]> git.proxmox.com Git - mirror_zfs.git/blame_incremental - man/man5/zfs-module-parameters.5
zfs should optionally send holds
[mirror_zfs.git] / man / man5 / zfs-module-parameters.5
... / ...
CommitLineData
1'\" te
2.\" Copyright (c) 2013 by Turbo Fredriksson <turbo@bayour.com>. All rights reserved.
3.\" Copyright (c) 2018 by Delphix. All rights reserved.
4.\" Copyright (c) 2019 Datto Inc.
5.\" The contents of this file are subject to the terms of the Common Development
6.\" and Distribution License (the "License"). You may not use this file except
7.\" in compliance with the License. You can obtain a copy of the license at
8.\" usr/src/OPENSOLARIS.LICENSE or http://www.opensolaris.org/os/licensing.
9.\"
10.\" See the License for the specific language governing permissions and
11.\" limitations under the License. When distributing Covered Code, include this
12.\" CDDL HEADER in each file and include the License file at
13.\" usr/src/OPENSOLARIS.LICENSE. If applicable, add the following below this
14.\" CDDL HEADER, with the fields enclosed by brackets "[]" replaced with your
15.\" own identifying information:
16.\" Portions Copyright [yyyy] [name of copyright owner]
17.TH ZFS-MODULE-PARAMETERS 5 "Feb 8, 2019"
18.SH NAME
19zfs\-module\-parameters \- ZFS module parameters
20.SH DESCRIPTION
21.sp
22.LP
23Description of the different parameters to the ZFS module.
24
25.SS "Module parameters"
26.sp
27.LP
28
29.sp
30.ne 2
31.na
32\fBdbuf_cache_max_bytes\fR (ulong)
33.ad
34.RS 12n
35Maximum size in bytes of the dbuf cache. When \fB0\fR this value will default
36to \fB1/2^dbuf_cache_shift\fR (1/32) of the target ARC size, otherwise the
37provided value in bytes will be used. The behavior of the dbuf cache and its
38associated settings can be observed via the \fB/proc/spl/kstat/zfs/dbufstats\fR
39kstat.
40.sp
41Default value: \fB0\fR.
42.RE
43
44.sp
45.ne 2
46.na
47\fBdbuf_metadata_cache_max_bytes\fR (ulong)
48.ad
49.RS 12n
50Maximum size in bytes of the metadata dbuf cache. When \fB0\fR this value will
51default to \fB1/2^dbuf_cache_shift\fR (1/16) of the target ARC size, otherwise
52the provided value in bytes will be used. The behavior of the metadata dbuf
53cache and its associated settings can be observed via the
54\fB/proc/spl/kstat/zfs/dbufstats\fR kstat.
55.sp
56Default value: \fB0\fR.
57.RE
58
59.sp
60.ne 2
61.na
62\fBdbuf_cache_hiwater_pct\fR (uint)
63.ad
64.RS 12n
65The percentage over \fBdbuf_cache_max_bytes\fR when dbufs must be evicted
66directly.
67.sp
68Default value: \fB10\fR%.
69.RE
70
71.sp
72.ne 2
73.na
74\fBdbuf_cache_lowater_pct\fR (uint)
75.ad
76.RS 12n
77The percentage below \fBdbuf_cache_max_bytes\fR when the evict thread stops
78evicting dbufs.
79.sp
80Default value: \fB10\fR%.
81.RE
82
83.sp
84.ne 2
85.na
86\fBdbuf_cache_shift\fR (int)
87.ad
88.RS 12n
89Set the size of the dbuf cache, \fBdbuf_cache_max_bytes\fR, to a log2 fraction
90of the target arc size.
91.sp
92Default value: \fB5\fR.
93.RE
94
95.sp
96.ne 2
97.na
98\fBdbuf_metadata_cache_shift\fR (int)
99.ad
100.RS 12n
101Set the size of the dbuf metadata cache, \fBdbuf_metadata_cache_max_bytes\fR,
102to a log2 fraction of the target arc size.
103.sp
104Default value: \fB6\fR.
105.RE
106
107.sp
108.ne 2
109.na
110\fBignore_hole_birth\fR (int)
111.ad
112.RS 12n
113When set, the hole_birth optimization will not be used, and all holes will
114always be sent on zfs send. Useful if you suspect your datasets are affected
115by a bug in hole_birth.
116.sp
117Use \fB1\fR for on (default) and \fB0\fR for off.
118.RE
119
120.sp
121.ne 2
122.na
123\fBl2arc_feed_again\fR (int)
124.ad
125.RS 12n
126Turbo L2ARC warm-up. When the L2ARC is cold the fill interval will be set as
127fast as possible.
128.sp
129Use \fB1\fR for yes (default) and \fB0\fR to disable.
130.RE
131
132.sp
133.ne 2
134.na
135\fBl2arc_feed_min_ms\fR (ulong)
136.ad
137.RS 12n
138Min feed interval in milliseconds. Requires \fBl2arc_feed_again=1\fR and only
139applicable in related situations.
140.sp
141Default value: \fB200\fR.
142.RE
143
144.sp
145.ne 2
146.na
147\fBl2arc_feed_secs\fR (ulong)
148.ad
149.RS 12n
150Seconds between L2ARC writing
151.sp
152Default value: \fB1\fR.
153.RE
154
155.sp
156.ne 2
157.na
158\fBl2arc_headroom\fR (ulong)
159.ad
160.RS 12n
161How far through the ARC lists to search for L2ARC cacheable content, expressed
162as a multiplier of \fBl2arc_write_max\fR
163.sp
164Default value: \fB2\fR.
165.RE
166
167.sp
168.ne 2
169.na
170\fBl2arc_headroom_boost\fR (ulong)
171.ad
172.RS 12n
173Scales \fBl2arc_headroom\fR by this percentage when L2ARC contents are being
174successfully compressed before writing. A value of 100 disables this feature.
175.sp
176Default value: \fB200\fR%.
177.RE
178
179.sp
180.ne 2
181.na
182\fBl2arc_noprefetch\fR (int)
183.ad
184.RS 12n
185Do not write buffers to L2ARC if they were prefetched but not used by
186applications
187.sp
188Use \fB1\fR for yes (default) and \fB0\fR to disable.
189.RE
190
191.sp
192.ne 2
193.na
194\fBl2arc_norw\fR (int)
195.ad
196.RS 12n
197No reads during writes
198.sp
199Use \fB1\fR for yes and \fB0\fR for no (default).
200.RE
201
202.sp
203.ne 2
204.na
205\fBl2arc_write_boost\fR (ulong)
206.ad
207.RS 12n
208Cold L2ARC devices will have \fBl2arc_write_max\fR increased by this amount
209while they remain cold.
210.sp
211Default value: \fB8,388,608\fR.
212.RE
213
214.sp
215.ne 2
216.na
217\fBl2arc_write_max\fR (ulong)
218.ad
219.RS 12n
220Max write bytes per interval
221.sp
222Default value: \fB8,388,608\fR.
223.RE
224
225.sp
226.ne 2
227.na
228\fBmetaslab_aliquot\fR (ulong)
229.ad
230.RS 12n
231Metaslab granularity, in bytes. This is roughly similar to what would be
232referred to as the "stripe size" in traditional RAID arrays. In normal
233operation, ZFS will try to write this amount of data to a top-level vdev
234before moving on to the next one.
235.sp
236Default value: \fB524,288\fR.
237.RE
238
239.sp
240.ne 2
241.na
242\fBmetaslab_bias_enabled\fR (int)
243.ad
244.RS 12n
245Enable metaslab group biasing based on its vdev's over- or under-utilization
246relative to the pool.
247.sp
248Use \fB1\fR for yes (default) and \fB0\fR for no.
249.RE
250
251.sp
252.ne 2
253.na
254\fBmetaslab_force_ganging\fR (ulong)
255.ad
256.RS 12n
257Make some blocks above a certain size be gang blocks. This option is used
258by the test suite to facilitate testing.
259.sp
260Default value: \fB16,777,217\fR.
261.RE
262
263.sp
264.ne 2
265.na
266\fBzfs_metaslab_segment_weight_enabled\fR (int)
267.ad
268.RS 12n
269Enable/disable segment-based metaslab selection.
270.sp
271Use \fB1\fR for yes (default) and \fB0\fR for no.
272.RE
273
274.sp
275.ne 2
276.na
277\fBzfs_metaslab_switch_threshold\fR (int)
278.ad
279.RS 12n
280When using segment-based metaslab selection, continue allocating
281from the active metaslab until \fBzfs_metaslab_switch_threshold\fR
282worth of buckets have been exhausted.
283.sp
284Default value: \fB2\fR.
285.RE
286
287.sp
288.ne 2
289.na
290\fBmetaslab_debug_load\fR (int)
291.ad
292.RS 12n
293Load all metaslabs during pool import.
294.sp
295Use \fB1\fR for yes and \fB0\fR for no (default).
296.RE
297
298.sp
299.ne 2
300.na
301\fBmetaslab_debug_unload\fR (int)
302.ad
303.RS 12n
304Prevent metaslabs from being unloaded.
305.sp
306Use \fB1\fR for yes and \fB0\fR for no (default).
307.RE
308
309.sp
310.ne 2
311.na
312\fBmetaslab_fragmentation_factor_enabled\fR (int)
313.ad
314.RS 12n
315Enable use of the fragmentation metric in computing metaslab weights.
316.sp
317Use \fB1\fR for yes (default) and \fB0\fR for no.
318.RE
319
320.sp
321.ne 2
322.na
323\fBzfs_vdev_default_ms_count\fR (int)
324.ad
325.RS 12n
326When a vdev is added target this number of metaslabs per top-level vdev.
327.sp
328Default value: \fB200\fR.
329.RE
330
331.sp
332.ne 2
333.na
334\fBzfs_vdev_min_ms_count\fR (int)
335.ad
336.RS 12n
337Minimum number of metaslabs to create in a top-level vdev.
338.sp
339Default value: \fB16\fR.
340.RE
341
342.sp
343.ne 2
344.na
345\fBvdev_ms_count_limit\fR (int)
346.ad
347.RS 12n
348Practical upper limit of total metaslabs per top-level vdev.
349.sp
350Default value: \fB131,072\fR.
351.RE
352
353.sp
354.ne 2
355.na
356\fBmetaslab_preload_enabled\fR (int)
357.ad
358.RS 12n
359Enable metaslab group preloading.
360.sp
361Use \fB1\fR for yes (default) and \fB0\fR for no.
362.RE
363
364.sp
365.ne 2
366.na
367\fBmetaslab_lba_weighting_enabled\fR (int)
368.ad
369.RS 12n
370Give more weight to metaslabs with lower LBAs, assuming they have
371greater bandwidth as is typically the case on a modern constant
372angular velocity disk drive.
373.sp
374Use \fB1\fR for yes (default) and \fB0\fR for no.
375.RE
376
377.sp
378.ne 2
379.na
380\fBspa_config_path\fR (charp)
381.ad
382.RS 12n
383SPA config file
384.sp
385Default value: \fB/etc/zfs/zpool.cache\fR.
386.RE
387
388.sp
389.ne 2
390.na
391\fBspa_asize_inflation\fR (int)
392.ad
393.RS 12n
394Multiplication factor used to estimate actual disk consumption from the
395size of data being written. The default value is a worst case estimate,
396but lower values may be valid for a given pool depending on its
397configuration. Pool administrators who understand the factors involved
398may wish to specify a more realistic inflation factor, particularly if
399they operate close to quota or capacity limits.
400.sp
401Default value: \fB24\fR.
402.RE
403
404.sp
405.ne 2
406.na
407\fBspa_load_print_vdev_tree\fR (int)
408.ad
409.RS 12n
410Whether to print the vdev tree in the debugging message buffer during pool import.
411Use 0 to disable and 1 to enable.
412.sp
413Default value: \fB0\fR.
414.RE
415
416.sp
417.ne 2
418.na
419\fBspa_load_verify_data\fR (int)
420.ad
421.RS 12n
422Whether to traverse data blocks during an "extreme rewind" (\fB-X\fR)
423import. Use 0 to disable and 1 to enable.
424
425An extreme rewind import normally performs a full traversal of all
426blocks in the pool for verification. If this parameter is set to 0,
427the traversal skips non-metadata blocks. It can be toggled once the
428import has started to stop or start the traversal of non-metadata blocks.
429.sp
430Default value: \fB1\fR.
431.RE
432
433.sp
434.ne 2
435.na
436\fBspa_load_verify_metadata\fR (int)
437.ad
438.RS 12n
439Whether to traverse blocks during an "extreme rewind" (\fB-X\fR)
440pool import. Use 0 to disable and 1 to enable.
441
442An extreme rewind import normally performs a full traversal of all
443blocks in the pool for verification. If this parameter is set to 0,
444the traversal is not performed. It can be toggled once the import has
445started to stop or start the traversal.
446.sp
447Default value: \fB1\fR.
448.RE
449
450.sp
451.ne 2
452.na
453\fBspa_load_verify_maxinflight\fR (int)
454.ad
455.RS 12n
456Maximum concurrent I/Os during the traversal performed during an "extreme
457rewind" (\fB-X\fR) pool import.
458.sp
459Default value: \fB10000\fR.
460.RE
461
462.sp
463.ne 2
464.na
465\fBspa_slop_shift\fR (int)
466.ad
467.RS 12n
468Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space
469in the pool to be consumed. This ensures that we don't run the pool
470completely out of space, due to unaccounted changes (e.g. to the MOS).
471It also limits the worst-case time to allocate space. If we have
472less than this amount of free space, most ZPL operations (e.g. write,
473create) will return ENOSPC.
474.sp
475Default value: \fB5\fR.
476.RE
477
478.sp
479.ne 2
480.na
481\fBvdev_removal_max_span\fR (int)
482.ad
483.RS 12n
484During top-level vdev removal, chunks of data are copied from the vdev
485which may include free space in order to trade bandwidth for IOPS.
486This parameter determines the maximum span of free space (in bytes)
487which will be included as "unnecessary" data in a chunk of copied data.
488
489The default value here was chosen to align with
490\fBzfs_vdev_read_gap_limit\fR, which is a similar concept when doing
491regular reads (but there's no reason it has to be the same).
492.sp
493Default value: \fB32,768\fR.
494.RE
495
496.sp
497.ne 2
498.na
499\fBzfetch_array_rd_sz\fR (ulong)
500.ad
501.RS 12n
502If prefetching is enabled, disable prefetching for reads larger than this size.
503.sp
504Default value: \fB1,048,576\fR.
505.RE
506
507.sp
508.ne 2
509.na
510\fBzfetch_max_distance\fR (uint)
511.ad
512.RS 12n
513Max bytes to prefetch per stream (default 8MB).
514.sp
515Default value: \fB8,388,608\fR.
516.RE
517
518.sp
519.ne 2
520.na
521\fBzfetch_max_streams\fR (uint)
522.ad
523.RS 12n
524Max number of streams per zfetch (prefetch streams per file).
525.sp
526Default value: \fB8\fR.
527.RE
528
529.sp
530.ne 2
531.na
532\fBzfetch_min_sec_reap\fR (uint)
533.ad
534.RS 12n
535Min time before an active prefetch stream can be reclaimed
536.sp
537Default value: \fB2\fR.
538.RE
539
540.sp
541.ne 2
542.na
543\fBzfs_arc_dnode_limit\fR (ulong)
544.ad
545.RS 12n
546When the number of bytes consumed by dnodes in the ARC exceeds this number of
547bytes, try to unpin some of it in response to demand for non-metadata. This
548value acts as a ceiling to the amount of dnode metadata, and defaults to 0 which
549indicates that a percent which is based on \fBzfs_arc_dnode_limit_percent\fR of
550the ARC meta buffers that may be used for dnodes.
551
552See also \fBzfs_arc_meta_prune\fR which serves a similar purpose but is used
553when the amount of metadata in the ARC exceeds \fBzfs_arc_meta_limit\fR rather
554than in response to overall demand for non-metadata.
555
556.sp
557Default value: \fB0\fR.
558.RE
559
560.sp
561.ne 2
562.na
563\fBzfs_arc_dnode_limit_percent\fR (ulong)
564.ad
565.RS 12n
566Percentage that can be consumed by dnodes of ARC meta buffers.
567.sp
568See also \fBzfs_arc_dnode_limit\fR which serves a similar purpose but has a
569higher priority if set to nonzero value.
570.sp
571Default value: \fB10\fR%.
572.RE
573
574.sp
575.ne 2
576.na
577\fBzfs_arc_dnode_reduce_percent\fR (ulong)
578.ad
579.RS 12n
580Percentage of ARC dnodes to try to scan in response to demand for non-metadata
581when the number of bytes consumed by dnodes exceeds \fBzfs_arc_dnode_limit\fR.
582
583.sp
584Default value: \fB10\fR% of the number of dnodes in the ARC.
585.RE
586
587.sp
588.ne 2
589.na
590\fBzfs_arc_average_blocksize\fR (int)
591.ad
592.RS 12n
593The ARC's buffer hash table is sized based on the assumption of an average
594block size of \fBzfs_arc_average_blocksize\fR (default 8K). This works out
595to roughly 1MB of hash table per 1GB of physical memory with 8-byte pointers.
596For configurations with a known larger average block size this value can be
597increased to reduce the memory footprint.
598
599.sp
600Default value: \fB8192\fR.
601.RE
602
603.sp
604.ne 2
605.na
606\fBzfs_arc_evict_batch_limit\fR (int)
607.ad
608.RS 12n
609Number ARC headers to evict per sub-list before proceeding to another sub-list.
610This batch-style operation prevents entire sub-lists from being evicted at once
611but comes at a cost of additional unlocking and locking.
612.sp
613Default value: \fB10\fR.
614.RE
615
616.sp
617.ne 2
618.na
619\fBzfs_arc_grow_retry\fR (int)
620.ad
621.RS 12n
622If set to a non zero value, it will replace the arc_grow_retry value with this value.
623The arc_grow_retry value (default 5) is the number of seconds the ARC will wait before
624trying to resume growth after a memory pressure event.
625.sp
626Default value: \fB0\fR.
627.RE
628
629.sp
630.ne 2
631.na
632\fBzfs_arc_lotsfree_percent\fR (int)
633.ad
634.RS 12n
635Throttle I/O when free system memory drops below this percentage of total
636system memory. Setting this value to 0 will disable the throttle.
637.sp
638Default value: \fB10\fR%.
639.RE
640
641.sp
642.ne 2
643.na
644\fBzfs_arc_max\fR (ulong)
645.ad
646.RS 12n
647Max arc size of ARC in bytes. If set to 0 then it will consume 1/2 of system
648RAM. This value must be at least 67108864 (64 megabytes).
649.sp
650This value can be changed dynamically with some caveats. It cannot be set back
651to 0 while running and reducing it below the current ARC size will not cause
652the ARC to shrink without memory pressure to induce shrinking.
653.sp
654Default value: \fB0\fR.
655.RE
656
657.sp
658.ne 2
659.na
660\fBzfs_arc_meta_adjust_restarts\fR (ulong)
661.ad
662.RS 12n
663The number of restart passes to make while scanning the ARC attempting
664the free buffers in order to stay below the \fBzfs_arc_meta_limit\fR.
665This value should not need to be tuned but is available to facilitate
666performance analysis.
667.sp
668Default value: \fB4096\fR.
669.RE
670
671.sp
672.ne 2
673.na
674\fBzfs_arc_meta_limit\fR (ulong)
675.ad
676.RS 12n
677The maximum allowed size in bytes that meta data buffers are allowed to
678consume in the ARC. When this limit is reached meta data buffers will
679be reclaimed even if the overall arc_c_max has not been reached. This
680value defaults to 0 which indicates that a percent which is based on
681\fBzfs_arc_meta_limit_percent\fR of the ARC may be used for meta data.
682.sp
683This value my be changed dynamically except that it cannot be set back to 0
684for a specific percent of the ARC; it must be set to an explicit value.
685.sp
686Default value: \fB0\fR.
687.RE
688
689.sp
690.ne 2
691.na
692\fBzfs_arc_meta_limit_percent\fR (ulong)
693.ad
694.RS 12n
695Percentage of ARC buffers that can be used for meta data.
696
697See also \fBzfs_arc_meta_limit\fR which serves a similar purpose but has a
698higher priority if set to nonzero value.
699
700.sp
701Default value: \fB75\fR%.
702.RE
703
704.sp
705.ne 2
706.na
707\fBzfs_arc_meta_min\fR (ulong)
708.ad
709.RS 12n
710The minimum allowed size in bytes that meta data buffers may consume in
711the ARC. This value defaults to 0 which disables a floor on the amount
712of the ARC devoted meta data.
713.sp
714Default value: \fB0\fR.
715.RE
716
717.sp
718.ne 2
719.na
720\fBzfs_arc_meta_prune\fR (int)
721.ad
722.RS 12n
723The number of dentries and inodes to be scanned looking for entries
724which can be dropped. This may be required when the ARC reaches the
725\fBzfs_arc_meta_limit\fR because dentries and inodes can pin buffers
726in the ARC. Increasing this value will cause to dentry and inode caches
727to be pruned more aggressively. Setting this value to 0 will disable
728pruning the inode and dentry caches.
729.sp
730Default value: \fB10,000\fR.
731.RE
732
733.sp
734.ne 2
735.na
736\fBzfs_arc_meta_strategy\fR (int)
737.ad
738.RS 12n
739Define the strategy for ARC meta data buffer eviction (meta reclaim strategy).
740A value of 0 (META_ONLY) will evict only the ARC meta data buffers.
741A value of 1 (BALANCED) indicates that additional data buffers may be evicted if
742that is required to in order to evict the required number of meta data buffers.
743.sp
744Default value: \fB1\fR.
745.RE
746
747.sp
748.ne 2
749.na
750\fBzfs_arc_min\fR (ulong)
751.ad
752.RS 12n
753Min arc size of ARC in bytes. If set to 0 then arc_c_min will default to
754consuming the larger of 32M or 1/32 of total system memory.
755.sp
756Default value: \fB0\fR.
757.RE
758
759.sp
760.ne 2
761.na
762\fBzfs_arc_min_prefetch_ms\fR (int)
763.ad
764.RS 12n
765Minimum time prefetched blocks are locked in the ARC, specified in ms.
766A value of \fB0\fR will default to 1000 ms.
767.sp
768Default value: \fB0\fR.
769.RE
770
771.sp
772.ne 2
773.na
774\fBzfs_arc_min_prescient_prefetch_ms\fR (int)
775.ad
776.RS 12n
777Minimum time "prescient prefetched" blocks are locked in the ARC, specified
778in ms. These blocks are meant to be prefetched fairly aggresively ahead of
779the code that may use them. A value of \fB0\fR will default to 6000 ms.
780.sp
781Default value: \fB0\fR.
782.RE
783
784.sp
785.ne 2
786.na
787\fBzfs_max_missing_tvds\fR (int)
788.ad
789.RS 12n
790Number of missing top-level vdevs which will be allowed during
791pool import (only in read-only mode).
792.sp
793Default value: \fB0\fR
794.RE
795
796.sp
797.ne 2
798.na
799\fBzfs_multilist_num_sublists\fR (int)
800.ad
801.RS 12n
802To allow more fine-grained locking, each ARC state contains a series
803of lists for both data and meta data objects. Locking is performed at
804the level of these "sub-lists". This parameters controls the number of
805sub-lists per ARC state, and also applies to other uses of the
806multilist data structure.
807.sp
808Default value: \fB4\fR or the number of online CPUs, whichever is greater
809.RE
810
811.sp
812.ne 2
813.na
814\fBzfs_arc_overflow_shift\fR (int)
815.ad
816.RS 12n
817The ARC size is considered to be overflowing if it exceeds the current
818ARC target size (arc_c) by a threshold determined by this parameter.
819The threshold is calculated as a fraction of arc_c using the formula
820"arc_c >> \fBzfs_arc_overflow_shift\fR".
821
822The default value of 8 causes the ARC to be considered to be overflowing
823if it exceeds the target size by 1/256th (0.3%) of the target size.
824
825When the ARC is overflowing, new buffer allocations are stalled until
826the reclaim thread catches up and the overflow condition no longer exists.
827.sp
828Default value: \fB8\fR.
829.RE
830
831.sp
832.ne 2
833.na
834
835\fBzfs_arc_p_min_shift\fR (int)
836.ad
837.RS 12n
838If set to a non zero value, this will update arc_p_min_shift (default 4)
839with the new value.
840arc_p_min_shift is used to shift of arc_c for calculating both min and max
841max arc_p
842.sp
843Default value: \fB0\fR.
844.RE
845
846.sp
847.ne 2
848.na
849\fBzfs_arc_p_dampener_disable\fR (int)
850.ad
851.RS 12n
852Disable arc_p adapt dampener
853.sp
854Use \fB1\fR for yes (default) and \fB0\fR to disable.
855.RE
856
857.sp
858.ne 2
859.na
860\fBzfs_arc_shrink_shift\fR (int)
861.ad
862.RS 12n
863If set to a non zero value, this will update arc_shrink_shift (default 7)
864with the new value.
865.sp
866Default value: \fB0\fR.
867.RE
868
869.sp
870.ne 2
871.na
872\fBzfs_arc_pc_percent\fR (uint)
873.ad
874.RS 12n
875Percent of pagecache to reclaim arc to
876
877This tunable allows ZFS arc to play more nicely with the kernel's LRU
878pagecache. It can guarantee that the arc size won't collapse under scanning
879pressure on the pagecache, yet still allows arc to be reclaimed down to
880zfs_arc_min if necessary. This value is specified as percent of pagecache
881size (as measured by NR_FILE_PAGES) where that percent may exceed 100. This
882only operates during memory pressure/reclaim.
883.sp
884Default value: \fB0\fR% (disabled).
885.RE
886
887.sp
888.ne 2
889.na
890\fBzfs_arc_sys_free\fR (ulong)
891.ad
892.RS 12n
893The target number of bytes the ARC should leave as free memory on the system.
894Defaults to the larger of 1/64 of physical memory or 512K. Setting this
895option to a non-zero value will override the default.
896.sp
897Default value: \fB0\fR.
898.RE
899
900.sp
901.ne 2
902.na
903\fBzfs_autoimport_disable\fR (int)
904.ad
905.RS 12n
906Disable pool import at module load by ignoring the cache file (typically \fB/etc/zfs/zpool.cache\fR).
907.sp
908Use \fB1\fR for yes (default) and \fB0\fR for no.
909.RE
910
911.sp
912.ne 2
913.na
914\fBzfs_checksums_per_second\fR (int)
915.ad
916.RS 12n
917Rate limit checksum events to this many per second. Note that this should
918not be set below the zed thresholds (currently 10 checksums over 10 sec)
919or else zed may not trigger any action.
920.sp
921Default value: 20
922.RE
923
924.sp
925.ne 2
926.na
927\fBzfs_commit_timeout_pct\fR (int)
928.ad
929.RS 12n
930This controls the amount of time that a ZIL block (lwb) will remain "open"
931when it isn't "full", and it has a thread waiting for it to be committed to
932stable storage. The timeout is scaled based on a percentage of the last lwb
933latency to avoid significantly impacting the latency of each individual
934transaction record (itx).
935.sp
936Default value: \fB5\fR%.
937.RE
938
939.sp
940.ne 2
941.na
942\fBzfs_condense_indirect_vdevs_enable\fR (int)
943.ad
944.RS 12n
945Enable condensing indirect vdev mappings. When set to a non-zero value,
946attempt to condense indirect vdev mappings if the mapping uses more than
947\fBzfs_condense_min_mapping_bytes\fR bytes of memory and if the obsolete
948space map object uses more than \fBzfs_condense_max_obsolete_bytes\fR
949bytes on-disk. The condensing process is an attempt to save memory by
950removing obsolete mappings.
951.sp
952Default value: \fB1\fR.
953.RE
954
955.sp
956.ne 2
957.na
958\fBzfs_condense_max_obsolete_bytes\fR (ulong)
959.ad
960.RS 12n
961Only attempt to condense indirect vdev mappings if the on-disk size
962of the obsolete space map object is greater than this number of bytes
963(see \fBfBzfs_condense_indirect_vdevs_enable\fR).
964.sp
965Default value: \fB1,073,741,824\fR.
966.RE
967
968.sp
969.ne 2
970.na
971\fBzfs_condense_min_mapping_bytes\fR (ulong)
972.ad
973.RS 12n
974Minimum size vdev mapping to attempt to condense (see
975\fBzfs_condense_indirect_vdevs_enable\fR).
976.sp
977Default value: \fB131,072\fR.
978.RE
979
980.sp
981.ne 2
982.na
983\fBzfs_dbgmsg_enable\fR (int)
984.ad
985.RS 12n
986Internally ZFS keeps a small log to facilitate debugging. By default the log
987is disabled, to enable it set this option to 1. The contents of the log can
988be accessed by reading the /proc/spl/kstat/zfs/dbgmsg file. Writing 0 to
989this proc file clears the log.
990.sp
991Default value: \fB0\fR.
992.RE
993
994.sp
995.ne 2
996.na
997\fBzfs_dbgmsg_maxsize\fR (int)
998.ad
999.RS 12n
1000The maximum size in bytes of the internal ZFS debug log.
1001.sp
1002Default value: \fB4M\fR.
1003.RE
1004
1005.sp
1006.ne 2
1007.na
1008\fBzfs_dbuf_state_index\fR (int)
1009.ad
1010.RS 12n
1011This feature is currently unused. It is normally used for controlling what
1012reporting is available under /proc/spl/kstat/zfs.
1013.sp
1014Default value: \fB0\fR.
1015.RE
1016
1017.sp
1018.ne 2
1019.na
1020\fBzfs_deadman_enabled\fR (int)
1021.ad
1022.RS 12n
1023When a pool sync operation takes longer than \fBzfs_deadman_synctime_ms\fR
1024milliseconds, or when an individual I/O takes longer than
1025\fBzfs_deadman_ziotime_ms\fR milliseconds, then the operation is considered to
1026be "hung". If \fBzfs_deadman_enabled\fR is set then the deadman behavior is
1027invoked as described by the \fBzfs_deadman_failmode\fR module option.
1028By default the deadman is enabled and configured to \fBwait\fR which results
1029in "hung" I/Os only being logged. The deadman is automatically disabled
1030when a pool gets suspended.
1031.sp
1032Default value: \fB1\fR.
1033.RE
1034
1035.sp
1036.ne 2
1037.na
1038\fBzfs_deadman_failmode\fR (charp)
1039.ad
1040.RS 12n
1041Controls the failure behavior when the deadman detects a "hung" I/O. Valid
1042values are \fBwait\fR, \fBcontinue\fR, and \fBpanic\fR.
1043.sp
1044\fBwait\fR - Wait for a "hung" I/O to complete. For each "hung" I/O a
1045"deadman" event will be posted describing that I/O.
1046.sp
1047\fBcontinue\fR - Attempt to recover from a "hung" I/O by re-dispatching it
1048to the I/O pipeline if possible.
1049.sp
1050\fBpanic\fR - Panic the system. This can be used to facilitate an automatic
1051fail-over to a properly configured fail-over partner.
1052.sp
1053Default value: \fBwait\fR.
1054.RE
1055
1056.sp
1057.ne 2
1058.na
1059\fBzfs_deadman_checktime_ms\fR (int)
1060.ad
1061.RS 12n
1062Check time in milliseconds. This defines the frequency at which we check
1063for hung I/O and potentially invoke the \fBzfs_deadman_failmode\fR behavior.
1064.sp
1065Default value: \fB60,000\fR.
1066.RE
1067
1068.sp
1069.ne 2
1070.na
1071\fBzfs_deadman_synctime_ms\fR (ulong)
1072.ad
1073.RS 12n
1074Interval in milliseconds after which the deadman is triggered and also
1075the interval after which a pool sync operation is considered to be "hung".
1076Once this limit is exceeded the deadman will be invoked every
1077\fBzfs_deadman_checktime_ms\fR milliseconds until the pool sync completes.
1078.sp
1079Default value: \fB600,000\fR.
1080.RE
1081
1082.sp
1083.ne 2
1084.na
1085\fBzfs_deadman_ziotime_ms\fR (ulong)
1086.ad
1087.RS 12n
1088Interval in milliseconds after which the deadman is triggered and an
1089individual I/O operation is considered to be "hung". As long as the I/O
1090remains "hung" the deadman will be invoked every \fBzfs_deadman_checktime_ms\fR
1091milliseconds until the I/O completes.
1092.sp
1093Default value: \fB300,000\fR.
1094.RE
1095
1096.sp
1097.ne 2
1098.na
1099\fBzfs_dedup_prefetch\fR (int)
1100.ad
1101.RS 12n
1102Enable prefetching dedup-ed blks
1103.sp
1104Use \fB1\fR for yes and \fB0\fR to disable (default).
1105.RE
1106
1107.sp
1108.ne 2
1109.na
1110\fBzfs_delay_min_dirty_percent\fR (int)
1111.ad
1112.RS 12n
1113Start to delay each transaction once there is this amount of dirty data,
1114expressed as a percentage of \fBzfs_dirty_data_max\fR.
1115This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
1116See the section "ZFS TRANSACTION DELAY".
1117.sp
1118Default value: \fB60\fR%.
1119.RE
1120
1121.sp
1122.ne 2
1123.na
1124\fBzfs_delay_scale\fR (int)
1125.ad
1126.RS 12n
1127This controls how quickly the transaction delay approaches infinity.
1128Larger values cause longer delays for a given amount of dirty data.
1129.sp
1130For the smoothest delay, this value should be about 1 billion divided
1131by the maximum number of operations per second. This will smoothly
1132handle between 10x and 1/10th this number.
1133.sp
1134See the section "ZFS TRANSACTION DELAY".
1135.sp
1136Note: \fBzfs_delay_scale\fR * \fBzfs_dirty_data_max\fR must be < 2^64.
1137.sp
1138Default value: \fB500,000\fR.
1139.RE
1140
1141.sp
1142.ne 2
1143.na
1144\fBzfs_slow_io_events_per_second\fR (int)
1145.ad
1146.RS 12n
1147Rate limit delay zevents (which report slow I/Os) to this many per second.
1148.sp
1149Default value: 20
1150.RE
1151
1152.sp
1153.ne 2
1154.na
1155\fBzfs_unlink_suspend_progress\fR (uint)
1156.ad
1157.RS 12n
1158When enabled, files will not be asynchronously removed from the list of pending
1159unlinks and the space they consume will be leaked. Once this option has been
1160disabled and the dataset is remounted, the pending unlinks will be processed
1161and the freed space returned to the pool.
1162This option is used by the test suite to facilitate testing.
1163.sp
1164Uses \fB0\fR (default) to allow progress and \fB1\fR to pause progress.
1165.RE
1166
1167.sp
1168.ne 2
1169.na
1170\fBzfs_delete_blocks\fR (ulong)
1171.ad
1172.RS 12n
1173This is the used to define a large file for the purposes of delete. Files
1174containing more than \fBzfs_delete_blocks\fR will be deleted asynchronously
1175while smaller files are deleted synchronously. Decreasing this value will
1176reduce the time spent in an unlink(2) system call at the expense of a longer
1177delay before the freed space is available.
1178.sp
1179Default value: \fB20,480\fR.
1180.RE
1181
1182.sp
1183.ne 2
1184.na
1185\fBzfs_dirty_data_max\fR (int)
1186.ad
1187.RS 12n
1188Determines the dirty space limit in bytes. Once this limit is exceeded, new
1189writes are halted until space frees up. This parameter takes precedence
1190over \fBzfs_dirty_data_max_percent\fR.
1191See the section "ZFS TRANSACTION DELAY".
1192.sp
1193Default value: \fB10\fR% of physical RAM, capped at \fBzfs_dirty_data_max_max\fR.
1194.RE
1195
1196.sp
1197.ne 2
1198.na
1199\fBzfs_dirty_data_max_max\fR (int)
1200.ad
1201.RS 12n
1202Maximum allowable value of \fBzfs_dirty_data_max\fR, expressed in bytes.
1203This limit is only enforced at module load time, and will be ignored if
1204\fBzfs_dirty_data_max\fR is later changed. This parameter takes
1205precedence over \fBzfs_dirty_data_max_max_percent\fR. See the section
1206"ZFS TRANSACTION DELAY".
1207.sp
1208Default value: \fB25\fR% of physical RAM.
1209.RE
1210
1211.sp
1212.ne 2
1213.na
1214\fBzfs_dirty_data_max_max_percent\fR (int)
1215.ad
1216.RS 12n
1217Maximum allowable value of \fBzfs_dirty_data_max\fR, expressed as a
1218percentage of physical RAM. This limit is only enforced at module load
1219time, and will be ignored if \fBzfs_dirty_data_max\fR is later changed.
1220The parameter \fBzfs_dirty_data_max_max\fR takes precedence over this
1221one. See the section "ZFS TRANSACTION DELAY".
1222.sp
1223Default value: \fB25\fR%.
1224.RE
1225
1226.sp
1227.ne 2
1228.na
1229\fBzfs_dirty_data_max_percent\fR (int)
1230.ad
1231.RS 12n
1232Determines the dirty space limit, expressed as a percentage of all
1233memory. Once this limit is exceeded, new writes are halted until space frees
1234up. The parameter \fBzfs_dirty_data_max\fR takes precedence over this
1235one. See the section "ZFS TRANSACTION DELAY".
1236.sp
1237Default value: \fB10\fR%, subject to \fBzfs_dirty_data_max_max\fR.
1238.RE
1239
1240.sp
1241.ne 2
1242.na
1243\fBzfs_dirty_data_sync_percent\fR (int)
1244.ad
1245.RS 12n
1246Start syncing out a transaction group if there's at least this much dirty data
1247as a percentage of \fBzfs_dirty_data_max\fR. This should be less than
1248\fBzfs_vdev_async_write_active_min_dirty_percent\fR.
1249.sp
1250Default value: \fB20\fR% of \fBzfs_dirty_data_max\fR.
1251.RE
1252
1253.sp
1254.ne 2
1255.na
1256\fBzfs_fletcher_4_impl\fR (string)
1257.ad
1258.RS 12n
1259Select a fletcher 4 implementation.
1260.sp
1261Supported selectors are: \fBfastest\fR, \fBscalar\fR, \fBsse2\fR, \fBssse3\fR,
1262\fBavx2\fR, \fBavx512f\fR, and \fBaarch64_neon\fR.
1263All of the selectors except \fBfastest\fR and \fBscalar\fR require instruction
1264set extensions to be available and will only appear if ZFS detects that they are
1265present at runtime. If multiple implementations of fletcher 4 are available,
1266the \fBfastest\fR will be chosen using a micro benchmark. Selecting \fBscalar\fR
1267results in the original, CPU based calculation, being used. Selecting any option
1268other than \fBfastest\fR and \fBscalar\fR results in vector instructions from
1269the respective CPU instruction set being used.
1270.sp
1271Default value: \fBfastest\fR.
1272.RE
1273
1274.sp
1275.ne 2
1276.na
1277\fBzfs_free_bpobj_enabled\fR (int)
1278.ad
1279.RS 12n
1280Enable/disable the processing of the free_bpobj object.
1281.sp
1282Default value: \fB1\fR.
1283.RE
1284
1285.sp
1286.ne 2
1287.na
1288\fBzfs_async_block_max_blocks\fR (ulong)
1289.ad
1290.RS 12n
1291Maximum number of blocks freed in a single txg.
1292.sp
1293Default value: \fB100,000\fR.
1294.RE
1295
1296.sp
1297.ne 2
1298.na
1299\fBzfs_override_estimate_recordsize\fR (ulong)
1300.ad
1301.RS 12n
1302Record size calculation override for zfs send estimates.
1303.sp
1304Default value: \fB0\fR.
1305.RE
1306
1307.sp
1308.ne 2
1309.na
1310\fBzfs_vdev_async_read_max_active\fR (int)
1311.ad
1312.RS 12n
1313Maximum asynchronous read I/Os active to each device.
1314See the section "ZFS I/O SCHEDULER".
1315.sp
1316Default value: \fB3\fR.
1317.RE
1318
1319.sp
1320.ne 2
1321.na
1322\fBzfs_vdev_async_read_min_active\fR (int)
1323.ad
1324.RS 12n
1325Minimum asynchronous read I/Os active to each device.
1326See the section "ZFS I/O SCHEDULER".
1327.sp
1328Default value: \fB1\fR.
1329.RE
1330
1331.sp
1332.ne 2
1333.na
1334\fBzfs_vdev_async_write_active_max_dirty_percent\fR (int)
1335.ad
1336.RS 12n
1337When the pool has more than
1338\fBzfs_vdev_async_write_active_max_dirty_percent\fR dirty data, use
1339\fBzfs_vdev_async_write_max_active\fR to limit active async writes. If
1340the dirty data is between min and max, the active I/O limit is linearly
1341interpolated. See the section "ZFS I/O SCHEDULER".
1342.sp
1343Default value: \fB60\fR%.
1344.RE
1345
1346.sp
1347.ne 2
1348.na
1349\fBzfs_vdev_async_write_active_min_dirty_percent\fR (int)
1350.ad
1351.RS 12n
1352When the pool has less than
1353\fBzfs_vdev_async_write_active_min_dirty_percent\fR dirty data, use
1354\fBzfs_vdev_async_write_min_active\fR to limit active async writes. If
1355the dirty data is between min and max, the active I/O limit is linearly
1356interpolated. See the section "ZFS I/O SCHEDULER".
1357.sp
1358Default value: \fB30\fR%.
1359.RE
1360
1361.sp
1362.ne 2
1363.na
1364\fBzfs_vdev_async_write_max_active\fR (int)
1365.ad
1366.RS 12n
1367Maximum asynchronous write I/Os active to each device.
1368See the section "ZFS I/O SCHEDULER".
1369.sp
1370Default value: \fB10\fR.
1371.RE
1372
1373.sp
1374.ne 2
1375.na
1376\fBzfs_vdev_async_write_min_active\fR (int)
1377.ad
1378.RS 12n
1379Minimum asynchronous write I/Os active to each device.
1380See the section "ZFS I/O SCHEDULER".
1381.sp
1382Lower values are associated with better latency on rotational media but poorer
1383resilver performance. The default value of 2 was chosen as a compromise. A
1384value of 3 has been shown to improve resilver performance further at a cost of
1385further increasing latency.
1386.sp
1387Default value: \fB2\fR.
1388.RE
1389
1390.sp
1391.ne 2
1392.na
1393\fBzfs_vdev_initializing_max_active\fR (int)
1394.ad
1395.RS 12n
1396Maximum initializing I/Os active to each device.
1397See the section "ZFS I/O SCHEDULER".
1398.sp
1399Default value: \fB1\fR.
1400.RE
1401
1402.sp
1403.ne 2
1404.na
1405\fBzfs_vdev_initializing_min_active\fR (int)
1406.ad
1407.RS 12n
1408Minimum initializing I/Os active to each device.
1409See the section "ZFS I/O SCHEDULER".
1410.sp
1411Default value: \fB1\fR.
1412.RE
1413
1414.sp
1415.ne 2
1416.na
1417\fBzfs_vdev_max_active\fR (int)
1418.ad
1419.RS 12n
1420The maximum number of I/Os active to each device. Ideally, this will be >=
1421the sum of each queue's max_active. It must be at least the sum of each
1422queue's min_active. See the section "ZFS I/O SCHEDULER".
1423.sp
1424Default value: \fB1,000\fR.
1425.RE
1426
1427.sp
1428.ne 2
1429.na
1430\fBzfs_vdev_removal_max_active\fR (int)
1431.ad
1432.RS 12n
1433Maximum removal I/Os active to each device.
1434See the section "ZFS I/O SCHEDULER".
1435.sp
1436Default value: \fB2\fR.
1437.RE
1438
1439.sp
1440.ne 2
1441.na
1442\fBzfs_vdev_removal_min_active\fR (int)
1443.ad
1444.RS 12n
1445Minimum removal I/Os active to each device.
1446See the section "ZFS I/O SCHEDULER".
1447.sp
1448Default value: \fB1\fR.
1449.RE
1450
1451.sp
1452.ne 2
1453.na
1454\fBzfs_vdev_scrub_max_active\fR (int)
1455.ad
1456.RS 12n
1457Maximum scrub I/Os active to each device.
1458See the section "ZFS I/O SCHEDULER".
1459.sp
1460Default value: \fB2\fR.
1461.RE
1462
1463.sp
1464.ne 2
1465.na
1466\fBzfs_vdev_scrub_min_active\fR (int)
1467.ad
1468.RS 12n
1469Minimum scrub I/Os active to each device.
1470See the section "ZFS I/O SCHEDULER".
1471.sp
1472Default value: \fB1\fR.
1473.RE
1474
1475.sp
1476.ne 2
1477.na
1478\fBzfs_vdev_sync_read_max_active\fR (int)
1479.ad
1480.RS 12n
1481Maximum synchronous read I/Os active to each device.
1482See the section "ZFS I/O SCHEDULER".
1483.sp
1484Default value: \fB10\fR.
1485.RE
1486
1487.sp
1488.ne 2
1489.na
1490\fBzfs_vdev_sync_read_min_active\fR (int)
1491.ad
1492.RS 12n
1493Minimum synchronous read I/Os active to each device.
1494See the section "ZFS I/O SCHEDULER".
1495.sp
1496Default value: \fB10\fR.
1497.RE
1498
1499.sp
1500.ne 2
1501.na
1502\fBzfs_vdev_sync_write_max_active\fR (int)
1503.ad
1504.RS 12n
1505Maximum synchronous write I/Os active to each device.
1506See the section "ZFS I/O SCHEDULER".
1507.sp
1508Default value: \fB10\fR.
1509.RE
1510
1511.sp
1512.ne 2
1513.na
1514\fBzfs_vdev_sync_write_min_active\fR (int)
1515.ad
1516.RS 12n
1517Minimum synchronous write I/Os active to each device.
1518See the section "ZFS I/O SCHEDULER".
1519.sp
1520Default value: \fB10\fR.
1521.RE
1522
1523.sp
1524.ne 2
1525.na
1526\fBzfs_vdev_queue_depth_pct\fR (int)
1527.ad
1528.RS 12n
1529Maximum number of queued allocations per top-level vdev expressed as
1530a percentage of \fBzfs_vdev_async_write_max_active\fR which allows the
1531system to detect devices that are more capable of handling allocations
1532and to allocate more blocks to those devices. It allows for dynamic
1533allocation distribution when devices are imbalanced as fuller devices
1534will tend to be slower than empty devices.
1535
1536See also \fBzio_dva_throttle_enabled\fR.
1537.sp
1538Default value: \fB1000\fR%.
1539.RE
1540
1541.sp
1542.ne 2
1543.na
1544\fBzfs_expire_snapshot\fR (int)
1545.ad
1546.RS 12n
1547Seconds to expire .zfs/snapshot
1548.sp
1549Default value: \fB300\fR.
1550.RE
1551
1552.sp
1553.ne 2
1554.na
1555\fBzfs_admin_snapshot\fR (int)
1556.ad
1557.RS 12n
1558Allow the creation, removal, or renaming of entries in the .zfs/snapshot
1559directory to cause the creation, destruction, or renaming of snapshots.
1560When enabled this functionality works both locally and over NFS exports
1561which have the 'no_root_squash' option set. This functionality is disabled
1562by default.
1563.sp
1564Use \fB1\fR for yes and \fB0\fR for no (default).
1565.RE
1566
1567.sp
1568.ne 2
1569.na
1570\fBzfs_flags\fR (int)
1571.ad
1572.RS 12n
1573Set additional debugging flags. The following flags may be bitwise-or'd
1574together.
1575.sp
1576.TS
1577box;
1578rB lB
1579lB lB
1580r l.
1581Value Symbolic Name
1582 Description
1583_
15841 ZFS_DEBUG_DPRINTF
1585 Enable dprintf entries in the debug log.
1586_
15872 ZFS_DEBUG_DBUF_VERIFY *
1588 Enable extra dbuf verifications.
1589_
15904 ZFS_DEBUG_DNODE_VERIFY *
1591 Enable extra dnode verifications.
1592_
15938 ZFS_DEBUG_SNAPNAMES
1594 Enable snapshot name verification.
1595_
159616 ZFS_DEBUG_MODIFY
1597 Check for illegally modified ARC buffers.
1598_
159964 ZFS_DEBUG_ZIO_FREE
1600 Enable verification of block frees.
1601_
1602128 ZFS_DEBUG_HISTOGRAM_VERIFY
1603 Enable extra spacemap histogram verifications.
1604_
1605256 ZFS_DEBUG_METASLAB_VERIFY
1606 Verify space accounting on disk matches in-core range_trees.
1607_
1608512 ZFS_DEBUG_SET_ERROR
1609 Enable SET_ERROR and dprintf entries in the debug log.
1610.TE
1611.sp
1612* Requires debug build.
1613.sp
1614Default value: \fB0\fR.
1615.RE
1616
1617.sp
1618.ne 2
1619.na
1620\fBzfs_free_leak_on_eio\fR (int)
1621.ad
1622.RS 12n
1623If destroy encounters an EIO while reading metadata (e.g. indirect
1624blocks), space referenced by the missing metadata can not be freed.
1625Normally this causes the background destroy to become "stalled", as
1626it is unable to make forward progress. While in this stalled state,
1627all remaining space to free from the error-encountering filesystem is
1628"temporarily leaked". Set this flag to cause it to ignore the EIO,
1629permanently leak the space from indirect blocks that can not be read,
1630and continue to free everything else that it can.
1631
1632The default, "stalling" behavior is useful if the storage partially
1633fails (i.e. some but not all i/os fail), and then later recovers. In
1634this case, we will be able to continue pool operations while it is
1635partially failed, and when it recovers, we can continue to free the
1636space, with no leaks. However, note that this case is actually
1637fairly rare.
1638
1639Typically pools either (a) fail completely (but perhaps temporarily,
1640e.g. a top-level vdev going offline), or (b) have localized,
1641permanent errors (e.g. disk returns the wrong data due to bit flip or
1642firmware bug). In case (a), this setting does not matter because the
1643pool will be suspended and the sync thread will not be able to make
1644forward progress regardless. In case (b), because the error is
1645permanent, the best we can do is leak the minimum amount of space,
1646which is what setting this flag will do. Therefore, it is reasonable
1647for this flag to normally be set, but we chose the more conservative
1648approach of not setting it, so that there is no possibility of
1649leaking space in the "partial temporary" failure case.
1650.sp
1651Default value: \fB0\fR.
1652.RE
1653
1654.sp
1655.ne 2
1656.na
1657\fBzfs_free_min_time_ms\fR (int)
1658.ad
1659.RS 12n
1660During a \fBzfs destroy\fR operation using \fBfeature@async_destroy\fR a minimum
1661of this much time will be spent working on freeing blocks per txg.
1662.sp
1663Default value: \fB1,000\fR.
1664.RE
1665
1666.sp
1667.ne 2
1668.na
1669\fBzfs_immediate_write_sz\fR (long)
1670.ad
1671.RS 12n
1672Largest data block to write to zil. Larger blocks will be treated as if the
1673dataset being written to had the property setting \fBlogbias=throughput\fR.
1674.sp
1675Default value: \fB32,768\fR.
1676.RE
1677
1678.sp
1679.ne 2
1680.na
1681\fBzfs_initialize_value\fR (ulong)
1682.ad
1683.RS 12n
1684Pattern written to vdev free space by \fBzpool initialize\fR.
1685.sp
1686Default value: \fB16,045,690,984,833,335,022\fR (0xdeadbeefdeadbeee).
1687.RE
1688
1689.sp
1690.ne 2
1691.na
1692\fBzfs_lua_max_instrlimit\fR (ulong)
1693.ad
1694.RS 12n
1695The maximum execution time limit that can be set for a ZFS channel program,
1696specified as a number of Lua instructions.
1697.sp
1698Default value: \fB100,000,000\fR.
1699.RE
1700
1701.sp
1702.ne 2
1703.na
1704\fBzfs_lua_max_memlimit\fR (ulong)
1705.ad
1706.RS 12n
1707The maximum memory limit that can be set for a ZFS channel program, specified
1708in bytes.
1709.sp
1710Default value: \fB104,857,600\fR.
1711.RE
1712
1713.sp
1714.ne 2
1715.na
1716\fBzfs_max_dataset_nesting\fR (int)
1717.ad
1718.RS 12n
1719The maximum depth of nested datasets. This value can be tuned temporarily to
1720fix existing datasets that exceed the predefined limit.
1721.sp
1722Default value: \fB50\fR.
1723.RE
1724
1725.sp
1726.ne 2
1727.na
1728\fBzfs_max_recordsize\fR (int)
1729.ad
1730.RS 12n
1731We currently support block sizes from 512 bytes to 16MB. The benefits of
1732larger blocks, and thus larger I/O, need to be weighed against the cost of
1733COWing a giant block to modify one byte. Additionally, very large blocks
1734can have an impact on i/o latency, and also potentially on the memory
1735allocator. Therefore, we do not allow the recordsize to be set larger than
1736zfs_max_recordsize (default 1MB). Larger blocks can be created by changing
1737this tunable, and pools with larger blocks can always be imported and used,
1738regardless of this setting.
1739.sp
1740Default value: \fB1,048,576\fR.
1741.RE
1742
1743.sp
1744.ne 2
1745.na
1746\fBzfs_metaslab_fragmentation_threshold\fR (int)
1747.ad
1748.RS 12n
1749Allow metaslabs to keep their active state as long as their fragmentation
1750percentage is less than or equal to this value. An active metaslab that
1751exceeds this threshold will no longer keep its active status allowing
1752better metaslabs to be selected.
1753.sp
1754Default value: \fB70\fR.
1755.RE
1756
1757.sp
1758.ne 2
1759.na
1760\fBzfs_mg_fragmentation_threshold\fR (int)
1761.ad
1762.RS 12n
1763Metaslab groups are considered eligible for allocations if their
1764fragmentation metric (measured as a percentage) is less than or equal to
1765this value. If a metaslab group exceeds this threshold then it will be
1766skipped unless all metaslab groups within the metaslab class have also
1767crossed this threshold.
1768.sp
1769Default value: \fB85\fR.
1770.RE
1771
1772.sp
1773.ne 2
1774.na
1775\fBzfs_mg_noalloc_threshold\fR (int)
1776.ad
1777.RS 12n
1778Defines a threshold at which metaslab groups should be eligible for
1779allocations. The value is expressed as a percentage of free space
1780beyond which a metaslab group is always eligible for allocations.
1781If a metaslab group's free space is less than or equal to the
1782threshold, the allocator will avoid allocating to that group
1783unless all groups in the pool have reached the threshold. Once all
1784groups have reached the threshold, all groups are allowed to accept
1785allocations. The default value of 0 disables the feature and causes
1786all metaslab groups to be eligible for allocations.
1787
1788This parameter allows one to deal with pools having heavily imbalanced
1789vdevs such as would be the case when a new vdev has been added.
1790Setting the threshold to a non-zero percentage will stop allocations
1791from being made to vdevs that aren't filled to the specified percentage
1792and allow lesser filled vdevs to acquire more allocations than they
1793otherwise would under the old \fBzfs_mg_alloc_failures\fR facility.
1794.sp
1795Default value: \fB0\fR.
1796.RE
1797
1798.sp
1799.ne 2
1800.na
1801\fBzfs_ddt_data_is_special\fR (int)
1802.ad
1803.RS 12n
1804If enabled, ZFS will place DDT data into the special allocation class.
1805.sp
1806Default value: \fB1\fR.
1807.RE
1808
1809.sp
1810.ne 2
1811.na
1812\fBzfs_user_indirect_is_special\fR (int)
1813.ad
1814.RS 12n
1815If enabled, ZFS will place user data (both file and zvol) indirect blocks
1816into the special allocation class.
1817.sp
1818Default value: \fB1\fR.
1819.RE
1820
1821.sp
1822.ne 2
1823.na
1824\fBzfs_multihost_history\fR (int)
1825.ad
1826.RS 12n
1827Historical statistics for the last N multihost updates will be available in
1828\fB/proc/spl/kstat/zfs/<pool>/multihost\fR
1829.sp
1830Default value: \fB0\fR.
1831.RE
1832
1833.sp
1834.ne 2
1835.na
1836\fBzfs_multihost_interval\fR (ulong)
1837.ad
1838.RS 12n
1839Used to control the frequency of multihost writes which are performed when the
1840\fBmultihost\fR pool property is on. This is one factor used to determine
1841the length of the activity check during import.
1842.sp
1843The multihost write period is \fBzfs_multihost_interval / leaf-vdevs\fR milliseconds.
1844This means that on average a multihost write will be issued for each leaf vdev every
1845\fBzfs_multihost_interval\fR milliseconds. In practice, the observed period can
1846vary with the I/O load and this observed value is the delay which is stored in
1847the uberblock.
1848.sp
1849On import the activity check waits a minimum amount of time determined by
1850\fBzfs_multihost_interval * zfs_multihost_import_intervals\fR. The activity
1851check time may be further extended if the value of mmp delay found in the best
1852uberblock indicates actual multihost updates happened at longer intervals than
1853\fBzfs_multihost_interval\fR. A minimum value of \fB100ms\fR is enforced.
1854.sp
1855Default value: \fB1000\fR.
1856.RE
1857
1858.sp
1859.ne 2
1860.na
1861\fBzfs_multihost_import_intervals\fR (uint)
1862.ad
1863.RS 12n
1864Used to control the duration of the activity test on import. Smaller values of
1865\fBzfs_multihost_import_intervals\fR will reduce the import time but increase
1866the risk of failing to detect an active pool. The total activity check time is
1867never allowed to drop below one second. A value of 0 is ignored and treated as
1868if it was set to 1
1869.sp
1870Default value: \fB10\fR.
1871.RE
1872
1873.sp
1874.ne 2
1875.na
1876\fBzfs_multihost_fail_intervals\fR (uint)
1877.ad
1878.RS 12n
1879Controls the behavior of the pool when multihost write failures are detected.
1880.sp
1881When \fBzfs_multihost_fail_intervals = 0\fR then multihost write failures are ignored.
1882The failures will still be reported to the ZED which depending on its
1883configuration may take action such as suspending the pool or offlining a device.
1884.sp
1885When \fBzfs_multihost_fail_intervals > 0\fR then sequential multihost write failures
1886will cause the pool to be suspended. This occurs when
1887\fBzfs_multihost_fail_intervals * zfs_multihost_interval\fR milliseconds have
1888passed since the last successful multihost write. This guarantees the activity test
1889will see multihost writes if the pool is imported.
1890.sp
1891Default value: \fB5\fR.
1892.RE
1893
1894.sp
1895.ne 2
1896.na
1897\fBzfs_no_scrub_io\fR (int)
1898.ad
1899.RS 12n
1900Set for no scrub I/O. This results in scrubs not actually scrubbing data and
1901simply doing a metadata crawl of the pool instead.
1902.sp
1903Use \fB1\fR for yes and \fB0\fR for no (default).
1904.RE
1905
1906.sp
1907.ne 2
1908.na
1909\fBzfs_no_scrub_prefetch\fR (int)
1910.ad
1911.RS 12n
1912Set to disable block prefetching for scrubs.
1913.sp
1914Use \fB1\fR for yes and \fB0\fR for no (default).
1915.RE
1916
1917.sp
1918.ne 2
1919.na
1920\fBzfs_nocacheflush\fR (int)
1921.ad
1922.RS 12n
1923Disable cache flush operations on disks when writing. Setting this will
1924cause pool corruption on power loss if a volatile out-of-order write cache
1925is enabled.
1926.sp
1927Use \fB1\fR for yes and \fB0\fR for no (default).
1928.RE
1929
1930.sp
1931.ne 2
1932.na
1933\fBzfs_nopwrite_enabled\fR (int)
1934.ad
1935.RS 12n
1936Enable NOP writes
1937.sp
1938Use \fB1\fR for yes (default) and \fB0\fR to disable.
1939.RE
1940
1941.sp
1942.ne 2
1943.na
1944\fBzfs_dmu_offset_next_sync\fR (int)
1945.ad
1946.RS 12n
1947Enable forcing txg sync to find holes. When enabled forces ZFS to act
1948like prior versions when SEEK_HOLE or SEEK_DATA flags are used, which
1949when a dnode is dirty causes txg's to be synced so that this data can be
1950found.
1951.sp
1952Use \fB1\fR for yes and \fB0\fR to disable (default).
1953.RE
1954
1955.sp
1956.ne 2
1957.na
1958\fBzfs_pd_bytes_max\fR (int)
1959.ad
1960.RS 12n
1961The number of bytes which should be prefetched during a pool traversal
1962(eg: \fBzfs send\fR or other data crawling operations)
1963.sp
1964Default value: \fB52,428,800\fR.
1965.RE
1966
1967.sp
1968.ne 2
1969.na
1970\fBzfs_per_txg_dirty_frees_percent \fR (ulong)
1971.ad
1972.RS 12n
1973Tunable to control percentage of dirtied indirect blocks from frees allowed
1974into one TXG. After this threshold is crossed, additional frees will wait until
1975the next TXG.
1976A value of zero will disable this throttle.
1977.sp
1978Default value: \fB5\fR, set to \fB0\fR to disable.
1979.RE
1980
1981.sp
1982.ne 2
1983.na
1984\fBzfs_prefetch_disable\fR (int)
1985.ad
1986.RS 12n
1987This tunable disables predictive prefetch. Note that it leaves "prescient"
1988prefetch (e.g. prefetch for zfs send) intact. Unlike predictive prefetch,
1989prescient prefetch never issues i/os that end up not being needed, so it
1990can't hurt performance.
1991.sp
1992Use \fB1\fR for yes and \fB0\fR for no (default).
1993.RE
1994
1995.sp
1996.ne 2
1997.na
1998\fBzfs_read_chunk_size\fR (long)
1999.ad
2000.RS 12n
2001Bytes to read per chunk
2002.sp
2003Default value: \fB1,048,576\fR.
2004.RE
2005
2006.sp
2007.ne 2
2008.na
2009\fBzfs_read_history\fR (int)
2010.ad
2011.RS 12n
2012Historical statistics for the last N reads will be available in
2013\fB/proc/spl/kstat/zfs/<pool>/reads\fR
2014.sp
2015Default value: \fB0\fR (no data is kept).
2016.RE
2017
2018.sp
2019.ne 2
2020.na
2021\fBzfs_read_history_hits\fR (int)
2022.ad
2023.RS 12n
2024Include cache hits in read history
2025.sp
2026Use \fB1\fR for yes and \fB0\fR for no (default).
2027.RE
2028
2029.sp
2030.ne 2
2031.na
2032\fBzfs_reconstruct_indirect_combinations_max\fR (int)
2033.ad
2034.RS 12na
2035If an indirect split block contains more than this many possible unique
2036combinations when being reconstructed, consider it too computationally
2037expensive to check them all. Instead, try at most
2038\fBzfs_reconstruct_indirect_combinations_max\fR randomly-selected
2039combinations each time the block is accessed. This allows all segment
2040copies to participate fairly in the reconstruction when all combinations
2041cannot be checked and prevents repeated use of one bad copy.
2042.sp
2043Default value: \fB4096\fR.
2044.RE
2045
2046.sp
2047.ne 2
2048.na
2049\fBzfs_recover\fR (int)
2050.ad
2051.RS 12n
2052Set to attempt to recover from fatal errors. This should only be used as a
2053last resort, as it typically results in leaked space, or worse.
2054.sp
2055Use \fB1\fR for yes and \fB0\fR for no (default).
2056.RE
2057
2058.sp
2059.ne 2
2060.na
2061\fBzfs_removal_ignore_errors\fR (int)
2062.ad
2063.RS 12n
2064.sp
2065Ignore hard IO errors during device removal. When set, if a device encounters
2066a hard IO error during the removal process the removal will not be cancelled.
2067This can result in a normally recoverable block becoming permanently damaged
2068and is not recommended. This should only be used as a last resort when the
2069pool cannot be returned to a healthy state prior to removing the device.
2070.sp
2071Default value: \fB0\fR.
2072.RE
2073
2074.sp
2075.ne 2
2076.na
2077\fBzfs_resilver_min_time_ms\fR (int)
2078.ad
2079.RS 12n
2080Resilvers are processed by the sync thread. While resilvering it will spend
2081at least this much time working on a resilver between txg flushes.
2082.sp
2083Default value: \fB3,000\fR.
2084.RE
2085
2086.sp
2087.ne 2
2088.na
2089\fBzfs_scan_ignore_errors\fR (int)
2090.ad
2091.RS 12n
2092If set to a nonzero value, remove the DTL (dirty time list) upon
2093completion of a pool scan (scrub) even if there were unrepairable
2094errors. It is intended to be used during pool repair or recovery to
2095stop resilvering when the pool is next imported.
2096.sp
2097Default value: \fB0\fR.
2098.RE
2099
2100.sp
2101.ne 2
2102.na
2103\fBzfs_scrub_min_time_ms\fR (int)
2104.ad
2105.RS 12n
2106Scrubs are processed by the sync thread. While scrubbing it will spend
2107at least this much time working on a scrub between txg flushes.
2108.sp
2109Default value: \fB1,000\fR.
2110.RE
2111
2112.sp
2113.ne 2
2114.na
2115\fBzfs_scan_checkpoint_intval\fR (int)
2116.ad
2117.RS 12n
2118To preserve progress across reboots the sequential scan algorithm periodically
2119needs to stop metadata scanning and issue all the verifications I/Os to disk.
2120The frequency of this flushing is determined by the
2121\fBzfs_scan_checkpoint_intval\fR tunable.
2122.sp
2123Default value: \fB7200\fR seconds (every 2 hours).
2124.RE
2125
2126.sp
2127.ne 2
2128.na
2129\fBzfs_scan_fill_weight\fR (int)
2130.ad
2131.RS 12n
2132This tunable affects how scrub and resilver I/O segments are ordered. A higher
2133number indicates that we care more about how filled in a segment is, while a
2134lower number indicates we care more about the size of the extent without
2135considering the gaps within a segment. This value is only tunable upon module
2136insertion. Changing the value afterwards will have no affect on scrub or
2137resilver performance.
2138.sp
2139Default value: \fB3\fR.
2140.RE
2141
2142.sp
2143.ne 2
2144.na
2145\fBzfs_scan_issue_strategy\fR (int)
2146.ad
2147.RS 12n
2148Determines the order that data will be verified while scrubbing or resilvering.
2149If set to \fB1\fR, data will be verified as sequentially as possible, given the
2150amount of memory reserved for scrubbing (see \fBzfs_scan_mem_lim_fact\fR). This
2151may improve scrub performance if the pool's data is very fragmented. If set to
2152\fB2\fR, the largest mostly-contiguous chunk of found data will be verified
2153first. By deferring scrubbing of small segments, we may later find adjacent data
2154to coalesce and increase the segment size. If set to \fB0\fR, zfs will use
2155strategy \fB1\fR during normal verification and strategy \fB2\fR while taking a
2156checkpoint.
2157.sp
2158Default value: \fB0\fR.
2159.RE
2160
2161.sp
2162.ne 2
2163.na
2164\fBzfs_scan_legacy\fR (int)
2165.ad
2166.RS 12n
2167A value of 0 indicates that scrubs and resilvers will gather metadata in
2168memory before issuing sequential I/O. A value of 1 indicates that the legacy
2169algorithm will be used where I/O is initiated as soon as it is discovered.
2170Changing this value to 0 will not affect scrubs or resilvers that are already
2171in progress.
2172.sp
2173Default value: \fB0\fR.
2174.RE
2175
2176.sp
2177.ne 2
2178.na
2179\fBzfs_scan_max_ext_gap\fR (int)
2180.ad
2181.RS 12n
2182Indicates the largest gap in bytes between scrub / resilver I/Os that will still
2183be considered sequential for sorting purposes. Changing this value will not
2184affect scrubs or resilvers that are already in progress.
2185.sp
2186Default value: \fB2097152 (2 MB)\fR.
2187.RE
2188
2189.sp
2190.ne 2
2191.na
2192\fBzfs_scan_mem_lim_fact\fR (int)
2193.ad
2194.RS 12n
2195Maximum fraction of RAM used for I/O sorting by sequential scan algorithm.
2196This tunable determines the hard limit for I/O sorting memory usage.
2197When the hard limit is reached we stop scanning metadata and start issuing
2198data verification I/O. This is done until we get below the soft limit.
2199.sp
2200Default value: \fB20\fR which is 5% of RAM (1/20).
2201.RE
2202
2203.sp
2204.ne 2
2205.na
2206\fBzfs_scan_mem_lim_soft_fact\fR (int)
2207.ad
2208.RS 12n
2209The fraction of the hard limit used to determined the soft limit for I/O sorting
2210by the sequential scan algorithm. When we cross this limit from bellow no action
2211is taken. When we cross this limit from above it is because we are issuing
2212verification I/O. In this case (unless the metadata scan is done) we stop
2213issuing verification I/O and start scanning metadata again until we get to the
2214hard limit.
2215.sp
2216Default value: \fB20\fR which is 5% of the hard limit (1/20).
2217.RE
2218
2219.sp
2220.ne 2
2221.na
2222\fBzfs_scan_vdev_limit\fR (int)
2223.ad
2224.RS 12n
2225Maximum amount of data that can be concurrently issued at once for scrubs and
2226resilvers per leaf device, given in bytes.
2227.sp
2228Default value: \fB41943040\fR.
2229.RE
2230
2231.sp
2232.ne 2
2233.na
2234\fBzfs_send_corrupt_data\fR (int)
2235.ad
2236.RS 12n
2237Allow sending of corrupt data (ignore read/checksum errors when sending data)
2238.sp
2239Use \fB1\fR for yes and \fB0\fR for no (default).
2240.RE
2241
2242.sp
2243.ne 2
2244.na
2245\fBzfs_send_queue_length\fR (int)
2246.ad
2247.RS 12n
2248The maximum number of bytes allowed in the \fBzfs send\fR queue. This value
2249must be at least twice the maximum block size in use.
2250.sp
2251Default value: \fB16,777,216\fR.
2252.RE
2253
2254.sp
2255.ne 2
2256.na
2257\fBzfs_recv_queue_length\fR (int)
2258.ad
2259.RS 12n
2260.sp
2261The maximum number of bytes allowed in the \fBzfs receive\fR queue. This value
2262must be at least twice the maximum block size in use.
2263.sp
2264Default value: \fB16,777,216\fR.
2265.RE
2266
2267.sp
2268.ne 2
2269.na
2270\fBzfs_sync_pass_deferred_free\fR (int)
2271.ad
2272.RS 12n
2273Flushing of data to disk is done in passes. Defer frees starting in this pass
2274.sp
2275Default value: \fB2\fR.
2276.RE
2277
2278.sp
2279.ne 2
2280.na
2281\fBzfs_spa_discard_memory_limit\fR (int)
2282.ad
2283.RS 12n
2284Maximum memory used for prefetching a checkpoint's space map on each
2285vdev while discarding the checkpoint.
2286.sp
2287Default value: \fB16,777,216\fR.
2288.RE
2289
2290.sp
2291.ne 2
2292.na
2293\fBzfs_sync_pass_dont_compress\fR (int)
2294.ad
2295.RS 12n
2296Don't compress starting in this pass
2297.sp
2298Default value: \fB5\fR.
2299.RE
2300
2301.sp
2302.ne 2
2303.na
2304\fBzfs_sync_pass_rewrite\fR (int)
2305.ad
2306.RS 12n
2307Rewrite new block pointers starting in this pass
2308.sp
2309Default value: \fB2\fR.
2310.RE
2311
2312.sp
2313.ne 2
2314.na
2315\fBzfs_sync_taskq_batch_pct\fR (int)
2316.ad
2317.RS 12n
2318This controls the number of threads used by the dp_sync_taskq. The default
2319value of 75% will create a maximum of one thread per cpu.
2320.sp
2321Default value: \fB75\fR%.
2322.RE
2323
2324.sp
2325.ne 2
2326.na
2327\fBzfs_txg_history\fR (int)
2328.ad
2329.RS 12n
2330Historical statistics for the last N txgs will be available in
2331\fB/proc/spl/kstat/zfs/<pool>/txgs\fR
2332.sp
2333Default value: \fB0\fR.
2334.RE
2335
2336.sp
2337.ne 2
2338.na
2339\fBzfs_txg_timeout\fR (int)
2340.ad
2341.RS 12n
2342Flush dirty data to disk at least every N seconds (maximum txg duration)
2343.sp
2344Default value: \fB5\fR.
2345.RE
2346
2347.sp
2348.ne 2
2349.na
2350\fBzfs_vdev_aggregation_limit\fR (int)
2351.ad
2352.RS 12n
2353Max vdev I/O aggregation size
2354.sp
2355Default value: \fB131,072\fR.
2356.RE
2357
2358.sp
2359.ne 2
2360.na
2361\fBzfs_vdev_cache_bshift\fR (int)
2362.ad
2363.RS 12n
2364Shift size to inflate reads too
2365.sp
2366Default value: \fB16\fR (effectively 65536).
2367.RE
2368
2369.sp
2370.ne 2
2371.na
2372\fBzfs_vdev_cache_max\fR (int)
2373.ad
2374.RS 12n
2375Inflate reads smaller than this value to meet the \fBzfs_vdev_cache_bshift\fR
2376size (default 64k).
2377.sp
2378Default value: \fB16384\fR.
2379.RE
2380
2381.sp
2382.ne 2
2383.na
2384\fBzfs_vdev_cache_size\fR (int)
2385.ad
2386.RS 12n
2387Total size of the per-disk cache in bytes.
2388.sp
2389Currently this feature is disabled as it has been found to not be helpful
2390for performance and in some cases harmful.
2391.sp
2392Default value: \fB0\fR.
2393.RE
2394
2395.sp
2396.ne 2
2397.na
2398\fBzfs_vdev_mirror_rotating_inc\fR (int)
2399.ad
2400.RS 12n
2401A number by which the balancing algorithm increments the load calculation for
2402the purpose of selecting the least busy mirror member when an I/O immediately
2403follows its predecessor on rotational vdevs for the purpose of making decisions
2404based on load.
2405.sp
2406Default value: \fB0\fR.
2407.RE
2408
2409.sp
2410.ne 2
2411.na
2412\fBzfs_vdev_mirror_rotating_seek_inc\fR (int)
2413.ad
2414.RS 12n
2415A number by which the balancing algorithm increments the load calculation for
2416the purpose of selecting the least busy mirror member when an I/O lacks
2417locality as defined by the zfs_vdev_mirror_rotating_seek_offset. I/Os within
2418this that are not immediately following the previous I/O are incremented by
2419half.
2420.sp
2421Default value: \fB5\fR.
2422.RE
2423
2424.sp
2425.ne 2
2426.na
2427\fBzfs_vdev_mirror_rotating_seek_offset\fR (int)
2428.ad
2429.RS 12n
2430The maximum distance for the last queued I/O in which the balancing algorithm
2431considers an I/O to have locality.
2432See the section "ZFS I/O SCHEDULER".
2433.sp
2434Default value: \fB1048576\fR.
2435.RE
2436
2437.sp
2438.ne 2
2439.na
2440\fBzfs_vdev_mirror_non_rotating_inc\fR (int)
2441.ad
2442.RS 12n
2443A number by which the balancing algorithm increments the load calculation for
2444the purpose of selecting the least busy mirror member on non-rotational vdevs
2445when I/Os do not immediately follow one another.
2446.sp
2447Default value: \fB0\fR.
2448.RE
2449
2450.sp
2451.ne 2
2452.na
2453\fBzfs_vdev_mirror_non_rotating_seek_inc\fR (int)
2454.ad
2455.RS 12n
2456A number by which the balancing algorithm increments the load calculation for
2457the purpose of selecting the least busy mirror member when an I/O lacks
2458locality as defined by the zfs_vdev_mirror_rotating_seek_offset. I/Os within
2459this that are not immediately following the previous I/O are incremented by
2460half.
2461.sp
2462Default value: \fB1\fR.
2463.RE
2464
2465.sp
2466.ne 2
2467.na
2468\fBzfs_vdev_read_gap_limit\fR (int)
2469.ad
2470.RS 12n
2471Aggregate read I/O operations if the gap on-disk between them is within this
2472threshold.
2473.sp
2474Default value: \fB32,768\fR.
2475.RE
2476
2477.sp
2478.ne 2
2479.na
2480\fBzfs_vdev_scheduler\fR (charp)
2481.ad
2482.RS 12n
2483Set the Linux I/O scheduler on whole disk vdevs to this scheduler. Valid options
2484are noop, cfq, bfq & deadline
2485.sp
2486Default value: \fBnoop\fR.
2487.RE
2488
2489.sp
2490.ne 2
2491.na
2492\fBzfs_vdev_write_gap_limit\fR (int)
2493.ad
2494.RS 12n
2495Aggregate write I/O over gap
2496.sp
2497Default value: \fB4,096\fR.
2498.RE
2499
2500.sp
2501.ne 2
2502.na
2503\fBzfs_vdev_raidz_impl\fR (string)
2504.ad
2505.RS 12n
2506Parameter for selecting raidz parity implementation to use.
2507
2508Options marked (always) below may be selected on module load as they are
2509supported on all systems.
2510The remaining options may only be set after the module is loaded, as they
2511are available only if the implementations are compiled in and supported
2512on the running system.
2513
2514Once the module is loaded, the content of
2515/sys/module/zfs/parameters/zfs_vdev_raidz_impl will show available options
2516with the currently selected one enclosed in [].
2517Possible options are:
2518 fastest - (always) implementation selected using built-in benchmark
2519 original - (always) original raidz implementation
2520 scalar - (always) scalar raidz implementation
2521 sse2 - implementation using SSE2 instruction set (64bit x86 only)
2522 ssse3 - implementation using SSSE3 instruction set (64bit x86 only)
2523 avx2 - implementation using AVX2 instruction set (64bit x86 only)
2524 avx512f - implementation using AVX512F instruction set (64bit x86 only)
2525 avx512bw - implementation using AVX512F & AVX512BW instruction sets (64bit x86 only)
2526 aarch64_neon - implementation using NEON (Aarch64/64 bit ARMv8 only)
2527 aarch64_neonx2 - implementation using NEON with more unrolling (Aarch64/64 bit ARMv8 only)
2528.sp
2529Default value: \fBfastest\fR.
2530.RE
2531
2532.sp
2533.ne 2
2534.na
2535\fBzfs_zevent_cols\fR (int)
2536.ad
2537.RS 12n
2538When zevents are logged to the console use this as the word wrap width.
2539.sp
2540Default value: \fB80\fR.
2541.RE
2542
2543.sp
2544.ne 2
2545.na
2546\fBzfs_zevent_console\fR (int)
2547.ad
2548.RS 12n
2549Log events to the console
2550.sp
2551Use \fB1\fR for yes and \fB0\fR for no (default).
2552.RE
2553
2554.sp
2555.ne 2
2556.na
2557\fBzfs_zevent_len_max\fR (int)
2558.ad
2559.RS 12n
2560Max event queue length. A value of 0 will result in a calculated value which
2561increases with the number of CPUs in the system (minimum 64 events). Events
2562in the queue can be viewed with the \fBzpool events\fR command.
2563.sp
2564Default value: \fB0\fR.
2565.RE
2566
2567.sp
2568.ne 2
2569.na
2570\fBzfs_zil_clean_taskq_maxalloc\fR (int)
2571.ad
2572.RS 12n
2573The maximum number of taskq entries that are allowed to be cached. When this
2574limit is exceeded transaction records (itxs) will be cleaned synchronously.
2575.sp
2576Default value: \fB1048576\fR.
2577.RE
2578
2579.sp
2580.ne 2
2581.na
2582\fBzfs_zil_clean_taskq_minalloc\fR (int)
2583.ad
2584.RS 12n
2585The number of taskq entries that are pre-populated when the taskq is first
2586created and are immediately available for use.
2587.sp
2588Default value: \fB1024\fR.
2589.RE
2590
2591.sp
2592.ne 2
2593.na
2594\fBzfs_zil_clean_taskq_nthr_pct\fR (int)
2595.ad
2596.RS 12n
2597This controls the number of threads used by the dp_zil_clean_taskq. The default
2598value of 100% will create a maximum of one thread per cpu.
2599.sp
2600Default value: \fB100\fR%.
2601.RE
2602
2603.sp
2604.ne 2
2605.na
2606\fBzil_nocacheflush\fR (int)
2607.ad
2608.RS 12n
2609Disable the cache flush commands that are normally sent to the disk(s) by
2610the ZIL after an LWB write has completed. Setting this will cause ZIL
2611corruption on power loss if a volatile out-of-order write cache is enabled.
2612.sp
2613Use \fB1\fR for yes and \fB0\fR for no (default).
2614.RE
2615
2616.sp
2617.ne 2
2618.na
2619\fBzil_replay_disable\fR (int)
2620.ad
2621.RS 12n
2622Disable intent logging replay. Can be disabled for recovery from corrupted
2623ZIL
2624.sp
2625Use \fB1\fR for yes and \fB0\fR for no (default).
2626.RE
2627
2628.sp
2629.ne 2
2630.na
2631\fBzil_slog_bulk\fR (ulong)
2632.ad
2633.RS 12n
2634Limit SLOG write size per commit executed with synchronous priority.
2635Any writes above that will be executed with lower (asynchronous) priority
2636to limit potential SLOG device abuse by single active ZIL writer.
2637.sp
2638Default value: \fB786,432\fR.
2639.RE
2640
2641.sp
2642.ne 2
2643.na
2644\fBzio_decompress_fail_fraction\fR (int)
2645.ad
2646.RS 12n
2647If non-zero, this value represents the denominator of the probability that zfs
2648should induce a decompression failure. For instance, for a 5% decompression
2649failure rate, this value should be set to 20.
2650.sp
2651Default value: \fB0\fR.
2652.RE
2653
2654.sp
2655.ne 2
2656.na
2657\fBzio_slow_io_ms\fR (int)
2658.ad
2659.RS 12n
2660When an I/O operation takes more than \fBzio_slow_io_ms\fR milliseconds to
2661complete is marked as a slow I/O. Each slow I/O causes a delay zevent. Slow
2662I/O counters can be seen with "zpool status -s".
2663
2664.sp
2665Default value: \fB30,000\fR.
2666.RE
2667
2668.sp
2669.ne 2
2670.na
2671\fBzio_dva_throttle_enabled\fR (int)
2672.ad
2673.RS 12n
2674Throttle block allocations in the I/O pipeline. This allows for
2675dynamic allocation distribution when devices are imbalanced.
2676When enabled, the maximum number of pending allocations per top-level vdev
2677is limited by \fBzfs_vdev_queue_depth_pct\fR.
2678.sp
2679Default value: \fB1\fR.
2680.RE
2681
2682.sp
2683.ne 2
2684.na
2685\fBzio_requeue_io_start_cut_in_line\fR (int)
2686.ad
2687.RS 12n
2688Prioritize requeued I/O
2689.sp
2690Default value: \fB0\fR.
2691.RE
2692
2693.sp
2694.ne 2
2695.na
2696\fBzio_taskq_batch_pct\fR (uint)
2697.ad
2698.RS 12n
2699Percentage of online CPUs (or CPU cores, etc) which will run a worker thread
2700for I/O. These workers are responsible for I/O work such as compression and
2701checksum calculations. Fractional number of CPUs will be rounded down.
2702.sp
2703The default value of 75 was chosen to avoid using all CPUs which can result in
2704latency issues and inconsistent application performance, especially when high
2705compression is enabled.
2706.sp
2707Default value: \fB75\fR.
2708.RE
2709
2710.sp
2711.ne 2
2712.na
2713\fBzvol_inhibit_dev\fR (uint)
2714.ad
2715.RS 12n
2716Do not create zvol device nodes. This may slightly improve startup time on
2717systems with a very large number of zvols.
2718.sp
2719Use \fB1\fR for yes and \fB0\fR for no (default).
2720.RE
2721
2722.sp
2723.ne 2
2724.na
2725\fBzvol_major\fR (uint)
2726.ad
2727.RS 12n
2728Major number for zvol block devices
2729.sp
2730Default value: \fB230\fR.
2731.RE
2732
2733.sp
2734.ne 2
2735.na
2736\fBzvol_max_discard_blocks\fR (ulong)
2737.ad
2738.RS 12n
2739Discard (aka TRIM) operations done on zvols will be done in batches of this
2740many blocks, where block size is determined by the \fBvolblocksize\fR property
2741of a zvol.
2742.sp
2743Default value: \fB16,384\fR.
2744.RE
2745
2746.sp
2747.ne 2
2748.na
2749\fBzvol_prefetch_bytes\fR (uint)
2750.ad
2751.RS 12n
2752When adding a zvol to the system prefetch \fBzvol_prefetch_bytes\fR
2753from the start and end of the volume. Prefetching these regions
2754of the volume is desirable because they are likely to be accessed
2755immediately by \fBblkid(8)\fR or by the kernel scanning for a partition
2756table.
2757.sp
2758Default value: \fB131,072\fR.
2759.RE
2760
2761.sp
2762.ne 2
2763.na
2764\fBzvol_request_sync\fR (uint)
2765.ad
2766.RS 12n
2767When processing I/O requests for a zvol submit them synchronously. This
2768effectively limits the queue depth to 1 for each I/O submitter. When set
2769to 0 requests are handled asynchronously by a thread pool. The number of
2770requests which can be handled concurrently is controller by \fBzvol_threads\fR.
2771.sp
2772Default value: \fB0\fR.
2773.RE
2774
2775.sp
2776.ne 2
2777.na
2778\fBzvol_threads\fR (uint)
2779.ad
2780.RS 12n
2781Max number of threads which can handle zvol I/O requests concurrently.
2782.sp
2783Default value: \fB32\fR.
2784.RE
2785
2786.sp
2787.ne 2
2788.na
2789\fBzvol_volmode\fR (uint)
2790.ad
2791.RS 12n
2792Defines zvol block devices behaviour when \fBvolmode\fR is set to \fBdefault\fR.
2793Valid values are \fB1\fR (full), \fB2\fR (dev) and \fB3\fR (none).
2794.sp
2795Default value: \fB1\fR.
2796.RE
2797
2798.sp
2799.ne 2
2800.na
2801\fBzfs_qat_disable\fR (int)
2802.ad
2803.RS 12n
2804This tunable disables qat hardware acceleration for gzip compression and.
2805AES-GCM encryption. It is available only if qat acceleration is compiled in
2806and the qat driver is present.
2807.sp
2808Use \fB1\fR for yes and \fB0\fR for no (default).
2809.RE
2810
2811.SH ZFS I/O SCHEDULER
2812ZFS issues I/O operations to leaf vdevs to satisfy and complete I/Os.
2813The I/O scheduler determines when and in what order those operations are
2814issued. The I/O scheduler divides operations into five I/O classes
2815prioritized in the following order: sync read, sync write, async read,
2816async write, and scrub/resilver. Each queue defines the minimum and
2817maximum number of concurrent operations that may be issued to the
2818device. In addition, the device has an aggregate maximum,
2819\fBzfs_vdev_max_active\fR. Note that the sum of the per-queue minimums
2820must not exceed the aggregate maximum. If the sum of the per-queue
2821maximums exceeds the aggregate maximum, then the number of active I/Os
2822may reach \fBzfs_vdev_max_active\fR, in which case no further I/Os will
2823be issued regardless of whether all per-queue minimums have been met.
2824.sp
2825For many physical devices, throughput increases with the number of
2826concurrent operations, but latency typically suffers. Further, physical
2827devices typically have a limit at which more concurrent operations have no
2828effect on throughput or can actually cause it to decrease.
2829.sp
2830The scheduler selects the next operation to issue by first looking for an
2831I/O class whose minimum has not been satisfied. Once all are satisfied and
2832the aggregate maximum has not been hit, the scheduler looks for classes
2833whose maximum has not been satisfied. Iteration through the I/O classes is
2834done in the order specified above. No further operations are issued if the
2835aggregate maximum number of concurrent operations has been hit or if there
2836are no operations queued for an I/O class that has not hit its maximum.
2837Every time an I/O is queued or an operation completes, the I/O scheduler
2838looks for new operations to issue.
2839.sp
2840In general, smaller max_active's will lead to lower latency of synchronous
2841operations. Larger max_active's may lead to higher overall throughput,
2842depending on underlying storage.
2843.sp
2844The ratio of the queues' max_actives determines the balance of performance
2845between reads, writes, and scrubs. E.g., increasing
2846\fBzfs_vdev_scrub_max_active\fR will cause the scrub or resilver to complete
2847more quickly, but reads and writes to have higher latency and lower throughput.
2848.sp
2849All I/O classes have a fixed maximum number of outstanding operations
2850except for the async write class. Asynchronous writes represent the data
2851that is committed to stable storage during the syncing stage for
2852transaction groups. Transaction groups enter the syncing state
2853periodically so the number of queued async writes will quickly burst up
2854and then bleed down to zero. Rather than servicing them as quickly as
2855possible, the I/O scheduler changes the maximum number of active async
2856write I/Os according to the amount of dirty data in the pool. Since
2857both throughput and latency typically increase with the number of
2858concurrent operations issued to physical devices, reducing the
2859burstiness in the number of concurrent operations also stabilizes the
2860response time of operations from other -- and in particular synchronous
2861-- queues. In broad strokes, the I/O scheduler will issue more
2862concurrent operations from the async write queue as there's more dirty
2863data in the pool.
2864.sp
2865Async Writes
2866.sp
2867The number of concurrent operations issued for the async write I/O class
2868follows a piece-wise linear function defined by a few adjustable points.
2869.nf
2870
2871 | o---------| <-- zfs_vdev_async_write_max_active
2872 ^ | /^ |
2873 | | / | |
2874active | / | |
2875 I/O | / | |
2876count | / | |
2877 | / | |
2878 |-------o | | <-- zfs_vdev_async_write_min_active
2879 0|_______^______|_________|
2880 0% | | 100% of zfs_dirty_data_max
2881 | |
2882 | `-- zfs_vdev_async_write_active_max_dirty_percent
2883 `--------- zfs_vdev_async_write_active_min_dirty_percent
2884
2885.fi
2886Until the amount of dirty data exceeds a minimum percentage of the dirty
2887data allowed in the pool, the I/O scheduler will limit the number of
2888concurrent operations to the minimum. As that threshold is crossed, the
2889number of concurrent operations issued increases linearly to the maximum at
2890the specified maximum percentage of the dirty data allowed in the pool.
2891.sp
2892Ideally, the amount of dirty data on a busy pool will stay in the sloped
2893part of the function between \fBzfs_vdev_async_write_active_min_dirty_percent\fR
2894and \fBzfs_vdev_async_write_active_max_dirty_percent\fR. If it exceeds the
2895maximum percentage, this indicates that the rate of incoming data is
2896greater than the rate that the backend storage can handle. In this case, we
2897must further throttle incoming writes, as described in the next section.
2898
2899.SH ZFS TRANSACTION DELAY
2900We delay transactions when we've determined that the backend storage
2901isn't able to accommodate the rate of incoming writes.
2902.sp
2903If there is already a transaction waiting, we delay relative to when
2904that transaction will finish waiting. This way the calculated delay time
2905is independent of the number of threads concurrently executing
2906transactions.
2907.sp
2908If we are the only waiter, wait relative to when the transaction
2909started, rather than the current time. This credits the transaction for
2910"time already served", e.g. reading indirect blocks.
2911.sp
2912The minimum time for a transaction to take is calculated as:
2913.nf
2914 min_time = zfs_delay_scale * (dirty - min) / (max - dirty)
2915 min_time is then capped at 100 milliseconds.
2916.fi
2917.sp
2918The delay has two degrees of freedom that can be adjusted via tunables. The
2919percentage of dirty data at which we start to delay is defined by
2920\fBzfs_delay_min_dirty_percent\fR. This should typically be at or above
2921\fBzfs_vdev_async_write_active_max_dirty_percent\fR so that we only start to
2922delay after writing at full speed has failed to keep up with the incoming write
2923rate. The scale of the curve is defined by \fBzfs_delay_scale\fR. Roughly speaking,
2924this variable determines the amount of delay at the midpoint of the curve.
2925.sp
2926.nf
2927delay
2928 10ms +-------------------------------------------------------------*+
2929 | *|
2930 9ms + *+
2931 | *|
2932 8ms + *+
2933 | * |
2934 7ms + * +
2935 | * |
2936 6ms + * +
2937 | * |
2938 5ms + * +
2939 | * |
2940 4ms + * +
2941 | * |
2942 3ms + * +
2943 | * |
2944 2ms + (midpoint) * +
2945 | | ** |
2946 1ms + v *** +
2947 | zfs_delay_scale ----------> ******** |
2948 0 +-------------------------------------*********----------------+
2949 0% <- zfs_dirty_data_max -> 100%
2950.fi
2951.sp
2952Note that since the delay is added to the outstanding time remaining on the
2953most recent transaction, the delay is effectively the inverse of IOPS.
2954Here the midpoint of 500us translates to 2000 IOPS. The shape of the curve
2955was chosen such that small changes in the amount of accumulated dirty data
2956in the first 3/4 of the curve yield relatively small differences in the
2957amount of delay.
2958.sp
2959The effects can be easier to understand when the amount of delay is
2960represented on a log scale:
2961.sp
2962.nf
2963delay
2964100ms +-------------------------------------------------------------++
2965 + +
2966 | |
2967 + *+
2968 10ms + *+
2969 + ** +
2970 | (midpoint) ** |
2971 + | ** +
2972 1ms + v **** +
2973 + zfs_delay_scale ----------> ***** +
2974 | **** |
2975 + **** +
2976100us + ** +
2977 + * +
2978 | * |
2979 + * +
2980 10us + * +
2981 + +
2982 | |
2983 + +
2984 +--------------------------------------------------------------+
2985 0% <- zfs_dirty_data_max -> 100%
2986.fi
2987.sp
2988Note here that only as the amount of dirty data approaches its limit does
2989the delay start to increase rapidly. The goal of a properly tuned system
2990should be to keep the amount of dirty data out of that range by first
2991ensuring that the appropriate limits are set for the I/O scheduler to reach
2992optimal throughput on the backend storage, and then by changing the value
2993of \fBzfs_delay_scale\fR to increase the steepness of the curve.