]> git.proxmox.com Git - mirror_zfs.git/blame - zfs/zcmd/zpool/zpool_vdev.c
Remove stray stub kernel files which should be brought in my linux-kernel-module...
[mirror_zfs.git] / zfs / zcmd / zpool / zpool_vdev.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26
27#pragma ident "@(#)zpool_vdev.c 1.15 07/11/09 SMI"
28
29/*
30 * Functions to convert between a list of vdevs and an nvlist representing the
31 * configuration. Each entry in the list can be one of:
32 *
33 * Device vdevs
34 * disk=(path=..., devid=...)
35 * file=(path=...)
36 *
37 * Group vdevs
38 * raidz[1|2]=(...)
39 * mirror=(...)
40 *
41 * Hot spares
42 *
43 * While the underlying implementation supports it, group vdevs cannot contain
44 * other group vdevs. All userland verification of devices is contained within
45 * this file. If successful, the nvlist returned can be passed directly to the
46 * kernel; we've done as much verification as possible in userland.
47 *
48 * Hot spares are a special case, and passed down as an array of disk vdevs, at
49 * the same level as the root of the vdev tree.
50 *
51 * The only function exported by this file is 'make_root_vdev'. The
52 * function performs several passes:
53 *
54 * 1. Construct the vdev specification. Performs syntax validation and
55 * makes sure each device is valid.
56 * 2. Check for devices in use. Using libdiskmgt, makes sure that no
57 * devices are also in use. Some can be overridden using the 'force'
58 * flag, others cannot.
59 * 3. Check for replication errors if the 'force' flag is not specified.
60 * validates that the replication level is consistent across the
61 * entire pool.
62 * 4. Call libzfs to label any whole disks with an EFI label.
63 */
64
65#include <assert.h>
66#include <devid.h>
67#include <errno.h>
68#include <fcntl.h>
69#include <libdiskmgt.h>
70#include <libintl.h>
71#include <libnvpair.h>
72#include <stdio.h>
73#include <string.h>
74#include <unistd.h>
75#include <sys/efi_partition.h>
76#include <sys/stat.h>
77#include <sys/vtoc.h>
78#include <sys/mntent.h>
79
80#include "zpool_util.h"
81
82#define DISK_ROOT "/dev/dsk"
83#define RDISK_ROOT "/dev/rdsk"
84#define BACKUP_SLICE "s2"
85
86/*
87 * For any given vdev specification, we can have multiple errors. The
88 * vdev_error() function keeps track of whether we have seen an error yet, and
89 * prints out a header if its the first error we've seen.
90 */
91boolean_t error_seen;
92boolean_t is_force;
93
94/*PRINTFLIKE1*/
95static void
96vdev_error(const char *fmt, ...)
97{
98 va_list ap;
99
100 if (!error_seen) {
101 (void) fprintf(stderr, gettext("invalid vdev specification\n"));
102 if (!is_force)
103 (void) fprintf(stderr, gettext("use '-f' to override "
104 "the following errors:\n"));
105 else
106 (void) fprintf(stderr, gettext("the following errors "
107 "must be manually repaired:\n"));
108 error_seen = B_TRUE;
109 }
110
111 va_start(ap, fmt);
112 (void) vfprintf(stderr, fmt, ap);
113 va_end(ap);
114}
115
116static void
117libdiskmgt_error(int error)
118{
119 /*
120 * ENXIO/ENODEV is a valid error message if the device doesn't live in
121 * /dev/dsk. Don't bother printing an error message in this case.
122 */
123 if (error == ENXIO || error == ENODEV)
124 return;
125
126 (void) fprintf(stderr, gettext("warning: device in use checking "
127 "failed: %s\n"), strerror(error));
128}
129
130/*
131 * Validate a device, passing the bulk of the work off to libdiskmgt.
132 */
133static int
134check_slice(const char *path, int force, boolean_t wholedisk, boolean_t isspare)
135{
136 char *msg;
137 int error = 0;
138 dm_who_type_t who;
139
140 if (force)
141 who = DM_WHO_ZPOOL_FORCE;
142 else if (isspare)
143 who = DM_WHO_ZPOOL_SPARE;
144 else
145 who = DM_WHO_ZPOOL;
146
147 if (dm_inuse((char *)path, &msg, who, &error) || error) {
148 if (error != 0) {
149 libdiskmgt_error(error);
150 return (0);
151 } else {
152 vdev_error("%s", msg);
153 free(msg);
154 return (-1);
155 }
156 }
157
158 /*
159 * If we're given a whole disk, ignore overlapping slices since we're
160 * about to label it anyway.
161 */
162 error = 0;
163 if (!wholedisk && !force &&
164 (dm_isoverlapping((char *)path, &msg, &error) || error)) {
165 if (error == 0) {
166 /* dm_isoverlapping returned -1 */
167 vdev_error(gettext("%s overlaps with %s\n"), path, msg);
168 free(msg);
169 return (-1);
170 } else if (error != ENODEV) {
171 /* libdiskmgt's devcache only handles physical drives */
172 libdiskmgt_error(error);
173 return (0);
174 }
175 }
176
177 return (0);
178}
179
180
181/*
182 * Validate a whole disk. Iterate over all slices on the disk and make sure
183 * that none is in use by calling check_slice().
184 */
185static int
186check_disk(const char *name, dm_descriptor_t disk, int force, int isspare)
187{
188 dm_descriptor_t *drive, *media, *slice;
189 int err = 0;
190 int i;
191 int ret;
192
193 /*
194 * Get the drive associated with this disk. This should never fail,
195 * because we already have an alias handle open for the device.
196 */
197 if ((drive = dm_get_associated_descriptors(disk, DM_DRIVE,
198 &err)) == NULL || *drive == NULL) {
199 if (err)
200 libdiskmgt_error(err);
201 return (0);
202 }
203
204 if ((media = dm_get_associated_descriptors(*drive, DM_MEDIA,
205 &err)) == NULL) {
206 dm_free_descriptors(drive);
207 if (err)
208 libdiskmgt_error(err);
209 return (0);
210 }
211
212 dm_free_descriptors(drive);
213
214 /*
215 * It is possible that the user has specified a removable media drive,
216 * and the media is not present.
217 */
218 if (*media == NULL) {
219 dm_free_descriptors(media);
220 vdev_error(gettext("'%s' has no media in drive\n"), name);
221 return (-1);
222 }
223
224 if ((slice = dm_get_associated_descriptors(*media, DM_SLICE,
225 &err)) == NULL) {
226 dm_free_descriptors(media);
227 if (err)
228 libdiskmgt_error(err);
229 return (0);
230 }
231
232 dm_free_descriptors(media);
233
234 ret = 0;
235
236 /*
237 * Iterate over all slices and report any errors. We don't care about
238 * overlapping slices because we are using the whole disk.
239 */
240 for (i = 0; slice[i] != NULL; i++) {
241 char *name = dm_get_name(slice[i], &err);
242
243 if (check_slice(name, force, B_TRUE, isspare) != 0)
244 ret = -1;
245
246 dm_free_name(name);
247 }
248
249 dm_free_descriptors(slice);
250 return (ret);
251}
252
253/*
254 * Validate a device.
255 */
256static int
257check_device(const char *path, boolean_t force, boolean_t isspare)
258{
259 dm_descriptor_t desc;
260 int err;
261 char *dev;
262
263 /*
264 * For whole disks, libdiskmgt does not include the leading dev path.
265 */
266 dev = strrchr(path, '/');
267 assert(dev != NULL);
268 dev++;
269 if ((desc = dm_get_descriptor_by_name(DM_ALIAS, dev, &err)) != NULL) {
270 err = check_disk(path, desc, force, isspare);
271 dm_free_descriptor(desc);
272 return (err);
273 }
274
275 return (check_slice(path, force, B_FALSE, isspare));
276}
277
278/*
279 * Check that a file is valid. All we can do in this case is check that it's
280 * not in use by another pool, and not in use by swap.
281 */
282static int
283check_file(const char *file, boolean_t force, boolean_t isspare)
284{
285 char *name;
286 int fd;
287 int ret = 0;
288 int err;
289 pool_state_t state;
290 boolean_t inuse;
291
292 if (dm_inuse_swap(file, &err)) {
293 if (err)
294 libdiskmgt_error(err);
295 else
296 vdev_error(gettext("%s is currently used by swap. "
297 "Please see swap(1M).\n"), file);
298 return (-1);
299 }
300
301 if ((fd = open(file, O_RDONLY)) < 0)
302 return (0);
303
304 if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) == 0 && inuse) {
305 const char *desc;
306
307 switch (state) {
308 case POOL_STATE_ACTIVE:
309 desc = gettext("active");
310 break;
311
312 case POOL_STATE_EXPORTED:
313 desc = gettext("exported");
314 break;
315
316 case POOL_STATE_POTENTIALLY_ACTIVE:
317 desc = gettext("potentially active");
318 break;
319
320 default:
321 desc = gettext("unknown");
322 break;
323 }
324
325 /*
326 * Allow hot spares to be shared between pools.
327 */
328 if (state == POOL_STATE_SPARE && isspare)
329 return (0);
330
331 if (state == POOL_STATE_ACTIVE ||
332 state == POOL_STATE_SPARE || !force) {
333 switch (state) {
334 case POOL_STATE_SPARE:
335 vdev_error(gettext("%s is reserved as a hot "
336 "spare for pool %s\n"), file, name);
337 break;
338 default:
339 vdev_error(gettext("%s is part of %s pool "
340 "'%s'\n"), file, desc, name);
341 break;
342 }
343 ret = -1;
344 }
345
346 free(name);
347 }
348
349 (void) close(fd);
350 return (ret);
351}
352
353
354/*
355 * By "whole disk" we mean an entire physical disk (something we can
356 * label, toggle the write cache on, etc.) as opposed to the full
357 * capacity of a pseudo-device such as lofi or did. We act as if we
358 * are labeling the disk, which should be a pretty good test of whether
359 * it's a viable device or not. Returns B_TRUE if it is and B_FALSE if
360 * it isn't.
361 */
362static boolean_t
363is_whole_disk(const char *arg)
364{
365 struct dk_gpt *label;
366 int fd;
367 char path[MAXPATHLEN];
368
369 (void) snprintf(path, sizeof (path), "%s%s%s",
370 RDISK_ROOT, strrchr(arg, '/'), BACKUP_SLICE);
371 if ((fd = open(path, O_RDWR | O_NDELAY)) < 0)
372 return (B_FALSE);
373 if (efi_alloc_and_init(fd, EFI_NUMPAR, &label) != 0) {
374 (void) close(fd);
375 return (B_FALSE);
376 }
377 efi_free(label);
378 (void) close(fd);
379 return (B_TRUE);
380}
381
382/*
383 * Create a leaf vdev. Determine if this is a file or a device. If it's a
384 * device, fill in the device id to make a complete nvlist. Valid forms for a
385 * leaf vdev are:
386 *
387 * /dev/dsk/xxx Complete disk path
388 * /xxx Full path to file
389 * xxx Shorthand for /dev/dsk/xxx
390 */
391static nvlist_t *
392make_leaf_vdev(const char *arg, uint64_t is_log)
393{
394 char path[MAXPATHLEN];
395 struct stat64 statbuf;
396 nvlist_t *vdev = NULL;
397 char *type = NULL;
398 boolean_t wholedisk = B_FALSE;
399
400 /*
401 * Determine what type of vdev this is, and put the full path into
402 * 'path'. We detect whether this is a device of file afterwards by
403 * checking the st_mode of the file.
404 */
405 if (arg[0] == '/') {
406 /*
407 * Complete device or file path. Exact type is determined by
408 * examining the file descriptor afterwards.
409 */
410 wholedisk = is_whole_disk(arg);
411 if (!wholedisk && (stat64(arg, &statbuf) != 0)) {
412 (void) fprintf(stderr,
413 gettext("cannot open '%s': %s\n"),
414 arg, strerror(errno));
415 return (NULL);
416 }
417
418 (void) strlcpy(path, arg, sizeof (path));
419 } else {
420 /*
421 * This may be a short path for a device, or it could be total
422 * gibberish. Check to see if it's a known device in
423 * /dev/dsk/. As part of this check, see if we've been given a
424 * an entire disk (minus the slice number).
425 */
426 (void) snprintf(path, sizeof (path), "%s/%s", DISK_ROOT,
427 arg);
428 wholedisk = is_whole_disk(path);
429 if (!wholedisk && (stat64(path, &statbuf) != 0)) {
430 /*
431 * If we got ENOENT, then the user gave us
432 * gibberish, so try to direct them with a
433 * reasonable error message. Otherwise,
434 * regurgitate strerror() since it's the best we
435 * can do.
436 */
437 if (errno == ENOENT) {
438 (void) fprintf(stderr,
439 gettext("cannot open '%s': no such "
440 "device in %s\n"), arg, DISK_ROOT);
441 (void) fprintf(stderr,
442 gettext("must be a full path or "
443 "shorthand device name\n"));
444 return (NULL);
445 } else {
446 (void) fprintf(stderr,
447 gettext("cannot open '%s': %s\n"),
448 path, strerror(errno));
449 return (NULL);
450 }
451 }
452 }
453
454 /*
455 * Determine whether this is a device or a file.
456 */
457 if (wholedisk || S_ISBLK(statbuf.st_mode)) {
458 type = VDEV_TYPE_DISK;
459 } else if (S_ISREG(statbuf.st_mode)) {
460 type = VDEV_TYPE_FILE;
461 } else {
462 (void) fprintf(stderr, gettext("cannot use '%s': must be a "
463 "block device or regular file\n"), path);
464 return (NULL);
465 }
466
467 /*
468 * Finally, we have the complete device or file, and we know that it is
469 * acceptable to use. Construct the nvlist to describe this vdev. All
470 * vdevs have a 'path' element, and devices also have a 'devid' element.
471 */
472 verify(nvlist_alloc(&vdev, NV_UNIQUE_NAME, 0) == 0);
473 verify(nvlist_add_string(vdev, ZPOOL_CONFIG_PATH, path) == 0);
474 verify(nvlist_add_string(vdev, ZPOOL_CONFIG_TYPE, type) == 0);
475 verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_IS_LOG, is_log) == 0);
476 if (strcmp(type, VDEV_TYPE_DISK) == 0)
477 verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK,
478 (uint64_t)wholedisk) == 0);
479
480 /*
481 * For a whole disk, defer getting its devid until after labeling it.
482 */
483 if (S_ISBLK(statbuf.st_mode) && !wholedisk) {
484 /*
485 * Get the devid for the device.
486 */
487 int fd;
488 ddi_devid_t devid;
489 char *minor = NULL, *devid_str = NULL;
490
491 if ((fd = open(path, O_RDONLY)) < 0) {
492 (void) fprintf(stderr, gettext("cannot open '%s': "
493 "%s\n"), path, strerror(errno));
494 nvlist_free(vdev);
495 return (NULL);
496 }
497
498 if (devid_get(fd, &devid) == 0) {
499 if (devid_get_minor_name(fd, &minor) == 0 &&
500 (devid_str = devid_str_encode(devid, minor)) !=
501 NULL) {
502 verify(nvlist_add_string(vdev,
503 ZPOOL_CONFIG_DEVID, devid_str) == 0);
504 }
505 if (devid_str != NULL)
506 devid_str_free(devid_str);
507 if (minor != NULL)
508 devid_str_free(minor);
509 devid_free(devid);
510 }
511
512 (void) close(fd);
513 }
514
515 return (vdev);
516}
517
518/*
519 * Go through and verify the replication level of the pool is consistent.
520 * Performs the following checks:
521 *
522 * For the new spec, verifies that devices in mirrors and raidz are the
523 * same size.
524 *
525 * If the current configuration already has inconsistent replication
526 * levels, ignore any other potential problems in the new spec.
527 *
528 * Otherwise, make sure that the current spec (if there is one) and the new
529 * spec have consistent replication levels.
530 */
531typedef struct replication_level {
532 char *zprl_type;
533 uint64_t zprl_children;
534 uint64_t zprl_parity;
535} replication_level_t;
536
537#define ZPOOL_FUZZ (16 * 1024 * 1024)
538
539/*
540 * Given a list of toplevel vdevs, return the current replication level. If
541 * the config is inconsistent, then NULL is returned. If 'fatal' is set, then
542 * an error message will be displayed for each self-inconsistent vdev.
543 */
544static replication_level_t *
545get_replication(nvlist_t *nvroot, boolean_t fatal)
546{
547 nvlist_t **top;
548 uint_t t, toplevels;
549 nvlist_t **child;
550 uint_t c, children;
551 nvlist_t *nv;
552 char *type;
553 replication_level_t lastrep, rep, *ret;
554 boolean_t dontreport;
555
556 ret = safe_malloc(sizeof (replication_level_t));
557
558 verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
559 &top, &toplevels) == 0);
560
561 lastrep.zprl_type = NULL;
562 for (t = 0; t < toplevels; t++) {
563 uint64_t is_log = B_FALSE;
564
565 nv = top[t];
566
567 /*
568 * For separate logs we ignore the top level vdev replication
569 * constraints.
570 */
571 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &is_log);
572 if (is_log)
573 continue;
574
575 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE,
576 &type) == 0);
577 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
578 &child, &children) != 0) {
579 /*
580 * This is a 'file' or 'disk' vdev.
581 */
582 rep.zprl_type = type;
583 rep.zprl_children = 1;
584 rep.zprl_parity = 0;
585 } else {
586 uint64_t vdev_size;
587
588 /*
589 * This is a mirror or RAID-Z vdev. Go through and make
590 * sure the contents are all the same (files vs. disks),
591 * keeping track of the number of elements in the
592 * process.
593 *
594 * We also check that the size of each vdev (if it can
595 * be determined) is the same.
596 */
597 rep.zprl_type = type;
598 rep.zprl_children = 0;
599
600 if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
601 verify(nvlist_lookup_uint64(nv,
602 ZPOOL_CONFIG_NPARITY,
603 &rep.zprl_parity) == 0);
604 assert(rep.zprl_parity != 0);
605 } else {
606 rep.zprl_parity = 0;
607 }
608
609 /*
610 * The 'dontreport' variable indicates that we've
611 * already reported an error for this spec, so don't
612 * bother doing it again.
613 */
614 type = NULL;
615 dontreport = 0;
616 vdev_size = -1ULL;
617 for (c = 0; c < children; c++) {
618 nvlist_t *cnv = child[c];
619 char *path;
620 struct stat64 statbuf;
621 uint64_t size = -1ULL;
622 char *childtype;
623 int fd, err;
624
625 rep.zprl_children++;
626
627 verify(nvlist_lookup_string(cnv,
628 ZPOOL_CONFIG_TYPE, &childtype) == 0);
629
630 /*
631 * If this is a replacing or spare vdev, then
632 * get the real first child of the vdev.
633 */
634 if (strcmp(childtype,
635 VDEV_TYPE_REPLACING) == 0 ||
636 strcmp(childtype, VDEV_TYPE_SPARE) == 0) {
637 nvlist_t **rchild;
638 uint_t rchildren;
639
640 verify(nvlist_lookup_nvlist_array(cnv,
641 ZPOOL_CONFIG_CHILDREN, &rchild,
642 &rchildren) == 0);
643 assert(rchildren == 2);
644 cnv = rchild[0];
645
646 verify(nvlist_lookup_string(cnv,
647 ZPOOL_CONFIG_TYPE,
648 &childtype) == 0);
649 }
650
651 verify(nvlist_lookup_string(cnv,
652 ZPOOL_CONFIG_PATH, &path) == 0);
653
654 /*
655 * If we have a raidz/mirror that combines disks
656 * with files, report it as an error.
657 */
658 if (!dontreport && type != NULL &&
659 strcmp(type, childtype) != 0) {
660 if (ret != NULL)
661 free(ret);
662 ret = NULL;
663 if (fatal)
664 vdev_error(gettext(
665 "mismatched replication "
666 "level: %s contains both "
667 "files and devices\n"),
668 rep.zprl_type);
669 else
670 return (NULL);
671 dontreport = B_TRUE;
672 }
673
674 /*
675 * According to stat(2), the value of 'st_size'
676 * is undefined for block devices and character
677 * devices. But there is no effective way to
678 * determine the real size in userland.
679 *
680 * Instead, we'll take advantage of an
681 * implementation detail of spec_size(). If the
682 * device is currently open, then we (should)
683 * return a valid size.
684 *
685 * If we still don't get a valid size (indicated
686 * by a size of 0 or MAXOFFSET_T), then ignore
687 * this device altogether.
688 */
689 if ((fd = open(path, O_RDONLY)) >= 0) {
690 err = fstat64(fd, &statbuf);
691 (void) close(fd);
692 } else {
693 err = stat64(path, &statbuf);
694 }
695
696 if (err != 0 ||
697 statbuf.st_size == 0 ||
698 statbuf.st_size == MAXOFFSET_T)
699 continue;
700
701 size = statbuf.st_size;
702
703 /*
704 * Also make sure that devices and
705 * slices have a consistent size. If
706 * they differ by a significant amount
707 * (~16MB) then report an error.
708 */
709 if (!dontreport &&
710 (vdev_size != -1ULL &&
711 (labs(size - vdev_size) >
712 ZPOOL_FUZZ))) {
713 if (ret != NULL)
714 free(ret);
715 ret = NULL;
716 if (fatal)
717 vdev_error(gettext(
718 "%s contains devices of "
719 "different sizes\n"),
720 rep.zprl_type);
721 else
722 return (NULL);
723 dontreport = B_TRUE;
724 }
725
726 type = childtype;
727 vdev_size = size;
728 }
729 }
730
731 /*
732 * At this point, we have the replication of the last toplevel
733 * vdev in 'rep'. Compare it to 'lastrep' to see if its
734 * different.
735 */
736 if (lastrep.zprl_type != NULL) {
737 if (strcmp(lastrep.zprl_type, rep.zprl_type) != 0) {
738 if (ret != NULL)
739 free(ret);
740 ret = NULL;
741 if (fatal)
742 vdev_error(gettext(
743 "mismatched replication level: "
744 "both %s and %s vdevs are "
745 "present\n"),
746 lastrep.zprl_type, rep.zprl_type);
747 else
748 return (NULL);
749 } else if (lastrep.zprl_parity != rep.zprl_parity) {
750 if (ret)
751 free(ret);
752 ret = NULL;
753 if (fatal)
754 vdev_error(gettext(
755 "mismatched replication level: "
756 "both %llu and %llu device parity "
757 "%s vdevs are present\n"),
758 lastrep.zprl_parity,
759 rep.zprl_parity,
760 rep.zprl_type);
761 else
762 return (NULL);
763 } else if (lastrep.zprl_children != rep.zprl_children) {
764 if (ret)
765 free(ret);
766 ret = NULL;
767 if (fatal)
768 vdev_error(gettext(
769 "mismatched replication level: "
770 "both %llu-way and %llu-way %s "
771 "vdevs are present\n"),
772 lastrep.zprl_children,
773 rep.zprl_children,
774 rep.zprl_type);
775 else
776 return (NULL);
777 }
778 }
779 lastrep = rep;
780 }
781
782 if (ret != NULL)
783 *ret = rep;
784
785 return (ret);
786}
787
788/*
789 * Check the replication level of the vdev spec against the current pool. Calls
790 * get_replication() to make sure the new spec is self-consistent. If the pool
791 * has a consistent replication level, then we ignore any errors. Otherwise,
792 * report any difference between the two.
793 */
794static int
795check_replication(nvlist_t *config, nvlist_t *newroot)
796{
797 nvlist_t **child;
798 uint_t children;
799 replication_level_t *current = NULL, *new;
800 int ret;
801
802 /*
803 * If we have a current pool configuration, check to see if it's
804 * self-consistent. If not, simply return success.
805 */
806 if (config != NULL) {
807 nvlist_t *nvroot;
808
809 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
810 &nvroot) == 0);
811 if ((current = get_replication(nvroot, B_FALSE)) == NULL)
812 return (0);
813 }
814 /*
815 * for spares there may be no children, and therefore no
816 * replication level to check
817 */
818 if ((nvlist_lookup_nvlist_array(newroot, ZPOOL_CONFIG_CHILDREN,
819 &child, &children) != 0) || (children == 0)) {
820 free(current);
821 return (0);
822 }
823
824 /*
825 * If all we have is logs then there's no replication level to check.
826 */
827 if (num_logs(newroot) == children) {
828 free(current);
829 return (0);
830 }
831
832 /*
833 * Get the replication level of the new vdev spec, reporting any
834 * inconsistencies found.
835 */
836 if ((new = get_replication(newroot, B_TRUE)) == NULL) {
837 free(current);
838 return (-1);
839 }
840
841 /*
842 * Check to see if the new vdev spec matches the replication level of
843 * the current pool.
844 */
845 ret = 0;
846 if (current != NULL) {
847 if (strcmp(current->zprl_type, new->zprl_type) != 0) {
848 vdev_error(gettext(
849 "mismatched replication level: pool uses %s "
850 "and new vdev is %s\n"),
851 current->zprl_type, new->zprl_type);
852 ret = -1;
853 } else if (current->zprl_parity != new->zprl_parity) {
854 vdev_error(gettext(
855 "mismatched replication level: pool uses %llu "
856 "device parity and new vdev uses %llu\n"),
857 current->zprl_parity, new->zprl_parity);
858 ret = -1;
859 } else if (current->zprl_children != new->zprl_children) {
860 vdev_error(gettext(
861 "mismatched replication level: pool uses %llu-way "
862 "%s and new vdev uses %llu-way %s\n"),
863 current->zprl_children, current->zprl_type,
864 new->zprl_children, new->zprl_type);
865 ret = -1;
866 }
867 }
868
869 free(new);
870 if (current != NULL)
871 free(current);
872
873 return (ret);
874}
875
876/*
877 * Go through and find any whole disks in the vdev specification, labelling them
878 * as appropriate. When constructing the vdev spec, we were unable to open this
879 * device in order to provide a devid. Now that we have labelled the disk and
880 * know that slice 0 is valid, we can construct the devid now.
881 *
882 * If the disk was already labeled with an EFI label, we will have gotten the
883 * devid already (because we were able to open the whole disk). Otherwise, we
884 * need to get the devid after we label the disk.
885 */
886static int
887make_disks(zpool_handle_t *zhp, nvlist_t *nv)
888{
889 nvlist_t **child;
890 uint_t c, children;
891 char *type, *path, *diskname;
892 char buf[MAXPATHLEN];
893 uint64_t wholedisk;
894 int fd;
895 int ret;
896 ddi_devid_t devid;
897 char *minor = NULL, *devid_str = NULL;
898
899 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
900
901 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
902 &child, &children) != 0) {
903
904 if (strcmp(type, VDEV_TYPE_DISK) != 0)
905 return (0);
906
907 /*
908 * We have a disk device. Get the path to the device
909 * and see if it's a whole disk by appending the backup
910 * slice and stat()ing the device.
911 */
912 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0);
913 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
914 &wholedisk) != 0 || !wholedisk)
915 return (0);
916
917 diskname = strrchr(path, '/');
918 assert(diskname != NULL);
919 diskname++;
920 if (zpool_label_disk(g_zfs, zhp, diskname) == -1)
921 return (-1);
922
923 /*
924 * Fill in the devid, now that we've labeled the disk.
925 */
926 (void) snprintf(buf, sizeof (buf), "%ss0", path);
927 if ((fd = open(buf, O_RDONLY)) < 0) {
928 (void) fprintf(stderr,
929 gettext("cannot open '%s': %s\n"),
930 buf, strerror(errno));
931 return (-1);
932 }
933
934 if (devid_get(fd, &devid) == 0) {
935 if (devid_get_minor_name(fd, &minor) == 0 &&
936 (devid_str = devid_str_encode(devid, minor)) !=
937 NULL) {
938 verify(nvlist_add_string(nv,
939 ZPOOL_CONFIG_DEVID, devid_str) == 0);
940 }
941 if (devid_str != NULL)
942 devid_str_free(devid_str);
943 if (minor != NULL)
944 devid_str_free(minor);
945 devid_free(devid);
946 }
947
948 /*
949 * Update the path to refer to the 's0' slice. The presence of
950 * the 'whole_disk' field indicates to the CLI that we should
951 * chop off the slice number when displaying the device in
952 * future output.
953 */
954 verify(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, buf) == 0);
955
956 (void) close(fd);
957
958 return (0);
959 }
960
961 for (c = 0; c < children; c++)
962 if ((ret = make_disks(zhp, child[c])) != 0)
963 return (ret);
964
965 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
966 &child, &children) == 0)
967 for (c = 0; c < children; c++)
968 if ((ret = make_disks(zhp, child[c])) != 0)
969 return (ret);
970
971 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
972 &child, &children) == 0)
973 for (c = 0; c < children; c++)
974 if ((ret = make_disks(zhp, child[c])) != 0)
975 return (ret);
976
977 return (0);
978}
979
980/*
981 * Determine if the given path is a hot spare within the given configuration.
982 */
983static boolean_t
984is_spare(nvlist_t *config, const char *path)
985{
986 int fd;
987 pool_state_t state;
988 char *name = NULL;
989 nvlist_t *label;
990 uint64_t guid, spareguid;
991 nvlist_t *nvroot;
992 nvlist_t **spares;
993 uint_t i, nspares;
994 boolean_t inuse;
995
996 if ((fd = open(path, O_RDONLY)) < 0)
997 return (B_FALSE);
998
999 if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) != 0 ||
1000 !inuse ||
1001 state != POOL_STATE_SPARE ||
1002 zpool_read_label(fd, &label) != 0) {
1003 free(name);
1004 (void) close(fd);
1005 return (B_FALSE);
1006 }
1007 free(name);
1008
1009 (void) close(fd);
1010 verify(nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) == 0);
1011 nvlist_free(label);
1012
1013 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
1014 &nvroot) == 0);
1015 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1016 &spares, &nspares) == 0) {
1017 for (i = 0; i < nspares; i++) {
1018 verify(nvlist_lookup_uint64(spares[i],
1019 ZPOOL_CONFIG_GUID, &spareguid) == 0);
1020 if (spareguid == guid)
1021 return (B_TRUE);
1022 }
1023 }
1024
1025 return (B_FALSE);
1026}
1027
1028/*
1029 * Go through and find any devices that are in use. We rely on libdiskmgt for
1030 * the majority of this task.
1031 */
1032static int
1033check_in_use(nvlist_t *config, nvlist_t *nv, int force, int isreplacing,
1034 int isspare)
1035{
1036 nvlist_t **child;
1037 uint_t c, children;
1038 char *type, *path;
1039 int ret;
1040 char buf[MAXPATHLEN];
1041 uint64_t wholedisk;
1042
1043 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
1044
1045 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1046 &child, &children) != 0) {
1047
1048 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0);
1049
1050 /*
1051 * As a generic check, we look to see if this is a replace of a
1052 * hot spare within the same pool. If so, we allow it
1053 * regardless of what libdiskmgt or zpool_in_use() says.
1054 */
1055 if (isreplacing) {
1056 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
1057 &wholedisk) == 0 && wholedisk)
1058 (void) snprintf(buf, sizeof (buf), "%ss0",
1059 path);
1060 else
1061 (void) strlcpy(buf, path, sizeof (buf));
1062 if (is_spare(config, buf))
1063 return (0);
1064 }
1065
1066 if (strcmp(type, VDEV_TYPE_DISK) == 0)
1067 ret = check_device(path, force, isspare);
1068
1069 if (strcmp(type, VDEV_TYPE_FILE) == 0)
1070 ret = check_file(path, force, isspare);
1071
1072 return (ret);
1073 }
1074
1075 for (c = 0; c < children; c++)
1076 if ((ret = check_in_use(config, child[c], force,
1077 isreplacing, B_FALSE)) != 0)
1078 return (ret);
1079
1080 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
1081 &child, &children) == 0)
1082 for (c = 0; c < children; c++)
1083 if ((ret = check_in_use(config, child[c], force,
1084 isreplacing, B_TRUE)) != 0)
1085 return (ret);
1086
1087 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
1088 &child, &children) == 0)
1089 for (c = 0; c < children; c++)
1090 if ((ret = check_in_use(config, child[c], force,
1091 isreplacing, B_FALSE)) != 0)
1092 return (ret);
1093
1094 return (0);
1095}
1096
1097static const char *
1098is_grouping(const char *type, int *mindev)
1099{
1100 if (strcmp(type, "raidz") == 0 || strcmp(type, "raidz1") == 0) {
1101 if (mindev != NULL)
1102 *mindev = 2;
1103 return (VDEV_TYPE_RAIDZ);
1104 }
1105
1106 if (strcmp(type, "raidz2") == 0) {
1107 if (mindev != NULL)
1108 *mindev = 3;
1109 return (VDEV_TYPE_RAIDZ);
1110 }
1111
1112 if (strcmp(type, "mirror") == 0) {
1113 if (mindev != NULL)
1114 *mindev = 2;
1115 return (VDEV_TYPE_MIRROR);
1116 }
1117
1118 if (strcmp(type, "spare") == 0) {
1119 if (mindev != NULL)
1120 *mindev = 1;
1121 return (VDEV_TYPE_SPARE);
1122 }
1123
1124 if (strcmp(type, "log") == 0) {
1125 if (mindev != NULL)
1126 *mindev = 1;
1127 return (VDEV_TYPE_LOG);
1128 }
1129
1130 if (strcmp(type, "cache") == 0) {
1131 if (mindev != NULL)
1132 *mindev = 1;
1133 return (VDEV_TYPE_L2CACHE);
1134 }
1135
1136 return (NULL);
1137}
1138
1139/*
1140 * Construct a syntactically valid vdev specification,
1141 * and ensure that all devices and files exist and can be opened.
1142 * Note: we don't bother freeing anything in the error paths
1143 * because the program is just going to exit anyway.
1144 */
1145nvlist_t *
1146construct_spec(int argc, char **argv)
1147{
1148 nvlist_t *nvroot, *nv, **top, **spares, **l2cache;
1149 int t, toplevels, mindev, nspares, nlogs, nl2cache;
1150 const char *type;
1151 uint64_t is_log;
1152 boolean_t seen_logs;
1153
1154 top = NULL;
1155 toplevels = 0;
1156 spares = NULL;
1157 l2cache = NULL;
1158 nspares = 0;
1159 nlogs = 0;
1160 nl2cache = 0;
1161 is_log = B_FALSE;
1162 seen_logs = B_FALSE;
1163
1164 while (argc > 0) {
1165 nv = NULL;
1166
1167 /*
1168 * If it's a mirror or raidz, the subsequent arguments are
1169 * its leaves -- until we encounter the next mirror or raidz.
1170 */
1171 if ((type = is_grouping(argv[0], &mindev)) != NULL) {
1172 nvlist_t **child = NULL;
1173 int c, children = 0;
1174
1175 if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1176 if (spares != NULL) {
1177 (void) fprintf(stderr,
1178 gettext("invalid vdev "
1179 "specification: 'spare' can be "
1180 "specified only once\n"));
1181 return (NULL);
1182 }
1183 is_log = B_FALSE;
1184 }
1185
1186 if (strcmp(type, VDEV_TYPE_LOG) == 0) {
1187 if (seen_logs) {
1188 (void) fprintf(stderr,
1189 gettext("invalid vdev "
1190 "specification: 'log' can be "
1191 "specified only once\n"));
1192 return (NULL);
1193 }
1194 seen_logs = B_TRUE;
1195 is_log = B_TRUE;
1196 argc--;
1197 argv++;
1198 /*
1199 * A log is not a real grouping device.
1200 * We just set is_log and continue.
1201 */
1202 continue;
1203 }
1204
1205 if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1206 if (l2cache != NULL) {
1207 (void) fprintf(stderr,
1208 gettext("invalid vdev "
1209 "specification: 'cache' can be "
1210 "specified only once\n"));
1211 return (NULL);
1212 }
1213 is_log = B_FALSE;
1214 }
1215
1216 if (is_log) {
1217 if (strcmp(type, VDEV_TYPE_MIRROR) != 0) {
1218 (void) fprintf(stderr,
1219 gettext("invalid vdev "
1220 "specification: unsupported 'log' "
1221 "device: %s\n"), type);
1222 return (NULL);
1223 }
1224 nlogs++;
1225 }
1226
1227 for (c = 1; c < argc; c++) {
1228 if (is_grouping(argv[c], NULL) != NULL)
1229 break;
1230 children++;
1231 child = realloc(child,
1232 children * sizeof (nvlist_t *));
1233 if (child == NULL)
1234 zpool_no_memory();
1235 if ((nv = make_leaf_vdev(argv[c], B_FALSE))
1236 == NULL)
1237 return (NULL);
1238 child[children - 1] = nv;
1239 }
1240
1241 if (children < mindev) {
1242 (void) fprintf(stderr, gettext("invalid vdev "
1243 "specification: %s requires at least %d "
1244 "devices\n"), argv[0], mindev);
1245 return (NULL);
1246 }
1247
1248 argc -= c;
1249 argv += c;
1250
1251 if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1252 spares = child;
1253 nspares = children;
1254 continue;
1255 } else if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1256 l2cache = child;
1257 nl2cache = children;
1258 continue;
1259 } else {
1260 verify(nvlist_alloc(&nv, NV_UNIQUE_NAME,
1261 0) == 0);
1262 verify(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
1263 type) == 0);
1264 verify(nvlist_add_uint64(nv,
1265 ZPOOL_CONFIG_IS_LOG, is_log) == 0);
1266 if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
1267 verify(nvlist_add_uint64(nv,
1268 ZPOOL_CONFIG_NPARITY,
1269 mindev - 1) == 0);
1270 }
1271 verify(nvlist_add_nvlist_array(nv,
1272 ZPOOL_CONFIG_CHILDREN, child,
1273 children) == 0);
1274
1275 for (c = 0; c < children; c++)
1276 nvlist_free(child[c]);
1277 free(child);
1278 }
1279 } else {
1280 /*
1281 * We have a device. Pass off to make_leaf_vdev() to
1282 * construct the appropriate nvlist describing the vdev.
1283 */
1284 if ((nv = make_leaf_vdev(argv[0], is_log)) == NULL)
1285 return (NULL);
1286 if (is_log)
1287 nlogs++;
1288 argc--;
1289 argv++;
1290 }
1291
1292 toplevels++;
1293 top = realloc(top, toplevels * sizeof (nvlist_t *));
1294 if (top == NULL)
1295 zpool_no_memory();
1296 top[toplevels - 1] = nv;
1297 }
1298
1299 if (toplevels == 0 && nspares == 0 && nl2cache == 0) {
1300 (void) fprintf(stderr, gettext("invalid vdev "
1301 "specification: at least one toplevel vdev must be "
1302 "specified\n"));
1303 return (NULL);
1304 }
1305
1306 if (seen_logs && nlogs == 0) {
1307 (void) fprintf(stderr, gettext("invalid vdev specification: "
1308 "log requires at least 1 device\n"));
1309 return (NULL);
1310 }
1311
1312 /*
1313 * Finally, create nvroot and add all top-level vdevs to it.
1314 */
1315 verify(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) == 0);
1316 verify(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
1317 VDEV_TYPE_ROOT) == 0);
1318 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1319 top, toplevels) == 0);
1320 if (nspares != 0)
1321 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1322 spares, nspares) == 0);
1323 if (nl2cache != 0)
1324 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
1325 l2cache, nl2cache) == 0);
1326
1327 for (t = 0; t < toplevels; t++)
1328 nvlist_free(top[t]);
1329 for (t = 0; t < nspares; t++)
1330 nvlist_free(spares[t]);
1331 for (t = 0; t < nl2cache; t++)
1332 nvlist_free(l2cache[t]);
1333 if (spares)
1334 free(spares);
1335 if (l2cache)
1336 free(l2cache);
1337 free(top);
1338
1339 return (nvroot);
1340}
1341
1342
1343/*
1344 * Get and validate the contents of the given vdev specification. This ensures
1345 * that the nvlist returned is well-formed, that all the devices exist, and that
1346 * they are not currently in use by any other known consumer. The 'poolconfig'
1347 * parameter is the current configuration of the pool when adding devices
1348 * existing pool, and is used to perform additional checks, such as changing the
1349 * replication level of the pool. It can be 'NULL' to indicate that this is a
1350 * new pool. The 'force' flag controls whether devices should be forcefully
1351 * added, even if they appear in use.
1352 */
1353nvlist_t *
1354make_root_vdev(zpool_handle_t *zhp, int force, int check_rep,
1355 boolean_t isreplacing, int argc, char **argv)
1356{
1357 nvlist_t *newroot;
1358 nvlist_t *poolconfig = NULL;
1359 is_force = force;
1360
1361 /*
1362 * Construct the vdev specification. If this is successful, we know
1363 * that we have a valid specification, and that all devices can be
1364 * opened.
1365 */
1366 if ((newroot = construct_spec(argc, argv)) == NULL)
1367 return (NULL);
1368
1369 if (zhp && ((poolconfig = zpool_get_config(zhp, NULL)) == NULL))
1370 return (NULL);
1371
1372 /*
1373 * Validate each device to make sure that its not shared with another
1374 * subsystem. We do this even if 'force' is set, because there are some
1375 * uses (such as a dedicated dump device) that even '-f' cannot
1376 * override.
1377 */
1378 if (check_in_use(poolconfig, newroot, force, isreplacing,
1379 B_FALSE) != 0) {
1380 nvlist_free(newroot);
1381 return (NULL);
1382 }
1383
1384 /*
1385 * Check the replication level of the given vdevs and report any errors
1386 * found. We include the existing pool spec, if any, as we need to
1387 * catch changes against the existing replication level.
1388 */
1389 if (check_rep && check_replication(poolconfig, newroot) != 0) {
1390 nvlist_free(newroot);
1391 return (NULL);
1392 }
1393
1394 /*
1395 * Run through the vdev specification and label any whole disks found.
1396 */
1397 if (make_disks(zhp, newroot) != 0) {
1398 nvlist_free(newroot);
1399 return (NULL);
1400 }
1401
1402 return (newroot);
1403}