only having one thread
2119 * doing updates. (the update thread)
2120 *
2121 * Note: at present this only grows the magazine size. It might be useful
2122 * to allow shrinkage too.
2123 */
2124static void
2125umem_cache_magazine_resize(umem_cache_t *cp)
2126{
2127 umem_magtype_t *mtp = cp->cache_magtype;
2128
2129 ASSERT(IN_UPDATE());
2130
2131 if (cp->cache_chunksize < mtp->mt_maxbuf) {
2132 umem_cache_magazine_purge(cp);
2133 (void) mutex_lock(&cp->cache_depot_lock);
2134 cp->cache_magtype = ++mtp;
2135 cp->cache_depot_contention_prev =
2136 cp->cache_depot_contention + INT_MAX;
2137 (void) mutex_unlock(&cp->cache_depot_lock);
2138 umem_cache_magazine_enable(cp);
2139 }
2140}
2141
2142/*
2143 * Rescale a cache's hash table, so that the table size is roughly the
2144 * cache size. We want the average lookup time to be extremely small.
2145 */
2146static void
2147umem_hash_rescale(umem_cache_t *cp)
2148{
2149 umem_bufctl_t **old_table, **new_table, *bcp;
2150 size_t old_size, new_size, h;
2151
2152 ASSERT(IN_UPDATE());
2153
2154 new_size = MAX(UMEM_HASH_INITIAL,
2155 1 << (highbit(3 * cp->cache_buftotal + 4) - 2));
2156 old_size = cp->cache_hash_mask + 1;
2157
2158 if ((old_size >> 1) <= new_size && new_size <= (old_size << 1))
2159 return;
2160
2161 new_table = vmem_alloc(umem_hash_arena, new_size * sizeof (void *),
2162 VM_NOSLEEP);
2163 if (new_table == NULL)
2164 return;
2165 bzero(new_table, new_size * sizeof (void *));
2166
2167 (void) mutex_lock(&cp->cache_lock);
2168
2169 old_size = cp->cache_hash_mask + 1;
2170 old_table = cp->cache_hash_table;
2171
2172 cp->cache_hash_mask = new_size - 1;
2173 cp->cache_hash_table = new_table;
2174 cp->cache_rescale++;
2175
2176 for (h = 0; h < old_size; h++) {
2177 bcp = old_table[h];
2178 while (bcp != NULL) {
2179 void *addr = bcp->bc_addr;
2180 umem_bufctl_t *next_bcp = bcp->bc_next;
2181 umem_bufctl_t **hash_bucket = UMEM_HASH(cp, addr);
2182 bcp->bc_next = *hash_bucket;
2183 *hash_bucket = bcp;
2184 bcp = next_bcp;
2185 }
2186 }
2187
2188 (void) mutex_unlock(&cp->cache_lock);
2189
2190 vmem_free(umem_hash_arena, old_table, old_size * sizeof (void *));
2191}
2192
2193/*
2194 * Perform periodic maintenance on a cache: hash rescaling,
2195 * depot working-set update, and magazine resizing.
2196 */
2197void
2198umem_cache_update(umem_cache_t *cp)
2199{
2200 int update_flags = 0;
2201
2202 ASSERT(MUTEX_HELD(&umem_cache_lock));
2203
2204 /*
2205 * If the cache has become much larger or smaller than its hash table,
2206 * fire off a request to rescale the hash table.
2207 */
2208 (void) mutex_lock(&cp->cache_lock);
2209
2210 if ((cp->cache_flags & UMF_HASH) &&
2211 (cp->cache_buftotal > (cp->cache_hash_mask << 1) ||
2212 (cp->cache_buftotal < (cp->cache_hash_mask >> 1) &&
2213 cp->cache_hash_mask > UMEM_HASH_INITIAL)))
2214 update_flags |= UMU_HASH_RESCALE;
2215
2216 (void) mutex_unlock(&cp->cache_lock);
2217
2218 /*
2219 * Update the depot working set statistics.
2220 */
2221 umem_depot_ws_update(cp);
2222
2223 /*
2224 * If there's a lot of contention in the depot,
2225 * increase the magazine size.
2226 */
2227 (void) mutex_lock(&cp->cache_depot_lock);
2228
2229 if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf &&
2230 (int)(cp->cache_depot_contention -
2231 cp->cache_depot_contention_prev) > umem_depot_contention)
2232 update_flags |= UMU_MAGAZINE_RESIZE;
2233
2234 cp->cache_depot_contention_prev = cp->cache_depot_contention;
2235
2236 (void) mutex_unlock(&cp->cache_depot_lock);
2237
2238 if (update_flags)
2239 umem_add_update(cp, update_flags);
2240}
2241
2242/*
2243 * Runs all pending updates.
2244 *
2245 * The update lock must be held on entrance, and will be held on exit.
2246 */
2247void
2248umem_process_updates(void)
2249{
2250 ASSERT(MUTEX_HELD(&umem_update_lock));
2251
2252 while (umem_null_cache.cache_unext != &umem_null_cache) {
2253 int notify = 0;
2254 umem_cache_t *cp = umem_null_cache.cache_unext;
2255
2256 cp->cache_uprev->cache_unext = cp->cache_unext;
2257 cp->cache_unext->cache_uprev = cp->cache_uprev;
2258 cp->cache_uprev = cp->cache_unext = NULL;
2259
2260 ASSERT(!(cp->cache_uflags & UMU_ACTIVE));
2261
2262 while (cp->cache_uflags) {
2263 int uflags = (cp->cache_uflags |= UMU_ACTIVE);
2264 (void) mutex_unlock(&umem_update_lock);
2265
2266 /*
2267 * The order here is important. Each step can speed up
2268 * later steps.
2269 */
2270
2271 if (uflags & UMU_HASH_RESCALE)
2272 umem_hash_rescale(cp);
2273
2274 if (uflags & UMU_MAGAZINE_RESIZE)
2275 umem_cache_magazine_resize(cp);
2276
2277 if (uflags & UMU_REAP)
2278 umem_cache_reap(cp);
2279
2280 (void) mutex_lock(&umem_update_lock);
2281
2282 /*
2283 * check if anyone has requested notification
2284 */
2285 if (cp->cache_uflags & UMU_NOTIFY) {
2286 uflags |= UMU_NOTIFY;
2287 notify = 1;
2288 }
2289 cp->cache_uflags &= ~uflags;
2290 }
2291 if (notify)
2292 (void) cond_broadcast(&umem_update_cv);
2293 }
2294}
2295
2296#ifndef UMEM_STANDALONE
2297static void
2298umem_st_update(void)
2299{
2300 ASSERT(MUTEX_HELD(&umem_update_lock));
2301 ASSERT(umem_update_thr == 0 && umem_st_update_thr == 0);
2302
2303 umem_st_update_thr = thr_self();
2304
2305 (void) mutex_unlock(&umem_update_lock);
2306
2307 vmem_update(NULL);
2308 umem_cache_applyall(umem_cache_update);
2309
2310 (void) mutex_lock(&umem_update_lock);
2311
2312 umem_process_updates(); /* does all of the requested work */
2313
2314 umem_reap_next = gethrtime() +
2315 (hrtime_t)umem_reap_interval * NANOSEC;
2316
2317 umem_reaping = UMEM_REAP_DONE;
2318
2319 umem_st_update_thr = 0;
2320}
2321#endif
2322
2323/*
2324 * Reclaim all unused memory from all caches. Called from vmem when memory
2325 * gets tight. Must be called with no locks held.
2326 *
2327 * This just requests a reap on all caches, and notifies the update thread.
2328 */
2329void
2330umem_reap(void)
2331{
2332#ifndef UMEM_STANDALONE
2333 extern int __nthreads(void);
2334#endif
2335
2336 if (umem_ready != UMEM_READY || umem_reaping != UMEM_REAP_DONE ||
2337 gethrtime() < umem_reap_next)
2338 return;
2339
2340 (void) mutex_lock(&umem_update_lock);
2341
2342 if (umem_reaping != UMEM_REAP_DONE || gethrtime() < umem_reap_next) {
2343 (void) mutex_unlock(&umem_update_lock);
2344 return;
2345 }
34dc7c2f
BB
2346 umem_reaping = UMEM_REAP_ADDING; /* lock out other reaps */
2347
2348 (void) mutex_unlock(&umem_update_lock);
2349
2350 umem_updateall(UMU_REAP);
2351
2352 (void) mutex_lock(&umem_update_lock);
2353
2354 umem_reaping = UMEM_REAP_ACTIVE;
2355
2356 /* Standalone is single-threaded */
2357#ifndef UMEM_STANDALONE
2358 if (umem_update_thr == 0) {
2359 /*
2360 * The update thread does not exist. If the process is
2361 * multi-threaded, create it. If not, or the creation fails,
2362 * do the update processing inline.
2363 */
2364 ASSERT(umem_st_update_thr == 0);
2365
2366 if (__nthreads() <= 1 || umem_create_update_thread() == 0)
2367 umem_st_update();
2368 }
2369
2370 (void) cond_broadcast(&umem_update_cv); /* wake up the update thread */
2371#endif
2372
2373 (void) mutex_unlock(&umem_update_lock);
2374}
2375
2376umem_cache_t *
2377umem_cache_create(
2378 char *name, /* descriptive name for this cache */
2379 size_t bufsize, /* size of the objects it manages */
2380 size_t align, /* required object alignment */
2381 umem_constructor_t *constructor, /* object constructor */
2382 umem_destructor_t *destructor, /* object destructor */
2383 umem_reclaim_t *reclaim, /* memory reclaim callback */
2384 void *private, /* pass-thru arg for constr/destr/reclaim */
2385 vmem_t *vmp, /* vmem source for slab allocation */
2386 int cflags) /* cache creation flags */
2387{
2388 int cpu_seqid;
2389 size_t chunksize;
2390 umem_cache_t *cp, *cnext, *cprev;
2391 umem_magtype_t *mtp;
2392 size_t csize;
2393 size_t phase;
2394
2395 /*
2396 * The init thread is allowed to create internal and quantum caches.
2397 *
2398 * Other threads must wait until until initialization is complete.
2399 */
2400 if (umem_init_thr == thr_self())
2401 ASSERT((cflags & (UMC_INTERNAL | UMC_QCACHE)) != 0);
2402 else {
2403 ASSERT(!(cflags & UMC_INTERNAL));
2404 if (umem_ready != UMEM_READY && umem_init() == 0) {
2405 errno = EAGAIN;
2406 return (NULL);
2407 }
2408 }
2409
2410 csize = UMEM_CACHE_SIZE(umem_max_ncpus);
2411 phase = P2NPHASE(csize, UMEM_CPU_CACHE_SIZE);
2412
2413 if (vmp == NULL)
2414 vmp = umem_default_arena;
2415
2416 ASSERT(P2PHASE(phase, UMEM_ALIGN) == 0);
2417
2418 /*
2419 * Check that the arguments are reasonable
2420 */
2421 if ((align & (align - 1)) != 0 || align > vmp->vm_quantum ||
2422 ((cflags & UMC_NOHASH) && (cflags & UMC_NOTOUCH)) ||
2423 name == NULL || bufsize == 0) {
2424 errno = EINVAL;
2425 return (NULL);
2426 }
2427
2428 /*
2429 * If align == 0, we set it to the minimum required alignment.
2430 *
2431 * If align < UMEM_ALIGN, we round it up to UMEM_ALIGN, unless
2432 * UMC_NOTOUCH was passed.
2433 */
2434 if (align == 0) {
2435 if (P2ROUNDUP(bufsize, UMEM_ALIGN) >= UMEM_SECOND_ALIGN)
2436 align = UMEM_SECOND_ALIGN;
2437 else
2438 align = UMEM_ALIGN;
2439 } else if (align < UMEM_ALIGN && (cflags & UMC_NOTOUCH) == 0)
2440 align = UMEM_ALIGN;
2441
2442
2443 /*
2444 * Get a umem_cache structure. We arrange that cp->cache_cpu[]
2445 * is aligned on a UMEM_CPU_CACHE_SIZE boundary to prevent
2446 * false sharing of per-CPU data.
2447 */
2448 cp = vmem_xalloc(umem_cache_arena, csize, UMEM_CPU_CACHE_SIZE, phase,
2449 0, NULL, NULL, VM_NOSLEEP);
2450
2451 if (cp == NULL) {
2452 errno = EAGAIN;
2453 return (NULL);
2454 }
2455
2456 bzero(cp, csize);
2457
2458 (void) mutex_lock(&umem_flags_lock);
2459 if (umem_flags & UMF_RANDOMIZE)
2460 umem_flags = (((umem_flags | ~UMF_RANDOM) + 1) & UMF_RANDOM) |
2461 UMF_RANDOMIZE;
2462 cp->cache_flags = umem_flags | (cflags & UMF_DEBUG);
2463 (void) mutex_unlock(&umem_flags_lock);
2464
2465 /*
2466 * Make sure all the various flags are reasonable.
2467 */
2468 if (cp->cache_flags & UMF_LITE) {
2469 if (bufsize >= umem_lite_minsize &&
2470 align <= umem_lite_maxalign &&
2471 P2PHASE(bufsize, umem_lite_maxalign) != 0) {
2472 cp->cache_flags |= UMF_BUFTAG;
2473 cp->cache_flags &= ~(UMF_AUDIT | UMF_FIREWALL);
2474 } else {
2475 cp->cache_flags &= ~UMF_DEBUG;
2476 }
2477 }
2478
2479 if ((cflags & UMC_QCACHE) && (cp->cache_flags & UMF_AUDIT))
2480 cp->cache_flags |= UMF_NOMAGAZINE;
2481
2482 if (cflags & UMC_NODEBUG)
2483 cp->cache_flags &= ~UMF_DEBUG;
2484
2485 if (cflags & UMC_NOTOUCH)
2486 cp->cache_flags &= ~UMF_TOUCH;
2487
2488 if (cflags & UMC_NOHASH)
2489 cp->cache_flags &= ~(UMF_AUDIT | UMF_FIREWALL);
2490
2491 if (cflags & UMC_NOMAGAZINE)
2492 cp->cache_flags |= UMF_NOMAGAZINE;
2493
2494 if ((cp->cache_flags & UMF_AUDIT) && !(cflags & UMC_NOTOUCH))
2495 cp->cache_flags |= UMF_REDZONE;
2496
2497 if ((cp->cache_flags & UMF_BUFTAG) && bufsize >= umem_minfirewall &&
2498 !(cp->cache_flags & UMF_LITE) && !(cflags & UMC_NOHASH))
2499 cp->cache_flags |= UMF_FIREWALL;
2500
2501 if (vmp != umem_default_arena || umem_firewall_arena == NULL)
2502 cp->cache_flags &= ~UMF_FIREWALL;
2503
2504 if (cp->cache_flags & UMF_FIREWALL) {
2505 cp->cache_flags &= ~UMF_BUFTAG;
2506 cp->cache_flags |= UMF_NOMAGAZINE;
2507 ASSERT(vmp == umem_default_arena);
2508 vmp = umem_firewall_arena;
2509 }
2510
2511 /*
2512 * Set cache properties.
2513 */
2514 (void) strncpy(cp->cache_name, name, sizeof (cp->cache_name) - 1);
2515 cp->cache_bufsize = bufsize;
2516 cp->cache_align = align;
2517 cp->cache_constructor = constructor;
2518 cp->cache_destructor = destructor;
2519 cp->cache_reclaim = reclaim;
2520 cp->cache_private = private;
2521 cp->cache_arena = vmp;
2522 cp->cache_cflags = cflags;
2523 cp->cache_cpu_mask = umem_cpu_mask;
2524
2525 /*
2526 * Determine the chunk size.
2527 */
2528 chunksize = bufsize;
2529
2530 if (align >= UMEM_ALIGN) {
2531 chunksize = P2ROUNDUP(chunksize, UMEM_ALIGN);
2532 cp->cache_bufctl = chunksize - UMEM_ALIGN;
2533 }
2534
2535 if (cp->cache_flags & UMF_BUFTAG) {
2536 cp->cache_bufctl = chunksize;
2537 cp->cache_buftag = chunksize;
2538 chunksize += sizeof (umem_buftag_t);
2539 }
2540
2541 if (cp->cache_flags & UMF_DEADBEEF) {
2542 cp->cache_verify = MIN(cp->cache_buftag, umem_maxverify);
2543 if (cp->cache_flags & UMF_LITE)
2544 cp->cache_verify = MIN(cp->cache_verify, UMEM_ALIGN);
2545 }
2546
2547 cp->cache_contents = MIN(cp->cache_bufctl, umem_content_maxsave);
2548
2549 cp->cache_chunksize = chunksize = P2ROUNDUP(chunksize, align);
2550
2551 if (chunksize < bufsize) {
2552 errno = ENOMEM;
2553 goto fail;
2554 }
2555
2556 /*
2557 * Now that we know the chunk size, determine the optimal slab size.
2558 */
2559 if (vmp == umem_firewall_arena) {
2560 cp->cache_slabsize = P2ROUNDUP(chunksize, vmp->vm_quantum);
2561 cp->cache_mincolor = cp->cache_slabsize - chunksize;
2562 cp->cache_maxcolor = cp->cache_mincolor;
2563 cp->cache_flags |= UMF_HASH;
2564 ASSERT(!(cp->cache_flags & UMF_BUFTAG));
2565 } else if ((cflags & UMC_NOHASH) || (!(cflags & UMC_NOTOUCH) &&
2566 !(cp->cache_flags & UMF_AUDIT) &&
2567 chunksize < vmp->vm_quantum / UMEM_VOID_FRACTION)) {
2568 cp->cache_slabsize = vmp->vm_quantum;
2569 cp->cache_mincolor = 0;
2570 cp->cache_maxcolor =
2571 (cp->cache_slabsize - sizeof (umem_slab_t)) % chunksize;
2572
2573 if (chunksize + sizeof (umem_slab_t) > cp->cache_slabsize) {
2574 errno = EINVAL;
2575 goto fail;
2576 }
2577 ASSERT(!(cp->cache_flags & UMF_AUDIT));
2578 } else {
2579 size_t chunks, bestfit, waste, slabsize;
2580 size_t minwaste = LONG_MAX;
2581
2582 for (chunks = 1; chunks <= UMEM_VOID_FRACTION; chunks++) {
2583 slabsize = P2ROUNDUP(chunksize * chunks,
2584 vmp->vm_quantum);
2585 /*
2586 * check for overflow
2587 */
2588 if ((slabsize / chunks) < chunksize) {
2589 errno = ENOMEM;
2590 goto fail;
2591 }
2592 chunks = slabsize / chunksize;
2593 waste = (slabsize % chunksize) / chunks;
2594 if (waste < minwaste) {
2595 minwaste = waste;
2596 bestfit = slabsize;
2597 }
2598 }
2599 if (cflags & UMC_QCACHE)
2600 bestfit = MAX(1 << highbit(3 * vmp->vm_qcache_max), 64);
2601 cp->cache_slabsize = bestfit;
2602 cp->cache_mincolor = 0;
2603 cp->cache_maxcolor = bestfit % chunksize;
2604 cp->cache_flags |= UMF_HASH;
2605 }
2606
2607 if (cp->cache_flags & UMF_HASH) {
2608 ASSERT(!(cflags & UMC_NOHASH));
2609 cp->cache_bufctl_cache = (cp->cache_flags & UMF_AUDIT) ?
2610 umem_bufctl_audit_cache : umem_bufctl_cache;
2611 }
2612
2613 if (cp->cache_maxcolor >= vmp->vm_quantum)
2614 cp->cache_maxcolor = vmp->vm_quantum - 1;
2615
2616 cp->cache_color = cp->cache_mincolor;
2617
2618 /*
2619 * Initialize the rest of the slab layer.
2620 */
2621 (void) mutex_init(&cp->cache_lock, USYNC_THREAD, NULL);
2622
2623 cp->cache_freelist = &cp->cache_nullslab;
2624 cp->cache_nullslab.slab_cache = cp;
2625 cp->cache_nullslab.slab_refcnt = -1;
2626 cp->cache_nullslab.slab_next = &cp->cache_nullslab;
2627 cp->cache_nullslab.slab_prev = &cp->cache_nullslab;
2628
2629 if (cp->cache_flags & UMF_HASH) {
2630 cp->cache_hash_table = vmem_alloc(umem_hash_arena,
2631 UMEM_HASH_INITIAL * sizeof (void *), VM_NOSLEEP);
2632 if (cp->cache_hash_table == NULL) {
2633 errno = EAGAIN;
2634 goto fail_lock;
2635 }
2636 bzero(cp->cache_hash_table,
2637 UMEM_HASH_INITIAL * sizeof (void *));
2638 cp->cache_hash_mask = UMEM_HASH_INITIAL - 1;
2639 cp->cache_hash_shift = highbit((ulong_t)chunksize) - 1;
2640 }
2641
2642 /*
2643 * Initialize the depot.
2644 */
2645 (void) mutex_init(&cp->cache_depot_lock, USYNC_THREAD, NULL);
2646
2647 for (mtp = umem_magtype; chunksize <= mtp->mt_minbuf; mtp++)
2648 continue;
2649
2650 cp->cache_magtype = mtp;
2651
2652 /*
2653 * Initialize the CPU layer.
2654 */
2655 for (cpu_seqid = 0; cpu_seqid < umem_max_ncpus; cpu_seqid++) {
2656 umem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
2657 (void) mutex_init(&ccp->cc_lock, USYNC_THREAD, NULL);
2658 ccp->cc_flags = cp->cache_flags;
2659 ccp->cc_rounds = -1;
2660 ccp->cc_prounds = -1;
2661 }
2662
2663 /*
2664 * Add the cache to the global list. This makes it visible
2665 * to umem_update(), so the cache must be ready for business.
2666 */
2667 (void) mutex_lock(&umem_cache_lock);
2668 cp->cache_next = cnext = &umem_null_cache;
2669 cp->cache_prev = cprev = umem_null_cache.cache_prev;
2670 cnext->cache_prev = cp;
2671 cprev->cache_next = cp;
2672 (void) mutex_unlock(&umem_cache_lock);
2673
2674 if (umem_ready == UMEM_READY)
2675 umem_cache_magazine_enable(cp);
2676
2677 return (cp);
2678
2679fail_lock:
2680 (void) mutex_destroy(&cp->cache_lock);
2681fail:
2682 vmem_xfree(umem_cache_arena, cp, csize);
2683 return (NULL);
2684}
2685
2686void
2687umem_cache_destroy(umem_cache_t *cp)
2688{
2689 int cpu_seqid;
2690
2691 /*
2692 * Remove the cache from the global cache list so that no new updates
2693 * will be scheduled on its behalf, wait for any pending tasks to
2694 * complete, purge the cache, and then destroy it.
2695 */
2696 (void) mutex_lock(&umem_cache_lock);
2697 cp->cache_prev->cache_next = cp->cache_next;
2698 cp->cache_next->cache_prev = cp->cache_prev;
2699 cp->cache_prev = cp->cache_next = NULL;
2700 (void) mutex_unlock(&umem_cache_lock);
2701
2702 umem_remove_updates(cp);
2703
2704 umem_cache_magazine_purge(cp);
2705
2706 (void) mutex_lock(&cp->cache_lock);
2707 if (cp->cache_buftotal != 0)
2708 log_message("umem_cache_destroy: '%s' (%p) not empty\n",
2709 cp->cache_name, (void *)cp);
2710 cp->cache_reclaim = NULL;
2711 /*
2712 * The cache is now dead. There should be no further activity.
2713 * We enforce this by setting land mines in the constructor and
2714 * destructor routines that induce a segmentation fault if invoked.
2715 */
2716 cp->cache_constructor = (umem_constructor_t *)1;
2717 cp->cache_destructor = (umem_destructor_t *)2;
2718 (void) mutex_unlock(&cp->cache_lock);
2719
2720 if (cp->cache_hash_table != NULL)
2721 vmem_free(umem_hash_arena, cp->cache_hash_table,
2722 (cp->cache_hash_mask + 1) * sizeof (void *));
2723
2724 for (cpu_seqid = 0; cpu_seqid < umem_max_ncpus; cpu_seqid++)
2725 (void) mutex_destroy(&cp->cache_cpu[cpu_seqid].cc_lock);
2726
2727 (void) mutex_destroy(&cp->cache_depot_lock);
2728 (void) mutex_destroy(&cp->cache_lock);
2729
2730 vmem_free(umem_cache_arena, cp, UMEM_CACHE_SIZE(umem_max_ncpus));
2731}
2732
b128c09f
BB
2733void
2734umem_alloc_sizes_clear(void)
2735{
2736 int i;
2737
2738 umem_alloc_sizes[0] = UMEM_MAXBUF;
2739 for (i = 1; i < NUM_ALLOC_SIZES; i++)
2740 umem_alloc_sizes[i] = 0;
2741}
2742
2743void
2744umem_alloc_sizes_add(size_t size_arg)
2745{
2746 int i, j;
2747 size_t size = size_arg;
2748
2749 if (size == 0) {
2750 log_message("size_add: cannot add zero-sized cache\n",
2751 size, UMEM_MAXBUF);
2752 return;
2753 }
2754
2755 if (size > UMEM_MAXBUF) {
2756 log_message("size_add: %ld > %d, cannot add\n", size,
2757 UMEM_MAXBUF);
2758 return;
2759 }
2760
2761 if (umem_alloc_sizes[NUM_ALLOC_SIZES - 1] != 0) {
2762 log_message("size_add: no space in alloc_table for %d\n",
2763 size);
2764 return;
2765 }
2766
2767 if (P2PHASE(size, UMEM_ALIGN) != 0) {
2768 size = P2ROUNDUP(size, UMEM_ALIGN);
2769 log_message("size_add: rounding %d up to %d\n", size_arg,
2770 size);
2771 }
2772
2773 for (i = 0; i < NUM_ALLOC_SIZES; i++) {
2774 int cur = umem_alloc_sizes[i];
2775 if (cur == size) {
2776 log_message("size_add: %ld already in table\n",
2777 size);
2778 return;
2779 }
2780 if (cur > size)
2781 break;
2782 }
2783
2784 for (j = NUM_ALLOC_SIZES - 1; j > i; j--)
2785 umem_alloc_sizes[j] = umem_alloc_sizes[j-1];
2786 umem_alloc_sizes[i] = size;
2787}
2788
2789void
2790umem_alloc_sizes_remove(size_t size)
2791{
2792 int i;
2793
2794 if (size == UMEM_MAXBUF) {
2795 log_message("size_remove: cannot remove %ld\n", size);
2796 return;
2797 }
2798
2799 for (i = 0; i < NUM_ALLOC_SIZES; i++) {
2800 int cur = umem_alloc_sizes[i];
2801 if (cur == size)
2802 break;
2803 else if (cur > size || cur == 0) {
2804 log_message("size_remove: %ld not found in table\n",
2805 size);
2806 return;
2807 }
2808 }
2809
2810 for (; i + 1 < NUM_ALLOC_SIZES; i++)
2811 umem_alloc_sizes[i] = umem_alloc_sizes[i+1];
2812 umem_alloc_sizes[i] = 0;
2813}
2814
34dc7c2f
BB
2815static int
2816umem_cache_init(void)
2817{
2818 int i;
2819 size_t size, max_size;
2820 umem_cache_t *cp;
2821 umem_magtype_t *mtp;
2822 char name[UMEM_CACHE_NAMELEN + 1];
2823 umem_cache_t *umem_alloc_caches[NUM_ALLOC_SIZES];
2824
2825 for (i = 0; i < sizeof (umem_magtype) / sizeof (*mtp); i++) {
2826 mtp = &umem_magtype[i];
2827 (void) snprintf(name, sizeof (name), "umem_magazine_%d",
2828 mtp->mt_magsize);
2829 mtp->mt_cache = umem_cache_create(name,
2830 (mtp->mt_magsize + 1) * sizeof (void *),
2831 mtp->mt_align, NULL, NULL, NULL, NULL,
2832 umem_internal_arena, UMC_NOHASH | UMC_INTERNAL);
2833 if (mtp->mt_cache == NULL)
2834 return (0);
2835 }
2836
2837 umem_slab_cache = umem_cache_create("umem_slab_cache",
2838 sizeof (umem_slab_t), 0, NULL, NULL, NULL, NULL,
2839 umem_internal_arena, UMC_NOHASH | UMC_INTERNAL);
2840
2841 if (umem_slab_cache == NULL)
2842 return (0);
2843
2844 umem_bufctl_cache = umem_cache_create("umem_bufctl_cache",
2845 sizeof (umem_bufctl_t), 0, NULL, NULL, NULL, NULL,
2846 umem_internal_arena, UMC_NOHASH | UMC_INTERNAL);
2847
2848 if (umem_bufctl_cache == NULL)
2849 return (0);
2850
2851 /*
2852 * The size of the umem_bufctl_audit structure depends upon
2853 * umem_stack_depth. See umem_impl.h for details on the size
2854 * restrictions.
2855 */
2856
2857 size = UMEM_BUFCTL_AUDIT_SIZE_DEPTH(umem_stack_depth);
2858 max_size = UMEM_BUFCTL_AUDIT_MAX_SIZE;
2859
2860 if (size > max_size) { /* too large -- truncate */
2861 int max_frames = UMEM_MAX_STACK_DEPTH;
2862
2863 ASSERT(UMEM_BUFCTL_AUDIT_SIZE_DEPTH(max_frames) <= max_size);
2864
2865 umem_stack_depth = max_frames;
2866 size = UMEM_BUFCTL_AUDIT_SIZE_DEPTH(umem_stack_depth);
2867 }
2868
2869 umem_bufctl_audit_cache = umem_cache_create("umem_bufctl_audit_cache",
2870 size, 0, NULL, NULL, NULL, NULL, umem_internal_arena,
2871 UMC_NOHASH | UMC_INTERNAL);
2872
2873 if (umem_bufctl_audit_cache == NULL)
2874 return (0);
2875
2876 if (vmem_backend & VMEM_BACKEND_MMAP)
2877 umem_va_arena = vmem_create("umem_va",
2878 NULL, 0, pagesize,
2879 vmem_alloc, vmem_free, heap_arena,
2880 8 * pagesize, VM_NOSLEEP);
2881 else
2882 umem_va_arena = heap_arena;
2883
2884 if (umem_va_arena == NULL)
2885 return (0);
2886
2887 umem_default_arena = vmem_create("umem_default",
2888 NULL, 0, pagesize,
2889 heap_alloc, heap_free, umem_va_arena,
2890 0, VM_NOSLEEP);
2891
2892 if (umem_default_arena == NULL)
2893 return (0);
2894
2895 /*
2896 * make sure the umem_alloc table initializer is correct
2897 */
2898 i = sizeof (umem_alloc_table) / sizeof (*umem_alloc_table);
2899 ASSERT(umem_alloc_table[i - 1] == &umem_null_cache);
2900
2901 /*
2902 * Create the default caches to back umem_alloc()
2903 */
2904 for (i = 0; i < NUM_ALLOC_SIZES; i++) {
2905 size_t cache_size = umem_alloc_sizes[i];
2906 size_t align = 0;
b128c09f
BB
2907
2908 if (cache_size == 0)
2909 break; /* 0 terminates the list */
2910
34dc7c2f
BB
2911 /*
2912 * If they allocate a multiple of the coherency granularity,
2913 * they get a coherency-granularity-aligned address.
2914 */
2915 if (IS_P2ALIGNED(cache_size, 64))
2916 align = 64;
2917 if (IS_P2ALIGNED(cache_size, pagesize))
2918 align = pagesize;
2919 (void) snprintf(name, sizeof (name), "umem_alloc_%lu",
2920 (long)cache_size);
2921
2922 cp = umem_cache_create(name, cache_size, align,
2923 NULL, NULL, NULL, NULL, NULL, UMC_INTERNAL);
2924 if (cp == NULL)
2925 return (0);
2926
2927 umem_alloc_caches[i] = cp;
2928 }
2929
2930 /*
2931 * Initialization cannot fail at this point. Make the caches
2932 * visible to umem_alloc() and friends.
2933 */
2934 size = UMEM_ALIGN;
2935 for (i = 0; i < NUM_ALLOC_SIZES; i++) {
2936 size_t cache_size = umem_alloc_sizes[i];
2937
b128c09f
BB
2938 if (cache_size == 0)
2939 break; /* 0 terminates the list */
2940
34dc7c2f
BB
2941 cp = umem_alloc_caches[i];
2942
2943 while (size <= cache_size) {
2944 umem_alloc_table[(size - 1) >> UMEM_ALIGN_SHIFT] = cp;
2945 size += UMEM_ALIGN;
2946 }
2947 }
b128c09f 2948 ASSERT(size - UMEM_ALIGN == UMEM_MAXBUF);
34dc7c2f
BB
2949 return (1);
2950}
2951
2952/*
2953 * umem_startup() is called early on, and must be called explicitly if we're
2954 * the standalone version.
2955 */
b128c09f 2956#ifdef UMEM_STANDALONE
34dc7c2f 2957void
b128c09f
BB
2958#else
2959#pragma init(umem_startup)
2960static void
2961#endif
2962umem_startup(caddr_t start, size_t len, size_t pagesize, caddr_t minstack,
2963 caddr_t maxstack)
34dc7c2f 2964{
34dc7c2f
BB
2965#ifdef UMEM_STANDALONE
2966 int idx;
2967 /* Standalone doesn't fork */
2968#else
2969 umem_forkhandler_init(); /* register the fork handler */
2970#endif
2971
2972#ifdef __lint
2973 /* make lint happy */
2974 minstack = maxstack;
2975#endif
2976
2977#ifdef UMEM_STANDALONE
2978 umem_ready = UMEM_READY_STARTUP;
2979 umem_init_env_ready = 0;
2980
2981 umem_min_stack = minstack;
2982 umem_max_stack = maxstack;
2983
2984 nofail_callback = NULL;
2985 umem_slab_cache = NULL;
2986 umem_bufctl_cache = NULL;
2987 umem_bufctl_audit_cache = NULL;
2988 heap_arena = NULL;
2989 heap_alloc = NULL;
2990 heap_free = NULL;
2991 umem_internal_arena = NULL;
2992 umem_cache_arena = NULL;
2993 umem_hash_arena = NULL;
2994 umem_log_arena = NULL;
2995 umem_oversize_arena = NULL;
2996 umem_va_arena = NULL;
2997 umem_default_arena = NULL;
2998 umem_firewall_va_arena = NULL;
2999 umem_firewall_arena = NULL;
3000 umem_memalign_arena = NULL;
3001 umem_transaction_log = NULL;
3002 umem_content_log = NULL;
3003 umem_failure_log = NULL;
3004 umem_slab_log = NULL;
3005 umem_cpu_mask = 0;
3006
3007 umem_cpus = &umem_startup_cpu;
3008 umem_startup_cpu.cpu_cache_offset = UMEM_CACHE_SIZE(0);
3009 umem_startup_cpu.cpu_number = 0;
3010
3011 bcopy(&umem_null_cache_template, &umem_null_cache,
3012 sizeof (umem_cache_t));
3013
3014 for (idx = 0; idx < (UMEM_MAXBUF >> UMEM_ALIGN_SHIFT); idx++)
3015 umem_alloc_table[idx] = &umem_null_cache;
3016#endif
3017
3018 /*
3019 * Perform initialization specific to the way we've been compiled
3020 * (library or standalone)
3021 */
3022 umem_type_init(start, len, pagesize);
3023
3024 vmem_startup();
3025}
3026
3027int
3028umem_init(void)
3029{
3030 size_t maxverify, minfirewall;
3031 size_t size;
3032 int idx;
3033 umem_cpu_t *new_cpus;
3034
3035 vmem_t *memalign_arena, *oversize_arena;
3036
3037 if (thr_self() != umem_init_thr) {
3038 /*
3039 * The usual case -- non-recursive invocation of umem_init().
3040 */
3041 (void) mutex_lock(&umem_init_lock);
3042 if (umem_ready != UMEM_READY_STARTUP) {
3043 /*
3044 * someone else beat us to initializing umem. Wait
3045 * for them to complete, then return.
3046 */
b128c09f
BB
3047 while (umem_ready == UMEM_READY_INITING) {
3048 int cancel_state;
3049
3050 (void) pthread_setcancelstate(
3051 PTHREAD_CANCEL_DISABLE, &cancel_state);
3052 (void) cond_wait(&umem_init_cv,
34dc7c2f 3053 &umem_init_lock);
b128c09f
BB
3054 (void) pthread_setcancelstate(
3055 cancel_state, NULL);
3056 }
34dc7c2f
BB
3057 ASSERT(umem_ready == UMEM_READY ||
3058 umem_ready == UMEM_READY_INIT_FAILED);
3059 (void) mutex_unlock(&umem_init_lock);
3060 return (umem_ready == UMEM_READY);
3061 }
3062
3063 ASSERT(umem_ready == UMEM_READY_STARTUP);
3064 ASSERT(umem_init_env_ready == 0);
3065
3066 umem_ready = UMEM_READY_INITING;
3067 umem_init_thr = thr_self();
3068
3069 (void) mutex_unlock(&umem_init_lock);
3070 umem_setup_envvars(0); /* can recurse -- see below */
3071 if (umem_init_env_ready) {
3072 /*
3073 * initialization was completed already
3074 */
3075 ASSERT(umem_ready == UMEM_READY ||
3076 umem_ready == UMEM_READY_INIT_FAILED);
3077 ASSERT(umem_init_thr == 0);
3078 return (umem_ready == UMEM_READY);
3079 }
3080 } else if (!umem_init_env_ready) {
3081 /*
3082 * The umem_setup_envvars() call (above) makes calls into
3083 * the dynamic linker and directly into user-supplied code.
3084 * Since we cannot know what that code will do, we could be
3085 * recursively invoked (by, say, a malloc() call in the code
3086 * itself, or in a (C++) _init section it causes to be fired).
3087 *
3088 * This code is where we end up if such recursion occurs. We
3089 * first clean up any partial results in the envvar code, then
3090 * proceed to finish initialization processing in the recursive
3091 * call. The original call will notice this, and return
3092 * immediately.
3093 */
3094 umem_setup_envvars(1); /* clean up any partial state */
3095 } else {
3096 umem_panic(
3097 "recursive allocation while initializing umem\n");
3098 }
3099 umem_init_env_ready = 1;
3100
3101 /*
3102 * From this point until we finish, recursion into umem_init() will
3103 * cause a umem_panic().
3104 */
3105 maxverify = minfirewall = ULONG_MAX;
3106
3107 /* LINTED constant condition */
3108 if (sizeof (umem_cpu_cache_t) != UMEM_CPU_CACHE_SIZE) {
3109 umem_panic("sizeof (umem_cpu_cache_t) = %d, should be %d\n",
3110 sizeof (umem_cpu_cache_t), UMEM_CPU_CACHE_SIZE);
3111 }
3112
3113 umem_max_ncpus = umem_get_max_ncpus();
3114
3115 /*
3116 * load tunables from environment
3117 */
3118 umem_process_envvars();
3119
3120 if (issetugid())
3121 umem_mtbf = 0;
3122
3123 /*
3124 * set up vmem
3125 */
3126 if (!(umem_flags & UMF_AUDIT))
3127 vmem_no_debug();
3128
3129 heap_arena = vmem_heap_arena(&heap_alloc, &heap_free);
3130
3131 pagesize = heap_arena->vm_quantum;
3132
3133 umem_internal_arena = vmem_create("umem_internal", NULL, 0, pagesize,
3134 heap_alloc, heap_free, heap_arena, 0, VM_NOSLEEP);
3135
3136 umem_default_arena = umem_internal_arena;
3137
3138 if (umem_internal_arena == NULL)
3139 goto fail;
3140
3141 umem_cache_arena = vmem_create("umem_cache", NULL, 0, UMEM_ALIGN,
3142 vmem_alloc, vmem_free, umem_internal_arena, 0, VM_NOSLEEP);
3143
3144 umem_hash_arena = vmem_create("umem_hash", NULL, 0, UMEM_ALIGN,
3145 vmem_alloc, vmem_free, umem_internal_arena, 0, VM_NOSLEEP);
3146
3147 umem_log_arena = vmem_create("umem_log", NULL, 0, UMEM_ALIGN,
3148 heap_alloc, heap_free, heap_arena, 0, VM_NOSLEEP);
3149
3150 umem_firewall_va_arena = vmem_create("umem_firewall_va",
3151 NULL, 0, pagesize,
3152 umem_firewall_va_alloc, umem_firewall_va_free, heap_arena,
3153 0, VM_NOSLEEP);
3154
3155 if (umem_cache_arena == NULL || umem_hash_arena == NULL ||
3156 umem_log_arena == NULL || umem_firewall_va_arena == NULL)
3157 goto fail;
3158
3159 umem_firewall_arena = vmem_create("umem_firewall", NULL, 0, pagesize,
3160 heap_alloc, heap_free, umem_firewall_va_arena, 0,
3161 VM_NOSLEEP);
3162
3163 if (umem_firewall_arena == NULL)
3164 goto fail;
3165
3166 oversize_arena = vmem_create("umem_oversize", NULL, 0, pagesize,
3167 heap_alloc, heap_free, minfirewall < ULONG_MAX ?
3168 umem_firewall_va_arena : heap_arena, 0, VM_NOSLEEP);
3169
3170 memalign_arena = vmem_create("umem_memalign", NULL, 0, UMEM_ALIGN,
3171 heap_alloc, heap_free, minfirewall < ULONG_MAX ?
3172 umem_firewall_va_arena : heap_arena, 0, VM_NOSLEEP);
3173
3174 if (oversize_arena == NULL || memalign_arena == NULL)
3175 goto fail;
3176
3177 if (umem_max_ncpus > CPUHINT_MAX())
3178 umem_max_ncpus = CPUHINT_MAX();
3179
3180 while ((umem_max_ncpus & (umem_max_ncpus - 1)) != 0)
3181 umem_max_ncpus++;
3182
3183 if (umem_max_ncpus == 0)
3184 umem_max_ncpus = 1;
3185
3186 size = umem_max_ncpus * sizeof (umem_cpu_t);
3187 new_cpus = vmem_alloc(umem_internal_arena, size, VM_NOSLEEP);
3188 if (new_cpus == NULL)
3189 goto fail;
3190
3191 bzero(new_cpus, size);
3192 for (idx = 0; idx < umem_max_ncpus; idx++) {
3193 new_cpus[idx].cpu_number = idx;
3194 new_cpus[idx].cpu_cache_offset = UMEM_CACHE_SIZE(idx);
3195 }
3196 umem_cpus = new_cpus;
3197 umem_cpu_mask = (umem_max_ncpus - 1);
3198
3199 if (umem_maxverify == 0)
3200 umem_maxverify = maxverify;
3201
3202 if (umem_minfirewall == 0)
3203 umem_minfirewall = minfirewall;
3204
3205 /*
3206 * Set up updating and reaping
3207 */
3208 umem_reap_next = gethrtime() + NANOSEC;
3209
3210#ifndef UMEM_STANDALONE
3211 (void) gettimeofday(&umem_update_next, NULL);
3212#endif
3213
3214 /*
3215 * Set up logging -- failure here is okay, since it will just disable
3216 * the logs
3217 */
3218 if (umem_logging) {
3219 umem_transaction_log = umem_log_init(umem_transaction_log_size);
3220 umem_content_log = umem_log_init(umem_content_log_size);
3221 umem_failure_log = umem_log_init(umem_failure_log_size);
3222 umem_slab_log = umem_log_init(umem_slab_log_size);
3223 }
3224
3225 /*
3226 * Set up caches -- if successful, initialization cannot fail, since
3227 * allocations from other threads can now succeed.
3228 */
3229 if (umem_cache_init() == 0) {
3230 log_message("unable to create initial caches\n");
3231 goto fail;
3232 }
3233 umem_oversize_arena = oversize_arena;
3234 umem_memalign_arena = memalign_arena;
3235
3236 umem_cache_applyall(umem_cache_magazine_enable);
3237
3238 /*
3239 * initialization done, ready to go
3240 */
3241 (void) mutex_lock(&umem_init_lock);
3242 umem_ready = UMEM_READY;
3243 umem_init_thr = 0;
3244 (void) cond_broadcast(&umem_init_cv);
3245 (void) mutex_unlock(&umem_init_lock);
3246 return (1);
3247
3248fail:
3249 log_message("umem initialization failed\n");
3250
3251 (void) mutex_lock(&umem_init_lock);
3252 umem_ready = UMEM_READY_INIT_FAILED;
3253 umem_init_thr = 0;
3254 (void) cond_broadcast(&umem_init_cv);
3255 (void) mutex_unlock(&umem_init_lock);
3256 return (0);
3257}