]> git.proxmox.com Git - mirror_zfs.git/blame - zfs/zcmd/zpool/zpool_vdev.c
Rebase to OpenSolaris b103, in the process we are removing any code which did not...
[mirror_zfs.git] / zfs / zcmd / zpool / zpool_vdev.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
b128c09f 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
34dc7c2f
BB
24 * Use is subject to license terms.
25 */
26
34dc7c2f
BB
27/*
28 * Functions to convert between a list of vdevs and an nvlist representing the
29 * configuration. Each entry in the list can be one of:
30 *
31 * Device vdevs
32 * disk=(path=..., devid=...)
33 * file=(path=...)
34 *
35 * Group vdevs
36 * raidz[1|2]=(...)
37 * mirror=(...)
38 *
39 * Hot spares
40 *
41 * While the underlying implementation supports it, group vdevs cannot contain
42 * other group vdevs. All userland verification of devices is contained within
43 * this file. If successful, the nvlist returned can be passed directly to the
44 * kernel; we've done as much verification as possible in userland.
45 *
46 * Hot spares are a special case, and passed down as an array of disk vdevs, at
47 * the same level as the root of the vdev tree.
48 *
49 * The only function exported by this file is 'make_root_vdev'. The
50 * function performs several passes:
51 *
52 * 1. Construct the vdev specification. Performs syntax validation and
53 * makes sure each device is valid.
54 * 2. Check for devices in use. Using libdiskmgt, makes sure that no
55 * devices are also in use. Some can be overridden using the 'force'
56 * flag, others cannot.
57 * 3. Check for replication errors if the 'force' flag is not specified.
58 * validates that the replication level is consistent across the
59 * entire pool.
60 * 4. Call libzfs to label any whole disks with an EFI label.
61 */
62
63#include <assert.h>
64#include <devid.h>
65#include <errno.h>
66#include <fcntl.h>
67#include <libdiskmgt.h>
68#include <libintl.h>
69#include <libnvpair.h>
70#include <stdio.h>
71#include <string.h>
72#include <unistd.h>
73#include <sys/efi_partition.h>
74#include <sys/stat.h>
75#include <sys/vtoc.h>
76#include <sys/mntent.h>
77
78#include "zpool_util.h"
79
80#define DISK_ROOT "/dev/dsk"
81#define RDISK_ROOT "/dev/rdsk"
82#define BACKUP_SLICE "s2"
83
84/*
85 * For any given vdev specification, we can have multiple errors. The
86 * vdev_error() function keeps track of whether we have seen an error yet, and
87 * prints out a header if its the first error we've seen.
88 */
89boolean_t error_seen;
90boolean_t is_force;
91
92/*PRINTFLIKE1*/
93static void
94vdev_error(const char *fmt, ...)
95{
96 va_list ap;
97
98 if (!error_seen) {
99 (void) fprintf(stderr, gettext("invalid vdev specification\n"));
100 if (!is_force)
101 (void) fprintf(stderr, gettext("use '-f' to override "
102 "the following errors:\n"));
103 else
104 (void) fprintf(stderr, gettext("the following errors "
105 "must be manually repaired:\n"));
106 error_seen = B_TRUE;
107 }
108
109 va_start(ap, fmt);
110 (void) vfprintf(stderr, fmt, ap);
111 va_end(ap);
112}
113
114static void
115libdiskmgt_error(int error)
116{
117 /*
118 * ENXIO/ENODEV is a valid error message if the device doesn't live in
119 * /dev/dsk. Don't bother printing an error message in this case.
120 */
121 if (error == ENXIO || error == ENODEV)
122 return;
123
124 (void) fprintf(stderr, gettext("warning: device in use checking "
125 "failed: %s\n"), strerror(error));
126}
127
128/*
129 * Validate a device, passing the bulk of the work off to libdiskmgt.
130 */
131static int
132check_slice(const char *path, int force, boolean_t wholedisk, boolean_t isspare)
133{
134 char *msg;
135 int error = 0;
136 dm_who_type_t who;
137
138 if (force)
139 who = DM_WHO_ZPOOL_FORCE;
140 else if (isspare)
141 who = DM_WHO_ZPOOL_SPARE;
142 else
143 who = DM_WHO_ZPOOL;
144
145 if (dm_inuse((char *)path, &msg, who, &error) || error) {
146 if (error != 0) {
147 libdiskmgt_error(error);
148 return (0);
149 } else {
150 vdev_error("%s", msg);
151 free(msg);
152 return (-1);
153 }
154 }
155
156 /*
157 * If we're given a whole disk, ignore overlapping slices since we're
158 * about to label it anyway.
159 */
160 error = 0;
161 if (!wholedisk && !force &&
162 (dm_isoverlapping((char *)path, &msg, &error) || error)) {
163 if (error == 0) {
164 /* dm_isoverlapping returned -1 */
165 vdev_error(gettext("%s overlaps with %s\n"), path, msg);
166 free(msg);
167 return (-1);
168 } else if (error != ENODEV) {
169 /* libdiskmgt's devcache only handles physical drives */
170 libdiskmgt_error(error);
171 return (0);
172 }
173 }
174
175 return (0);
176}
177
178
179/*
180 * Validate a whole disk. Iterate over all slices on the disk and make sure
181 * that none is in use by calling check_slice().
182 */
183static int
184check_disk(const char *name, dm_descriptor_t disk, int force, int isspare)
185{
186 dm_descriptor_t *drive, *media, *slice;
187 int err = 0;
188 int i;
189 int ret;
190
191 /*
192 * Get the drive associated with this disk. This should never fail,
193 * because we already have an alias handle open for the device.
194 */
195 if ((drive = dm_get_associated_descriptors(disk, DM_DRIVE,
196 &err)) == NULL || *drive == NULL) {
197 if (err)
198 libdiskmgt_error(err);
199 return (0);
200 }
201
202 if ((media = dm_get_associated_descriptors(*drive, DM_MEDIA,
203 &err)) == NULL) {
204 dm_free_descriptors(drive);
205 if (err)
206 libdiskmgt_error(err);
207 return (0);
208 }
209
210 dm_free_descriptors(drive);
211
212 /*
213 * It is possible that the user has specified a removable media drive,
214 * and the media is not present.
215 */
216 if (*media == NULL) {
217 dm_free_descriptors(media);
218 vdev_error(gettext("'%s' has no media in drive\n"), name);
219 return (-1);
220 }
221
222 if ((slice = dm_get_associated_descriptors(*media, DM_SLICE,
223 &err)) == NULL) {
224 dm_free_descriptors(media);
225 if (err)
226 libdiskmgt_error(err);
227 return (0);
228 }
229
230 dm_free_descriptors(media);
231
232 ret = 0;
233
234 /*
235 * Iterate over all slices and report any errors. We don't care about
236 * overlapping slices because we are using the whole disk.
237 */
238 for (i = 0; slice[i] != NULL; i++) {
239 char *name = dm_get_name(slice[i], &err);
240
241 if (check_slice(name, force, B_TRUE, isspare) != 0)
242 ret = -1;
243
244 dm_free_name(name);
245 }
246
247 dm_free_descriptors(slice);
248 return (ret);
249}
250
251/*
252 * Validate a device.
253 */
254static int
255check_device(const char *path, boolean_t force, boolean_t isspare)
256{
257 dm_descriptor_t desc;
258 int err;
259 char *dev;
260
261 /*
262 * For whole disks, libdiskmgt does not include the leading dev path.
263 */
264 dev = strrchr(path, '/');
265 assert(dev != NULL);
266 dev++;
267 if ((desc = dm_get_descriptor_by_name(DM_ALIAS, dev, &err)) != NULL) {
268 err = check_disk(path, desc, force, isspare);
269 dm_free_descriptor(desc);
270 return (err);
271 }
272
273 return (check_slice(path, force, B_FALSE, isspare));
274}
275
276/*
277 * Check that a file is valid. All we can do in this case is check that it's
278 * not in use by another pool, and not in use by swap.
279 */
280static int
281check_file(const char *file, boolean_t force, boolean_t isspare)
282{
283 char *name;
284 int fd;
285 int ret = 0;
286 int err;
287 pool_state_t state;
288 boolean_t inuse;
289
290 if (dm_inuse_swap(file, &err)) {
291 if (err)
292 libdiskmgt_error(err);
293 else
294 vdev_error(gettext("%s is currently used by swap. "
295 "Please see swap(1M).\n"), file);
296 return (-1);
297 }
298
299 if ((fd = open(file, O_RDONLY)) < 0)
300 return (0);
301
302 if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) == 0 && inuse) {
303 const char *desc;
304
305 switch (state) {
306 case POOL_STATE_ACTIVE:
307 desc = gettext("active");
308 break;
309
310 case POOL_STATE_EXPORTED:
311 desc = gettext("exported");
312 break;
313
314 case POOL_STATE_POTENTIALLY_ACTIVE:
315 desc = gettext("potentially active");
316 break;
317
318 default:
319 desc = gettext("unknown");
320 break;
321 }
322
323 /*
324 * Allow hot spares to be shared between pools.
325 */
326 if (state == POOL_STATE_SPARE && isspare)
327 return (0);
328
329 if (state == POOL_STATE_ACTIVE ||
330 state == POOL_STATE_SPARE || !force) {
331 switch (state) {
332 case POOL_STATE_SPARE:
333 vdev_error(gettext("%s is reserved as a hot "
334 "spare for pool %s\n"), file, name);
335 break;
336 default:
337 vdev_error(gettext("%s is part of %s pool "
338 "'%s'\n"), file, desc, name);
339 break;
340 }
341 ret = -1;
342 }
343
344 free(name);
345 }
346
347 (void) close(fd);
348 return (ret);
349}
350
351
352/*
353 * By "whole disk" we mean an entire physical disk (something we can
354 * label, toggle the write cache on, etc.) as opposed to the full
355 * capacity of a pseudo-device such as lofi or did. We act as if we
356 * are labeling the disk, which should be a pretty good test of whether
357 * it's a viable device or not. Returns B_TRUE if it is and B_FALSE if
358 * it isn't.
359 */
360static boolean_t
361is_whole_disk(const char *arg)
362{
363 struct dk_gpt *label;
364 int fd;
365 char path[MAXPATHLEN];
366
367 (void) snprintf(path, sizeof (path), "%s%s%s",
368 RDISK_ROOT, strrchr(arg, '/'), BACKUP_SLICE);
369 if ((fd = open(path, O_RDWR | O_NDELAY)) < 0)
370 return (B_FALSE);
371 if (efi_alloc_and_init(fd, EFI_NUMPAR, &label) != 0) {
372 (void) close(fd);
373 return (B_FALSE);
374 }
375 efi_free(label);
376 (void) close(fd);
377 return (B_TRUE);
378}
379
380/*
381 * Create a leaf vdev. Determine if this is a file or a device. If it's a
382 * device, fill in the device id to make a complete nvlist. Valid forms for a
383 * leaf vdev are:
384 *
385 * /dev/dsk/xxx Complete disk path
386 * /xxx Full path to file
387 * xxx Shorthand for /dev/dsk/xxx
388 */
389static nvlist_t *
390make_leaf_vdev(const char *arg, uint64_t is_log)
391{
392 char path[MAXPATHLEN];
393 struct stat64 statbuf;
394 nvlist_t *vdev = NULL;
395 char *type = NULL;
396 boolean_t wholedisk = B_FALSE;
397
398 /*
399 * Determine what type of vdev this is, and put the full path into
400 * 'path'. We detect whether this is a device of file afterwards by
401 * checking the st_mode of the file.
402 */
403 if (arg[0] == '/') {
404 /*
405 * Complete device or file path. Exact type is determined by
406 * examining the file descriptor afterwards.
407 */
408 wholedisk = is_whole_disk(arg);
409 if (!wholedisk && (stat64(arg, &statbuf) != 0)) {
410 (void) fprintf(stderr,
411 gettext("cannot open '%s': %s\n"),
412 arg, strerror(errno));
413 return (NULL);
414 }
415
416 (void) strlcpy(path, arg, sizeof (path));
417 } else {
418 /*
419 * This may be a short path for a device, or it could be total
420 * gibberish. Check to see if it's a known device in
421 * /dev/dsk/. As part of this check, see if we've been given a
422 * an entire disk (minus the slice number).
423 */
424 (void) snprintf(path, sizeof (path), "%s/%s", DISK_ROOT,
425 arg);
426 wholedisk = is_whole_disk(path);
427 if (!wholedisk && (stat64(path, &statbuf) != 0)) {
428 /*
429 * If we got ENOENT, then the user gave us
430 * gibberish, so try to direct them with a
431 * reasonable error message. Otherwise,
432 * regurgitate strerror() since it's the best we
433 * can do.
434 */
435 if (errno == ENOENT) {
436 (void) fprintf(stderr,
437 gettext("cannot open '%s': no such "
438 "device in %s\n"), arg, DISK_ROOT);
439 (void) fprintf(stderr,
440 gettext("must be a full path or "
441 "shorthand device name\n"));
442 return (NULL);
443 } else {
444 (void) fprintf(stderr,
445 gettext("cannot open '%s': %s\n"),
446 path, strerror(errno));
447 return (NULL);
448 }
449 }
450 }
451
452 /*
453 * Determine whether this is a device or a file.
454 */
455 if (wholedisk || S_ISBLK(statbuf.st_mode)) {
456 type = VDEV_TYPE_DISK;
457 } else if (S_ISREG(statbuf.st_mode)) {
458 type = VDEV_TYPE_FILE;
459 } else {
460 (void) fprintf(stderr, gettext("cannot use '%s': must be a "
461 "block device or regular file\n"), path);
462 return (NULL);
463 }
464
465 /*
466 * Finally, we have the complete device or file, and we know that it is
467 * acceptable to use. Construct the nvlist to describe this vdev. All
468 * vdevs have a 'path' element, and devices also have a 'devid' element.
469 */
470 verify(nvlist_alloc(&vdev, NV_UNIQUE_NAME, 0) == 0);
471 verify(nvlist_add_string(vdev, ZPOOL_CONFIG_PATH, path) == 0);
472 verify(nvlist_add_string(vdev, ZPOOL_CONFIG_TYPE, type) == 0);
473 verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_IS_LOG, is_log) == 0);
474 if (strcmp(type, VDEV_TYPE_DISK) == 0)
475 verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK,
476 (uint64_t)wholedisk) == 0);
477
478 /*
479 * For a whole disk, defer getting its devid until after labeling it.
480 */
481 if (S_ISBLK(statbuf.st_mode) && !wholedisk) {
482 /*
483 * Get the devid for the device.
484 */
485 int fd;
486 ddi_devid_t devid;
487 char *minor = NULL, *devid_str = NULL;
488
489 if ((fd = open(path, O_RDONLY)) < 0) {
490 (void) fprintf(stderr, gettext("cannot open '%s': "
491 "%s\n"), path, strerror(errno));
492 nvlist_free(vdev);
493 return (NULL);
494 }
495
496 if (devid_get(fd, &devid) == 0) {
497 if (devid_get_minor_name(fd, &minor) == 0 &&
498 (devid_str = devid_str_encode(devid, minor)) !=
499 NULL) {
500 verify(nvlist_add_string(vdev,
501 ZPOOL_CONFIG_DEVID, devid_str) == 0);
502 }
503 if (devid_str != NULL)
504 devid_str_free(devid_str);
505 if (minor != NULL)
506 devid_str_free(minor);
507 devid_free(devid);
508 }
509
510 (void) close(fd);
511 }
512
513 return (vdev);
514}
515
516/*
517 * Go through and verify the replication level of the pool is consistent.
518 * Performs the following checks:
519 *
520 * For the new spec, verifies that devices in mirrors and raidz are the
521 * same size.
522 *
523 * If the current configuration already has inconsistent replication
524 * levels, ignore any other potential problems in the new spec.
525 *
526 * Otherwise, make sure that the current spec (if there is one) and the new
527 * spec have consistent replication levels.
528 */
529typedef struct replication_level {
530 char *zprl_type;
531 uint64_t zprl_children;
532 uint64_t zprl_parity;
533} replication_level_t;
534
535#define ZPOOL_FUZZ (16 * 1024 * 1024)
536
537/*
538 * Given a list of toplevel vdevs, return the current replication level. If
539 * the config is inconsistent, then NULL is returned. If 'fatal' is set, then
540 * an error message will be displayed for each self-inconsistent vdev.
541 */
542static replication_level_t *
543get_replication(nvlist_t *nvroot, boolean_t fatal)
544{
545 nvlist_t **top;
546 uint_t t, toplevels;
547 nvlist_t **child;
548 uint_t c, children;
549 nvlist_t *nv;
550 char *type;
551 replication_level_t lastrep, rep, *ret;
552 boolean_t dontreport;
553
554 ret = safe_malloc(sizeof (replication_level_t));
555
556 verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
557 &top, &toplevels) == 0);
558
559 lastrep.zprl_type = NULL;
560 for (t = 0; t < toplevels; t++) {
561 uint64_t is_log = B_FALSE;
562
563 nv = top[t];
564
565 /*
566 * For separate logs we ignore the top level vdev replication
567 * constraints.
568 */
569 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &is_log);
570 if (is_log)
571 continue;
572
573 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE,
574 &type) == 0);
575 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
576 &child, &children) != 0) {
577 /*
578 * This is a 'file' or 'disk' vdev.
579 */
580 rep.zprl_type = type;
581 rep.zprl_children = 1;
582 rep.zprl_parity = 0;
583 } else {
584 uint64_t vdev_size;
585
586 /*
587 * This is a mirror or RAID-Z vdev. Go through and make
588 * sure the contents are all the same (files vs. disks),
589 * keeping track of the number of elements in the
590 * process.
591 *
592 * We also check that the size of each vdev (if it can
593 * be determined) is the same.
594 */
595 rep.zprl_type = type;
596 rep.zprl_children = 0;
597
598 if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
599 verify(nvlist_lookup_uint64(nv,
600 ZPOOL_CONFIG_NPARITY,
601 &rep.zprl_parity) == 0);
602 assert(rep.zprl_parity != 0);
603 } else {
604 rep.zprl_parity = 0;
605 }
606
607 /*
608 * The 'dontreport' variable indicates that we've
609 * already reported an error for this spec, so don't
610 * bother doing it again.
611 */
612 type = NULL;
613 dontreport = 0;
614 vdev_size = -1ULL;
615 for (c = 0; c < children; c++) {
616 nvlist_t *cnv = child[c];
617 char *path;
618 struct stat64 statbuf;
619 uint64_t size = -1ULL;
620 char *childtype;
621 int fd, err;
622
623 rep.zprl_children++;
624
625 verify(nvlist_lookup_string(cnv,
626 ZPOOL_CONFIG_TYPE, &childtype) == 0);
627
628 /*
629 * If this is a replacing or spare vdev, then
630 * get the real first child of the vdev.
631 */
632 if (strcmp(childtype,
633 VDEV_TYPE_REPLACING) == 0 ||
634 strcmp(childtype, VDEV_TYPE_SPARE) == 0) {
635 nvlist_t **rchild;
636 uint_t rchildren;
637
638 verify(nvlist_lookup_nvlist_array(cnv,
639 ZPOOL_CONFIG_CHILDREN, &rchild,
640 &rchildren) == 0);
641 assert(rchildren == 2);
642 cnv = rchild[0];
643
644 verify(nvlist_lookup_string(cnv,
645 ZPOOL_CONFIG_TYPE,
646 &childtype) == 0);
647 }
648
649 verify(nvlist_lookup_string(cnv,
650 ZPOOL_CONFIG_PATH, &path) == 0);
651
652 /*
653 * If we have a raidz/mirror that combines disks
654 * with files, report it as an error.
655 */
656 if (!dontreport && type != NULL &&
657 strcmp(type, childtype) != 0) {
658 if (ret != NULL)
659 free(ret);
660 ret = NULL;
661 if (fatal)
662 vdev_error(gettext(
663 "mismatched replication "
664 "level: %s contains both "
665 "files and devices\n"),
666 rep.zprl_type);
667 else
668 return (NULL);
669 dontreport = B_TRUE;
670 }
671
672 /*
673 * According to stat(2), the value of 'st_size'
674 * is undefined for block devices and character
675 * devices. But there is no effective way to
676 * determine the real size in userland.
677 *
678 * Instead, we'll take advantage of an
679 * implementation detail of spec_size(). If the
680 * device is currently open, then we (should)
681 * return a valid size.
682 *
683 * If we still don't get a valid size (indicated
684 * by a size of 0 or MAXOFFSET_T), then ignore
685 * this device altogether.
686 */
687 if ((fd = open(path, O_RDONLY)) >= 0) {
688 err = fstat64(fd, &statbuf);
689 (void) close(fd);
690 } else {
691 err = stat64(path, &statbuf);
692 }
693
694 if (err != 0 ||
695 statbuf.st_size == 0 ||
696 statbuf.st_size == MAXOFFSET_T)
697 continue;
698
699 size = statbuf.st_size;
700
701 /*
702 * Also make sure that devices and
703 * slices have a consistent size. If
704 * they differ by a significant amount
705 * (~16MB) then report an error.
706 */
707 if (!dontreport &&
708 (vdev_size != -1ULL &&
709 (labs(size - vdev_size) >
710 ZPOOL_FUZZ))) {
711 if (ret != NULL)
712 free(ret);
713 ret = NULL;
714 if (fatal)
715 vdev_error(gettext(
716 "%s contains devices of "
717 "different sizes\n"),
718 rep.zprl_type);
719 else
720 return (NULL);
721 dontreport = B_TRUE;
722 }
723
724 type = childtype;
725 vdev_size = size;
726 }
727 }
728
729 /*
730 * At this point, we have the replication of the last toplevel
731 * vdev in 'rep'. Compare it to 'lastrep' to see if its
732 * different.
733 */
734 if (lastrep.zprl_type != NULL) {
735 if (strcmp(lastrep.zprl_type, rep.zprl_type) != 0) {
736 if (ret != NULL)
737 free(ret);
738 ret = NULL;
739 if (fatal)
740 vdev_error(gettext(
741 "mismatched replication level: "
742 "both %s and %s vdevs are "
743 "present\n"),
744 lastrep.zprl_type, rep.zprl_type);
745 else
746 return (NULL);
747 } else if (lastrep.zprl_parity != rep.zprl_parity) {
748 if (ret)
749 free(ret);
750 ret = NULL;
751 if (fatal)
752 vdev_error(gettext(
753 "mismatched replication level: "
754 "both %llu and %llu device parity "
755 "%s vdevs are present\n"),
756 lastrep.zprl_parity,
757 rep.zprl_parity,
758 rep.zprl_type);
759 else
760 return (NULL);
761 } else if (lastrep.zprl_children != rep.zprl_children) {
762 if (ret)
763 free(ret);
764 ret = NULL;
765 if (fatal)
766 vdev_error(gettext(
767 "mismatched replication level: "
768 "both %llu-way and %llu-way %s "
769 "vdevs are present\n"),
770 lastrep.zprl_children,
771 rep.zprl_children,
772 rep.zprl_type);
773 else
774 return (NULL);
775 }
776 }
777 lastrep = rep;
778 }
779
780 if (ret != NULL)
781 *ret = rep;
782
783 return (ret);
784}
785
786/*
787 * Check the replication level of the vdev spec against the current pool. Calls
788 * get_replication() to make sure the new spec is self-consistent. If the pool
789 * has a consistent replication level, then we ignore any errors. Otherwise,
790 * report any difference between the two.
791 */
792static int
793check_replication(nvlist_t *config, nvlist_t *newroot)
794{
795 nvlist_t **child;
796 uint_t children;
797 replication_level_t *current = NULL, *new;
798 int ret;
799
800 /*
801 * If we have a current pool configuration, check to see if it's
802 * self-consistent. If not, simply return success.
803 */
804 if (config != NULL) {
805 nvlist_t *nvroot;
806
807 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
808 &nvroot) == 0);
809 if ((current = get_replication(nvroot, B_FALSE)) == NULL)
810 return (0);
811 }
812 /*
813 * for spares there may be no children, and therefore no
814 * replication level to check
815 */
816 if ((nvlist_lookup_nvlist_array(newroot, ZPOOL_CONFIG_CHILDREN,
817 &child, &children) != 0) || (children == 0)) {
818 free(current);
819 return (0);
820 }
821
822 /*
823 * If all we have is logs then there's no replication level to check.
824 */
825 if (num_logs(newroot) == children) {
826 free(current);
827 return (0);
828 }
829
830 /*
831 * Get the replication level of the new vdev spec, reporting any
832 * inconsistencies found.
833 */
834 if ((new = get_replication(newroot, B_TRUE)) == NULL) {
835 free(current);
836 return (-1);
837 }
838
839 /*
840 * Check to see if the new vdev spec matches the replication level of
841 * the current pool.
842 */
843 ret = 0;
844 if (current != NULL) {
845 if (strcmp(current->zprl_type, new->zprl_type) != 0) {
846 vdev_error(gettext(
847 "mismatched replication level: pool uses %s "
848 "and new vdev is %s\n"),
849 current->zprl_type, new->zprl_type);
850 ret = -1;
851 } else if (current->zprl_parity != new->zprl_parity) {
852 vdev_error(gettext(
853 "mismatched replication level: pool uses %llu "
854 "device parity and new vdev uses %llu\n"),
855 current->zprl_parity, new->zprl_parity);
856 ret = -1;
857 } else if (current->zprl_children != new->zprl_children) {
858 vdev_error(gettext(
859 "mismatched replication level: pool uses %llu-way "
860 "%s and new vdev uses %llu-way %s\n"),
861 current->zprl_children, current->zprl_type,
862 new->zprl_children, new->zprl_type);
863 ret = -1;
864 }
865 }
866
867 free(new);
868 if (current != NULL)
869 free(current);
870
871 return (ret);
872}
873
874/*
875 * Go through and find any whole disks in the vdev specification, labelling them
876 * as appropriate. When constructing the vdev spec, we were unable to open this
877 * device in order to provide a devid. Now that we have labelled the disk and
878 * know that slice 0 is valid, we can construct the devid now.
879 *
880 * If the disk was already labeled with an EFI label, we will have gotten the
881 * devid already (because we were able to open the whole disk). Otherwise, we
882 * need to get the devid after we label the disk.
883 */
884static int
885make_disks(zpool_handle_t *zhp, nvlist_t *nv)
886{
887 nvlist_t **child;
888 uint_t c, children;
889 char *type, *path, *diskname;
890 char buf[MAXPATHLEN];
891 uint64_t wholedisk;
892 int fd;
893 int ret;
894 ddi_devid_t devid;
895 char *minor = NULL, *devid_str = NULL;
896
897 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
898
899 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
900 &child, &children) != 0) {
901
902 if (strcmp(type, VDEV_TYPE_DISK) != 0)
903 return (0);
904
905 /*
906 * We have a disk device. Get the path to the device
907 * and see if it's a whole disk by appending the backup
908 * slice and stat()ing the device.
909 */
910 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0);
911 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
912 &wholedisk) != 0 || !wholedisk)
913 return (0);
914
915 diskname = strrchr(path, '/');
916 assert(diskname != NULL);
917 diskname++;
918 if (zpool_label_disk(g_zfs, zhp, diskname) == -1)
919 return (-1);
920
921 /*
922 * Fill in the devid, now that we've labeled the disk.
923 */
924 (void) snprintf(buf, sizeof (buf), "%ss0", path);
925 if ((fd = open(buf, O_RDONLY)) < 0) {
926 (void) fprintf(stderr,
927 gettext("cannot open '%s': %s\n"),
928 buf, strerror(errno));
929 return (-1);
930 }
931
932 if (devid_get(fd, &devid) == 0) {
933 if (devid_get_minor_name(fd, &minor) == 0 &&
934 (devid_str = devid_str_encode(devid, minor)) !=
935 NULL) {
936 verify(nvlist_add_string(nv,
937 ZPOOL_CONFIG_DEVID, devid_str) == 0);
938 }
939 if (devid_str != NULL)
940 devid_str_free(devid_str);
941 if (minor != NULL)
942 devid_str_free(minor);
943 devid_free(devid);
944 }
945
946 /*
947 * Update the path to refer to the 's0' slice. The presence of
948 * the 'whole_disk' field indicates to the CLI that we should
949 * chop off the slice number when displaying the device in
950 * future output.
951 */
952 verify(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, buf) == 0);
953
954 (void) close(fd);
955
956 return (0);
957 }
958
959 for (c = 0; c < children; c++)
960 if ((ret = make_disks(zhp, child[c])) != 0)
961 return (ret);
962
963 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
964 &child, &children) == 0)
965 for (c = 0; c < children; c++)
966 if ((ret = make_disks(zhp, child[c])) != 0)
967 return (ret);
968
969 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
970 &child, &children) == 0)
971 for (c = 0; c < children; c++)
972 if ((ret = make_disks(zhp, child[c])) != 0)
973 return (ret);
974
975 return (0);
976}
977
978/*
979 * Determine if the given path is a hot spare within the given configuration.
980 */
981static boolean_t
982is_spare(nvlist_t *config, const char *path)
983{
984 int fd;
985 pool_state_t state;
986 char *name = NULL;
987 nvlist_t *label;
988 uint64_t guid, spareguid;
989 nvlist_t *nvroot;
990 nvlist_t **spares;
991 uint_t i, nspares;
992 boolean_t inuse;
993
994 if ((fd = open(path, O_RDONLY)) < 0)
995 return (B_FALSE);
996
997 if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) != 0 ||
998 !inuse ||
999 state != POOL_STATE_SPARE ||
1000 zpool_read_label(fd, &label) != 0) {
1001 free(name);
1002 (void) close(fd);
1003 return (B_FALSE);
1004 }
1005 free(name);
1006
1007 (void) close(fd);
1008 verify(nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) == 0);
1009 nvlist_free(label);
1010
1011 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
1012 &nvroot) == 0);
1013 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1014 &spares, &nspares) == 0) {
1015 for (i = 0; i < nspares; i++) {
1016 verify(nvlist_lookup_uint64(spares[i],
1017 ZPOOL_CONFIG_GUID, &spareguid) == 0);
1018 if (spareguid == guid)
1019 return (B_TRUE);
1020 }
1021 }
1022
1023 return (B_FALSE);
1024}
1025
1026/*
1027 * Go through and find any devices that are in use. We rely on libdiskmgt for
1028 * the majority of this task.
1029 */
1030static int
1031check_in_use(nvlist_t *config, nvlist_t *nv, int force, int isreplacing,
1032 int isspare)
1033{
1034 nvlist_t **child;
1035 uint_t c, children;
1036 char *type, *path;
1037 int ret;
1038 char buf[MAXPATHLEN];
1039 uint64_t wholedisk;
1040
1041 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
1042
1043 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1044 &child, &children) != 0) {
1045
1046 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0);
1047
1048 /*
1049 * As a generic check, we look to see if this is a replace of a
1050 * hot spare within the same pool. If so, we allow it
1051 * regardless of what libdiskmgt or zpool_in_use() says.
1052 */
1053 if (isreplacing) {
1054 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
1055 &wholedisk) == 0 && wholedisk)
1056 (void) snprintf(buf, sizeof (buf), "%ss0",
1057 path);
1058 else
1059 (void) strlcpy(buf, path, sizeof (buf));
1060 if (is_spare(config, buf))
1061 return (0);
1062 }
1063
1064 if (strcmp(type, VDEV_TYPE_DISK) == 0)
1065 ret = check_device(path, force, isspare);
1066
1067 if (strcmp(type, VDEV_TYPE_FILE) == 0)
1068 ret = check_file(path, force, isspare);
1069
1070 return (ret);
1071 }
1072
1073 for (c = 0; c < children; c++)
1074 if ((ret = check_in_use(config, child[c], force,
1075 isreplacing, B_FALSE)) != 0)
1076 return (ret);
1077
1078 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
1079 &child, &children) == 0)
1080 for (c = 0; c < children; c++)
1081 if ((ret = check_in_use(config, child[c], force,
1082 isreplacing, B_TRUE)) != 0)
1083 return (ret);
1084
1085 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
1086 &child, &children) == 0)
1087 for (c = 0; c < children; c++)
1088 if ((ret = check_in_use(config, child[c], force,
1089 isreplacing, B_FALSE)) != 0)
1090 return (ret);
1091
1092 return (0);
1093}
1094
1095static const char *
1096is_grouping(const char *type, int *mindev)
1097{
1098 if (strcmp(type, "raidz") == 0 || strcmp(type, "raidz1") == 0) {
1099 if (mindev != NULL)
1100 *mindev = 2;
1101 return (VDEV_TYPE_RAIDZ);
1102 }
1103
1104 if (strcmp(type, "raidz2") == 0) {
1105 if (mindev != NULL)
1106 *mindev = 3;
1107 return (VDEV_TYPE_RAIDZ);
1108 }
1109
1110 if (strcmp(type, "mirror") == 0) {
1111 if (mindev != NULL)
1112 *mindev = 2;
1113 return (VDEV_TYPE_MIRROR);
1114 }
1115
1116 if (strcmp(type, "spare") == 0) {
1117 if (mindev != NULL)
1118 *mindev = 1;
1119 return (VDEV_TYPE_SPARE);
1120 }
1121
1122 if (strcmp(type, "log") == 0) {
1123 if (mindev != NULL)
1124 *mindev = 1;
1125 return (VDEV_TYPE_LOG);
1126 }
1127
1128 if (strcmp(type, "cache") == 0) {
1129 if (mindev != NULL)
1130 *mindev = 1;
1131 return (VDEV_TYPE_L2CACHE);
1132 }
1133
1134 return (NULL);
1135}
1136
1137/*
1138 * Construct a syntactically valid vdev specification,
1139 * and ensure that all devices and files exist and can be opened.
1140 * Note: we don't bother freeing anything in the error paths
1141 * because the program is just going to exit anyway.
1142 */
1143nvlist_t *
1144construct_spec(int argc, char **argv)
1145{
1146 nvlist_t *nvroot, *nv, **top, **spares, **l2cache;
1147 int t, toplevels, mindev, nspares, nlogs, nl2cache;
1148 const char *type;
1149 uint64_t is_log;
1150 boolean_t seen_logs;
1151
1152 top = NULL;
1153 toplevels = 0;
1154 spares = NULL;
1155 l2cache = NULL;
1156 nspares = 0;
1157 nlogs = 0;
1158 nl2cache = 0;
1159 is_log = B_FALSE;
1160 seen_logs = B_FALSE;
1161
1162 while (argc > 0) {
1163 nv = NULL;
1164
1165 /*
1166 * If it's a mirror or raidz, the subsequent arguments are
1167 * its leaves -- until we encounter the next mirror or raidz.
1168 */
1169 if ((type = is_grouping(argv[0], &mindev)) != NULL) {
1170 nvlist_t **child = NULL;
1171 int c, children = 0;
1172
1173 if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1174 if (spares != NULL) {
1175 (void) fprintf(stderr,
1176 gettext("invalid vdev "
1177 "specification: 'spare' can be "
1178 "specified only once\n"));
1179 return (NULL);
1180 }
1181 is_log = B_FALSE;
1182 }
1183
1184 if (strcmp(type, VDEV_TYPE_LOG) == 0) {
1185 if (seen_logs) {
1186 (void) fprintf(stderr,
1187 gettext("invalid vdev "
1188 "specification: 'log' can be "
1189 "specified only once\n"));
1190 return (NULL);
1191 }
1192 seen_logs = B_TRUE;
1193 is_log = B_TRUE;
1194 argc--;
1195 argv++;
1196 /*
1197 * A log is not a real grouping device.
1198 * We just set is_log and continue.
1199 */
1200 continue;
1201 }
1202
1203 if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1204 if (l2cache != NULL) {
1205 (void) fprintf(stderr,
1206 gettext("invalid vdev "
1207 "specification: 'cache' can be "
1208 "specified only once\n"));
1209 return (NULL);
1210 }
1211 is_log = B_FALSE;
1212 }
1213
1214 if (is_log) {
1215 if (strcmp(type, VDEV_TYPE_MIRROR) != 0) {
1216 (void) fprintf(stderr,
1217 gettext("invalid vdev "
1218 "specification: unsupported 'log' "
1219 "device: %s\n"), type);
1220 return (NULL);
1221 }
1222 nlogs++;
1223 }
1224
1225 for (c = 1; c < argc; c++) {
1226 if (is_grouping(argv[c], NULL) != NULL)
1227 break;
1228 children++;
1229 child = realloc(child,
1230 children * sizeof (nvlist_t *));
1231 if (child == NULL)
1232 zpool_no_memory();
1233 if ((nv = make_leaf_vdev(argv[c], B_FALSE))
1234 == NULL)
1235 return (NULL);
1236 child[children - 1] = nv;
1237 }
1238
1239 if (children < mindev) {
1240 (void) fprintf(stderr, gettext("invalid vdev "
1241 "specification: %s requires at least %d "
1242 "devices\n"), argv[0], mindev);
1243 return (NULL);
1244 }
1245
1246 argc -= c;
1247 argv += c;
1248
1249 if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1250 spares = child;
1251 nspares = children;
1252 continue;
1253 } else if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1254 l2cache = child;
1255 nl2cache = children;
1256 continue;
1257 } else {
1258 verify(nvlist_alloc(&nv, NV_UNIQUE_NAME,
1259 0) == 0);
1260 verify(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
1261 type) == 0);
1262 verify(nvlist_add_uint64(nv,
1263 ZPOOL_CONFIG_IS_LOG, is_log) == 0);
1264 if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
1265 verify(nvlist_add_uint64(nv,
1266 ZPOOL_CONFIG_NPARITY,
1267 mindev - 1) == 0);
1268 }
1269 verify(nvlist_add_nvlist_array(nv,
1270 ZPOOL_CONFIG_CHILDREN, child,
1271 children) == 0);
1272
1273 for (c = 0; c < children; c++)
1274 nvlist_free(child[c]);
1275 free(child);
1276 }
1277 } else {
1278 /*
1279 * We have a device. Pass off to make_leaf_vdev() to
1280 * construct the appropriate nvlist describing the vdev.
1281 */
1282 if ((nv = make_leaf_vdev(argv[0], is_log)) == NULL)
1283 return (NULL);
1284 if (is_log)
1285 nlogs++;
1286 argc--;
1287 argv++;
1288 }
1289
1290 toplevels++;
1291 top = realloc(top, toplevels * sizeof (nvlist_t *));
1292 if (top == NULL)
1293 zpool_no_memory();
1294 top[toplevels - 1] = nv;
1295 }
1296
1297 if (toplevels == 0 && nspares == 0 && nl2cache == 0) {
1298 (void) fprintf(stderr, gettext("invalid vdev "
1299 "specification: at least one toplevel vdev must be "
1300 "specified\n"));
1301 return (NULL);
1302 }
1303
1304 if (seen_logs && nlogs == 0) {
1305 (void) fprintf(stderr, gettext("invalid vdev specification: "
1306 "log requires at least 1 device\n"));
1307 return (NULL);
1308 }
1309
1310 /*
1311 * Finally, create nvroot and add all top-level vdevs to it.
1312 */
1313 verify(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) == 0);
1314 verify(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
1315 VDEV_TYPE_ROOT) == 0);
1316 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1317 top, toplevels) == 0);
1318 if (nspares != 0)
1319 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1320 spares, nspares) == 0);
1321 if (nl2cache != 0)
1322 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
1323 l2cache, nl2cache) == 0);
1324
1325 for (t = 0; t < toplevels; t++)
1326 nvlist_free(top[t]);
1327 for (t = 0; t < nspares; t++)
1328 nvlist_free(spares[t]);
1329 for (t = 0; t < nl2cache; t++)
1330 nvlist_free(l2cache[t]);
1331 if (spares)
1332 free(spares);
1333 if (l2cache)
1334 free(l2cache);
1335 free(top);
1336
1337 return (nvroot);
1338}
1339
1340
1341/*
1342 * Get and validate the contents of the given vdev specification. This ensures
1343 * that the nvlist returned is well-formed, that all the devices exist, and that
1344 * they are not currently in use by any other known consumer. The 'poolconfig'
1345 * parameter is the current configuration of the pool when adding devices
1346 * existing pool, and is used to perform additional checks, such as changing the
1347 * replication level of the pool. It can be 'NULL' to indicate that this is a
1348 * new pool. The 'force' flag controls whether devices should be forcefully
1349 * added, even if they appear in use.
1350 */
1351nvlist_t *
1352make_root_vdev(zpool_handle_t *zhp, int force, int check_rep,
b128c09f 1353 boolean_t isreplacing, boolean_t dryrun, int argc, char **argv)
34dc7c2f
BB
1354{
1355 nvlist_t *newroot;
1356 nvlist_t *poolconfig = NULL;
1357 is_force = force;
1358
1359 /*
1360 * Construct the vdev specification. If this is successful, we know
1361 * that we have a valid specification, and that all devices can be
1362 * opened.
1363 */
1364 if ((newroot = construct_spec(argc, argv)) == NULL)
1365 return (NULL);
1366
1367 if (zhp && ((poolconfig = zpool_get_config(zhp, NULL)) == NULL))
1368 return (NULL);
1369
1370 /*
1371 * Validate each device to make sure that its not shared with another
1372 * subsystem. We do this even if 'force' is set, because there are some
1373 * uses (such as a dedicated dump device) that even '-f' cannot
1374 * override.
1375 */
1376 if (check_in_use(poolconfig, newroot, force, isreplacing,
1377 B_FALSE) != 0) {
1378 nvlist_free(newroot);
1379 return (NULL);
1380 }
1381
1382 /*
1383 * Check the replication level of the given vdevs and report any errors
1384 * found. We include the existing pool spec, if any, as we need to
1385 * catch changes against the existing replication level.
1386 */
1387 if (check_rep && check_replication(poolconfig, newroot) != 0) {
1388 nvlist_free(newroot);
1389 return (NULL);
1390 }
1391
1392 /*
1393 * Run through the vdev specification and label any whole disks found.
1394 */
b128c09f 1395 if (!dryrun && make_disks(zhp, newroot) != 0) {
34dc7c2f
BB
1396 nvlist_free(newroot);
1397 return (NULL);
1398 }
1399
1400 return (newroot);
1401}