]> git.proxmox.com Git - mirror_zfs.git/blame - zfs/lib/libzpool/arc.c
Initial Linux ZFS GIT Repo
[mirror_zfs.git] / zfs / lib / libzpool / arc.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#pragma ident "@(#)arc.c 1.44 08/03/20 SMI"
27
28/*
29 * DVA-based Adjustable Replacement Cache
30 *
31 * While much of the theory of operation used here is
32 * based on the self-tuning, low overhead replacement cache
33 * presented by Megiddo and Modha at FAST 2003, there are some
34 * significant differences:
35 *
36 * 1. The Megiddo and Modha model assumes any page is evictable.
37 * Pages in its cache cannot be "locked" into memory. This makes
38 * the eviction algorithm simple: evict the last page in the list.
39 * This also make the performance characteristics easy to reason
40 * about. Our cache is not so simple. At any given moment, some
41 * subset of the blocks in the cache are un-evictable because we
42 * have handed out a reference to them. Blocks are only evictable
43 * when there are no external references active. This makes
44 * eviction far more problematic: we choose to evict the evictable
45 * blocks that are the "lowest" in the list.
46 *
47 * There are times when it is not possible to evict the requested
48 * space. In these circumstances we are unable to adjust the cache
49 * size. To prevent the cache growing unbounded at these times we
50 * implement a "cache throttle" that slows the flow of new data
51 * into the cache until we can make space available.
52 *
53 * 2. The Megiddo and Modha model assumes a fixed cache size.
54 * Pages are evicted when the cache is full and there is a cache
55 * miss. Our model has a variable sized cache. It grows with
56 * high use, but also tries to react to memory pressure from the
57 * operating system: decreasing its size when system memory is
58 * tight.
59 *
60 * 3. The Megiddo and Modha model assumes a fixed page size. All
61 * elements of the cache are therefor exactly the same size. So
62 * when adjusting the cache size following a cache miss, its simply
63 * a matter of choosing a single page to evict. In our model, we
64 * have variable sized cache blocks (rangeing from 512 bytes to
65 * 128K bytes). We therefor choose a set of blocks to evict to make
66 * space for a cache miss that approximates as closely as possible
67 * the space used by the new block.
68 *
69 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
70 * by N. Megiddo & D. Modha, FAST 2003
71 */
72
73/*
74 * The locking model:
75 *
76 * A new reference to a cache buffer can be obtained in two
77 * ways: 1) via a hash table lookup using the DVA as a key,
78 * or 2) via one of the ARC lists. The arc_read() interface
79 * uses method 1, while the internal arc algorithms for
80 * adjusting the cache use method 2. We therefor provide two
81 * types of locks: 1) the hash table lock array, and 2) the
82 * arc list locks.
83 *
84 * Buffers do not have their own mutexs, rather they rely on the
85 * hash table mutexs for the bulk of their protection (i.e. most
86 * fields in the arc_buf_hdr_t are protected by these mutexs).
87 *
88 * buf_hash_find() returns the appropriate mutex (held) when it
89 * locates the requested buffer in the hash table. It returns
90 * NULL for the mutex if the buffer was not in the table.
91 *
92 * buf_hash_remove() expects the appropriate hash mutex to be
93 * already held before it is invoked.
94 *
95 * Each arc state also has a mutex which is used to protect the
96 * buffer list associated with the state. When attempting to
97 * obtain a hash table lock while holding an arc list lock you
98 * must use: mutex_tryenter() to avoid deadlock. Also note that
99 * the active state mutex must be held before the ghost state mutex.
100 *
101 * Arc buffers may have an associated eviction callback function.
102 * This function will be invoked prior to removing the buffer (e.g.
103 * in arc_do_user_evicts()). Note however that the data associated
104 * with the buffer may be evicted prior to the callback. The callback
105 * must be made with *no locks held* (to prevent deadlock). Additionally,
106 * the users of callbacks must ensure that their private data is
107 * protected from simultaneous callbacks from arc_buf_evict()
108 * and arc_do_user_evicts().
109 *
110 * Note that the majority of the performance stats are manipulated
111 * with atomic operations.
112 *
113 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
114 *
115 * - L2ARC buflist creation
116 * - L2ARC buflist eviction
117 * - L2ARC write completion, which walks L2ARC buflists
118 * - ARC header destruction, as it removes from L2ARC buflists
119 * - ARC header release, as it removes from L2ARC buflists
120 */
121
122#include <sys/spa.h>
123#include <sys/zio.h>
124#include <sys/zio_checksum.h>
125#include <sys/zfs_context.h>
126#include <sys/arc.h>
127#include <sys/refcount.h>
128#ifdef _KERNEL
129#include <sys/vmsystm.h>
130#include <vm/anon.h>
131#include <sys/fs/swapnode.h>
132#include <sys/dnlc.h>
133#endif
134#include <sys/callb.h>
135#include <sys/kstat.h>
136
137static kmutex_t arc_reclaim_thr_lock;
138static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */
139static uint8_t arc_thread_exit;
140
141extern int zfs_write_limit_shift;
142extern uint64_t zfs_write_limit_max;
143extern uint64_t zfs_write_limit_inflated;
144
145#define ARC_REDUCE_DNLC_PERCENT 3
146uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
147
148typedef enum arc_reclaim_strategy {
149 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */
150 ARC_RECLAIM_CONS /* Conservative reclaim strategy */
151} arc_reclaim_strategy_t;
152
153/* number of seconds before growing cache again */
154static int arc_grow_retry = 60;
155
156/*
157 * minimum lifespan of a prefetch block in clock ticks
158 * (initialized in arc_init())
159 */
160static int arc_min_prefetch_lifespan;
161
162static int arc_dead;
163
164/*
165 * These tunables are for performance analysis.
166 */
167uint64_t zfs_arc_max;
168uint64_t zfs_arc_min;
169uint64_t zfs_arc_meta_limit = 0;
170
171/*
172 * Note that buffers can be in one of 6 states:
173 * ARC_anon - anonymous (discussed below)
174 * ARC_mru - recently used, currently cached
175 * ARC_mru_ghost - recentely used, no longer in cache
176 * ARC_mfu - frequently used, currently cached
177 * ARC_mfu_ghost - frequently used, no longer in cache
178 * ARC_l2c_only - exists in L2ARC but not other states
179 * When there are no active references to the buffer, they are
180 * are linked onto a list in one of these arc states. These are
181 * the only buffers that can be evicted or deleted. Within each
182 * state there are multiple lists, one for meta-data and one for
183 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes,
184 * etc.) is tracked separately so that it can be managed more
185 * explicitly: favored over data, limited explicitly.
186 *
187 * Anonymous buffers are buffers that are not associated with
188 * a DVA. These are buffers that hold dirty block copies
189 * before they are written to stable storage. By definition,
190 * they are "ref'd" and are considered part of arc_mru
191 * that cannot be freed. Generally, they will aquire a DVA
192 * as they are written and migrate onto the arc_mru list.
193 *
194 * The ARC_l2c_only state is for buffers that are in the second
195 * level ARC but no longer in any of the ARC_m* lists. The second
196 * level ARC itself may also contain buffers that are in any of
197 * the ARC_m* states - meaning that a buffer can exist in two
198 * places. The reason for the ARC_l2c_only state is to keep the
199 * buffer header in the hash table, so that reads that hit the
200 * second level ARC benefit from these fast lookups.
201 */
202
203typedef struct arc_state {
204 list_t arcs_list[ARC_BUFC_NUMTYPES]; /* list of evictable buffers */
205 uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */
206 uint64_t arcs_size; /* total amount of data in this state */
207 kmutex_t arcs_mtx;
208} arc_state_t;
209
210/* The 6 states: */
211static arc_state_t ARC_anon;
212static arc_state_t ARC_mru;
213static arc_state_t ARC_mru_ghost;
214static arc_state_t ARC_mfu;
215static arc_state_t ARC_mfu_ghost;
216static arc_state_t ARC_l2c_only;
217
218typedef struct arc_stats {
219 kstat_named_t arcstat_hits;
220 kstat_named_t arcstat_misses;
221 kstat_named_t arcstat_demand_data_hits;
222 kstat_named_t arcstat_demand_data_misses;
223 kstat_named_t arcstat_demand_metadata_hits;
224 kstat_named_t arcstat_demand_metadata_misses;
225 kstat_named_t arcstat_prefetch_data_hits;
226 kstat_named_t arcstat_prefetch_data_misses;
227 kstat_named_t arcstat_prefetch_metadata_hits;
228 kstat_named_t arcstat_prefetch_metadata_misses;
229 kstat_named_t arcstat_mru_hits;
230 kstat_named_t arcstat_mru_ghost_hits;
231 kstat_named_t arcstat_mfu_hits;
232 kstat_named_t arcstat_mfu_ghost_hits;
233 kstat_named_t arcstat_deleted;
234 kstat_named_t arcstat_recycle_miss;
235 kstat_named_t arcstat_mutex_miss;
236 kstat_named_t arcstat_evict_skip;
237 kstat_named_t arcstat_hash_elements;
238 kstat_named_t arcstat_hash_elements_max;
239 kstat_named_t arcstat_hash_collisions;
240 kstat_named_t arcstat_hash_chains;
241 kstat_named_t arcstat_hash_chain_max;
242 kstat_named_t arcstat_p;
243 kstat_named_t arcstat_c;
244 kstat_named_t arcstat_c_min;
245 kstat_named_t arcstat_c_max;
246 kstat_named_t arcstat_size;
247 kstat_named_t arcstat_hdr_size;
248 kstat_named_t arcstat_l2_hits;
249 kstat_named_t arcstat_l2_misses;
250 kstat_named_t arcstat_l2_feeds;
251 kstat_named_t arcstat_l2_rw_clash;
252 kstat_named_t arcstat_l2_writes_sent;
253 kstat_named_t arcstat_l2_writes_done;
254 kstat_named_t arcstat_l2_writes_error;
255 kstat_named_t arcstat_l2_writes_hdr_miss;
256 kstat_named_t arcstat_l2_evict_lock_retry;
257 kstat_named_t arcstat_l2_evict_reading;
258 kstat_named_t arcstat_l2_free_on_write;
259 kstat_named_t arcstat_l2_abort_lowmem;
260 kstat_named_t arcstat_l2_cksum_bad;
261 kstat_named_t arcstat_l2_io_error;
262 kstat_named_t arcstat_l2_size;
263 kstat_named_t arcstat_l2_hdr_size;
264 kstat_named_t arcstat_memory_throttle_count;
265} arc_stats_t;
266
267static arc_stats_t arc_stats = {
268 { "hits", KSTAT_DATA_UINT64 },
269 { "misses", KSTAT_DATA_UINT64 },
270 { "demand_data_hits", KSTAT_DATA_UINT64 },
271 { "demand_data_misses", KSTAT_DATA_UINT64 },
272 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
273 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
274 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
275 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
276 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
277 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
278 { "mru_hits", KSTAT_DATA_UINT64 },
279 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
280 { "mfu_hits", KSTAT_DATA_UINT64 },
281 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
282 { "deleted", KSTAT_DATA_UINT64 },
283 { "recycle_miss", KSTAT_DATA_UINT64 },
284 { "mutex_miss", KSTAT_DATA_UINT64 },
285 { "evict_skip", KSTAT_DATA_UINT64 },
286 { "hash_elements", KSTAT_DATA_UINT64 },
287 { "hash_elements_max", KSTAT_DATA_UINT64 },
288 { "hash_collisions", KSTAT_DATA_UINT64 },
289 { "hash_chains", KSTAT_DATA_UINT64 },
290 { "hash_chain_max", KSTAT_DATA_UINT64 },
291 { "p", KSTAT_DATA_UINT64 },
292 { "c", KSTAT_DATA_UINT64 },
293 { "c_min", KSTAT_DATA_UINT64 },
294 { "c_max", KSTAT_DATA_UINT64 },
295 { "size", KSTAT_DATA_UINT64 },
296 { "hdr_size", KSTAT_DATA_UINT64 },
297 { "l2_hits", KSTAT_DATA_UINT64 },
298 { "l2_misses", KSTAT_DATA_UINT64 },
299 { "l2_feeds", KSTAT_DATA_UINT64 },
300 { "l2_rw_clash", KSTAT_DATA_UINT64 },
301 { "l2_writes_sent", KSTAT_DATA_UINT64 },
302 { "l2_writes_done", KSTAT_DATA_UINT64 },
303 { "l2_writes_error", KSTAT_DATA_UINT64 },
304 { "l2_writes_hdr_miss", KSTAT_DATA_UINT64 },
305 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
306 { "l2_evict_reading", KSTAT_DATA_UINT64 },
307 { "l2_free_on_write", KSTAT_DATA_UINT64 },
308 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
309 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
310 { "l2_io_error", KSTAT_DATA_UINT64 },
311 { "l2_size", KSTAT_DATA_UINT64 },
312 { "l2_hdr_size", KSTAT_DATA_UINT64 },
313 { "memory_throttle_count", KSTAT_DATA_UINT64 }
314};
315
316#define ARCSTAT(stat) (arc_stats.stat.value.ui64)
317
318#define ARCSTAT_INCR(stat, val) \
319 atomic_add_64(&arc_stats.stat.value.ui64, (val));
320
321#define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1)
322#define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1)
323
324#define ARCSTAT_MAX(stat, val) { \
325 uint64_t m; \
326 while ((val) > (m = arc_stats.stat.value.ui64) && \
327 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
328 continue; \
329}
330
331#define ARCSTAT_MAXSTAT(stat) \
332 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
333
334/*
335 * We define a macro to allow ARC hits/misses to be easily broken down by
336 * two separate conditions, giving a total of four different subtypes for
337 * each of hits and misses (so eight statistics total).
338 */
339#define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
340 if (cond1) { \
341 if (cond2) { \
342 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
343 } else { \
344 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
345 } \
346 } else { \
347 if (cond2) { \
348 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
349 } else { \
350 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
351 } \
352 }
353
354kstat_t *arc_ksp;
355static arc_state_t *arc_anon;
356static arc_state_t *arc_mru;
357static arc_state_t *arc_mru_ghost;
358static arc_state_t *arc_mfu;
359static arc_state_t *arc_mfu_ghost;
360static arc_state_t *arc_l2c_only;
361
362/*
363 * There are several ARC variables that are critical to export as kstats --
364 * but we don't want to have to grovel around in the kstat whenever we wish to
365 * manipulate them. For these variables, we therefore define them to be in
366 * terms of the statistic variable. This assures that we are not introducing
367 * the possibility of inconsistency by having shadow copies of the variables,
368 * while still allowing the code to be readable.
369 */
370#define arc_size ARCSTAT(arcstat_size) /* actual total arc size */
371#define arc_p ARCSTAT(arcstat_p) /* target size of MRU */
372#define arc_c ARCSTAT(arcstat_c) /* target size of cache */
373#define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */
374#define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */
375
376static int arc_no_grow; /* Don't try to grow cache size */
377static uint64_t arc_tempreserve;
378static uint64_t arc_meta_used;
379static uint64_t arc_meta_limit;
380static uint64_t arc_meta_max = 0;
381
382typedef struct l2arc_buf_hdr l2arc_buf_hdr_t;
383
384typedef struct arc_callback arc_callback_t;
385
386struct arc_callback {
387 void *acb_private;
388 arc_done_func_t *acb_done;
389 arc_byteswap_func_t *acb_byteswap;
390 arc_buf_t *acb_buf;
391 zio_t *acb_zio_dummy;
392 arc_callback_t *acb_next;
393};
394
395typedef struct arc_write_callback arc_write_callback_t;
396
397struct arc_write_callback {
398 void *awcb_private;
399 arc_done_func_t *awcb_ready;
400 arc_done_func_t *awcb_done;
401 arc_buf_t *awcb_buf;
402};
403
404struct arc_buf_hdr {
405 /* protected by hash lock */
406 dva_t b_dva;
407 uint64_t b_birth;
408 uint64_t b_cksum0;
409
410 kmutex_t b_freeze_lock;
411 zio_cksum_t *b_freeze_cksum;
412
413 arc_buf_hdr_t *b_hash_next;
414 arc_buf_t *b_buf;
415 uint32_t b_flags;
416 uint32_t b_datacnt;
417
418 arc_callback_t *b_acb;
419 kcondvar_t b_cv;
420
421 /* immutable */
422 arc_buf_contents_t b_type;
423 uint64_t b_size;
424 spa_t *b_spa;
425
426 /* protected by arc state mutex */
427 arc_state_t *b_state;
428 list_node_t b_arc_node;
429
430 /* updated atomically */
431 clock_t b_arc_access;
432
433 /* self protecting */
434 refcount_t b_refcnt;
435
436 l2arc_buf_hdr_t *b_l2hdr;
437 list_node_t b_l2node;
438};
439
440static arc_buf_t *arc_eviction_list;
441static kmutex_t arc_eviction_mtx;
442static arc_buf_hdr_t arc_eviction_hdr;
443static void arc_get_data_buf(arc_buf_t *buf);
444static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
445static int arc_evict_needed(arc_buf_contents_t type);
446static void arc_evict_ghost(arc_state_t *state, spa_t *spa, int64_t bytes);
447
448#define GHOST_STATE(state) \
449 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
450 (state) == arc_l2c_only)
451
452/*
453 * Private ARC flags. These flags are private ARC only flags that will show up
454 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can
455 * be passed in as arc_flags in things like arc_read. However, these flags
456 * should never be passed and should only be set by ARC code. When adding new
457 * public flags, make sure not to smash the private ones.
458 */
459
460#define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */
461#define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */
462#define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */
463#define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */
464#define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */
465#define ARC_INDIRECT (1 << 14) /* this is an indirect block */
466#define ARC_FREE_IN_PROGRESS (1 << 15) /* hdr about to be freed */
467#define ARC_DONT_L2CACHE (1 << 16) /* originated by prefetch */
468#define ARC_L2_READING (1 << 17) /* L2ARC read in progress */
469#define ARC_L2_WRITING (1 << 18) /* L2ARC write in progress */
470#define ARC_L2_EVICTED (1 << 19) /* evicted during I/O */
471#define ARC_L2_WRITE_HEAD (1 << 20) /* head of write list */
472
473#define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE)
474#define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS)
475#define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR)
476#define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ)
477#define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE)
478#define HDR_FREE_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FREE_IN_PROGRESS)
479#define HDR_DONT_L2CACHE(hdr) ((hdr)->b_flags & ARC_DONT_L2CACHE)
480#define HDR_L2_READING(hdr) ((hdr)->b_flags & ARC_L2_READING)
481#define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_L2_WRITING)
482#define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_L2_EVICTED)
483#define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_L2_WRITE_HEAD)
484
485/*
486 * Other sizes
487 */
488
489#define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
490#define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))
491
492/*
493 * Hash table routines
494 */
495
496#define HT_LOCK_PAD 64
497
498struct ht_lock {
499 kmutex_t ht_lock;
500#ifdef _KERNEL
501 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
502#endif
503};
504
505#define BUF_LOCKS 256
506typedef struct buf_hash_table {
507 uint64_t ht_mask;
508 arc_buf_hdr_t **ht_table;
509 struct ht_lock ht_locks[BUF_LOCKS];
510} buf_hash_table_t;
511
512static buf_hash_table_t buf_hash_table;
513
514#define BUF_HASH_INDEX(spa, dva, birth) \
515 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
516#define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
517#define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
518#define HDR_LOCK(buf) \
519 (BUF_HASH_LOCK(BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth)))
520
521uint64_t zfs_crc64_table[256];
522
523/*
524 * Level 2 ARC
525 */
526
527#define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
528#define L2ARC_HEADROOM 4 /* num of writes */
529#define L2ARC_FEED_DELAY 180 /* starting grace */
530#define L2ARC_FEED_SECS 1 /* caching interval */
531
532#define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent)
533#define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done)
534
535/*
536 * L2ARC Performance Tunables
537 */
538uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */
539uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */
540uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
541boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
542
543/*
544 * L2ARC Internals
545 */
546typedef struct l2arc_dev {
547 vdev_t *l2ad_vdev; /* vdev */
548 spa_t *l2ad_spa; /* spa */
549 uint64_t l2ad_hand; /* next write location */
550 uint64_t l2ad_write; /* desired write size, bytes */
551 uint64_t l2ad_start; /* first addr on device */
552 uint64_t l2ad_end; /* last addr on device */
553 uint64_t l2ad_evict; /* last addr eviction reached */
554 boolean_t l2ad_first; /* first sweep through */
555 list_t *l2ad_buflist; /* buffer list */
556 list_node_t l2ad_node; /* device list node */
557} l2arc_dev_t;
558
559static list_t L2ARC_dev_list; /* device list */
560static list_t *l2arc_dev_list; /* device list pointer */
561static kmutex_t l2arc_dev_mtx; /* device list mutex */
562static l2arc_dev_t *l2arc_dev_last; /* last device used */
563static kmutex_t l2arc_buflist_mtx; /* mutex for all buflists */
564static list_t L2ARC_free_on_write; /* free after write buf list */
565static list_t *l2arc_free_on_write; /* free after write list ptr */
566static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
567static uint64_t l2arc_ndev; /* number of devices */
568
569typedef struct l2arc_read_callback {
570 arc_buf_t *l2rcb_buf; /* read buffer */
571 spa_t *l2rcb_spa; /* spa */
572 blkptr_t l2rcb_bp; /* original blkptr */
573 zbookmark_t l2rcb_zb; /* original bookmark */
574 int l2rcb_flags; /* original flags */
575} l2arc_read_callback_t;
576
577typedef struct l2arc_write_callback {
578 l2arc_dev_t *l2wcb_dev; /* device info */
579 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */
580} l2arc_write_callback_t;
581
582struct l2arc_buf_hdr {
583 /* protected by arc_buf_hdr mutex */
584 l2arc_dev_t *b_dev; /* L2ARC device */
585 daddr_t b_daddr; /* disk address, offset byte */
586};
587
588typedef struct l2arc_data_free {
589 /* protected by l2arc_free_on_write_mtx */
590 void *l2df_data;
591 size_t l2df_size;
592 void (*l2df_func)(void *, size_t);
593 list_node_t l2df_list_node;
594} l2arc_data_free_t;
595
596static kmutex_t l2arc_feed_thr_lock;
597static kcondvar_t l2arc_feed_thr_cv;
598static uint8_t l2arc_thread_exit;
599
600static void l2arc_read_done(zio_t *zio);
601static void l2arc_hdr_stat_add(void);
602static void l2arc_hdr_stat_remove(void);
603
604static uint64_t
605buf_hash(spa_t *spa, dva_t *dva, uint64_t birth)
606{
607 uintptr_t spav = (uintptr_t)spa;
608 uint8_t *vdva = (uint8_t *)dva;
609 uint64_t crc = -1ULL;
610 int i;
611
612 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
613
614 for (i = 0; i < sizeof (dva_t); i++)
615 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
616
617 crc ^= (spav>>8) ^ birth;
618
619 return (crc);
620}
621
622#define BUF_EMPTY(buf) \
623 ((buf)->b_dva.dva_word[0] == 0 && \
624 (buf)->b_dva.dva_word[1] == 0 && \
625 (buf)->b_birth == 0)
626
627#define BUF_EQUAL(spa, dva, birth, buf) \
628 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
629 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
630 ((buf)->b_birth == birth) && ((buf)->b_spa == spa)
631
632static arc_buf_hdr_t *
633buf_hash_find(spa_t *spa, dva_t *dva, uint64_t birth, kmutex_t **lockp)
634{
635 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
636 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
637 arc_buf_hdr_t *buf;
638
639 mutex_enter(hash_lock);
640 for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
641 buf = buf->b_hash_next) {
642 if (BUF_EQUAL(spa, dva, birth, buf)) {
643 *lockp = hash_lock;
644 return (buf);
645 }
646 }
647 mutex_exit(hash_lock);
648 *lockp = NULL;
649 return (NULL);
650}
651
652/*
653 * Insert an entry into the hash table. If there is already an element
654 * equal to elem in the hash table, then the already existing element
655 * will be returned and the new element will not be inserted.
656 * Otherwise returns NULL.
657 */
658static arc_buf_hdr_t *
659buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
660{
661 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
662 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
663 arc_buf_hdr_t *fbuf;
664 uint32_t i;
665
666 ASSERT(!HDR_IN_HASH_TABLE(buf));
667 *lockp = hash_lock;
668 mutex_enter(hash_lock);
669 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
670 fbuf = fbuf->b_hash_next, i++) {
671 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
672 return (fbuf);
673 }
674
675 buf->b_hash_next = buf_hash_table.ht_table[idx];
676 buf_hash_table.ht_table[idx] = buf;
677 buf->b_flags |= ARC_IN_HASH_TABLE;
678
679 /* collect some hash table performance data */
680 if (i > 0) {
681 ARCSTAT_BUMP(arcstat_hash_collisions);
682 if (i == 1)
683 ARCSTAT_BUMP(arcstat_hash_chains);
684
685 ARCSTAT_MAX(arcstat_hash_chain_max, i);
686 }
687
688 ARCSTAT_BUMP(arcstat_hash_elements);
689 ARCSTAT_MAXSTAT(arcstat_hash_elements);
690
691 return (NULL);
692}
693
694static void
695buf_hash_remove(arc_buf_hdr_t *buf)
696{
697 arc_buf_hdr_t *fbuf, **bufp;
698 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
699
700 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
701 ASSERT(HDR_IN_HASH_TABLE(buf));
702
703 bufp = &buf_hash_table.ht_table[idx];
704 while ((fbuf = *bufp) != buf) {
705 ASSERT(fbuf != NULL);
706 bufp = &fbuf->b_hash_next;
707 }
708 *bufp = buf->b_hash_next;
709 buf->b_hash_next = NULL;
710 buf->b_flags &= ~ARC_IN_HASH_TABLE;
711
712 /* collect some hash table performance data */
713 ARCSTAT_BUMPDOWN(arcstat_hash_elements);
714
715 if (buf_hash_table.ht_table[idx] &&
716 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
717 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
718}
719
720/*
721 * Global data structures and functions for the buf kmem cache.
722 */
723static kmem_cache_t *hdr_cache;
724static kmem_cache_t *buf_cache;
725
726static void
727buf_fini(void)
728{
729 int i;
730
731 kmem_free(buf_hash_table.ht_table,
732 (buf_hash_table.ht_mask + 1) * sizeof (void *));
733 for (i = 0; i < BUF_LOCKS; i++)
734 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
735 kmem_cache_destroy(hdr_cache);
736 kmem_cache_destroy(buf_cache);
737}
738
739/*
740 * Constructor callback - called when the cache is empty
741 * and a new buf is requested.
742 */
743/* ARGSUSED */
744static int
745hdr_cons(void *vbuf, void *unused, int kmflag)
746{
747 arc_buf_hdr_t *buf = vbuf;
748
749 bzero(buf, sizeof (arc_buf_hdr_t));
750 refcount_create(&buf->b_refcnt);
751 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
752 mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
753
754 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
755 return (0);
756}
757
758/*
759 * Destructor callback - called when a cached buf is
760 * no longer required.
761 */
762/* ARGSUSED */
763static void
764hdr_dest(void *vbuf, void *unused)
765{
766 arc_buf_hdr_t *buf = vbuf;
767
768 refcount_destroy(&buf->b_refcnt);
769 cv_destroy(&buf->b_cv);
770 mutex_destroy(&buf->b_freeze_lock);
771
772 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
773}
774
775/*
776 * Reclaim callback -- invoked when memory is low.
777 */
778/* ARGSUSED */
779static void
780hdr_recl(void *unused)
781{
782 dprintf("hdr_recl called\n");
783 /*
784 * umem calls the reclaim func when we destroy the buf cache,
785 * which is after we do arc_fini().
786 */
787 if (!arc_dead)
788 cv_signal(&arc_reclaim_thr_cv);
789}
790
791static void
792buf_init(void)
793{
794 uint64_t *ct;
795 uint64_t hsize = 1ULL << 12;
796 int i, j;
797
798 /*
799 * The hash table is big enough to fill all of physical memory
800 * with an average 64K block size. The table will take up
801 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
802 */
803 while (hsize * 65536 < physmem * PAGESIZE)
804 hsize <<= 1;
805retry:
806 buf_hash_table.ht_mask = hsize - 1;
807 buf_hash_table.ht_table =
808 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
809 if (buf_hash_table.ht_table == NULL) {
810 ASSERT(hsize > (1ULL << 8));
811 hsize >>= 1;
812 goto retry;
813 }
814
815 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
816 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
817 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
818 0, NULL, NULL, NULL, NULL, NULL, 0);
819
820 for (i = 0; i < 256; i++)
821 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
822 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
823
824 for (i = 0; i < BUF_LOCKS; i++) {
825 mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
826 NULL, MUTEX_DEFAULT, NULL);
827 }
828}
829
830#define ARC_MINTIME (hz>>4) /* 62 ms */
831
832static void
833arc_cksum_verify(arc_buf_t *buf)
834{
835 zio_cksum_t zc;
836
837 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
838 return;
839
840 mutex_enter(&buf->b_hdr->b_freeze_lock);
841 if (buf->b_hdr->b_freeze_cksum == NULL ||
842 (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
843 mutex_exit(&buf->b_hdr->b_freeze_lock);
844 return;
845 }
846 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
847 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
848 panic("buffer modified while frozen!");
849 mutex_exit(&buf->b_hdr->b_freeze_lock);
850}
851
852static int
853arc_cksum_equal(arc_buf_t *buf)
854{
855 zio_cksum_t zc;
856 int equal;
857
858 mutex_enter(&buf->b_hdr->b_freeze_lock);
859 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
860 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
861 mutex_exit(&buf->b_hdr->b_freeze_lock);
862
863 return (equal);
864}
865
866static void
867arc_cksum_compute(arc_buf_t *buf, boolean_t force)
868{
869 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
870 return;
871
872 mutex_enter(&buf->b_hdr->b_freeze_lock);
873 if (buf->b_hdr->b_freeze_cksum != NULL) {
874 mutex_exit(&buf->b_hdr->b_freeze_lock);
875 return;
876 }
877 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
878 fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
879 buf->b_hdr->b_freeze_cksum);
880 mutex_exit(&buf->b_hdr->b_freeze_lock);
881}
882
883void
884arc_buf_thaw(arc_buf_t *buf)
885{
886 if (zfs_flags & ZFS_DEBUG_MODIFY) {
887 if (buf->b_hdr->b_state != arc_anon)
888 panic("modifying non-anon buffer!");
889 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
890 panic("modifying buffer while i/o in progress!");
891 arc_cksum_verify(buf);
892 }
893
894 mutex_enter(&buf->b_hdr->b_freeze_lock);
895 if (buf->b_hdr->b_freeze_cksum != NULL) {
896 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
897 buf->b_hdr->b_freeze_cksum = NULL;
898 }
899 mutex_exit(&buf->b_hdr->b_freeze_lock);
900}
901
902void
903arc_buf_freeze(arc_buf_t *buf)
904{
905 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
906 return;
907
908 ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
909 buf->b_hdr->b_state == arc_anon);
910 arc_cksum_compute(buf, B_FALSE);
911}
912
913static void
914add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
915{
916 ASSERT(MUTEX_HELD(hash_lock));
917
918 if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
919 (ab->b_state != arc_anon)) {
920 uint64_t delta = ab->b_size * ab->b_datacnt;
921 list_t *list = &ab->b_state->arcs_list[ab->b_type];
922 uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];
923
924 ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx));
925 mutex_enter(&ab->b_state->arcs_mtx);
926 ASSERT(list_link_active(&ab->b_arc_node));
927 list_remove(list, ab);
928 if (GHOST_STATE(ab->b_state)) {
929 ASSERT3U(ab->b_datacnt, ==, 0);
930 ASSERT3P(ab->b_buf, ==, NULL);
931 delta = ab->b_size;
932 }
933 ASSERT(delta > 0);
934 ASSERT3U(*size, >=, delta);
935 atomic_add_64(size, -delta);
936 mutex_exit(&ab->b_state->arcs_mtx);
937 /* remove the prefetch flag is we get a reference */
938 if (ab->b_flags & ARC_PREFETCH)
939 ab->b_flags &= ~ARC_PREFETCH;
940 }
941}
942
943static int
944remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
945{
946 int cnt;
947 arc_state_t *state = ab->b_state;
948
949 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
950 ASSERT(!GHOST_STATE(state));
951
952 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
953 (state != arc_anon)) {
954 uint64_t *size = &state->arcs_lsize[ab->b_type];
955
956 ASSERT(!MUTEX_HELD(&state->arcs_mtx));
957 mutex_enter(&state->arcs_mtx);
958 ASSERT(!list_link_active(&ab->b_arc_node));
959 list_insert_head(&state->arcs_list[ab->b_type], ab);
960 ASSERT(ab->b_datacnt > 0);
961 atomic_add_64(size, ab->b_size * ab->b_datacnt);
962 mutex_exit(&state->arcs_mtx);
963 }
964 return (cnt);
965}
966
967/*
968 * Move the supplied buffer to the indicated state. The mutex
969 * for the buffer must be held by the caller.
970 */
971static void
972arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
973{
974 arc_state_t *old_state = ab->b_state;
975 int64_t refcnt = refcount_count(&ab->b_refcnt);
976 uint64_t from_delta, to_delta;
977
978 ASSERT(MUTEX_HELD(hash_lock));
979 ASSERT(new_state != old_state);
980 ASSERT(refcnt == 0 || ab->b_datacnt > 0);
981 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
982
983 from_delta = to_delta = ab->b_datacnt * ab->b_size;
984
985 /*
986 * If this buffer is evictable, transfer it from the
987 * old state list to the new state list.
988 */
989 if (refcnt == 0) {
990 if (old_state != arc_anon) {
991 int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx);
992 uint64_t *size = &old_state->arcs_lsize[ab->b_type];
993
994 if (use_mutex)
995 mutex_enter(&old_state->arcs_mtx);
996
997 ASSERT(list_link_active(&ab->b_arc_node));
998 list_remove(&old_state->arcs_list[ab->b_type], ab);
999
1000 /*
1001 * If prefetching out of the ghost cache,
1002 * we will have a non-null datacnt.
1003 */
1004 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
1005 /* ghost elements have a ghost size */
1006 ASSERT(ab->b_buf == NULL);
1007 from_delta = ab->b_size;
1008 }
1009 ASSERT3U(*size, >=, from_delta);
1010 atomic_add_64(size, -from_delta);
1011
1012 if (use_mutex)
1013 mutex_exit(&old_state->arcs_mtx);
1014 }
1015 if (new_state != arc_anon) {
1016 int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx);
1017 uint64_t *size = &new_state->arcs_lsize[ab->b_type];
1018
1019 if (use_mutex)
1020 mutex_enter(&new_state->arcs_mtx);
1021
1022 list_insert_head(&new_state->arcs_list[ab->b_type], ab);
1023
1024 /* ghost elements have a ghost size */
1025 if (GHOST_STATE(new_state)) {
1026 ASSERT(ab->b_datacnt == 0);
1027 ASSERT(ab->b_buf == NULL);
1028 to_delta = ab->b_size;
1029 }
1030 atomic_add_64(size, to_delta);
1031
1032 if (use_mutex)
1033 mutex_exit(&new_state->arcs_mtx);
1034 }
1035 }
1036
1037 ASSERT(!BUF_EMPTY(ab));
1038 if (new_state == arc_anon) {
1039 buf_hash_remove(ab);
1040 }
1041
1042 /* adjust state sizes */
1043 if (to_delta)
1044 atomic_add_64(&new_state->arcs_size, to_delta);
1045 if (from_delta) {
1046 ASSERT3U(old_state->arcs_size, >=, from_delta);
1047 atomic_add_64(&old_state->arcs_size, -from_delta);
1048 }
1049 ab->b_state = new_state;
1050
1051 /* adjust l2arc hdr stats */
1052 if (new_state == arc_l2c_only)
1053 l2arc_hdr_stat_add();
1054 else if (old_state == arc_l2c_only)
1055 l2arc_hdr_stat_remove();
1056}
1057
1058void
1059arc_space_consume(uint64_t space)
1060{
1061 atomic_add_64(&arc_meta_used, space);
1062 atomic_add_64(&arc_size, space);
1063}
1064
1065void
1066arc_space_return(uint64_t space)
1067{
1068 ASSERT(arc_meta_used >= space);
1069 if (arc_meta_max < arc_meta_used)
1070 arc_meta_max = arc_meta_used;
1071 atomic_add_64(&arc_meta_used, -space);
1072 ASSERT(arc_size >= space);
1073 atomic_add_64(&arc_size, -space);
1074}
1075
1076void *
1077arc_data_buf_alloc(uint64_t size)
1078{
1079 if (arc_evict_needed(ARC_BUFC_DATA))
1080 cv_signal(&arc_reclaim_thr_cv);
1081 atomic_add_64(&arc_size, size);
1082 return (zio_data_buf_alloc(size));
1083}
1084
1085void
1086arc_data_buf_free(void *buf, uint64_t size)
1087{
1088 zio_data_buf_free(buf, size);
1089 ASSERT(arc_size >= size);
1090 atomic_add_64(&arc_size, -size);
1091}
1092
1093arc_buf_t *
1094arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1095{
1096 arc_buf_hdr_t *hdr;
1097 arc_buf_t *buf;
1098
1099 ASSERT3U(size, >, 0);
1100 hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
1101 ASSERT(BUF_EMPTY(hdr));
1102 hdr->b_size = size;
1103 hdr->b_type = type;
1104 hdr->b_spa = spa;
1105 hdr->b_state = arc_anon;
1106 hdr->b_arc_access = 0;
1107 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1108 buf->b_hdr = hdr;
1109 buf->b_data = NULL;
1110 buf->b_efunc = NULL;
1111 buf->b_private = NULL;
1112 buf->b_next = NULL;
1113 hdr->b_buf = buf;
1114 arc_get_data_buf(buf);
1115 hdr->b_datacnt = 1;
1116 hdr->b_flags = 0;
1117 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1118 (void) refcount_add(&hdr->b_refcnt, tag);
1119
1120 return (buf);
1121}
1122
1123static arc_buf_t *
1124arc_buf_clone(arc_buf_t *from)
1125{
1126 arc_buf_t *buf;
1127 arc_buf_hdr_t *hdr = from->b_hdr;
1128 uint64_t size = hdr->b_size;
1129
1130 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1131 buf->b_hdr = hdr;
1132 buf->b_data = NULL;
1133 buf->b_efunc = NULL;
1134 buf->b_private = NULL;
1135 buf->b_next = hdr->b_buf;
1136 hdr->b_buf = buf;
1137 arc_get_data_buf(buf);
1138 bcopy(from->b_data, buf->b_data, size);
1139 hdr->b_datacnt += 1;
1140 return (buf);
1141}
1142
1143void
1144arc_buf_add_ref(arc_buf_t *buf, void* tag)
1145{
1146 arc_buf_hdr_t *hdr;
1147 kmutex_t *hash_lock;
1148
1149 /*
1150 * Check to see if this buffer is currently being evicted via
1151 * arc_do_user_evicts().
1152 */
1153 mutex_enter(&arc_eviction_mtx);
1154 hdr = buf->b_hdr;
1155 if (hdr == NULL) {
1156 mutex_exit(&arc_eviction_mtx);
1157 return;
1158 }
1159 hash_lock = HDR_LOCK(hdr);
1160 mutex_exit(&arc_eviction_mtx);
1161
1162 mutex_enter(hash_lock);
1163 if (buf->b_data == NULL) {
1164 /*
1165 * This buffer is evicted.
1166 */
1167 mutex_exit(hash_lock);
1168 return;
1169 }
1170
1171 ASSERT(buf->b_hdr == hdr);
1172 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1173 add_reference(hdr, hash_lock, tag);
1174 arc_access(hdr, hash_lock);
1175 mutex_exit(hash_lock);
1176 ARCSTAT_BUMP(arcstat_hits);
1177 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
1178 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1179 data, metadata, hits);
1180}
1181
1182/*
1183 * Free the arc data buffer. If it is an l2arc write in progress,
1184 * the buffer is placed on l2arc_free_on_write to be freed later.
1185 */
1186static void
1187arc_buf_data_free(arc_buf_hdr_t *hdr, void (*free_func)(void *, size_t),
1188 void *data, size_t size)
1189{
1190 if (HDR_L2_WRITING(hdr)) {
1191 l2arc_data_free_t *df;
1192 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP);
1193 df->l2df_data = data;
1194 df->l2df_size = size;
1195 df->l2df_func = free_func;
1196 mutex_enter(&l2arc_free_on_write_mtx);
1197 list_insert_head(l2arc_free_on_write, df);
1198 mutex_exit(&l2arc_free_on_write_mtx);
1199 ARCSTAT_BUMP(arcstat_l2_free_on_write);
1200 } else {
1201 free_func(data, size);
1202 }
1203}
1204
1205static void
1206arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
1207{
1208 arc_buf_t **bufp;
1209
1210 /* free up data associated with the buf */
1211 if (buf->b_data) {
1212 arc_state_t *state = buf->b_hdr->b_state;
1213 uint64_t size = buf->b_hdr->b_size;
1214 arc_buf_contents_t type = buf->b_hdr->b_type;
1215
1216 arc_cksum_verify(buf);
1217 if (!recycle) {
1218 if (type == ARC_BUFC_METADATA) {
1219 arc_buf_data_free(buf->b_hdr, zio_buf_free,
1220 buf->b_data, size);
1221 arc_space_return(size);
1222 } else {
1223 ASSERT(type == ARC_BUFC_DATA);
1224 arc_buf_data_free(buf->b_hdr,
1225 zio_data_buf_free, buf->b_data, size);
1226 atomic_add_64(&arc_size, -size);
1227 }
1228 }
1229 if (list_link_active(&buf->b_hdr->b_arc_node)) {
1230 uint64_t *cnt = &state->arcs_lsize[type];
1231
1232 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1233 ASSERT(state != arc_anon);
1234
1235 ASSERT3U(*cnt, >=, size);
1236 atomic_add_64(cnt, -size);
1237 }
1238 ASSERT3U(state->arcs_size, >=, size);
1239 atomic_add_64(&state->arcs_size, -size);
1240 buf->b_data = NULL;
1241 ASSERT(buf->b_hdr->b_datacnt > 0);
1242 buf->b_hdr->b_datacnt -= 1;
1243 }
1244
1245 /* only remove the buf if requested */
1246 if (!all)
1247 return;
1248
1249 /* remove the buf from the hdr list */
1250 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1251 continue;
1252 *bufp = buf->b_next;
1253
1254 ASSERT(buf->b_efunc == NULL);
1255
1256 /* clean up the buf */
1257 buf->b_hdr = NULL;
1258 kmem_cache_free(buf_cache, buf);
1259}
1260
1261static void
1262arc_hdr_destroy(arc_buf_hdr_t *hdr)
1263{
1264 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1265 ASSERT3P(hdr->b_state, ==, arc_anon);
1266 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1267
1268 if (hdr->b_l2hdr != NULL) {
1269 if (!MUTEX_HELD(&l2arc_buflist_mtx)) {
1270 /*
1271 * To prevent arc_free() and l2arc_evict() from
1272 * attempting to free the same buffer at the same time,
1273 * a FREE_IN_PROGRESS flag is given to arc_free() to
1274 * give it priority. l2arc_evict() can't destroy this
1275 * header while we are waiting on l2arc_buflist_mtx.
1276 */
1277 mutex_enter(&l2arc_buflist_mtx);
1278 ASSERT(hdr->b_l2hdr != NULL);
1279
1280 list_remove(hdr->b_l2hdr->b_dev->l2ad_buflist, hdr);
1281 mutex_exit(&l2arc_buflist_mtx);
1282 } else {
1283 list_remove(hdr->b_l2hdr->b_dev->l2ad_buflist, hdr);
1284 }
1285 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
1286 kmem_free(hdr->b_l2hdr, sizeof (l2arc_buf_hdr_t));
1287 if (hdr->b_state == arc_l2c_only)
1288 l2arc_hdr_stat_remove();
1289 hdr->b_l2hdr = NULL;
1290 }
1291
1292 if (!BUF_EMPTY(hdr)) {
1293 ASSERT(!HDR_IN_HASH_TABLE(hdr));
1294 bzero(&hdr->b_dva, sizeof (dva_t));
1295 hdr->b_birth = 0;
1296 hdr->b_cksum0 = 0;
1297 }
1298 while (hdr->b_buf) {
1299 arc_buf_t *buf = hdr->b_buf;
1300
1301 if (buf->b_efunc) {
1302 mutex_enter(&arc_eviction_mtx);
1303 ASSERT(buf->b_hdr != NULL);
1304 arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1305 hdr->b_buf = buf->b_next;
1306 buf->b_hdr = &arc_eviction_hdr;
1307 buf->b_next = arc_eviction_list;
1308 arc_eviction_list = buf;
1309 mutex_exit(&arc_eviction_mtx);
1310 } else {
1311 arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1312 }
1313 }
1314 if (hdr->b_freeze_cksum != NULL) {
1315 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1316 hdr->b_freeze_cksum = NULL;
1317 }
1318
1319 ASSERT(!list_link_active(&hdr->b_arc_node));
1320 ASSERT3P(hdr->b_hash_next, ==, NULL);
1321 ASSERT3P(hdr->b_acb, ==, NULL);
1322 kmem_cache_free(hdr_cache, hdr);
1323}
1324
1325void
1326arc_buf_free(arc_buf_t *buf, void *tag)
1327{
1328 arc_buf_hdr_t *hdr = buf->b_hdr;
1329 int hashed = hdr->b_state != arc_anon;
1330
1331 ASSERT(buf->b_efunc == NULL);
1332 ASSERT(buf->b_data != NULL);
1333
1334 if (hashed) {
1335 kmutex_t *hash_lock = HDR_LOCK(hdr);
1336
1337 mutex_enter(hash_lock);
1338 (void) remove_reference(hdr, hash_lock, tag);
1339 if (hdr->b_datacnt > 1)
1340 arc_buf_destroy(buf, FALSE, TRUE);
1341 else
1342 hdr->b_flags |= ARC_BUF_AVAILABLE;
1343 mutex_exit(hash_lock);
1344 } else if (HDR_IO_IN_PROGRESS(hdr)) {
1345 int destroy_hdr;
1346 /*
1347 * We are in the middle of an async write. Don't destroy
1348 * this buffer unless the write completes before we finish
1349 * decrementing the reference count.
1350 */
1351 mutex_enter(&arc_eviction_mtx);
1352 (void) remove_reference(hdr, NULL, tag);
1353 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1354 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1355 mutex_exit(&arc_eviction_mtx);
1356 if (destroy_hdr)
1357 arc_hdr_destroy(hdr);
1358 } else {
1359 if (remove_reference(hdr, NULL, tag) > 0) {
1360 ASSERT(HDR_IO_ERROR(hdr));
1361 arc_buf_destroy(buf, FALSE, TRUE);
1362 } else {
1363 arc_hdr_destroy(hdr);
1364 }
1365 }
1366}
1367
1368int
1369arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1370{
1371 arc_buf_hdr_t *hdr = buf->b_hdr;
1372 kmutex_t *hash_lock = HDR_LOCK(hdr);
1373 int no_callback = (buf->b_efunc == NULL);
1374
1375 if (hdr->b_state == arc_anon) {
1376 arc_buf_free(buf, tag);
1377 return (no_callback);
1378 }
1379
1380 mutex_enter(hash_lock);
1381 ASSERT(hdr->b_state != arc_anon);
1382 ASSERT(buf->b_data != NULL);
1383
1384 (void) remove_reference(hdr, hash_lock, tag);
1385 if (hdr->b_datacnt > 1) {
1386 if (no_callback)
1387 arc_buf_destroy(buf, FALSE, TRUE);
1388 } else if (no_callback) {
1389 ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
1390 hdr->b_flags |= ARC_BUF_AVAILABLE;
1391 }
1392 ASSERT(no_callback || hdr->b_datacnt > 1 ||
1393 refcount_is_zero(&hdr->b_refcnt));
1394 mutex_exit(hash_lock);
1395 return (no_callback);
1396}
1397
1398int
1399arc_buf_size(arc_buf_t *buf)
1400{
1401 return (buf->b_hdr->b_size);
1402}
1403
1404/*
1405 * Evict buffers from list until we've removed the specified number of
1406 * bytes. Move the removed buffers to the appropriate evict state.
1407 * If the recycle flag is set, then attempt to "recycle" a buffer:
1408 * - look for a buffer to evict that is `bytes' long.
1409 * - return the data block from this buffer rather than freeing it.
1410 * This flag is used by callers that are trying to make space for a
1411 * new buffer in a full arc cache.
1412 *
1413 * This function makes a "best effort". It skips over any buffers
1414 * it can't get a hash_lock on, and so may not catch all candidates.
1415 * It may also return without evicting as much space as requested.
1416 */
1417static void *
1418arc_evict(arc_state_t *state, spa_t *spa, int64_t bytes, boolean_t recycle,
1419 arc_buf_contents_t type)
1420{
1421 arc_state_t *evicted_state;
1422 uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1423 arc_buf_hdr_t *ab, *ab_prev = NULL;
1424 list_t *list = &state->arcs_list[type];
1425 kmutex_t *hash_lock;
1426 boolean_t have_lock;
1427 void *stolen = NULL;
1428
1429 ASSERT(state == arc_mru || state == arc_mfu);
1430
1431 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1432
1433 mutex_enter(&state->arcs_mtx);
1434 mutex_enter(&evicted_state->arcs_mtx);
1435
1436 for (ab = list_tail(list); ab; ab = ab_prev) {
1437 ab_prev = list_prev(list, ab);
1438 /* prefetch buffers have a minimum lifespan */
1439 if (HDR_IO_IN_PROGRESS(ab) ||
1440 (spa && ab->b_spa != spa) ||
1441 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
1442 lbolt - ab->b_arc_access < arc_min_prefetch_lifespan)) {
1443 skipped++;
1444 continue;
1445 }
1446 /* "lookahead" for better eviction candidate */
1447 if (recycle && ab->b_size != bytes &&
1448 ab_prev && ab_prev->b_size == bytes)
1449 continue;
1450 hash_lock = HDR_LOCK(ab);
1451 have_lock = MUTEX_HELD(hash_lock);
1452 if (have_lock || mutex_tryenter(hash_lock)) {
1453 ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0);
1454 ASSERT(ab->b_datacnt > 0);
1455 while (ab->b_buf) {
1456 arc_buf_t *buf = ab->b_buf;
1457 if (buf->b_data) {
1458 bytes_evicted += ab->b_size;
1459 if (recycle && ab->b_type == type &&
1460 ab->b_size == bytes &&
1461 !HDR_L2_WRITING(ab)) {
1462 stolen = buf->b_data;
1463 recycle = FALSE;
1464 }
1465 }
1466 if (buf->b_efunc) {
1467 mutex_enter(&arc_eviction_mtx);
1468 arc_buf_destroy(buf,
1469 buf->b_data == stolen, FALSE);
1470 ab->b_buf = buf->b_next;
1471 buf->b_hdr = &arc_eviction_hdr;
1472 buf->b_next = arc_eviction_list;
1473 arc_eviction_list = buf;
1474 mutex_exit(&arc_eviction_mtx);
1475 } else {
1476 arc_buf_destroy(buf,
1477 buf->b_data == stolen, TRUE);
1478 }
1479 }
1480 ASSERT(ab->b_datacnt == 0);
1481 arc_change_state(evicted_state, ab, hash_lock);
1482 ASSERT(HDR_IN_HASH_TABLE(ab));
1483 ab->b_flags |= ARC_IN_HASH_TABLE;
1484 ab->b_flags &= ~ARC_BUF_AVAILABLE;
1485 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1486 if (!have_lock)
1487 mutex_exit(hash_lock);
1488 if (bytes >= 0 && bytes_evicted >= bytes)
1489 break;
1490 } else {
1491 missed += 1;
1492 }
1493 }
1494
1495 mutex_exit(&evicted_state->arcs_mtx);
1496 mutex_exit(&state->arcs_mtx);
1497
1498 if (bytes_evicted < bytes)
1499 dprintf("only evicted %lld bytes from %x",
1500 (longlong_t)bytes_evicted, state);
1501
1502 if (skipped)
1503 ARCSTAT_INCR(arcstat_evict_skip, skipped);
1504
1505 if (missed)
1506 ARCSTAT_INCR(arcstat_mutex_miss, missed);
1507
1508 /*
1509 * We have just evicted some date into the ghost state, make
1510 * sure we also adjust the ghost state size if necessary.
1511 */
1512 if (arc_no_grow &&
1513 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) {
1514 int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size +
1515 arc_mru_ghost->arcs_size - arc_c;
1516
1517 if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
1518 int64_t todelete =
1519 MIN(arc_mru_ghost->arcs_lsize[type], mru_over);
1520 arc_evict_ghost(arc_mru_ghost, NULL, todelete);
1521 } else if (arc_mfu_ghost->arcs_lsize[type] > 0) {
1522 int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type],
1523 arc_mru_ghost->arcs_size +
1524 arc_mfu_ghost->arcs_size - arc_c);
1525 arc_evict_ghost(arc_mfu_ghost, NULL, todelete);
1526 }
1527 }
1528
1529 return (stolen);
1530}
1531
1532/*
1533 * Remove buffers from list until we've removed the specified number of
1534 * bytes. Destroy the buffers that are removed.
1535 */
1536static void
1537arc_evict_ghost(arc_state_t *state, spa_t *spa, int64_t bytes)
1538{
1539 arc_buf_hdr_t *ab, *ab_prev;
1540 list_t *list = &state->arcs_list[ARC_BUFC_DATA];
1541 kmutex_t *hash_lock;
1542 uint64_t bytes_deleted = 0;
1543 uint64_t bufs_skipped = 0;
1544
1545 ASSERT(GHOST_STATE(state));
1546top:
1547 mutex_enter(&state->arcs_mtx);
1548 for (ab = list_tail(list); ab; ab = ab_prev) {
1549 ab_prev = list_prev(list, ab);
1550 if (spa && ab->b_spa != spa)
1551 continue;
1552 hash_lock = HDR_LOCK(ab);
1553 if (mutex_tryenter(hash_lock)) {
1554 ASSERT(!HDR_IO_IN_PROGRESS(ab));
1555 ASSERT(ab->b_buf == NULL);
1556 ARCSTAT_BUMP(arcstat_deleted);
1557 bytes_deleted += ab->b_size;
1558
1559 if (ab->b_l2hdr != NULL) {
1560 /*
1561 * This buffer is cached on the 2nd Level ARC;
1562 * don't destroy the header.
1563 */
1564 arc_change_state(arc_l2c_only, ab, hash_lock);
1565 mutex_exit(hash_lock);
1566 } else {
1567 arc_change_state(arc_anon, ab, hash_lock);
1568 mutex_exit(hash_lock);
1569 arc_hdr_destroy(ab);
1570 }
1571
1572 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
1573 if (bytes >= 0 && bytes_deleted >= bytes)
1574 break;
1575 } else {
1576 if (bytes < 0) {
1577 mutex_exit(&state->arcs_mtx);
1578 mutex_enter(hash_lock);
1579 mutex_exit(hash_lock);
1580 goto top;
1581 }
1582 bufs_skipped += 1;
1583 }
1584 }
1585 mutex_exit(&state->arcs_mtx);
1586
1587 if (list == &state->arcs_list[ARC_BUFC_DATA] &&
1588 (bytes < 0 || bytes_deleted < bytes)) {
1589 list = &state->arcs_list[ARC_BUFC_METADATA];
1590 goto top;
1591 }
1592
1593 if (bufs_skipped) {
1594 ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
1595 ASSERT(bytes >= 0);
1596 }
1597
1598 if (bytes_deleted < bytes)
1599 dprintf("only deleted %lld bytes from %p",
1600 (longlong_t)bytes_deleted, state);
1601}
1602
1603static void
1604arc_adjust(void)
1605{
1606 int64_t top_sz, mru_over, arc_over, todelete;
1607
1608 top_sz = arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used;
1609
1610 if (top_sz > arc_p && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
1611 int64_t toevict =
1612 MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], top_sz - arc_p);
1613 (void) arc_evict(arc_mru, NULL, toevict, FALSE, ARC_BUFC_DATA);
1614 top_sz = arc_anon->arcs_size + arc_mru->arcs_size;
1615 }
1616
1617 if (top_sz > arc_p && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1618 int64_t toevict =
1619 MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], top_sz - arc_p);
1620 (void) arc_evict(arc_mru, NULL, toevict, FALSE,
1621 ARC_BUFC_METADATA);
1622 top_sz = arc_anon->arcs_size + arc_mru->arcs_size;
1623 }
1624
1625 mru_over = top_sz + arc_mru_ghost->arcs_size - arc_c;
1626
1627 if (mru_over > 0) {
1628 if (arc_mru_ghost->arcs_size > 0) {
1629 todelete = MIN(arc_mru_ghost->arcs_size, mru_over);
1630 arc_evict_ghost(arc_mru_ghost, NULL, todelete);
1631 }
1632 }
1633
1634 if ((arc_over = arc_size - arc_c) > 0) {
1635 int64_t tbl_over;
1636
1637 if (arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
1638 int64_t toevict =
1639 MIN(arc_mfu->arcs_lsize[ARC_BUFC_DATA], arc_over);
1640 (void) arc_evict(arc_mfu, NULL, toevict, FALSE,
1641 ARC_BUFC_DATA);
1642 arc_over = arc_size - arc_c;
1643 }
1644
1645 if (arc_over > 0 &&
1646 arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1647 int64_t toevict =
1648 MIN(arc_mfu->arcs_lsize[ARC_BUFC_METADATA],
1649 arc_over);
1650 (void) arc_evict(arc_mfu, NULL, toevict, FALSE,
1651 ARC_BUFC_METADATA);
1652 }
1653
1654 tbl_over = arc_size + arc_mru_ghost->arcs_size +
1655 arc_mfu_ghost->arcs_size - arc_c * 2;
1656
1657 if (tbl_over > 0 && arc_mfu_ghost->arcs_size > 0) {
1658 todelete = MIN(arc_mfu_ghost->arcs_size, tbl_over);
1659 arc_evict_ghost(arc_mfu_ghost, NULL, todelete);
1660 }
1661 }
1662}
1663
1664static void
1665arc_do_user_evicts(void)
1666{
1667 mutex_enter(&arc_eviction_mtx);
1668 while (arc_eviction_list != NULL) {
1669 arc_buf_t *buf = arc_eviction_list;
1670 arc_eviction_list = buf->b_next;
1671 buf->b_hdr = NULL;
1672 mutex_exit(&arc_eviction_mtx);
1673
1674 if (buf->b_efunc != NULL)
1675 VERIFY(buf->b_efunc(buf) == 0);
1676
1677 buf->b_efunc = NULL;
1678 buf->b_private = NULL;
1679 kmem_cache_free(buf_cache, buf);
1680 mutex_enter(&arc_eviction_mtx);
1681 }
1682 mutex_exit(&arc_eviction_mtx);
1683}
1684
1685/*
1686 * Flush all *evictable* data from the cache for the given spa.
1687 * NOTE: this will not touch "active" (i.e. referenced) data.
1688 */
1689void
1690arc_flush(spa_t *spa)
1691{
1692 while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) {
1693 (void) arc_evict(arc_mru, spa, -1, FALSE, ARC_BUFC_DATA);
1694 if (spa)
1695 break;
1696 }
1697 while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) {
1698 (void) arc_evict(arc_mru, spa, -1, FALSE, ARC_BUFC_METADATA);
1699 if (spa)
1700 break;
1701 }
1702 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) {
1703 (void) arc_evict(arc_mfu, spa, -1, FALSE, ARC_BUFC_DATA);
1704 if (spa)
1705 break;
1706 }
1707 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) {
1708 (void) arc_evict(arc_mfu, spa, -1, FALSE, ARC_BUFC_METADATA);
1709 if (spa)
1710 break;
1711 }
1712
1713 arc_evict_ghost(arc_mru_ghost, spa, -1);
1714 arc_evict_ghost(arc_mfu_ghost, spa, -1);
1715
1716 mutex_enter(&arc_reclaim_thr_lock);
1717 arc_do_user_evicts();
1718 mutex_exit(&arc_reclaim_thr_lock);
1719 ASSERT(spa || arc_eviction_list == NULL);
1720}
1721
1722int arc_shrink_shift = 5; /* log2(fraction of arc to reclaim) */
1723
1724void
1725arc_shrink(void)
1726{
1727 if (arc_c > arc_c_min) {
1728 uint64_t to_free;
1729
1730#ifdef _KERNEL
1731 to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree));
1732#else
1733 to_free = arc_c >> arc_shrink_shift;
1734#endif
1735 if (arc_c > arc_c_min + to_free)
1736 atomic_add_64(&arc_c, -to_free);
1737 else
1738 arc_c = arc_c_min;
1739
1740 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
1741 if (arc_c > arc_size)
1742 arc_c = MAX(arc_size, arc_c_min);
1743 if (arc_p > arc_c)
1744 arc_p = (arc_c >> 1);
1745 ASSERT(arc_c >= arc_c_min);
1746 ASSERT((int64_t)arc_p >= 0);
1747 }
1748
1749 if (arc_size > arc_c)
1750 arc_adjust();
1751}
1752
1753static int
1754arc_reclaim_needed(void)
1755{
1756 uint64_t extra;
1757
1758#ifdef _KERNEL
1759
1760 if (needfree)
1761 return (1);
1762
1763 /*
1764 * take 'desfree' extra pages, so we reclaim sooner, rather than later
1765 */
1766 extra = desfree;
1767
1768 /*
1769 * check that we're out of range of the pageout scanner. It starts to
1770 * schedule paging if freemem is less than lotsfree and needfree.
1771 * lotsfree is the high-water mark for pageout, and needfree is the
1772 * number of needed free pages. We add extra pages here to make sure
1773 * the scanner doesn't start up while we're freeing memory.
1774 */
1775 if (freemem < lotsfree + needfree + extra)
1776 return (1);
1777
1778 /*
1779 * check to make sure that swapfs has enough space so that anon
1780 * reservations can still succeed. anon_resvmem() checks that the
1781 * availrmem is greater than swapfs_minfree, and the number of reserved
1782 * swap pages. We also add a bit of extra here just to prevent
1783 * circumstances from getting really dire.
1784 */
1785 if (availrmem < swapfs_minfree + swapfs_reserve + extra)
1786 return (1);
1787
1788#if defined(__i386)
1789 /*
1790 * If we're on an i386 platform, it's possible that we'll exhaust the
1791 * kernel heap space before we ever run out of available physical
1792 * memory. Most checks of the size of the heap_area compare against
1793 * tune.t_minarmem, which is the minimum available real memory that we
1794 * can have in the system. However, this is generally fixed at 25 pages
1795 * which is so low that it's useless. In this comparison, we seek to
1796 * calculate the total heap-size, and reclaim if more than 3/4ths of the
1797 * heap is allocated. (Or, in the calculation, if less than 1/4th is
1798 * free)
1799 */
1800 if (btop(vmem_size(heap_arena, VMEM_FREE)) <
1801 (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2))
1802 return (1);
1803#endif
1804
1805#else
1806 if (spa_get_random(100) == 0)
1807 return (1);
1808#endif
1809 return (0);
1810}
1811
1812static void
1813arc_kmem_reap_now(arc_reclaim_strategy_t strat)
1814{
1815 size_t i;
1816 kmem_cache_t *prev_cache = NULL;
1817 kmem_cache_t *prev_data_cache = NULL;
1818 extern kmem_cache_t *zio_buf_cache[];
1819 extern kmem_cache_t *zio_data_buf_cache[];
1820
1821#ifdef _KERNEL
1822 if (arc_meta_used >= arc_meta_limit) {
1823 /*
1824 * We are exceeding our meta-data cache limit.
1825 * Purge some DNLC entries to release holds on meta-data.
1826 */
1827 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
1828 }
1829#if defined(__i386)
1830 /*
1831 * Reclaim unused memory from all kmem caches.
1832 */
1833 kmem_reap();
1834#endif
1835#endif
1836
1837 /*
1838 * An aggressive reclamation will shrink the cache size as well as
1839 * reap free buffers from the arc kmem caches.
1840 */
1841 if (strat == ARC_RECLAIM_AGGR)
1842 arc_shrink();
1843
1844 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
1845 if (zio_buf_cache[i] != prev_cache) {
1846 prev_cache = zio_buf_cache[i];
1847 kmem_cache_reap_now(zio_buf_cache[i]);
1848 }
1849 if (zio_data_buf_cache[i] != prev_data_cache) {
1850 prev_data_cache = zio_data_buf_cache[i];
1851 kmem_cache_reap_now(zio_data_buf_cache[i]);
1852 }
1853 }
1854 kmem_cache_reap_now(buf_cache);
1855 kmem_cache_reap_now(hdr_cache);
1856}
1857
1858static void
1859arc_reclaim_thread(void)
1860{
1861 clock_t growtime = 0;
1862 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS;
1863 callb_cpr_t cpr;
1864
1865 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
1866
1867 mutex_enter(&arc_reclaim_thr_lock);
1868 while (arc_thread_exit == 0) {
1869 if (arc_reclaim_needed()) {
1870
1871 if (arc_no_grow) {
1872 if (last_reclaim == ARC_RECLAIM_CONS) {
1873 last_reclaim = ARC_RECLAIM_AGGR;
1874 } else {
1875 last_reclaim = ARC_RECLAIM_CONS;
1876 }
1877 } else {
1878 arc_no_grow = TRUE;
1879 last_reclaim = ARC_RECLAIM_AGGR;
1880 membar_producer();
1881 }
1882
1883 /* reset the growth delay for every reclaim */
1884 growtime = lbolt + (arc_grow_retry * hz);
1885
1886 arc_kmem_reap_now(last_reclaim);
1887
1888 } else if (arc_no_grow && lbolt >= growtime) {
1889 arc_no_grow = FALSE;
1890 }
1891
1892 if (2 * arc_c < arc_size +
1893 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size)
1894 arc_adjust();
1895
1896 if (arc_eviction_list != NULL)
1897 arc_do_user_evicts();
1898
1899 /* block until needed, or one second, whichever is shorter */
1900 CALLB_CPR_SAFE_BEGIN(&cpr);
1901 (void) cv_timedwait(&arc_reclaim_thr_cv,
1902 &arc_reclaim_thr_lock, (lbolt + hz));
1903 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
1904 }
1905
1906 arc_thread_exit = 0;
1907 cv_broadcast(&arc_reclaim_thr_cv);
1908 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */
1909 thread_exit();
1910}
1911
1912/*
1913 * Adapt arc info given the number of bytes we are trying to add and
1914 * the state that we are comming from. This function is only called
1915 * when we are adding new content to the cache.
1916 */
1917static void
1918arc_adapt(int bytes, arc_state_t *state)
1919{
1920 int mult;
1921
1922 if (state == arc_l2c_only)
1923 return;
1924
1925 ASSERT(bytes > 0);
1926 /*
1927 * Adapt the target size of the MRU list:
1928 * - if we just hit in the MRU ghost list, then increase
1929 * the target size of the MRU list.
1930 * - if we just hit in the MFU ghost list, then increase
1931 * the target size of the MFU list by decreasing the
1932 * target size of the MRU list.
1933 */
1934 if (state == arc_mru_ghost) {
1935 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
1936 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
1937
1938 arc_p = MIN(arc_c, arc_p + bytes * mult);
1939 } else if (state == arc_mfu_ghost) {
1940 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
1941 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
1942
1943 arc_p = MAX(0, (int64_t)arc_p - bytes * mult);
1944 }
1945 ASSERT((int64_t)arc_p >= 0);
1946
1947 if (arc_reclaim_needed()) {
1948 cv_signal(&arc_reclaim_thr_cv);
1949 return;
1950 }
1951
1952 if (arc_no_grow)
1953 return;
1954
1955 if (arc_c >= arc_c_max)
1956 return;
1957
1958 /*
1959 * If we're within (2 * maxblocksize) bytes of the target
1960 * cache size, increment the target cache size
1961 */
1962 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
1963 atomic_add_64(&arc_c, (int64_t)bytes);
1964 if (arc_c > arc_c_max)
1965 arc_c = arc_c_max;
1966 else if (state == arc_anon)
1967 atomic_add_64(&arc_p, (int64_t)bytes);
1968 if (arc_p > arc_c)
1969 arc_p = arc_c;
1970 }
1971 ASSERT((int64_t)arc_p >= 0);
1972}
1973
1974/*
1975 * Check if the cache has reached its limits and eviction is required
1976 * prior to insert.
1977 */
1978static int
1979arc_evict_needed(arc_buf_contents_t type)
1980{
1981 if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
1982 return (1);
1983
1984#ifdef _KERNEL
1985 /*
1986 * If zio data pages are being allocated out of a separate heap segment,
1987 * then enforce that the size of available vmem for this area remains
1988 * above about 1/32nd free.
1989 */
1990 if (type == ARC_BUFC_DATA && zio_arena != NULL &&
1991 vmem_size(zio_arena, VMEM_FREE) <
1992 (vmem_size(zio_arena, VMEM_ALLOC) >> 5))
1993 return (1);
1994#endif
1995
1996 if (arc_reclaim_needed())
1997 return (1);
1998
1999 return (arc_size > arc_c);
2000}
2001
2002/*
2003 * The buffer, supplied as the first argument, needs a data block.
2004 * So, if we are at cache max, determine which cache should be victimized.
2005 * We have the following cases:
2006 *
2007 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
2008 * In this situation if we're out of space, but the resident size of the MFU is
2009 * under the limit, victimize the MFU cache to satisfy this insertion request.
2010 *
2011 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
2012 * Here, we've used up all of the available space for the MRU, so we need to
2013 * evict from our own cache instead. Evict from the set of resident MRU
2014 * entries.
2015 *
2016 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2017 * c minus p represents the MFU space in the cache, since p is the size of the
2018 * cache that is dedicated to the MRU. In this situation there's still space on
2019 * the MFU side, so the MRU side needs to be victimized.
2020 *
2021 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2022 * MFU's resident set is consuming more space than it has been allotted. In
2023 * this situation, we must victimize our own cache, the MFU, for this insertion.
2024 */
2025static void
2026arc_get_data_buf(arc_buf_t *buf)
2027{
2028 arc_state_t *state = buf->b_hdr->b_state;
2029 uint64_t size = buf->b_hdr->b_size;
2030 arc_buf_contents_t type = buf->b_hdr->b_type;
2031
2032 arc_adapt(size, state);
2033
2034 /*
2035 * We have not yet reached cache maximum size,
2036 * just allocate a new buffer.
2037 */
2038 if (!arc_evict_needed(type)) {
2039 if (type == ARC_BUFC_METADATA) {
2040 buf->b_data = zio_buf_alloc(size);
2041 arc_space_consume(size);
2042 } else {
2043 ASSERT(type == ARC_BUFC_DATA);
2044 buf->b_data = zio_data_buf_alloc(size);
2045 atomic_add_64(&arc_size, size);
2046 }
2047 goto out;
2048 }
2049
2050 /*
2051 * If we are prefetching from the mfu ghost list, this buffer
2052 * will end up on the mru list; so steal space from there.
2053 */
2054 if (state == arc_mfu_ghost)
2055 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
2056 else if (state == arc_mru_ghost)
2057 state = arc_mru;
2058
2059 if (state == arc_mru || state == arc_anon) {
2060 uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
2061 state = (arc_mfu->arcs_lsize[type] > 0 &&
2062 arc_p > mru_used) ? arc_mfu : arc_mru;
2063 } else {
2064 /* MFU cases */
2065 uint64_t mfu_space = arc_c - arc_p;
2066 state = (arc_mru->arcs_lsize[type] > 0 &&
2067 mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2068 }
2069 if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) {
2070 if (type == ARC_BUFC_METADATA) {
2071 buf->b_data = zio_buf_alloc(size);
2072 arc_space_consume(size);
2073 } else {
2074 ASSERT(type == ARC_BUFC_DATA);
2075 buf->b_data = zio_data_buf_alloc(size);
2076 atomic_add_64(&arc_size, size);
2077 }
2078 ARCSTAT_BUMP(arcstat_recycle_miss);
2079 }
2080 ASSERT(buf->b_data != NULL);
2081out:
2082 /*
2083 * Update the state size. Note that ghost states have a
2084 * "ghost size" and so don't need to be updated.
2085 */
2086 if (!GHOST_STATE(buf->b_hdr->b_state)) {
2087 arc_buf_hdr_t *hdr = buf->b_hdr;
2088
2089 atomic_add_64(&hdr->b_state->arcs_size, size);
2090 if (list_link_active(&hdr->b_arc_node)) {
2091 ASSERT(refcount_is_zero(&hdr->b_refcnt));
2092 atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
2093 }
2094 /*
2095 * If we are growing the cache, and we are adding anonymous
2096 * data, and we have outgrown arc_p, update arc_p
2097 */
2098 if (arc_size < arc_c && hdr->b_state == arc_anon &&
2099 arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
2100 arc_p = MIN(arc_c, arc_p + size);
2101 }
2102}
2103
2104/*
2105 * This routine is called whenever a buffer is accessed.
2106 * NOTE: the hash lock is dropped in this function.
2107 */
2108static void
2109arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
2110{
2111 ASSERT(MUTEX_HELD(hash_lock));
2112
2113 if (buf->b_state == arc_anon) {
2114 /*
2115 * This buffer is not in the cache, and does not
2116 * appear in our "ghost" list. Add the new buffer
2117 * to the MRU state.
2118 */
2119
2120 ASSERT(buf->b_arc_access == 0);
2121 buf->b_arc_access = lbolt;
2122 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2123 arc_change_state(arc_mru, buf, hash_lock);
2124
2125 } else if (buf->b_state == arc_mru) {
2126 /*
2127 * If this buffer is here because of a prefetch, then either:
2128 * - clear the flag if this is a "referencing" read
2129 * (any subsequent access will bump this into the MFU state).
2130 * or
2131 * - move the buffer to the head of the list if this is
2132 * another prefetch (to make it less likely to be evicted).
2133 */
2134 if ((buf->b_flags & ARC_PREFETCH) != 0) {
2135 if (refcount_count(&buf->b_refcnt) == 0) {
2136 ASSERT(list_link_active(&buf->b_arc_node));
2137 } else {
2138 buf->b_flags &= ~ARC_PREFETCH;
2139 ARCSTAT_BUMP(arcstat_mru_hits);
2140 }
2141 buf->b_arc_access = lbolt;
2142 return;
2143 }
2144
2145 /*
2146 * This buffer has been "accessed" only once so far,
2147 * but it is still in the cache. Move it to the MFU
2148 * state.
2149 */
2150 if (lbolt > buf->b_arc_access + ARC_MINTIME) {
2151 /*
2152 * More than 125ms have passed since we
2153 * instantiated this buffer. Move it to the
2154 * most frequently used state.
2155 */
2156 buf->b_arc_access = lbolt;
2157 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2158 arc_change_state(arc_mfu, buf, hash_lock);
2159 }
2160 ARCSTAT_BUMP(arcstat_mru_hits);
2161 } else if (buf->b_state == arc_mru_ghost) {
2162 arc_state_t *new_state;
2163 /*
2164 * This buffer has been "accessed" recently, but
2165 * was evicted from the cache. Move it to the
2166 * MFU state.
2167 */
2168
2169 if (buf->b_flags & ARC_PREFETCH) {
2170 new_state = arc_mru;
2171 if (refcount_count(&buf->b_refcnt) > 0)
2172 buf->b_flags &= ~ARC_PREFETCH;
2173 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2174 } else {
2175 new_state = arc_mfu;
2176 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2177 }
2178
2179 buf->b_arc_access = lbolt;
2180 arc_change_state(new_state, buf, hash_lock);
2181
2182 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
2183 } else if (buf->b_state == arc_mfu) {
2184 /*
2185 * This buffer has been accessed more than once and is
2186 * still in the cache. Keep it in the MFU state.
2187 *
2188 * NOTE: an add_reference() that occurred when we did
2189 * the arc_read() will have kicked this off the list.
2190 * If it was a prefetch, we will explicitly move it to
2191 * the head of the list now.
2192 */
2193 if ((buf->b_flags & ARC_PREFETCH) != 0) {
2194 ASSERT(refcount_count(&buf->b_refcnt) == 0);
2195 ASSERT(list_link_active(&buf->b_arc_node));
2196 }
2197 ARCSTAT_BUMP(arcstat_mfu_hits);
2198 buf->b_arc_access = lbolt;
2199 } else if (buf->b_state == arc_mfu_ghost) {
2200 arc_state_t *new_state = arc_mfu;
2201 /*
2202 * This buffer has been accessed more than once but has
2203 * been evicted from the cache. Move it back to the
2204 * MFU state.
2205 */
2206
2207 if (buf->b_flags & ARC_PREFETCH) {
2208 /*
2209 * This is a prefetch access...
2210 * move this block back to the MRU state.
2211 */
2212 ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0);
2213 new_state = arc_mru;
2214 }
2215
2216 buf->b_arc_access = lbolt;
2217 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2218 arc_change_state(new_state, buf, hash_lock);
2219
2220 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
2221 } else if (buf->b_state == arc_l2c_only) {
2222 /*
2223 * This buffer is on the 2nd Level ARC.
2224 */
2225
2226 buf->b_arc_access = lbolt;
2227 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2228 arc_change_state(arc_mfu, buf, hash_lock);
2229 } else {
2230 ASSERT(!"invalid arc state");
2231 }
2232}
2233
2234/* a generic arc_done_func_t which you can use */
2235/* ARGSUSED */
2236void
2237arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
2238{
2239 bcopy(buf->b_data, arg, buf->b_hdr->b_size);
2240 VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2241}
2242
2243/* a generic arc_done_func_t */
2244void
2245arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
2246{
2247 arc_buf_t **bufp = arg;
2248 if (zio && zio->io_error) {
2249 VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2250 *bufp = NULL;
2251 } else {
2252 *bufp = buf;
2253 }
2254}
2255
2256static void
2257arc_read_done(zio_t *zio)
2258{
2259 arc_buf_hdr_t *hdr, *found;
2260 arc_buf_t *buf;
2261 arc_buf_t *abuf; /* buffer we're assigning to callback */
2262 kmutex_t *hash_lock;
2263 arc_callback_t *callback_list, *acb;
2264 int freeable = FALSE;
2265
2266 buf = zio->io_private;
2267 hdr = buf->b_hdr;
2268
2269 /*
2270 * The hdr was inserted into hash-table and removed from lists
2271 * prior to starting I/O. We should find this header, since
2272 * it's in the hash table, and it should be legit since it's
2273 * not possible to evict it during the I/O. The only possible
2274 * reason for it not to be found is if we were freed during the
2275 * read.
2276 */
2277 found = buf_hash_find(zio->io_spa, &hdr->b_dva, hdr->b_birth,
2278 &hash_lock);
2279
2280 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) ||
2281 (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
2282 (found == hdr && HDR_L2_READING(hdr)));
2283
2284 hdr->b_flags &= ~(ARC_L2_READING|ARC_L2_EVICTED);
2285 if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH))
2286 hdr->b_flags |= ARC_DONT_L2CACHE;
2287
2288 /* byteswap if necessary */
2289 callback_list = hdr->b_acb;
2290 ASSERT(callback_list != NULL);
2291 if (BP_SHOULD_BYTESWAP(zio->io_bp) && callback_list->acb_byteswap)
2292 callback_list->acb_byteswap(buf->b_data, hdr->b_size);
2293
2294 arc_cksum_compute(buf, B_FALSE);
2295
2296 /* create copies of the data buffer for the callers */
2297 abuf = buf;
2298 for (acb = callback_list; acb; acb = acb->acb_next) {
2299 if (acb->acb_done) {
2300 if (abuf == NULL)
2301 abuf = arc_buf_clone(buf);
2302 acb->acb_buf = abuf;
2303 abuf = NULL;
2304 }
2305 }
2306 hdr->b_acb = NULL;
2307 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2308 ASSERT(!HDR_BUF_AVAILABLE(hdr));
2309 if (abuf == buf)
2310 hdr->b_flags |= ARC_BUF_AVAILABLE;
2311
2312 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
2313
2314 if (zio->io_error != 0) {
2315 hdr->b_flags |= ARC_IO_ERROR;
2316 if (hdr->b_state != arc_anon)
2317 arc_change_state(arc_anon, hdr, hash_lock);
2318 if (HDR_IN_HASH_TABLE(hdr))
2319 buf_hash_remove(hdr);
2320 freeable = refcount_is_zero(&hdr->b_refcnt);
2321 /* convert checksum errors into IO errors */
2322 if (zio->io_error == ECKSUM)
2323 zio->io_error = EIO;
2324 }
2325
2326 /*
2327 * Broadcast before we drop the hash_lock to avoid the possibility
2328 * that the hdr (and hence the cv) might be freed before we get to
2329 * the cv_broadcast().
2330 */
2331 cv_broadcast(&hdr->b_cv);
2332
2333 if (hash_lock) {
2334 /*
2335 * Only call arc_access on anonymous buffers. This is because
2336 * if we've issued an I/O for an evicted buffer, we've already
2337 * called arc_access (to prevent any simultaneous readers from
2338 * getting confused).
2339 */
2340 if (zio->io_error == 0 && hdr->b_state == arc_anon)
2341 arc_access(hdr, hash_lock);
2342 mutex_exit(hash_lock);
2343 } else {
2344 /*
2345 * This block was freed while we waited for the read to
2346 * complete. It has been removed from the hash table and
2347 * moved to the anonymous state (so that it won't show up
2348 * in the cache).
2349 */
2350 ASSERT3P(hdr->b_state, ==, arc_anon);
2351 freeable = refcount_is_zero(&hdr->b_refcnt);
2352 }
2353
2354 /* execute each callback and free its structure */
2355 while ((acb = callback_list) != NULL) {
2356 if (acb->acb_done)
2357 acb->acb_done(zio, acb->acb_buf, acb->acb_private);
2358
2359 if (acb->acb_zio_dummy != NULL) {
2360 acb->acb_zio_dummy->io_error = zio->io_error;
2361 zio_nowait(acb->acb_zio_dummy);
2362 }
2363
2364 callback_list = acb->acb_next;
2365 kmem_free(acb, sizeof (arc_callback_t));
2366 }
2367
2368 if (freeable)
2369 arc_hdr_destroy(hdr);
2370}
2371
2372/*
2373 * "Read" the block block at the specified DVA (in bp) via the
2374 * cache. If the block is found in the cache, invoke the provided
2375 * callback immediately and return. Note that the `zio' parameter
2376 * in the callback will be NULL in this case, since no IO was
2377 * required. If the block is not in the cache pass the read request
2378 * on to the spa with a substitute callback function, so that the
2379 * requested block will be added to the cache.
2380 *
2381 * If a read request arrives for a block that has a read in-progress,
2382 * either wait for the in-progress read to complete (and return the
2383 * results); or, if this is a read with a "done" func, add a record
2384 * to the read to invoke the "done" func when the read completes,
2385 * and return; or just return.
2386 *
2387 * arc_read_done() will invoke all the requested "done" functions
2388 * for readers of this block.
2389 */
2390int
2391arc_read(zio_t *pio, spa_t *spa, blkptr_t *bp, arc_byteswap_func_t *swap,
2392 arc_done_func_t *done, void *private, int priority, int flags,
2393 uint32_t *arc_flags, zbookmark_t *zb)
2394{
2395 arc_buf_hdr_t *hdr;
2396 arc_buf_t *buf;
2397 kmutex_t *hash_lock;
2398 zio_t *rzio;
2399
2400top:
2401 hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock);
2402 if (hdr && hdr->b_datacnt > 0) {
2403
2404 *arc_flags |= ARC_CACHED;
2405
2406 if (HDR_IO_IN_PROGRESS(hdr)) {
2407
2408 if (*arc_flags & ARC_WAIT) {
2409 cv_wait(&hdr->b_cv, hash_lock);
2410 mutex_exit(hash_lock);
2411 goto top;
2412 }
2413 ASSERT(*arc_flags & ARC_NOWAIT);
2414
2415 if (done) {
2416 arc_callback_t *acb = NULL;
2417
2418 acb = kmem_zalloc(sizeof (arc_callback_t),
2419 KM_SLEEP);
2420 acb->acb_done = done;
2421 acb->acb_private = private;
2422 acb->acb_byteswap = swap;
2423 if (pio != NULL)
2424 acb->acb_zio_dummy = zio_null(pio,
2425 spa, NULL, NULL, flags);
2426
2427 ASSERT(acb->acb_done != NULL);
2428 acb->acb_next = hdr->b_acb;
2429 hdr->b_acb = acb;
2430 add_reference(hdr, hash_lock, private);
2431 mutex_exit(hash_lock);
2432 return (0);
2433 }
2434 mutex_exit(hash_lock);
2435 return (0);
2436 }
2437
2438 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2439
2440 if (done) {
2441 add_reference(hdr, hash_lock, private);
2442 /*
2443 * If this block is already in use, create a new
2444 * copy of the data so that we will be guaranteed
2445 * that arc_release() will always succeed.
2446 */
2447 buf = hdr->b_buf;
2448 ASSERT(buf);
2449 ASSERT(buf->b_data);
2450 if (HDR_BUF_AVAILABLE(hdr)) {
2451 ASSERT(buf->b_efunc == NULL);
2452 hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2453 } else {
2454 buf = arc_buf_clone(buf);
2455 }
2456 } else if (*arc_flags & ARC_PREFETCH &&
2457 refcount_count(&hdr->b_refcnt) == 0) {
2458 hdr->b_flags |= ARC_PREFETCH;
2459 }
2460 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2461 arc_access(hdr, hash_lock);
2462 mutex_exit(hash_lock);
2463 ARCSTAT_BUMP(arcstat_hits);
2464 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2465 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2466 data, metadata, hits);
2467
2468 if (done)
2469 done(NULL, buf, private);
2470 } else {
2471 uint64_t size = BP_GET_LSIZE(bp);
2472 arc_callback_t *acb;
2473
2474 if (hdr == NULL) {
2475 /* this block is not in the cache */
2476 arc_buf_hdr_t *exists;
2477 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
2478 buf = arc_buf_alloc(spa, size, private, type);
2479 hdr = buf->b_hdr;
2480 hdr->b_dva = *BP_IDENTITY(bp);
2481 hdr->b_birth = bp->blk_birth;
2482 hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
2483 exists = buf_hash_insert(hdr, &hash_lock);
2484 if (exists) {
2485 /* somebody beat us to the hash insert */
2486 mutex_exit(hash_lock);
2487 bzero(&hdr->b_dva, sizeof (dva_t));
2488 hdr->b_birth = 0;
2489 hdr->b_cksum0 = 0;
2490 (void) arc_buf_remove_ref(buf, private);
2491 goto top; /* restart the IO request */
2492 }
2493 /* if this is a prefetch, we don't have a reference */
2494 if (*arc_flags & ARC_PREFETCH) {
2495 (void) remove_reference(hdr, hash_lock,
2496 private);
2497 hdr->b_flags |= ARC_PREFETCH;
2498 }
2499 if (BP_GET_LEVEL(bp) > 0)
2500 hdr->b_flags |= ARC_INDIRECT;
2501 } else {
2502 /* this block is in the ghost cache */
2503 ASSERT(GHOST_STATE(hdr->b_state));
2504 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2505 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0);
2506 ASSERT(hdr->b_buf == NULL);
2507
2508 /* if this is a prefetch, we don't have a reference */
2509 if (*arc_flags & ARC_PREFETCH)
2510 hdr->b_flags |= ARC_PREFETCH;
2511 else
2512 add_reference(hdr, hash_lock, private);
2513 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2514 buf->b_hdr = hdr;
2515 buf->b_data = NULL;
2516 buf->b_efunc = NULL;
2517 buf->b_private = NULL;
2518 buf->b_next = NULL;
2519 hdr->b_buf = buf;
2520 arc_get_data_buf(buf);
2521 ASSERT(hdr->b_datacnt == 0);
2522 hdr->b_datacnt = 1;
2523
2524 }
2525
2526 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
2527 acb->acb_done = done;
2528 acb->acb_private = private;
2529 acb->acb_byteswap = swap;
2530
2531 ASSERT(hdr->b_acb == NULL);
2532 hdr->b_acb = acb;
2533 hdr->b_flags |= ARC_IO_IN_PROGRESS;
2534
2535 /*
2536 * If the buffer has been evicted, migrate it to a present state
2537 * before issuing the I/O. Once we drop the hash-table lock,
2538 * the header will be marked as I/O in progress and have an
2539 * attached buffer. At this point, anybody who finds this
2540 * buffer ought to notice that it's legit but has a pending I/O.
2541 */
2542
2543 if (GHOST_STATE(hdr->b_state))
2544 arc_access(hdr, hash_lock);
2545
2546 ASSERT3U(hdr->b_size, ==, size);
2547 DTRACE_PROBE3(arc__miss, blkptr_t *, bp, uint64_t, size,
2548 zbookmark_t *, zb);
2549 ARCSTAT_BUMP(arcstat_misses);
2550 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2551 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2552 data, metadata, misses);
2553
2554 if (l2arc_ndev != 0) {
2555 /*
2556 * Read from the L2ARC if the following are true:
2557 * 1. This buffer has L2ARC metadata.
2558 * 2. This buffer isn't currently writing to the L2ARC.
2559 */
2560 if (hdr->b_l2hdr != NULL && !HDR_L2_WRITING(hdr)) {
2561 vdev_t *vd = hdr->b_l2hdr->b_dev->l2ad_vdev;
2562 daddr_t addr = hdr->b_l2hdr->b_daddr;
2563 l2arc_read_callback_t *cb;
2564
2565 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
2566 ARCSTAT_BUMP(arcstat_l2_hits);
2567
2568 hdr->b_flags |= ARC_L2_READING;
2569 mutex_exit(hash_lock);
2570
2571 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
2572 KM_SLEEP);
2573 cb->l2rcb_buf = buf;
2574 cb->l2rcb_spa = spa;
2575 cb->l2rcb_bp = *bp;
2576 cb->l2rcb_zb = *zb;
2577 cb->l2rcb_flags = flags;
2578
2579 /*
2580 * l2arc read.
2581 */
2582 rzio = zio_read_phys(pio, vd, addr, size,
2583 buf->b_data, ZIO_CHECKSUM_OFF,
2584 l2arc_read_done, cb, priority,
2585 flags | ZIO_FLAG_DONT_CACHE, B_FALSE);
2586 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
2587 zio_t *, rzio);
2588
2589 if (*arc_flags & ARC_WAIT)
2590 return (zio_wait(rzio));
2591
2592 ASSERT(*arc_flags & ARC_NOWAIT);
2593 zio_nowait(rzio);
2594 return (0);
2595 } else {
2596 DTRACE_PROBE1(l2arc__miss,
2597 arc_buf_hdr_t *, hdr);
2598 ARCSTAT_BUMP(arcstat_l2_misses);
2599 if (HDR_L2_WRITING(hdr))
2600 ARCSTAT_BUMP(arcstat_l2_rw_clash);
2601 }
2602 }
2603 mutex_exit(hash_lock);
2604
2605 rzio = zio_read(pio, spa, bp, buf->b_data, size,
2606 arc_read_done, buf, priority, flags, zb);
2607
2608 if (*arc_flags & ARC_WAIT)
2609 return (zio_wait(rzio));
2610
2611 ASSERT(*arc_flags & ARC_NOWAIT);
2612 zio_nowait(rzio);
2613 }
2614 return (0);
2615}
2616
2617/*
2618 * arc_read() variant to support pool traversal. If the block is already
2619 * in the ARC, make a copy of it; otherwise, the caller will do the I/O.
2620 * The idea is that we don't want pool traversal filling up memory, but
2621 * if the ARC already has the data anyway, we shouldn't pay for the I/O.
2622 */
2623int
2624arc_tryread(spa_t *spa, blkptr_t *bp, void *data)
2625{
2626 arc_buf_hdr_t *hdr;
2627 kmutex_t *hash_mtx;
2628 int rc = 0;
2629
2630 hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_mtx);
2631
2632 if (hdr && hdr->b_datacnt > 0 && !HDR_IO_IN_PROGRESS(hdr)) {
2633 arc_buf_t *buf = hdr->b_buf;
2634
2635 ASSERT(buf);
2636 while (buf->b_data == NULL) {
2637 buf = buf->b_next;
2638 ASSERT(buf);
2639 }
2640 bcopy(buf->b_data, data, hdr->b_size);
2641 } else {
2642 rc = ENOENT;
2643 }
2644
2645 if (hash_mtx)
2646 mutex_exit(hash_mtx);
2647
2648 return (rc);
2649}
2650
2651void
2652arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
2653{
2654 ASSERT(buf->b_hdr != NULL);
2655 ASSERT(buf->b_hdr->b_state != arc_anon);
2656 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
2657 buf->b_efunc = func;
2658 buf->b_private = private;
2659}
2660
2661/*
2662 * This is used by the DMU to let the ARC know that a buffer is
2663 * being evicted, so the ARC should clean up. If this arc buf
2664 * is not yet in the evicted state, it will be put there.
2665 */
2666int
2667arc_buf_evict(arc_buf_t *buf)
2668{
2669 arc_buf_hdr_t *hdr;
2670 kmutex_t *hash_lock;
2671 arc_buf_t **bufp;
2672
2673 mutex_enter(&arc_eviction_mtx);
2674 hdr = buf->b_hdr;
2675 if (hdr == NULL) {
2676 /*
2677 * We are in arc_do_user_evicts().
2678 */
2679 ASSERT(buf->b_data == NULL);
2680 mutex_exit(&arc_eviction_mtx);
2681 return (0);
2682 }
2683 hash_lock = HDR_LOCK(hdr);
2684 mutex_exit(&arc_eviction_mtx);
2685
2686 mutex_enter(hash_lock);
2687
2688 if (buf->b_data == NULL) {
2689 /*
2690 * We are on the eviction list.
2691 */
2692 mutex_exit(hash_lock);
2693 mutex_enter(&arc_eviction_mtx);
2694 if (buf->b_hdr == NULL) {
2695 /*
2696 * We are already in arc_do_user_evicts().
2697 */
2698 mutex_exit(&arc_eviction_mtx);
2699 return (0);
2700 } else {
2701 arc_buf_t copy = *buf; /* structure assignment */
2702 /*
2703 * Process this buffer now
2704 * but let arc_do_user_evicts() do the reaping.
2705 */
2706 buf->b_efunc = NULL;
2707 mutex_exit(&arc_eviction_mtx);
2708 VERIFY(copy.b_efunc(&copy) == 0);
2709 return (1);
2710 }
2711 }
2712
2713 ASSERT(buf->b_hdr == hdr);
2714 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
2715 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2716
2717 /*
2718 * Pull this buffer off of the hdr
2719 */
2720 bufp = &hdr->b_buf;
2721 while (*bufp != buf)
2722 bufp = &(*bufp)->b_next;
2723 *bufp = buf->b_next;
2724
2725 ASSERT(buf->b_data != NULL);
2726 arc_buf_destroy(buf, FALSE, FALSE);
2727
2728 if (hdr->b_datacnt == 0) {
2729 arc_state_t *old_state = hdr->b_state;
2730 arc_state_t *evicted_state;
2731
2732 ASSERT(refcount_is_zero(&hdr->b_refcnt));
2733
2734 evicted_state =
2735 (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
2736
2737 mutex_enter(&old_state->arcs_mtx);
2738 mutex_enter(&evicted_state->arcs_mtx);
2739
2740 arc_change_state(evicted_state, hdr, hash_lock);
2741 ASSERT(HDR_IN_HASH_TABLE(hdr));
2742 hdr->b_flags |= ARC_IN_HASH_TABLE;
2743 hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2744
2745 mutex_exit(&evicted_state->arcs_mtx);
2746 mutex_exit(&old_state->arcs_mtx);
2747 }
2748 mutex_exit(hash_lock);
2749
2750 VERIFY(buf->b_efunc(buf) == 0);
2751 buf->b_efunc = NULL;
2752 buf->b_private = NULL;
2753 buf->b_hdr = NULL;
2754 kmem_cache_free(buf_cache, buf);
2755 return (1);
2756}
2757
2758/*
2759 * Release this buffer from the cache. This must be done
2760 * after a read and prior to modifying the buffer contents.
2761 * If the buffer has more than one reference, we must make
2762 * make a new hdr for the buffer.
2763 */
2764void
2765arc_release(arc_buf_t *buf, void *tag)
2766{
2767 arc_buf_hdr_t *hdr = buf->b_hdr;
2768 kmutex_t *hash_lock = HDR_LOCK(hdr);
2769 l2arc_buf_hdr_t *l2hdr = NULL;
2770 uint64_t buf_size;
2771
2772 /* this buffer is not on any list */
2773 ASSERT(refcount_count(&hdr->b_refcnt) > 0);
2774
2775 if (hdr->b_state == arc_anon) {
2776 /* this buffer is already released */
2777 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1);
2778 ASSERT(BUF_EMPTY(hdr));
2779 ASSERT(buf->b_efunc == NULL);
2780 arc_buf_thaw(buf);
2781 return;
2782 }
2783
2784 mutex_enter(hash_lock);
2785
2786 /*
2787 * Do we have more than one buf?
2788 */
2789 if (hdr->b_buf != buf || buf->b_next != NULL) {
2790 arc_buf_hdr_t *nhdr;
2791 arc_buf_t **bufp;
2792 uint64_t blksz = hdr->b_size;
2793 spa_t *spa = hdr->b_spa;
2794 arc_buf_contents_t type = hdr->b_type;
2795 uint32_t flags = hdr->b_flags;
2796
2797 ASSERT(hdr->b_datacnt > 1);
2798 /*
2799 * Pull the data off of this buf and attach it to
2800 * a new anonymous buf.
2801 */
2802 (void) remove_reference(hdr, hash_lock, tag);
2803 bufp = &hdr->b_buf;
2804 while (*bufp != buf)
2805 bufp = &(*bufp)->b_next;
2806 *bufp = (*bufp)->b_next;
2807 buf->b_next = NULL;
2808
2809 ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
2810 atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
2811 if (refcount_is_zero(&hdr->b_refcnt)) {
2812 uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
2813 ASSERT3U(*size, >=, hdr->b_size);
2814 atomic_add_64(size, -hdr->b_size);
2815 }
2816 hdr->b_datacnt -= 1;
2817 if (hdr->b_l2hdr != NULL) {
2818 mutex_enter(&l2arc_buflist_mtx);
2819 l2hdr = hdr->b_l2hdr;
2820 hdr->b_l2hdr = NULL;
2821 buf_size = hdr->b_size;
2822 }
2823 arc_cksum_verify(buf);
2824
2825 mutex_exit(hash_lock);
2826
2827 nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
2828 nhdr->b_size = blksz;
2829 nhdr->b_spa = spa;
2830 nhdr->b_type = type;
2831 nhdr->b_buf = buf;
2832 nhdr->b_state = arc_anon;
2833 nhdr->b_arc_access = 0;
2834 nhdr->b_flags = flags & ARC_L2_WRITING;
2835 nhdr->b_l2hdr = NULL;
2836 nhdr->b_datacnt = 1;
2837 nhdr->b_freeze_cksum = NULL;
2838 (void) refcount_add(&nhdr->b_refcnt, tag);
2839 buf->b_hdr = nhdr;
2840 atomic_add_64(&arc_anon->arcs_size, blksz);
2841 } else {
2842 ASSERT(refcount_count(&hdr->b_refcnt) == 1);
2843 ASSERT(!list_link_active(&hdr->b_arc_node));
2844 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2845 arc_change_state(arc_anon, hdr, hash_lock);
2846 hdr->b_arc_access = 0;
2847 if (hdr->b_l2hdr != NULL) {
2848 mutex_enter(&l2arc_buflist_mtx);
2849 l2hdr = hdr->b_l2hdr;
2850 hdr->b_l2hdr = NULL;
2851 buf_size = hdr->b_size;
2852 }
2853 mutex_exit(hash_lock);
2854
2855 bzero(&hdr->b_dva, sizeof (dva_t));
2856 hdr->b_birth = 0;
2857 hdr->b_cksum0 = 0;
2858 arc_buf_thaw(buf);
2859 }
2860 buf->b_efunc = NULL;
2861 buf->b_private = NULL;
2862
2863 if (l2hdr) {
2864 list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
2865 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
2866 ARCSTAT_INCR(arcstat_l2_size, -buf_size);
2867 }
2868 if (MUTEX_HELD(&l2arc_buflist_mtx))
2869 mutex_exit(&l2arc_buflist_mtx);
2870}
2871
2872int
2873arc_released(arc_buf_t *buf)
2874{
2875 return (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
2876}
2877
2878int
2879arc_has_callback(arc_buf_t *buf)
2880{
2881 return (buf->b_efunc != NULL);
2882}
2883
2884#ifdef ZFS_DEBUG
2885int
2886arc_referenced(arc_buf_t *buf)
2887{
2888 return (refcount_count(&buf->b_hdr->b_refcnt));
2889}
2890#endif
2891
2892static void
2893arc_write_ready(zio_t *zio)
2894{
2895 arc_write_callback_t *callback = zio->io_private;
2896 arc_buf_t *buf = callback->awcb_buf;
2897 arc_buf_hdr_t *hdr = buf->b_hdr;
2898
2899 if (zio->io_error == 0 && callback->awcb_ready) {
2900 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
2901 callback->awcb_ready(zio, buf, callback->awcb_private);
2902 }
2903 /*
2904 * If the IO is already in progress, then this is a re-write
2905 * attempt, so we need to thaw and re-compute the cksum. It is
2906 * the responsibility of the callback to handle the freeing
2907 * and accounting for any re-write attempt. If we don't have a
2908 * callback registered then simply free the block here.
2909 */
2910 if (HDR_IO_IN_PROGRESS(hdr)) {
2911 if (!BP_IS_HOLE(&zio->io_bp_orig) &&
2912 callback->awcb_ready == NULL) {
2913 zio_nowait(zio_free(zio, zio->io_spa, zio->io_txg,
2914 &zio->io_bp_orig, NULL, NULL));
2915 }
2916 mutex_enter(&hdr->b_freeze_lock);
2917 if (hdr->b_freeze_cksum != NULL) {
2918 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
2919 hdr->b_freeze_cksum = NULL;
2920 }
2921 mutex_exit(&hdr->b_freeze_lock);
2922 }
2923 arc_cksum_compute(buf, B_FALSE);
2924 hdr->b_flags |= ARC_IO_IN_PROGRESS;
2925}
2926
2927static void
2928arc_write_done(zio_t *zio)
2929{
2930 arc_write_callback_t *callback = zio->io_private;
2931 arc_buf_t *buf = callback->awcb_buf;
2932 arc_buf_hdr_t *hdr = buf->b_hdr;
2933
2934 hdr->b_acb = NULL;
2935
2936 /* this buffer is on no lists and is not in the hash table */
2937 ASSERT3P(hdr->b_state, ==, arc_anon);
2938
2939 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
2940 hdr->b_birth = zio->io_bp->blk_birth;
2941 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
2942 /*
2943 * If the block to be written was all-zero, we may have
2944 * compressed it away. In this case no write was performed
2945 * so there will be no dva/birth-date/checksum. The buffer
2946 * must therefor remain anonymous (and uncached).
2947 */
2948 if (!BUF_EMPTY(hdr)) {
2949 arc_buf_hdr_t *exists;
2950 kmutex_t *hash_lock;
2951
2952 arc_cksum_verify(buf);
2953
2954 exists = buf_hash_insert(hdr, &hash_lock);
2955 if (exists) {
2956 /*
2957 * This can only happen if we overwrite for
2958 * sync-to-convergence, because we remove
2959 * buffers from the hash table when we arc_free().
2960 */
2961 ASSERT(DVA_EQUAL(BP_IDENTITY(&zio->io_bp_orig),
2962 BP_IDENTITY(zio->io_bp)));
2963 ASSERT3U(zio->io_bp_orig.blk_birth, ==,
2964 zio->io_bp->blk_birth);
2965
2966 ASSERT(refcount_is_zero(&exists->b_refcnt));
2967 arc_change_state(arc_anon, exists, hash_lock);
2968 mutex_exit(hash_lock);
2969 arc_hdr_destroy(exists);
2970 exists = buf_hash_insert(hdr, &hash_lock);
2971 ASSERT3P(exists, ==, NULL);
2972 }
2973 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2974 arc_access(hdr, hash_lock);
2975 mutex_exit(hash_lock);
2976 } else if (callback->awcb_done == NULL) {
2977 int destroy_hdr;
2978 /*
2979 * This is an anonymous buffer with no user callback,
2980 * destroy it if there are no active references.
2981 */
2982 mutex_enter(&arc_eviction_mtx);
2983 destroy_hdr = refcount_is_zero(&hdr->b_refcnt);
2984 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2985 mutex_exit(&arc_eviction_mtx);
2986 if (destroy_hdr)
2987 arc_hdr_destroy(hdr);
2988 } else {
2989 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2990 }
2991
2992 if (callback->awcb_done) {
2993 ASSERT(!refcount_is_zero(&hdr->b_refcnt));
2994 callback->awcb_done(zio, buf, callback->awcb_private);
2995 }
2996
2997 kmem_free(callback, sizeof (arc_write_callback_t));
2998}
2999
3000zio_t *
3001arc_write(zio_t *pio, spa_t *spa, int checksum, int compress, int ncopies,
3002 uint64_t txg, blkptr_t *bp, arc_buf_t *buf,
3003 arc_done_func_t *ready, arc_done_func_t *done, void *private, int priority,
3004 int flags, zbookmark_t *zb)
3005{
3006 arc_buf_hdr_t *hdr = buf->b_hdr;
3007 arc_write_callback_t *callback;
3008 zio_t *zio;
3009
3010 /* this is a private buffer - no locking required */
3011 ASSERT3P(hdr->b_state, ==, arc_anon);
3012 ASSERT(BUF_EMPTY(hdr));
3013 ASSERT(!HDR_IO_ERROR(hdr));
3014 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
3015 ASSERT(hdr->b_acb == 0);
3016 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
3017 callback->awcb_ready = ready;
3018 callback->awcb_done = done;
3019 callback->awcb_private = private;
3020 callback->awcb_buf = buf;
3021 zio = zio_write(pio, spa, checksum, compress, ncopies, txg, bp,
3022 buf->b_data, hdr->b_size, arc_write_ready, arc_write_done, callback,
3023 priority, flags, zb);
3024
3025 return (zio);
3026}
3027
3028int
3029arc_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
3030 zio_done_func_t *done, void *private, uint32_t arc_flags)
3031{
3032 arc_buf_hdr_t *ab;
3033 kmutex_t *hash_lock;
3034 zio_t *zio;
3035
3036 /*
3037 * If this buffer is in the cache, release it, so it
3038 * can be re-used.
3039 */
3040 ab = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock);
3041 if (ab != NULL) {
3042 /*
3043 * The checksum of blocks to free is not always
3044 * preserved (eg. on the deadlist). However, if it is
3045 * nonzero, it should match what we have in the cache.
3046 */
3047 ASSERT(bp->blk_cksum.zc_word[0] == 0 ||
3048 ab->b_cksum0 == bp->blk_cksum.zc_word[0]);
3049 if (ab->b_state != arc_anon)
3050 arc_change_state(arc_anon, ab, hash_lock);
3051 if (HDR_IO_IN_PROGRESS(ab)) {
3052 /*
3053 * This should only happen when we prefetch.
3054 */
3055 ASSERT(ab->b_flags & ARC_PREFETCH);
3056 ASSERT3U(ab->b_datacnt, ==, 1);
3057 ab->b_flags |= ARC_FREED_IN_READ;
3058 if (HDR_IN_HASH_TABLE(ab))
3059 buf_hash_remove(ab);
3060 ab->b_arc_access = 0;
3061 bzero(&ab->b_dva, sizeof (dva_t));
3062 ab->b_birth = 0;
3063 ab->b_cksum0 = 0;
3064 ab->b_buf->b_efunc = NULL;
3065 ab->b_buf->b_private = NULL;
3066 mutex_exit(hash_lock);
3067 } else if (refcount_is_zero(&ab->b_refcnt)) {
3068 ab->b_flags |= ARC_FREE_IN_PROGRESS;
3069 mutex_exit(hash_lock);
3070 arc_hdr_destroy(ab);
3071 ARCSTAT_BUMP(arcstat_deleted);
3072 } else {
3073 /*
3074 * We still have an active reference on this
3075 * buffer. This can happen, e.g., from
3076 * dbuf_unoverride().
3077 */
3078 ASSERT(!HDR_IN_HASH_TABLE(ab));
3079 ab->b_arc_access = 0;
3080 bzero(&ab->b_dva, sizeof (dva_t));
3081 ab->b_birth = 0;
3082 ab->b_cksum0 = 0;
3083 ab->b_buf->b_efunc = NULL;
3084 ab->b_buf->b_private = NULL;
3085 mutex_exit(hash_lock);
3086 }
3087 }
3088
3089 zio = zio_free(pio, spa, txg, bp, done, private);
3090
3091 if (arc_flags & ARC_WAIT)
3092 return (zio_wait(zio));
3093
3094 ASSERT(arc_flags & ARC_NOWAIT);
3095 zio_nowait(zio);
3096
3097 return (0);
3098}
3099
3100static int
3101arc_memory_throttle(uint64_t reserve, uint64_t txg)
3102{
3103#ifdef _KERNEL
3104 uint64_t inflight_data = arc_anon->arcs_size;
3105 uint64_t available_memory = ptob(freemem);
3106 static uint64_t page_load = 0;
3107 static uint64_t last_txg = 0;
3108
3109#if defined(__i386)
3110 available_memory =
3111 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
3112#endif
3113 if (available_memory >= zfs_write_limit_max)
3114 return (0);
3115
3116 if (txg > last_txg) {
3117 last_txg = txg;
3118 page_load = 0;
3119 }
3120 /*
3121 * If we are in pageout, we know that memory is already tight,
3122 * the arc is already going to be evicting, so we just want to
3123 * continue to let page writes occur as quickly as possible.
3124 */
3125 if (curproc == proc_pageout) {
3126 if (page_load > MAX(ptob(minfree), available_memory) / 4)
3127 return (ERESTART);
3128 /* Note: reserve is inflated, so we deflate */
3129 page_load += reserve / 8;
3130 return (0);
3131 } else if (page_load > 0 && arc_reclaim_needed()) {
3132 /* memory is low, delay before restarting */
3133 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3134 return (EAGAIN);
3135 }
3136 page_load = 0;
3137
3138 if (arc_size > arc_c_min) {
3139 uint64_t evictable_memory =
3140 arc_mru->arcs_lsize[ARC_BUFC_DATA] +
3141 arc_mru->arcs_lsize[ARC_BUFC_METADATA] +
3142 arc_mfu->arcs_lsize[ARC_BUFC_DATA] +
3143 arc_mfu->arcs_lsize[ARC_BUFC_METADATA];
3144 available_memory += MIN(evictable_memory, arc_size - arc_c_min);
3145 }
3146
3147 if (inflight_data > available_memory / 4) {
3148 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3149 return (ERESTART);
3150 }
3151#endif
3152 return (0);
3153}
3154
3155void
3156arc_tempreserve_clear(uint64_t reserve)
3157{
3158 atomic_add_64(&arc_tempreserve, -reserve);
3159 ASSERT((int64_t)arc_tempreserve >= 0);
3160}
3161
3162int
3163arc_tempreserve_space(uint64_t reserve, uint64_t txg)
3164{
3165 int error;
3166
3167#ifdef ZFS_DEBUG
3168 /*
3169 * Once in a while, fail for no reason. Everything should cope.
3170 */
3171 if (spa_get_random(10000) == 0) {
3172 dprintf("forcing random failure\n");
3173 return (ERESTART);
3174 }
3175#endif
3176 if (reserve > arc_c/4 && !arc_no_grow)
3177 arc_c = MIN(arc_c_max, reserve * 4);
3178 if (reserve > arc_c)
3179 return (ENOMEM);
3180
3181 /*
3182 * Writes will, almost always, require additional memory allocations
3183 * in order to compress/encrypt/etc the data. We therefor need to
3184 * make sure that there is sufficient available memory for this.
3185 */
3186 if (error = arc_memory_throttle(reserve, txg))
3187 return (error);
3188
3189 /*
3190 * Throttle writes when the amount of dirty data in the cache
3191 * gets too large. We try to keep the cache less than half full
3192 * of dirty blocks so that our sync times don't grow too large.
3193 * Note: if two requests come in concurrently, we might let them
3194 * both succeed, when one of them should fail. Not a huge deal.
3195 */
3196 if (reserve + arc_tempreserve + arc_anon->arcs_size > arc_c / 2 &&
3197 arc_anon->arcs_size > arc_c / 4) {
3198 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
3199 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
3200 arc_tempreserve>>10,
3201 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
3202 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
3203 reserve>>10, arc_c>>10);
3204 return (ERESTART);
3205 }
3206 atomic_add_64(&arc_tempreserve, reserve);
3207 return (0);
3208}
3209
3210void
3211arc_init(void)
3212{
3213 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
3214 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
3215
3216 /* Convert seconds to clock ticks */
3217 arc_min_prefetch_lifespan = 1 * hz;
3218
3219 /* Start out with 1/8 of all memory */
3220 arc_c = physmem * PAGESIZE / 8;
3221
3222#ifdef _KERNEL
3223 /*
3224 * On architectures where the physical memory can be larger
3225 * than the addressable space (intel in 32-bit mode), we may
3226 * need to limit the cache to 1/8 of VM size.
3227 */
3228 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
3229#endif
3230
3231 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */
3232 arc_c_min = MAX(arc_c / 4, 64<<20);
3233 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */
3234 if (arc_c * 8 >= 1<<30)
3235 arc_c_max = (arc_c * 8) - (1<<30);
3236 else
3237 arc_c_max = arc_c_min;
3238 arc_c_max = MAX(arc_c * 6, arc_c_max);
3239
3240 /*
3241 * Allow the tunables to override our calculations if they are
3242 * reasonable (ie. over 64MB)
3243 */
3244 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE)
3245 arc_c_max = zfs_arc_max;
3246 if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max)
3247 arc_c_min = zfs_arc_min;
3248
3249 arc_c = arc_c_max;
3250 arc_p = (arc_c >> 1);
3251
3252 /* limit meta-data to 1/4 of the arc capacity */
3253 arc_meta_limit = arc_c_max / 4;
3254
3255 /* Allow the tunable to override if it is reasonable */
3256 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
3257 arc_meta_limit = zfs_arc_meta_limit;
3258
3259 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
3260 arc_c_min = arc_meta_limit / 2;
3261
3262 /* if kmem_flags are set, lets try to use less memory */
3263 if (kmem_debugging())
3264 arc_c = arc_c / 2;
3265 if (arc_c < arc_c_min)
3266 arc_c = arc_c_min;
3267
3268 arc_anon = &ARC_anon;
3269 arc_mru = &ARC_mru;
3270 arc_mru_ghost = &ARC_mru_ghost;
3271 arc_mfu = &ARC_mfu;
3272 arc_mfu_ghost = &ARC_mfu_ghost;
3273 arc_l2c_only = &ARC_l2c_only;
3274 arc_size = 0;
3275
3276 mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3277 mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3278 mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3279 mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3280 mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3281 mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3282
3283 list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
3284 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3285 list_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
3286 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3287 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
3288 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3289 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
3290 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3291 list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
3292 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3293 list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
3294 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3295 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
3296 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3297 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
3298 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3299 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
3300 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3301 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
3302 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3303
3304 buf_init();
3305
3306 arc_thread_exit = 0;
3307 arc_eviction_list = NULL;
3308 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
3309 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
3310
3311 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
3312 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
3313
3314 if (arc_ksp != NULL) {
3315 arc_ksp->ks_data = &arc_stats;
3316 kstat_install(arc_ksp);
3317 }
3318
3319 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
3320 TS_RUN, minclsyspri);
3321
3322 arc_dead = FALSE;
3323
3324 if (zfs_write_limit_max == 0)
3325 zfs_write_limit_max = physmem * PAGESIZE >>
3326 zfs_write_limit_shift;
3327 else
3328 zfs_write_limit_shift = 0;
3329}
3330
3331void
3332arc_fini(void)
3333{
3334 mutex_enter(&arc_reclaim_thr_lock);
3335 arc_thread_exit = 1;
3336 while (arc_thread_exit != 0)
3337 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
3338 mutex_exit(&arc_reclaim_thr_lock);
3339
3340 arc_flush(NULL);
3341
3342 arc_dead = TRUE;
3343
3344 if (arc_ksp != NULL) {
3345 kstat_delete(arc_ksp);
3346 arc_ksp = NULL;
3347 }
3348
3349 mutex_destroy(&arc_eviction_mtx);
3350 mutex_destroy(&arc_reclaim_thr_lock);
3351 cv_destroy(&arc_reclaim_thr_cv);
3352
3353 list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
3354 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
3355 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
3356 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
3357 list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
3358 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
3359 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
3360 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
3361
3362 mutex_destroy(&arc_anon->arcs_mtx);
3363 mutex_destroy(&arc_mru->arcs_mtx);
3364 mutex_destroy(&arc_mru_ghost->arcs_mtx);
3365 mutex_destroy(&arc_mfu->arcs_mtx);
3366 mutex_destroy(&arc_mfu_ghost->arcs_mtx);
3367
3368 buf_fini();
3369}
3370
3371/*
3372 * Level 2 ARC
3373 *
3374 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
3375 * It uses dedicated storage devices to hold cached data, which are populated
3376 * using large infrequent writes. The main role of this cache is to boost
3377 * the performance of random read workloads. The intended L2ARC devices
3378 * include short-stroked disks, solid state disks, and other media with
3379 * substantially faster read latency than disk.
3380 *
3381 * +-----------------------+
3382 * | ARC |
3383 * +-----------------------+
3384 * | ^ ^
3385 * | | |
3386 * l2arc_feed_thread() arc_read()
3387 * | | |
3388 * | l2arc read |
3389 * V | |
3390 * +---------------+ |
3391 * | L2ARC | |
3392 * +---------------+ |
3393 * | ^ |
3394 * l2arc_write() | |
3395 * | | |
3396 * V | |
3397 * +-------+ +-------+
3398 * | vdev | | vdev |
3399 * | cache | | cache |
3400 * +-------+ +-------+
3401 * +=========+ .-----.
3402 * : L2ARC : |-_____-|
3403 * : devices : | Disks |
3404 * +=========+ `-_____-'
3405 *
3406 * Read requests are satisfied from the following sources, in order:
3407 *
3408 * 1) ARC
3409 * 2) vdev cache of L2ARC devices
3410 * 3) L2ARC devices
3411 * 4) vdev cache of disks
3412 * 5) disks
3413 *
3414 * Some L2ARC device types exhibit extremely slow write performance.
3415 * To accommodate for this there are some significant differences between
3416 * the L2ARC and traditional cache design:
3417 *
3418 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
3419 * the ARC behave as usual, freeing buffers and placing headers on ghost
3420 * lists. The ARC does not send buffers to the L2ARC during eviction as
3421 * this would add inflated write latencies for all ARC memory pressure.
3422 *
3423 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
3424 * It does this by periodically scanning buffers from the eviction-end of
3425 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
3426 * not already there. It scans until a headroom of buffers is satisfied,
3427 * which itself is a buffer for ARC eviction. The thread that does this is
3428 * l2arc_feed_thread(), illustrated below; example sizes are included to
3429 * provide a better sense of ratio than this diagram:
3430 *
3431 * head --> tail
3432 * +---------------------+----------+
3433 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
3434 * +---------------------+----------+ | o L2ARC eligible
3435 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
3436 * +---------------------+----------+ |
3437 * 15.9 Gbytes ^ 32 Mbytes |
3438 * headroom |
3439 * l2arc_feed_thread()
3440 * |
3441 * l2arc write hand <--[oooo]--'
3442 * | 8 Mbyte
3443 * | write max
3444 * V
3445 * +==============================+
3446 * L2ARC dev |####|#|###|###| |####| ... |
3447 * +==============================+
3448 * 32 Gbytes
3449 *
3450 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
3451 * evicted, then the L2ARC has cached a buffer much sooner than it probably
3452 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
3453 * safe to say that this is an uncommon case, since buffers at the end of
3454 * the ARC lists have moved there due to inactivity.
3455 *
3456 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
3457 * then the L2ARC simply misses copying some buffers. This serves as a
3458 * pressure valve to prevent heavy read workloads from both stalling the ARC
3459 * with waits and clogging the L2ARC with writes. This also helps prevent
3460 * the potential for the L2ARC to churn if it attempts to cache content too
3461 * quickly, such as during backups of the entire pool.
3462 *
3463 * 5. Writes to the L2ARC devices are grouped and sent in-sequence, so that
3464 * the vdev queue can aggregate them into larger and fewer writes. Each
3465 * device is written to in a rotor fashion, sweeping writes through
3466 * available space then repeating.
3467 *
3468 * 6. The L2ARC does not store dirty content. It never needs to flush
3469 * write buffers back to disk based storage.
3470 *
3471 * 7. If an ARC buffer is written (and dirtied) which also exists in the
3472 * L2ARC, the now stale L2ARC buffer is immediately dropped.
3473 *
3474 * The performance of the L2ARC can be tweaked by a number of tunables, which
3475 * may be necessary for different workloads:
3476 *
3477 * l2arc_write_max max write bytes per interval
3478 * l2arc_noprefetch skip caching prefetched buffers
3479 * l2arc_headroom number of max device writes to precache
3480 * l2arc_feed_secs seconds between L2ARC writing
3481 *
3482 * Tunables may be removed or added as future performance improvements are
3483 * integrated, and also may become zpool properties.
3484 */
3485
3486static void
3487l2arc_hdr_stat_add(void)
3488{
3489 ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE);
3490 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
3491}
3492
3493static void
3494l2arc_hdr_stat_remove(void)
3495{
3496 ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE));
3497 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
3498}
3499
3500/*
3501 * Cycle through L2ARC devices. This is how L2ARC load balances.
3502 * This is called with l2arc_dev_mtx held, which also locks out spa removal.
3503 */
3504static l2arc_dev_t *
3505l2arc_dev_get_next(void)
3506{
3507 l2arc_dev_t *next;
3508
3509 if (l2arc_dev_last == NULL) {
3510 next = list_head(l2arc_dev_list);
3511 } else {
3512 next = list_next(l2arc_dev_list, l2arc_dev_last);
3513 if (next == NULL)
3514 next = list_head(l2arc_dev_list);
3515 }
3516
3517 l2arc_dev_last = next;
3518
3519 return (next);
3520}
3521
3522/*
3523 * A write to a cache device has completed. Update all headers to allow
3524 * reads from these buffers to begin.
3525 */
3526static void
3527l2arc_write_done(zio_t *zio)
3528{
3529 l2arc_write_callback_t *cb;
3530 l2arc_dev_t *dev;
3531 list_t *buflist;
3532 l2arc_data_free_t *df, *df_prev;
3533 arc_buf_hdr_t *head, *ab, *ab_prev;
3534 kmutex_t *hash_lock;
3535
3536 cb = zio->io_private;
3537 ASSERT(cb != NULL);
3538 dev = cb->l2wcb_dev;
3539 ASSERT(dev != NULL);
3540 head = cb->l2wcb_head;
3541 ASSERT(head != NULL);
3542 buflist = dev->l2ad_buflist;
3543 ASSERT(buflist != NULL);
3544 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
3545 l2arc_write_callback_t *, cb);
3546
3547 if (zio->io_error != 0)
3548 ARCSTAT_BUMP(arcstat_l2_writes_error);
3549
3550 mutex_enter(&l2arc_buflist_mtx);
3551
3552 /*
3553 * All writes completed, or an error was hit.
3554 */
3555 for (ab = list_prev(buflist, head); ab; ab = ab_prev) {
3556 ab_prev = list_prev(buflist, ab);
3557
3558 hash_lock = HDR_LOCK(ab);
3559 if (!mutex_tryenter(hash_lock)) {
3560 /*
3561 * This buffer misses out. It may be in a stage
3562 * of eviction. Its ARC_L2_WRITING flag will be
3563 * left set, denying reads to this buffer.
3564 */
3565 ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
3566 continue;
3567 }
3568
3569 if (zio->io_error != 0) {
3570 /*
3571 * Error - invalidate L2ARC entry.
3572 */
3573 ab->b_l2hdr = NULL;
3574 }
3575
3576 /*
3577 * Allow ARC to begin reads to this L2ARC entry.
3578 */
3579 ab->b_flags &= ~ARC_L2_WRITING;
3580
3581 mutex_exit(hash_lock);
3582 }
3583
3584 atomic_inc_64(&l2arc_writes_done);
3585 list_remove(buflist, head);
3586 kmem_cache_free(hdr_cache, head);
3587 mutex_exit(&l2arc_buflist_mtx);
3588
3589 /*
3590 * Free buffers that were tagged for destruction.
3591 */
3592 mutex_enter(&l2arc_free_on_write_mtx);
3593 buflist = l2arc_free_on_write;
3594 for (df = list_tail(buflist); df; df = df_prev) {
3595 df_prev = list_prev(buflist, df);
3596 ASSERT(df->l2df_data != NULL);
3597 ASSERT(df->l2df_func != NULL);
3598 df->l2df_func(df->l2df_data, df->l2df_size);
3599 list_remove(buflist, df);
3600 kmem_free(df, sizeof (l2arc_data_free_t));
3601 }
3602 mutex_exit(&l2arc_free_on_write_mtx);
3603
3604 kmem_free(cb, sizeof (l2arc_write_callback_t));
3605}
3606
3607/*
3608 * A read to a cache device completed. Validate buffer contents before
3609 * handing over to the regular ARC routines.
3610 */
3611static void
3612l2arc_read_done(zio_t *zio)
3613{
3614 l2arc_read_callback_t *cb;
3615 arc_buf_hdr_t *hdr;
3616 arc_buf_t *buf;
3617 zio_t *rzio;
3618 kmutex_t *hash_lock;
3619 int equal, err = 0;
3620
3621 cb = zio->io_private;
3622 ASSERT(cb != NULL);
3623 buf = cb->l2rcb_buf;
3624 ASSERT(buf != NULL);
3625 hdr = buf->b_hdr;
3626 ASSERT(hdr != NULL);
3627
3628 hash_lock = HDR_LOCK(hdr);
3629 mutex_enter(hash_lock);
3630
3631 /*
3632 * Check this survived the L2ARC journey.
3633 */
3634 equal = arc_cksum_equal(buf);
3635 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
3636 mutex_exit(hash_lock);
3637 zio->io_private = buf;
3638 arc_read_done(zio);
3639 } else {
3640 mutex_exit(hash_lock);
3641 /*
3642 * Buffer didn't survive caching. Increment stats and
3643 * reissue to the original storage device.
3644 */
3645 if (zio->io_error != 0)
3646 ARCSTAT_BUMP(arcstat_l2_io_error);
3647 if (!equal)
3648 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
3649
3650 zio->io_flags &= ~ZIO_FLAG_DONT_CACHE;
3651 rzio = zio_read(NULL, cb->l2rcb_spa, &cb->l2rcb_bp,
3652 buf->b_data, zio->io_size, arc_read_done, buf,
3653 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb);
3654
3655 /*
3656 * Since this is a seperate thread, we can wait on this
3657 * I/O whether there is an io_waiter or not.
3658 */
3659 err = zio_wait(rzio);
3660
3661 /*
3662 * Let the resent I/O call arc_read_done() instead.
3663 * io_error is set to the reissued I/O error status.
3664 */
3665 zio->io_done = NULL;
3666 zio->io_waiter = NULL;
3667 zio->io_error = err;
3668 }
3669
3670 kmem_free(cb, sizeof (l2arc_read_callback_t));
3671}
3672
3673/*
3674 * This is the list priority from which the L2ARC will search for pages to
3675 * cache. This is used within loops (0..3) to cycle through lists in the
3676 * desired order. This order can have a significant effect on cache
3677 * performance.
3678 *
3679 * Currently the metadata lists are hit first, MFU then MRU, followed by
3680 * the data lists. This function returns a locked list, and also returns
3681 * the lock pointer.
3682 */
3683static list_t *
3684l2arc_list_locked(int list_num, kmutex_t **lock)
3685{
3686 list_t *list;
3687
3688 ASSERT(list_num >= 0 && list_num <= 3);
3689
3690 switch (list_num) {
3691 case 0:
3692 list = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
3693 *lock = &arc_mfu->arcs_mtx;
3694 break;
3695 case 1:
3696 list = &arc_mru->arcs_list[ARC_BUFC_METADATA];
3697 *lock = &arc_mru->arcs_mtx;
3698 break;
3699 case 2:
3700 list = &arc_mfu->arcs_list[ARC_BUFC_DATA];
3701 *lock = &arc_mfu->arcs_mtx;
3702 break;
3703 case 3:
3704 list = &arc_mru->arcs_list[ARC_BUFC_DATA];
3705 *lock = &arc_mru->arcs_mtx;
3706 break;
3707 }
3708
3709 ASSERT(!(MUTEX_HELD(*lock)));
3710 mutex_enter(*lock);
3711 return (list);
3712}
3713
3714/*
3715 * Evict buffers from the device write hand to the distance specified in
3716 * bytes. This distance may span populated buffers, it may span nothing.
3717 * This is clearing a region on the L2ARC device ready for writing.
3718 * If the 'all' boolean is set, every buffer is evicted.
3719 */
3720static void
3721l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
3722{
3723 list_t *buflist;
3724 l2arc_buf_hdr_t *abl2;
3725 arc_buf_hdr_t *ab, *ab_prev;
3726 kmutex_t *hash_lock;
3727 uint64_t taddr;
3728
3729 ASSERT(MUTEX_HELD(&l2arc_dev_mtx));
3730
3731 buflist = dev->l2ad_buflist;
3732
3733 if (buflist == NULL)
3734 return;
3735
3736 if (!all && dev->l2ad_first) {
3737 /*
3738 * This is the first sweep through the device. There is
3739 * nothing to evict.
3740 */
3741 return;
3742 }
3743
3744 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * dev->l2ad_write))) {
3745 /*
3746 * When nearing the end of the device, evict to the end
3747 * before the device write hand jumps to the start.
3748 */
3749 taddr = dev->l2ad_end;
3750 } else {
3751 taddr = dev->l2ad_hand + distance;
3752 }
3753 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
3754 uint64_t, taddr, boolean_t, all);
3755
3756top:
3757 mutex_enter(&l2arc_buflist_mtx);
3758 for (ab = list_tail(buflist); ab; ab = ab_prev) {
3759 ab_prev = list_prev(buflist, ab);
3760
3761 hash_lock = HDR_LOCK(ab);
3762 if (!mutex_tryenter(hash_lock)) {
3763 /*
3764 * Missed the hash lock. Retry.
3765 */
3766 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
3767 mutex_exit(&l2arc_buflist_mtx);
3768 mutex_enter(hash_lock);
3769 mutex_exit(hash_lock);
3770 goto top;
3771 }
3772
3773 if (HDR_L2_WRITE_HEAD(ab)) {
3774 /*
3775 * We hit a write head node. Leave it for
3776 * l2arc_write_done().
3777 */
3778 list_remove(buflist, ab);
3779 mutex_exit(hash_lock);
3780 continue;
3781 }
3782
3783 if (!all && ab->b_l2hdr != NULL &&
3784 (ab->b_l2hdr->b_daddr > taddr ||
3785 ab->b_l2hdr->b_daddr < dev->l2ad_hand)) {
3786 /*
3787 * We've evicted to the target address,
3788 * or the end of the device.
3789 */
3790 mutex_exit(hash_lock);
3791 break;
3792 }
3793
3794 if (HDR_FREE_IN_PROGRESS(ab)) {
3795 /*
3796 * Already on the path to destruction.
3797 */
3798 mutex_exit(hash_lock);
3799 continue;
3800 }
3801
3802 if (ab->b_state == arc_l2c_only) {
3803 ASSERT(!HDR_L2_READING(ab));
3804 /*
3805 * This doesn't exist in the ARC. Destroy.
3806 * arc_hdr_destroy() will call list_remove()
3807 * and decrement arcstat_l2_size.
3808 */
3809 arc_change_state(arc_anon, ab, hash_lock);
3810 arc_hdr_destroy(ab);
3811 } else {
3812 /*
3813 * Tell ARC this no longer exists in L2ARC.
3814 */
3815 if (ab->b_l2hdr != NULL) {
3816 abl2 = ab->b_l2hdr;
3817 ab->b_l2hdr = NULL;
3818 kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
3819 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
3820 }
3821 list_remove(buflist, ab);
3822
3823 /*
3824 * This may have been leftover after a
3825 * failed write.
3826 */
3827 ab->b_flags &= ~ARC_L2_WRITING;
3828
3829 /*
3830 * Invalidate issued or about to be issued
3831 * reads, since we may be about to write
3832 * over this location.
3833 */
3834 if (HDR_L2_READING(ab)) {
3835 ARCSTAT_BUMP(arcstat_l2_evict_reading);
3836 ab->b_flags |= ARC_L2_EVICTED;
3837 }
3838 }
3839 mutex_exit(hash_lock);
3840 }
3841 mutex_exit(&l2arc_buflist_mtx);
3842
3843 spa_l2cache_space_update(dev->l2ad_vdev, 0, -(taddr - dev->l2ad_evict));
3844 dev->l2ad_evict = taddr;
3845}
3846
3847/*
3848 * Find and write ARC buffers to the L2ARC device.
3849 *
3850 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid
3851 * for reading until they have completed writing.
3852 */
3853static void
3854l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev)
3855{
3856 arc_buf_hdr_t *ab, *ab_prev, *head;
3857 l2arc_buf_hdr_t *hdrl2;
3858 list_t *list;
3859 uint64_t passed_sz, write_sz, buf_sz;
3860 uint64_t target_sz = dev->l2ad_write;
3861 uint64_t headroom = dev->l2ad_write * l2arc_headroom;
3862 void *buf_data;
3863 kmutex_t *hash_lock, *list_lock;
3864 boolean_t have_lock, full;
3865 l2arc_write_callback_t *cb;
3866 zio_t *pio, *wzio;
3867
3868 ASSERT(MUTEX_HELD(&l2arc_dev_mtx));
3869 ASSERT(dev->l2ad_vdev != NULL);
3870
3871 pio = NULL;
3872 write_sz = 0;
3873 full = B_FALSE;
3874 head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
3875 head->b_flags |= ARC_L2_WRITE_HEAD;
3876
3877 /*
3878 * Copy buffers for L2ARC writing.
3879 */
3880 mutex_enter(&l2arc_buflist_mtx);
3881 for (int try = 0; try <= 3; try++) {
3882 list = l2arc_list_locked(try, &list_lock);
3883 passed_sz = 0;
3884
3885 for (ab = list_tail(list); ab; ab = ab_prev) {
3886 ab_prev = list_prev(list, ab);
3887
3888 hash_lock = HDR_LOCK(ab);
3889 have_lock = MUTEX_HELD(hash_lock);
3890 if (!have_lock && !mutex_tryenter(hash_lock)) {
3891 /*
3892 * Skip this buffer rather than waiting.
3893 */
3894 continue;
3895 }
3896
3897 passed_sz += ab->b_size;
3898 if (passed_sz > headroom) {
3899 /*
3900 * Searched too far.
3901 */
3902 mutex_exit(hash_lock);
3903 break;
3904 }
3905
3906 if (ab->b_spa != spa) {
3907 mutex_exit(hash_lock);
3908 continue;
3909 }
3910
3911 if (ab->b_l2hdr != NULL) {
3912 /*
3913 * Already in L2ARC.
3914 */
3915 mutex_exit(hash_lock);
3916 continue;
3917 }
3918
3919 if (HDR_IO_IN_PROGRESS(ab) || HDR_DONT_L2CACHE(ab)) {
3920 mutex_exit(hash_lock);
3921 continue;
3922 }
3923
3924 if ((write_sz + ab->b_size) > target_sz) {
3925 full = B_TRUE;
3926 mutex_exit(hash_lock);
3927 break;
3928 }
3929
3930 if (ab->b_buf == NULL) {
3931 DTRACE_PROBE1(l2arc__buf__null, void *, ab);
3932 mutex_exit(hash_lock);
3933 continue;
3934 }
3935
3936 if (pio == NULL) {
3937 /*
3938 * Insert a dummy header on the buflist so
3939 * l2arc_write_done() can find where the
3940 * write buffers begin without searching.
3941 */
3942 list_insert_head(dev->l2ad_buflist, head);
3943
3944 cb = kmem_alloc(
3945 sizeof (l2arc_write_callback_t), KM_SLEEP);
3946 cb->l2wcb_dev = dev;
3947 cb->l2wcb_head = head;
3948 pio = zio_root(spa, l2arc_write_done, cb,
3949 ZIO_FLAG_CANFAIL);
3950 }
3951
3952 /*
3953 * Create and add a new L2ARC header.
3954 */
3955 hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP);
3956 hdrl2->b_dev = dev;
3957 hdrl2->b_daddr = dev->l2ad_hand;
3958
3959 ab->b_flags |= ARC_L2_WRITING;
3960 ab->b_l2hdr = hdrl2;
3961 list_insert_head(dev->l2ad_buflist, ab);
3962 buf_data = ab->b_buf->b_data;
3963 buf_sz = ab->b_size;
3964
3965 /*
3966 * Compute and store the buffer cksum before
3967 * writing. On debug the cksum is verified first.
3968 */
3969 arc_cksum_verify(ab->b_buf);
3970 arc_cksum_compute(ab->b_buf, B_TRUE);
3971
3972 mutex_exit(hash_lock);
3973
3974 wzio = zio_write_phys(pio, dev->l2ad_vdev,
3975 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
3976 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
3977 ZIO_FLAG_CANFAIL, B_FALSE);
3978
3979 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
3980 zio_t *, wzio);
3981 (void) zio_nowait(wzio);
3982
3983 write_sz += buf_sz;
3984 dev->l2ad_hand += buf_sz;
3985 }
3986
3987 mutex_exit(list_lock);
3988
3989 if (full == B_TRUE)
3990 break;
3991 }
3992 mutex_exit(&l2arc_buflist_mtx);
3993
3994 if (pio == NULL) {
3995 ASSERT3U(write_sz, ==, 0);
3996 kmem_cache_free(hdr_cache, head);
3997 return;
3998 }
3999
4000 ASSERT3U(write_sz, <=, target_sz);
4001 ARCSTAT_BUMP(arcstat_l2_writes_sent);
4002 ARCSTAT_INCR(arcstat_l2_size, write_sz);
4003 spa_l2cache_space_update(dev->l2ad_vdev, 0, write_sz);
4004
4005 /*
4006 * Bump device hand to the device start if it is approaching the end.
4007 * l2arc_evict() will already have evicted ahead for this case.
4008 */
4009 if (dev->l2ad_hand >= (dev->l2ad_end - dev->l2ad_write)) {
4010 spa_l2cache_space_update(dev->l2ad_vdev, 0,
4011 dev->l2ad_end - dev->l2ad_hand);
4012 dev->l2ad_hand = dev->l2ad_start;
4013 dev->l2ad_evict = dev->l2ad_start;
4014 dev->l2ad_first = B_FALSE;
4015 }
4016
4017 (void) zio_wait(pio);
4018}
4019
4020/*
4021 * This thread feeds the L2ARC at regular intervals. This is the beating
4022 * heart of the L2ARC.
4023 */
4024static void
4025l2arc_feed_thread(void)
4026{
4027 callb_cpr_t cpr;
4028 l2arc_dev_t *dev;
4029 spa_t *spa;
4030 int interval;
4031 boolean_t startup = B_TRUE;
4032
4033 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
4034
4035 mutex_enter(&l2arc_feed_thr_lock);
4036
4037 while (l2arc_thread_exit == 0) {
4038 /*
4039 * Initially pause for L2ARC_FEED_DELAY seconds as a grace
4040 * interval during boot, followed by l2arc_feed_secs seconds
4041 * thereafter.
4042 */
4043 CALLB_CPR_SAFE_BEGIN(&cpr);
4044 if (startup) {
4045 interval = L2ARC_FEED_DELAY;
4046 startup = B_FALSE;
4047 } else {
4048 interval = l2arc_feed_secs;
4049 }
4050 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
4051 lbolt + (hz * interval));
4052 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
4053
4054 /*
4055 * Do nothing until L2ARC devices exist.
4056 */
4057 mutex_enter(&l2arc_dev_mtx);
4058 if (l2arc_ndev == 0) {
4059 mutex_exit(&l2arc_dev_mtx);
4060 continue;
4061 }
4062
4063 /*
4064 * Avoid contributing to memory pressure.
4065 */
4066 if (arc_reclaim_needed()) {
4067 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
4068 mutex_exit(&l2arc_dev_mtx);
4069 continue;
4070 }
4071
4072 /*
4073 * This selects the next l2arc device to write to, and in
4074 * doing so the next spa to feed from: dev->l2ad_spa.
4075 */
4076 if ((dev = l2arc_dev_get_next()) == NULL) {
4077 mutex_exit(&l2arc_dev_mtx);
4078 continue;
4079 }
4080 spa = dev->l2ad_spa;
4081 ASSERT(spa != NULL);
4082 ARCSTAT_BUMP(arcstat_l2_feeds);
4083
4084 /*
4085 * Evict L2ARC buffers that will be overwritten.
4086 */
4087 l2arc_evict(dev, dev->l2ad_write, B_FALSE);
4088
4089 /*
4090 * Write ARC buffers.
4091 */
4092 l2arc_write_buffers(spa, dev);
4093 mutex_exit(&l2arc_dev_mtx);
4094 }
4095
4096 l2arc_thread_exit = 0;
4097 cv_broadcast(&l2arc_feed_thr_cv);
4098 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
4099 thread_exit();
4100}
4101
4102/*
4103 * Add a vdev for use by the L2ARC. By this point the spa has already
4104 * validated the vdev and opened it.
4105 */
4106void
4107l2arc_add_vdev(spa_t *spa, vdev_t *vd, uint64_t start, uint64_t end)
4108{
4109 l2arc_dev_t *adddev;
4110
4111 /*
4112 * Create a new l2arc device entry.
4113 */
4114 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
4115 adddev->l2ad_spa = spa;
4116 adddev->l2ad_vdev = vd;
4117 adddev->l2ad_write = l2arc_write_max;
4118 adddev->l2ad_start = start;
4119 adddev->l2ad_end = end;
4120 adddev->l2ad_hand = adddev->l2ad_start;
4121 adddev->l2ad_evict = adddev->l2ad_start;
4122 adddev->l2ad_first = B_TRUE;
4123 ASSERT3U(adddev->l2ad_write, >, 0);
4124
4125 /*
4126 * This is a list of all ARC buffers that are still valid on the
4127 * device.
4128 */
4129 adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
4130 list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
4131 offsetof(arc_buf_hdr_t, b_l2node));
4132
4133 spa_l2cache_space_update(vd, adddev->l2ad_end - adddev->l2ad_hand, 0);
4134
4135 /*
4136 * Add device to global list
4137 */
4138 mutex_enter(&l2arc_dev_mtx);
4139 list_insert_head(l2arc_dev_list, adddev);
4140 atomic_inc_64(&l2arc_ndev);
4141 mutex_exit(&l2arc_dev_mtx);
4142}
4143
4144/*
4145 * Remove a vdev from the L2ARC.
4146 */
4147void
4148l2arc_remove_vdev(vdev_t *vd)
4149{
4150 l2arc_dev_t *dev, *nextdev, *remdev = NULL;
4151
4152 /*
4153 * We can only grab the spa config lock when cache device writes
4154 * complete.
4155 */
4156 ASSERT3U(l2arc_writes_sent, ==, l2arc_writes_done);
4157
4158 /*
4159 * Find the device by vdev
4160 */
4161 mutex_enter(&l2arc_dev_mtx);
4162 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
4163 nextdev = list_next(l2arc_dev_list, dev);
4164 if (vd == dev->l2ad_vdev) {
4165 remdev = dev;
4166 break;
4167 }
4168 }
4169 ASSERT(remdev != NULL);
4170
4171 /*
4172 * Remove device from global list
4173 */
4174 list_remove(l2arc_dev_list, remdev);
4175 l2arc_dev_last = NULL; /* may have been invalidated */
4176
4177 /*
4178 * Clear all buflists and ARC references. L2ARC device flush.
4179 */
4180 l2arc_evict(remdev, 0, B_TRUE);
4181 list_destroy(remdev->l2ad_buflist);
4182 kmem_free(remdev->l2ad_buflist, sizeof (list_t));
4183 kmem_free(remdev, sizeof (l2arc_dev_t));
4184
4185 atomic_dec_64(&l2arc_ndev);
4186 mutex_exit(&l2arc_dev_mtx);
4187}
4188
4189void
4190l2arc_init()
4191{
4192 l2arc_thread_exit = 0;
4193 l2arc_ndev = 0;
4194 l2arc_writes_sent = 0;
4195 l2arc_writes_done = 0;
4196
4197 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
4198 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
4199 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
4200 mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
4201 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
4202
4203 l2arc_dev_list = &L2ARC_dev_list;
4204 l2arc_free_on_write = &L2ARC_free_on_write;
4205 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
4206 offsetof(l2arc_dev_t, l2ad_node));
4207 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
4208 offsetof(l2arc_data_free_t, l2df_list_node));
4209
4210 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
4211 TS_RUN, minclsyspri);
4212}
4213
4214void
4215l2arc_fini()
4216{
4217 mutex_enter(&l2arc_feed_thr_lock);
4218 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
4219 l2arc_thread_exit = 1;
4220 while (l2arc_thread_exit != 0)
4221 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
4222 mutex_exit(&l2arc_feed_thr_lock);
4223
4224 mutex_destroy(&l2arc_feed_thr_lock);
4225 cv_destroy(&l2arc_feed_thr_cv);
4226 mutex_destroy(&l2arc_dev_mtx);
4227 mutex_destroy(&l2arc_buflist_mtx);
4228 mutex_destroy(&l2arc_free_on_write_mtx);
4229
4230 list_destroy(l2arc_dev_list);
4231 list_destroy(l2arc_free_on_write);
4232}