]> git.proxmox.com Git - mirror_zfs.git/blame_incremental - module/zfs/dbuf.c
Encrypted dnode blocks should be prefetched raw
[mirror_zfs.git] / module / zfs / dbuf.c
... / ...
CommitLineData
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 */
28
29#include <sys/zfs_context.h>
30#include <sys/arc.h>
31#include <sys/dmu.h>
32#include <sys/dmu_send.h>
33#include <sys/dmu_impl.h>
34#include <sys/dbuf.h>
35#include <sys/dmu_objset.h>
36#include <sys/dsl_dataset.h>
37#include <sys/dsl_dir.h>
38#include <sys/dmu_tx.h>
39#include <sys/spa.h>
40#include <sys/zio.h>
41#include <sys/dmu_zfetch.h>
42#include <sys/sa.h>
43#include <sys/sa_impl.h>
44#include <sys/zfeature.h>
45#include <sys/blkptr.h>
46#include <sys/range_tree.h>
47#include <sys/trace_dbuf.h>
48#include <sys/callb.h>
49#include <sys/abd.h>
50
51kstat_t *dbuf_ksp;
52
53typedef struct dbuf_stats {
54 /*
55 * Various statistics about the size of the dbuf cache.
56 */
57 kstat_named_t cache_count;
58 kstat_named_t cache_size_bytes;
59 kstat_named_t cache_size_bytes_max;
60 /*
61 * Statistics regarding the bounds on the dbuf cache size.
62 */
63 kstat_named_t cache_target_bytes;
64 kstat_named_t cache_lowater_bytes;
65 kstat_named_t cache_hiwater_bytes;
66 /*
67 * Total number of dbuf cache evictions that have occurred.
68 */
69 kstat_named_t cache_total_evicts;
70 /*
71 * The distribution of dbuf levels in the dbuf cache and
72 * the total size of all dbufs at each level.
73 */
74 kstat_named_t cache_levels[DN_MAX_LEVELS];
75 kstat_named_t cache_levels_bytes[DN_MAX_LEVELS];
76 /*
77 * Statistics about the dbuf hash table.
78 */
79 kstat_named_t hash_hits;
80 kstat_named_t hash_misses;
81 kstat_named_t hash_collisions;
82 kstat_named_t hash_elements;
83 kstat_named_t hash_elements_max;
84 /*
85 * Number of sublists containing more than one dbuf in the dbuf
86 * hash table. Keep track of the longest hash chain.
87 */
88 kstat_named_t hash_chains;
89 kstat_named_t hash_chain_max;
90 /*
91 * Number of times a dbuf_create() discovers that a dbuf was
92 * already created and in the dbuf hash table.
93 */
94 kstat_named_t hash_insert_race;
95} dbuf_stats_t;
96
97dbuf_stats_t dbuf_stats = {
98 { "cache_count", KSTAT_DATA_UINT64 },
99 { "cache_size_bytes", KSTAT_DATA_UINT64 },
100 { "cache_size_bytes_max", KSTAT_DATA_UINT64 },
101 { "cache_target_bytes", KSTAT_DATA_UINT64 },
102 { "cache_lowater_bytes", KSTAT_DATA_UINT64 },
103 { "cache_hiwater_bytes", KSTAT_DATA_UINT64 },
104 { "cache_total_evicts", KSTAT_DATA_UINT64 },
105 { { "cache_levels_N", KSTAT_DATA_UINT64 } },
106 { { "cache_levels_bytes_N", KSTAT_DATA_UINT64 } },
107 { "hash_hits", KSTAT_DATA_UINT64 },
108 { "hash_misses", KSTAT_DATA_UINT64 },
109 { "hash_collisions", KSTAT_DATA_UINT64 },
110 { "hash_elements", KSTAT_DATA_UINT64 },
111 { "hash_elements_max", KSTAT_DATA_UINT64 },
112 { "hash_chains", KSTAT_DATA_UINT64 },
113 { "hash_chain_max", KSTAT_DATA_UINT64 },
114 { "hash_insert_race", KSTAT_DATA_UINT64 }
115};
116
117#define DBUF_STAT_INCR(stat, val) \
118 atomic_add_64(&dbuf_stats.stat.value.ui64, (val));
119#define DBUF_STAT_DECR(stat, val) \
120 DBUF_STAT_INCR(stat, -(val));
121#define DBUF_STAT_BUMP(stat) \
122 DBUF_STAT_INCR(stat, 1);
123#define DBUF_STAT_BUMPDOWN(stat) \
124 DBUF_STAT_INCR(stat, -1);
125#define DBUF_STAT_MAX(stat, v) { \
126 uint64_t _m; \
127 while ((v) > (_m = dbuf_stats.stat.value.ui64) && \
128 (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\
129 continue; \
130}
131
132struct dbuf_hold_impl_data {
133 /* Function arguments */
134 dnode_t *dh_dn;
135 uint8_t dh_level;
136 uint64_t dh_blkid;
137 boolean_t dh_fail_sparse;
138 boolean_t dh_fail_uncached;
139 void *dh_tag;
140 dmu_buf_impl_t **dh_dbp;
141 /* Local variables */
142 dmu_buf_impl_t *dh_db;
143 dmu_buf_impl_t *dh_parent;
144 blkptr_t *dh_bp;
145 int dh_err;
146 dbuf_dirty_record_t *dh_dr;
147 int dh_depth;
148};
149
150static void __dbuf_hold_impl_init(struct dbuf_hold_impl_data *dh,
151 dnode_t *dn, uint8_t level, uint64_t blkid, boolean_t fail_sparse,
152 boolean_t fail_uncached,
153 void *tag, dmu_buf_impl_t **dbp, int depth);
154static int __dbuf_hold_impl(struct dbuf_hold_impl_data *dh);
155
156uint_t zfs_dbuf_evict_key;
157
158static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
159static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
160
161extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu,
162 dmu_buf_evict_func_t *evict_func_sync,
163 dmu_buf_evict_func_t *evict_func_async,
164 dmu_buf_t **clear_on_evict_dbufp);
165
166/*
167 * Global data structures and functions for the dbuf cache.
168 */
169static kmem_cache_t *dbuf_kmem_cache;
170static taskq_t *dbu_evict_taskq;
171
172static kthread_t *dbuf_cache_evict_thread;
173static kmutex_t dbuf_evict_lock;
174static kcondvar_t dbuf_evict_cv;
175static boolean_t dbuf_evict_thread_exit;
176
177/*
178 * LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
179 * are not currently held but have been recently released. These dbufs
180 * are not eligible for arc eviction until they are aged out of the cache.
181 * Dbufs are added to the dbuf cache once the last hold is released. If a
182 * dbuf is later accessed and still exists in the dbuf cache, then it will
183 * be removed from the cache and later re-added to the head of the cache.
184 * Dbufs that are aged out of the cache will be immediately destroyed and
185 * become eligible for arc eviction.
186 */
187static multilist_t *dbuf_cache;
188static refcount_t dbuf_cache_size;
189unsigned long dbuf_cache_max_bytes = 0;
190
191/* Set the default size of the dbuf cache to log2 fraction of arc size. */
192int dbuf_cache_shift = 5;
193
194/*
195 * The dbuf cache uses a three-stage eviction policy:
196 * - A low water marker designates when the dbuf eviction thread
197 * should stop evicting from the dbuf cache.
198 * - When we reach the maximum size (aka mid water mark), we
199 * signal the eviction thread to run.
200 * - The high water mark indicates when the eviction thread
201 * is unable to keep up with the incoming load and eviction must
202 * happen in the context of the calling thread.
203 *
204 * The dbuf cache:
205 * (max size)
206 * low water mid water hi water
207 * +----------------------------------------+----------+----------+
208 * | | | |
209 * | | | |
210 * | | | |
211 * | | | |
212 * +----------------------------------------+----------+----------+
213 * stop signal evict
214 * evicting eviction directly
215 * thread
216 *
217 * The high and low water marks indicate the operating range for the eviction
218 * thread. The low water mark is, by default, 90% of the total size of the
219 * cache and the high water mark is at 110% (both of these percentages can be
220 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
221 * respectively). The eviction thread will try to ensure that the cache remains
222 * within this range by waking up every second and checking if the cache is
223 * above the low water mark. The thread can also be woken up by callers adding
224 * elements into the cache if the cache is larger than the mid water (i.e max
225 * cache size). Once the eviction thread is woken up and eviction is required,
226 * it will continue evicting buffers until it's able to reduce the cache size
227 * to the low water mark. If the cache size continues to grow and hits the high
228 * water mark, then callers adding elements to the cache will begin to evict
229 * directly from the cache until the cache is no longer above the high water
230 * mark.
231 */
232
233/*
234 * The percentage above and below the maximum cache size.
235 */
236uint_t dbuf_cache_hiwater_pct = 10;
237uint_t dbuf_cache_lowater_pct = 10;
238
239/* ARGSUSED */
240static int
241dbuf_cons(void *vdb, void *unused, int kmflag)
242{
243 dmu_buf_impl_t *db = vdb;
244 bzero(db, sizeof (dmu_buf_impl_t));
245
246 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
247 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
248 multilist_link_init(&db->db_cache_link);
249 refcount_create(&db->db_holds);
250
251 return (0);
252}
253
254/* ARGSUSED */
255static void
256dbuf_dest(void *vdb, void *unused)
257{
258 dmu_buf_impl_t *db = vdb;
259 mutex_destroy(&db->db_mtx);
260 cv_destroy(&db->db_changed);
261 ASSERT(!multilist_link_active(&db->db_cache_link));
262 refcount_destroy(&db->db_holds);
263}
264
265/*
266 * dbuf hash table routines
267 */
268static dbuf_hash_table_t dbuf_hash_table;
269
270static uint64_t dbuf_hash_count;
271
272static uint64_t
273dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
274{
275 uintptr_t osv = (uintptr_t)os;
276 uint64_t crc = -1ULL;
277
278 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
279 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF];
280 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF];
281 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF];
282 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF];
283 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF];
284 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF];
285
286 crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16);
287
288 return (crc);
289}
290
291#define DBUF_EQUAL(dbuf, os, obj, level, blkid) \
292 ((dbuf)->db.db_object == (obj) && \
293 (dbuf)->db_objset == (os) && \
294 (dbuf)->db_level == (level) && \
295 (dbuf)->db_blkid == (blkid))
296
297dmu_buf_impl_t *
298dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
299{
300 dbuf_hash_table_t *h = &dbuf_hash_table;
301 uint64_t hv;
302 uint64_t idx;
303 dmu_buf_impl_t *db;
304
305 hv = dbuf_hash(os, obj, level, blkid);
306 idx = hv & h->hash_table_mask;
307
308 mutex_enter(DBUF_HASH_MUTEX(h, idx));
309 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
310 if (DBUF_EQUAL(db, os, obj, level, blkid)) {
311 mutex_enter(&db->db_mtx);
312 if (db->db_state != DB_EVICTING) {
313 mutex_exit(DBUF_HASH_MUTEX(h, idx));
314 return (db);
315 }
316 mutex_exit(&db->db_mtx);
317 }
318 }
319 mutex_exit(DBUF_HASH_MUTEX(h, idx));
320 return (NULL);
321}
322
323static dmu_buf_impl_t *
324dbuf_find_bonus(objset_t *os, uint64_t object)
325{
326 dnode_t *dn;
327 dmu_buf_impl_t *db = NULL;
328
329 if (dnode_hold(os, object, FTAG, &dn) == 0) {
330 rw_enter(&dn->dn_struct_rwlock, RW_READER);
331 if (dn->dn_bonus != NULL) {
332 db = dn->dn_bonus;
333 mutex_enter(&db->db_mtx);
334 }
335 rw_exit(&dn->dn_struct_rwlock);
336 dnode_rele(dn, FTAG);
337 }
338 return (db);
339}
340
341/*
342 * Insert an entry into the hash table. If there is already an element
343 * equal to elem in the hash table, then the already existing element
344 * will be returned and the new element will not be inserted.
345 * Otherwise returns NULL.
346 */
347static dmu_buf_impl_t *
348dbuf_hash_insert(dmu_buf_impl_t *db)
349{
350 dbuf_hash_table_t *h = &dbuf_hash_table;
351 objset_t *os = db->db_objset;
352 uint64_t obj = db->db.db_object;
353 int level = db->db_level;
354 uint64_t blkid, hv, idx;
355 dmu_buf_impl_t *dbf;
356 uint32_t i;
357
358 blkid = db->db_blkid;
359 hv = dbuf_hash(os, obj, level, blkid);
360 idx = hv & h->hash_table_mask;
361
362 mutex_enter(DBUF_HASH_MUTEX(h, idx));
363 for (dbf = h->hash_table[idx], i = 0; dbf != NULL;
364 dbf = dbf->db_hash_next, i++) {
365 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
366 mutex_enter(&dbf->db_mtx);
367 if (dbf->db_state != DB_EVICTING) {
368 mutex_exit(DBUF_HASH_MUTEX(h, idx));
369 return (dbf);
370 }
371 mutex_exit(&dbf->db_mtx);
372 }
373 }
374
375 if (i > 0) {
376 DBUF_STAT_BUMP(hash_collisions);
377 if (i == 1)
378 DBUF_STAT_BUMP(hash_chains);
379
380 DBUF_STAT_MAX(hash_chain_max, i);
381 }
382
383 mutex_enter(&db->db_mtx);
384 db->db_hash_next = h->hash_table[idx];
385 h->hash_table[idx] = db;
386 mutex_exit(DBUF_HASH_MUTEX(h, idx));
387 atomic_inc_64(&dbuf_hash_count);
388 DBUF_STAT_MAX(hash_elements_max, dbuf_hash_count);
389
390 return (NULL);
391}
392
393/*
394 * Remove an entry from the hash table. It must be in the EVICTING state.
395 */
396static void
397dbuf_hash_remove(dmu_buf_impl_t *db)
398{
399 dbuf_hash_table_t *h = &dbuf_hash_table;
400 uint64_t hv, idx;
401 dmu_buf_impl_t *dbf, **dbp;
402
403 hv = dbuf_hash(db->db_objset, db->db.db_object,
404 db->db_level, db->db_blkid);
405 idx = hv & h->hash_table_mask;
406
407 /*
408 * We mustn't hold db_mtx to maintain lock ordering:
409 * DBUF_HASH_MUTEX > db_mtx.
410 */
411 ASSERT(refcount_is_zero(&db->db_holds));
412 ASSERT(db->db_state == DB_EVICTING);
413 ASSERT(!MUTEX_HELD(&db->db_mtx));
414
415 mutex_enter(DBUF_HASH_MUTEX(h, idx));
416 dbp = &h->hash_table[idx];
417 while ((dbf = *dbp) != db) {
418 dbp = &dbf->db_hash_next;
419 ASSERT(dbf != NULL);
420 }
421 *dbp = db->db_hash_next;
422 db->db_hash_next = NULL;
423 if (h->hash_table[idx] &&
424 h->hash_table[idx]->db_hash_next == NULL)
425 DBUF_STAT_BUMPDOWN(hash_chains);
426 mutex_exit(DBUF_HASH_MUTEX(h, idx));
427 atomic_dec_64(&dbuf_hash_count);
428}
429
430typedef enum {
431 DBVU_EVICTING,
432 DBVU_NOT_EVICTING
433} dbvu_verify_type_t;
434
435static void
436dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
437{
438#ifdef ZFS_DEBUG
439 int64_t holds;
440
441 if (db->db_user == NULL)
442 return;
443
444 /* Only data blocks support the attachment of user data. */
445 ASSERT(db->db_level == 0);
446
447 /* Clients must resolve a dbuf before attaching user data. */
448 ASSERT(db->db.db_data != NULL);
449 ASSERT3U(db->db_state, ==, DB_CACHED);
450
451 holds = refcount_count(&db->db_holds);
452 if (verify_type == DBVU_EVICTING) {
453 /*
454 * Immediate eviction occurs when holds == dirtycnt.
455 * For normal eviction buffers, holds is zero on
456 * eviction, except when dbuf_fix_old_data() calls
457 * dbuf_clear_data(). However, the hold count can grow
458 * during eviction even though db_mtx is held (see
459 * dmu_bonus_hold() for an example), so we can only
460 * test the generic invariant that holds >= dirtycnt.
461 */
462 ASSERT3U(holds, >=, db->db_dirtycnt);
463 } else {
464 if (db->db_user_immediate_evict == TRUE)
465 ASSERT3U(holds, >=, db->db_dirtycnt);
466 else
467 ASSERT3U(holds, >, 0);
468 }
469#endif
470}
471
472static void
473dbuf_evict_user(dmu_buf_impl_t *db)
474{
475 dmu_buf_user_t *dbu = db->db_user;
476
477 ASSERT(MUTEX_HELD(&db->db_mtx));
478
479 if (dbu == NULL)
480 return;
481
482 dbuf_verify_user(db, DBVU_EVICTING);
483 db->db_user = NULL;
484
485#ifdef ZFS_DEBUG
486 if (dbu->dbu_clear_on_evict_dbufp != NULL)
487 *dbu->dbu_clear_on_evict_dbufp = NULL;
488#endif
489
490 /*
491 * There are two eviction callbacks - one that we call synchronously
492 * and one that we invoke via a taskq. The async one is useful for
493 * avoiding lock order reversals and limiting stack depth.
494 *
495 * Note that if we have a sync callback but no async callback,
496 * it's likely that the sync callback will free the structure
497 * containing the dbu. In that case we need to take care to not
498 * dereference dbu after calling the sync evict func.
499 */
500 boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
501
502 if (dbu->dbu_evict_func_sync != NULL)
503 dbu->dbu_evict_func_sync(dbu);
504
505 if (has_async) {
506 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
507 dbu, 0, &dbu->dbu_tqent);
508 }
509}
510
511boolean_t
512dbuf_is_metadata(dmu_buf_impl_t *db)
513{
514 /*
515 * Consider indirect blocks and spill blocks to be meta data.
516 */
517 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) {
518 return (B_TRUE);
519 } else {
520 boolean_t is_metadata;
521
522 DB_DNODE_ENTER(db);
523 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
524 DB_DNODE_EXIT(db);
525
526 return (is_metadata);
527 }
528}
529
530
531/*
532 * This function *must* return indices evenly distributed between all
533 * sublists of the multilist. This is needed due to how the dbuf eviction
534 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
535 * distributed between all sublists and uses this assumption when
536 * deciding which sublist to evict from and how much to evict from it.
537 */
538unsigned int
539dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
540{
541 dmu_buf_impl_t *db = obj;
542
543 /*
544 * The assumption here, is the hash value for a given
545 * dmu_buf_impl_t will remain constant throughout it's lifetime
546 * (i.e. it's objset, object, level and blkid fields don't change).
547 * Thus, we don't need to store the dbuf's sublist index
548 * on insertion, as this index can be recalculated on removal.
549 *
550 * Also, the low order bits of the hash value are thought to be
551 * distributed evenly. Otherwise, in the case that the multilist
552 * has a power of two number of sublists, each sublists' usage
553 * would not be evenly distributed.
554 */
555 return (dbuf_hash(db->db_objset, db->db.db_object,
556 db->db_level, db->db_blkid) %
557 multilist_get_num_sublists(ml));
558}
559
560static inline unsigned long
561dbuf_cache_target_bytes(void)
562{
563 return MIN(dbuf_cache_max_bytes,
564 arc_target_bytes() >> dbuf_cache_shift);
565}
566
567static inline uint64_t
568dbuf_cache_hiwater_bytes(void)
569{
570 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
571 return (dbuf_cache_target +
572 (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100);
573}
574
575static inline uint64_t
576dbuf_cache_lowater_bytes(void)
577{
578 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
579 return (dbuf_cache_target -
580 (dbuf_cache_target * dbuf_cache_lowater_pct) / 100);
581}
582
583static inline boolean_t
584dbuf_cache_above_hiwater(void)
585{
586 return (refcount_count(&dbuf_cache_size) > dbuf_cache_hiwater_bytes());
587}
588
589static inline boolean_t
590dbuf_cache_above_lowater(void)
591{
592 return (refcount_count(&dbuf_cache_size) > dbuf_cache_lowater_bytes());
593}
594
595/*
596 * Evict the oldest eligible dbuf from the dbuf cache.
597 */
598static void
599dbuf_evict_one(void)
600{
601 int idx = multilist_get_random_index(dbuf_cache);
602 multilist_sublist_t *mls = multilist_sublist_lock(dbuf_cache, idx);
603
604 ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
605
606 /*
607 * Set the thread's tsd to indicate that it's processing evictions.
608 * Once a thread stops evicting from the dbuf cache it will
609 * reset its tsd to NULL.
610 */
611 ASSERT3P(tsd_get(zfs_dbuf_evict_key), ==, NULL);
612 (void) tsd_set(zfs_dbuf_evict_key, (void *)B_TRUE);
613
614 dmu_buf_impl_t *db = multilist_sublist_tail(mls);
615 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
616 db = multilist_sublist_prev(mls, db);
617 }
618
619 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
620 multilist_sublist_t *, mls);
621
622 if (db != NULL) {
623 multilist_sublist_remove(mls, db);
624 multilist_sublist_unlock(mls);
625 (void) refcount_remove_many(&dbuf_cache_size,
626 db->db.db_size, db);
627 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
628 DBUF_STAT_BUMPDOWN(cache_count);
629 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
630 db->db.db_size);
631 dbuf_destroy(db);
632 DBUF_STAT_MAX(cache_size_bytes_max,
633 refcount_count(&dbuf_cache_size));
634 DBUF_STAT_BUMP(cache_total_evicts);
635 } else {
636 multilist_sublist_unlock(mls);
637 }
638 (void) tsd_set(zfs_dbuf_evict_key, NULL);
639}
640
641/*
642 * The dbuf evict thread is responsible for aging out dbufs from the
643 * cache. Once the cache has reached it's maximum size, dbufs are removed
644 * and destroyed. The eviction thread will continue running until the size
645 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
646 * out of the cache it is destroyed and becomes eligible for arc eviction.
647 */
648/* ARGSUSED */
649static void
650dbuf_evict_thread(void *unused)
651{
652 callb_cpr_t cpr;
653
654 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
655
656 mutex_enter(&dbuf_evict_lock);
657 while (!dbuf_evict_thread_exit) {
658 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
659 CALLB_CPR_SAFE_BEGIN(&cpr);
660 (void) cv_timedwait_sig_hires(&dbuf_evict_cv,
661 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
662 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
663 }
664 mutex_exit(&dbuf_evict_lock);
665
666 /*
667 * Keep evicting as long as we're above the low water mark
668 * for the cache. We do this without holding the locks to
669 * minimize lock contention.
670 */
671 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
672 dbuf_evict_one();
673 }
674
675 mutex_enter(&dbuf_evict_lock);
676 }
677
678 dbuf_evict_thread_exit = B_FALSE;
679 cv_broadcast(&dbuf_evict_cv);
680 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */
681 thread_exit();
682}
683
684/*
685 * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
686 * If the dbuf cache is at its high water mark, then evict a dbuf from the
687 * dbuf cache using the callers context.
688 */
689static void
690dbuf_evict_notify(void)
691{
692
693 /*
694 * We use thread specific data to track when a thread has
695 * started processing evictions. This allows us to avoid deeply
696 * nested stacks that would have a call flow similar to this:
697 *
698 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
699 * ^ |
700 * | |
701 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+
702 *
703 * The dbuf_eviction_thread will always have its tsd set until
704 * that thread exits. All other threads will only set their tsd
705 * if they are participating in the eviction process. This only
706 * happens if the eviction thread is unable to process evictions
707 * fast enough. To keep the dbuf cache size in check, other threads
708 * can evict from the dbuf cache directly. Those threads will set
709 * their tsd values so that we ensure that they only evict one dbuf
710 * from the dbuf cache.
711 */
712 if (tsd_get(zfs_dbuf_evict_key) != NULL)
713 return;
714
715 /*
716 * We check if we should evict without holding the dbuf_evict_lock,
717 * because it's OK to occasionally make the wrong decision here,
718 * and grabbing the lock results in massive lock contention.
719 */
720 if (refcount_count(&dbuf_cache_size) > dbuf_cache_target_bytes()) {
721 if (dbuf_cache_above_hiwater())
722 dbuf_evict_one();
723 cv_signal(&dbuf_evict_cv);
724 }
725}
726
727static int
728dbuf_kstat_update(kstat_t *ksp, int rw)
729{
730 dbuf_stats_t *ds = ksp->ks_data;
731
732 if (rw == KSTAT_WRITE) {
733 return (SET_ERROR(EACCES));
734 } else {
735 ds->cache_size_bytes.value.ui64 =
736 refcount_count(&dbuf_cache_size);
737 ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes();
738 ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes();
739 ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes();
740 ds->hash_elements.value.ui64 = dbuf_hash_count;
741 }
742
743 return (0);
744}
745
746void
747dbuf_init(void)
748{
749 uint64_t hsize = 1ULL << 16;
750 dbuf_hash_table_t *h = &dbuf_hash_table;
751 int i;
752
753 /*
754 * The hash table is big enough to fill all of physical memory
755 * with an average block size of zfs_arc_average_blocksize (default 8K).
756 * By default, the table will take up
757 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
758 */
759 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
760 hsize <<= 1;
761
762retry:
763 h->hash_table_mask = hsize - 1;
764#if defined(_KERNEL) && defined(HAVE_SPL)
765 /*
766 * Large allocations which do not require contiguous pages
767 * should be using vmem_alloc() in the linux kernel
768 */
769 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP);
770#else
771 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
772#endif
773 if (h->hash_table == NULL) {
774 /* XXX - we should really return an error instead of assert */
775 ASSERT(hsize > (1ULL << 10));
776 hsize >>= 1;
777 goto retry;
778 }
779
780 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
781 sizeof (dmu_buf_impl_t),
782 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
783
784 for (i = 0; i < DBUF_MUTEXES; i++)
785 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
786
787 dbuf_stats_init(h);
788
789 /*
790 * Setup the parameters for the dbuf cache. We set the size of the
791 * dbuf cache to 1/32nd (default) of the target size of the ARC. If
792 * the value has been specified as a module option and it's not
793 * greater than the target size of the ARC, then we honor that value.
794 */
795 if (dbuf_cache_max_bytes == 0 ||
796 dbuf_cache_max_bytes >= arc_target_bytes()) {
797 dbuf_cache_max_bytes = arc_target_bytes() >> dbuf_cache_shift;
798 }
799
800 /*
801 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
802 * configuration is not required.
803 */
804 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0);
805
806 dbuf_cache = multilist_create(sizeof (dmu_buf_impl_t),
807 offsetof(dmu_buf_impl_t, db_cache_link),
808 dbuf_cache_multilist_index_func);
809 refcount_create(&dbuf_cache_size);
810
811 tsd_create(&zfs_dbuf_evict_key, NULL);
812 dbuf_evict_thread_exit = B_FALSE;
813 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
814 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
815 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
816 NULL, 0, &p0, TS_RUN, minclsyspri);
817
818 dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc",
819 KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t),
820 KSTAT_FLAG_VIRTUAL);
821 if (dbuf_ksp != NULL) {
822 dbuf_ksp->ks_data = &dbuf_stats;
823 dbuf_ksp->ks_update = dbuf_kstat_update;
824 kstat_install(dbuf_ksp);
825
826 for (i = 0; i < DN_MAX_LEVELS; i++) {
827 snprintf(dbuf_stats.cache_levels[i].name,
828 KSTAT_STRLEN, "cache_level_%d", i);
829 dbuf_stats.cache_levels[i].data_type =
830 KSTAT_DATA_UINT64;
831 snprintf(dbuf_stats.cache_levels_bytes[i].name,
832 KSTAT_STRLEN, "cache_level_%d_bytes", i);
833 dbuf_stats.cache_levels_bytes[i].data_type =
834 KSTAT_DATA_UINT64;
835 }
836 }
837}
838
839void
840dbuf_fini(void)
841{
842 dbuf_hash_table_t *h = &dbuf_hash_table;
843 int i;
844
845 dbuf_stats_destroy();
846
847 for (i = 0; i < DBUF_MUTEXES; i++)
848 mutex_destroy(&h->hash_mutexes[i]);
849#if defined(_KERNEL) && defined(HAVE_SPL)
850 /*
851 * Large allocations which do not require contiguous pages
852 * should be using vmem_free() in the linux kernel
853 */
854 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
855#else
856 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
857#endif
858 kmem_cache_destroy(dbuf_kmem_cache);
859 taskq_destroy(dbu_evict_taskq);
860
861 mutex_enter(&dbuf_evict_lock);
862 dbuf_evict_thread_exit = B_TRUE;
863 while (dbuf_evict_thread_exit) {
864 cv_signal(&dbuf_evict_cv);
865 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
866 }
867 mutex_exit(&dbuf_evict_lock);
868 tsd_destroy(&zfs_dbuf_evict_key);
869
870 mutex_destroy(&dbuf_evict_lock);
871 cv_destroy(&dbuf_evict_cv);
872
873 refcount_destroy(&dbuf_cache_size);
874 multilist_destroy(dbuf_cache);
875
876 if (dbuf_ksp != NULL) {
877 kstat_delete(dbuf_ksp);
878 dbuf_ksp = NULL;
879 }
880}
881
882/*
883 * Other stuff.
884 */
885
886#ifdef ZFS_DEBUG
887static void
888dbuf_verify(dmu_buf_impl_t *db)
889{
890 dnode_t *dn;
891 dbuf_dirty_record_t *dr;
892
893 ASSERT(MUTEX_HELD(&db->db_mtx));
894
895 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
896 return;
897
898 ASSERT(db->db_objset != NULL);
899 DB_DNODE_ENTER(db);
900 dn = DB_DNODE(db);
901 if (dn == NULL) {
902 ASSERT(db->db_parent == NULL);
903 ASSERT(db->db_blkptr == NULL);
904 } else {
905 ASSERT3U(db->db.db_object, ==, dn->dn_object);
906 ASSERT3P(db->db_objset, ==, dn->dn_objset);
907 ASSERT3U(db->db_level, <, dn->dn_nlevels);
908 ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
909 db->db_blkid == DMU_SPILL_BLKID ||
910 !avl_is_empty(&dn->dn_dbufs));
911 }
912 if (db->db_blkid == DMU_BONUS_BLKID) {
913 ASSERT(dn != NULL);
914 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
915 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
916 } else if (db->db_blkid == DMU_SPILL_BLKID) {
917 ASSERT(dn != NULL);
918 ASSERT0(db->db.db_offset);
919 } else {
920 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
921 }
922
923 for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
924 ASSERT(dr->dr_dbuf == db);
925
926 for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
927 ASSERT(dr->dr_dbuf == db);
928
929 /*
930 * We can't assert that db_size matches dn_datablksz because it
931 * can be momentarily different when another thread is doing
932 * dnode_set_blksz().
933 */
934 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
935 dr = db->db_data_pending;
936 /*
937 * It should only be modified in syncing context, so
938 * make sure we only have one copy of the data.
939 */
940 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
941 }
942
943 /* verify db->db_blkptr */
944 if (db->db_blkptr) {
945 if (db->db_parent == dn->dn_dbuf) {
946 /* db is pointed to by the dnode */
947 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
948 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
949 ASSERT(db->db_parent == NULL);
950 else
951 ASSERT(db->db_parent != NULL);
952 if (db->db_blkid != DMU_SPILL_BLKID)
953 ASSERT3P(db->db_blkptr, ==,
954 &dn->dn_phys->dn_blkptr[db->db_blkid]);
955 } else {
956 /* db is pointed to by an indirect block */
957 ASSERTV(int epb = db->db_parent->db.db_size >>
958 SPA_BLKPTRSHIFT);
959 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
960 ASSERT3U(db->db_parent->db.db_object, ==,
961 db->db.db_object);
962 /*
963 * dnode_grow_indblksz() can make this fail if we don't
964 * have the struct_rwlock. XXX indblksz no longer
965 * grows. safe to do this now?
966 */
967 if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
968 ASSERT3P(db->db_blkptr, ==,
969 ((blkptr_t *)db->db_parent->db.db_data +
970 db->db_blkid % epb));
971 }
972 }
973 }
974 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
975 (db->db_buf == NULL || db->db_buf->b_data) &&
976 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
977 db->db_state != DB_FILL && !dn->dn_free_txg) {
978 /*
979 * If the blkptr isn't set but they have nonzero data,
980 * it had better be dirty, otherwise we'll lose that
981 * data when we evict this buffer.
982 *
983 * There is an exception to this rule for indirect blocks; in
984 * this case, if the indirect block is a hole, we fill in a few
985 * fields on each of the child blocks (importantly, birth time)
986 * to prevent hole birth times from being lost when you
987 * partially fill in a hole.
988 */
989 if (db->db_dirtycnt == 0) {
990 if (db->db_level == 0) {
991 uint64_t *buf = db->db.db_data;
992 int i;
993
994 for (i = 0; i < db->db.db_size >> 3; i++) {
995 ASSERT(buf[i] == 0);
996 }
997 } else {
998 blkptr_t *bps = db->db.db_data;
999 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
1000 db->db.db_size);
1001 /*
1002 * We want to verify that all the blkptrs in the
1003 * indirect block are holes, but we may have
1004 * automatically set up a few fields for them.
1005 * We iterate through each blkptr and verify
1006 * they only have those fields set.
1007 */
1008 for (int i = 0;
1009 i < db->db.db_size / sizeof (blkptr_t);
1010 i++) {
1011 blkptr_t *bp = &bps[i];
1012 ASSERT(ZIO_CHECKSUM_IS_ZERO(
1013 &bp->blk_cksum));
1014 ASSERT(
1015 DVA_IS_EMPTY(&bp->blk_dva[0]) &&
1016 DVA_IS_EMPTY(&bp->blk_dva[1]) &&
1017 DVA_IS_EMPTY(&bp->blk_dva[2]));
1018 ASSERT0(bp->blk_fill);
1019 ASSERT0(bp->blk_pad[0]);
1020 ASSERT0(bp->blk_pad[1]);
1021 ASSERT(!BP_IS_EMBEDDED(bp));
1022 ASSERT(BP_IS_HOLE(bp));
1023 ASSERT0(bp->blk_phys_birth);
1024 }
1025 }
1026 }
1027 }
1028 DB_DNODE_EXIT(db);
1029}
1030#endif
1031
1032static void
1033dbuf_clear_data(dmu_buf_impl_t *db)
1034{
1035 ASSERT(MUTEX_HELD(&db->db_mtx));
1036 dbuf_evict_user(db);
1037 ASSERT3P(db->db_buf, ==, NULL);
1038 db->db.db_data = NULL;
1039 if (db->db_state != DB_NOFILL)
1040 db->db_state = DB_UNCACHED;
1041}
1042
1043static void
1044dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
1045{
1046 ASSERT(MUTEX_HELD(&db->db_mtx));
1047 ASSERT(buf != NULL);
1048
1049 db->db_buf = buf;
1050 ASSERT(buf->b_data != NULL);
1051 db->db.db_data = buf->b_data;
1052}
1053
1054/*
1055 * Loan out an arc_buf for read. Return the loaned arc_buf.
1056 */
1057arc_buf_t *
1058dbuf_loan_arcbuf(dmu_buf_impl_t *db)
1059{
1060 arc_buf_t *abuf;
1061
1062 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1063 mutex_enter(&db->db_mtx);
1064 if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) {
1065 int blksz = db->db.db_size;
1066 spa_t *spa = db->db_objset->os_spa;
1067
1068 mutex_exit(&db->db_mtx);
1069 abuf = arc_loan_buf(spa, B_FALSE, blksz);
1070 bcopy(db->db.db_data, abuf->b_data, blksz);
1071 } else {
1072 abuf = db->db_buf;
1073 arc_loan_inuse_buf(abuf, db);
1074 db->db_buf = NULL;
1075 dbuf_clear_data(db);
1076 mutex_exit(&db->db_mtx);
1077 }
1078 return (abuf);
1079}
1080
1081/*
1082 * Calculate which level n block references the data at the level 0 offset
1083 * provided.
1084 */
1085uint64_t
1086dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset)
1087{
1088 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
1089 /*
1090 * The level n blkid is equal to the level 0 blkid divided by
1091 * the number of level 0s in a level n block.
1092 *
1093 * The level 0 blkid is offset >> datablkshift =
1094 * offset / 2^datablkshift.
1095 *
1096 * The number of level 0s in a level n is the number of block
1097 * pointers in an indirect block, raised to the power of level.
1098 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
1099 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
1100 *
1101 * Thus, the level n blkid is: offset /
1102 * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT)))
1103 * = offset / 2^(datablkshift + level *
1104 * (indblkshift - SPA_BLKPTRSHIFT))
1105 * = offset >> (datablkshift + level *
1106 * (indblkshift - SPA_BLKPTRSHIFT))
1107 */
1108
1109 const unsigned exp = dn->dn_datablkshift +
1110 level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT);
1111
1112 if (exp >= 8 * sizeof (offset)) {
1113 /* This only happens on the highest indirection level */
1114 ASSERT3U(level, ==, dn->dn_nlevels - 1);
1115 return (0);
1116 }
1117
1118 ASSERT3U(exp, <, 8 * sizeof (offset));
1119
1120 return (offset >> exp);
1121 } else {
1122 ASSERT3U(offset, <, dn->dn_datablksz);
1123 return (0);
1124 }
1125}
1126
1127static void
1128dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1129 arc_buf_t *buf, void *vdb)
1130{
1131 dmu_buf_impl_t *db = vdb;
1132
1133 mutex_enter(&db->db_mtx);
1134 ASSERT3U(db->db_state, ==, DB_READ);
1135 /*
1136 * All reads are synchronous, so we must have a hold on the dbuf
1137 */
1138 ASSERT(refcount_count(&db->db_holds) > 0);
1139 ASSERT(db->db_buf == NULL);
1140 ASSERT(db->db.db_data == NULL);
1141 if (db->db_level == 0 && db->db_freed_in_flight) {
1142 /* we were freed in flight; disregard any error */
1143 if (buf == NULL) {
1144 buf = arc_alloc_buf(db->db_objset->os_spa,
1145 db, DBUF_GET_BUFC_TYPE(db), db->db.db_size);
1146 }
1147 arc_release(buf, db);
1148 bzero(buf->b_data, db->db.db_size);
1149 arc_buf_freeze(buf);
1150 db->db_freed_in_flight = FALSE;
1151 dbuf_set_data(db, buf);
1152 db->db_state = DB_CACHED;
1153 } else if (buf != NULL) {
1154 dbuf_set_data(db, buf);
1155 db->db_state = DB_CACHED;
1156 } else {
1157 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1158 ASSERT3P(db->db_buf, ==, NULL);
1159 db->db_state = DB_UNCACHED;
1160 }
1161 cv_broadcast(&db->db_changed);
1162 dbuf_rele_and_unlock(db, NULL);
1163}
1164
1165static int
1166dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1167{
1168 dnode_t *dn;
1169 zbookmark_phys_t zb;
1170 uint32_t aflags = ARC_FLAG_NOWAIT;
1171 int err, zio_flags = 0;
1172
1173 DB_DNODE_ENTER(db);
1174 dn = DB_DNODE(db);
1175 ASSERT(!refcount_is_zero(&db->db_holds));
1176 /* We need the struct_rwlock to prevent db_blkptr from changing. */
1177 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1178 ASSERT(MUTEX_HELD(&db->db_mtx));
1179 ASSERT(db->db_state == DB_UNCACHED);
1180 ASSERT(db->db_buf == NULL);
1181
1182 if (db->db_blkid == DMU_BONUS_BLKID) {
1183 /*
1184 * The bonus length stored in the dnode may be less than
1185 * the maximum available space in the bonus buffer.
1186 */
1187 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
1188 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1189 arc_buf_t *dn_buf = (dn->dn_dbuf != NULL) ?
1190 dn->dn_dbuf->db_buf : NULL;
1191
1192 /* if the underlying dnode block is encrypted, decrypt it */
1193 if (dn_buf != NULL && dn->dn_objset->os_encrypted &&
1194 DMU_OT_IS_ENCRYPTED(dn->dn_bonustype) &&
1195 (flags & DB_RF_NO_DECRYPT) == 0 &&
1196 arc_is_encrypted(dn_buf)) {
1197 err = arc_untransform(dn_buf, dn->dn_objset->os_spa,
1198 dmu_objset_id(dn->dn_objset), B_TRUE);
1199 if (err != 0) {
1200 DB_DNODE_EXIT(db);
1201 mutex_exit(&db->db_mtx);
1202 return (err);
1203 }
1204 }
1205
1206 ASSERT3U(bonuslen, <=, db->db.db_size);
1207 db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP);
1208 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS);
1209 if (bonuslen < max_bonuslen)
1210 bzero(db->db.db_data, max_bonuslen);
1211 if (bonuslen)
1212 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
1213 DB_DNODE_EXIT(db);
1214 db->db_state = DB_CACHED;
1215 mutex_exit(&db->db_mtx);
1216 return (0);
1217 }
1218
1219 /*
1220 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
1221 * processes the delete record and clears the bp while we are waiting
1222 * for the dn_mtx (resulting in a "no" from block_freed).
1223 */
1224 if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
1225 (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
1226 BP_IS_HOLE(db->db_blkptr)))) {
1227 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1228
1229 dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa, db, type,
1230 db->db.db_size));
1231 bzero(db->db.db_data, db->db.db_size);
1232
1233 if (db->db_blkptr != NULL && db->db_level > 0 &&
1234 BP_IS_HOLE(db->db_blkptr) &&
1235 db->db_blkptr->blk_birth != 0) {
1236 blkptr_t *bps = db->db.db_data;
1237 for (int i = 0; i < ((1 <<
1238 DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t));
1239 i++) {
1240 blkptr_t *bp = &bps[i];
1241 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
1242 1 << dn->dn_indblkshift);
1243 BP_SET_LSIZE(bp,
1244 BP_GET_LEVEL(db->db_blkptr) == 1 ?
1245 dn->dn_datablksz :
1246 BP_GET_LSIZE(db->db_blkptr));
1247 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr));
1248 BP_SET_LEVEL(bp,
1249 BP_GET_LEVEL(db->db_blkptr) - 1);
1250 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0);
1251 }
1252 }
1253 DB_DNODE_EXIT(db);
1254 db->db_state = DB_CACHED;
1255 mutex_exit(&db->db_mtx);
1256 return (0);
1257 }
1258
1259 DB_DNODE_EXIT(db);
1260
1261 db->db_state = DB_READ;
1262 mutex_exit(&db->db_mtx);
1263
1264 if (DBUF_IS_L2CACHEABLE(db))
1265 aflags |= ARC_FLAG_L2CACHE;
1266
1267 SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ?
1268 db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET,
1269 db->db.db_object, db->db_level, db->db_blkid);
1270
1271 /*
1272 * All bps of an encrypted os should have the encryption bit set.
1273 * If this is not true it indicates tampering and we report an error.
1274 */
1275 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(db->db_blkptr)) {
1276 spa_log_error(db->db_objset->os_spa, &zb);
1277 zfs_panic_recover("unencrypted block in encrypted "
1278 "object set %llu", dmu_objset_id(db->db_objset));
1279 return (SET_ERROR(EIO));
1280 }
1281
1282 dbuf_add_ref(db, NULL);
1283
1284 zio_flags = (flags & DB_RF_CANFAIL) ?
1285 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED;
1286
1287 if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr))
1288 zio_flags |= ZIO_FLAG_RAW;
1289
1290 err = arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
1291 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags,
1292 &aflags, &zb);
1293
1294 return (err);
1295}
1296
1297/*
1298 * This is our just-in-time copy function. It makes a copy of buffers that
1299 * have been modified in a previous transaction group before we access them in
1300 * the current active group.
1301 *
1302 * This function is used in three places: when we are dirtying a buffer for the
1303 * first time in a txg, when we are freeing a range in a dnode that includes
1304 * this buffer, and when we are accessing a buffer which was received compressed
1305 * and later referenced in a WRITE_BYREF record.
1306 *
1307 * Note that when we are called from dbuf_free_range() we do not put a hold on
1308 * the buffer, we just traverse the active dbuf list for the dnode.
1309 */
1310static void
1311dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1312{
1313 dbuf_dirty_record_t *dr = db->db_last_dirty;
1314
1315 ASSERT(MUTEX_HELD(&db->db_mtx));
1316 ASSERT(db->db.db_data != NULL);
1317 ASSERT(db->db_level == 0);
1318 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1319
1320 if (dr == NULL ||
1321 (dr->dt.dl.dr_data !=
1322 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1323 return;
1324
1325 /*
1326 * If the last dirty record for this dbuf has not yet synced
1327 * and its referencing the dbuf data, either:
1328 * reset the reference to point to a new copy,
1329 * or (if there a no active holders)
1330 * just null out the current db_data pointer.
1331 */
1332 ASSERT3U(dr->dr_txg, >=, txg - 2);
1333 if (db->db_blkid == DMU_BONUS_BLKID) {
1334 dnode_t *dn = DB_DNODE(db);
1335 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1336 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP);
1337 arc_space_consume(bonuslen, ARC_SPACE_BONUS);
1338 bcopy(db->db.db_data, dr->dt.dl.dr_data, bonuslen);
1339 } else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
1340 dnode_t *dn = DB_DNODE(db);
1341 int size = arc_buf_size(db->db_buf);
1342 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1343 spa_t *spa = db->db_objset->os_spa;
1344 enum zio_compress compress_type =
1345 arc_get_compression(db->db_buf);
1346
1347 if (arc_is_encrypted(db->db_buf)) {
1348 boolean_t byteorder;
1349 uint8_t salt[ZIO_DATA_SALT_LEN];
1350 uint8_t iv[ZIO_DATA_IV_LEN];
1351 uint8_t mac[ZIO_DATA_MAC_LEN];
1352
1353 arc_get_raw_params(db->db_buf, &byteorder, salt,
1354 iv, mac);
1355 dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db,
1356 dmu_objset_id(dn->dn_objset), byteorder, salt, iv,
1357 mac, dn->dn_type, size, arc_buf_lsize(db->db_buf),
1358 compress_type);
1359 } else if (compress_type != ZIO_COMPRESS_OFF) {
1360 ASSERT3U(type, ==, ARC_BUFC_DATA);
1361 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1362 size, arc_buf_lsize(db->db_buf), compress_type);
1363 } else {
1364 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1365 }
1366 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
1367 } else {
1368 db->db_buf = NULL;
1369 dbuf_clear_data(db);
1370 }
1371}
1372
1373int
1374dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1375{
1376 int err = 0;
1377 boolean_t prefetch;
1378 dnode_t *dn;
1379
1380 /*
1381 * We don't have to hold the mutex to check db_state because it
1382 * can't be freed while we have a hold on the buffer.
1383 */
1384 ASSERT(!refcount_is_zero(&db->db_holds));
1385
1386 if (db->db_state == DB_NOFILL)
1387 return (SET_ERROR(EIO));
1388
1389 DB_DNODE_ENTER(db);
1390 dn = DB_DNODE(db);
1391 if ((flags & DB_RF_HAVESTRUCT) == 0)
1392 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1393
1394 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1395 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
1396 DBUF_IS_CACHEABLE(db);
1397
1398 mutex_enter(&db->db_mtx);
1399 if (db->db_state == DB_CACHED) {
1400 spa_t *spa = dn->dn_objset->os_spa;
1401
1402 /*
1403 * If the arc buf is compressed or encrypted, we need to
1404 * untransform it to read the data. This could happen during
1405 * the "zfs receive" of a stream which is deduplicated and
1406 * either raw or compressed. We do not need to do this if the
1407 * caller wants raw encrypted data.
1408 */
1409 if (db->db_buf != NULL && (flags & DB_RF_NO_DECRYPT) == 0 &&
1410 (arc_is_encrypted(db->db_buf) ||
1411 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
1412 dbuf_fix_old_data(db, spa_syncing_txg(spa));
1413 err = arc_untransform(db->db_buf, spa,
1414 dmu_objset_id(db->db_objset), B_FALSE);
1415 dbuf_set_data(db, db->db_buf);
1416 }
1417 mutex_exit(&db->db_mtx);
1418 if (prefetch)
1419 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1420 if ((flags & DB_RF_HAVESTRUCT) == 0)
1421 rw_exit(&dn->dn_struct_rwlock);
1422 DB_DNODE_EXIT(db);
1423 DBUF_STAT_BUMP(hash_hits);
1424 } else if (db->db_state == DB_UNCACHED) {
1425 spa_t *spa = dn->dn_objset->os_spa;
1426 boolean_t need_wait = B_FALSE;
1427
1428 if (zio == NULL &&
1429 db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
1430 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1431 need_wait = B_TRUE;
1432 }
1433 err = dbuf_read_impl(db, zio, flags);
1434
1435 /* dbuf_read_impl has dropped db_mtx for us */
1436
1437 if (!err && prefetch)
1438 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1439
1440 if ((flags & DB_RF_HAVESTRUCT) == 0)
1441 rw_exit(&dn->dn_struct_rwlock);
1442 DB_DNODE_EXIT(db);
1443 DBUF_STAT_BUMP(hash_misses);
1444
1445 if (!err && need_wait)
1446 err = zio_wait(zio);
1447 } else {
1448 /*
1449 * Another reader came in while the dbuf was in flight
1450 * between UNCACHED and CACHED. Either a writer will finish
1451 * writing the buffer (sending the dbuf to CACHED) or the
1452 * first reader's request will reach the read_done callback
1453 * and send the dbuf to CACHED. Otherwise, a failure
1454 * occurred and the dbuf went to UNCACHED.
1455 */
1456 mutex_exit(&db->db_mtx);
1457 if (prefetch)
1458 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1459 if ((flags & DB_RF_HAVESTRUCT) == 0)
1460 rw_exit(&dn->dn_struct_rwlock);
1461 DB_DNODE_EXIT(db);
1462 DBUF_STAT_BUMP(hash_misses);
1463
1464 /* Skip the wait per the caller's request. */
1465 mutex_enter(&db->db_mtx);
1466 if ((flags & DB_RF_NEVERWAIT) == 0) {
1467 while (db->db_state == DB_READ ||
1468 db->db_state == DB_FILL) {
1469 ASSERT(db->db_state == DB_READ ||
1470 (flags & DB_RF_HAVESTRUCT) == 0);
1471 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
1472 db, zio_t *, zio);
1473 cv_wait(&db->db_changed, &db->db_mtx);
1474 }
1475 if (db->db_state == DB_UNCACHED)
1476 err = SET_ERROR(EIO);
1477 }
1478 mutex_exit(&db->db_mtx);
1479 }
1480
1481 return (err);
1482}
1483
1484static void
1485dbuf_noread(dmu_buf_impl_t *db)
1486{
1487 ASSERT(!refcount_is_zero(&db->db_holds));
1488 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1489 mutex_enter(&db->db_mtx);
1490 while (db->db_state == DB_READ || db->db_state == DB_FILL)
1491 cv_wait(&db->db_changed, &db->db_mtx);
1492 if (db->db_state == DB_UNCACHED) {
1493 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1494 spa_t *spa = db->db_objset->os_spa;
1495
1496 ASSERT(db->db_buf == NULL);
1497 ASSERT(db->db.db_data == NULL);
1498 dbuf_set_data(db, arc_alloc_buf(spa, db, type, db->db.db_size));
1499 db->db_state = DB_FILL;
1500 } else if (db->db_state == DB_NOFILL) {
1501 dbuf_clear_data(db);
1502 } else {
1503 ASSERT3U(db->db_state, ==, DB_CACHED);
1504 }
1505 mutex_exit(&db->db_mtx);
1506}
1507
1508void
1509dbuf_unoverride(dbuf_dirty_record_t *dr)
1510{
1511 dmu_buf_impl_t *db = dr->dr_dbuf;
1512 blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1513 uint64_t txg = dr->dr_txg;
1514
1515 ASSERT(MUTEX_HELD(&db->db_mtx));
1516 /*
1517 * This assert is valid because dmu_sync() expects to be called by
1518 * a zilog's get_data while holding a range lock. This call only
1519 * comes from dbuf_dirty() callers who must also hold a range lock.
1520 */
1521 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1522 ASSERT(db->db_level == 0);
1523
1524 if (db->db_blkid == DMU_BONUS_BLKID ||
1525 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1526 return;
1527
1528 ASSERT(db->db_data_pending != dr);
1529
1530 /* free this block */
1531 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1532 zio_free(db->db_objset->os_spa, txg, bp);
1533
1534 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1535 dr->dt.dl.dr_nopwrite = B_FALSE;
1536 dr->dt.dl.dr_raw = B_FALSE;
1537
1538 /*
1539 * Release the already-written buffer, so we leave it in
1540 * a consistent dirty state. Note that all callers are
1541 * modifying the buffer, so they will immediately do
1542 * another (redundant) arc_release(). Therefore, leave
1543 * the buf thawed to save the effort of freezing &
1544 * immediately re-thawing it.
1545 */
1546 arc_release(dr->dt.dl.dr_data, db);
1547}
1548
1549/*
1550 * Evict (if its unreferenced) or clear (if its referenced) any level-0
1551 * data blocks in the free range, so that any future readers will find
1552 * empty blocks.
1553 */
1554void
1555dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1556 dmu_tx_t *tx)
1557{
1558 dmu_buf_impl_t *db_search;
1559 dmu_buf_impl_t *db, *db_next;
1560 uint64_t txg = tx->tx_txg;
1561 avl_index_t where;
1562
1563 if (end_blkid > dn->dn_maxblkid &&
1564 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1565 end_blkid = dn->dn_maxblkid;
1566 dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid);
1567
1568 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
1569 db_search->db_level = 0;
1570 db_search->db_blkid = start_blkid;
1571 db_search->db_state = DB_SEARCH;
1572
1573 mutex_enter(&dn->dn_dbufs_mtx);
1574 db = avl_find(&dn->dn_dbufs, db_search, &where);
1575 ASSERT3P(db, ==, NULL);
1576
1577 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1578
1579 for (; db != NULL; db = db_next) {
1580 db_next = AVL_NEXT(&dn->dn_dbufs, db);
1581 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1582
1583 if (db->db_level != 0 || db->db_blkid > end_blkid) {
1584 break;
1585 }
1586 ASSERT3U(db->db_blkid, >=, start_blkid);
1587
1588 /* found a level 0 buffer in the range */
1589 mutex_enter(&db->db_mtx);
1590 if (dbuf_undirty(db, tx)) {
1591 /* mutex has been dropped and dbuf destroyed */
1592 continue;
1593 }
1594
1595 if (db->db_state == DB_UNCACHED ||
1596 db->db_state == DB_NOFILL ||
1597 db->db_state == DB_EVICTING) {
1598 ASSERT(db->db.db_data == NULL);
1599 mutex_exit(&db->db_mtx);
1600 continue;
1601 }
1602 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1603 /* will be handled in dbuf_read_done or dbuf_rele */
1604 db->db_freed_in_flight = TRUE;
1605 mutex_exit(&db->db_mtx);
1606 continue;
1607 }
1608 if (refcount_count(&db->db_holds) == 0) {
1609 ASSERT(db->db_buf);
1610 dbuf_destroy(db);
1611 continue;
1612 }
1613 /* The dbuf is referenced */
1614
1615 if (db->db_last_dirty != NULL) {
1616 dbuf_dirty_record_t *dr = db->db_last_dirty;
1617
1618 if (dr->dr_txg == txg) {
1619 /*
1620 * This buffer is "in-use", re-adjust the file
1621 * size to reflect that this buffer may
1622 * contain new data when we sync.
1623 */
1624 if (db->db_blkid != DMU_SPILL_BLKID &&
1625 db->db_blkid > dn->dn_maxblkid)
1626 dn->dn_maxblkid = db->db_blkid;
1627 dbuf_unoverride(dr);
1628 } else {
1629 /*
1630 * This dbuf is not dirty in the open context.
1631 * Either uncache it (if its not referenced in
1632 * the open context) or reset its contents to
1633 * empty.
1634 */
1635 dbuf_fix_old_data(db, txg);
1636 }
1637 }
1638 /* clear the contents if its cached */
1639 if (db->db_state == DB_CACHED) {
1640 ASSERT(db->db.db_data != NULL);
1641 arc_release(db->db_buf, db);
1642 bzero(db->db.db_data, db->db.db_size);
1643 arc_buf_freeze(db->db_buf);
1644 }
1645
1646 mutex_exit(&db->db_mtx);
1647 }
1648
1649 kmem_free(db_search, sizeof (dmu_buf_impl_t));
1650 mutex_exit(&dn->dn_dbufs_mtx);
1651}
1652
1653void
1654dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
1655{
1656 arc_buf_t *buf, *obuf;
1657 int osize = db->db.db_size;
1658 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1659 dnode_t *dn;
1660
1661 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1662
1663 DB_DNODE_ENTER(db);
1664 dn = DB_DNODE(db);
1665
1666 /* XXX does *this* func really need the lock? */
1667 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1668
1669 /*
1670 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
1671 * is OK, because there can be no other references to the db
1672 * when we are changing its size, so no concurrent DB_FILL can
1673 * be happening.
1674 */
1675 /*
1676 * XXX we should be doing a dbuf_read, checking the return
1677 * value and returning that up to our callers
1678 */
1679 dmu_buf_will_dirty(&db->db, tx);
1680
1681 /* create the data buffer for the new block */
1682 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
1683
1684 /* copy old block data to the new block */
1685 obuf = db->db_buf;
1686 bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
1687 /* zero the remainder */
1688 if (size > osize)
1689 bzero((uint8_t *)buf->b_data + osize, size - osize);
1690
1691 mutex_enter(&db->db_mtx);
1692 dbuf_set_data(db, buf);
1693 arc_buf_destroy(obuf, db);
1694 db->db.db_size = size;
1695
1696 if (db->db_level == 0) {
1697 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1698 db->db_last_dirty->dt.dl.dr_data = buf;
1699 }
1700 mutex_exit(&db->db_mtx);
1701
1702 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
1703 DB_DNODE_EXIT(db);
1704}
1705
1706void
1707dbuf_release_bp(dmu_buf_impl_t *db)
1708{
1709 ASSERTV(objset_t *os = db->db_objset);
1710
1711 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1712 ASSERT(arc_released(os->os_phys_buf) ||
1713 list_link_active(&os->os_dsl_dataset->ds_synced_link));
1714 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1715
1716 (void) arc_release(db->db_buf, db);
1717}
1718
1719/*
1720 * We already have a dirty record for this TXG, and we are being
1721 * dirtied again.
1722 */
1723static void
1724dbuf_redirty(dbuf_dirty_record_t *dr)
1725{
1726 dmu_buf_impl_t *db = dr->dr_dbuf;
1727
1728 ASSERT(MUTEX_HELD(&db->db_mtx));
1729
1730 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1731 /*
1732 * If this buffer has already been written out,
1733 * we now need to reset its state.
1734 */
1735 dbuf_unoverride(dr);
1736 if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1737 db->db_state != DB_NOFILL) {
1738 /* Already released on initial dirty, so just thaw. */
1739 ASSERT(arc_released(db->db_buf));
1740 arc_buf_thaw(db->db_buf);
1741 }
1742 }
1743}
1744
1745dbuf_dirty_record_t *
1746dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1747{
1748 dnode_t *dn;
1749 objset_t *os;
1750 dbuf_dirty_record_t **drp, *dr;
1751 int drop_struct_lock = FALSE;
1752 int txgoff = tx->tx_txg & TXG_MASK;
1753
1754 ASSERT(tx->tx_txg != 0);
1755 ASSERT(!refcount_is_zero(&db->db_holds));
1756 DMU_TX_DIRTY_BUF(tx, db);
1757
1758 DB_DNODE_ENTER(db);
1759 dn = DB_DNODE(db);
1760 /*
1761 * Shouldn't dirty a regular buffer in syncing context. Private
1762 * objects may be dirtied in syncing context, but only if they
1763 * were already pre-dirtied in open context.
1764 */
1765#ifdef DEBUG
1766 if (dn->dn_objset->os_dsl_dataset != NULL) {
1767 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1768 RW_READER, FTAG);
1769 }
1770 ASSERT(!dmu_tx_is_syncing(tx) ||
1771 BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1772 DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1773 dn->dn_objset->os_dsl_dataset == NULL);
1774 if (dn->dn_objset->os_dsl_dataset != NULL)
1775 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
1776#endif
1777 /*
1778 * We make this assert for private objects as well, but after we
1779 * check if we're already dirty. They are allowed to re-dirty
1780 * in syncing context.
1781 */
1782 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1783 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1784 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1785
1786 mutex_enter(&db->db_mtx);
1787 /*
1788 * XXX make this true for indirects too? The problem is that
1789 * transactions created with dmu_tx_create_assigned() from
1790 * syncing context don't bother holding ahead.
1791 */
1792 ASSERT(db->db_level != 0 ||
1793 db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1794 db->db_state == DB_NOFILL);
1795
1796 mutex_enter(&dn->dn_mtx);
1797 /*
1798 * Don't set dirtyctx to SYNC if we're just modifying this as we
1799 * initialize the objset.
1800 */
1801 if (dn->dn_dirtyctx == DN_UNDIRTIED) {
1802 if (dn->dn_objset->os_dsl_dataset != NULL) {
1803 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1804 RW_READER, FTAG);
1805 }
1806 if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1807 dn->dn_dirtyctx = (dmu_tx_is_syncing(tx) ?
1808 DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1809 ASSERT(dn->dn_dirtyctx_firstset == NULL);
1810 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1811 }
1812 if (dn->dn_objset->os_dsl_dataset != NULL) {
1813 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1814 FTAG);
1815 }
1816 }
1817 mutex_exit(&dn->dn_mtx);
1818
1819 if (db->db_blkid == DMU_SPILL_BLKID)
1820 dn->dn_have_spill = B_TRUE;
1821
1822 /*
1823 * If this buffer is already dirty, we're done.
1824 */
1825 drp = &db->db_last_dirty;
1826 ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1827 db->db.db_object == DMU_META_DNODE_OBJECT);
1828 while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1829 drp = &dr->dr_next;
1830 if (dr && dr->dr_txg == tx->tx_txg) {
1831 DB_DNODE_EXIT(db);
1832
1833 dbuf_redirty(dr);
1834 mutex_exit(&db->db_mtx);
1835 return (dr);
1836 }
1837
1838 /*
1839 * Only valid if not already dirty.
1840 */
1841 ASSERT(dn->dn_object == 0 ||
1842 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1843 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1844
1845 ASSERT3U(dn->dn_nlevels, >, db->db_level);
1846
1847 /*
1848 * We should only be dirtying in syncing context if it's the
1849 * mos or we're initializing the os or it's a special object.
1850 * However, we are allowed to dirty in syncing context provided
1851 * we already dirtied it in open context. Hence we must make
1852 * this assertion only if we're not already dirty.
1853 */
1854 os = dn->dn_objset;
1855 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
1856#ifdef DEBUG
1857 if (dn->dn_objset->os_dsl_dataset != NULL)
1858 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
1859 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1860 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1861 if (dn->dn_objset->os_dsl_dataset != NULL)
1862 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
1863#endif
1864 ASSERT(db->db.db_size != 0);
1865
1866 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1867
1868 if (db->db_blkid != DMU_BONUS_BLKID) {
1869 dmu_objset_willuse_space(os, db->db.db_size, tx);
1870 }
1871
1872 /*
1873 * If this buffer is dirty in an old transaction group we need
1874 * to make a copy of it so that the changes we make in this
1875 * transaction group won't leak out when we sync the older txg.
1876 */
1877 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
1878 list_link_init(&dr->dr_dirty_node);
1879 if (db->db_level == 0) {
1880 void *data_old = db->db_buf;
1881
1882 if (db->db_state != DB_NOFILL) {
1883 if (db->db_blkid == DMU_BONUS_BLKID) {
1884 dbuf_fix_old_data(db, tx->tx_txg);
1885 data_old = db->db.db_data;
1886 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1887 /*
1888 * Release the data buffer from the cache so
1889 * that we can modify it without impacting
1890 * possible other users of this cached data
1891 * block. Note that indirect blocks and
1892 * private objects are not released until the
1893 * syncing state (since they are only modified
1894 * then).
1895 */
1896 arc_release(db->db_buf, db);
1897 dbuf_fix_old_data(db, tx->tx_txg);
1898 data_old = db->db_buf;
1899 }
1900 ASSERT(data_old != NULL);
1901 }
1902 dr->dt.dl.dr_data = data_old;
1903 } else {
1904 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
1905 list_create(&dr->dt.di.dr_children,
1906 sizeof (dbuf_dirty_record_t),
1907 offsetof(dbuf_dirty_record_t, dr_dirty_node));
1908 }
1909 if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
1910 dr->dr_accounted = db->db.db_size;
1911 dr->dr_dbuf = db;
1912 dr->dr_txg = tx->tx_txg;
1913 dr->dr_next = *drp;
1914 *drp = dr;
1915
1916 /*
1917 * We could have been freed_in_flight between the dbuf_noread
1918 * and dbuf_dirty. We win, as though the dbuf_noread() had
1919 * happened after the free.
1920 */
1921 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1922 db->db_blkid != DMU_SPILL_BLKID) {
1923 mutex_enter(&dn->dn_mtx);
1924 if (dn->dn_free_ranges[txgoff] != NULL) {
1925 range_tree_clear(dn->dn_free_ranges[txgoff],
1926 db->db_blkid, 1);
1927 }
1928 mutex_exit(&dn->dn_mtx);
1929 db->db_freed_in_flight = FALSE;
1930 }
1931
1932 /*
1933 * This buffer is now part of this txg
1934 */
1935 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1936 db->db_dirtycnt += 1;
1937 ASSERT3U(db->db_dirtycnt, <=, 3);
1938
1939 mutex_exit(&db->db_mtx);
1940
1941 if (db->db_blkid == DMU_BONUS_BLKID ||
1942 db->db_blkid == DMU_SPILL_BLKID) {
1943 mutex_enter(&dn->dn_mtx);
1944 ASSERT(!list_link_active(&dr->dr_dirty_node));
1945 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1946 mutex_exit(&dn->dn_mtx);
1947 dnode_setdirty(dn, tx);
1948 DB_DNODE_EXIT(db);
1949 return (dr);
1950 }
1951
1952 /*
1953 * The dn_struct_rwlock prevents db_blkptr from changing
1954 * due to a write from syncing context completing
1955 * while we are running, so we want to acquire it before
1956 * looking at db_blkptr.
1957 */
1958 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1959 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1960 drop_struct_lock = TRUE;
1961 }
1962
1963 /*
1964 * We need to hold the dn_struct_rwlock to make this assertion,
1965 * because it protects dn_phys / dn_next_nlevels from changing.
1966 */
1967 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1968 dn->dn_phys->dn_nlevels > db->db_level ||
1969 dn->dn_next_nlevels[txgoff] > db->db_level ||
1970 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
1971 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
1972
1973 /*
1974 * If we are overwriting a dedup BP, then unless it is snapshotted,
1975 * when we get to syncing context we will need to decrement its
1976 * refcount in the DDT. Prefetch the relevant DDT block so that
1977 * syncing context won't have to wait for the i/o.
1978 */
1979 ddt_prefetch(os->os_spa, db->db_blkptr);
1980
1981 if (db->db_level == 0) {
1982 dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
1983 ASSERT(dn->dn_maxblkid >= db->db_blkid);
1984 }
1985
1986 if (db->db_level+1 < dn->dn_nlevels) {
1987 dmu_buf_impl_t *parent = db->db_parent;
1988 dbuf_dirty_record_t *di;
1989 int parent_held = FALSE;
1990
1991 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
1992 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1993
1994 parent = dbuf_hold_level(dn, db->db_level+1,
1995 db->db_blkid >> epbs, FTAG);
1996 ASSERT(parent != NULL);
1997 parent_held = TRUE;
1998 }
1999 if (drop_struct_lock)
2000 rw_exit(&dn->dn_struct_rwlock);
2001 ASSERT3U(db->db_level+1, ==, parent->db_level);
2002 di = dbuf_dirty(parent, tx);
2003 if (parent_held)
2004 dbuf_rele(parent, FTAG);
2005
2006 mutex_enter(&db->db_mtx);
2007 /*
2008 * Since we've dropped the mutex, it's possible that
2009 * dbuf_undirty() might have changed this out from under us.
2010 */
2011 if (db->db_last_dirty == dr ||
2012 dn->dn_object == DMU_META_DNODE_OBJECT) {
2013 mutex_enter(&di->dt.di.dr_mtx);
2014 ASSERT3U(di->dr_txg, ==, tx->tx_txg);
2015 ASSERT(!list_link_active(&dr->dr_dirty_node));
2016 list_insert_tail(&di->dt.di.dr_children, dr);
2017 mutex_exit(&di->dt.di.dr_mtx);
2018 dr->dr_parent = di;
2019 }
2020 mutex_exit(&db->db_mtx);
2021 } else {
2022 ASSERT(db->db_level+1 == dn->dn_nlevels);
2023 ASSERT(db->db_blkid < dn->dn_nblkptr);
2024 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
2025 mutex_enter(&dn->dn_mtx);
2026 ASSERT(!list_link_active(&dr->dr_dirty_node));
2027 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2028 mutex_exit(&dn->dn_mtx);
2029 if (drop_struct_lock)
2030 rw_exit(&dn->dn_struct_rwlock);
2031 }
2032
2033 dnode_setdirty(dn, tx);
2034 DB_DNODE_EXIT(db);
2035 return (dr);
2036}
2037
2038/*
2039 * Undirty a buffer in the transaction group referenced by the given
2040 * transaction. Return whether this evicted the dbuf.
2041 */
2042static boolean_t
2043dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2044{
2045 dnode_t *dn;
2046 uint64_t txg = tx->tx_txg;
2047 dbuf_dirty_record_t *dr, **drp;
2048
2049 ASSERT(txg != 0);
2050
2051 /*
2052 * Due to our use of dn_nlevels below, this can only be called
2053 * in open context, unless we are operating on the MOS.
2054 * From syncing context, dn_nlevels may be different from the
2055 * dn_nlevels used when dbuf was dirtied.
2056 */
2057 ASSERT(db->db_objset ==
2058 dmu_objset_pool(db->db_objset)->dp_meta_objset ||
2059 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
2060 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2061 ASSERT0(db->db_level);
2062 ASSERT(MUTEX_HELD(&db->db_mtx));
2063
2064 /*
2065 * If this buffer is not dirty, we're done.
2066 */
2067 for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
2068 if (dr->dr_txg <= txg)
2069 break;
2070 if (dr == NULL || dr->dr_txg < txg)
2071 return (B_FALSE);
2072 ASSERT(dr->dr_txg == txg);
2073 ASSERT(dr->dr_dbuf == db);
2074
2075 DB_DNODE_ENTER(db);
2076 dn = DB_DNODE(db);
2077
2078 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2079
2080 ASSERT(db->db.db_size != 0);
2081
2082 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
2083 dr->dr_accounted, txg);
2084
2085 *drp = dr->dr_next;
2086
2087 /*
2088 * Note that there are three places in dbuf_dirty()
2089 * where this dirty record may be put on a list.
2090 * Make sure to do a list_remove corresponding to
2091 * every one of those list_insert calls.
2092 */
2093 if (dr->dr_parent) {
2094 mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
2095 list_remove(&dr->dr_parent->dt.di.dr_children, dr);
2096 mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
2097 } else if (db->db_blkid == DMU_SPILL_BLKID ||
2098 db->db_level + 1 == dn->dn_nlevels) {
2099 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
2100 mutex_enter(&dn->dn_mtx);
2101 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
2102 mutex_exit(&dn->dn_mtx);
2103 }
2104 DB_DNODE_EXIT(db);
2105
2106 if (db->db_state != DB_NOFILL) {
2107 dbuf_unoverride(dr);
2108
2109 ASSERT(db->db_buf != NULL);
2110 ASSERT(dr->dt.dl.dr_data != NULL);
2111 if (dr->dt.dl.dr_data != db->db_buf)
2112 arc_buf_destroy(dr->dt.dl.dr_data, db);
2113 }
2114
2115 kmem_free(dr, sizeof (dbuf_dirty_record_t));
2116
2117 ASSERT(db->db_dirtycnt > 0);
2118 db->db_dirtycnt -= 1;
2119
2120 if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
2121 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf));
2122 dbuf_destroy(db);
2123 return (B_TRUE);
2124 }
2125
2126 return (B_FALSE);
2127}
2128
2129static void
2130dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx)
2131{
2132 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2133
2134 ASSERT(tx->tx_txg != 0);
2135 ASSERT(!refcount_is_zero(&db->db_holds));
2136
2137 /*
2138 * Quick check for dirtyness. For already dirty blocks, this
2139 * reduces runtime of this function by >90%, and overall performance
2140 * by 50% for some workloads (e.g. file deletion with indirect blocks
2141 * cached).
2142 */
2143 mutex_enter(&db->db_mtx);
2144
2145 dbuf_dirty_record_t *dr;
2146 for (dr = db->db_last_dirty;
2147 dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) {
2148 /*
2149 * It's possible that it is already dirty but not cached,
2150 * because there are some calls to dbuf_dirty() that don't
2151 * go through dmu_buf_will_dirty().
2152 */
2153 if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) {
2154 /* This dbuf is already dirty and cached. */
2155 dbuf_redirty(dr);
2156 mutex_exit(&db->db_mtx);
2157 return;
2158 }
2159 }
2160 mutex_exit(&db->db_mtx);
2161
2162 DB_DNODE_ENTER(db);
2163 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
2164 flags |= DB_RF_HAVESTRUCT;
2165 DB_DNODE_EXIT(db);
2166 (void) dbuf_read(db, NULL, flags);
2167 (void) dbuf_dirty(db, tx);
2168}
2169
2170void
2171dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2172{
2173 dmu_buf_will_dirty_impl(db_fake,
2174 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx);
2175}
2176
2177void
2178dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2179{
2180 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2181
2182 db->db_state = DB_NOFILL;
2183
2184 dmu_buf_will_fill(db_fake, tx);
2185}
2186
2187void
2188dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2189{
2190 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2191
2192 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2193 ASSERT(tx->tx_txg != 0);
2194 ASSERT(db->db_level == 0);
2195 ASSERT(!refcount_is_zero(&db->db_holds));
2196
2197 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
2198 dmu_tx_private_ok(tx));
2199
2200 dbuf_noread(db);
2201 (void) dbuf_dirty(db, tx);
2202}
2203
2204/*
2205 * This function is effectively the same as dmu_buf_will_dirty(), but
2206 * indicates the caller expects raw encrypted data in the db. It will
2207 * also set the raw flag on the created dirty record.
2208 */
2209void
2210dmu_buf_will_change_crypt_params(dmu_buf_t *db_fake, dmu_tx_t *tx)
2211{
2212 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2213 dbuf_dirty_record_t *dr;
2214
2215 dmu_buf_will_dirty_impl(db_fake,
2216 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx);
2217
2218 dr = db->db_last_dirty;
2219 while (dr != NULL && dr->dr_txg > tx->tx_txg)
2220 dr = dr->dr_next;
2221
2222 ASSERT3P(dr, !=, NULL);
2223 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2224 dr->dt.dl.dr_raw = B_TRUE;
2225 db->db_objset->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
2226}
2227
2228#pragma weak dmu_buf_fill_done = dbuf_fill_done
2229/* ARGSUSED */
2230void
2231dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
2232{
2233 mutex_enter(&db->db_mtx);
2234 DBUF_VERIFY(db);
2235
2236 if (db->db_state == DB_FILL) {
2237 if (db->db_level == 0 && db->db_freed_in_flight) {
2238 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2239 /* we were freed while filling */
2240 /* XXX dbuf_undirty? */
2241 bzero(db->db.db_data, db->db.db_size);
2242 db->db_freed_in_flight = FALSE;
2243 }
2244 db->db_state = DB_CACHED;
2245 cv_broadcast(&db->db_changed);
2246 }
2247 mutex_exit(&db->db_mtx);
2248}
2249
2250void
2251dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
2252 bp_embedded_type_t etype, enum zio_compress comp,
2253 int uncompressed_size, int compressed_size, int byteorder,
2254 dmu_tx_t *tx)
2255{
2256 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2257 struct dirty_leaf *dl;
2258 dmu_object_type_t type;
2259
2260 if (etype == BP_EMBEDDED_TYPE_DATA) {
2261 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
2262 SPA_FEATURE_EMBEDDED_DATA));
2263 }
2264
2265 DB_DNODE_ENTER(db);
2266 type = DB_DNODE(db)->dn_type;
2267 DB_DNODE_EXIT(db);
2268
2269 ASSERT0(db->db_level);
2270 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2271
2272 dmu_buf_will_not_fill(dbuf, tx);
2273
2274 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
2275 dl = &db->db_last_dirty->dt.dl;
2276 encode_embedded_bp_compressed(&dl->dr_overridden_by,
2277 data, comp, uncompressed_size, compressed_size);
2278 BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
2279 BP_SET_TYPE(&dl->dr_overridden_by, type);
2280 BP_SET_LEVEL(&dl->dr_overridden_by, 0);
2281 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
2282
2283 dl->dr_override_state = DR_OVERRIDDEN;
2284 dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg;
2285}
2286
2287/*
2288 * Directly assign a provided arc buf to a given dbuf if it's not referenced
2289 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
2290 */
2291void
2292dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
2293{
2294 ASSERT(!refcount_is_zero(&db->db_holds));
2295 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2296 ASSERT(db->db_level == 0);
2297 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
2298 ASSERT(buf != NULL);
2299 ASSERT(arc_buf_lsize(buf) == db->db.db_size);
2300 ASSERT(tx->tx_txg != 0);
2301
2302 arc_return_buf(buf, db);
2303 ASSERT(arc_released(buf));
2304
2305 mutex_enter(&db->db_mtx);
2306
2307 while (db->db_state == DB_READ || db->db_state == DB_FILL)
2308 cv_wait(&db->db_changed, &db->db_mtx);
2309
2310 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
2311
2312 if (db->db_state == DB_CACHED &&
2313 refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
2314 /*
2315 * In practice, we will never have a case where we have an
2316 * encrypted arc buffer while additional holds exist on the
2317 * dbuf. We don't handle this here so we simply assert that
2318 * fact instead.
2319 */
2320 ASSERT(!arc_is_encrypted(buf));
2321 mutex_exit(&db->db_mtx);
2322 (void) dbuf_dirty(db, tx);
2323 bcopy(buf->b_data, db->db.db_data, db->db.db_size);
2324 arc_buf_destroy(buf, db);
2325 xuio_stat_wbuf_copied();
2326 return;
2327 }
2328
2329 xuio_stat_wbuf_nocopy();
2330 if (db->db_state == DB_CACHED) {
2331 dbuf_dirty_record_t *dr = db->db_last_dirty;
2332
2333 ASSERT(db->db_buf != NULL);
2334 if (dr != NULL && dr->dr_txg == tx->tx_txg) {
2335 ASSERT(dr->dt.dl.dr_data == db->db_buf);
2336 IMPLY(arc_is_encrypted(buf), dr->dt.dl.dr_raw);
2337
2338 if (!arc_released(db->db_buf)) {
2339 ASSERT(dr->dt.dl.dr_override_state ==
2340 DR_OVERRIDDEN);
2341 arc_release(db->db_buf, db);
2342 }
2343 dr->dt.dl.dr_data = buf;
2344 arc_buf_destroy(db->db_buf, db);
2345 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
2346 arc_release(db->db_buf, db);
2347 arc_buf_destroy(db->db_buf, db);
2348 }
2349 db->db_buf = NULL;
2350 }
2351 ASSERT(db->db_buf == NULL);
2352 dbuf_set_data(db, buf);
2353 db->db_state = DB_FILL;
2354 mutex_exit(&db->db_mtx);
2355 (void) dbuf_dirty(db, tx);
2356 dmu_buf_fill_done(&db->db, tx);
2357}
2358
2359void
2360dbuf_destroy(dmu_buf_impl_t *db)
2361{
2362 dnode_t *dn;
2363 dmu_buf_impl_t *parent = db->db_parent;
2364 dmu_buf_impl_t *dndb;
2365
2366 ASSERT(MUTEX_HELD(&db->db_mtx));
2367 ASSERT(refcount_is_zero(&db->db_holds));
2368
2369 if (db->db_buf != NULL) {
2370 arc_buf_destroy(db->db_buf, db);
2371 db->db_buf = NULL;
2372 }
2373
2374 if (db->db_blkid == DMU_BONUS_BLKID) {
2375 int slots = DB_DNODE(db)->dn_num_slots;
2376 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
2377 if (db->db.db_data != NULL) {
2378 kmem_free(db->db.db_data, bonuslen);
2379 arc_space_return(bonuslen, ARC_SPACE_BONUS);
2380 db->db_state = DB_UNCACHED;
2381 }
2382 }
2383
2384 dbuf_clear_data(db);
2385
2386 if (multilist_link_active(&db->db_cache_link)) {
2387 multilist_remove(dbuf_cache, db);
2388 (void) refcount_remove_many(&dbuf_cache_size,
2389 db->db.db_size, db);
2390 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
2391 DBUF_STAT_BUMPDOWN(cache_count);
2392 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
2393 db->db.db_size);
2394 }
2395
2396 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
2397 ASSERT(db->db_data_pending == NULL);
2398
2399 db->db_state = DB_EVICTING;
2400 db->db_blkptr = NULL;
2401
2402 /*
2403 * Now that db_state is DB_EVICTING, nobody else can find this via
2404 * the hash table. We can now drop db_mtx, which allows us to
2405 * acquire the dn_dbufs_mtx.
2406 */
2407 mutex_exit(&db->db_mtx);
2408
2409 DB_DNODE_ENTER(db);
2410 dn = DB_DNODE(db);
2411 dndb = dn->dn_dbuf;
2412 if (db->db_blkid != DMU_BONUS_BLKID) {
2413 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
2414 if (needlock)
2415 mutex_enter(&dn->dn_dbufs_mtx);
2416 avl_remove(&dn->dn_dbufs, db);
2417 atomic_dec_32(&dn->dn_dbufs_count);
2418 membar_producer();
2419 DB_DNODE_EXIT(db);
2420 if (needlock)
2421 mutex_exit(&dn->dn_dbufs_mtx);
2422 /*
2423 * Decrementing the dbuf count means that the hold corresponding
2424 * to the removed dbuf is no longer discounted in dnode_move(),
2425 * so the dnode cannot be moved until after we release the hold.
2426 * The membar_producer() ensures visibility of the decremented
2427 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
2428 * release any lock.
2429 */
2430 dnode_rele(dn, db);
2431 db->db_dnode_handle = NULL;
2432
2433 dbuf_hash_remove(db);
2434 } else {
2435 DB_DNODE_EXIT(db);
2436 }
2437
2438 ASSERT(refcount_is_zero(&db->db_holds));
2439
2440 db->db_parent = NULL;
2441
2442 ASSERT(db->db_buf == NULL);
2443 ASSERT(db->db.db_data == NULL);
2444 ASSERT(db->db_hash_next == NULL);
2445 ASSERT(db->db_blkptr == NULL);
2446 ASSERT(db->db_data_pending == NULL);
2447 ASSERT(!multilist_link_active(&db->db_cache_link));
2448
2449 kmem_cache_free(dbuf_kmem_cache, db);
2450 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2451
2452 /*
2453 * If this dbuf is referenced from an indirect dbuf,
2454 * decrement the ref count on the indirect dbuf.
2455 */
2456 if (parent && parent != dndb)
2457 dbuf_rele(parent, db);
2458}
2459
2460/*
2461 * Note: While bpp will always be updated if the function returns success,
2462 * parentp will not be updated if the dnode does not have dn_dbuf filled in;
2463 * this happens when the dnode is the meta-dnode, or {user|group|project}used
2464 * object.
2465 */
2466__attribute__((always_inline))
2467static inline int
2468dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
2469 dmu_buf_impl_t **parentp, blkptr_t **bpp, struct dbuf_hold_impl_data *dh)
2470{
2471 *parentp = NULL;
2472 *bpp = NULL;
2473
2474 ASSERT(blkid != DMU_BONUS_BLKID);
2475
2476 if (blkid == DMU_SPILL_BLKID) {
2477 mutex_enter(&dn->dn_mtx);
2478 if (dn->dn_have_spill &&
2479 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
2480 *bpp = DN_SPILL_BLKPTR(dn->dn_phys);
2481 else
2482 *bpp = NULL;
2483 dbuf_add_ref(dn->dn_dbuf, NULL);
2484 *parentp = dn->dn_dbuf;
2485 mutex_exit(&dn->dn_mtx);
2486 return (0);
2487 }
2488
2489 int nlevels =
2490 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
2491 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2492
2493 ASSERT3U(level * epbs, <, 64);
2494 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2495 /*
2496 * This assertion shouldn't trip as long as the max indirect block size
2497 * is less than 1M. The reason for this is that up to that point,
2498 * the number of levels required to address an entire object with blocks
2499 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In
2500 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
2501 * (i.e. we can address the entire object), objects will all use at most
2502 * N-1 levels and the assertion won't overflow. However, once epbs is
2503 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be
2504 * enough to address an entire object, so objects will have 5 levels,
2505 * but then this assertion will overflow.
2506 *
2507 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
2508 * need to redo this logic to handle overflows.
2509 */
2510 ASSERT(level >= nlevels ||
2511 ((nlevels - level - 1) * epbs) +
2512 highbit64(dn->dn_phys->dn_nblkptr) <= 64);
2513 if (level >= nlevels ||
2514 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
2515 ((nlevels - level - 1) * epbs)) ||
2516 (fail_sparse &&
2517 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
2518 /* the buffer has no parent yet */
2519 return (SET_ERROR(ENOENT));
2520 } else if (level < nlevels-1) {
2521 /* this block is referenced from an indirect block */
2522 int err;
2523 if (dh == NULL) {
2524 err = dbuf_hold_impl(dn, level+1,
2525 blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
2526 } else {
2527 __dbuf_hold_impl_init(dh + 1, dn, dh->dh_level + 1,
2528 blkid >> epbs, fail_sparse, FALSE, NULL,
2529 parentp, dh->dh_depth + 1);
2530 err = __dbuf_hold_impl(dh + 1);
2531 }
2532 if (err)
2533 return (err);
2534 err = dbuf_read(*parentp, NULL,
2535 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2536 if (err) {
2537 dbuf_rele(*parentp, NULL);
2538 *parentp = NULL;
2539 return (err);
2540 }
2541 *bpp = ((blkptr_t *)(*parentp)->db.db_data) +
2542 (blkid & ((1ULL << epbs) - 1));
2543 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
2544 ASSERT(BP_IS_HOLE(*bpp));
2545 return (0);
2546 } else {
2547 /* the block is referenced from the dnode */
2548 ASSERT3U(level, ==, nlevels-1);
2549 ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
2550 blkid < dn->dn_phys->dn_nblkptr);
2551 if (dn->dn_dbuf) {
2552 dbuf_add_ref(dn->dn_dbuf, NULL);
2553 *parentp = dn->dn_dbuf;
2554 }
2555 *bpp = &dn->dn_phys->dn_blkptr[blkid];
2556 return (0);
2557 }
2558}
2559
2560static dmu_buf_impl_t *
2561dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
2562 dmu_buf_impl_t *parent, blkptr_t *blkptr)
2563{
2564 objset_t *os = dn->dn_objset;
2565 dmu_buf_impl_t *db, *odb;
2566
2567 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2568 ASSERT(dn->dn_type != DMU_OT_NONE);
2569
2570 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
2571
2572 db->db_objset = os;
2573 db->db.db_object = dn->dn_object;
2574 db->db_level = level;
2575 db->db_blkid = blkid;
2576 db->db_last_dirty = NULL;
2577 db->db_dirtycnt = 0;
2578 db->db_dnode_handle = dn->dn_handle;
2579 db->db_parent = parent;
2580 db->db_blkptr = blkptr;
2581
2582 db->db_user = NULL;
2583 db->db_user_immediate_evict = FALSE;
2584 db->db_freed_in_flight = FALSE;
2585 db->db_pending_evict = FALSE;
2586
2587 if (blkid == DMU_BONUS_BLKID) {
2588 ASSERT3P(parent, ==, dn->dn_dbuf);
2589 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
2590 (dn->dn_nblkptr-1) * sizeof (blkptr_t);
2591 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
2592 db->db.db_offset = DMU_BONUS_BLKID;
2593 db->db_state = DB_UNCACHED;
2594 /* the bonus dbuf is not placed in the hash table */
2595 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2596 return (db);
2597 } else if (blkid == DMU_SPILL_BLKID) {
2598 db->db.db_size = (blkptr != NULL) ?
2599 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
2600 db->db.db_offset = 0;
2601 } else {
2602 int blocksize =
2603 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
2604 db->db.db_size = blocksize;
2605 db->db.db_offset = db->db_blkid * blocksize;
2606 }
2607
2608 /*
2609 * Hold the dn_dbufs_mtx while we get the new dbuf
2610 * in the hash table *and* added to the dbufs list.
2611 * This prevents a possible deadlock with someone
2612 * trying to look up this dbuf before its added to the
2613 * dn_dbufs list.
2614 */
2615 mutex_enter(&dn->dn_dbufs_mtx);
2616 db->db_state = DB_EVICTING;
2617 if ((odb = dbuf_hash_insert(db)) != NULL) {
2618 /* someone else inserted it first */
2619 kmem_cache_free(dbuf_kmem_cache, db);
2620 mutex_exit(&dn->dn_dbufs_mtx);
2621 DBUF_STAT_BUMP(hash_insert_race);
2622 return (odb);
2623 }
2624 avl_add(&dn->dn_dbufs, db);
2625
2626 db->db_state = DB_UNCACHED;
2627 mutex_exit(&dn->dn_dbufs_mtx);
2628 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2629
2630 if (parent && parent != dn->dn_dbuf)
2631 dbuf_add_ref(parent, db);
2632
2633 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2634 refcount_count(&dn->dn_holds) > 0);
2635 (void) refcount_add(&dn->dn_holds, db);
2636 atomic_inc_32(&dn->dn_dbufs_count);
2637
2638 dprintf_dbuf(db, "db=%p\n", db);
2639
2640 return (db);
2641}
2642
2643typedef struct dbuf_prefetch_arg {
2644 spa_t *dpa_spa; /* The spa to issue the prefetch in. */
2645 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
2646 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
2647 int dpa_curlevel; /* The current level that we're reading */
2648 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
2649 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
2650 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
2651 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
2652} dbuf_prefetch_arg_t;
2653
2654/*
2655 * Actually issue the prefetch read for the block given.
2656 */
2657static void
2658dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
2659{
2660 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2661 return;
2662
2663 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
2664 arc_flags_t aflags =
2665 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH;
2666
2667 /* dnodes are always read as raw and then converted later */
2668 if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) &&
2669 dpa->dpa_curlevel == 0)
2670 zio_flags |= ZIO_FLAG_RAW;
2671
2672 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2673 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
2674 ASSERT(dpa->dpa_zio != NULL);
2675 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL,
2676 dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb);
2677}
2678
2679/*
2680 * Called when an indirect block above our prefetch target is read in. This
2681 * will either read in the next indirect block down the tree or issue the actual
2682 * prefetch if the next block down is our target.
2683 */
2684static void
2685dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb,
2686 const blkptr_t *iobp, arc_buf_t *abuf, void *private)
2687{
2688 dbuf_prefetch_arg_t *dpa = private;
2689
2690 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
2691 ASSERT3S(dpa->dpa_curlevel, >, 0);
2692
2693 /*
2694 * The dpa_dnode is only valid if we are called with a NULL
2695 * zio. This indicates that the arc_read() returned without
2696 * first calling zio_read() to issue a physical read. Once
2697 * a physical read is made the dpa_dnode must be invalidated
2698 * as the locks guarding it may have been dropped. If the
2699 * dpa_dnode is still valid, then we want to add it to the dbuf
2700 * cache. To do so, we must hold the dbuf associated with the block
2701 * we just prefetched, read its contents so that we associate it
2702 * with an arc_buf_t, and then release it.
2703 */
2704 if (zio != NULL) {
2705 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
2706 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) {
2707 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
2708 } else {
2709 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
2710 }
2711 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
2712
2713 dpa->dpa_dnode = NULL;
2714 } else if (dpa->dpa_dnode != NULL) {
2715 uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
2716 (dpa->dpa_epbs * (dpa->dpa_curlevel -
2717 dpa->dpa_zb.zb_level));
2718 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
2719 dpa->dpa_curlevel, curblkid, FTAG);
2720 (void) dbuf_read(db, NULL,
2721 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
2722 dbuf_rele(db, FTAG);
2723 }
2724
2725 if (abuf == NULL) {
2726 kmem_free(dpa, sizeof (*dpa));
2727 return;
2728 }
2729
2730 dpa->dpa_curlevel--;
2731 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
2732 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
2733 blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
2734 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
2735
2736 if (BP_IS_HOLE(bp)) {
2737 kmem_free(dpa, sizeof (*dpa));
2738 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
2739 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
2740 dbuf_issue_final_prefetch(dpa, bp);
2741 kmem_free(dpa, sizeof (*dpa));
2742 } else {
2743 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2744 zbookmark_phys_t zb;
2745
2746 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
2747 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE)
2748 iter_aflags |= ARC_FLAG_L2CACHE;
2749
2750 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2751
2752 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
2753 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
2754
2755 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2756 bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio,
2757 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2758 &iter_aflags, &zb);
2759 }
2760
2761 arc_buf_destroy(abuf, private);
2762}
2763
2764/*
2765 * Issue prefetch reads for the given block on the given level. If the indirect
2766 * blocks above that block are not in memory, we will read them in
2767 * asynchronously. As a result, this call never blocks waiting for a read to
2768 * complete. Note that the prefetch might fail if the dataset is encrypted and
2769 * the encryption key is unmapped before the IO completes.
2770 */
2771void
2772dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
2773 arc_flags_t aflags)
2774{
2775 blkptr_t bp;
2776 int epbs, nlevels, curlevel;
2777 uint64_t curblkid;
2778
2779 ASSERT(blkid != DMU_BONUS_BLKID);
2780 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2781
2782 if (blkid > dn->dn_maxblkid)
2783 return;
2784
2785 if (dnode_block_freed(dn, blkid))
2786 return;
2787
2788 /*
2789 * This dnode hasn't been written to disk yet, so there's nothing to
2790 * prefetch.
2791 */
2792 nlevels = dn->dn_phys->dn_nlevels;
2793 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
2794 return;
2795
2796 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2797 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
2798 return;
2799
2800 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
2801 level, blkid);
2802 if (db != NULL) {
2803 mutex_exit(&db->db_mtx);
2804 /*
2805 * This dbuf already exists. It is either CACHED, or
2806 * (we assume) about to be read or filled.
2807 */
2808 return;
2809 }
2810
2811 /*
2812 * Find the closest ancestor (indirect block) of the target block
2813 * that is present in the cache. In this indirect block, we will
2814 * find the bp that is at curlevel, curblkid.
2815 */
2816 curlevel = level;
2817 curblkid = blkid;
2818 while (curlevel < nlevels - 1) {
2819 int parent_level = curlevel + 1;
2820 uint64_t parent_blkid = curblkid >> epbs;
2821 dmu_buf_impl_t *db;
2822
2823 if (dbuf_hold_impl(dn, parent_level, parent_blkid,
2824 FALSE, TRUE, FTAG, &db) == 0) {
2825 blkptr_t *bpp = db->db_buf->b_data;
2826 bp = bpp[P2PHASE(curblkid, 1 << epbs)];
2827 dbuf_rele(db, FTAG);
2828 break;
2829 }
2830
2831 curlevel = parent_level;
2832 curblkid = parent_blkid;
2833 }
2834
2835 if (curlevel == nlevels - 1) {
2836 /* No cached indirect blocks found. */
2837 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
2838 bp = dn->dn_phys->dn_blkptr[curblkid];
2839 }
2840 if (BP_IS_HOLE(&bp))
2841 return;
2842
2843 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
2844
2845 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
2846 ZIO_FLAG_CANFAIL);
2847
2848 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
2849 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
2850 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2851 dn->dn_object, level, blkid);
2852 dpa->dpa_curlevel = curlevel;
2853 dpa->dpa_prio = prio;
2854 dpa->dpa_aflags = aflags;
2855 dpa->dpa_spa = dn->dn_objset->os_spa;
2856 dpa->dpa_dnode = dn;
2857 dpa->dpa_epbs = epbs;
2858 dpa->dpa_zio = pio;
2859
2860 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
2861 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level))
2862 dpa->dpa_aflags |= ARC_FLAG_L2CACHE;
2863
2864 /*
2865 * If we have the indirect just above us, no need to do the asynchronous
2866 * prefetch chain; we'll just run the last step ourselves. If we're at
2867 * a higher level, though, we want to issue the prefetches for all the
2868 * indirect blocks asynchronously, so we can go on with whatever we were
2869 * doing.
2870 */
2871 if (curlevel == level) {
2872 ASSERT3U(curblkid, ==, blkid);
2873 dbuf_issue_final_prefetch(dpa, &bp);
2874 kmem_free(dpa, sizeof (*dpa));
2875 } else {
2876 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2877 zbookmark_phys_t zb;
2878
2879 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
2880 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level))
2881 iter_aflags |= ARC_FLAG_L2CACHE;
2882
2883 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2884 dn->dn_object, curlevel, curblkid);
2885 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2886 &bp, dbuf_prefetch_indirect_done, dpa, prio,
2887 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2888 &iter_aflags, &zb);
2889 }
2890 /*
2891 * We use pio here instead of dpa_zio since it's possible that
2892 * dpa may have already been freed.
2893 */
2894 zio_nowait(pio);
2895}
2896
2897#define DBUF_HOLD_IMPL_MAX_DEPTH 20
2898
2899/*
2900 * Helper function for __dbuf_hold_impl() to copy a buffer. Handles
2901 * the case of encrypted, compressed and uncompressed buffers by
2902 * allocating the new buffer, respectively, with arc_alloc_raw_buf(),
2903 * arc_alloc_compressed_buf() or arc_alloc_buf().*
2904 *
2905 * NOTE: Declared noinline to avoid stack bloat in __dbuf_hold_impl().
2906 */
2907noinline static void
2908dbuf_hold_copy(struct dbuf_hold_impl_data *dh)
2909{
2910 dnode_t *dn = dh->dh_dn;
2911 dmu_buf_impl_t *db = dh->dh_db;
2912 dbuf_dirty_record_t *dr = dh->dh_dr;
2913 arc_buf_t *data = dr->dt.dl.dr_data;
2914
2915 enum zio_compress compress_type = arc_get_compression(data);
2916
2917 if (arc_is_encrypted(data)) {
2918 boolean_t byteorder;
2919 uint8_t salt[ZIO_DATA_SALT_LEN];
2920 uint8_t iv[ZIO_DATA_IV_LEN];
2921 uint8_t mac[ZIO_DATA_MAC_LEN];
2922
2923 arc_get_raw_params(data, &byteorder, salt, iv, mac);
2924 dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db,
2925 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac,
2926 dn->dn_type, arc_buf_size(data), arc_buf_lsize(data),
2927 compress_type));
2928 } else if (compress_type != ZIO_COMPRESS_OFF) {
2929 dbuf_set_data(db, arc_alloc_compressed_buf(
2930 dn->dn_objset->os_spa, db, arc_buf_size(data),
2931 arc_buf_lsize(data), compress_type));
2932 } else {
2933 dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db,
2934 DBUF_GET_BUFC_TYPE(db), db->db.db_size));
2935 }
2936
2937 bcopy(data->b_data, db->db.db_data, arc_buf_size(data));
2938}
2939
2940/*
2941 * Returns with db_holds incremented, and db_mtx not held.
2942 * Note: dn_struct_rwlock must be held.
2943 */
2944static int
2945__dbuf_hold_impl(struct dbuf_hold_impl_data *dh)
2946{
2947 ASSERT3S(dh->dh_depth, <, DBUF_HOLD_IMPL_MAX_DEPTH);
2948 dh->dh_parent = NULL;
2949
2950 ASSERT(dh->dh_blkid != DMU_BONUS_BLKID);
2951 ASSERT(RW_LOCK_HELD(&dh->dh_dn->dn_struct_rwlock));
2952 ASSERT3U(dh->dh_dn->dn_nlevels, >, dh->dh_level);
2953
2954 *(dh->dh_dbp) = NULL;
2955
2956 /* dbuf_find() returns with db_mtx held */
2957 dh->dh_db = dbuf_find(dh->dh_dn->dn_objset, dh->dh_dn->dn_object,
2958 dh->dh_level, dh->dh_blkid);
2959
2960 if (dh->dh_db == NULL) {
2961 dh->dh_bp = NULL;
2962
2963 if (dh->dh_fail_uncached)
2964 return (SET_ERROR(ENOENT));
2965
2966 ASSERT3P(dh->dh_parent, ==, NULL);
2967 dh->dh_err = dbuf_findbp(dh->dh_dn, dh->dh_level, dh->dh_blkid,
2968 dh->dh_fail_sparse, &dh->dh_parent, &dh->dh_bp, dh);
2969 if (dh->dh_fail_sparse) {
2970 if (dh->dh_err == 0 &&
2971 dh->dh_bp && BP_IS_HOLE(dh->dh_bp))
2972 dh->dh_err = SET_ERROR(ENOENT);
2973 if (dh->dh_err) {
2974 if (dh->dh_parent)
2975 dbuf_rele(dh->dh_parent, NULL);
2976 return (dh->dh_err);
2977 }
2978 }
2979 if (dh->dh_err && dh->dh_err != ENOENT)
2980 return (dh->dh_err);
2981 dh->dh_db = dbuf_create(dh->dh_dn, dh->dh_level, dh->dh_blkid,
2982 dh->dh_parent, dh->dh_bp);
2983 }
2984
2985 if (dh->dh_fail_uncached && dh->dh_db->db_state != DB_CACHED) {
2986 mutex_exit(&dh->dh_db->db_mtx);
2987 return (SET_ERROR(ENOENT));
2988 }
2989
2990 if (dh->dh_db->db_buf != NULL) {
2991 arc_buf_access(dh->dh_db->db_buf);
2992 ASSERT3P(dh->dh_db->db.db_data, ==, dh->dh_db->db_buf->b_data);
2993 }
2994
2995 ASSERT(dh->dh_db->db_buf == NULL || arc_referenced(dh->dh_db->db_buf));
2996
2997 /*
2998 * If this buffer is currently syncing out, and we are are
2999 * still referencing it from db_data, we need to make a copy
3000 * of it in case we decide we want to dirty it again in this txg.
3001 */
3002 if (dh->dh_db->db_level == 0 &&
3003 dh->dh_db->db_blkid != DMU_BONUS_BLKID &&
3004 dh->dh_dn->dn_object != DMU_META_DNODE_OBJECT &&
3005 dh->dh_db->db_state == DB_CACHED && dh->dh_db->db_data_pending) {
3006 dh->dh_dr = dh->dh_db->db_data_pending;
3007 if (dh->dh_dr->dt.dl.dr_data == dh->dh_db->db_buf)
3008 dbuf_hold_copy(dh);
3009 }
3010
3011 if (multilist_link_active(&dh->dh_db->db_cache_link)) {
3012 ASSERT(refcount_is_zero(&dh->dh_db->db_holds));
3013 multilist_remove(dbuf_cache, dh->dh_db);
3014 (void) refcount_remove_many(&dbuf_cache_size,
3015 dh->dh_db->db.db_size, dh->dh_db);
3016 DBUF_STAT_BUMPDOWN(cache_levels[dh->dh_db->db_level]);
3017 DBUF_STAT_BUMPDOWN(cache_count);
3018 DBUF_STAT_DECR(cache_levels_bytes[dh->dh_db->db_level],
3019 dh->dh_db->db.db_size);
3020 }
3021 (void) refcount_add(&dh->dh_db->db_holds, dh->dh_tag);
3022 DBUF_VERIFY(dh->dh_db);
3023 mutex_exit(&dh->dh_db->db_mtx);
3024
3025 /* NOTE: we can't rele the parent until after we drop the db_mtx */
3026 if (dh->dh_parent)
3027 dbuf_rele(dh->dh_parent, NULL);
3028
3029 ASSERT3P(DB_DNODE(dh->dh_db), ==, dh->dh_dn);
3030 ASSERT3U(dh->dh_db->db_blkid, ==, dh->dh_blkid);
3031 ASSERT3U(dh->dh_db->db_level, ==, dh->dh_level);
3032 *(dh->dh_dbp) = dh->dh_db;
3033
3034 return (0);
3035}
3036
3037/*
3038 * The following code preserves the recursive function dbuf_hold_impl()
3039 * but moves the local variables AND function arguments to the heap to
3040 * minimize the stack frame size. Enough space is initially allocated
3041 * on the stack for 20 levels of recursion.
3042 */
3043int
3044dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
3045 boolean_t fail_sparse, boolean_t fail_uncached,
3046 void *tag, dmu_buf_impl_t **dbp)
3047{
3048 struct dbuf_hold_impl_data *dh;
3049 int error;
3050
3051 dh = kmem_alloc(sizeof (struct dbuf_hold_impl_data) *
3052 DBUF_HOLD_IMPL_MAX_DEPTH, KM_SLEEP);
3053 __dbuf_hold_impl_init(dh, dn, level, blkid, fail_sparse,
3054 fail_uncached, tag, dbp, 0);
3055
3056 error = __dbuf_hold_impl(dh);
3057
3058 kmem_free(dh, sizeof (struct dbuf_hold_impl_data) *
3059 DBUF_HOLD_IMPL_MAX_DEPTH);
3060
3061 return (error);
3062}
3063
3064static void
3065__dbuf_hold_impl_init(struct dbuf_hold_impl_data *dh,
3066 dnode_t *dn, uint8_t level, uint64_t blkid,
3067 boolean_t fail_sparse, boolean_t fail_uncached,
3068 void *tag, dmu_buf_impl_t **dbp, int depth)
3069{
3070 dh->dh_dn = dn;
3071 dh->dh_level = level;
3072 dh->dh_blkid = blkid;
3073
3074 dh->dh_fail_sparse = fail_sparse;
3075 dh->dh_fail_uncached = fail_uncached;
3076
3077 dh->dh_tag = tag;
3078 dh->dh_dbp = dbp;
3079
3080 dh->dh_db = NULL;
3081 dh->dh_parent = NULL;
3082 dh->dh_bp = NULL;
3083 dh->dh_err = 0;
3084 dh->dh_dr = NULL;
3085
3086 dh->dh_depth = depth;
3087}
3088
3089dmu_buf_impl_t *
3090dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
3091{
3092 return (dbuf_hold_level(dn, 0, blkid, tag));
3093}
3094
3095dmu_buf_impl_t *
3096dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
3097{
3098 dmu_buf_impl_t *db;
3099 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
3100 return (err ? NULL : db);
3101}
3102
3103void
3104dbuf_create_bonus(dnode_t *dn)
3105{
3106 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
3107
3108 ASSERT(dn->dn_bonus == NULL);
3109 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
3110}
3111
3112int
3113dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
3114{
3115 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3116 dnode_t *dn;
3117
3118 if (db->db_blkid != DMU_SPILL_BLKID)
3119 return (SET_ERROR(ENOTSUP));
3120 if (blksz == 0)
3121 blksz = SPA_MINBLOCKSIZE;
3122 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
3123 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
3124
3125 DB_DNODE_ENTER(db);
3126 dn = DB_DNODE(db);
3127 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3128 dbuf_new_size(db, blksz, tx);
3129 rw_exit(&dn->dn_struct_rwlock);
3130 DB_DNODE_EXIT(db);
3131
3132 return (0);
3133}
3134
3135void
3136dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
3137{
3138 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
3139}
3140
3141#pragma weak dmu_buf_add_ref = dbuf_add_ref
3142void
3143dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
3144{
3145 int64_t holds = refcount_add(&db->db_holds, tag);
3146 VERIFY3S(holds, >, 1);
3147}
3148
3149#pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
3150boolean_t
3151dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
3152 void *tag)
3153{
3154 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3155 dmu_buf_impl_t *found_db;
3156 boolean_t result = B_FALSE;
3157
3158 if (blkid == DMU_BONUS_BLKID)
3159 found_db = dbuf_find_bonus(os, obj);
3160 else
3161 found_db = dbuf_find(os, obj, 0, blkid);
3162
3163 if (found_db != NULL) {
3164 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
3165 (void) refcount_add(&db->db_holds, tag);
3166 result = B_TRUE;
3167 }
3168 mutex_exit(&found_db->db_mtx);
3169 }
3170 return (result);
3171}
3172
3173/*
3174 * If you call dbuf_rele() you had better not be referencing the dnode handle
3175 * unless you have some other direct or indirect hold on the dnode. (An indirect
3176 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
3177 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
3178 * dnode's parent dbuf evicting its dnode handles.
3179 */
3180void
3181dbuf_rele(dmu_buf_impl_t *db, void *tag)
3182{
3183 mutex_enter(&db->db_mtx);
3184 dbuf_rele_and_unlock(db, tag);
3185}
3186
3187void
3188dmu_buf_rele(dmu_buf_t *db, void *tag)
3189{
3190 dbuf_rele((dmu_buf_impl_t *)db, tag);
3191}
3192
3193/*
3194 * dbuf_rele() for an already-locked dbuf. This is necessary to allow
3195 * db_dirtycnt and db_holds to be updated atomically.
3196 */
3197void
3198dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag)
3199{
3200 int64_t holds;
3201
3202 ASSERT(MUTEX_HELD(&db->db_mtx));
3203 DBUF_VERIFY(db);
3204
3205 /*
3206 * Remove the reference to the dbuf before removing its hold on the
3207 * dnode so we can guarantee in dnode_move() that a referenced bonus
3208 * buffer has a corresponding dnode hold.
3209 */
3210 holds = refcount_remove(&db->db_holds, tag);
3211 ASSERT(holds >= 0);
3212
3213 /*
3214 * We can't freeze indirects if there is a possibility that they
3215 * may be modified in the current syncing context.
3216 */
3217 if (db->db_buf != NULL &&
3218 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
3219 arc_buf_freeze(db->db_buf);
3220 }
3221
3222 if (holds == db->db_dirtycnt &&
3223 db->db_level == 0 && db->db_user_immediate_evict)
3224 dbuf_evict_user(db);
3225
3226 if (holds == 0) {
3227 if (db->db_blkid == DMU_BONUS_BLKID) {
3228 dnode_t *dn;
3229 boolean_t evict_dbuf = db->db_pending_evict;
3230
3231 /*
3232 * If the dnode moves here, we cannot cross this
3233 * barrier until the move completes.
3234 */
3235 DB_DNODE_ENTER(db);
3236
3237 dn = DB_DNODE(db);
3238 atomic_dec_32(&dn->dn_dbufs_count);
3239
3240 /*
3241 * Decrementing the dbuf count means that the bonus
3242 * buffer's dnode hold is no longer discounted in
3243 * dnode_move(). The dnode cannot move until after
3244 * the dnode_rele() below.
3245 */
3246 DB_DNODE_EXIT(db);
3247
3248 /*
3249 * Do not reference db after its lock is dropped.
3250 * Another thread may evict it.
3251 */
3252 mutex_exit(&db->db_mtx);
3253
3254 if (evict_dbuf)
3255 dnode_evict_bonus(dn);
3256
3257 dnode_rele(dn, db);
3258 } else if (db->db_buf == NULL) {
3259 /*
3260 * This is a special case: we never associated this
3261 * dbuf with any data allocated from the ARC.
3262 */
3263 ASSERT(db->db_state == DB_UNCACHED ||
3264 db->db_state == DB_NOFILL);
3265 dbuf_destroy(db);
3266 } else if (arc_released(db->db_buf)) {
3267 /*
3268 * This dbuf has anonymous data associated with it.
3269 */
3270 dbuf_destroy(db);
3271 } else {
3272 boolean_t do_arc_evict = B_FALSE;
3273 blkptr_t bp;
3274 spa_t *spa = dmu_objset_spa(db->db_objset);
3275
3276 if (!DBUF_IS_CACHEABLE(db) &&
3277 db->db_blkptr != NULL &&
3278 !BP_IS_HOLE(db->db_blkptr) &&
3279 !BP_IS_EMBEDDED(db->db_blkptr)) {
3280 do_arc_evict = B_TRUE;
3281 bp = *db->db_blkptr;
3282 }
3283
3284 if (!DBUF_IS_CACHEABLE(db) ||
3285 db->db_pending_evict) {
3286 dbuf_destroy(db);
3287 } else if (!multilist_link_active(&db->db_cache_link)) {
3288 multilist_insert(dbuf_cache, db);
3289 (void) refcount_add_many(&dbuf_cache_size,
3290 db->db.db_size, db);
3291 DBUF_STAT_BUMP(cache_levels[db->db_level]);
3292 DBUF_STAT_BUMP(cache_count);
3293 DBUF_STAT_INCR(cache_levels_bytes[db->db_level],
3294 db->db.db_size);
3295 DBUF_STAT_MAX(cache_size_bytes_max,
3296 refcount_count(&dbuf_cache_size));
3297 mutex_exit(&db->db_mtx);
3298
3299 dbuf_evict_notify();
3300 }
3301
3302 if (do_arc_evict)
3303 arc_freed(spa, &bp);
3304 }
3305 } else {
3306 mutex_exit(&db->db_mtx);
3307 }
3308
3309}
3310
3311#pragma weak dmu_buf_refcount = dbuf_refcount
3312uint64_t
3313dbuf_refcount(dmu_buf_impl_t *db)
3314{
3315 return (refcount_count(&db->db_holds));
3316}
3317
3318void *
3319dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
3320 dmu_buf_user_t *new_user)
3321{
3322 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3323
3324 mutex_enter(&db->db_mtx);
3325 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3326 if (db->db_user == old_user)
3327 db->db_user = new_user;
3328 else
3329 old_user = db->db_user;
3330 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3331 mutex_exit(&db->db_mtx);
3332
3333 return (old_user);
3334}
3335
3336void *
3337dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3338{
3339 return (dmu_buf_replace_user(db_fake, NULL, user));
3340}
3341
3342void *
3343dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3344{
3345 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3346
3347 db->db_user_immediate_evict = TRUE;
3348 return (dmu_buf_set_user(db_fake, user));
3349}
3350
3351void *
3352dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3353{
3354 return (dmu_buf_replace_user(db_fake, user, NULL));
3355}
3356
3357void *
3358dmu_buf_get_user(dmu_buf_t *db_fake)
3359{
3360 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3361
3362 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3363 return (db->db_user);
3364}
3365
3366void
3367dmu_buf_user_evict_wait()
3368{
3369 taskq_wait(dbu_evict_taskq);
3370}
3371
3372blkptr_t *
3373dmu_buf_get_blkptr(dmu_buf_t *db)
3374{
3375 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3376 return (dbi->db_blkptr);
3377}
3378
3379objset_t *
3380dmu_buf_get_objset(dmu_buf_t *db)
3381{
3382 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3383 return (dbi->db_objset);
3384}
3385
3386dnode_t *
3387dmu_buf_dnode_enter(dmu_buf_t *db)
3388{
3389 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3390 DB_DNODE_ENTER(dbi);
3391 return (DB_DNODE(dbi));
3392}
3393
3394void
3395dmu_buf_dnode_exit(dmu_buf_t *db)
3396{
3397 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3398 DB_DNODE_EXIT(dbi);
3399}
3400
3401static void
3402dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
3403{
3404 /* ASSERT(dmu_tx_is_syncing(tx) */
3405 ASSERT(MUTEX_HELD(&db->db_mtx));
3406
3407 if (db->db_blkptr != NULL)
3408 return;
3409
3410 if (db->db_blkid == DMU_SPILL_BLKID) {
3411 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys);
3412 BP_ZERO(db->db_blkptr);
3413 return;
3414 }
3415 if (db->db_level == dn->dn_phys->dn_nlevels-1) {
3416 /*
3417 * This buffer was allocated at a time when there was
3418 * no available blkptrs from the dnode, or it was
3419 * inappropriate to hook it in (i.e., nlevels mis-match).
3420 */
3421 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
3422 ASSERT(db->db_parent == NULL);
3423 db->db_parent = dn->dn_dbuf;
3424 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
3425 DBUF_VERIFY(db);
3426 } else {
3427 dmu_buf_impl_t *parent = db->db_parent;
3428 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3429
3430 ASSERT(dn->dn_phys->dn_nlevels > 1);
3431 if (parent == NULL) {
3432 mutex_exit(&db->db_mtx);
3433 rw_enter(&dn->dn_struct_rwlock, RW_READER);
3434 parent = dbuf_hold_level(dn, db->db_level + 1,
3435 db->db_blkid >> epbs, db);
3436 rw_exit(&dn->dn_struct_rwlock);
3437 mutex_enter(&db->db_mtx);
3438 db->db_parent = parent;
3439 }
3440 db->db_blkptr = (blkptr_t *)parent->db.db_data +
3441 (db->db_blkid & ((1ULL << epbs) - 1));
3442 DBUF_VERIFY(db);
3443 }
3444}
3445
3446/*
3447 * Ensure the dbuf's data is untransformed if the associated dirty
3448 * record requires it. This is used by dbuf_sync_leaf() to ensure
3449 * that a dnode block is decrypted before we write new data to it.
3450 * For raw writes we assert that the buffer is already encrypted.
3451 */
3452static void
3453dbuf_check_crypt(dbuf_dirty_record_t *dr)
3454{
3455 int err;
3456 dmu_buf_impl_t *db = dr->dr_dbuf;
3457
3458 ASSERT(MUTEX_HELD(&db->db_mtx));
3459
3460 if (!dr->dt.dl.dr_raw && arc_is_encrypted(db->db_buf)) {
3461 /*
3462 * Unfortunately, there is currently no mechanism for
3463 * syncing context to handle decryption errors. An error
3464 * here is only possible if an attacker maliciously
3465 * changed a dnode block and updated the associated
3466 * checksums going up the block tree.
3467 */
3468 err = arc_untransform(db->db_buf, db->db_objset->os_spa,
3469 dmu_objset_id(db->db_objset), B_TRUE);
3470 if (err)
3471 panic("Invalid dnode block MAC");
3472 } else if (dr->dt.dl.dr_raw) {
3473 /*
3474 * Writing raw encrypted data requires the db's arc buffer
3475 * to be converted to raw by the caller.
3476 */
3477 ASSERT(arc_is_encrypted(db->db_buf));
3478 }
3479}
3480
3481/*
3482 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
3483 * is critical the we not allow the compiler to inline this function in to
3484 * dbuf_sync_list() thereby drastically bloating the stack usage.
3485 */
3486noinline static void
3487dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3488{
3489 dmu_buf_impl_t *db = dr->dr_dbuf;
3490 dnode_t *dn;
3491 zio_t *zio;
3492
3493 ASSERT(dmu_tx_is_syncing(tx));
3494
3495 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3496
3497 mutex_enter(&db->db_mtx);
3498
3499 ASSERT(db->db_level > 0);
3500 DBUF_VERIFY(db);
3501
3502 /* Read the block if it hasn't been read yet. */
3503 if (db->db_buf == NULL) {
3504 mutex_exit(&db->db_mtx);
3505 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
3506 mutex_enter(&db->db_mtx);
3507 }
3508 ASSERT3U(db->db_state, ==, DB_CACHED);
3509 ASSERT(db->db_buf != NULL);
3510
3511 DB_DNODE_ENTER(db);
3512 dn = DB_DNODE(db);
3513 /* Indirect block size must match what the dnode thinks it is. */
3514 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3515 dbuf_check_blkptr(dn, db);
3516 DB_DNODE_EXIT(db);
3517
3518 /* Provide the pending dirty record to child dbufs */
3519 db->db_data_pending = dr;
3520
3521 mutex_exit(&db->db_mtx);
3522 dbuf_write(dr, db->db_buf, tx);
3523
3524 zio = dr->dr_zio;
3525 mutex_enter(&dr->dt.di.dr_mtx);
3526 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
3527 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3528 mutex_exit(&dr->dt.di.dr_mtx);
3529 zio_nowait(zio);
3530}
3531
3532/*
3533 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
3534 * critical the we not allow the compiler to inline this function in to
3535 * dbuf_sync_list() thereby drastically bloating the stack usage.
3536 */
3537noinline static void
3538dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3539{
3540 arc_buf_t **datap = &dr->dt.dl.dr_data;
3541 dmu_buf_impl_t *db = dr->dr_dbuf;
3542 dnode_t *dn;
3543 objset_t *os;
3544 uint64_t txg = tx->tx_txg;
3545
3546 ASSERT(dmu_tx_is_syncing(tx));
3547
3548 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3549
3550 mutex_enter(&db->db_mtx);
3551 /*
3552 * To be synced, we must be dirtied. But we
3553 * might have been freed after the dirty.
3554 */
3555 if (db->db_state == DB_UNCACHED) {
3556 /* This buffer has been freed since it was dirtied */
3557 ASSERT(db->db.db_data == NULL);
3558 } else if (db->db_state == DB_FILL) {
3559 /* This buffer was freed and is now being re-filled */
3560 ASSERT(db->db.db_data != dr->dt.dl.dr_data);
3561 } else {
3562 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
3563 }
3564 DBUF_VERIFY(db);
3565
3566 DB_DNODE_ENTER(db);
3567 dn = DB_DNODE(db);
3568
3569 if (db->db_blkid == DMU_SPILL_BLKID) {
3570 mutex_enter(&dn->dn_mtx);
3571 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
3572 /*
3573 * In the previous transaction group, the bonus buffer
3574 * was entirely used to store the attributes for the
3575 * dnode which overrode the dn_spill field. However,
3576 * when adding more attributes to the file a spill
3577 * block was required to hold the extra attributes.
3578 *
3579 * Make sure to clear the garbage left in the dn_spill
3580 * field from the previous attributes in the bonus
3581 * buffer. Otherwise, after writing out the spill
3582 * block to the new allocated dva, it will free
3583 * the old block pointed to by the invalid dn_spill.
3584 */
3585 db->db_blkptr = NULL;
3586 }
3587 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
3588 mutex_exit(&dn->dn_mtx);
3589 }
3590
3591 /*
3592 * If this is a bonus buffer, simply copy the bonus data into the
3593 * dnode. It will be written out when the dnode is synced (and it
3594 * will be synced, since it must have been dirty for dbuf_sync to
3595 * be called).
3596 */
3597 if (db->db_blkid == DMU_BONUS_BLKID) {
3598 dbuf_dirty_record_t **drp;
3599
3600 ASSERT(*datap != NULL);
3601 ASSERT0(db->db_level);
3602 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=,
3603 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1));
3604 bcopy(*datap, DN_BONUS(dn->dn_phys),
3605 DN_MAX_BONUS_LEN(dn->dn_phys));
3606 DB_DNODE_EXIT(db);
3607
3608 if (*datap != db->db.db_data) {
3609 int slots = DB_DNODE(db)->dn_num_slots;
3610 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
3611 kmem_free(*datap, bonuslen);
3612 arc_space_return(bonuslen, ARC_SPACE_BONUS);
3613 }
3614 db->db_data_pending = NULL;
3615 drp = &db->db_last_dirty;
3616 while (*drp != dr)
3617 drp = &(*drp)->dr_next;
3618 ASSERT(dr->dr_next == NULL);
3619 ASSERT(dr->dr_dbuf == db);
3620 *drp = dr->dr_next;
3621 if (dr->dr_dbuf->db_level != 0) {
3622 mutex_destroy(&dr->dt.di.dr_mtx);
3623 list_destroy(&dr->dt.di.dr_children);
3624 }
3625 kmem_free(dr, sizeof (dbuf_dirty_record_t));
3626 ASSERT(db->db_dirtycnt > 0);
3627 db->db_dirtycnt -= 1;
3628 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
3629 return;
3630 }
3631
3632 os = dn->dn_objset;
3633
3634 /*
3635 * This function may have dropped the db_mtx lock allowing a dmu_sync
3636 * operation to sneak in. As a result, we need to ensure that we
3637 * don't check the dr_override_state until we have returned from
3638 * dbuf_check_blkptr.
3639 */
3640 dbuf_check_blkptr(dn, db);
3641
3642 /*
3643 * If this buffer is in the middle of an immediate write,
3644 * wait for the synchronous IO to complete.
3645 */
3646 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
3647 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
3648 cv_wait(&db->db_changed, &db->db_mtx);
3649 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
3650 }
3651
3652 /*
3653 * If this is a dnode block, ensure it is appropriately encrypted
3654 * or decrypted, depending on what we are writing to it this txg.
3655 */
3656 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT)
3657 dbuf_check_crypt(dr);
3658
3659 if (db->db_state != DB_NOFILL &&
3660 dn->dn_object != DMU_META_DNODE_OBJECT &&
3661 refcount_count(&db->db_holds) > 1 &&
3662 dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
3663 *datap == db->db_buf) {
3664 /*
3665 * If this buffer is currently "in use" (i.e., there
3666 * are active holds and db_data still references it),
3667 * then make a copy before we start the write so that
3668 * any modifications from the open txg will not leak
3669 * into this write.
3670 *
3671 * NOTE: this copy does not need to be made for
3672 * objects only modified in the syncing context (e.g.
3673 * DNONE_DNODE blocks).
3674 */
3675 int psize = arc_buf_size(*datap);
3676 int lsize = arc_buf_lsize(*datap);
3677 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
3678 enum zio_compress compress_type = arc_get_compression(*datap);
3679
3680 if (arc_is_encrypted(*datap)) {
3681 boolean_t byteorder;
3682 uint8_t salt[ZIO_DATA_SALT_LEN];
3683 uint8_t iv[ZIO_DATA_IV_LEN];
3684 uint8_t mac[ZIO_DATA_MAC_LEN];
3685
3686 arc_get_raw_params(*datap, &byteorder, salt, iv, mac);
3687 *datap = arc_alloc_raw_buf(os->os_spa, db,
3688 dmu_objset_id(os), byteorder, salt, iv, mac,
3689 dn->dn_type, psize, lsize, compress_type);
3690 } else if (compress_type != ZIO_COMPRESS_OFF) {
3691 ASSERT3U(type, ==, ARC_BUFC_DATA);
3692 *datap = arc_alloc_compressed_buf(os->os_spa, db,
3693 psize, lsize, compress_type);
3694 } else {
3695 *datap = arc_alloc_buf(os->os_spa, db, type, psize);
3696 }
3697 bcopy(db->db.db_data, (*datap)->b_data, psize);
3698 }
3699 db->db_data_pending = dr;
3700
3701 mutex_exit(&db->db_mtx);
3702
3703 dbuf_write(dr, *datap, tx);
3704
3705 ASSERT(!list_link_active(&dr->dr_dirty_node));
3706 if (dn->dn_object == DMU_META_DNODE_OBJECT) {
3707 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
3708 DB_DNODE_EXIT(db);
3709 } else {
3710 /*
3711 * Although zio_nowait() does not "wait for an IO", it does
3712 * initiate the IO. If this is an empty write it seems plausible
3713 * that the IO could actually be completed before the nowait
3714 * returns. We need to DB_DNODE_EXIT() first in case
3715 * zio_nowait() invalidates the dbuf.
3716 */
3717 DB_DNODE_EXIT(db);
3718 zio_nowait(dr->dr_zio);
3719 }
3720}
3721
3722void
3723dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
3724{
3725 dbuf_dirty_record_t *dr;
3726
3727 while ((dr = list_head(list))) {
3728 if (dr->dr_zio != NULL) {
3729 /*
3730 * If we find an already initialized zio then we
3731 * are processing the meta-dnode, and we have finished.
3732 * The dbufs for all dnodes are put back on the list
3733 * during processing, so that we can zio_wait()
3734 * these IOs after initiating all child IOs.
3735 */
3736 ASSERT3U(dr->dr_dbuf->db.db_object, ==,
3737 DMU_META_DNODE_OBJECT);
3738 break;
3739 }
3740 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
3741 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
3742 VERIFY3U(dr->dr_dbuf->db_level, ==, level);
3743 }
3744 list_remove(list, dr);
3745 if (dr->dr_dbuf->db_level > 0)
3746 dbuf_sync_indirect(dr, tx);
3747 else
3748 dbuf_sync_leaf(dr, tx);
3749 }
3750}
3751
3752/* ARGSUSED */
3753static void
3754dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3755{
3756 dmu_buf_impl_t *db = vdb;
3757 dnode_t *dn;
3758 blkptr_t *bp = zio->io_bp;
3759 blkptr_t *bp_orig = &zio->io_bp_orig;
3760 spa_t *spa = zio->io_spa;
3761 int64_t delta;
3762 uint64_t fill = 0;
3763 int i;
3764
3765 ASSERT3P(db->db_blkptr, !=, NULL);
3766 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
3767
3768 DB_DNODE_ENTER(db);
3769 dn = DB_DNODE(db);
3770 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
3771 dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
3772 zio->io_prev_space_delta = delta;
3773
3774 if (bp->blk_birth != 0) {
3775 ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
3776 BP_GET_TYPE(bp) == dn->dn_type) ||
3777 (db->db_blkid == DMU_SPILL_BLKID &&
3778 BP_GET_TYPE(bp) == dn->dn_bonustype) ||
3779 BP_IS_EMBEDDED(bp));
3780 ASSERT(BP_GET_LEVEL(bp) == db->db_level);
3781 }
3782
3783 mutex_enter(&db->db_mtx);
3784
3785#ifdef ZFS_DEBUG
3786 if (db->db_blkid == DMU_SPILL_BLKID) {
3787 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3788 ASSERT(!(BP_IS_HOLE(bp)) &&
3789 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
3790 }
3791#endif
3792
3793 if (db->db_level == 0) {
3794 mutex_enter(&dn->dn_mtx);
3795 if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
3796 db->db_blkid != DMU_SPILL_BLKID)
3797 dn->dn_phys->dn_maxblkid = db->db_blkid;
3798 mutex_exit(&dn->dn_mtx);
3799
3800 if (dn->dn_type == DMU_OT_DNODE) {
3801 i = 0;
3802 while (i < db->db.db_size) {
3803 dnode_phys_t *dnp =
3804 (void *)(((char *)db->db.db_data) + i);
3805
3806 i += DNODE_MIN_SIZE;
3807 if (dnp->dn_type != DMU_OT_NONE) {
3808 fill++;
3809 i += dnp->dn_extra_slots *
3810 DNODE_MIN_SIZE;
3811 }
3812 }
3813 } else {
3814 if (BP_IS_HOLE(bp)) {
3815 fill = 0;
3816 } else {
3817 fill = 1;
3818 }
3819 }
3820 } else {
3821 blkptr_t *ibp = db->db.db_data;
3822 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3823 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
3824 if (BP_IS_HOLE(ibp))
3825 continue;
3826 fill += BP_GET_FILL(ibp);
3827 }
3828 }
3829 DB_DNODE_EXIT(db);
3830
3831 if (!BP_IS_EMBEDDED(bp))
3832 BP_SET_FILL(bp, fill);
3833
3834 mutex_exit(&db->db_mtx);
3835
3836 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3837 *db->db_blkptr = *bp;
3838 rw_exit(&dn->dn_struct_rwlock);
3839}
3840
3841/* ARGSUSED */
3842/*
3843 * This function gets called just prior to running through the compression
3844 * stage of the zio pipeline. If we're an indirect block comprised of only
3845 * holes, then we want this indirect to be compressed away to a hole. In
3846 * order to do that we must zero out any information about the holes that
3847 * this indirect points to prior to before we try to compress it.
3848 */
3849static void
3850dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3851{
3852 dmu_buf_impl_t *db = vdb;
3853 dnode_t *dn;
3854 blkptr_t *bp;
3855 unsigned int epbs, i;
3856
3857 ASSERT3U(db->db_level, >, 0);
3858 DB_DNODE_ENTER(db);
3859 dn = DB_DNODE(db);
3860 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3861 ASSERT3U(epbs, <, 31);
3862
3863 /* Determine if all our children are holes */
3864 for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) {
3865 if (!BP_IS_HOLE(bp))
3866 break;
3867 }
3868
3869 /*
3870 * If all the children are holes, then zero them all out so that
3871 * we may get compressed away.
3872 */
3873 if (i == 1ULL << epbs) {
3874 /*
3875 * We only found holes. Grab the rwlock to prevent
3876 * anybody from reading the blocks we're about to
3877 * zero out.
3878 */
3879 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3880 bzero(db->db.db_data, db->db.db_size);
3881 rw_exit(&dn->dn_struct_rwlock);
3882 }
3883 DB_DNODE_EXIT(db);
3884}
3885
3886/*
3887 * The SPA will call this callback several times for each zio - once
3888 * for every physical child i/o (zio->io_phys_children times). This
3889 * allows the DMU to monitor the progress of each logical i/o. For example,
3890 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
3891 * block. There may be a long delay before all copies/fragments are completed,
3892 * so this callback allows us to retire dirty space gradually, as the physical
3893 * i/os complete.
3894 */
3895/* ARGSUSED */
3896static void
3897dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
3898{
3899 dmu_buf_impl_t *db = arg;
3900 objset_t *os = db->db_objset;
3901 dsl_pool_t *dp = dmu_objset_pool(os);
3902 dbuf_dirty_record_t *dr;
3903 int delta = 0;
3904
3905 dr = db->db_data_pending;
3906 ASSERT3U(dr->dr_txg, ==, zio->io_txg);
3907
3908 /*
3909 * The callback will be called io_phys_children times. Retire one
3910 * portion of our dirty space each time we are called. Any rounding
3911 * error will be cleaned up by dsl_pool_sync()'s call to
3912 * dsl_pool_undirty_space().
3913 */
3914 delta = dr->dr_accounted / zio->io_phys_children;
3915 dsl_pool_undirty_space(dp, delta, zio->io_txg);
3916}
3917
3918/* ARGSUSED */
3919static void
3920dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
3921{
3922 dmu_buf_impl_t *db = vdb;
3923 blkptr_t *bp_orig = &zio->io_bp_orig;
3924 blkptr_t *bp = db->db_blkptr;
3925 objset_t *os = db->db_objset;
3926 dmu_tx_t *tx = os->os_synctx;
3927 dbuf_dirty_record_t **drp, *dr;
3928
3929 ASSERT0(zio->io_error);
3930 ASSERT(db->db_blkptr == bp);
3931
3932 /*
3933 * For nopwrites and rewrites we ensure that the bp matches our
3934 * original and bypass all the accounting.
3935 */
3936 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
3937 ASSERT(BP_EQUAL(bp, bp_orig));
3938 } else {
3939 dsl_dataset_t *ds = os->os_dsl_dataset;
3940 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
3941 dsl_dataset_block_born(ds, bp, tx);
3942 }
3943
3944 mutex_enter(&db->db_mtx);
3945
3946 DBUF_VERIFY(db);
3947
3948 drp = &db->db_last_dirty;
3949 while ((dr = *drp) != db->db_data_pending)
3950 drp = &dr->dr_next;
3951 ASSERT(!list_link_active(&dr->dr_dirty_node));
3952 ASSERT(dr->dr_dbuf == db);
3953 ASSERT(dr->dr_next == NULL);
3954 *drp = dr->dr_next;
3955
3956#ifdef ZFS_DEBUG
3957 if (db->db_blkid == DMU_SPILL_BLKID) {
3958 dnode_t *dn;
3959
3960 DB_DNODE_ENTER(db);
3961 dn = DB_DNODE(db);
3962 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3963 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
3964 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
3965 DB_DNODE_EXIT(db);
3966 }
3967#endif
3968
3969 if (db->db_level == 0) {
3970 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3971 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
3972 if (db->db_state != DB_NOFILL) {
3973 if (dr->dt.dl.dr_data != db->db_buf)
3974 arc_buf_destroy(dr->dt.dl.dr_data, db);
3975 }
3976 } else {
3977 dnode_t *dn;
3978
3979 DB_DNODE_ENTER(db);
3980 dn = DB_DNODE(db);
3981 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3982 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
3983 if (!BP_IS_HOLE(db->db_blkptr)) {
3984 ASSERTV(int epbs = dn->dn_phys->dn_indblkshift -
3985 SPA_BLKPTRSHIFT);
3986 ASSERT3U(db->db_blkid, <=,
3987 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
3988 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
3989 db->db.db_size);
3990 }
3991 DB_DNODE_EXIT(db);
3992 mutex_destroy(&dr->dt.di.dr_mtx);
3993 list_destroy(&dr->dt.di.dr_children);
3994 }
3995 kmem_free(dr, sizeof (dbuf_dirty_record_t));
3996
3997 cv_broadcast(&db->db_changed);
3998 ASSERT(db->db_dirtycnt > 0);
3999 db->db_dirtycnt -= 1;
4000 db->db_data_pending = NULL;
4001 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg);
4002}
4003
4004static void
4005dbuf_write_nofill_ready(zio_t *zio)
4006{
4007 dbuf_write_ready(zio, NULL, zio->io_private);
4008}
4009
4010static void
4011dbuf_write_nofill_done(zio_t *zio)
4012{
4013 dbuf_write_done(zio, NULL, zio->io_private);
4014}
4015
4016static void
4017dbuf_write_override_ready(zio_t *zio)
4018{
4019 dbuf_dirty_record_t *dr = zio->io_private;
4020 dmu_buf_impl_t *db = dr->dr_dbuf;
4021
4022 dbuf_write_ready(zio, NULL, db);
4023}
4024
4025static void
4026dbuf_write_override_done(zio_t *zio)
4027{
4028 dbuf_dirty_record_t *dr = zio->io_private;
4029 dmu_buf_impl_t *db = dr->dr_dbuf;
4030 blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
4031
4032 mutex_enter(&db->db_mtx);
4033 if (!BP_EQUAL(zio->io_bp, obp)) {
4034 if (!BP_IS_HOLE(obp))
4035 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
4036 arc_release(dr->dt.dl.dr_data, db);
4037 }
4038 mutex_exit(&db->db_mtx);
4039
4040 dbuf_write_done(zio, NULL, db);
4041
4042 if (zio->io_abd != NULL)
4043 abd_put(zio->io_abd);
4044}
4045
4046/* Issue I/O to commit a dirty buffer to disk. */
4047static void
4048dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
4049{
4050 dmu_buf_impl_t *db = dr->dr_dbuf;
4051 dnode_t *dn;
4052 objset_t *os;
4053 dmu_buf_impl_t *parent = db->db_parent;
4054 uint64_t txg = tx->tx_txg;
4055 zbookmark_phys_t zb;
4056 zio_prop_t zp;
4057 zio_t *zio;
4058 int wp_flag = 0;
4059
4060 ASSERT(dmu_tx_is_syncing(tx));
4061
4062 DB_DNODE_ENTER(db);
4063 dn = DB_DNODE(db);
4064 os = dn->dn_objset;
4065
4066 if (db->db_state != DB_NOFILL) {
4067 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
4068 /*
4069 * Private object buffers are released here rather
4070 * than in dbuf_dirty() since they are only modified
4071 * in the syncing context and we don't want the
4072 * overhead of making multiple copies of the data.
4073 */
4074 if (BP_IS_HOLE(db->db_blkptr)) {
4075 arc_buf_thaw(data);
4076 } else {
4077 dbuf_release_bp(db);
4078 }
4079 }
4080 }
4081
4082 if (parent != dn->dn_dbuf) {
4083 /* Our parent is an indirect block. */
4084 /* We have a dirty parent that has been scheduled for write. */
4085 ASSERT(parent && parent->db_data_pending);
4086 /* Our parent's buffer is one level closer to the dnode. */
4087 ASSERT(db->db_level == parent->db_level-1);
4088 /*
4089 * We're about to modify our parent's db_data by modifying
4090 * our block pointer, so the parent must be released.
4091 */
4092 ASSERT(arc_released(parent->db_buf));
4093 zio = parent->db_data_pending->dr_zio;
4094 } else {
4095 /* Our parent is the dnode itself. */
4096 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
4097 db->db_blkid != DMU_SPILL_BLKID) ||
4098 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
4099 if (db->db_blkid != DMU_SPILL_BLKID)
4100 ASSERT3P(db->db_blkptr, ==,
4101 &dn->dn_phys->dn_blkptr[db->db_blkid]);
4102 zio = dn->dn_zio;
4103 }
4104
4105 ASSERT(db->db_level == 0 || data == db->db_buf);
4106 ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
4107 ASSERT(zio);
4108
4109 SET_BOOKMARK(&zb, os->os_dsl_dataset ?
4110 os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
4111 db->db.db_object, db->db_level, db->db_blkid);
4112
4113 if (db->db_blkid == DMU_SPILL_BLKID)
4114 wp_flag = WP_SPILL;
4115 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
4116
4117 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
4118 DB_DNODE_EXIT(db);
4119
4120 /*
4121 * We copy the blkptr now (rather than when we instantiate the dirty
4122 * record), because its value can change between open context and
4123 * syncing context. We do not need to hold dn_struct_rwlock to read
4124 * db_blkptr because we are in syncing context.
4125 */
4126 dr->dr_bp_copy = *db->db_blkptr;
4127
4128 if (db->db_level == 0 &&
4129 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
4130 /*
4131 * The BP for this block has been provided by open context
4132 * (by dmu_sync() or dmu_buf_write_embedded()).
4133 */
4134 abd_t *contents = (data != NULL) ?
4135 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
4136
4137 dr->dr_zio = zio_write(zio, os->os_spa, txg,
4138 &dr->dr_bp_copy, contents, db->db.db_size, db->db.db_size,
4139 &zp, dbuf_write_override_ready, NULL, NULL,
4140 dbuf_write_override_done,
4141 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
4142 mutex_enter(&db->db_mtx);
4143 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
4144 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
4145 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
4146 mutex_exit(&db->db_mtx);
4147 } else if (db->db_state == DB_NOFILL) {
4148 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
4149 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
4150 dr->dr_zio = zio_write(zio, os->os_spa, txg,
4151 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
4152 dbuf_write_nofill_ready, NULL, NULL,
4153 dbuf_write_nofill_done, db,
4154 ZIO_PRIORITY_ASYNC_WRITE,
4155 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
4156 } else {
4157 ASSERT(arc_released(data));
4158
4159 /*
4160 * For indirect blocks, we want to setup the children
4161 * ready callback so that we can properly handle an indirect
4162 * block that only contains holes.
4163 */
4164 arc_write_done_func_t *children_ready_cb = NULL;
4165 if (db->db_level != 0)
4166 children_ready_cb = dbuf_write_children_ready;
4167
4168 dr->dr_zio = arc_write(zio, os->os_spa, txg,
4169 &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db),
4170 &zp, dbuf_write_ready,
4171 children_ready_cb, dbuf_write_physdone,
4172 dbuf_write_done, db, ZIO_PRIORITY_ASYNC_WRITE,
4173 ZIO_FLAG_MUSTSUCCEED, &zb);
4174 }
4175}
4176
4177#if defined(_KERNEL) && defined(HAVE_SPL)
4178EXPORT_SYMBOL(dbuf_find);
4179EXPORT_SYMBOL(dbuf_is_metadata);
4180EXPORT_SYMBOL(dbuf_destroy);
4181EXPORT_SYMBOL(dbuf_loan_arcbuf);
4182EXPORT_SYMBOL(dbuf_whichblock);
4183EXPORT_SYMBOL(dbuf_read);
4184EXPORT_SYMBOL(dbuf_unoverride);
4185EXPORT_SYMBOL(dbuf_free_range);
4186EXPORT_SYMBOL(dbuf_new_size);
4187EXPORT_SYMBOL(dbuf_release_bp);
4188EXPORT_SYMBOL(dbuf_dirty);
4189EXPORT_SYMBOL(dmu_buf_will_change_crypt_params);
4190EXPORT_SYMBOL(dmu_buf_will_dirty);
4191EXPORT_SYMBOL(dmu_buf_will_not_fill);
4192EXPORT_SYMBOL(dmu_buf_will_fill);
4193EXPORT_SYMBOL(dmu_buf_fill_done);
4194EXPORT_SYMBOL(dmu_buf_rele);
4195EXPORT_SYMBOL(dbuf_assign_arcbuf);
4196EXPORT_SYMBOL(dbuf_prefetch);
4197EXPORT_SYMBOL(dbuf_hold_impl);
4198EXPORT_SYMBOL(dbuf_hold);
4199EXPORT_SYMBOL(dbuf_hold_level);
4200EXPORT_SYMBOL(dbuf_create_bonus);
4201EXPORT_SYMBOL(dbuf_spill_set_blksz);
4202EXPORT_SYMBOL(dbuf_rm_spill);
4203EXPORT_SYMBOL(dbuf_add_ref);
4204EXPORT_SYMBOL(dbuf_rele);
4205EXPORT_SYMBOL(dbuf_rele_and_unlock);
4206EXPORT_SYMBOL(dbuf_refcount);
4207EXPORT_SYMBOL(dbuf_sync_list);
4208EXPORT_SYMBOL(dmu_buf_set_user);
4209EXPORT_SYMBOL(dmu_buf_set_user_ie);
4210EXPORT_SYMBOL(dmu_buf_get_user);
4211EXPORT_SYMBOL(dmu_buf_get_blkptr);
4212
4213/* BEGIN CSTYLED */
4214module_param(dbuf_cache_max_bytes, ulong, 0644);
4215MODULE_PARM_DESC(dbuf_cache_max_bytes,
4216 "Maximum size in bytes of the dbuf cache.");
4217
4218module_param(dbuf_cache_hiwater_pct, uint, 0644);
4219MODULE_PARM_DESC(dbuf_cache_hiwater_pct,
4220 "Percentage over dbuf_cache_max_bytes when dbufs must be evicted "
4221 "directly.");
4222
4223module_param(dbuf_cache_lowater_pct, uint, 0644);
4224MODULE_PARM_DESC(dbuf_cache_lowater_pct,
4225 "Percentage below dbuf_cache_max_bytes when the evict thread stops "
4226 "evicting dbufs.");
4227
4228module_param(dbuf_cache_shift, int, 0644);
4229MODULE_PARM_DESC(dbuf_cache_shift,
4230 "Set the size of the dbuf cache to a log2 fraction of arc size.");
4231/* END CSTYLED */
4232#endif