]> git.proxmox.com Git - mirror_zfs.git/blame_incremental - module/zfs/spa.c
FreeBSD: Add zfs_link_create() error handling
[mirror_zfs.git] / module / zfs / spa.c
... / ...
CommitLineData
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2024 by Delphix. All rights reserved.
25 * Copyright (c) 2018, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright 2013 Saso Kiselkov. All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
29 * Copyright 2016 Toomas Soome <tsoome@me.com>
30 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
31 * Copyright 2018 Joyent, Inc.
32 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
33 * Copyright 2017 Joyent, Inc.
34 * Copyright (c) 2017, Intel Corporation.
35 * Copyright (c) 2021, Colm Buckley <colm@tuatha.org>
36 * Copyright (c) 2023 Hewlett Packard Enterprise Development LP.
37 * Copyright (c) 2024, Klara Inc.
38 */
39
40/*
41 * SPA: Storage Pool Allocator
42 *
43 * This file contains all the routines used when modifying on-disk SPA state.
44 * This includes opening, importing, destroying, exporting a pool, and syncing a
45 * pool.
46 */
47
48#include <sys/zfs_context.h>
49#include <sys/fm/fs/zfs.h>
50#include <sys/spa_impl.h>
51#include <sys/zio.h>
52#include <sys/zio_checksum.h>
53#include <sys/dmu.h>
54#include <sys/dmu_tx.h>
55#include <sys/zap.h>
56#include <sys/zil.h>
57#include <sys/brt.h>
58#include <sys/ddt.h>
59#include <sys/vdev_impl.h>
60#include <sys/vdev_removal.h>
61#include <sys/vdev_indirect_mapping.h>
62#include <sys/vdev_indirect_births.h>
63#include <sys/vdev_initialize.h>
64#include <sys/vdev_rebuild.h>
65#include <sys/vdev_trim.h>
66#include <sys/vdev_disk.h>
67#include <sys/vdev_raidz.h>
68#include <sys/vdev_draid.h>
69#include <sys/metaslab.h>
70#include <sys/metaslab_impl.h>
71#include <sys/mmp.h>
72#include <sys/uberblock_impl.h>
73#include <sys/txg.h>
74#include <sys/avl.h>
75#include <sys/bpobj.h>
76#include <sys/dmu_traverse.h>
77#include <sys/dmu_objset.h>
78#include <sys/unique.h>
79#include <sys/dsl_pool.h>
80#include <sys/dsl_dataset.h>
81#include <sys/dsl_dir.h>
82#include <sys/dsl_prop.h>
83#include <sys/dsl_synctask.h>
84#include <sys/fs/zfs.h>
85#include <sys/arc.h>
86#include <sys/callb.h>
87#include <sys/systeminfo.h>
88#include <sys/zfs_ioctl.h>
89#include <sys/dsl_scan.h>
90#include <sys/zfeature.h>
91#include <sys/dsl_destroy.h>
92#include <sys/zvol.h>
93
94#ifdef _KERNEL
95#include <sys/fm/protocol.h>
96#include <sys/fm/util.h>
97#include <sys/callb.h>
98#include <sys/zone.h>
99#include <sys/vmsystm.h>
100#endif /* _KERNEL */
101
102#include "zfs_prop.h"
103#include "zfs_comutil.h"
104#include <cityhash.h>
105
106/*
107 * spa_thread() existed on Illumos as a parent thread for the various worker
108 * threads that actually run the pool, as a way to both reference the entire
109 * pool work as a single object, and to share properties like scheduling
110 * options. It has not yet been adapted to Linux or FreeBSD. This define is
111 * used to mark related parts of the code to make things easier for the reader,
112 * and to compile this code out. It can be removed when someone implements it,
113 * moves it to some Illumos-specific place, or removes it entirely.
114 */
115#undef HAVE_SPA_THREAD
116
117/*
118 * The "System Duty Cycle" scheduling class is an Illumos feature to help
119 * prevent CPU-intensive kernel threads from affecting latency on interactive
120 * threads. It doesn't exist on Linux or FreeBSD, so the supporting code is
121 * gated behind a define. On Illumos SDC depends on spa_thread(), but
122 * spa_thread() also has other uses, so this is a separate define.
123 */
124#undef HAVE_SYSDC
125
126/*
127 * The interval, in seconds, at which failed configuration cache file writes
128 * should be retried.
129 */
130int zfs_ccw_retry_interval = 300;
131
132typedef enum zti_modes {
133 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
134 ZTI_MODE_SCALE, /* Taskqs scale with CPUs. */
135 ZTI_MODE_SYNC, /* sync thread assigned */
136 ZTI_MODE_NULL, /* don't create a taskq */
137 ZTI_NMODES
138} zti_modes_t;
139
140#define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
141#define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 }
142#define ZTI_SCALE { ZTI_MODE_SCALE, 0, 1 }
143#define ZTI_SYNC { ZTI_MODE_SYNC, 0, 1 }
144#define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
145
146#define ZTI_N(n) ZTI_P(n, 1)
147#define ZTI_ONE ZTI_N(1)
148
149typedef struct zio_taskq_info {
150 zti_modes_t zti_mode;
151 uint_t zti_value;
152 uint_t zti_count;
153} zio_taskq_info_t;
154
155static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
156 "iss", "iss_h", "int", "int_h"
157};
158
159/*
160 * This table defines the taskq settings for each ZFS I/O type. When
161 * initializing a pool, we use this table to create an appropriately sized
162 * taskq. Some operations are low volume and therefore have a small, static
163 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
164 * macros. Other operations process a large amount of data; the ZTI_SCALE
165 * macro causes us to create a taskq oriented for throughput. Some operations
166 * are so high frequency and short-lived that the taskq itself can become a
167 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
168 * additional degree of parallelism specified by the number of threads per-
169 * taskq and the number of taskqs; when dispatching an event in this case, the
170 * particular taskq is chosen at random. ZTI_SCALE uses a number of taskqs
171 * that scales with the number of CPUs.
172 *
173 * The different taskq priorities are to handle the different contexts (issue
174 * and interrupt) and then to reserve threads for high priority I/Os that
175 * need to be handled with minimum delay. Illumos taskq has unfair TQ_FRONT
176 * implementation, so separate high priority threads are used there.
177 */
178static zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
179 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
180 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
181 { ZTI_N(8), ZTI_NULL, ZTI_SCALE, ZTI_NULL }, /* READ */
182#ifdef illumos
183 { ZTI_SYNC, ZTI_N(5), ZTI_SCALE, ZTI_N(5) }, /* WRITE */
184#else
185 { ZTI_SYNC, ZTI_NULL, ZTI_SCALE, ZTI_NULL }, /* WRITE */
186#endif
187 { ZTI_SCALE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
188 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
189 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FLUSH */
190 { ZTI_N(4), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* TRIM */
191};
192
193static void spa_sync_version(void *arg, dmu_tx_t *tx);
194static void spa_sync_props(void *arg, dmu_tx_t *tx);
195static boolean_t spa_has_active_shared_spare(spa_t *spa);
196static int spa_load_impl(spa_t *spa, spa_import_type_t type,
197 const char **ereport);
198static void spa_vdev_resilver_done(spa_t *spa);
199
200/*
201 * Percentage of all CPUs that can be used by the metaslab preload taskq.
202 */
203static uint_t metaslab_preload_pct = 50;
204
205static uint_t zio_taskq_batch_pct = 80; /* 1 thread per cpu in pset */
206static uint_t zio_taskq_batch_tpq; /* threads per taskq */
207
208#ifdef HAVE_SYSDC
209static const boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
210static const uint_t zio_taskq_basedc = 80; /* base duty cycle */
211#endif
212
213#ifdef HAVE_SPA_THREAD
214static const boolean_t spa_create_process = B_TRUE; /* no process => no sysdc */
215#endif
216
217static uint_t zio_taskq_write_tpq = 16;
218
219/*
220 * Report any spa_load_verify errors found, but do not fail spa_load.
221 * This is used by zdb to analyze non-idle pools.
222 */
223boolean_t spa_load_verify_dryrun = B_FALSE;
224
225/*
226 * Allow read spacemaps in case of readonly import (spa_mode == SPA_MODE_READ).
227 * This is used by zdb for spacemaps verification.
228 */
229boolean_t spa_mode_readable_spacemaps = B_FALSE;
230
231/*
232 * This (illegal) pool name is used when temporarily importing a spa_t in order
233 * to get the vdev stats associated with the imported devices.
234 */
235#define TRYIMPORT_NAME "$import"
236
237/*
238 * For debugging purposes: print out vdev tree during pool import.
239 */
240static int spa_load_print_vdev_tree = B_FALSE;
241
242/*
243 * A non-zero value for zfs_max_missing_tvds means that we allow importing
244 * pools with missing top-level vdevs. This is strictly intended for advanced
245 * pool recovery cases since missing data is almost inevitable. Pools with
246 * missing devices can only be imported read-only for safety reasons, and their
247 * fail-mode will be automatically set to "continue".
248 *
249 * With 1 missing vdev we should be able to import the pool and mount all
250 * datasets. User data that was not modified after the missing device has been
251 * added should be recoverable. This means that snapshots created prior to the
252 * addition of that device should be completely intact.
253 *
254 * With 2 missing vdevs, some datasets may fail to mount since there are
255 * dataset statistics that are stored as regular metadata. Some data might be
256 * recoverable if those vdevs were added recently.
257 *
258 * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
259 * may be missing entirely. Chances of data recovery are very low. Note that
260 * there are also risks of performing an inadvertent rewind as we might be
261 * missing all the vdevs with the latest uberblocks.
262 */
263uint64_t zfs_max_missing_tvds = 0;
264
265/*
266 * The parameters below are similar to zfs_max_missing_tvds but are only
267 * intended for a preliminary open of the pool with an untrusted config which
268 * might be incomplete or out-dated.
269 *
270 * We are more tolerant for pools opened from a cachefile since we could have
271 * an out-dated cachefile where a device removal was not registered.
272 * We could have set the limit arbitrarily high but in the case where devices
273 * are really missing we would want to return the proper error codes; we chose
274 * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
275 * and we get a chance to retrieve the trusted config.
276 */
277uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
278
279/*
280 * In the case where config was assembled by scanning device paths (/dev/dsks
281 * by default) we are less tolerant since all the existing devices should have
282 * been detected and we want spa_load to return the right error codes.
283 */
284uint64_t zfs_max_missing_tvds_scan = 0;
285
286/*
287 * Debugging aid that pauses spa_sync() towards the end.
288 */
289static const boolean_t zfs_pause_spa_sync = B_FALSE;
290
291/*
292 * Variables to indicate the livelist condense zthr func should wait at certain
293 * points for the livelist to be removed - used to test condense/destroy races
294 */
295static int zfs_livelist_condense_zthr_pause = 0;
296static int zfs_livelist_condense_sync_pause = 0;
297
298/*
299 * Variables to track whether or not condense cancellation has been
300 * triggered in testing.
301 */
302static int zfs_livelist_condense_sync_cancel = 0;
303static int zfs_livelist_condense_zthr_cancel = 0;
304
305/*
306 * Variable to track whether or not extra ALLOC blkptrs were added to a
307 * livelist entry while it was being condensed (caused by the way we track
308 * remapped blkptrs in dbuf_remap_impl)
309 */
310static int zfs_livelist_condense_new_alloc = 0;
311
312/*
313 * ==========================================================================
314 * SPA properties routines
315 * ==========================================================================
316 */
317
318/*
319 * Add a (source=src, propname=propval) list to an nvlist.
320 */
321static void
322spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, const char *strval,
323 uint64_t intval, zprop_source_t src)
324{
325 const char *propname = zpool_prop_to_name(prop);
326 nvlist_t *propval;
327
328 propval = fnvlist_alloc();
329 fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
330
331 if (strval != NULL)
332 fnvlist_add_string(propval, ZPROP_VALUE, strval);
333 else
334 fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
335
336 fnvlist_add_nvlist(nvl, propname, propval);
337 nvlist_free(propval);
338}
339
340/*
341 * Add a user property (source=src, propname=propval) to an nvlist.
342 */
343static void
344spa_prop_add_user(nvlist_t *nvl, const char *propname, char *strval,
345 zprop_source_t src)
346{
347 nvlist_t *propval;
348
349 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
350 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
351 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
352 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
353 nvlist_free(propval);
354}
355
356/*
357 * Get property values from the spa configuration.
358 */
359static void
360spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
361{
362 vdev_t *rvd = spa->spa_root_vdev;
363 dsl_pool_t *pool = spa->spa_dsl_pool;
364 uint64_t size, alloc, cap, version;
365 const zprop_source_t src = ZPROP_SRC_NONE;
366 spa_config_dirent_t *dp;
367 metaslab_class_t *mc = spa_normal_class(spa);
368
369 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
370
371 if (rvd != NULL) {
372 alloc = metaslab_class_get_alloc(mc);
373 alloc += metaslab_class_get_alloc(spa_special_class(spa));
374 alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
375 alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa));
376
377 size = metaslab_class_get_space(mc);
378 size += metaslab_class_get_space(spa_special_class(spa));
379 size += metaslab_class_get_space(spa_dedup_class(spa));
380 size += metaslab_class_get_space(spa_embedded_log_class(spa));
381
382 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
383 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
384 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
385 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
386 size - alloc, src);
387 spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
388 spa->spa_checkpoint_info.sci_dspace, src);
389
390 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
391 metaslab_class_fragmentation(mc), src);
392 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
393 metaslab_class_expandable_space(mc), src);
394 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
395 (spa_mode(spa) == SPA_MODE_READ), src);
396
397 cap = (size == 0) ? 0 : (alloc * 100 / size);
398 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
399
400 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
401 ddt_get_pool_dedup_ratio(spa), src);
402 spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONEUSED, NULL,
403 brt_get_used(spa), src);
404 spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONESAVED, NULL,
405 brt_get_saved(spa), src);
406 spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONERATIO, NULL,
407 brt_get_ratio(spa), src);
408
409 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
410 rvd->vdev_state, src);
411
412 version = spa_version(spa);
413 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
414 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
415 version, ZPROP_SRC_DEFAULT);
416 } else {
417 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
418 version, ZPROP_SRC_LOCAL);
419 }
420 spa_prop_add_list(*nvp, ZPOOL_PROP_LOAD_GUID,
421 NULL, spa_load_guid(spa), src);
422 }
423
424 if (pool != NULL) {
425 /*
426 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
427 * when opening pools before this version freedir will be NULL.
428 */
429 if (pool->dp_free_dir != NULL) {
430 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
431 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
432 src);
433 } else {
434 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
435 NULL, 0, src);
436 }
437
438 if (pool->dp_leak_dir != NULL) {
439 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
440 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
441 src);
442 } else {
443 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
444 NULL, 0, src);
445 }
446 }
447
448 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
449
450 if (spa->spa_comment != NULL) {
451 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
452 0, ZPROP_SRC_LOCAL);
453 }
454
455 if (spa->spa_compatibility != NULL) {
456 spa_prop_add_list(*nvp, ZPOOL_PROP_COMPATIBILITY,
457 spa->spa_compatibility, 0, ZPROP_SRC_LOCAL);
458 }
459
460 if (spa->spa_root != NULL)
461 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
462 0, ZPROP_SRC_LOCAL);
463
464 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
465 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
466 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
467 } else {
468 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
469 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
470 }
471
472 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
473 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
474 DNODE_MAX_SIZE, ZPROP_SRC_NONE);
475 } else {
476 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
477 DNODE_MIN_SIZE, ZPROP_SRC_NONE);
478 }
479
480 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
481 if (dp->scd_path == NULL) {
482 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
483 "none", 0, ZPROP_SRC_LOCAL);
484 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
485 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
486 dp->scd_path, 0, ZPROP_SRC_LOCAL);
487 }
488 }
489}
490
491/*
492 * Get zpool property values.
493 */
494int
495spa_prop_get(spa_t *spa, nvlist_t **nvp)
496{
497 objset_t *mos = spa->spa_meta_objset;
498 zap_cursor_t zc;
499 zap_attribute_t za;
500 dsl_pool_t *dp;
501 int err;
502
503 err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP);
504 if (err)
505 return (err);
506
507 dp = spa_get_dsl(spa);
508 dsl_pool_config_enter(dp, FTAG);
509 mutex_enter(&spa->spa_props_lock);
510
511 /*
512 * Get properties from the spa config.
513 */
514 spa_prop_get_config(spa, nvp);
515
516 /* If no pool property object, no more prop to get. */
517 if (mos == NULL || spa->spa_pool_props_object == 0)
518 goto out;
519
520 /*
521 * Get properties from the MOS pool property object.
522 */
523 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
524 (err = zap_cursor_retrieve(&zc, &za)) == 0;
525 zap_cursor_advance(&zc)) {
526 uint64_t intval = 0;
527 char *strval = NULL;
528 zprop_source_t src = ZPROP_SRC_DEFAULT;
529 zpool_prop_t prop;
530
531 if ((prop = zpool_name_to_prop(za.za_name)) ==
532 ZPOOL_PROP_INVAL && !zfs_prop_user(za.za_name))
533 continue;
534
535 switch (za.za_integer_length) {
536 case 8:
537 /* integer property */
538 if (za.za_first_integer !=
539 zpool_prop_default_numeric(prop))
540 src = ZPROP_SRC_LOCAL;
541
542 if (prop == ZPOOL_PROP_BOOTFS) {
543 dsl_dataset_t *ds = NULL;
544
545 err = dsl_dataset_hold_obj(dp,
546 za.za_first_integer, FTAG, &ds);
547 if (err != 0)
548 break;
549
550 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
551 KM_SLEEP);
552 dsl_dataset_name(ds, strval);
553 dsl_dataset_rele(ds, FTAG);
554 } else {
555 strval = NULL;
556 intval = za.za_first_integer;
557 }
558
559 spa_prop_add_list(*nvp, prop, strval, intval, src);
560
561 if (strval != NULL)
562 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
563
564 break;
565
566 case 1:
567 /* string property */
568 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
569 err = zap_lookup(mos, spa->spa_pool_props_object,
570 za.za_name, 1, za.za_num_integers, strval);
571 if (err) {
572 kmem_free(strval, za.za_num_integers);
573 break;
574 }
575 if (prop != ZPOOL_PROP_INVAL) {
576 spa_prop_add_list(*nvp, prop, strval, 0, src);
577 } else {
578 src = ZPROP_SRC_LOCAL;
579 spa_prop_add_user(*nvp, za.za_name, strval,
580 src);
581 }
582 kmem_free(strval, za.za_num_integers);
583 break;
584
585 default:
586 break;
587 }
588 }
589 zap_cursor_fini(&zc);
590out:
591 mutex_exit(&spa->spa_props_lock);
592 dsl_pool_config_exit(dp, FTAG);
593 if (err && err != ENOENT) {
594 nvlist_free(*nvp);
595 *nvp = NULL;
596 return (err);
597 }
598
599 return (0);
600}
601
602/*
603 * Validate the given pool properties nvlist and modify the list
604 * for the property values to be set.
605 */
606static int
607spa_prop_validate(spa_t *spa, nvlist_t *props)
608{
609 nvpair_t *elem;
610 int error = 0, reset_bootfs = 0;
611 uint64_t objnum = 0;
612 boolean_t has_feature = B_FALSE;
613
614 elem = NULL;
615 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
616 uint64_t intval;
617 const char *strval, *slash, *check, *fname;
618 const char *propname = nvpair_name(elem);
619 zpool_prop_t prop = zpool_name_to_prop(propname);
620
621 switch (prop) {
622 case ZPOOL_PROP_INVAL:
623 /*
624 * Sanitize the input.
625 */
626 if (zfs_prop_user(propname)) {
627 if (strlen(propname) >= ZAP_MAXNAMELEN) {
628 error = SET_ERROR(ENAMETOOLONG);
629 break;
630 }
631
632 if (strlen(fnvpair_value_string(elem)) >=
633 ZAP_MAXVALUELEN) {
634 error = SET_ERROR(E2BIG);
635 break;
636 }
637 } else if (zpool_prop_feature(propname)) {
638 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
639 error = SET_ERROR(EINVAL);
640 break;
641 }
642
643 if (nvpair_value_uint64(elem, &intval) != 0) {
644 error = SET_ERROR(EINVAL);
645 break;
646 }
647
648 if (intval != 0) {
649 error = SET_ERROR(EINVAL);
650 break;
651 }
652
653 fname = strchr(propname, '@') + 1;
654 if (zfeature_lookup_name(fname, NULL) != 0) {
655 error = SET_ERROR(EINVAL);
656 break;
657 }
658
659 has_feature = B_TRUE;
660 } else {
661 error = SET_ERROR(EINVAL);
662 break;
663 }
664 break;
665
666 case ZPOOL_PROP_VERSION:
667 error = nvpair_value_uint64(elem, &intval);
668 if (!error &&
669 (intval < spa_version(spa) ||
670 intval > SPA_VERSION_BEFORE_FEATURES ||
671 has_feature))
672 error = SET_ERROR(EINVAL);
673 break;
674
675 case ZPOOL_PROP_DELEGATION:
676 case ZPOOL_PROP_AUTOREPLACE:
677 case ZPOOL_PROP_LISTSNAPS:
678 case ZPOOL_PROP_AUTOEXPAND:
679 case ZPOOL_PROP_AUTOTRIM:
680 error = nvpair_value_uint64(elem, &intval);
681 if (!error && intval > 1)
682 error = SET_ERROR(EINVAL);
683 break;
684
685 case ZPOOL_PROP_MULTIHOST:
686 error = nvpair_value_uint64(elem, &intval);
687 if (!error && intval > 1)
688 error = SET_ERROR(EINVAL);
689
690 if (!error) {
691 uint32_t hostid = zone_get_hostid(NULL);
692 if (hostid)
693 spa->spa_hostid = hostid;
694 else
695 error = SET_ERROR(ENOTSUP);
696 }
697
698 break;
699
700 case ZPOOL_PROP_BOOTFS:
701 /*
702 * If the pool version is less than SPA_VERSION_BOOTFS,
703 * or the pool is still being created (version == 0),
704 * the bootfs property cannot be set.
705 */
706 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
707 error = SET_ERROR(ENOTSUP);
708 break;
709 }
710
711 /*
712 * Make sure the vdev config is bootable
713 */
714 if (!vdev_is_bootable(spa->spa_root_vdev)) {
715 error = SET_ERROR(ENOTSUP);
716 break;
717 }
718
719 reset_bootfs = 1;
720
721 error = nvpair_value_string(elem, &strval);
722
723 if (!error) {
724 objset_t *os;
725
726 if (strval == NULL || strval[0] == '\0') {
727 objnum = zpool_prop_default_numeric(
728 ZPOOL_PROP_BOOTFS);
729 break;
730 }
731
732 error = dmu_objset_hold(strval, FTAG, &os);
733 if (error != 0)
734 break;
735
736 /* Must be ZPL. */
737 if (dmu_objset_type(os) != DMU_OST_ZFS) {
738 error = SET_ERROR(ENOTSUP);
739 } else {
740 objnum = dmu_objset_id(os);
741 }
742 dmu_objset_rele(os, FTAG);
743 }
744 break;
745
746 case ZPOOL_PROP_FAILUREMODE:
747 error = nvpair_value_uint64(elem, &intval);
748 if (!error && intval > ZIO_FAILURE_MODE_PANIC)
749 error = SET_ERROR(EINVAL);
750
751 /*
752 * This is a special case which only occurs when
753 * the pool has completely failed. This allows
754 * the user to change the in-core failmode property
755 * without syncing it out to disk (I/Os might
756 * currently be blocked). We do this by returning
757 * EIO to the caller (spa_prop_set) to trick it
758 * into thinking we encountered a property validation
759 * error.
760 */
761 if (!error && spa_suspended(spa)) {
762 spa->spa_failmode = intval;
763 error = SET_ERROR(EIO);
764 }
765 break;
766
767 case ZPOOL_PROP_CACHEFILE:
768 if ((error = nvpair_value_string(elem, &strval)) != 0)
769 break;
770
771 if (strval[0] == '\0')
772 break;
773
774 if (strcmp(strval, "none") == 0)
775 break;
776
777 if (strval[0] != '/') {
778 error = SET_ERROR(EINVAL);
779 break;
780 }
781
782 slash = strrchr(strval, '/');
783 ASSERT(slash != NULL);
784
785 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
786 strcmp(slash, "/..") == 0)
787 error = SET_ERROR(EINVAL);
788 break;
789
790 case ZPOOL_PROP_COMMENT:
791 if ((error = nvpair_value_string(elem, &strval)) != 0)
792 break;
793 for (check = strval; *check != '\0'; check++) {
794 if (!isprint(*check)) {
795 error = SET_ERROR(EINVAL);
796 break;
797 }
798 }
799 if (strlen(strval) > ZPROP_MAX_COMMENT)
800 error = SET_ERROR(E2BIG);
801 break;
802
803 default:
804 break;
805 }
806
807 if (error)
808 break;
809 }
810
811 (void) nvlist_remove_all(props,
812 zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO));
813
814 if (!error && reset_bootfs) {
815 error = nvlist_remove(props,
816 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
817
818 if (!error) {
819 error = nvlist_add_uint64(props,
820 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
821 }
822 }
823
824 return (error);
825}
826
827void
828spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
829{
830 const char *cachefile;
831 spa_config_dirent_t *dp;
832
833 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
834 &cachefile) != 0)
835 return;
836
837 dp = kmem_alloc(sizeof (spa_config_dirent_t),
838 KM_SLEEP);
839
840 if (cachefile[0] == '\0')
841 dp->scd_path = spa_strdup(spa_config_path);
842 else if (strcmp(cachefile, "none") == 0)
843 dp->scd_path = NULL;
844 else
845 dp->scd_path = spa_strdup(cachefile);
846
847 list_insert_head(&spa->spa_config_list, dp);
848 if (need_sync)
849 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
850}
851
852int
853spa_prop_set(spa_t *spa, nvlist_t *nvp)
854{
855 int error;
856 nvpair_t *elem = NULL;
857 boolean_t need_sync = B_FALSE;
858
859 if ((error = spa_prop_validate(spa, nvp)) != 0)
860 return (error);
861
862 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
863 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
864
865 if (prop == ZPOOL_PROP_CACHEFILE ||
866 prop == ZPOOL_PROP_ALTROOT ||
867 prop == ZPOOL_PROP_READONLY)
868 continue;
869
870 if (prop == ZPOOL_PROP_INVAL &&
871 zfs_prop_user(nvpair_name(elem))) {
872 need_sync = B_TRUE;
873 break;
874 }
875
876 if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
877 uint64_t ver = 0;
878
879 if (prop == ZPOOL_PROP_VERSION) {
880 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
881 } else {
882 ASSERT(zpool_prop_feature(nvpair_name(elem)));
883 ver = SPA_VERSION_FEATURES;
884 need_sync = B_TRUE;
885 }
886
887 /* Save time if the version is already set. */
888 if (ver == spa_version(spa))
889 continue;
890
891 /*
892 * In addition to the pool directory object, we might
893 * create the pool properties object, the features for
894 * read object, the features for write object, or the
895 * feature descriptions object.
896 */
897 error = dsl_sync_task(spa->spa_name, NULL,
898 spa_sync_version, &ver,
899 6, ZFS_SPACE_CHECK_RESERVED);
900 if (error)
901 return (error);
902 continue;
903 }
904
905 need_sync = B_TRUE;
906 break;
907 }
908
909 if (need_sync) {
910 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
911 nvp, 6, ZFS_SPACE_CHECK_RESERVED));
912 }
913
914 return (0);
915}
916
917/*
918 * If the bootfs property value is dsobj, clear it.
919 */
920void
921spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
922{
923 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
924 VERIFY(zap_remove(spa->spa_meta_objset,
925 spa->spa_pool_props_object,
926 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
927 spa->spa_bootfs = 0;
928 }
929}
930
931static int
932spa_change_guid_check(void *arg, dmu_tx_t *tx)
933{
934 uint64_t *newguid __maybe_unused = arg;
935 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
936 vdev_t *rvd = spa->spa_root_vdev;
937 uint64_t vdev_state;
938
939 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
940 int error = (spa_has_checkpoint(spa)) ?
941 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
942 return (SET_ERROR(error));
943 }
944
945 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
946 vdev_state = rvd->vdev_state;
947 spa_config_exit(spa, SCL_STATE, FTAG);
948
949 if (vdev_state != VDEV_STATE_HEALTHY)
950 return (SET_ERROR(ENXIO));
951
952 ASSERT3U(spa_guid(spa), !=, *newguid);
953
954 return (0);
955}
956
957static void
958spa_change_guid_sync(void *arg, dmu_tx_t *tx)
959{
960 uint64_t *newguid = arg;
961 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
962 uint64_t oldguid;
963 vdev_t *rvd = spa->spa_root_vdev;
964
965 oldguid = spa_guid(spa);
966
967 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
968 rvd->vdev_guid = *newguid;
969 rvd->vdev_guid_sum += (*newguid - oldguid);
970 vdev_config_dirty(rvd);
971 spa_config_exit(spa, SCL_STATE, FTAG);
972
973 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
974 (u_longlong_t)oldguid, (u_longlong_t)*newguid);
975}
976
977/*
978 * Change the GUID for the pool. This is done so that we can later
979 * re-import a pool built from a clone of our own vdevs. We will modify
980 * the root vdev's guid, our own pool guid, and then mark all of our
981 * vdevs dirty. Note that we must make sure that all our vdevs are
982 * online when we do this, or else any vdevs that weren't present
983 * would be orphaned from our pool. We are also going to issue a
984 * sysevent to update any watchers.
985 */
986int
987spa_change_guid(spa_t *spa)
988{
989 int error;
990 uint64_t guid;
991
992 mutex_enter(&spa->spa_vdev_top_lock);
993 mutex_enter(&spa_namespace_lock);
994 guid = spa_generate_guid(NULL);
995
996 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
997 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
998
999 if (error == 0) {
1000 /*
1001 * Clear the kobj flag from all the vdevs to allow
1002 * vdev_cache_process_kobj_evt() to post events to all the
1003 * vdevs since GUID is updated.
1004 */
1005 vdev_clear_kobj_evt(spa->spa_root_vdev);
1006 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
1007 vdev_clear_kobj_evt(spa->spa_l2cache.sav_vdevs[i]);
1008
1009 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
1010 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
1011 }
1012
1013 mutex_exit(&spa_namespace_lock);
1014 mutex_exit(&spa->spa_vdev_top_lock);
1015
1016 return (error);
1017}
1018
1019/*
1020 * ==========================================================================
1021 * SPA state manipulation (open/create/destroy/import/export)
1022 * ==========================================================================
1023 */
1024
1025static int
1026spa_error_entry_compare(const void *a, const void *b)
1027{
1028 const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
1029 const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
1030 int ret;
1031
1032 ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
1033 sizeof (zbookmark_phys_t));
1034
1035 return (TREE_ISIGN(ret));
1036}
1037
1038/*
1039 * Utility function which retrieves copies of the current logs and
1040 * re-initializes them in the process.
1041 */
1042void
1043spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
1044{
1045 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
1046
1047 memcpy(last, &spa->spa_errlist_last, sizeof (avl_tree_t));
1048 memcpy(scrub, &spa->spa_errlist_scrub, sizeof (avl_tree_t));
1049
1050 avl_create(&spa->spa_errlist_scrub,
1051 spa_error_entry_compare, sizeof (spa_error_entry_t),
1052 offsetof(spa_error_entry_t, se_avl));
1053 avl_create(&spa->spa_errlist_last,
1054 spa_error_entry_compare, sizeof (spa_error_entry_t),
1055 offsetof(spa_error_entry_t, se_avl));
1056}
1057
1058static void
1059spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1060{
1061 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
1062 enum zti_modes mode = ztip->zti_mode;
1063 uint_t value = ztip->zti_value;
1064 uint_t count = ztip->zti_count;
1065 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1066 uint_t cpus, flags = TASKQ_DYNAMIC;
1067
1068 switch (mode) {
1069 case ZTI_MODE_FIXED:
1070 ASSERT3U(value, >, 0);
1071 break;
1072
1073 case ZTI_MODE_SYNC:
1074
1075 /*
1076 * Create one wr_iss taskq for every 'zio_taskq_write_tpq' CPUs,
1077 * not to exceed the number of spa allocators, and align to it.
1078 */
1079 cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
1080 count = MAX(1, cpus / MAX(1, zio_taskq_write_tpq));
1081 count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1082 count = MIN(count, spa->spa_alloc_count);
1083 while (spa->spa_alloc_count % count != 0 &&
1084 spa->spa_alloc_count < count * 2)
1085 count--;
1086
1087 /*
1088 * zio_taskq_batch_pct is unbounded and may exceed 100%, but no
1089 * single taskq may have more threads than 100% of online cpus.
1090 */
1091 value = (zio_taskq_batch_pct + count / 2) / count;
1092 value = MIN(value, 100);
1093 flags |= TASKQ_THREADS_CPU_PCT;
1094 break;
1095
1096 case ZTI_MODE_SCALE:
1097 flags |= TASKQ_THREADS_CPU_PCT;
1098 /*
1099 * We want more taskqs to reduce lock contention, but we want
1100 * less for better request ordering and CPU utilization.
1101 */
1102 cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
1103 if (zio_taskq_batch_tpq > 0) {
1104 count = MAX(1, (cpus + zio_taskq_batch_tpq / 2) /
1105 zio_taskq_batch_tpq);
1106 } else {
1107 /*
1108 * Prefer 6 threads per taskq, but no more taskqs
1109 * than threads in them on large systems. For 80%:
1110 *
1111 * taskq taskq total
1112 * cpus taskqs percent threads threads
1113 * ------- ------- ------- ------- -------
1114 * 1 1 80% 1 1
1115 * 2 1 80% 1 1
1116 * 4 1 80% 3 3
1117 * 8 2 40% 3 6
1118 * 16 3 27% 4 12
1119 * 32 5 16% 5 25
1120 * 64 7 11% 7 49
1121 * 128 10 8% 10 100
1122 * 256 14 6% 15 210
1123 */
1124 count = 1 + cpus / 6;
1125 while (count * count > cpus)
1126 count--;
1127 }
1128 /* Limit each taskq within 100% to not trigger assertion. */
1129 count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1130 value = (zio_taskq_batch_pct + count / 2) / count;
1131 break;
1132
1133 case ZTI_MODE_NULL:
1134 tqs->stqs_count = 0;
1135 tqs->stqs_taskq = NULL;
1136 return;
1137
1138 default:
1139 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
1140 "spa_taskqs_init()",
1141 zio_type_name[t], zio_taskq_types[q], mode, value);
1142 break;
1143 }
1144
1145 ASSERT3U(count, >, 0);
1146 tqs->stqs_count = count;
1147 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
1148
1149 for (uint_t i = 0; i < count; i++) {
1150 taskq_t *tq;
1151 char name[32];
1152
1153 if (count > 1)
1154 (void) snprintf(name, sizeof (name), "%s_%s_%u",
1155 zio_type_name[t], zio_taskq_types[q], i);
1156 else
1157 (void) snprintf(name, sizeof (name), "%s_%s",
1158 zio_type_name[t], zio_taskq_types[q]);
1159
1160#ifdef HAVE_SYSDC
1161 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
1162 (void) zio_taskq_basedc;
1163 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1164 spa->spa_proc, zio_taskq_basedc, flags);
1165 } else {
1166#endif
1167 pri_t pri = maxclsyspri;
1168 /*
1169 * The write issue taskq can be extremely CPU
1170 * intensive. Run it at slightly less important
1171 * priority than the other taskqs.
1172 *
1173 * Under Linux and FreeBSD this means incrementing
1174 * the priority value as opposed to platforms like
1175 * illumos where it should be decremented.
1176 *
1177 * On FreeBSD, if priorities divided by four (RQ_PPQ)
1178 * are equal then a difference between them is
1179 * insignificant.
1180 */
1181 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) {
1182#if defined(__linux__)
1183 pri++;
1184#elif defined(__FreeBSD__)
1185 pri += 4;
1186#else
1187#error "unknown OS"
1188#endif
1189 }
1190 tq = taskq_create_proc(name, value, pri, 50,
1191 INT_MAX, spa->spa_proc, flags);
1192#ifdef HAVE_SYSDC
1193 }
1194#endif
1195
1196 tqs->stqs_taskq[i] = tq;
1197 }
1198}
1199
1200static void
1201spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1202{
1203 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1204
1205 if (tqs->stqs_taskq == NULL) {
1206 ASSERT3U(tqs->stqs_count, ==, 0);
1207 return;
1208 }
1209
1210 for (uint_t i = 0; i < tqs->stqs_count; i++) {
1211 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1212 taskq_destroy(tqs->stqs_taskq[i]);
1213 }
1214
1215 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1216 tqs->stqs_taskq = NULL;
1217}
1218
1219#ifdef _KERNEL
1220/*
1221 * The READ and WRITE rows of zio_taskqs are configurable at module load time
1222 * by setting zio_taskq_read or zio_taskq_write.
1223 *
1224 * Example (the defaults for READ and WRITE)
1225 * zio_taskq_read='fixed,1,8 null scale null'
1226 * zio_taskq_write='sync null scale null'
1227 *
1228 * Each sets the entire row at a time.
1229 *
1230 * 'fixed' is parameterised: fixed,Q,T where Q is number of taskqs, T is number
1231 * of threads per taskq.
1232 *
1233 * 'null' can only be set on the high-priority queues (queue selection for
1234 * high-priority queues will fall back to the regular queue if the high-pri
1235 * is NULL.
1236 */
1237static const char *const modes[ZTI_NMODES] = {
1238 "fixed", "scale", "sync", "null"
1239};
1240
1241/* Parse the incoming config string. Modifies cfg */
1242static int
1243spa_taskq_param_set(zio_type_t t, char *cfg)
1244{
1245 int err = 0;
1246
1247 zio_taskq_info_t row[ZIO_TASKQ_TYPES] = {{0}};
1248
1249 char *next = cfg, *tok, *c;
1250
1251 /*
1252 * Parse out each element from the string and fill `row`. The entire
1253 * row has to be set at once, so any errors are flagged by just
1254 * breaking out of this loop early.
1255 */
1256 uint_t q;
1257 for (q = 0; q < ZIO_TASKQ_TYPES; q++) {
1258 /* `next` is the start of the config */
1259 if (next == NULL)
1260 break;
1261
1262 /* Eat up leading space */
1263 while (isspace(*next))
1264 next++;
1265 if (*next == '\0')
1266 break;
1267
1268 /* Mode ends at space or end of string */
1269 tok = next;
1270 next = strchr(tok, ' ');
1271 if (next != NULL) *next++ = '\0';
1272
1273 /* Parameters start after a comma */
1274 c = strchr(tok, ',');
1275 if (c != NULL) *c++ = '\0';
1276
1277 /* Match mode string */
1278 uint_t mode;
1279 for (mode = 0; mode < ZTI_NMODES; mode++)
1280 if (strcmp(tok, modes[mode]) == 0)
1281 break;
1282 if (mode == ZTI_NMODES)
1283 break;
1284
1285 /* Invalid canary */
1286 row[q].zti_mode = ZTI_NMODES;
1287
1288 /* Per-mode setup */
1289 switch (mode) {
1290
1291 /*
1292 * FIXED is parameterised: number of queues, and number of
1293 * threads per queue.
1294 */
1295 case ZTI_MODE_FIXED: {
1296 /* No parameters? */
1297 if (c == NULL || *c == '\0')
1298 break;
1299
1300 /* Find next parameter */
1301 tok = c;
1302 c = strchr(tok, ',');
1303 if (c == NULL)
1304 break;
1305
1306 /* Take digits and convert */
1307 unsigned long long nq;
1308 if (!(isdigit(*tok)))
1309 break;
1310 err = ddi_strtoull(tok, &tok, 10, &nq);
1311 /* Must succeed and also end at the next param sep */
1312 if (err != 0 || tok != c)
1313 break;
1314
1315 /* Move past the comma */
1316 tok++;
1317 /* Need another number */
1318 if (!(isdigit(*tok)))
1319 break;
1320 /* Remember start to make sure we moved */
1321 c = tok;
1322
1323 /* Take digits */
1324 unsigned long long ntpq;
1325 err = ddi_strtoull(tok, &tok, 10, &ntpq);
1326 /* Must succeed, and moved forward */
1327 if (err != 0 || tok == c || *tok != '\0')
1328 break;
1329
1330 /*
1331 * sanity; zero queues/threads make no sense, and
1332 * 16K is almost certainly more than anyone will ever
1333 * need and avoids silly numbers like UINT32_MAX
1334 */
1335 if (nq == 0 || nq >= 16384 ||
1336 ntpq == 0 || ntpq >= 16384)
1337 break;
1338
1339 const zio_taskq_info_t zti = ZTI_P(ntpq, nq);
1340 row[q] = zti;
1341 break;
1342 }
1343
1344 case ZTI_MODE_SCALE: {
1345 const zio_taskq_info_t zti = ZTI_SCALE;
1346 row[q] = zti;
1347 break;
1348 }
1349
1350 case ZTI_MODE_SYNC: {
1351 const zio_taskq_info_t zti = ZTI_SYNC;
1352 row[q] = zti;
1353 break;
1354 }
1355
1356 case ZTI_MODE_NULL: {
1357 /*
1358 * Can only null the high-priority queues; the general-
1359 * purpose ones have to exist.
1360 */
1361 if (q != ZIO_TASKQ_ISSUE_HIGH &&
1362 q != ZIO_TASKQ_INTERRUPT_HIGH)
1363 break;
1364
1365 const zio_taskq_info_t zti = ZTI_NULL;
1366 row[q] = zti;
1367 break;
1368 }
1369
1370 default:
1371 break;
1372 }
1373
1374 /* Ensure we set a mode */
1375 if (row[q].zti_mode == ZTI_NMODES)
1376 break;
1377 }
1378
1379 /* Didn't get a full row, fail */
1380 if (q < ZIO_TASKQ_TYPES)
1381 return (SET_ERROR(EINVAL));
1382
1383 /* Eat trailing space */
1384 if (next != NULL)
1385 while (isspace(*next))
1386 next++;
1387
1388 /* If there's anything left over then fail */
1389 if (next != NULL && *next != '\0')
1390 return (SET_ERROR(EINVAL));
1391
1392 /* Success! Copy it into the real config */
1393 for (q = 0; q < ZIO_TASKQ_TYPES; q++)
1394 zio_taskqs[t][q] = row[q];
1395
1396 return (0);
1397}
1398
1399static int
1400spa_taskq_param_get(zio_type_t t, char *buf, boolean_t add_newline)
1401{
1402 int pos = 0;
1403
1404 /* Build paramater string from live config */
1405 const char *sep = "";
1406 for (uint_t q = 0; q < ZIO_TASKQ_TYPES; q++) {
1407 const zio_taskq_info_t *zti = &zio_taskqs[t][q];
1408 if (zti->zti_mode == ZTI_MODE_FIXED)
1409 pos += sprintf(&buf[pos], "%s%s,%u,%u", sep,
1410 modes[zti->zti_mode], zti->zti_count,
1411 zti->zti_value);
1412 else
1413 pos += sprintf(&buf[pos], "%s%s", sep,
1414 modes[zti->zti_mode]);
1415 sep = " ";
1416 }
1417
1418 if (add_newline)
1419 buf[pos++] = '\n';
1420 buf[pos] = '\0';
1421
1422 return (pos);
1423}
1424
1425#ifdef __linux__
1426static int
1427spa_taskq_read_param_set(const char *val, zfs_kernel_param_t *kp)
1428{
1429 char *cfg = kmem_strdup(val);
1430 int err = spa_taskq_param_set(ZIO_TYPE_READ, cfg);
1431 kmem_free(cfg, strlen(val)+1);
1432 return (-err);
1433}
1434static int
1435spa_taskq_read_param_get(char *buf, zfs_kernel_param_t *kp)
1436{
1437 return (spa_taskq_param_get(ZIO_TYPE_READ, buf, TRUE));
1438}
1439
1440static int
1441spa_taskq_write_param_set(const char *val, zfs_kernel_param_t *kp)
1442{
1443 char *cfg = kmem_strdup(val);
1444 int err = spa_taskq_param_set(ZIO_TYPE_WRITE, cfg);
1445 kmem_free(cfg, strlen(val)+1);
1446 return (-err);
1447}
1448static int
1449spa_taskq_write_param_get(char *buf, zfs_kernel_param_t *kp)
1450{
1451 return (spa_taskq_param_get(ZIO_TYPE_WRITE, buf, TRUE));
1452}
1453#else
1454/*
1455 * On FreeBSD load-time parameters can be set up before malloc() is available,
1456 * so we have to do all the parsing work on the stack.
1457 */
1458#define SPA_TASKQ_PARAM_MAX (128)
1459
1460static int
1461spa_taskq_read_param(ZFS_MODULE_PARAM_ARGS)
1462{
1463 char buf[SPA_TASKQ_PARAM_MAX];
1464 int err;
1465
1466 (void) spa_taskq_param_get(ZIO_TYPE_READ, buf, FALSE);
1467 err = sysctl_handle_string(oidp, buf, sizeof (buf), req);
1468 if (err || req->newptr == NULL)
1469 return (err);
1470 return (spa_taskq_param_set(ZIO_TYPE_READ, buf));
1471}
1472
1473static int
1474spa_taskq_write_param(ZFS_MODULE_PARAM_ARGS)
1475{
1476 char buf[SPA_TASKQ_PARAM_MAX];
1477 int err;
1478
1479 (void) spa_taskq_param_get(ZIO_TYPE_WRITE, buf, FALSE);
1480 err = sysctl_handle_string(oidp, buf, sizeof (buf), req);
1481 if (err || req->newptr == NULL)
1482 return (err);
1483 return (spa_taskq_param_set(ZIO_TYPE_WRITE, buf));
1484}
1485#endif
1486#endif /* _KERNEL */
1487
1488/*
1489 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1490 * Note that a type may have multiple discrete taskqs to avoid lock contention
1491 * on the taskq itself.
1492 */
1493void
1494spa_taskq_dispatch(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1495 task_func_t *func, zio_t *zio, boolean_t cutinline)
1496{
1497 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1498 taskq_t *tq;
1499
1500 ASSERT3P(tqs->stqs_taskq, !=, NULL);
1501 ASSERT3U(tqs->stqs_count, !=, 0);
1502
1503 /*
1504 * NB: We are assuming that the zio can only be dispatched
1505 * to a single taskq at a time. It would be a grievous error
1506 * to dispatch the zio to another taskq at the same time.
1507 */
1508 ASSERT(zio);
1509 ASSERT(taskq_empty_ent(&zio->io_tqent));
1510
1511 if (tqs->stqs_count == 1) {
1512 tq = tqs->stqs_taskq[0];
1513 } else if ((t == ZIO_TYPE_WRITE) && (q == ZIO_TASKQ_ISSUE) &&
1514 ZIO_HAS_ALLOCATOR(zio)) {
1515 tq = tqs->stqs_taskq[zio->io_allocator % tqs->stqs_count];
1516 } else {
1517 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1518 }
1519
1520 taskq_dispatch_ent(tq, func, zio, cutinline ? TQ_FRONT : 0,
1521 &zio->io_tqent);
1522}
1523
1524static void
1525spa_create_zio_taskqs(spa_t *spa)
1526{
1527 for (int t = 0; t < ZIO_TYPES; t++) {
1528 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1529 spa_taskqs_init(spa, t, q);
1530 }
1531 }
1532}
1533
1534#if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1535static void
1536spa_thread(void *arg)
1537{
1538 psetid_t zio_taskq_psrset_bind = PS_NONE;
1539 callb_cpr_t cprinfo;
1540
1541 spa_t *spa = arg;
1542 user_t *pu = PTOU(curproc);
1543
1544 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1545 spa->spa_name);
1546
1547 ASSERT(curproc != &p0);
1548 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1549 "zpool-%s", spa->spa_name);
1550 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1551
1552 /* bind this thread to the requested psrset */
1553 if (zio_taskq_psrset_bind != PS_NONE) {
1554 pool_lock();
1555 mutex_enter(&cpu_lock);
1556 mutex_enter(&pidlock);
1557 mutex_enter(&curproc->p_lock);
1558
1559 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1560 0, NULL, NULL) == 0) {
1561 curthread->t_bind_pset = zio_taskq_psrset_bind;
1562 } else {
1563 cmn_err(CE_WARN,
1564 "Couldn't bind process for zfs pool \"%s\" to "
1565 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1566 }
1567
1568 mutex_exit(&curproc->p_lock);
1569 mutex_exit(&pidlock);
1570 mutex_exit(&cpu_lock);
1571 pool_unlock();
1572 }
1573
1574#ifdef HAVE_SYSDC
1575 if (zio_taskq_sysdc) {
1576 sysdc_thread_enter(curthread, 100, 0);
1577 }
1578#endif
1579
1580 spa->spa_proc = curproc;
1581 spa->spa_did = curthread->t_did;
1582
1583 spa_create_zio_taskqs(spa);
1584
1585 mutex_enter(&spa->spa_proc_lock);
1586 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1587
1588 spa->spa_proc_state = SPA_PROC_ACTIVE;
1589 cv_broadcast(&spa->spa_proc_cv);
1590
1591 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1592 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1593 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1594 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1595
1596 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1597 spa->spa_proc_state = SPA_PROC_GONE;
1598 spa->spa_proc = &p0;
1599 cv_broadcast(&spa->spa_proc_cv);
1600 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1601
1602 mutex_enter(&curproc->p_lock);
1603 lwp_exit();
1604}
1605#endif
1606
1607extern metaslab_ops_t *metaslab_allocator(spa_t *spa);
1608
1609/*
1610 * Activate an uninitialized pool.
1611 */
1612static void
1613spa_activate(spa_t *spa, spa_mode_t mode)
1614{
1615 metaslab_ops_t *msp = metaslab_allocator(spa);
1616 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1617
1618 spa->spa_state = POOL_STATE_ACTIVE;
1619 spa->spa_mode = mode;
1620 spa->spa_read_spacemaps = spa_mode_readable_spacemaps;
1621
1622 spa->spa_normal_class = metaslab_class_create(spa, msp);
1623 spa->spa_log_class = metaslab_class_create(spa, msp);
1624 spa->spa_embedded_log_class = metaslab_class_create(spa, msp);
1625 spa->spa_special_class = metaslab_class_create(spa, msp);
1626 spa->spa_dedup_class = metaslab_class_create(spa, msp);
1627
1628 /* Try to create a covering process */
1629 mutex_enter(&spa->spa_proc_lock);
1630 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1631 ASSERT(spa->spa_proc == &p0);
1632 spa->spa_did = 0;
1633
1634#ifdef HAVE_SPA_THREAD
1635 /* Only create a process if we're going to be around a while. */
1636 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1637 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1638 NULL, 0) == 0) {
1639 spa->spa_proc_state = SPA_PROC_CREATED;
1640 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1641 cv_wait(&spa->spa_proc_cv,
1642 &spa->spa_proc_lock);
1643 }
1644 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1645 ASSERT(spa->spa_proc != &p0);
1646 ASSERT(spa->spa_did != 0);
1647 } else {
1648#ifdef _KERNEL
1649 cmn_err(CE_WARN,
1650 "Couldn't create process for zfs pool \"%s\"\n",
1651 spa->spa_name);
1652#endif
1653 }
1654 }
1655#endif /* HAVE_SPA_THREAD */
1656 mutex_exit(&spa->spa_proc_lock);
1657
1658 /* If we didn't create a process, we need to create our taskqs. */
1659 if (spa->spa_proc == &p0) {
1660 spa_create_zio_taskqs(spa);
1661 }
1662
1663 for (size_t i = 0; i < TXG_SIZE; i++) {
1664 spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1665 ZIO_FLAG_CANFAIL);
1666 }
1667
1668 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1669 offsetof(vdev_t, vdev_config_dirty_node));
1670 list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1671 offsetof(objset_t, os_evicting_node));
1672 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1673 offsetof(vdev_t, vdev_state_dirty_node));
1674
1675 txg_list_create(&spa->spa_vdev_txg_list, spa,
1676 offsetof(struct vdev, vdev_txg_node));
1677
1678 avl_create(&spa->spa_errlist_scrub,
1679 spa_error_entry_compare, sizeof (spa_error_entry_t),
1680 offsetof(spa_error_entry_t, se_avl));
1681 avl_create(&spa->spa_errlist_last,
1682 spa_error_entry_compare, sizeof (spa_error_entry_t),
1683 offsetof(spa_error_entry_t, se_avl));
1684 avl_create(&spa->spa_errlist_healed,
1685 spa_error_entry_compare, sizeof (spa_error_entry_t),
1686 offsetof(spa_error_entry_t, se_avl));
1687
1688 spa_activate_os(spa);
1689
1690 spa_keystore_init(&spa->spa_keystore);
1691
1692 /*
1693 * This taskq is used to perform zvol-minor-related tasks
1694 * asynchronously. This has several advantages, including easy
1695 * resolution of various deadlocks.
1696 *
1697 * The taskq must be single threaded to ensure tasks are always
1698 * processed in the order in which they were dispatched.
1699 *
1700 * A taskq per pool allows one to keep the pools independent.
1701 * This way if one pool is suspended, it will not impact another.
1702 *
1703 * The preferred location to dispatch a zvol minor task is a sync
1704 * task. In this context, there is easy access to the spa_t and minimal
1705 * error handling is required because the sync task must succeed.
1706 */
1707 spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1708 1, INT_MAX, 0);
1709
1710 /*
1711 * The taskq to preload metaslabs.
1712 */
1713 spa->spa_metaslab_taskq = taskq_create("z_metaslab",
1714 metaslab_preload_pct, maxclsyspri, 1, INT_MAX,
1715 TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1716
1717 /*
1718 * Taskq dedicated to prefetcher threads: this is used to prevent the
1719 * pool traverse code from monopolizing the global (and limited)
1720 * system_taskq by inappropriately scheduling long running tasks on it.
1721 */
1722 spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100,
1723 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1724
1725 /*
1726 * The taskq to upgrade datasets in this pool. Currently used by
1727 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1728 */
1729 spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100,
1730 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1731}
1732
1733/*
1734 * Opposite of spa_activate().
1735 */
1736static void
1737spa_deactivate(spa_t *spa)
1738{
1739 ASSERT(spa->spa_sync_on == B_FALSE);
1740 ASSERT(spa->spa_dsl_pool == NULL);
1741 ASSERT(spa->spa_root_vdev == NULL);
1742 ASSERT(spa->spa_async_zio_root == NULL);
1743 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1744
1745 spa_evicting_os_wait(spa);
1746
1747 if (spa->spa_zvol_taskq) {
1748 taskq_destroy(spa->spa_zvol_taskq);
1749 spa->spa_zvol_taskq = NULL;
1750 }
1751
1752 if (spa->spa_metaslab_taskq) {
1753 taskq_destroy(spa->spa_metaslab_taskq);
1754 spa->spa_metaslab_taskq = NULL;
1755 }
1756
1757 if (spa->spa_prefetch_taskq) {
1758 taskq_destroy(spa->spa_prefetch_taskq);
1759 spa->spa_prefetch_taskq = NULL;
1760 }
1761
1762 if (spa->spa_upgrade_taskq) {
1763 taskq_destroy(spa->spa_upgrade_taskq);
1764 spa->spa_upgrade_taskq = NULL;
1765 }
1766
1767 txg_list_destroy(&spa->spa_vdev_txg_list);
1768
1769 list_destroy(&spa->spa_config_dirty_list);
1770 list_destroy(&spa->spa_evicting_os_list);
1771 list_destroy(&spa->spa_state_dirty_list);
1772
1773 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
1774
1775 for (int t = 0; t < ZIO_TYPES; t++) {
1776 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1777 spa_taskqs_fini(spa, t, q);
1778 }
1779 }
1780
1781 for (size_t i = 0; i < TXG_SIZE; i++) {
1782 ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1783 VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1784 spa->spa_txg_zio[i] = NULL;
1785 }
1786
1787 metaslab_class_destroy(spa->spa_normal_class);
1788 spa->spa_normal_class = NULL;
1789
1790 metaslab_class_destroy(spa->spa_log_class);
1791 spa->spa_log_class = NULL;
1792
1793 metaslab_class_destroy(spa->spa_embedded_log_class);
1794 spa->spa_embedded_log_class = NULL;
1795
1796 metaslab_class_destroy(spa->spa_special_class);
1797 spa->spa_special_class = NULL;
1798
1799 metaslab_class_destroy(spa->spa_dedup_class);
1800 spa->spa_dedup_class = NULL;
1801
1802 /*
1803 * If this was part of an import or the open otherwise failed, we may
1804 * still have errors left in the queues. Empty them just in case.
1805 */
1806 spa_errlog_drain(spa);
1807 avl_destroy(&spa->spa_errlist_scrub);
1808 avl_destroy(&spa->spa_errlist_last);
1809 avl_destroy(&spa->spa_errlist_healed);
1810
1811 spa_keystore_fini(&spa->spa_keystore);
1812
1813 spa->spa_state = POOL_STATE_UNINITIALIZED;
1814
1815 mutex_enter(&spa->spa_proc_lock);
1816 if (spa->spa_proc_state != SPA_PROC_NONE) {
1817 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1818 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1819 cv_broadcast(&spa->spa_proc_cv);
1820 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1821 ASSERT(spa->spa_proc != &p0);
1822 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1823 }
1824 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1825 spa->spa_proc_state = SPA_PROC_NONE;
1826 }
1827 ASSERT(spa->spa_proc == &p0);
1828 mutex_exit(&spa->spa_proc_lock);
1829
1830 /*
1831 * We want to make sure spa_thread() has actually exited the ZFS
1832 * module, so that the module can't be unloaded out from underneath
1833 * it.
1834 */
1835 if (spa->spa_did != 0) {
1836 thread_join(spa->spa_did);
1837 spa->spa_did = 0;
1838 }
1839
1840 spa_deactivate_os(spa);
1841
1842}
1843
1844/*
1845 * Verify a pool configuration, and construct the vdev tree appropriately. This
1846 * will create all the necessary vdevs in the appropriate layout, with each vdev
1847 * in the CLOSED state. This will prep the pool before open/creation/import.
1848 * All vdev validation is done by the vdev_alloc() routine.
1849 */
1850int
1851spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1852 uint_t id, int atype)
1853{
1854 nvlist_t **child;
1855 uint_t children;
1856 int error;
1857
1858 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1859 return (error);
1860
1861 if ((*vdp)->vdev_ops->vdev_op_leaf)
1862 return (0);
1863
1864 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1865 &child, &children);
1866
1867 if (error == ENOENT)
1868 return (0);
1869
1870 if (error) {
1871 vdev_free(*vdp);
1872 *vdp = NULL;
1873 return (SET_ERROR(EINVAL));
1874 }
1875
1876 for (int c = 0; c < children; c++) {
1877 vdev_t *vd;
1878 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1879 atype)) != 0) {
1880 vdev_free(*vdp);
1881 *vdp = NULL;
1882 return (error);
1883 }
1884 }
1885
1886 ASSERT(*vdp != NULL);
1887
1888 return (0);
1889}
1890
1891static boolean_t
1892spa_should_flush_logs_on_unload(spa_t *spa)
1893{
1894 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1895 return (B_FALSE);
1896
1897 if (!spa_writeable(spa))
1898 return (B_FALSE);
1899
1900 if (!spa->spa_sync_on)
1901 return (B_FALSE);
1902
1903 if (spa_state(spa) != POOL_STATE_EXPORTED)
1904 return (B_FALSE);
1905
1906 if (zfs_keep_log_spacemaps_at_export)
1907 return (B_FALSE);
1908
1909 return (B_TRUE);
1910}
1911
1912/*
1913 * Opens a transaction that will set the flag that will instruct
1914 * spa_sync to attempt to flush all the metaslabs for that txg.
1915 */
1916static void
1917spa_unload_log_sm_flush_all(spa_t *spa)
1918{
1919 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1920 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1921
1922 ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
1923 spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
1924
1925 dmu_tx_commit(tx);
1926 txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
1927}
1928
1929static void
1930spa_unload_log_sm_metadata(spa_t *spa)
1931{
1932 void *cookie = NULL;
1933 spa_log_sm_t *sls;
1934 log_summary_entry_t *e;
1935
1936 while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
1937 &cookie)) != NULL) {
1938 VERIFY0(sls->sls_mscount);
1939 kmem_free(sls, sizeof (spa_log_sm_t));
1940 }
1941
1942 while ((e = list_remove_head(&spa->spa_log_summary)) != NULL) {
1943 VERIFY0(e->lse_mscount);
1944 kmem_free(e, sizeof (log_summary_entry_t));
1945 }
1946
1947 spa->spa_unflushed_stats.sus_nblocks = 0;
1948 spa->spa_unflushed_stats.sus_memused = 0;
1949 spa->spa_unflushed_stats.sus_blocklimit = 0;
1950}
1951
1952static void
1953spa_destroy_aux_threads(spa_t *spa)
1954{
1955 if (spa->spa_condense_zthr != NULL) {
1956 zthr_destroy(spa->spa_condense_zthr);
1957 spa->spa_condense_zthr = NULL;
1958 }
1959 if (spa->spa_checkpoint_discard_zthr != NULL) {
1960 zthr_destroy(spa->spa_checkpoint_discard_zthr);
1961 spa->spa_checkpoint_discard_zthr = NULL;
1962 }
1963 if (spa->spa_livelist_delete_zthr != NULL) {
1964 zthr_destroy(spa->spa_livelist_delete_zthr);
1965 spa->spa_livelist_delete_zthr = NULL;
1966 }
1967 if (spa->spa_livelist_condense_zthr != NULL) {
1968 zthr_destroy(spa->spa_livelist_condense_zthr);
1969 spa->spa_livelist_condense_zthr = NULL;
1970 }
1971 if (spa->spa_raidz_expand_zthr != NULL) {
1972 zthr_destroy(spa->spa_raidz_expand_zthr);
1973 spa->spa_raidz_expand_zthr = NULL;
1974 }
1975}
1976
1977/*
1978 * Opposite of spa_load().
1979 */
1980static void
1981spa_unload(spa_t *spa)
1982{
1983 ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
1984 spa->spa_export_thread == curthread);
1985 ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
1986
1987 spa_import_progress_remove(spa_guid(spa));
1988 spa_load_note(spa, "UNLOADING");
1989
1990 spa_wake_waiters(spa);
1991
1992 /*
1993 * If we have set the spa_final_txg, we have already performed the
1994 * tasks below in spa_export_common(). We should not redo it here since
1995 * we delay the final TXGs beyond what spa_final_txg is set at.
1996 */
1997 if (spa->spa_final_txg == UINT64_MAX) {
1998 /*
1999 * If the log space map feature is enabled and the pool is
2000 * getting exported (but not destroyed), we want to spend some
2001 * time flushing as many metaslabs as we can in an attempt to
2002 * destroy log space maps and save import time.
2003 */
2004 if (spa_should_flush_logs_on_unload(spa))
2005 spa_unload_log_sm_flush_all(spa);
2006
2007 /*
2008 * Stop async tasks.
2009 */
2010 spa_async_suspend(spa);
2011
2012 if (spa->spa_root_vdev) {
2013 vdev_t *root_vdev = spa->spa_root_vdev;
2014 vdev_initialize_stop_all(root_vdev,
2015 VDEV_INITIALIZE_ACTIVE);
2016 vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
2017 vdev_autotrim_stop_all(spa);
2018 vdev_rebuild_stop_all(spa);
2019 }
2020 }
2021
2022 /*
2023 * Stop syncing.
2024 */
2025 if (spa->spa_sync_on) {
2026 txg_sync_stop(spa->spa_dsl_pool);
2027 spa->spa_sync_on = B_FALSE;
2028 }
2029
2030 /*
2031 * This ensures that there is no async metaslab prefetching
2032 * while we attempt to unload the spa.
2033 */
2034 taskq_wait(spa->spa_metaslab_taskq);
2035
2036 if (spa->spa_mmp.mmp_thread)
2037 mmp_thread_stop(spa);
2038
2039 /*
2040 * Wait for any outstanding async I/O to complete.
2041 */
2042 if (spa->spa_async_zio_root != NULL) {
2043 for (int i = 0; i < max_ncpus; i++)
2044 (void) zio_wait(spa->spa_async_zio_root[i]);
2045 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
2046 spa->spa_async_zio_root = NULL;
2047 }
2048
2049 if (spa->spa_vdev_removal != NULL) {
2050 spa_vdev_removal_destroy(spa->spa_vdev_removal);
2051 spa->spa_vdev_removal = NULL;
2052 }
2053
2054 spa_destroy_aux_threads(spa);
2055
2056 spa_condense_fini(spa);
2057
2058 bpobj_close(&spa->spa_deferred_bpobj);
2059
2060 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
2061
2062 /*
2063 * Close all vdevs.
2064 */
2065 if (spa->spa_root_vdev)
2066 vdev_free(spa->spa_root_vdev);
2067 ASSERT(spa->spa_root_vdev == NULL);
2068
2069 /*
2070 * Close the dsl pool.
2071 */
2072 if (spa->spa_dsl_pool) {
2073 dsl_pool_close(spa->spa_dsl_pool);
2074 spa->spa_dsl_pool = NULL;
2075 spa->spa_meta_objset = NULL;
2076 }
2077
2078 ddt_unload(spa);
2079 brt_unload(spa);
2080 spa_unload_log_sm_metadata(spa);
2081
2082 /*
2083 * Drop and purge level 2 cache
2084 */
2085 spa_l2cache_drop(spa);
2086
2087 if (spa->spa_spares.sav_vdevs) {
2088 for (int i = 0; i < spa->spa_spares.sav_count; i++)
2089 vdev_free(spa->spa_spares.sav_vdevs[i]);
2090 kmem_free(spa->spa_spares.sav_vdevs,
2091 spa->spa_spares.sav_count * sizeof (void *));
2092 spa->spa_spares.sav_vdevs = NULL;
2093 }
2094 if (spa->spa_spares.sav_config) {
2095 nvlist_free(spa->spa_spares.sav_config);
2096 spa->spa_spares.sav_config = NULL;
2097 }
2098 spa->spa_spares.sav_count = 0;
2099
2100 if (spa->spa_l2cache.sav_vdevs) {
2101 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
2102 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
2103 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
2104 }
2105 kmem_free(spa->spa_l2cache.sav_vdevs,
2106 spa->spa_l2cache.sav_count * sizeof (void *));
2107 spa->spa_l2cache.sav_vdevs = NULL;
2108 }
2109 if (spa->spa_l2cache.sav_config) {
2110 nvlist_free(spa->spa_l2cache.sav_config);
2111 spa->spa_l2cache.sav_config = NULL;
2112 }
2113 spa->spa_l2cache.sav_count = 0;
2114
2115 spa->spa_async_suspended = 0;
2116
2117 spa->spa_indirect_vdevs_loaded = B_FALSE;
2118
2119 if (spa->spa_comment != NULL) {
2120 spa_strfree(spa->spa_comment);
2121 spa->spa_comment = NULL;
2122 }
2123 if (spa->spa_compatibility != NULL) {
2124 spa_strfree(spa->spa_compatibility);
2125 spa->spa_compatibility = NULL;
2126 }
2127
2128 spa->spa_raidz_expand = NULL;
2129
2130 spa_config_exit(spa, SCL_ALL, spa);
2131}
2132
2133/*
2134 * Load (or re-load) the current list of vdevs describing the active spares for
2135 * this pool. When this is called, we have some form of basic information in
2136 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
2137 * then re-generate a more complete list including status information.
2138 */
2139void
2140spa_load_spares(spa_t *spa)
2141{
2142 nvlist_t **spares;
2143 uint_t nspares;
2144 int i;
2145 vdev_t *vd, *tvd;
2146
2147#ifndef _KERNEL
2148 /*
2149 * zdb opens both the current state of the pool and the
2150 * checkpointed state (if present), with a different spa_t.
2151 *
2152 * As spare vdevs are shared among open pools, we skip loading
2153 * them when we load the checkpointed state of the pool.
2154 */
2155 if (!spa_writeable(spa))
2156 return;
2157#endif
2158
2159 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2160
2161 /*
2162 * First, close and free any existing spare vdevs.
2163 */
2164 if (spa->spa_spares.sav_vdevs) {
2165 for (i = 0; i < spa->spa_spares.sav_count; i++) {
2166 vd = spa->spa_spares.sav_vdevs[i];
2167
2168 /* Undo the call to spa_activate() below */
2169 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
2170 B_FALSE)) != NULL && tvd->vdev_isspare)
2171 spa_spare_remove(tvd);
2172 vdev_close(vd);
2173 vdev_free(vd);
2174 }
2175
2176 kmem_free(spa->spa_spares.sav_vdevs,
2177 spa->spa_spares.sav_count * sizeof (void *));
2178 }
2179
2180 if (spa->spa_spares.sav_config == NULL)
2181 nspares = 0;
2182 else
2183 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2184 ZPOOL_CONFIG_SPARES, &spares, &nspares));
2185
2186 spa->spa_spares.sav_count = (int)nspares;
2187 spa->spa_spares.sav_vdevs = NULL;
2188
2189 if (nspares == 0)
2190 return;
2191
2192 /*
2193 * Construct the array of vdevs, opening them to get status in the
2194 * process. For each spare, there is potentially two different vdev_t
2195 * structures associated with it: one in the list of spares (used only
2196 * for basic validation purposes) and one in the active vdev
2197 * configuration (if it's spared in). During this phase we open and
2198 * validate each vdev on the spare list. If the vdev also exists in the
2199 * active configuration, then we also mark this vdev as an active spare.
2200 */
2201 spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
2202 KM_SLEEP);
2203 for (i = 0; i < spa->spa_spares.sav_count; i++) {
2204 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
2205 VDEV_ALLOC_SPARE) == 0);
2206 ASSERT(vd != NULL);
2207
2208 spa->spa_spares.sav_vdevs[i] = vd;
2209
2210 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
2211 B_FALSE)) != NULL) {
2212 if (!tvd->vdev_isspare)
2213 spa_spare_add(tvd);
2214
2215 /*
2216 * We only mark the spare active if we were successfully
2217 * able to load the vdev. Otherwise, importing a pool
2218 * with a bad active spare would result in strange
2219 * behavior, because multiple pool would think the spare
2220 * is actively in use.
2221 *
2222 * There is a vulnerability here to an equally bizarre
2223 * circumstance, where a dead active spare is later
2224 * brought back to life (onlined or otherwise). Given
2225 * the rarity of this scenario, and the extra complexity
2226 * it adds, we ignore the possibility.
2227 */
2228 if (!vdev_is_dead(tvd))
2229 spa_spare_activate(tvd);
2230 }
2231
2232 vd->vdev_top = vd;
2233 vd->vdev_aux = &spa->spa_spares;
2234
2235 if (vdev_open(vd) != 0)
2236 continue;
2237
2238 if (vdev_validate_aux(vd) == 0)
2239 spa_spare_add(vd);
2240 }
2241
2242 /*
2243 * Recompute the stashed list of spares, with status information
2244 * this time.
2245 */
2246 fnvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES);
2247
2248 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
2249 KM_SLEEP);
2250 for (i = 0; i < spa->spa_spares.sav_count; i++)
2251 spares[i] = vdev_config_generate(spa,
2252 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
2253 fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
2254 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
2255 spa->spa_spares.sav_count);
2256 for (i = 0; i < spa->spa_spares.sav_count; i++)
2257 nvlist_free(spares[i]);
2258 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
2259}
2260
2261/*
2262 * Load (or re-load) the current list of vdevs describing the active l2cache for
2263 * this pool. When this is called, we have some form of basic information in
2264 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
2265 * then re-generate a more complete list including status information.
2266 * Devices which are already active have their details maintained, and are
2267 * not re-opened.
2268 */
2269void
2270spa_load_l2cache(spa_t *spa)
2271{
2272 nvlist_t **l2cache = NULL;
2273 uint_t nl2cache;
2274 int i, j, oldnvdevs;
2275 uint64_t guid;
2276 vdev_t *vd, **oldvdevs, **newvdevs;
2277 spa_aux_vdev_t *sav = &spa->spa_l2cache;
2278
2279#ifndef _KERNEL
2280 /*
2281 * zdb opens both the current state of the pool and the
2282 * checkpointed state (if present), with a different spa_t.
2283 *
2284 * As L2 caches are part of the ARC which is shared among open
2285 * pools, we skip loading them when we load the checkpointed
2286 * state of the pool.
2287 */
2288 if (!spa_writeable(spa))
2289 return;
2290#endif
2291
2292 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2293
2294 oldvdevs = sav->sav_vdevs;
2295 oldnvdevs = sav->sav_count;
2296 sav->sav_vdevs = NULL;
2297 sav->sav_count = 0;
2298
2299 if (sav->sav_config == NULL) {
2300 nl2cache = 0;
2301 newvdevs = NULL;
2302 goto out;
2303 }
2304
2305 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config,
2306 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
2307 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
2308
2309 /*
2310 * Process new nvlist of vdevs.
2311 */
2312 for (i = 0; i < nl2cache; i++) {
2313 guid = fnvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID);
2314
2315 newvdevs[i] = NULL;
2316 for (j = 0; j < oldnvdevs; j++) {
2317 vd = oldvdevs[j];
2318 if (vd != NULL && guid == vd->vdev_guid) {
2319 /*
2320 * Retain previous vdev for add/remove ops.
2321 */
2322 newvdevs[i] = vd;
2323 oldvdevs[j] = NULL;
2324 break;
2325 }
2326 }
2327
2328 if (newvdevs[i] == NULL) {
2329 /*
2330 * Create new vdev
2331 */
2332 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
2333 VDEV_ALLOC_L2CACHE) == 0);
2334 ASSERT(vd != NULL);
2335 newvdevs[i] = vd;
2336
2337 /*
2338 * Commit this vdev as an l2cache device,
2339 * even if it fails to open.
2340 */
2341 spa_l2cache_add(vd);
2342
2343 vd->vdev_top = vd;
2344 vd->vdev_aux = sav;
2345
2346 spa_l2cache_activate(vd);
2347
2348 if (vdev_open(vd) != 0)
2349 continue;
2350
2351 (void) vdev_validate_aux(vd);
2352
2353 if (!vdev_is_dead(vd))
2354 l2arc_add_vdev(spa, vd);
2355
2356 /*
2357 * Upon cache device addition to a pool or pool
2358 * creation with a cache device or if the header
2359 * of the device is invalid we issue an async
2360 * TRIM command for the whole device which will
2361 * execute if l2arc_trim_ahead > 0.
2362 */
2363 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2364 }
2365 }
2366
2367 sav->sav_vdevs = newvdevs;
2368 sav->sav_count = (int)nl2cache;
2369
2370 /*
2371 * Recompute the stashed list of l2cache devices, with status
2372 * information this time.
2373 */
2374 fnvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE);
2375
2376 if (sav->sav_count > 0)
2377 l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
2378 KM_SLEEP);
2379 for (i = 0; i < sav->sav_count; i++)
2380 l2cache[i] = vdev_config_generate(spa,
2381 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
2382 fnvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
2383 (const nvlist_t * const *)l2cache, sav->sav_count);
2384
2385out:
2386 /*
2387 * Purge vdevs that were dropped
2388 */
2389 if (oldvdevs) {
2390 for (i = 0; i < oldnvdevs; i++) {
2391 uint64_t pool;
2392
2393 vd = oldvdevs[i];
2394 if (vd != NULL) {
2395 ASSERT(vd->vdev_isl2cache);
2396
2397 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2398 pool != 0ULL && l2arc_vdev_present(vd))
2399 l2arc_remove_vdev(vd);
2400 vdev_clear_stats(vd);
2401 vdev_free(vd);
2402 }
2403 }
2404
2405 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
2406 }
2407
2408 for (i = 0; i < sav->sav_count; i++)
2409 nvlist_free(l2cache[i]);
2410 if (sav->sav_count)
2411 kmem_free(l2cache, sav->sav_count * sizeof (void *));
2412}
2413
2414static int
2415load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
2416{
2417 dmu_buf_t *db;
2418 char *packed = NULL;
2419 size_t nvsize = 0;
2420 int error;
2421 *value = NULL;
2422
2423 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
2424 if (error)
2425 return (error);
2426
2427 nvsize = *(uint64_t *)db->db_data;
2428 dmu_buf_rele(db, FTAG);
2429
2430 packed = vmem_alloc(nvsize, KM_SLEEP);
2431 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
2432 DMU_READ_PREFETCH);
2433 if (error == 0)
2434 error = nvlist_unpack(packed, nvsize, value, 0);
2435 vmem_free(packed, nvsize);
2436
2437 return (error);
2438}
2439
2440/*
2441 * Concrete top-level vdevs that are not missing and are not logs. At every
2442 * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
2443 */
2444static uint64_t
2445spa_healthy_core_tvds(spa_t *spa)
2446{
2447 vdev_t *rvd = spa->spa_root_vdev;
2448 uint64_t tvds = 0;
2449
2450 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
2451 vdev_t *vd = rvd->vdev_child[i];
2452 if (vd->vdev_islog)
2453 continue;
2454 if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
2455 tvds++;
2456 }
2457
2458 return (tvds);
2459}
2460
2461/*
2462 * Checks to see if the given vdev could not be opened, in which case we post a
2463 * sysevent to notify the autoreplace code that the device has been removed.
2464 */
2465static void
2466spa_check_removed(vdev_t *vd)
2467{
2468 for (uint64_t c = 0; c < vd->vdev_children; c++)
2469 spa_check_removed(vd->vdev_child[c]);
2470
2471 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
2472 vdev_is_concrete(vd)) {
2473 zfs_post_autoreplace(vd->vdev_spa, vd);
2474 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
2475 }
2476}
2477
2478static int
2479spa_check_for_missing_logs(spa_t *spa)
2480{
2481 vdev_t *rvd = spa->spa_root_vdev;
2482
2483 /*
2484 * If we're doing a normal import, then build up any additional
2485 * diagnostic information about missing log devices.
2486 * We'll pass this up to the user for further processing.
2487 */
2488 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
2489 nvlist_t **child, *nv;
2490 uint64_t idx = 0;
2491
2492 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
2493 KM_SLEEP);
2494 nv = fnvlist_alloc();
2495
2496 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2497 vdev_t *tvd = rvd->vdev_child[c];
2498
2499 /*
2500 * We consider a device as missing only if it failed
2501 * to open (i.e. offline or faulted is not considered
2502 * as missing).
2503 */
2504 if (tvd->vdev_islog &&
2505 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2506 child[idx++] = vdev_config_generate(spa, tvd,
2507 B_FALSE, VDEV_CONFIG_MISSING);
2508 }
2509 }
2510
2511 if (idx > 0) {
2512 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2513 (const nvlist_t * const *)child, idx);
2514 fnvlist_add_nvlist(spa->spa_load_info,
2515 ZPOOL_CONFIG_MISSING_DEVICES, nv);
2516
2517 for (uint64_t i = 0; i < idx; i++)
2518 nvlist_free(child[i]);
2519 }
2520 nvlist_free(nv);
2521 kmem_free(child, rvd->vdev_children * sizeof (char **));
2522
2523 if (idx > 0) {
2524 spa_load_failed(spa, "some log devices are missing");
2525 vdev_dbgmsg_print_tree(rvd, 2);
2526 return (SET_ERROR(ENXIO));
2527 }
2528 } else {
2529 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2530 vdev_t *tvd = rvd->vdev_child[c];
2531
2532 if (tvd->vdev_islog &&
2533 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2534 spa_set_log_state(spa, SPA_LOG_CLEAR);
2535 spa_load_note(spa, "some log devices are "
2536 "missing, ZIL is dropped.");
2537 vdev_dbgmsg_print_tree(rvd, 2);
2538 break;
2539 }
2540 }
2541 }
2542
2543 return (0);
2544}
2545
2546/*
2547 * Check for missing log devices
2548 */
2549static boolean_t
2550spa_check_logs(spa_t *spa)
2551{
2552 boolean_t rv = B_FALSE;
2553 dsl_pool_t *dp = spa_get_dsl(spa);
2554
2555 switch (spa->spa_log_state) {
2556 default:
2557 break;
2558 case SPA_LOG_MISSING:
2559 /* need to recheck in case slog has been restored */
2560 case SPA_LOG_UNKNOWN:
2561 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2562 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
2563 if (rv)
2564 spa_set_log_state(spa, SPA_LOG_MISSING);
2565 break;
2566 }
2567 return (rv);
2568}
2569
2570/*
2571 * Passivate any log vdevs (note, does not apply to embedded log metaslabs).
2572 */
2573static boolean_t
2574spa_passivate_log(spa_t *spa)
2575{
2576 vdev_t *rvd = spa->spa_root_vdev;
2577 boolean_t slog_found = B_FALSE;
2578
2579 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2580
2581 for (int c = 0; c < rvd->vdev_children; c++) {
2582 vdev_t *tvd = rvd->vdev_child[c];
2583
2584 if (tvd->vdev_islog) {
2585 ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2586 metaslab_group_passivate(tvd->vdev_mg);
2587 slog_found = B_TRUE;
2588 }
2589 }
2590
2591 return (slog_found);
2592}
2593
2594/*
2595 * Activate any log vdevs (note, does not apply to embedded log metaslabs).
2596 */
2597static void
2598spa_activate_log(spa_t *spa)
2599{
2600 vdev_t *rvd = spa->spa_root_vdev;
2601
2602 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2603
2604 for (int c = 0; c < rvd->vdev_children; c++) {
2605 vdev_t *tvd = rvd->vdev_child[c];
2606
2607 if (tvd->vdev_islog) {
2608 ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2609 metaslab_group_activate(tvd->vdev_mg);
2610 }
2611 }
2612}
2613
2614int
2615spa_reset_logs(spa_t *spa)
2616{
2617 int error;
2618
2619 error = dmu_objset_find(spa_name(spa), zil_reset,
2620 NULL, DS_FIND_CHILDREN);
2621 if (error == 0) {
2622 /*
2623 * We successfully offlined the log device, sync out the
2624 * current txg so that the "stubby" block can be removed
2625 * by zil_sync().
2626 */
2627 txg_wait_synced(spa->spa_dsl_pool, 0);
2628 }
2629 return (error);
2630}
2631
2632static void
2633spa_aux_check_removed(spa_aux_vdev_t *sav)
2634{
2635 for (int i = 0; i < sav->sav_count; i++)
2636 spa_check_removed(sav->sav_vdevs[i]);
2637}
2638
2639void
2640spa_claim_notify(zio_t *zio)
2641{
2642 spa_t *spa = zio->io_spa;
2643
2644 if (zio->io_error)
2645 return;
2646
2647 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
2648 if (spa->spa_claim_max_txg < BP_GET_LOGICAL_BIRTH(zio->io_bp))
2649 spa->spa_claim_max_txg = BP_GET_LOGICAL_BIRTH(zio->io_bp);
2650 mutex_exit(&spa->spa_props_lock);
2651}
2652
2653typedef struct spa_load_error {
2654 boolean_t sle_verify_data;
2655 uint64_t sle_meta_count;
2656 uint64_t sle_data_count;
2657} spa_load_error_t;
2658
2659static void
2660spa_load_verify_done(zio_t *zio)
2661{
2662 blkptr_t *bp = zio->io_bp;
2663 spa_load_error_t *sle = zio->io_private;
2664 dmu_object_type_t type = BP_GET_TYPE(bp);
2665 int error = zio->io_error;
2666 spa_t *spa = zio->io_spa;
2667
2668 abd_free(zio->io_abd);
2669 if (error) {
2670 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2671 type != DMU_OT_INTENT_LOG)
2672 atomic_inc_64(&sle->sle_meta_count);
2673 else
2674 atomic_inc_64(&sle->sle_data_count);
2675 }
2676
2677 mutex_enter(&spa->spa_scrub_lock);
2678 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
2679 cv_broadcast(&spa->spa_scrub_io_cv);
2680 mutex_exit(&spa->spa_scrub_lock);
2681}
2682
2683/*
2684 * Maximum number of inflight bytes is the log2 fraction of the arc size.
2685 * By default, we set it to 1/16th of the arc.
2686 */
2687static uint_t spa_load_verify_shift = 4;
2688static int spa_load_verify_metadata = B_TRUE;
2689static int spa_load_verify_data = B_TRUE;
2690
2691static int
2692spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2693 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2694{
2695 zio_t *rio = arg;
2696 spa_load_error_t *sle = rio->io_private;
2697
2698 (void) zilog, (void) dnp;
2699
2700 /*
2701 * Note: normally this routine will not be called if
2702 * spa_load_verify_metadata is not set. However, it may be useful
2703 * to manually set the flag after the traversal has begun.
2704 */
2705 if (!spa_load_verify_metadata)
2706 return (0);
2707
2708 /*
2709 * Sanity check the block pointer in order to detect obvious damage
2710 * before using the contents in subsequent checks or in zio_read().
2711 * When damaged consider it to be a metadata error since we cannot
2712 * trust the BP_GET_TYPE and BP_GET_LEVEL values.
2713 */
2714 if (!zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
2715 atomic_inc_64(&sle->sle_meta_count);
2716 return (0);
2717 }
2718
2719 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
2720 BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
2721 return (0);
2722
2723 if (!BP_IS_METADATA(bp) &&
2724 (!spa_load_verify_data || !sle->sle_verify_data))
2725 return (0);
2726
2727 uint64_t maxinflight_bytes =
2728 arc_target_bytes() >> spa_load_verify_shift;
2729 size_t size = BP_GET_PSIZE(bp);
2730
2731 mutex_enter(&spa->spa_scrub_lock);
2732 while (spa->spa_load_verify_bytes >= maxinflight_bytes)
2733 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2734 spa->spa_load_verify_bytes += size;
2735 mutex_exit(&spa->spa_scrub_lock);
2736
2737 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2738 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2739 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2740 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2741 return (0);
2742}
2743
2744static int
2745verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2746{
2747 (void) dp, (void) arg;
2748
2749 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2750 return (SET_ERROR(ENAMETOOLONG));
2751
2752 return (0);
2753}
2754
2755static int
2756spa_load_verify(spa_t *spa)
2757{
2758 zio_t *rio;
2759 spa_load_error_t sle = { 0 };
2760 zpool_load_policy_t policy;
2761 boolean_t verify_ok = B_FALSE;
2762 int error = 0;
2763
2764 zpool_get_load_policy(spa->spa_config, &policy);
2765
2766 if (policy.zlp_rewind & ZPOOL_NEVER_REWIND ||
2767 policy.zlp_maxmeta == UINT64_MAX)
2768 return (0);
2769
2770 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2771 error = dmu_objset_find_dp(spa->spa_dsl_pool,
2772 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2773 DS_FIND_CHILDREN);
2774 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2775 if (error != 0)
2776 return (error);
2777
2778 /*
2779 * Verify data only if we are rewinding or error limit was set.
2780 * Otherwise nothing except dbgmsg care about it to waste time.
2781 */
2782 sle.sle_verify_data = (policy.zlp_rewind & ZPOOL_REWIND_MASK) ||
2783 (policy.zlp_maxdata < UINT64_MAX);
2784
2785 rio = zio_root(spa, NULL, &sle,
2786 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2787
2788 if (spa_load_verify_metadata) {
2789 if (spa->spa_extreme_rewind) {
2790 spa_load_note(spa, "performing a complete scan of the "
2791 "pool since extreme rewind is on. This may take "
2792 "a very long time.\n (spa_load_verify_data=%u, "
2793 "spa_load_verify_metadata=%u)",
2794 spa_load_verify_data, spa_load_verify_metadata);
2795 }
2796
2797 error = traverse_pool(spa, spa->spa_verify_min_txg,
2798 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2799 TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2800 }
2801
2802 (void) zio_wait(rio);
2803 ASSERT0(spa->spa_load_verify_bytes);
2804
2805 spa->spa_load_meta_errors = sle.sle_meta_count;
2806 spa->spa_load_data_errors = sle.sle_data_count;
2807
2808 if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2809 spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2810 "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2811 (u_longlong_t)sle.sle_data_count);
2812 }
2813
2814 if (spa_load_verify_dryrun ||
2815 (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2816 sle.sle_data_count <= policy.zlp_maxdata)) {
2817 int64_t loss = 0;
2818
2819 verify_ok = B_TRUE;
2820 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2821 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2822
2823 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2824 fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME,
2825 spa->spa_load_txg_ts);
2826 fnvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME,
2827 loss);
2828 fnvlist_add_uint64(spa->spa_load_info,
2829 ZPOOL_CONFIG_LOAD_META_ERRORS, sle.sle_meta_count);
2830 fnvlist_add_uint64(spa->spa_load_info,
2831 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count);
2832 } else {
2833 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2834 }
2835
2836 if (spa_load_verify_dryrun)
2837 return (0);
2838
2839 if (error) {
2840 if (error != ENXIO && error != EIO)
2841 error = SET_ERROR(EIO);
2842 return (error);
2843 }
2844
2845 return (verify_ok ? 0 : EIO);
2846}
2847
2848/*
2849 * Find a value in the pool props object.
2850 */
2851static void
2852spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2853{
2854 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2855 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2856}
2857
2858/*
2859 * Find a value in the pool directory object.
2860 */
2861static int
2862spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2863{
2864 int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2865 name, sizeof (uint64_t), 1, val);
2866
2867 if (error != 0 && (error != ENOENT || log_enoent)) {
2868 spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2869 "[error=%d]", name, error);
2870 }
2871
2872 return (error);
2873}
2874
2875static int
2876spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2877{
2878 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2879 return (SET_ERROR(err));
2880}
2881
2882boolean_t
2883spa_livelist_delete_check(spa_t *spa)
2884{
2885 return (spa->spa_livelists_to_delete != 0);
2886}
2887
2888static boolean_t
2889spa_livelist_delete_cb_check(void *arg, zthr_t *z)
2890{
2891 (void) z;
2892 spa_t *spa = arg;
2893 return (spa_livelist_delete_check(spa));
2894}
2895
2896static int
2897delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2898{
2899 spa_t *spa = arg;
2900 zio_free(spa, tx->tx_txg, bp);
2901 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
2902 -bp_get_dsize_sync(spa, bp),
2903 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
2904 return (0);
2905}
2906
2907static int
2908dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp)
2909{
2910 int err;
2911 zap_cursor_t zc;
2912 zap_attribute_t za;
2913 zap_cursor_init(&zc, os, zap_obj);
2914 err = zap_cursor_retrieve(&zc, &za);
2915 zap_cursor_fini(&zc);
2916 if (err == 0)
2917 *llp = za.za_first_integer;
2918 return (err);
2919}
2920
2921/*
2922 * Components of livelist deletion that must be performed in syncing
2923 * context: freeing block pointers and updating the pool-wide data
2924 * structures to indicate how much work is left to do
2925 */
2926typedef struct sublist_delete_arg {
2927 spa_t *spa;
2928 dsl_deadlist_t *ll;
2929 uint64_t key;
2930 bplist_t *to_free;
2931} sublist_delete_arg_t;
2932
2933static void
2934sublist_delete_sync(void *arg, dmu_tx_t *tx)
2935{
2936 sublist_delete_arg_t *sda = arg;
2937 spa_t *spa = sda->spa;
2938 dsl_deadlist_t *ll = sda->ll;
2939 uint64_t key = sda->key;
2940 bplist_t *to_free = sda->to_free;
2941
2942 bplist_iterate(to_free, delete_blkptr_cb, spa, tx);
2943 dsl_deadlist_remove_entry(ll, key, tx);
2944}
2945
2946typedef struct livelist_delete_arg {
2947 spa_t *spa;
2948 uint64_t ll_obj;
2949 uint64_t zap_obj;
2950} livelist_delete_arg_t;
2951
2952static void
2953livelist_delete_sync(void *arg, dmu_tx_t *tx)
2954{
2955 livelist_delete_arg_t *lda = arg;
2956 spa_t *spa = lda->spa;
2957 uint64_t ll_obj = lda->ll_obj;
2958 uint64_t zap_obj = lda->zap_obj;
2959 objset_t *mos = spa->spa_meta_objset;
2960 uint64_t count;
2961
2962 /* free the livelist and decrement the feature count */
2963 VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx));
2964 dsl_deadlist_free(mos, ll_obj, tx);
2965 spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
2966 VERIFY0(zap_count(mos, zap_obj, &count));
2967 if (count == 0) {
2968 /* no more livelists to delete */
2969 VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
2970 DMU_POOL_DELETED_CLONES, tx));
2971 VERIFY0(zap_destroy(mos, zap_obj, tx));
2972 spa->spa_livelists_to_delete = 0;
2973 spa_notify_waiters(spa);
2974 }
2975}
2976
2977/*
2978 * Load in the value for the livelist to be removed and open it. Then,
2979 * load its first sublist and determine which block pointers should actually
2980 * be freed. Then, call a synctask which performs the actual frees and updates
2981 * the pool-wide livelist data.
2982 */
2983static void
2984spa_livelist_delete_cb(void *arg, zthr_t *z)
2985{
2986 spa_t *spa = arg;
2987 uint64_t ll_obj = 0, count;
2988 objset_t *mos = spa->spa_meta_objset;
2989 uint64_t zap_obj = spa->spa_livelists_to_delete;
2990 /*
2991 * Determine the next livelist to delete. This function should only
2992 * be called if there is at least one deleted clone.
2993 */
2994 VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj));
2995 VERIFY0(zap_count(mos, ll_obj, &count));
2996 if (count > 0) {
2997 dsl_deadlist_t *ll;
2998 dsl_deadlist_entry_t *dle;
2999 bplist_t to_free;
3000 ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP);
3001 dsl_deadlist_open(ll, mos, ll_obj);
3002 dle = dsl_deadlist_first(ll);
3003 ASSERT3P(dle, !=, NULL);
3004 bplist_create(&to_free);
3005 int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free,
3006 z, NULL);
3007 if (err == 0) {
3008 sublist_delete_arg_t sync_arg = {
3009 .spa = spa,
3010 .ll = ll,
3011 .key = dle->dle_mintxg,
3012 .to_free = &to_free
3013 };
3014 zfs_dbgmsg("deleting sublist (id %llu) from"
3015 " livelist %llu, %lld remaining",
3016 (u_longlong_t)dle->dle_bpobj.bpo_object,
3017 (u_longlong_t)ll_obj, (longlong_t)count - 1);
3018 VERIFY0(dsl_sync_task(spa_name(spa), NULL,
3019 sublist_delete_sync, &sync_arg, 0,
3020 ZFS_SPACE_CHECK_DESTROY));
3021 } else {
3022 VERIFY3U(err, ==, EINTR);
3023 }
3024 bplist_clear(&to_free);
3025 bplist_destroy(&to_free);
3026 dsl_deadlist_close(ll);
3027 kmem_free(ll, sizeof (dsl_deadlist_t));
3028 } else {
3029 livelist_delete_arg_t sync_arg = {
3030 .spa = spa,
3031 .ll_obj = ll_obj,
3032 .zap_obj = zap_obj
3033 };
3034 zfs_dbgmsg("deletion of livelist %llu completed",
3035 (u_longlong_t)ll_obj);
3036 VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync,
3037 &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY));
3038 }
3039}
3040
3041static void
3042spa_start_livelist_destroy_thread(spa_t *spa)
3043{
3044 ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL);
3045 spa->spa_livelist_delete_zthr =
3046 zthr_create("z_livelist_destroy",
3047 spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa,
3048 minclsyspri);
3049}
3050
3051typedef struct livelist_new_arg {
3052 bplist_t *allocs;
3053 bplist_t *frees;
3054} livelist_new_arg_t;
3055
3056static int
3057livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3058 dmu_tx_t *tx)
3059{
3060 ASSERT(tx == NULL);
3061 livelist_new_arg_t *lna = arg;
3062 if (bp_freed) {
3063 bplist_append(lna->frees, bp);
3064 } else {
3065 bplist_append(lna->allocs, bp);
3066 zfs_livelist_condense_new_alloc++;
3067 }
3068 return (0);
3069}
3070
3071typedef struct livelist_condense_arg {
3072 spa_t *spa;
3073 bplist_t to_keep;
3074 uint64_t first_size;
3075 uint64_t next_size;
3076} livelist_condense_arg_t;
3077
3078static void
3079spa_livelist_condense_sync(void *arg, dmu_tx_t *tx)
3080{
3081 livelist_condense_arg_t *lca = arg;
3082 spa_t *spa = lca->spa;
3083 bplist_t new_frees;
3084 dsl_dataset_t *ds = spa->spa_to_condense.ds;
3085
3086 /* Have we been cancelled? */
3087 if (spa->spa_to_condense.cancelled) {
3088 zfs_livelist_condense_sync_cancel++;
3089 goto out;
3090 }
3091
3092 dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
3093 dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
3094 dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist;
3095
3096 /*
3097 * It's possible that the livelist was changed while the zthr was
3098 * running. Therefore, we need to check for new blkptrs in the two
3099 * entries being condensed and continue to track them in the livelist.
3100 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl),
3101 * it's possible that the newly added blkptrs are FREEs or ALLOCs so
3102 * we need to sort them into two different bplists.
3103 */
3104 uint64_t first_obj = first->dle_bpobj.bpo_object;
3105 uint64_t next_obj = next->dle_bpobj.bpo_object;
3106 uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs;
3107 uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs;
3108
3109 bplist_create(&new_frees);
3110 livelist_new_arg_t new_bps = {
3111 .allocs = &lca->to_keep,
3112 .frees = &new_frees,
3113 };
3114
3115 if (cur_first_size > lca->first_size) {
3116 VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj,
3117 livelist_track_new_cb, &new_bps, lca->first_size));
3118 }
3119 if (cur_next_size > lca->next_size) {
3120 VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj,
3121 livelist_track_new_cb, &new_bps, lca->next_size));
3122 }
3123
3124 dsl_deadlist_clear_entry(first, ll, tx);
3125 ASSERT(bpobj_is_empty(&first->dle_bpobj));
3126 dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx);
3127
3128 bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx);
3129 bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx);
3130 bplist_destroy(&new_frees);
3131
3132 char dsname[ZFS_MAX_DATASET_NAME_LEN];
3133 dsl_dataset_name(ds, dsname);
3134 zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu "
3135 "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu "
3136 "(%llu blkptrs)", (u_longlong_t)tx->tx_txg, dsname,
3137 (u_longlong_t)ds->ds_object, (u_longlong_t)first_obj,
3138 (u_longlong_t)cur_first_size, (u_longlong_t)next_obj,
3139 (u_longlong_t)cur_next_size,
3140 (u_longlong_t)first->dle_bpobj.bpo_object,
3141 (u_longlong_t)first->dle_bpobj.bpo_phys->bpo_num_blkptrs);
3142out:
3143 dmu_buf_rele(ds->ds_dbuf, spa);
3144 spa->spa_to_condense.ds = NULL;
3145 bplist_clear(&lca->to_keep);
3146 bplist_destroy(&lca->to_keep);
3147 kmem_free(lca, sizeof (livelist_condense_arg_t));
3148 spa->spa_to_condense.syncing = B_FALSE;
3149}
3150
3151static void
3152spa_livelist_condense_cb(void *arg, zthr_t *t)
3153{
3154 while (zfs_livelist_condense_zthr_pause &&
3155 !(zthr_has_waiters(t) || zthr_iscancelled(t)))
3156 delay(1);
3157
3158 spa_t *spa = arg;
3159 dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
3160 dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
3161 uint64_t first_size, next_size;
3162
3163 livelist_condense_arg_t *lca =
3164 kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP);
3165 bplist_create(&lca->to_keep);
3166
3167 /*
3168 * Process the livelists (matching FREEs and ALLOCs) in open context
3169 * so we have minimal work in syncing context to condense.
3170 *
3171 * We save bpobj sizes (first_size and next_size) to use later in
3172 * syncing context to determine if entries were added to these sublists
3173 * while in open context. This is possible because the clone is still
3174 * active and open for normal writes and we want to make sure the new,
3175 * unprocessed blockpointers are inserted into the livelist normally.
3176 *
3177 * Note that dsl_process_sub_livelist() both stores the size number of
3178 * blockpointers and iterates over them while the bpobj's lock held, so
3179 * the sizes returned to us are consistent which what was actually
3180 * processed.
3181 */
3182 int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t,
3183 &first_size);
3184 if (err == 0)
3185 err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep,
3186 t, &next_size);
3187
3188 if (err == 0) {
3189 while (zfs_livelist_condense_sync_pause &&
3190 !(zthr_has_waiters(t) || zthr_iscancelled(t)))
3191 delay(1);
3192
3193 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
3194 dmu_tx_mark_netfree(tx);
3195 dmu_tx_hold_space(tx, 1);
3196 err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE);
3197 if (err == 0) {
3198 /*
3199 * Prevent the condense zthr restarting before
3200 * the synctask completes.
3201 */
3202 spa->spa_to_condense.syncing = B_TRUE;
3203 lca->spa = spa;
3204 lca->first_size = first_size;
3205 lca->next_size = next_size;
3206 dsl_sync_task_nowait(spa_get_dsl(spa),
3207 spa_livelist_condense_sync, lca, tx);
3208 dmu_tx_commit(tx);
3209 return;
3210 }
3211 }
3212 /*
3213 * Condensing can not continue: either it was externally stopped or
3214 * we were unable to assign to a tx because the pool has run out of
3215 * space. In the second case, we'll just end up trying to condense
3216 * again in a later txg.
3217 */
3218 ASSERT(err != 0);
3219 bplist_clear(&lca->to_keep);
3220 bplist_destroy(&lca->to_keep);
3221 kmem_free(lca, sizeof (livelist_condense_arg_t));
3222 dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa);
3223 spa->spa_to_condense.ds = NULL;
3224 if (err == EINTR)
3225 zfs_livelist_condense_zthr_cancel++;
3226}
3227
3228/*
3229 * Check that there is something to condense but that a condense is not
3230 * already in progress and that condensing has not been cancelled.
3231 */
3232static boolean_t
3233spa_livelist_condense_cb_check(void *arg, zthr_t *z)
3234{
3235 (void) z;
3236 spa_t *spa = arg;
3237 if ((spa->spa_to_condense.ds != NULL) &&
3238 (spa->spa_to_condense.syncing == B_FALSE) &&
3239 (spa->spa_to_condense.cancelled == B_FALSE)) {
3240 return (B_TRUE);
3241 }
3242 return (B_FALSE);
3243}
3244
3245static void
3246spa_start_livelist_condensing_thread(spa_t *spa)
3247{
3248 spa->spa_to_condense.ds = NULL;
3249 spa->spa_to_condense.first = NULL;
3250 spa->spa_to_condense.next = NULL;
3251 spa->spa_to_condense.syncing = B_FALSE;
3252 spa->spa_to_condense.cancelled = B_FALSE;
3253
3254 ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL);
3255 spa->spa_livelist_condense_zthr =
3256 zthr_create("z_livelist_condense",
3257 spa_livelist_condense_cb_check,
3258 spa_livelist_condense_cb, spa, minclsyspri);
3259}
3260
3261static void
3262spa_spawn_aux_threads(spa_t *spa)
3263{
3264 ASSERT(spa_writeable(spa));
3265
3266 spa_start_raidz_expansion_thread(spa);
3267 spa_start_indirect_condensing_thread(spa);
3268 spa_start_livelist_destroy_thread(spa);
3269 spa_start_livelist_condensing_thread(spa);
3270
3271 ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
3272 spa->spa_checkpoint_discard_zthr =
3273 zthr_create("z_checkpoint_discard",
3274 spa_checkpoint_discard_thread_check,
3275 spa_checkpoint_discard_thread, spa, minclsyspri);
3276}
3277
3278/*
3279 * Fix up config after a partly-completed split. This is done with the
3280 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
3281 * pool have that entry in their config, but only the splitting one contains
3282 * a list of all the guids of the vdevs that are being split off.
3283 *
3284 * This function determines what to do with that list: either rejoin
3285 * all the disks to the pool, or complete the splitting process. To attempt
3286 * the rejoin, each disk that is offlined is marked online again, and
3287 * we do a reopen() call. If the vdev label for every disk that was
3288 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
3289 * then we call vdev_split() on each disk, and complete the split.
3290 *
3291 * Otherwise we leave the config alone, with all the vdevs in place in
3292 * the original pool.
3293 */
3294static void
3295spa_try_repair(spa_t *spa, nvlist_t *config)
3296{
3297 uint_t extracted;
3298 uint64_t *glist;
3299 uint_t i, gcount;
3300 nvlist_t *nvl;
3301 vdev_t **vd;
3302 boolean_t attempt_reopen;
3303
3304 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
3305 return;
3306
3307 /* check that the config is complete */
3308 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
3309 &glist, &gcount) != 0)
3310 return;
3311
3312 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
3313
3314 /* attempt to online all the vdevs & validate */
3315 attempt_reopen = B_TRUE;
3316 for (i = 0; i < gcount; i++) {
3317 if (glist[i] == 0) /* vdev is hole */
3318 continue;
3319
3320 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
3321 if (vd[i] == NULL) {
3322 /*
3323 * Don't bother attempting to reopen the disks;
3324 * just do the split.
3325 */
3326 attempt_reopen = B_FALSE;
3327 } else {
3328 /* attempt to re-online it */
3329 vd[i]->vdev_offline = B_FALSE;
3330 }
3331 }
3332
3333 if (attempt_reopen) {
3334 vdev_reopen(spa->spa_root_vdev);
3335
3336 /* check each device to see what state it's in */
3337 for (extracted = 0, i = 0; i < gcount; i++) {
3338 if (vd[i] != NULL &&
3339 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
3340 break;
3341 ++extracted;
3342 }
3343 }
3344
3345 /*
3346 * If every disk has been moved to the new pool, or if we never
3347 * even attempted to look at them, then we split them off for
3348 * good.
3349 */
3350 if (!attempt_reopen || gcount == extracted) {
3351 for (i = 0; i < gcount; i++)
3352 if (vd[i] != NULL)
3353 vdev_split(vd[i]);
3354 vdev_reopen(spa->spa_root_vdev);
3355 }
3356
3357 kmem_free(vd, gcount * sizeof (vdev_t *));
3358}
3359
3360static int
3361spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
3362{
3363 const char *ereport = FM_EREPORT_ZFS_POOL;
3364 int error;
3365
3366 spa->spa_load_state = state;
3367 (void) spa_import_progress_set_state(spa_guid(spa),
3368 spa_load_state(spa));
3369 spa_import_progress_set_notes(spa, "spa_load()");
3370
3371 gethrestime(&spa->spa_loaded_ts);
3372 error = spa_load_impl(spa, type, &ereport);
3373
3374 /*
3375 * Don't count references from objsets that are already closed
3376 * and are making their way through the eviction process.
3377 */
3378 spa_evicting_os_wait(spa);
3379 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
3380 if (error) {
3381 if (error != EEXIST) {
3382 spa->spa_loaded_ts.tv_sec = 0;
3383 spa->spa_loaded_ts.tv_nsec = 0;
3384 }
3385 if (error != EBADF) {
3386 (void) zfs_ereport_post(ereport, spa,
3387 NULL, NULL, NULL, 0);
3388 }
3389 }
3390 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
3391 spa->spa_ena = 0;
3392
3393 (void) spa_import_progress_set_state(spa_guid(spa),
3394 spa_load_state(spa));
3395
3396 return (error);
3397}
3398
3399#ifdef ZFS_DEBUG
3400/*
3401 * Count the number of per-vdev ZAPs associated with all of the vdevs in the
3402 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
3403 * spa's per-vdev ZAP list.
3404 */
3405static uint64_t
3406vdev_count_verify_zaps(vdev_t *vd)
3407{
3408 spa_t *spa = vd->vdev_spa;
3409 uint64_t total = 0;
3410
3411 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2) &&
3412 vd->vdev_root_zap != 0) {
3413 total++;
3414 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3415 spa->spa_all_vdev_zaps, vd->vdev_root_zap));
3416 }
3417 if (vd->vdev_top_zap != 0) {
3418 total++;
3419 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3420 spa->spa_all_vdev_zaps, vd->vdev_top_zap));
3421 }
3422 if (vd->vdev_leaf_zap != 0) {
3423 total++;
3424 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3425 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
3426 }
3427
3428 for (uint64_t i = 0; i < vd->vdev_children; i++) {
3429 total += vdev_count_verify_zaps(vd->vdev_child[i]);
3430 }
3431
3432 return (total);
3433}
3434#else
3435#define vdev_count_verify_zaps(vd) ((void) sizeof (vd), 0)
3436#endif
3437
3438/*
3439 * Determine whether the activity check is required.
3440 */
3441static boolean_t
3442spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
3443 nvlist_t *config)
3444{
3445 uint64_t state = 0;
3446 uint64_t hostid = 0;
3447 uint64_t tryconfig_txg = 0;
3448 uint64_t tryconfig_timestamp = 0;
3449 uint16_t tryconfig_mmp_seq = 0;
3450 nvlist_t *nvinfo;
3451
3452 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3453 nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
3454 (void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
3455 &tryconfig_txg);
3456 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3457 &tryconfig_timestamp);
3458 (void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
3459 &tryconfig_mmp_seq);
3460 }
3461
3462 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
3463
3464 /*
3465 * Disable the MMP activity check - This is used by zdb which
3466 * is intended to be used on potentially active pools.
3467 */
3468 if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
3469 return (B_FALSE);
3470
3471 /*
3472 * Skip the activity check when the MMP feature is disabled.
3473 */
3474 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
3475 return (B_FALSE);
3476
3477 /*
3478 * If the tryconfig_ values are nonzero, they are the results of an
3479 * earlier tryimport. If they all match the uberblock we just found,
3480 * then the pool has not changed and we return false so we do not test
3481 * a second time.
3482 */
3483 if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
3484 tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
3485 tryconfig_mmp_seq && tryconfig_mmp_seq ==
3486 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
3487 return (B_FALSE);
3488
3489 /*
3490 * Allow the activity check to be skipped when importing the pool
3491 * on the same host which last imported it. Since the hostid from
3492 * configuration may be stale use the one read from the label.
3493 */
3494 if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
3495 hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
3496
3497 if (hostid == spa_get_hostid(spa))
3498 return (B_FALSE);
3499
3500 /*
3501 * Skip the activity test when the pool was cleanly exported.
3502 */
3503 if (state != POOL_STATE_ACTIVE)
3504 return (B_FALSE);
3505
3506 return (B_TRUE);
3507}
3508
3509/*
3510 * Nanoseconds the activity check must watch for changes on-disk.
3511 */
3512static uint64_t
3513spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
3514{
3515 uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
3516 uint64_t multihost_interval = MSEC2NSEC(
3517 MMP_INTERVAL_OK(zfs_multihost_interval));
3518 uint64_t import_delay = MAX(NANOSEC, import_intervals *
3519 multihost_interval);
3520
3521 /*
3522 * Local tunables determine a minimum duration except for the case
3523 * where we know when the remote host will suspend the pool if MMP
3524 * writes do not land.
3525 *
3526 * See Big Theory comment at the top of mmp.c for the reasoning behind
3527 * these cases and times.
3528 */
3529
3530 ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
3531
3532 if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3533 MMP_FAIL_INT(ub) > 0) {
3534
3535 /* MMP on remote host will suspend pool after failed writes */
3536 import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
3537 MMP_IMPORT_SAFETY_FACTOR / 100;
3538
3539 zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
3540 "mmp_fails=%llu ub_mmp mmp_interval=%llu "
3541 "import_intervals=%llu", (u_longlong_t)import_delay,
3542 (u_longlong_t)MMP_FAIL_INT(ub),
3543 (u_longlong_t)MMP_INTERVAL(ub),
3544 (u_longlong_t)import_intervals);
3545
3546 } else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3547 MMP_FAIL_INT(ub) == 0) {
3548
3549 /* MMP on remote host will never suspend pool */
3550 import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
3551 ub->ub_mmp_delay) * import_intervals);
3552
3553 zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
3554 "mmp_interval=%llu ub_mmp_delay=%llu "
3555 "import_intervals=%llu", (u_longlong_t)import_delay,
3556 (u_longlong_t)MMP_INTERVAL(ub),
3557 (u_longlong_t)ub->ub_mmp_delay,
3558 (u_longlong_t)import_intervals);
3559
3560 } else if (MMP_VALID(ub)) {
3561 /*
3562 * zfs-0.7 compatibility case
3563 */
3564
3565 import_delay = MAX(import_delay, (multihost_interval +
3566 ub->ub_mmp_delay) * import_intervals);
3567
3568 zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
3569 "import_intervals=%llu leaves=%u",
3570 (u_longlong_t)import_delay,
3571 (u_longlong_t)ub->ub_mmp_delay,
3572 (u_longlong_t)import_intervals,
3573 vdev_count_leaves(spa));
3574 } else {
3575 /* Using local tunings is the only reasonable option */
3576 zfs_dbgmsg("pool last imported on non-MMP aware "
3577 "host using import_delay=%llu multihost_interval=%llu "
3578 "import_intervals=%llu", (u_longlong_t)import_delay,
3579 (u_longlong_t)multihost_interval,
3580 (u_longlong_t)import_intervals);
3581 }
3582
3583 return (import_delay);
3584}
3585
3586/*
3587 * Remote host activity check.
3588 *
3589 * error results:
3590 * 0 - no activity detected
3591 * EREMOTEIO - remote activity detected
3592 * EINTR - user canceled the operation
3593 */
3594static int
3595spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config,
3596 boolean_t importing)
3597{
3598 uint64_t txg = ub->ub_txg;
3599 uint64_t timestamp = ub->ub_timestamp;
3600 uint64_t mmp_config = ub->ub_mmp_config;
3601 uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
3602 uint64_t import_delay;
3603 hrtime_t import_expire, now;
3604 nvlist_t *mmp_label = NULL;
3605 vdev_t *rvd = spa->spa_root_vdev;
3606 kcondvar_t cv;
3607 kmutex_t mtx;
3608 int error = 0;
3609
3610 cv_init(&cv, NULL, CV_DEFAULT, NULL);
3611 mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
3612 mutex_enter(&mtx);
3613
3614 /*
3615 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
3616 * during the earlier tryimport. If the txg recorded there is 0 then
3617 * the pool is known to be active on another host.
3618 *
3619 * Otherwise, the pool might be in use on another host. Check for
3620 * changes in the uberblocks on disk if necessary.
3621 */
3622 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3623 nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
3624 ZPOOL_CONFIG_LOAD_INFO);
3625
3626 if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
3627 fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
3628 vdev_uberblock_load(rvd, ub, &mmp_label);
3629 error = SET_ERROR(EREMOTEIO);
3630 goto out;
3631 }
3632 }
3633
3634 import_delay = spa_activity_check_duration(spa, ub);
3635
3636 /* Add a small random factor in case of simultaneous imports (0-25%) */
3637 import_delay += import_delay * random_in_range(250) / 1000;
3638
3639 import_expire = gethrtime() + import_delay;
3640
3641 if (importing) {
3642 spa_import_progress_set_notes(spa, "Checking MMP activity, "
3643 "waiting %llu ms", (u_longlong_t)NSEC2MSEC(import_delay));
3644 }
3645
3646 int iterations = 0;
3647 while ((now = gethrtime()) < import_expire) {
3648 if (importing && iterations++ % 30 == 0) {
3649 spa_import_progress_set_notes(spa, "Checking MMP "
3650 "activity, %llu ms remaining",
3651 (u_longlong_t)NSEC2MSEC(import_expire - now));
3652 }
3653
3654 if (importing) {
3655 (void) spa_import_progress_set_mmp_check(spa_guid(spa),
3656 NSEC2SEC(import_expire - gethrtime()));
3657 }
3658
3659 vdev_uberblock_load(rvd, ub, &mmp_label);
3660
3661 if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
3662 mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
3663 zfs_dbgmsg("multihost activity detected "
3664 "txg %llu ub_txg %llu "
3665 "timestamp %llu ub_timestamp %llu "
3666 "mmp_config %#llx ub_mmp_config %#llx",
3667 (u_longlong_t)txg, (u_longlong_t)ub->ub_txg,
3668 (u_longlong_t)timestamp,
3669 (u_longlong_t)ub->ub_timestamp,
3670 (u_longlong_t)mmp_config,
3671 (u_longlong_t)ub->ub_mmp_config);
3672
3673 error = SET_ERROR(EREMOTEIO);
3674 break;
3675 }
3676
3677 if (mmp_label) {
3678 nvlist_free(mmp_label);
3679 mmp_label = NULL;
3680 }
3681
3682 error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
3683 if (error != -1) {
3684 error = SET_ERROR(EINTR);
3685 break;
3686 }
3687 error = 0;
3688 }
3689
3690out:
3691 mutex_exit(&mtx);
3692 mutex_destroy(&mtx);
3693 cv_destroy(&cv);
3694
3695 /*
3696 * If the pool is determined to be active store the status in the
3697 * spa->spa_load_info nvlist. If the remote hostname or hostid are
3698 * available from configuration read from disk store them as well.
3699 * This allows 'zpool import' to generate a more useful message.
3700 *
3701 * ZPOOL_CONFIG_MMP_STATE - observed pool status (mandatory)
3702 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
3703 * ZPOOL_CONFIG_MMP_HOSTID - hostid from the active pool
3704 */
3705 if (error == EREMOTEIO) {
3706 const char *hostname = "<unknown>";
3707 uint64_t hostid = 0;
3708
3709 if (mmp_label) {
3710 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
3711 hostname = fnvlist_lookup_string(mmp_label,
3712 ZPOOL_CONFIG_HOSTNAME);
3713 fnvlist_add_string(spa->spa_load_info,
3714 ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
3715 }
3716
3717 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
3718 hostid = fnvlist_lookup_uint64(mmp_label,
3719 ZPOOL_CONFIG_HOSTID);
3720 fnvlist_add_uint64(spa->spa_load_info,
3721 ZPOOL_CONFIG_MMP_HOSTID, hostid);
3722 }
3723 }
3724
3725 fnvlist_add_uint64(spa->spa_load_info,
3726 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
3727 fnvlist_add_uint64(spa->spa_load_info,
3728 ZPOOL_CONFIG_MMP_TXG, 0);
3729
3730 error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
3731 }
3732
3733 if (mmp_label)
3734 nvlist_free(mmp_label);
3735
3736 return (error);
3737}
3738
3739/*
3740 * Called from zfs_ioc_clear for a pool that was suspended
3741 * after failing mmp write checks.
3742 */
3743boolean_t
3744spa_mmp_remote_host_activity(spa_t *spa)
3745{
3746 ASSERT(spa_multihost(spa) && spa_suspended(spa));
3747
3748 nvlist_t *best_label;
3749 uberblock_t best_ub;
3750
3751 /*
3752 * Locate the best uberblock on disk
3753 */
3754 vdev_uberblock_load(spa->spa_root_vdev, &best_ub, &best_label);
3755 if (best_label) {
3756 /*
3757 * confirm that the best hostid matches our hostid
3758 */
3759 if (nvlist_exists(best_label, ZPOOL_CONFIG_HOSTID) &&
3760 spa_get_hostid(spa) !=
3761 fnvlist_lookup_uint64(best_label, ZPOOL_CONFIG_HOSTID)) {
3762 nvlist_free(best_label);
3763 return (B_TRUE);
3764 }
3765 nvlist_free(best_label);
3766 } else {
3767 return (B_TRUE);
3768 }
3769
3770 if (!MMP_VALID(&best_ub) ||
3771 !MMP_FAIL_INT_VALID(&best_ub) ||
3772 MMP_FAIL_INT(&best_ub) == 0) {
3773 return (B_TRUE);
3774 }
3775
3776 if (best_ub.ub_txg != spa->spa_uberblock.ub_txg ||
3777 best_ub.ub_timestamp != spa->spa_uberblock.ub_timestamp) {
3778 zfs_dbgmsg("txg mismatch detected during pool clear "
3779 "txg %llu ub_txg %llu timestamp %llu ub_timestamp %llu",
3780 (u_longlong_t)spa->spa_uberblock.ub_txg,
3781 (u_longlong_t)best_ub.ub_txg,
3782 (u_longlong_t)spa->spa_uberblock.ub_timestamp,
3783 (u_longlong_t)best_ub.ub_timestamp);
3784 return (B_TRUE);
3785 }
3786
3787 /*
3788 * Perform an activity check looking for any remote writer
3789 */
3790 return (spa_activity_check(spa, &spa->spa_uberblock, spa->spa_config,
3791 B_FALSE) != 0);
3792}
3793
3794static int
3795spa_verify_host(spa_t *spa, nvlist_t *mos_config)
3796{
3797 uint64_t hostid;
3798 const char *hostname;
3799 uint64_t myhostid = 0;
3800
3801 if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
3802 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
3803 hostname = fnvlist_lookup_string(mos_config,
3804 ZPOOL_CONFIG_HOSTNAME);
3805
3806 myhostid = zone_get_hostid(NULL);
3807
3808 if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
3809 cmn_err(CE_WARN, "pool '%s' could not be "
3810 "loaded as it was last accessed by "
3811 "another system (host: %s hostid: 0x%llx). "
3812 "See: https://openzfs.github.io/openzfs-docs/msg/"
3813 "ZFS-8000-EY",
3814 spa_name(spa), hostname, (u_longlong_t)hostid);
3815 spa_load_failed(spa, "hostid verification failed: pool "
3816 "last accessed by host: %s (hostid: 0x%llx)",
3817 hostname, (u_longlong_t)hostid);
3818 return (SET_ERROR(EBADF));
3819 }
3820 }
3821
3822 return (0);
3823}
3824
3825static int
3826spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
3827{
3828 int error = 0;
3829 nvlist_t *nvtree, *nvl, *config = spa->spa_config;
3830 int parse;
3831 vdev_t *rvd;
3832 uint64_t pool_guid;
3833 const char *comment;
3834 const char *compatibility;
3835
3836 /*
3837 * Versioning wasn't explicitly added to the label until later, so if
3838 * it's not present treat it as the initial version.
3839 */
3840 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
3841 &spa->spa_ubsync.ub_version) != 0)
3842 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
3843
3844 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
3845 spa_load_failed(spa, "invalid config provided: '%s' missing",
3846 ZPOOL_CONFIG_POOL_GUID);
3847 return (SET_ERROR(EINVAL));
3848 }
3849
3850 /*
3851 * If we are doing an import, ensure that the pool is not already
3852 * imported by checking if its pool guid already exists in the
3853 * spa namespace.
3854 *
3855 * The only case that we allow an already imported pool to be
3856 * imported again, is when the pool is checkpointed and we want to
3857 * look at its checkpointed state from userland tools like zdb.
3858 */
3859#ifdef _KERNEL
3860 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3861 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3862 spa_guid_exists(pool_guid, 0)) {
3863#else
3864 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3865 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3866 spa_guid_exists(pool_guid, 0) &&
3867 !spa_importing_readonly_checkpoint(spa)) {
3868#endif
3869 spa_load_failed(spa, "a pool with guid %llu is already open",
3870 (u_longlong_t)pool_guid);
3871 return (SET_ERROR(EEXIST));
3872 }
3873
3874 spa->spa_config_guid = pool_guid;
3875
3876 nvlist_free(spa->spa_load_info);
3877 spa->spa_load_info = fnvlist_alloc();
3878
3879 ASSERT(spa->spa_comment == NULL);
3880 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
3881 spa->spa_comment = spa_strdup(comment);
3882
3883 ASSERT(spa->spa_compatibility == NULL);
3884 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY,
3885 &compatibility) == 0)
3886 spa->spa_compatibility = spa_strdup(compatibility);
3887
3888 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
3889 &spa->spa_config_txg);
3890
3891 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
3892 spa->spa_config_splitting = fnvlist_dup(nvl);
3893
3894 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
3895 spa_load_failed(spa, "invalid config provided: '%s' missing",
3896 ZPOOL_CONFIG_VDEV_TREE);
3897 return (SET_ERROR(EINVAL));
3898 }
3899
3900 /*
3901 * Create "The Godfather" zio to hold all async IOs
3902 */
3903 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3904 KM_SLEEP);
3905 for (int i = 0; i < max_ncpus; i++) {
3906 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3907 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3908 ZIO_FLAG_GODFATHER);
3909 }
3910
3911 /*
3912 * Parse the configuration into a vdev tree. We explicitly set the
3913 * value that will be returned by spa_version() since parsing the
3914 * configuration requires knowing the version number.
3915 */
3916 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3917 parse = (type == SPA_IMPORT_EXISTING ?
3918 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
3919 error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
3920 spa_config_exit(spa, SCL_ALL, FTAG);
3921
3922 if (error != 0) {
3923 spa_load_failed(spa, "unable to parse config [error=%d]",
3924 error);
3925 return (error);
3926 }
3927
3928 ASSERT(spa->spa_root_vdev == rvd);
3929 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
3930 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
3931
3932 if (type != SPA_IMPORT_ASSEMBLE) {
3933 ASSERT(spa_guid(spa) == pool_guid);
3934 }
3935
3936 return (0);
3937}
3938
3939/*
3940 * Recursively open all vdevs in the vdev tree. This function is called twice:
3941 * first with the untrusted config, then with the trusted config.
3942 */
3943static int
3944spa_ld_open_vdevs(spa_t *spa)
3945{
3946 int error = 0;
3947
3948 /*
3949 * spa_missing_tvds_allowed defines how many top-level vdevs can be
3950 * missing/unopenable for the root vdev to be still considered openable.
3951 */
3952 if (spa->spa_trust_config) {
3953 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
3954 } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
3955 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
3956 } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
3957 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
3958 } else {
3959 spa->spa_missing_tvds_allowed = 0;
3960 }
3961
3962 spa->spa_missing_tvds_allowed =
3963 MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
3964
3965 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3966 error = vdev_open(spa->spa_root_vdev);
3967 spa_config_exit(spa, SCL_ALL, FTAG);
3968
3969 if (spa->spa_missing_tvds != 0) {
3970 spa_load_note(spa, "vdev tree has %lld missing top-level "
3971 "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
3972 if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) {
3973 /*
3974 * Although theoretically we could allow users to open
3975 * incomplete pools in RW mode, we'd need to add a lot
3976 * of extra logic (e.g. adjust pool space to account
3977 * for missing vdevs).
3978 * This limitation also prevents users from accidentally
3979 * opening the pool in RW mode during data recovery and
3980 * damaging it further.
3981 */
3982 spa_load_note(spa, "pools with missing top-level "
3983 "vdevs can only be opened in read-only mode.");
3984 error = SET_ERROR(ENXIO);
3985 } else {
3986 spa_load_note(spa, "current settings allow for maximum "
3987 "%lld missing top-level vdevs at this stage.",
3988 (u_longlong_t)spa->spa_missing_tvds_allowed);
3989 }
3990 }
3991 if (error != 0) {
3992 spa_load_failed(spa, "unable to open vdev tree [error=%d]",
3993 error);
3994 }
3995 if (spa->spa_missing_tvds != 0 || error != 0)
3996 vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
3997
3998 return (error);
3999}
4000
4001/*
4002 * We need to validate the vdev labels against the configuration that
4003 * we have in hand. This function is called twice: first with an untrusted
4004 * config, then with a trusted config. The validation is more strict when the
4005 * config is trusted.
4006 */
4007static int
4008spa_ld_validate_vdevs(spa_t *spa)
4009{
4010 int error = 0;
4011 vdev_t *rvd = spa->spa_root_vdev;
4012
4013 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4014 error = vdev_validate(rvd);
4015 spa_config_exit(spa, SCL_ALL, FTAG);
4016
4017 if (error != 0) {
4018 spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
4019 return (error);
4020 }
4021
4022 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
4023 spa_load_failed(spa, "cannot open vdev tree after invalidating "
4024 "some vdevs");
4025 vdev_dbgmsg_print_tree(rvd, 2);
4026 return (SET_ERROR(ENXIO));
4027 }
4028
4029 return (0);
4030}
4031
4032static void
4033spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
4034{
4035 spa->spa_state = POOL_STATE_ACTIVE;
4036 spa->spa_ubsync = spa->spa_uberblock;
4037 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
4038 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
4039 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
4040 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
4041 spa->spa_claim_max_txg = spa->spa_first_txg;
4042 spa->spa_prev_software_version = ub->ub_software_version;
4043}
4044
4045static int
4046spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
4047{
4048 vdev_t *rvd = spa->spa_root_vdev;
4049 nvlist_t *label;
4050 uberblock_t *ub = &spa->spa_uberblock;
4051 boolean_t activity_check = B_FALSE;
4052
4053 /*
4054 * If we are opening the checkpointed state of the pool by
4055 * rewinding to it, at this point we will have written the
4056 * checkpointed uberblock to the vdev labels, so searching
4057 * the labels will find the right uberblock. However, if
4058 * we are opening the checkpointed state read-only, we have
4059 * not modified the labels. Therefore, we must ignore the
4060 * labels and continue using the spa_uberblock that was set
4061 * by spa_ld_checkpoint_rewind.
4062 *
4063 * Note that it would be fine to ignore the labels when
4064 * rewinding (opening writeable) as well. However, if we
4065 * crash just after writing the labels, we will end up
4066 * searching the labels. Doing so in the common case means
4067 * that this code path gets exercised normally, rather than
4068 * just in the edge case.
4069 */
4070 if (ub->ub_checkpoint_txg != 0 &&
4071 spa_importing_readonly_checkpoint(spa)) {
4072 spa_ld_select_uberblock_done(spa, ub);
4073 return (0);
4074 }
4075
4076 /*
4077 * Find the best uberblock.
4078 */
4079 vdev_uberblock_load(rvd, ub, &label);
4080
4081 /*
4082 * If we weren't able to find a single valid uberblock, return failure.
4083 */
4084 if (ub->ub_txg == 0) {
4085 nvlist_free(label);
4086 spa_load_failed(spa, "no valid uberblock found");
4087 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
4088 }
4089
4090 if (spa->spa_load_max_txg != UINT64_MAX) {
4091 (void) spa_import_progress_set_max_txg(spa_guid(spa),
4092 (u_longlong_t)spa->spa_load_max_txg);
4093 }
4094 spa_load_note(spa, "using uberblock with txg=%llu",
4095 (u_longlong_t)ub->ub_txg);
4096 if (ub->ub_raidz_reflow_info != 0) {
4097 spa_load_note(spa, "uberblock raidz_reflow_info: "
4098 "state=%u offset=%llu",
4099 (int)RRSS_GET_STATE(ub),
4100 (u_longlong_t)RRSS_GET_OFFSET(ub));
4101 }
4102
4103
4104 /*
4105 * For pools which have the multihost property on determine if the
4106 * pool is truly inactive and can be safely imported. Prevent
4107 * hosts which don't have a hostid set from importing the pool.
4108 */
4109 activity_check = spa_activity_check_required(spa, ub, label,
4110 spa->spa_config);
4111 if (activity_check) {
4112 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
4113 spa_get_hostid(spa) == 0) {
4114 nvlist_free(label);
4115 fnvlist_add_uint64(spa->spa_load_info,
4116 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4117 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4118 }
4119
4120 int error =
4121 spa_activity_check(spa, ub, spa->spa_config, B_TRUE);
4122 if (error) {
4123 nvlist_free(label);
4124 return (error);
4125 }
4126
4127 fnvlist_add_uint64(spa->spa_load_info,
4128 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
4129 fnvlist_add_uint64(spa->spa_load_info,
4130 ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
4131 fnvlist_add_uint16(spa->spa_load_info,
4132 ZPOOL_CONFIG_MMP_SEQ,
4133 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
4134 }
4135
4136 /*
4137 * If the pool has an unsupported version we can't open it.
4138 */
4139 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
4140 nvlist_free(label);
4141 spa_load_failed(spa, "version %llu is not supported",
4142 (u_longlong_t)ub->ub_version);
4143 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
4144 }
4145
4146 if (ub->ub_version >= SPA_VERSION_FEATURES) {
4147 nvlist_t *features;
4148
4149 /*
4150 * If we weren't able to find what's necessary for reading the
4151 * MOS in the label, return failure.
4152 */
4153 if (label == NULL) {
4154 spa_load_failed(spa, "label config unavailable");
4155 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4156 ENXIO));
4157 }
4158
4159 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
4160 &features) != 0) {
4161 nvlist_free(label);
4162 spa_load_failed(spa, "invalid label: '%s' missing",
4163 ZPOOL_CONFIG_FEATURES_FOR_READ);
4164 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4165 ENXIO));
4166 }
4167
4168 /*
4169 * Update our in-core representation with the definitive values
4170 * from the label.
4171 */
4172 nvlist_free(spa->spa_label_features);
4173 spa->spa_label_features = fnvlist_dup(features);
4174 }
4175
4176 nvlist_free(label);
4177
4178 /*
4179 * Look through entries in the label nvlist's features_for_read. If
4180 * there is a feature listed there which we don't understand then we
4181 * cannot open a pool.
4182 */
4183 if (ub->ub_version >= SPA_VERSION_FEATURES) {
4184 nvlist_t *unsup_feat;
4185
4186 unsup_feat = fnvlist_alloc();
4187
4188 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
4189 NULL); nvp != NULL;
4190 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
4191 if (!zfeature_is_supported(nvpair_name(nvp))) {
4192 fnvlist_add_string(unsup_feat,
4193 nvpair_name(nvp), "");
4194 }
4195 }
4196
4197 if (!nvlist_empty(unsup_feat)) {
4198 fnvlist_add_nvlist(spa->spa_load_info,
4199 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
4200 nvlist_free(unsup_feat);
4201 spa_load_failed(spa, "some features are unsupported");
4202 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4203 ENOTSUP));
4204 }
4205
4206 nvlist_free(unsup_feat);
4207 }
4208
4209 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
4210 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4211 spa_try_repair(spa, spa->spa_config);
4212 spa_config_exit(spa, SCL_ALL, FTAG);
4213 nvlist_free(spa->spa_config_splitting);
4214 spa->spa_config_splitting = NULL;
4215 }
4216
4217 /*
4218 * Initialize internal SPA structures.
4219 */
4220 spa_ld_select_uberblock_done(spa, ub);
4221
4222 return (0);
4223}
4224
4225static int
4226spa_ld_open_rootbp(spa_t *spa)
4227{
4228 int error = 0;
4229 vdev_t *rvd = spa->spa_root_vdev;
4230
4231 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
4232 if (error != 0) {
4233 spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
4234 "[error=%d]", error);
4235 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4236 }
4237 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
4238
4239 return (0);
4240}
4241
4242static int
4243spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
4244 boolean_t reloading)
4245{
4246 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
4247 nvlist_t *nv, *mos_config, *policy;
4248 int error = 0, copy_error;
4249 uint64_t healthy_tvds, healthy_tvds_mos;
4250 uint64_t mos_config_txg;
4251
4252 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
4253 != 0)
4254 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4255
4256 /*
4257 * If we're assembling a pool from a split, the config provided is
4258 * already trusted so there is nothing to do.
4259 */
4260 if (type == SPA_IMPORT_ASSEMBLE)
4261 return (0);
4262
4263 healthy_tvds = spa_healthy_core_tvds(spa);
4264
4265 if (load_nvlist(spa, spa->spa_config_object, &mos_config)
4266 != 0) {
4267 spa_load_failed(spa, "unable to retrieve MOS config");
4268 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4269 }
4270
4271 /*
4272 * If we are doing an open, pool owner wasn't verified yet, thus do
4273 * the verification here.
4274 */
4275 if (spa->spa_load_state == SPA_LOAD_OPEN) {
4276 error = spa_verify_host(spa, mos_config);
4277 if (error != 0) {
4278 nvlist_free(mos_config);
4279 return (error);
4280 }
4281 }
4282
4283 nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
4284
4285 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4286
4287 /*
4288 * Build a new vdev tree from the trusted config
4289 */
4290 error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD);
4291 if (error != 0) {
4292 nvlist_free(mos_config);
4293 spa_config_exit(spa, SCL_ALL, FTAG);
4294 spa_load_failed(spa, "spa_config_parse failed [error=%d]",
4295 error);
4296 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4297 }
4298
4299 /*
4300 * Vdev paths in the MOS may be obsolete. If the untrusted config was
4301 * obtained by scanning /dev/dsk, then it will have the right vdev
4302 * paths. We update the trusted MOS config with this information.
4303 * We first try to copy the paths with vdev_copy_path_strict, which
4304 * succeeds only when both configs have exactly the same vdev tree.
4305 * If that fails, we fall back to a more flexible method that has a
4306 * best effort policy.
4307 */
4308 copy_error = vdev_copy_path_strict(rvd, mrvd);
4309 if (copy_error != 0 || spa_load_print_vdev_tree) {
4310 spa_load_note(spa, "provided vdev tree:");
4311 vdev_dbgmsg_print_tree(rvd, 2);
4312 spa_load_note(spa, "MOS vdev tree:");
4313 vdev_dbgmsg_print_tree(mrvd, 2);
4314 }
4315 if (copy_error != 0) {
4316 spa_load_note(spa, "vdev_copy_path_strict failed, falling "
4317 "back to vdev_copy_path_relaxed");
4318 vdev_copy_path_relaxed(rvd, mrvd);
4319 }
4320
4321 vdev_close(rvd);
4322 vdev_free(rvd);
4323 spa->spa_root_vdev = mrvd;
4324 rvd = mrvd;
4325 spa_config_exit(spa, SCL_ALL, FTAG);
4326
4327 /*
4328 * If 'zpool import' used a cached config, then the on-disk hostid and
4329 * hostname may be different to the cached config in ways that should
4330 * prevent import. Userspace can't discover this without a scan, but
4331 * we know, so we add these values to LOAD_INFO so the caller can know
4332 * the difference.
4333 *
4334 * Note that we have to do this before the config is regenerated,
4335 * because the new config will have the hostid and hostname for this
4336 * host, in readiness for import.
4337 */
4338 if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTID))
4339 fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_HOSTID,
4340 fnvlist_lookup_uint64(mos_config, ZPOOL_CONFIG_HOSTID));
4341 if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTNAME))
4342 fnvlist_add_string(spa->spa_load_info, ZPOOL_CONFIG_HOSTNAME,
4343 fnvlist_lookup_string(mos_config, ZPOOL_CONFIG_HOSTNAME));
4344
4345 /*
4346 * We will use spa_config if we decide to reload the spa or if spa_load
4347 * fails and we rewind. We must thus regenerate the config using the
4348 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
4349 * pass settings on how to load the pool and is not stored in the MOS.
4350 * We copy it over to our new, trusted config.
4351 */
4352 mos_config_txg = fnvlist_lookup_uint64(mos_config,
4353 ZPOOL_CONFIG_POOL_TXG);
4354 nvlist_free(mos_config);
4355 mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
4356 if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
4357 &policy) == 0)
4358 fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
4359 spa_config_set(spa, mos_config);
4360 spa->spa_config_source = SPA_CONFIG_SRC_MOS;
4361
4362 /*
4363 * Now that we got the config from the MOS, we should be more strict
4364 * in checking blkptrs and can make assumptions about the consistency
4365 * of the vdev tree. spa_trust_config must be set to true before opening
4366 * vdevs in order for them to be writeable.
4367 */
4368 spa->spa_trust_config = B_TRUE;
4369
4370 /*
4371 * Open and validate the new vdev tree
4372 */
4373 error = spa_ld_open_vdevs(spa);
4374 if (error != 0)
4375 return (error);
4376
4377 error = spa_ld_validate_vdevs(spa);
4378 if (error != 0)
4379 return (error);
4380
4381 if (copy_error != 0 || spa_load_print_vdev_tree) {
4382 spa_load_note(spa, "final vdev tree:");
4383 vdev_dbgmsg_print_tree(rvd, 2);
4384 }
4385
4386 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
4387 !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
4388 /*
4389 * Sanity check to make sure that we are indeed loading the
4390 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
4391 * in the config provided and they happened to be the only ones
4392 * to have the latest uberblock, we could involuntarily perform
4393 * an extreme rewind.
4394 */
4395 healthy_tvds_mos = spa_healthy_core_tvds(spa);
4396 if (healthy_tvds_mos - healthy_tvds >=
4397 SPA_SYNC_MIN_VDEVS) {
4398 spa_load_note(spa, "config provided misses too many "
4399 "top-level vdevs compared to MOS (%lld vs %lld). ",
4400 (u_longlong_t)healthy_tvds,
4401 (u_longlong_t)healthy_tvds_mos);
4402 spa_load_note(spa, "vdev tree:");
4403 vdev_dbgmsg_print_tree(rvd, 2);
4404 if (reloading) {
4405 spa_load_failed(spa, "config was already "
4406 "provided from MOS. Aborting.");
4407 return (spa_vdev_err(rvd,
4408 VDEV_AUX_CORRUPT_DATA, EIO));
4409 }
4410 spa_load_note(spa, "spa must be reloaded using MOS "
4411 "config");
4412 return (SET_ERROR(EAGAIN));
4413 }
4414 }
4415
4416 error = spa_check_for_missing_logs(spa);
4417 if (error != 0)
4418 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
4419
4420 if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
4421 spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
4422 "guid sum (%llu != %llu)",
4423 (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
4424 (u_longlong_t)rvd->vdev_guid_sum);
4425 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
4426 ENXIO));
4427 }
4428
4429 return (0);
4430}
4431
4432static int
4433spa_ld_open_indirect_vdev_metadata(spa_t *spa)
4434{
4435 int error = 0;
4436 vdev_t *rvd = spa->spa_root_vdev;
4437
4438 /*
4439 * Everything that we read before spa_remove_init() must be stored
4440 * on concreted vdevs. Therefore we do this as early as possible.
4441 */
4442 error = spa_remove_init(spa);
4443 if (error != 0) {
4444 spa_load_failed(spa, "spa_remove_init failed [error=%d]",
4445 error);
4446 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4447 }
4448
4449 /*
4450 * Retrieve information needed to condense indirect vdev mappings.
4451 */
4452 error = spa_condense_init(spa);
4453 if (error != 0) {
4454 spa_load_failed(spa, "spa_condense_init failed [error=%d]",
4455 error);
4456 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4457 }
4458
4459 return (0);
4460}
4461
4462static int
4463spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
4464{
4465 int error = 0;
4466 vdev_t *rvd = spa->spa_root_vdev;
4467
4468 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
4469 boolean_t missing_feat_read = B_FALSE;
4470 nvlist_t *unsup_feat, *enabled_feat;
4471
4472 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
4473 &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
4474 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4475 }
4476
4477 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
4478 &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
4479 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4480 }
4481
4482 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
4483 &spa->spa_feat_desc_obj, B_TRUE) != 0) {
4484 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4485 }
4486
4487 enabled_feat = fnvlist_alloc();
4488 unsup_feat = fnvlist_alloc();
4489
4490 if (!spa_features_check(spa, B_FALSE,
4491 unsup_feat, enabled_feat))
4492 missing_feat_read = B_TRUE;
4493
4494 if (spa_writeable(spa) ||
4495 spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
4496 if (!spa_features_check(spa, B_TRUE,
4497 unsup_feat, enabled_feat)) {
4498 *missing_feat_writep = B_TRUE;
4499 }
4500 }
4501
4502 fnvlist_add_nvlist(spa->spa_load_info,
4503 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
4504
4505 if (!nvlist_empty(unsup_feat)) {
4506 fnvlist_add_nvlist(spa->spa_load_info,
4507 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
4508 }
4509
4510 fnvlist_free(enabled_feat);
4511 fnvlist_free(unsup_feat);
4512
4513 if (!missing_feat_read) {
4514 fnvlist_add_boolean(spa->spa_load_info,
4515 ZPOOL_CONFIG_CAN_RDONLY);
4516 }
4517
4518 /*
4519 * If the state is SPA_LOAD_TRYIMPORT, our objective is
4520 * twofold: to determine whether the pool is available for
4521 * import in read-write mode and (if it is not) whether the
4522 * pool is available for import in read-only mode. If the pool
4523 * is available for import in read-write mode, it is displayed
4524 * as available in userland; if it is not available for import
4525 * in read-only mode, it is displayed as unavailable in
4526 * userland. If the pool is available for import in read-only
4527 * mode but not read-write mode, it is displayed as unavailable
4528 * in userland with a special note that the pool is actually
4529 * available for open in read-only mode.
4530 *
4531 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
4532 * missing a feature for write, we must first determine whether
4533 * the pool can be opened read-only before returning to
4534 * userland in order to know whether to display the
4535 * abovementioned note.
4536 */
4537 if (missing_feat_read || (*missing_feat_writep &&
4538 spa_writeable(spa))) {
4539 spa_load_failed(spa, "pool uses unsupported features");
4540 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4541 ENOTSUP));
4542 }
4543
4544 /*
4545 * Load refcounts for ZFS features from disk into an in-memory
4546 * cache during SPA initialization.
4547 */
4548 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
4549 uint64_t refcount;
4550
4551 error = feature_get_refcount_from_disk(spa,
4552 &spa_feature_table[i], &refcount);
4553 if (error == 0) {
4554 spa->spa_feat_refcount_cache[i] = refcount;
4555 } else if (error == ENOTSUP) {
4556 spa->spa_feat_refcount_cache[i] =
4557 SPA_FEATURE_DISABLED;
4558 } else {
4559 spa_load_failed(spa, "error getting refcount "
4560 "for feature %s [error=%d]",
4561 spa_feature_table[i].fi_guid, error);
4562 return (spa_vdev_err(rvd,
4563 VDEV_AUX_CORRUPT_DATA, EIO));
4564 }
4565 }
4566 }
4567
4568 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
4569 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
4570 &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
4571 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4572 }
4573
4574 /*
4575 * Encryption was added before bookmark_v2, even though bookmark_v2
4576 * is now a dependency. If this pool has encryption enabled without
4577 * bookmark_v2, trigger an errata message.
4578 */
4579 if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
4580 !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
4581 spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
4582 }
4583
4584 return (0);
4585}
4586
4587static int
4588spa_ld_load_special_directories(spa_t *spa)
4589{
4590 int error = 0;
4591 vdev_t *rvd = spa->spa_root_vdev;
4592
4593 spa->spa_is_initializing = B_TRUE;
4594 error = dsl_pool_open(spa->spa_dsl_pool);
4595 spa->spa_is_initializing = B_FALSE;
4596 if (error != 0) {
4597 spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
4598 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4599 }
4600
4601 return (0);
4602}
4603
4604static int
4605spa_ld_get_props(spa_t *spa)
4606{
4607 int error = 0;
4608 uint64_t obj;
4609 vdev_t *rvd = spa->spa_root_vdev;
4610
4611 /* Grab the checksum salt from the MOS. */
4612 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4613 DMU_POOL_CHECKSUM_SALT, 1,
4614 sizeof (spa->spa_cksum_salt.zcs_bytes),
4615 spa->spa_cksum_salt.zcs_bytes);
4616 if (error == ENOENT) {
4617 /* Generate a new salt for subsequent use */
4618 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4619 sizeof (spa->spa_cksum_salt.zcs_bytes));
4620 } else if (error != 0) {
4621 spa_load_failed(spa, "unable to retrieve checksum salt from "
4622 "MOS [error=%d]", error);
4623 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4624 }
4625
4626 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
4627 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4628 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
4629 if (error != 0) {
4630 spa_load_failed(spa, "error opening deferred-frees bpobj "
4631 "[error=%d]", error);
4632 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4633 }
4634
4635 /*
4636 * Load the bit that tells us to use the new accounting function
4637 * (raid-z deflation). If we have an older pool, this will not
4638 * be present.
4639 */
4640 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
4641 if (error != 0 && error != ENOENT)
4642 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4643
4644 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
4645 &spa->spa_creation_version, B_FALSE);
4646 if (error != 0 && error != ENOENT)
4647 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4648
4649 /*
4650 * Load the persistent error log. If we have an older pool, this will
4651 * not be present.
4652 */
4653 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
4654 B_FALSE);
4655 if (error != 0 && error != ENOENT)
4656 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4657
4658 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
4659 &spa->spa_errlog_scrub, B_FALSE);
4660 if (error != 0 && error != ENOENT)
4661 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4662
4663 /*
4664 * Load the livelist deletion field. If a livelist is queued for
4665 * deletion, indicate that in the spa
4666 */
4667 error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES,
4668 &spa->spa_livelists_to_delete, B_FALSE);
4669 if (error != 0 && error != ENOENT)
4670 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4671
4672 /*
4673 * Load the history object. If we have an older pool, this
4674 * will not be present.
4675 */
4676 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
4677 if (error != 0 && error != ENOENT)
4678 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4679
4680 /*
4681 * Load the per-vdev ZAP map. If we have an older pool, this will not
4682 * be present; in this case, defer its creation to a later time to
4683 * avoid dirtying the MOS this early / out of sync context. See
4684 * spa_sync_config_object.
4685 */
4686
4687 /* The sentinel is only available in the MOS config. */
4688 nvlist_t *mos_config;
4689 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
4690 spa_load_failed(spa, "unable to retrieve MOS config");
4691 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4692 }
4693
4694 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
4695 &spa->spa_all_vdev_zaps, B_FALSE);
4696
4697 if (error == ENOENT) {
4698 VERIFY(!nvlist_exists(mos_config,
4699 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
4700 spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
4701 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4702 } else if (error != 0) {
4703 nvlist_free(mos_config);
4704 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4705 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
4706 /*
4707 * An older version of ZFS overwrote the sentinel value, so
4708 * we have orphaned per-vdev ZAPs in the MOS. Defer their
4709 * destruction to later; see spa_sync_config_object.
4710 */
4711 spa->spa_avz_action = AVZ_ACTION_DESTROY;
4712 /*
4713 * We're assuming that no vdevs have had their ZAPs created
4714 * before this. Better be sure of it.
4715 */
4716 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4717 }
4718 nvlist_free(mos_config);
4719
4720 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4721
4722 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
4723 B_FALSE);
4724 if (error && error != ENOENT)
4725 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4726
4727 if (error == 0) {
4728 uint64_t autoreplace = 0;
4729
4730 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
4731 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
4732 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
4733 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
4734 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
4735 spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
4736 spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
4737 spa->spa_autoreplace = (autoreplace != 0);
4738 }
4739
4740 /*
4741 * If we are importing a pool with missing top-level vdevs,
4742 * we enforce that the pool doesn't panic or get suspended on
4743 * error since the likelihood of missing data is extremely high.
4744 */
4745 if (spa->spa_missing_tvds > 0 &&
4746 spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
4747 spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4748 spa_load_note(spa, "forcing failmode to 'continue' "
4749 "as some top level vdevs are missing");
4750 spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
4751 }
4752
4753 return (0);
4754}
4755
4756static int
4757spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
4758{
4759 int error = 0;
4760 vdev_t *rvd = spa->spa_root_vdev;
4761
4762 /*
4763 * If we're assembling the pool from the split-off vdevs of
4764 * an existing pool, we don't want to attach the spares & cache
4765 * devices.
4766 */
4767
4768 /*
4769 * Load any hot spares for this pool.
4770 */
4771 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
4772 B_FALSE);
4773 if (error != 0 && error != ENOENT)
4774 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4775 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4776 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
4777 if (load_nvlist(spa, spa->spa_spares.sav_object,
4778 &spa->spa_spares.sav_config) != 0) {
4779 spa_load_failed(spa, "error loading spares nvlist");
4780 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4781 }
4782
4783 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4784 spa_load_spares(spa);
4785 spa_config_exit(spa, SCL_ALL, FTAG);
4786 } else if (error == 0) {
4787 spa->spa_spares.sav_sync = B_TRUE;
4788 }
4789
4790 /*
4791 * Load any level 2 ARC devices for this pool.
4792 */
4793 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
4794 &spa->spa_l2cache.sav_object, B_FALSE);
4795 if (error != 0 && error != ENOENT)
4796 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4797 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4798 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
4799 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
4800 &spa->spa_l2cache.sav_config) != 0) {
4801 spa_load_failed(spa, "error loading l2cache nvlist");
4802 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4803 }
4804
4805 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4806 spa_load_l2cache(spa);
4807 spa_config_exit(spa, SCL_ALL, FTAG);
4808 } else if (error == 0) {
4809 spa->spa_l2cache.sav_sync = B_TRUE;
4810 }
4811
4812 return (0);
4813}
4814
4815static int
4816spa_ld_load_vdev_metadata(spa_t *spa)
4817{
4818 int error = 0;
4819 vdev_t *rvd = spa->spa_root_vdev;
4820
4821 /*
4822 * If the 'multihost' property is set, then never allow a pool to
4823 * be imported when the system hostid is zero. The exception to
4824 * this rule is zdb which is always allowed to access pools.
4825 */
4826 if (spa_multihost(spa) && spa_get_hostid(spa) == 0 &&
4827 (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
4828 fnvlist_add_uint64(spa->spa_load_info,
4829 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4830 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4831 }
4832
4833 /*
4834 * If the 'autoreplace' property is set, then post a resource notifying
4835 * the ZFS DE that it should not issue any faults for unopenable
4836 * devices. We also iterate over the vdevs, and post a sysevent for any
4837 * unopenable vdevs so that the normal autoreplace handler can take
4838 * over.
4839 */
4840 if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4841 spa_check_removed(spa->spa_root_vdev);
4842 /*
4843 * For the import case, this is done in spa_import(), because
4844 * at this point we're using the spare definitions from
4845 * the MOS config, not necessarily from the userland config.
4846 */
4847 if (spa->spa_load_state != SPA_LOAD_IMPORT) {
4848 spa_aux_check_removed(&spa->spa_spares);
4849 spa_aux_check_removed(&spa->spa_l2cache);
4850 }
4851 }
4852
4853 /*
4854 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
4855 */
4856 error = vdev_load(rvd);
4857 if (error != 0) {
4858 spa_load_failed(spa, "vdev_load failed [error=%d]", error);
4859 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4860 }
4861
4862 error = spa_ld_log_spacemaps(spa);
4863 if (error != 0) {
4864 spa_load_failed(spa, "spa_ld_log_spacemaps failed [error=%d]",
4865 error);
4866 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4867 }
4868
4869 /*
4870 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
4871 */
4872 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4873 vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE);
4874 spa_config_exit(spa, SCL_ALL, FTAG);
4875
4876 return (0);
4877}
4878
4879static int
4880spa_ld_load_dedup_tables(spa_t *spa)
4881{
4882 int error = 0;
4883 vdev_t *rvd = spa->spa_root_vdev;
4884
4885 error = ddt_load(spa);
4886 if (error != 0) {
4887 spa_load_failed(spa, "ddt_load failed [error=%d]", error);
4888 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4889 }
4890
4891 return (0);
4892}
4893
4894static int
4895spa_ld_load_brt(spa_t *spa)
4896{
4897 int error = 0;
4898 vdev_t *rvd = spa->spa_root_vdev;
4899
4900 error = brt_load(spa);
4901 if (error != 0) {
4902 spa_load_failed(spa, "brt_load failed [error=%d]", error);
4903 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4904 }
4905
4906 return (0);
4907}
4908
4909static int
4910spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, const char **ereport)
4911{
4912 vdev_t *rvd = spa->spa_root_vdev;
4913
4914 if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
4915 boolean_t missing = spa_check_logs(spa);
4916 if (missing) {
4917 if (spa->spa_missing_tvds != 0) {
4918 spa_load_note(spa, "spa_check_logs failed "
4919 "so dropping the logs");
4920 } else {
4921 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
4922 spa_load_failed(spa, "spa_check_logs failed");
4923 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
4924 ENXIO));
4925 }
4926 }
4927 }
4928
4929 return (0);
4930}
4931
4932static int
4933spa_ld_verify_pool_data(spa_t *spa)
4934{
4935 int error = 0;
4936 vdev_t *rvd = spa->spa_root_vdev;
4937
4938 /*
4939 * We've successfully opened the pool, verify that we're ready
4940 * to start pushing transactions.
4941 */
4942 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4943 error = spa_load_verify(spa);
4944 if (error != 0) {
4945 spa_load_failed(spa, "spa_load_verify failed "
4946 "[error=%d]", error);
4947 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4948 error));
4949 }
4950 }
4951
4952 return (0);
4953}
4954
4955static void
4956spa_ld_claim_log_blocks(spa_t *spa)
4957{
4958 dmu_tx_t *tx;
4959 dsl_pool_t *dp = spa_get_dsl(spa);
4960
4961 /*
4962 * Claim log blocks that haven't been committed yet.
4963 * This must all happen in a single txg.
4964 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
4965 * invoked from zil_claim_log_block()'s i/o done callback.
4966 * Price of rollback is that we abandon the log.
4967 */
4968 spa->spa_claiming = B_TRUE;
4969
4970 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
4971 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
4972 zil_claim, tx, DS_FIND_CHILDREN);
4973 dmu_tx_commit(tx);
4974
4975 spa->spa_claiming = B_FALSE;
4976
4977 spa_set_log_state(spa, SPA_LOG_GOOD);
4978}
4979
4980static void
4981spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
4982 boolean_t update_config_cache)
4983{
4984 vdev_t *rvd = spa->spa_root_vdev;
4985 int need_update = B_FALSE;
4986
4987 /*
4988 * If the config cache is stale, or we have uninitialized
4989 * metaslabs (see spa_vdev_add()), then update the config.
4990 *
4991 * If this is a verbatim import, trust the current
4992 * in-core spa_config and update the disk labels.
4993 */
4994 if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
4995 spa->spa_load_state == SPA_LOAD_IMPORT ||
4996 spa->spa_load_state == SPA_LOAD_RECOVER ||
4997 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
4998 need_update = B_TRUE;
4999
5000 for (int c = 0; c < rvd->vdev_children; c++)
5001 if (rvd->vdev_child[c]->vdev_ms_array == 0)
5002 need_update = B_TRUE;
5003
5004 /*
5005 * Update the config cache asynchronously in case we're the
5006 * root pool, in which case the config cache isn't writable yet.
5007 */
5008 if (need_update)
5009 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
5010}
5011
5012static void
5013spa_ld_prepare_for_reload(spa_t *spa)
5014{
5015 spa_mode_t mode = spa->spa_mode;
5016 int async_suspended = spa->spa_async_suspended;
5017
5018 spa_unload(spa);
5019 spa_deactivate(spa);
5020 spa_activate(spa, mode);
5021
5022 /*
5023 * We save the value of spa_async_suspended as it gets reset to 0 by
5024 * spa_unload(). We want to restore it back to the original value before
5025 * returning as we might be calling spa_async_resume() later.
5026 */
5027 spa->spa_async_suspended = async_suspended;
5028}
5029
5030static int
5031spa_ld_read_checkpoint_txg(spa_t *spa)
5032{
5033 uberblock_t checkpoint;
5034 int error = 0;
5035
5036 ASSERT0(spa->spa_checkpoint_txg);
5037 ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
5038 spa->spa_load_thread == curthread);
5039
5040 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
5041 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
5042 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
5043
5044 if (error == ENOENT)
5045 return (0);
5046
5047 if (error != 0)
5048 return (error);
5049
5050 ASSERT3U(checkpoint.ub_txg, !=, 0);
5051 ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
5052 ASSERT3U(checkpoint.ub_timestamp, !=, 0);
5053 spa->spa_checkpoint_txg = checkpoint.ub_txg;
5054 spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
5055
5056 return (0);
5057}
5058
5059static int
5060spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
5061{
5062 int error = 0;
5063
5064 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5065 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
5066
5067 /*
5068 * Never trust the config that is provided unless we are assembling
5069 * a pool following a split.
5070 * This means don't trust blkptrs and the vdev tree in general. This
5071 * also effectively puts the spa in read-only mode since
5072 * spa_writeable() checks for spa_trust_config to be true.
5073 * We will later load a trusted config from the MOS.
5074 */
5075 if (type != SPA_IMPORT_ASSEMBLE)
5076 spa->spa_trust_config = B_FALSE;
5077
5078 /*
5079 * Parse the config provided to create a vdev tree.
5080 */
5081 error = spa_ld_parse_config(spa, type);
5082 if (error != 0)
5083 return (error);
5084
5085 spa_import_progress_add(spa);
5086
5087 /*
5088 * Now that we have the vdev tree, try to open each vdev. This involves
5089 * opening the underlying physical device, retrieving its geometry and
5090 * probing the vdev with a dummy I/O. The state of each vdev will be set
5091 * based on the success of those operations. After this we'll be ready
5092 * to read from the vdevs.
5093 */
5094 error = spa_ld_open_vdevs(spa);
5095 if (error != 0)
5096 return (error);
5097
5098 /*
5099 * Read the label of each vdev and make sure that the GUIDs stored
5100 * there match the GUIDs in the config provided.
5101 * If we're assembling a new pool that's been split off from an
5102 * existing pool, the labels haven't yet been updated so we skip
5103 * validation for now.
5104 */
5105 if (type != SPA_IMPORT_ASSEMBLE) {
5106 error = spa_ld_validate_vdevs(spa);
5107 if (error != 0)
5108 return (error);
5109 }
5110
5111 /*
5112 * Read all vdev labels to find the best uberblock (i.e. latest,
5113 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
5114 * get the list of features required to read blkptrs in the MOS from
5115 * the vdev label with the best uberblock and verify that our version
5116 * of zfs supports them all.
5117 */
5118 error = spa_ld_select_uberblock(spa, type);
5119 if (error != 0)
5120 return (error);
5121
5122 /*
5123 * Pass that uberblock to the dsl_pool layer which will open the root
5124 * blkptr. This blkptr points to the latest version of the MOS and will
5125 * allow us to read its contents.
5126 */
5127 error = spa_ld_open_rootbp(spa);
5128 if (error != 0)
5129 return (error);
5130
5131 return (0);
5132}
5133
5134static int
5135spa_ld_checkpoint_rewind(spa_t *spa)
5136{
5137 uberblock_t checkpoint;
5138 int error = 0;
5139
5140 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5141 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5142
5143 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
5144 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
5145 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
5146
5147 if (error != 0) {
5148 spa_load_failed(spa, "unable to retrieve checkpointed "
5149 "uberblock from the MOS config [error=%d]", error);
5150
5151 if (error == ENOENT)
5152 error = ZFS_ERR_NO_CHECKPOINT;
5153
5154 return (error);
5155 }
5156
5157 ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
5158 ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
5159
5160 /*
5161 * We need to update the txg and timestamp of the checkpointed
5162 * uberblock to be higher than the latest one. This ensures that
5163 * the checkpointed uberblock is selected if we were to close and
5164 * reopen the pool right after we've written it in the vdev labels.
5165 * (also see block comment in vdev_uberblock_compare)
5166 */
5167 checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
5168 checkpoint.ub_timestamp = gethrestime_sec();
5169
5170 /*
5171 * Set current uberblock to be the checkpointed uberblock.
5172 */
5173 spa->spa_uberblock = checkpoint;
5174
5175 /*
5176 * If we are doing a normal rewind, then the pool is open for
5177 * writing and we sync the "updated" checkpointed uberblock to
5178 * disk. Once this is done, we've basically rewound the whole
5179 * pool and there is no way back.
5180 *
5181 * There are cases when we don't want to attempt and sync the
5182 * checkpointed uberblock to disk because we are opening a
5183 * pool as read-only. Specifically, verifying the checkpointed
5184 * state with zdb, and importing the checkpointed state to get
5185 * a "preview" of its content.
5186 */
5187 if (spa_writeable(spa)) {
5188 vdev_t *rvd = spa->spa_root_vdev;
5189
5190 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5191 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
5192 int svdcount = 0;
5193 int children = rvd->vdev_children;
5194 int c0 = random_in_range(children);
5195
5196 for (int c = 0; c < children; c++) {
5197 vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
5198
5199 /* Stop when revisiting the first vdev */
5200 if (c > 0 && svd[0] == vd)
5201 break;
5202
5203 if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
5204 !vdev_is_concrete(vd))
5205 continue;
5206
5207 svd[svdcount++] = vd;
5208 if (svdcount == SPA_SYNC_MIN_VDEVS)
5209 break;
5210 }
5211 error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
5212 if (error == 0)
5213 spa->spa_last_synced_guid = rvd->vdev_guid;
5214 spa_config_exit(spa, SCL_ALL, FTAG);
5215
5216 if (error != 0) {
5217 spa_load_failed(spa, "failed to write checkpointed "
5218 "uberblock to the vdev labels [error=%d]", error);
5219 return (error);
5220 }
5221 }
5222
5223 return (0);
5224}
5225
5226static int
5227spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
5228 boolean_t *update_config_cache)
5229{
5230 int error;
5231
5232 /*
5233 * Parse the config for pool, open and validate vdevs,
5234 * select an uberblock, and use that uberblock to open
5235 * the MOS.
5236 */
5237 error = spa_ld_mos_init(spa, type);
5238 if (error != 0)
5239 return (error);
5240
5241 /*
5242 * Retrieve the trusted config stored in the MOS and use it to create
5243 * a new, exact version of the vdev tree, then reopen all vdevs.
5244 */
5245 error = spa_ld_trusted_config(spa, type, B_FALSE);
5246 if (error == EAGAIN) {
5247 if (update_config_cache != NULL)
5248 *update_config_cache = B_TRUE;
5249
5250 /*
5251 * Redo the loading process with the trusted config if it is
5252 * too different from the untrusted config.
5253 */
5254 spa_ld_prepare_for_reload(spa);
5255 spa_load_note(spa, "RELOADING");
5256 error = spa_ld_mos_init(spa, type);
5257 if (error != 0)
5258 return (error);
5259
5260 error = spa_ld_trusted_config(spa, type, B_TRUE);
5261 if (error != 0)
5262 return (error);
5263
5264 } else if (error != 0) {
5265 return (error);
5266 }
5267
5268 return (0);
5269}
5270
5271/*
5272 * Load an existing storage pool, using the config provided. This config
5273 * describes which vdevs are part of the pool and is later validated against
5274 * partial configs present in each vdev's label and an entire copy of the
5275 * config stored in the MOS.
5276 */
5277static int
5278spa_load_impl(spa_t *spa, spa_import_type_t type, const char **ereport)
5279{
5280 int error = 0;
5281 boolean_t missing_feat_write = B_FALSE;
5282 boolean_t checkpoint_rewind =
5283 (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5284 boolean_t update_config_cache = B_FALSE;
5285 hrtime_t load_start = gethrtime();
5286
5287 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5288 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
5289
5290 spa_load_note(spa, "LOADING");
5291
5292 error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
5293 if (error != 0)
5294 return (error);
5295
5296 /*
5297 * If we are rewinding to the checkpoint then we need to repeat
5298 * everything we've done so far in this function but this time
5299 * selecting the checkpointed uberblock and using that to open
5300 * the MOS.
5301 */
5302 if (checkpoint_rewind) {
5303 /*
5304 * If we are rewinding to the checkpoint update config cache
5305 * anyway.
5306 */
5307 update_config_cache = B_TRUE;
5308
5309 /*
5310 * Extract the checkpointed uberblock from the current MOS
5311 * and use this as the pool's uberblock from now on. If the
5312 * pool is imported as writeable we also write the checkpoint
5313 * uberblock to the labels, making the rewind permanent.
5314 */
5315 error = spa_ld_checkpoint_rewind(spa);
5316 if (error != 0)
5317 return (error);
5318
5319 /*
5320 * Redo the loading process again with the
5321 * checkpointed uberblock.
5322 */
5323 spa_ld_prepare_for_reload(spa);
5324 spa_load_note(spa, "LOADING checkpointed uberblock");
5325 error = spa_ld_mos_with_trusted_config(spa, type, NULL);
5326 if (error != 0)
5327 return (error);
5328 }
5329
5330 /*
5331 * Drop the namespace lock for the rest of the function.
5332 */
5333 spa->spa_load_thread = curthread;
5334 mutex_exit(&spa_namespace_lock);
5335
5336 /*
5337 * Retrieve the checkpoint txg if the pool has a checkpoint.
5338 */
5339 spa_import_progress_set_notes(spa, "Loading checkpoint txg");
5340 error = spa_ld_read_checkpoint_txg(spa);
5341 if (error != 0)
5342 goto fail;
5343
5344 /*
5345 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
5346 * from the pool and their contents were re-mapped to other vdevs. Note
5347 * that everything that we read before this step must have been
5348 * rewritten on concrete vdevs after the last device removal was
5349 * initiated. Otherwise we could be reading from indirect vdevs before
5350 * we have loaded their mappings.
5351 */
5352 spa_import_progress_set_notes(spa, "Loading indirect vdev metadata");
5353 error = spa_ld_open_indirect_vdev_metadata(spa);
5354 if (error != 0)
5355 goto fail;
5356
5357 /*
5358 * Retrieve the full list of active features from the MOS and check if
5359 * they are all supported.
5360 */
5361 spa_import_progress_set_notes(spa, "Checking feature flags");
5362 error = spa_ld_check_features(spa, &missing_feat_write);
5363 if (error != 0)
5364 goto fail;
5365
5366 /*
5367 * Load several special directories from the MOS needed by the dsl_pool
5368 * layer.
5369 */
5370 spa_import_progress_set_notes(spa, "Loading special MOS directories");
5371 error = spa_ld_load_special_directories(spa);
5372 if (error != 0)
5373 goto fail;
5374
5375 /*
5376 * Retrieve pool properties from the MOS.
5377 */
5378 spa_import_progress_set_notes(spa, "Loading properties");
5379 error = spa_ld_get_props(spa);
5380 if (error != 0)
5381 goto fail;
5382
5383 /*
5384 * Retrieve the list of auxiliary devices - cache devices and spares -
5385 * and open them.
5386 */
5387 spa_import_progress_set_notes(spa, "Loading AUX vdevs");
5388 error = spa_ld_open_aux_vdevs(spa, type);
5389 if (error != 0)
5390 goto fail;
5391
5392 /*
5393 * Load the metadata for all vdevs. Also check if unopenable devices
5394 * should be autoreplaced.
5395 */
5396 spa_import_progress_set_notes(spa, "Loading vdev metadata");
5397 error = spa_ld_load_vdev_metadata(spa);
5398 if (error != 0)
5399 goto fail;
5400
5401 spa_import_progress_set_notes(spa, "Loading dedup tables");
5402 error = spa_ld_load_dedup_tables(spa);
5403 if (error != 0)
5404 goto fail;
5405
5406 spa_import_progress_set_notes(spa, "Loading BRT");
5407 error = spa_ld_load_brt(spa);
5408 if (error != 0)
5409 goto fail;
5410
5411 /*
5412 * Verify the logs now to make sure we don't have any unexpected errors
5413 * when we claim log blocks later.
5414 */
5415 spa_import_progress_set_notes(spa, "Verifying Log Devices");
5416 error = spa_ld_verify_logs(spa, type, ereport);
5417 if (error != 0)
5418 goto fail;
5419
5420 if (missing_feat_write) {
5421 ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
5422
5423 /*
5424 * At this point, we know that we can open the pool in
5425 * read-only mode but not read-write mode. We now have enough
5426 * information and can return to userland.
5427 */
5428 error = spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
5429 ENOTSUP);
5430 goto fail;
5431 }
5432
5433 /*
5434 * Traverse the last txgs to make sure the pool was left off in a safe
5435 * state. When performing an extreme rewind, we verify the whole pool,
5436 * which can take a very long time.
5437 */
5438 spa_import_progress_set_notes(spa, "Verifying pool data");
5439 error = spa_ld_verify_pool_data(spa);
5440 if (error != 0)
5441 goto fail;
5442
5443 /*
5444 * Calculate the deflated space for the pool. This must be done before
5445 * we write anything to the pool because we'd need to update the space
5446 * accounting using the deflated sizes.
5447 */
5448 spa_import_progress_set_notes(spa, "Calculating deflated space");
5449 spa_update_dspace(spa);
5450
5451 /*
5452 * We have now retrieved all the information we needed to open the
5453 * pool. If we are importing the pool in read-write mode, a few
5454 * additional steps must be performed to finish the import.
5455 */
5456 spa_import_progress_set_notes(spa, "Starting import");
5457 if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
5458 spa->spa_load_max_txg == UINT64_MAX)) {
5459 uint64_t config_cache_txg = spa->spa_config_txg;
5460
5461 ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
5462
5463 /*
5464 * Before we do any zio_write's, complete the raidz expansion
5465 * scratch space copying, if necessary.
5466 */
5467 if (RRSS_GET_STATE(&spa->spa_uberblock) == RRSS_SCRATCH_VALID)
5468 vdev_raidz_reflow_copy_scratch(spa);
5469
5470 /*
5471 * In case of a checkpoint rewind, log the original txg
5472 * of the checkpointed uberblock.
5473 */
5474 if (checkpoint_rewind) {
5475 spa_history_log_internal(spa, "checkpoint rewind",
5476 NULL, "rewound state to txg=%llu",
5477 (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
5478 }
5479
5480 spa_import_progress_set_notes(spa, "Claiming ZIL blocks");
5481 /*
5482 * Traverse the ZIL and claim all blocks.
5483 */
5484 spa_ld_claim_log_blocks(spa);
5485
5486 /*
5487 * Kick-off the syncing thread.
5488 */
5489 spa->spa_sync_on = B_TRUE;
5490 txg_sync_start(spa->spa_dsl_pool);
5491 mmp_thread_start(spa);
5492
5493 /*
5494 * Wait for all claims to sync. We sync up to the highest
5495 * claimed log block birth time so that claimed log blocks
5496 * don't appear to be from the future. spa_claim_max_txg
5497 * will have been set for us by ZIL traversal operations
5498 * performed above.
5499 */
5500 spa_import_progress_set_notes(spa, "Syncing ZIL claims");
5501 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
5502
5503 /*
5504 * Check if we need to request an update of the config. On the
5505 * next sync, we would update the config stored in vdev labels
5506 * and the cachefile (by default /etc/zfs/zpool.cache).
5507 */
5508 spa_import_progress_set_notes(spa, "Updating configs");
5509 spa_ld_check_for_config_update(spa, config_cache_txg,
5510 update_config_cache);
5511
5512 /*
5513 * Check if a rebuild was in progress and if so resume it.
5514 * Then check all DTLs to see if anything needs resilvering.
5515 * The resilver will be deferred if a rebuild was started.
5516 */
5517 spa_import_progress_set_notes(spa, "Starting resilvers");
5518 if (vdev_rebuild_active(spa->spa_root_vdev)) {
5519 vdev_rebuild_restart(spa);
5520 } else if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
5521 vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5522 spa_async_request(spa, SPA_ASYNC_RESILVER);
5523 }
5524
5525 /*
5526 * Log the fact that we booted up (so that we can detect if
5527 * we rebooted in the middle of an operation).
5528 */
5529 spa_history_log_version(spa, "open", NULL);
5530
5531 spa_import_progress_set_notes(spa,
5532 "Restarting device removals");
5533 spa_restart_removal(spa);
5534 spa_spawn_aux_threads(spa);
5535
5536 /*
5537 * Delete any inconsistent datasets.
5538 *
5539 * Note:
5540 * Since we may be issuing deletes for clones here,
5541 * we make sure to do so after we've spawned all the
5542 * auxiliary threads above (from which the livelist
5543 * deletion zthr is part of).
5544 */
5545 spa_import_progress_set_notes(spa,
5546 "Cleaning up inconsistent objsets");
5547 (void) dmu_objset_find(spa_name(spa),
5548 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
5549
5550 /*
5551 * Clean up any stale temporary dataset userrefs.
5552 */
5553 spa_import_progress_set_notes(spa,
5554 "Cleaning up temporary userrefs");
5555 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
5556
5557 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5558 spa_import_progress_set_notes(spa, "Restarting initialize");
5559 vdev_initialize_restart(spa->spa_root_vdev);
5560 spa_import_progress_set_notes(spa, "Restarting TRIM");
5561 vdev_trim_restart(spa->spa_root_vdev);
5562 vdev_autotrim_restart(spa);
5563 spa_config_exit(spa, SCL_CONFIG, FTAG);
5564 spa_import_progress_set_notes(spa, "Finished importing");
5565 }
5566 zio_handle_import_delay(spa, gethrtime() - load_start);
5567
5568 spa_import_progress_remove(spa_guid(spa));
5569 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
5570
5571 spa_load_note(spa, "LOADED");
5572fail:
5573 mutex_enter(&spa_namespace_lock);
5574 spa->spa_load_thread = NULL;
5575 cv_broadcast(&spa_namespace_cv);
5576
5577 return (error);
5578
5579}
5580
5581static int
5582spa_load_retry(spa_t *spa, spa_load_state_t state)
5583{
5584 spa_mode_t mode = spa->spa_mode;
5585
5586 spa_unload(spa);
5587 spa_deactivate(spa);
5588
5589 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
5590
5591 spa_activate(spa, mode);
5592 spa_async_suspend(spa);
5593
5594 spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
5595 (u_longlong_t)spa->spa_load_max_txg);
5596
5597 return (spa_load(spa, state, SPA_IMPORT_EXISTING));
5598}
5599
5600/*
5601 * If spa_load() fails this function will try loading prior txg's. If
5602 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
5603 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
5604 * function will not rewind the pool and will return the same error as
5605 * spa_load().
5606 */
5607static int
5608spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
5609 int rewind_flags)
5610{
5611 nvlist_t *loadinfo = NULL;
5612 nvlist_t *config = NULL;
5613 int load_error, rewind_error;
5614 uint64_t safe_rewind_txg;
5615 uint64_t min_txg;
5616
5617 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
5618 spa->spa_load_max_txg = spa->spa_load_txg;
5619 spa_set_log_state(spa, SPA_LOG_CLEAR);
5620 } else {
5621 spa->spa_load_max_txg = max_request;
5622 if (max_request != UINT64_MAX)
5623 spa->spa_extreme_rewind = B_TRUE;
5624 }
5625
5626 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
5627 if (load_error == 0)
5628 return (0);
5629 if (load_error == ZFS_ERR_NO_CHECKPOINT) {
5630 /*
5631 * When attempting checkpoint-rewind on a pool with no
5632 * checkpoint, we should not attempt to load uberblocks
5633 * from previous txgs when spa_load fails.
5634 */
5635 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5636 spa_import_progress_remove(spa_guid(spa));
5637 return (load_error);
5638 }
5639
5640 if (spa->spa_root_vdev != NULL)
5641 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5642
5643 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
5644 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
5645
5646 if (rewind_flags & ZPOOL_NEVER_REWIND) {
5647 nvlist_free(config);
5648 spa_import_progress_remove(spa_guid(spa));
5649 return (load_error);
5650 }
5651
5652 if (state == SPA_LOAD_RECOVER) {
5653 /* Price of rolling back is discarding txgs, including log */
5654 spa_set_log_state(spa, SPA_LOG_CLEAR);
5655 } else {
5656 /*
5657 * If we aren't rolling back save the load info from our first
5658 * import attempt so that we can restore it after attempting
5659 * to rewind.
5660 */
5661 loadinfo = spa->spa_load_info;
5662 spa->spa_load_info = fnvlist_alloc();
5663 }
5664
5665 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
5666 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
5667 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
5668 TXG_INITIAL : safe_rewind_txg;
5669
5670 /*
5671 * Continue as long as we're finding errors, we're still within
5672 * the acceptable rewind range, and we're still finding uberblocks
5673 */
5674 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
5675 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
5676 if (spa->spa_load_max_txg < safe_rewind_txg)
5677 spa->spa_extreme_rewind = B_TRUE;
5678 rewind_error = spa_load_retry(spa, state);
5679 }
5680
5681 spa->spa_extreme_rewind = B_FALSE;
5682 spa->spa_load_max_txg = UINT64_MAX;
5683
5684 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
5685 spa_config_set(spa, config);
5686 else
5687 nvlist_free(config);
5688
5689 if (state == SPA_LOAD_RECOVER) {
5690 ASSERT3P(loadinfo, ==, NULL);
5691 spa_import_progress_remove(spa_guid(spa));
5692 return (rewind_error);
5693 } else {
5694 /* Store the rewind info as part of the initial load info */
5695 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
5696 spa->spa_load_info);
5697
5698 /* Restore the initial load info */
5699 fnvlist_free(spa->spa_load_info);
5700 spa->spa_load_info = loadinfo;
5701
5702 spa_import_progress_remove(spa_guid(spa));
5703 return (load_error);
5704 }
5705}
5706
5707/*
5708 * Pool Open/Import
5709 *
5710 * The import case is identical to an open except that the configuration is sent
5711 * down from userland, instead of grabbed from the configuration cache. For the
5712 * case of an open, the pool configuration will exist in the
5713 * POOL_STATE_UNINITIALIZED state.
5714 *
5715 * The stats information (gen/count/ustats) is used to gather vdev statistics at
5716 * the same time open the pool, without having to keep around the spa_t in some
5717 * ambiguous state.
5718 */
5719static int
5720spa_open_common(const char *pool, spa_t **spapp, const void *tag,
5721 nvlist_t *nvpolicy, nvlist_t **config)
5722{
5723 spa_t *spa;
5724 spa_load_state_t state = SPA_LOAD_OPEN;
5725 int error;
5726 int locked = B_FALSE;
5727 int firstopen = B_FALSE;
5728
5729 *spapp = NULL;
5730
5731 /*
5732 * As disgusting as this is, we need to support recursive calls to this
5733 * function because dsl_dir_open() is called during spa_load(), and ends
5734 * up calling spa_open() again. The real fix is to figure out how to
5735 * avoid dsl_dir_open() calling this in the first place.
5736 */
5737 if (MUTEX_NOT_HELD(&spa_namespace_lock)) {
5738 mutex_enter(&spa_namespace_lock);
5739 locked = B_TRUE;
5740 }
5741
5742 if ((spa = spa_lookup(pool)) == NULL) {
5743 if (locked)
5744 mutex_exit(&spa_namespace_lock);
5745 return (SET_ERROR(ENOENT));
5746 }
5747
5748 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
5749 zpool_load_policy_t policy;
5750
5751 firstopen = B_TRUE;
5752
5753 zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
5754 &policy);
5755 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5756 state = SPA_LOAD_RECOVER;
5757
5758 spa_activate(spa, spa_mode_global);
5759
5760 if (state != SPA_LOAD_RECOVER)
5761 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5762 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5763
5764 zfs_dbgmsg("spa_open_common: opening %s", pool);
5765 error = spa_load_best(spa, state, policy.zlp_txg,
5766 policy.zlp_rewind);
5767
5768 if (error == EBADF) {
5769 /*
5770 * If vdev_validate() returns failure (indicated by
5771 * EBADF), it indicates that one of the vdevs indicates
5772 * that the pool has been exported or destroyed. If
5773 * this is the case, the config cache is out of sync and
5774 * we should remove the pool from the namespace.
5775 */
5776 spa_unload(spa);
5777 spa_deactivate(spa);
5778 spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
5779 spa_remove(spa);
5780 if (locked)
5781 mutex_exit(&spa_namespace_lock);
5782 return (SET_ERROR(ENOENT));
5783 }
5784
5785 if (error) {
5786 /*
5787 * We can't open the pool, but we still have useful
5788 * information: the state of each vdev after the
5789 * attempted vdev_open(). Return this to the user.
5790 */
5791 if (config != NULL && spa->spa_config) {
5792 *config = fnvlist_dup(spa->spa_config);
5793 fnvlist_add_nvlist(*config,
5794 ZPOOL_CONFIG_LOAD_INFO,
5795 spa->spa_load_info);
5796 }
5797 spa_unload(spa);
5798 spa_deactivate(spa);
5799 spa->spa_last_open_failed = error;
5800 if (locked)
5801 mutex_exit(&spa_namespace_lock);
5802 *spapp = NULL;
5803 return (error);
5804 }
5805 }
5806
5807 spa_open_ref(spa, tag);
5808
5809 if (config != NULL)
5810 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5811
5812 /*
5813 * If we've recovered the pool, pass back any information we
5814 * gathered while doing the load.
5815 */
5816 if (state == SPA_LOAD_RECOVER && config != NULL) {
5817 fnvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
5818 spa->spa_load_info);
5819 }
5820
5821 if (locked) {
5822 spa->spa_last_open_failed = 0;
5823 spa->spa_last_ubsync_txg = 0;
5824 spa->spa_load_txg = 0;
5825 mutex_exit(&spa_namespace_lock);
5826 }
5827
5828 if (firstopen)
5829 zvol_create_minors_recursive(spa_name(spa));
5830
5831 *spapp = spa;
5832
5833 return (0);
5834}
5835
5836int
5837spa_open_rewind(const char *name, spa_t **spapp, const void *tag,
5838 nvlist_t *policy, nvlist_t **config)
5839{
5840 return (spa_open_common(name, spapp, tag, policy, config));
5841}
5842
5843int
5844spa_open(const char *name, spa_t **spapp, const void *tag)
5845{
5846 return (spa_open_common(name, spapp, tag, NULL, NULL));
5847}
5848
5849/*
5850 * Lookup the given spa_t, incrementing the inject count in the process,
5851 * preventing it from being exported or destroyed.
5852 */
5853spa_t *
5854spa_inject_addref(char *name)
5855{
5856 spa_t *spa;
5857
5858 mutex_enter(&spa_namespace_lock);
5859 if ((spa = spa_lookup(name)) == NULL) {
5860 mutex_exit(&spa_namespace_lock);
5861 return (NULL);
5862 }
5863 spa->spa_inject_ref++;
5864 mutex_exit(&spa_namespace_lock);
5865
5866 return (spa);
5867}
5868
5869void
5870spa_inject_delref(spa_t *spa)
5871{
5872 mutex_enter(&spa_namespace_lock);
5873 spa->spa_inject_ref--;
5874 mutex_exit(&spa_namespace_lock);
5875}
5876
5877/*
5878 * Add spares device information to the nvlist.
5879 */
5880static void
5881spa_add_spares(spa_t *spa, nvlist_t *config)
5882{
5883 nvlist_t **spares;
5884 uint_t i, nspares;
5885 nvlist_t *nvroot;
5886 uint64_t guid;
5887 vdev_stat_t *vs;
5888 uint_t vsc;
5889 uint64_t pool;
5890
5891 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5892
5893 if (spa->spa_spares.sav_count == 0)
5894 return;
5895
5896 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5897 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5898 ZPOOL_CONFIG_SPARES, &spares, &nspares));
5899 if (nspares != 0) {
5900 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5901 (const nvlist_t * const *)spares, nspares);
5902 VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5903 &spares, &nspares));
5904
5905 /*
5906 * Go through and find any spares which have since been
5907 * repurposed as an active spare. If this is the case, update
5908 * their status appropriately.
5909 */
5910 for (i = 0; i < nspares; i++) {
5911 guid = fnvlist_lookup_uint64(spares[i],
5912 ZPOOL_CONFIG_GUID);
5913 VERIFY0(nvlist_lookup_uint64_array(spares[i],
5914 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
5915 if (spa_spare_exists(guid, &pool, NULL) &&
5916 pool != 0ULL) {
5917 vs->vs_state = VDEV_STATE_CANT_OPEN;
5918 vs->vs_aux = VDEV_AUX_SPARED;
5919 } else {
5920 vs->vs_state =
5921 spa->spa_spares.sav_vdevs[i]->vdev_state;
5922 }
5923 }
5924 }
5925}
5926
5927/*
5928 * Add l2cache device information to the nvlist, including vdev stats.
5929 */
5930static void
5931spa_add_l2cache(spa_t *spa, nvlist_t *config)
5932{
5933 nvlist_t **l2cache;
5934 uint_t i, j, nl2cache;
5935 nvlist_t *nvroot;
5936 uint64_t guid;
5937 vdev_t *vd;
5938 vdev_stat_t *vs;
5939 uint_t vsc;
5940
5941 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5942
5943 if (spa->spa_l2cache.sav_count == 0)
5944 return;
5945
5946 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5947 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5948 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
5949 if (nl2cache != 0) {
5950 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5951 (const nvlist_t * const *)l2cache, nl2cache);
5952 VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5953 &l2cache, &nl2cache));
5954
5955 /*
5956 * Update level 2 cache device stats.
5957 */
5958
5959 for (i = 0; i < nl2cache; i++) {
5960 guid = fnvlist_lookup_uint64(l2cache[i],
5961 ZPOOL_CONFIG_GUID);
5962
5963 vd = NULL;
5964 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
5965 if (guid ==
5966 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
5967 vd = spa->spa_l2cache.sav_vdevs[j];
5968 break;
5969 }
5970 }
5971 ASSERT(vd != NULL);
5972
5973 VERIFY0(nvlist_lookup_uint64_array(l2cache[i],
5974 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
5975 vdev_get_stats(vd, vs);
5976 vdev_config_generate_stats(vd, l2cache[i]);
5977
5978 }
5979 }
5980}
5981
5982static void
5983spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
5984{
5985 zap_cursor_t zc;
5986 zap_attribute_t za;
5987
5988 if (spa->spa_feat_for_read_obj != 0) {
5989 for (zap_cursor_init(&zc, spa->spa_meta_objset,
5990 spa->spa_feat_for_read_obj);
5991 zap_cursor_retrieve(&zc, &za) == 0;
5992 zap_cursor_advance(&zc)) {
5993 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5994 za.za_num_integers == 1);
5995 VERIFY0(nvlist_add_uint64(features, za.za_name,
5996 za.za_first_integer));
5997 }
5998 zap_cursor_fini(&zc);
5999 }
6000
6001 if (spa->spa_feat_for_write_obj != 0) {
6002 for (zap_cursor_init(&zc, spa->spa_meta_objset,
6003 spa->spa_feat_for_write_obj);
6004 zap_cursor_retrieve(&zc, &za) == 0;
6005 zap_cursor_advance(&zc)) {
6006 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
6007 za.za_num_integers == 1);
6008 VERIFY0(nvlist_add_uint64(features, za.za_name,
6009 za.za_first_integer));
6010 }
6011 zap_cursor_fini(&zc);
6012 }
6013}
6014
6015static void
6016spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
6017{
6018 int i;
6019
6020 for (i = 0; i < SPA_FEATURES; i++) {
6021 zfeature_info_t feature = spa_feature_table[i];
6022 uint64_t refcount;
6023
6024 if (feature_get_refcount(spa, &feature, &refcount) != 0)
6025 continue;
6026
6027 VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
6028 }
6029}
6030
6031/*
6032 * Store a list of pool features and their reference counts in the
6033 * config.
6034 *
6035 * The first time this is called on a spa, allocate a new nvlist, fetch
6036 * the pool features and reference counts from disk, then save the list
6037 * in the spa. In subsequent calls on the same spa use the saved nvlist
6038 * and refresh its values from the cached reference counts. This
6039 * ensures we don't block here on I/O on a suspended pool so 'zpool
6040 * clear' can resume the pool.
6041 */
6042static void
6043spa_add_feature_stats(spa_t *spa, nvlist_t *config)
6044{
6045 nvlist_t *features;
6046
6047 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
6048
6049 mutex_enter(&spa->spa_feat_stats_lock);
6050 features = spa->spa_feat_stats;
6051
6052 if (features != NULL) {
6053 spa_feature_stats_from_cache(spa, features);
6054 } else {
6055 VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
6056 spa->spa_feat_stats = features;
6057 spa_feature_stats_from_disk(spa, features);
6058 }
6059
6060 VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
6061 features));
6062
6063 mutex_exit(&spa->spa_feat_stats_lock);
6064}
6065
6066int
6067spa_get_stats(const char *name, nvlist_t **config,
6068 char *altroot, size_t buflen)
6069{
6070 int error;
6071 spa_t *spa;
6072
6073 *config = NULL;
6074 error = spa_open_common(name, &spa, FTAG, NULL, config);
6075
6076 if (spa != NULL) {
6077 /*
6078 * This still leaves a window of inconsistency where the spares
6079 * or l2cache devices could change and the config would be
6080 * self-inconsistent.
6081 */
6082 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6083
6084 if (*config != NULL) {
6085 uint64_t loadtimes[2];
6086
6087 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
6088 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
6089 fnvlist_add_uint64_array(*config,
6090 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2);
6091
6092 fnvlist_add_uint64(*config,
6093 ZPOOL_CONFIG_ERRCOUNT,
6094 spa_approx_errlog_size(spa));
6095
6096 if (spa_suspended(spa)) {
6097 fnvlist_add_uint64(*config,
6098 ZPOOL_CONFIG_SUSPENDED,
6099 spa->spa_failmode);
6100 fnvlist_add_uint64(*config,
6101 ZPOOL_CONFIG_SUSPENDED_REASON,
6102 spa->spa_suspended);
6103 }
6104
6105 spa_add_spares(spa, *config);
6106 spa_add_l2cache(spa, *config);
6107 spa_add_feature_stats(spa, *config);
6108 }
6109 }
6110
6111 /*
6112 * We want to get the alternate root even for faulted pools, so we cheat
6113 * and call spa_lookup() directly.
6114 */
6115 if (altroot) {
6116 if (spa == NULL) {
6117 mutex_enter(&spa_namespace_lock);
6118 spa = spa_lookup(name);
6119 if (spa)
6120 spa_altroot(spa, altroot, buflen);
6121 else
6122 altroot[0] = '\0';
6123 spa = NULL;
6124 mutex_exit(&spa_namespace_lock);
6125 } else {
6126 spa_altroot(spa, altroot, buflen);
6127 }
6128 }
6129
6130 if (spa != NULL) {
6131 spa_config_exit(spa, SCL_CONFIG, FTAG);
6132 spa_close(spa, FTAG);
6133 }
6134
6135 return (error);
6136}
6137
6138/*
6139 * Validate that the auxiliary device array is well formed. We must have an
6140 * array of nvlists, each which describes a valid leaf vdev. If this is an
6141 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
6142 * specified, as long as they are well-formed.
6143 */
6144static int
6145spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
6146 spa_aux_vdev_t *sav, const char *config, uint64_t version,
6147 vdev_labeltype_t label)
6148{
6149 nvlist_t **dev;
6150 uint_t i, ndev;
6151 vdev_t *vd;
6152 int error;
6153
6154 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
6155
6156 /*
6157 * It's acceptable to have no devs specified.
6158 */
6159 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
6160 return (0);
6161
6162 if (ndev == 0)
6163 return (SET_ERROR(EINVAL));
6164
6165 /*
6166 * Make sure the pool is formatted with a version that supports this
6167 * device type.
6168 */
6169 if (spa_version(spa) < version)
6170 return (SET_ERROR(ENOTSUP));
6171
6172 /*
6173 * Set the pending device list so we correctly handle device in-use
6174 * checking.
6175 */
6176 sav->sav_pending = dev;
6177 sav->sav_npending = ndev;
6178
6179 for (i = 0; i < ndev; i++) {
6180 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
6181 mode)) != 0)
6182 goto out;
6183
6184 if (!vd->vdev_ops->vdev_op_leaf) {
6185 vdev_free(vd);
6186 error = SET_ERROR(EINVAL);
6187 goto out;
6188 }
6189
6190 vd->vdev_top = vd;
6191
6192 if ((error = vdev_open(vd)) == 0 &&
6193 (error = vdev_label_init(vd, crtxg, label)) == 0) {
6194 fnvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
6195 vd->vdev_guid);
6196 }
6197
6198 vdev_free(vd);
6199
6200 if (error &&
6201 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
6202 goto out;
6203 else
6204 error = 0;
6205 }
6206
6207out:
6208 sav->sav_pending = NULL;
6209 sav->sav_npending = 0;
6210 return (error);
6211}
6212
6213static int
6214spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
6215{
6216 int error;
6217
6218 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
6219
6220 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
6221 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
6222 VDEV_LABEL_SPARE)) != 0) {
6223 return (error);
6224 }
6225
6226 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
6227 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
6228 VDEV_LABEL_L2CACHE));
6229}
6230
6231static void
6232spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
6233 const char *config)
6234{
6235 int i;
6236
6237 if (sav->sav_config != NULL) {
6238 nvlist_t **olddevs;
6239 uint_t oldndevs;
6240 nvlist_t **newdevs;
6241
6242 /*
6243 * Generate new dev list by concatenating with the
6244 * current dev list.
6245 */
6246 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, config,
6247 &olddevs, &oldndevs));
6248
6249 newdevs = kmem_alloc(sizeof (void *) *
6250 (ndevs + oldndevs), KM_SLEEP);
6251 for (i = 0; i < oldndevs; i++)
6252 newdevs[i] = fnvlist_dup(olddevs[i]);
6253 for (i = 0; i < ndevs; i++)
6254 newdevs[i + oldndevs] = fnvlist_dup(devs[i]);
6255
6256 fnvlist_remove(sav->sav_config, config);
6257
6258 fnvlist_add_nvlist_array(sav->sav_config, config,
6259 (const nvlist_t * const *)newdevs, ndevs + oldndevs);
6260 for (i = 0; i < oldndevs + ndevs; i++)
6261 nvlist_free(newdevs[i]);
6262 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
6263 } else {
6264 /*
6265 * Generate a new dev list.
6266 */
6267 sav->sav_config = fnvlist_alloc();
6268 fnvlist_add_nvlist_array(sav->sav_config, config,
6269 (const nvlist_t * const *)devs, ndevs);
6270 }
6271}
6272
6273/*
6274 * Stop and drop level 2 ARC devices
6275 */
6276void
6277spa_l2cache_drop(spa_t *spa)
6278{
6279 vdev_t *vd;
6280 int i;
6281 spa_aux_vdev_t *sav = &spa->spa_l2cache;
6282
6283 for (i = 0; i < sav->sav_count; i++) {
6284 uint64_t pool;
6285
6286 vd = sav->sav_vdevs[i];
6287 ASSERT(vd != NULL);
6288
6289 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
6290 pool != 0ULL && l2arc_vdev_present(vd))
6291 l2arc_remove_vdev(vd);
6292 }
6293}
6294
6295/*
6296 * Verify encryption parameters for spa creation. If we are encrypting, we must
6297 * have the encryption feature flag enabled.
6298 */
6299static int
6300spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
6301 boolean_t has_encryption)
6302{
6303 if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
6304 dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
6305 !has_encryption)
6306 return (SET_ERROR(ENOTSUP));
6307
6308 return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
6309}
6310
6311/*
6312 * Pool Creation
6313 */
6314int
6315spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
6316 nvlist_t *zplprops, dsl_crypto_params_t *dcp)
6317{
6318 spa_t *spa;
6319 const char *altroot = NULL;
6320 vdev_t *rvd;
6321 dsl_pool_t *dp;
6322 dmu_tx_t *tx;
6323 int error = 0;
6324 uint64_t txg = TXG_INITIAL;
6325 nvlist_t **spares, **l2cache;
6326 uint_t nspares, nl2cache;
6327 uint64_t version, obj, ndraid = 0;
6328 boolean_t has_features;
6329 boolean_t has_encryption;
6330 boolean_t has_allocclass;
6331 spa_feature_t feat;
6332 const char *feat_name;
6333 const char *poolname;
6334 nvlist_t *nvl;
6335
6336 if (props == NULL ||
6337 nvlist_lookup_string(props,
6338 zpool_prop_to_name(ZPOOL_PROP_TNAME), &poolname) != 0)
6339 poolname = (char *)pool;
6340
6341 /*
6342 * If this pool already exists, return failure.
6343 */
6344 mutex_enter(&spa_namespace_lock);
6345 if (spa_lookup(poolname) != NULL) {
6346 mutex_exit(&spa_namespace_lock);
6347 return (SET_ERROR(EEXIST));
6348 }
6349
6350 /*
6351 * Allocate a new spa_t structure.
6352 */
6353 nvl = fnvlist_alloc();
6354 fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
6355 (void) nvlist_lookup_string(props,
6356 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6357 spa = spa_add(poolname, nvl, altroot);
6358 fnvlist_free(nvl);
6359 spa_activate(spa, spa_mode_global);
6360
6361 if (props && (error = spa_prop_validate(spa, props))) {
6362 spa_deactivate(spa);
6363 spa_remove(spa);
6364 mutex_exit(&spa_namespace_lock);
6365 return (error);
6366 }
6367
6368 /*
6369 * Temporary pool names should never be written to disk.
6370 */
6371 if (poolname != pool)
6372 spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
6373
6374 has_features = B_FALSE;
6375 has_encryption = B_FALSE;
6376 has_allocclass = B_FALSE;
6377 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
6378 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
6379 if (zpool_prop_feature(nvpair_name(elem))) {
6380 has_features = B_TRUE;
6381
6382 feat_name = strchr(nvpair_name(elem), '@') + 1;
6383 VERIFY0(zfeature_lookup_name(feat_name, &feat));
6384 if (feat == SPA_FEATURE_ENCRYPTION)
6385 has_encryption = B_TRUE;
6386 if (feat == SPA_FEATURE_ALLOCATION_CLASSES)
6387 has_allocclass = B_TRUE;
6388 }
6389 }
6390
6391 /* verify encryption params, if they were provided */
6392 if (dcp != NULL) {
6393 error = spa_create_check_encryption_params(dcp, has_encryption);
6394 if (error != 0) {
6395 spa_deactivate(spa);
6396 spa_remove(spa);
6397 mutex_exit(&spa_namespace_lock);
6398 return (error);
6399 }
6400 }
6401 if (!has_allocclass && zfs_special_devs(nvroot, NULL)) {
6402 spa_deactivate(spa);
6403 spa_remove(spa);
6404 mutex_exit(&spa_namespace_lock);
6405 return (ENOTSUP);
6406 }
6407
6408 if (has_features || nvlist_lookup_uint64(props,
6409 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
6410 version = SPA_VERSION;
6411 }
6412 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6413
6414 spa->spa_first_txg = txg;
6415 spa->spa_uberblock.ub_txg = txg - 1;
6416 spa->spa_uberblock.ub_version = version;
6417 spa->spa_ubsync = spa->spa_uberblock;
6418 spa->spa_load_state = SPA_LOAD_CREATE;
6419 spa->spa_removing_phys.sr_state = DSS_NONE;
6420 spa->spa_removing_phys.sr_removing_vdev = -1;
6421 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
6422 spa->spa_indirect_vdevs_loaded = B_TRUE;
6423
6424 /*
6425 * Create "The Godfather" zio to hold all async IOs
6426 */
6427 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
6428 KM_SLEEP);
6429 for (int i = 0; i < max_ncpus; i++) {
6430 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
6431 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
6432 ZIO_FLAG_GODFATHER);
6433 }
6434
6435 /*
6436 * Create the root vdev.
6437 */
6438 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6439
6440 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
6441
6442 ASSERT(error != 0 || rvd != NULL);
6443 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
6444
6445 if (error == 0 && !zfs_allocatable_devs(nvroot))
6446 error = SET_ERROR(EINVAL);
6447
6448 if (error == 0 &&
6449 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
6450 (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 &&
6451 (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) {
6452 /*
6453 * instantiate the metaslab groups (this will dirty the vdevs)
6454 * we can no longer error exit past this point
6455 */
6456 for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
6457 vdev_t *vd = rvd->vdev_child[c];
6458
6459 vdev_metaslab_set_size(vd);
6460 vdev_expand(vd, txg);
6461 }
6462 }
6463
6464 spa_config_exit(spa, SCL_ALL, FTAG);
6465
6466 if (error != 0) {
6467 spa_unload(spa);
6468 spa_deactivate(spa);
6469 spa_remove(spa);
6470 mutex_exit(&spa_namespace_lock);
6471 return (error);
6472 }
6473
6474 /*
6475 * Get the list of spares, if specified.
6476 */
6477 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6478 &spares, &nspares) == 0) {
6479 spa->spa_spares.sav_config = fnvlist_alloc();
6480 fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6481 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6482 nspares);
6483 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6484 spa_load_spares(spa);
6485 spa_config_exit(spa, SCL_ALL, FTAG);
6486 spa->spa_spares.sav_sync = B_TRUE;
6487 }
6488
6489 /*
6490 * Get the list of level 2 cache devices, if specified.
6491 */
6492 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6493 &l2cache, &nl2cache) == 0) {
6494 VERIFY0(nvlist_alloc(&spa->spa_l2cache.sav_config,
6495 NV_UNIQUE_NAME, KM_SLEEP));
6496 fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6497 ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6498 nl2cache);
6499 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6500 spa_load_l2cache(spa);
6501 spa_config_exit(spa, SCL_ALL, FTAG);
6502 spa->spa_l2cache.sav_sync = B_TRUE;
6503 }
6504
6505 spa->spa_is_initializing = B_TRUE;
6506 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
6507 spa->spa_is_initializing = B_FALSE;
6508
6509 /*
6510 * Create DDTs (dedup tables).
6511 */
6512 ddt_create(spa);
6513 /*
6514 * Create BRT table and BRT table object.
6515 */
6516 brt_create(spa);
6517
6518 spa_update_dspace(spa);
6519
6520 tx = dmu_tx_create_assigned(dp, txg);
6521
6522 /*
6523 * Create the pool's history object.
6524 */
6525 if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
6526 spa_history_create_obj(spa, tx);
6527
6528 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
6529 spa_history_log_version(spa, "create", tx);
6530
6531 /*
6532 * Create the pool config object.
6533 */
6534 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
6535 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
6536 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
6537
6538 if (zap_add(spa->spa_meta_objset,
6539 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
6540 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
6541 cmn_err(CE_PANIC, "failed to add pool config");
6542 }
6543
6544 if (zap_add(spa->spa_meta_objset,
6545 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
6546 sizeof (uint64_t), 1, &version, tx) != 0) {
6547 cmn_err(CE_PANIC, "failed to add pool version");
6548 }
6549
6550 /* Newly created pools with the right version are always deflated. */
6551 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
6552 spa->spa_deflate = TRUE;
6553 if (zap_add(spa->spa_meta_objset,
6554 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6555 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
6556 cmn_err(CE_PANIC, "failed to add deflate");
6557 }
6558 }
6559
6560 /*
6561 * Create the deferred-free bpobj. Turn off compression
6562 * because sync-to-convergence takes longer if the blocksize
6563 * keeps changing.
6564 */
6565 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
6566 dmu_object_set_compress(spa->spa_meta_objset, obj,
6567 ZIO_COMPRESS_OFF, tx);
6568 if (zap_add(spa->spa_meta_objset,
6569 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
6570 sizeof (uint64_t), 1, &obj, tx) != 0) {
6571 cmn_err(CE_PANIC, "failed to add bpobj");
6572 }
6573 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
6574 spa->spa_meta_objset, obj));
6575
6576 /*
6577 * Generate some random noise for salted checksums to operate on.
6578 */
6579 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
6580 sizeof (spa->spa_cksum_salt.zcs_bytes));
6581
6582 /*
6583 * Set pool properties.
6584 */
6585 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
6586 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
6587 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
6588 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
6589 spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
6590 spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
6591
6592 if (props != NULL) {
6593 spa_configfile_set(spa, props, B_FALSE);
6594 spa_sync_props(props, tx);
6595 }
6596
6597 for (int i = 0; i < ndraid; i++)
6598 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6599
6600 dmu_tx_commit(tx);
6601
6602 spa->spa_sync_on = B_TRUE;
6603 txg_sync_start(dp);
6604 mmp_thread_start(spa);
6605 txg_wait_synced(dp, txg);
6606
6607 spa_spawn_aux_threads(spa);
6608
6609 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
6610
6611 /*
6612 * Don't count references from objsets that are already closed
6613 * and are making their way through the eviction process.
6614 */
6615 spa_evicting_os_wait(spa);
6616 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
6617 spa->spa_load_state = SPA_LOAD_NONE;
6618
6619 spa_import_os(spa);
6620
6621 mutex_exit(&spa_namespace_lock);
6622
6623 return (0);
6624}
6625
6626/*
6627 * Import a non-root pool into the system.
6628 */
6629int
6630spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
6631{
6632 spa_t *spa;
6633 const char *altroot = NULL;
6634 spa_load_state_t state = SPA_LOAD_IMPORT;
6635 zpool_load_policy_t policy;
6636 spa_mode_t mode = spa_mode_global;
6637 uint64_t readonly = B_FALSE;
6638 int error;
6639 nvlist_t *nvroot;
6640 nvlist_t **spares, **l2cache;
6641 uint_t nspares, nl2cache;
6642
6643 /*
6644 * If a pool with this name exists, return failure.
6645 */
6646 mutex_enter(&spa_namespace_lock);
6647 if (spa_lookup(pool) != NULL) {
6648 mutex_exit(&spa_namespace_lock);
6649 return (SET_ERROR(EEXIST));
6650 }
6651
6652 /*
6653 * Create and initialize the spa structure.
6654 */
6655 (void) nvlist_lookup_string(props,
6656 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6657 (void) nvlist_lookup_uint64(props,
6658 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
6659 if (readonly)
6660 mode = SPA_MODE_READ;
6661 spa = spa_add(pool, config, altroot);
6662 spa->spa_import_flags = flags;
6663
6664 /*
6665 * Verbatim import - Take a pool and insert it into the namespace
6666 * as if it had been loaded at boot.
6667 */
6668 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
6669 if (props != NULL)
6670 spa_configfile_set(spa, props, B_FALSE);
6671
6672 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE);
6673 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6674 zfs_dbgmsg("spa_import: verbatim import of %s", pool);
6675 mutex_exit(&spa_namespace_lock);
6676 return (0);
6677 }
6678
6679 spa_activate(spa, mode);
6680
6681 /*
6682 * Don't start async tasks until we know everything is healthy.
6683 */
6684 spa_async_suspend(spa);
6685
6686 zpool_get_load_policy(config, &policy);
6687 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
6688 state = SPA_LOAD_RECOVER;
6689
6690 spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
6691
6692 if (state != SPA_LOAD_RECOVER) {
6693 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
6694 zfs_dbgmsg("spa_import: importing %s", pool);
6695 } else {
6696 zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
6697 "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
6698 }
6699 error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
6700
6701 /*
6702 * Propagate anything learned while loading the pool and pass it
6703 * back to caller (i.e. rewind info, missing devices, etc).
6704 */
6705 fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info);
6706
6707 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6708 /*
6709 * Toss any existing sparelist, as it doesn't have any validity
6710 * anymore, and conflicts with spa_has_spare().
6711 */
6712 if (spa->spa_spares.sav_config) {
6713 nvlist_free(spa->spa_spares.sav_config);
6714 spa->spa_spares.sav_config = NULL;
6715 spa_load_spares(spa);
6716 }
6717 if (spa->spa_l2cache.sav_config) {
6718 nvlist_free(spa->spa_l2cache.sav_config);
6719 spa->spa_l2cache.sav_config = NULL;
6720 spa_load_l2cache(spa);
6721 }
6722
6723 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6724 spa_config_exit(spa, SCL_ALL, FTAG);
6725
6726 if (props != NULL)
6727 spa_configfile_set(spa, props, B_FALSE);
6728
6729 if (error != 0 || (props && spa_writeable(spa) &&
6730 (error = spa_prop_set(spa, props)))) {
6731 spa_unload(spa);
6732 spa_deactivate(spa);
6733 spa_remove(spa);
6734 mutex_exit(&spa_namespace_lock);
6735 return (error);
6736 }
6737
6738 spa_async_resume(spa);
6739
6740 /*
6741 * Override any spares and level 2 cache devices as specified by
6742 * the user, as these may have correct device names/devids, etc.
6743 */
6744 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6745 &spares, &nspares) == 0) {
6746 if (spa->spa_spares.sav_config)
6747 fnvlist_remove(spa->spa_spares.sav_config,
6748 ZPOOL_CONFIG_SPARES);
6749 else
6750 spa->spa_spares.sav_config = fnvlist_alloc();
6751 fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6752 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6753 nspares);
6754 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6755 spa_load_spares(spa);
6756 spa_config_exit(spa, SCL_ALL, FTAG);
6757 spa->spa_spares.sav_sync = B_TRUE;
6758 }
6759 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6760 &l2cache, &nl2cache) == 0) {
6761 if (spa->spa_l2cache.sav_config)
6762 fnvlist_remove(spa->spa_l2cache.sav_config,
6763 ZPOOL_CONFIG_L2CACHE);
6764 else
6765 spa->spa_l2cache.sav_config = fnvlist_alloc();
6766 fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6767 ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6768 nl2cache);
6769 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6770 spa_load_l2cache(spa);
6771 spa_config_exit(spa, SCL_ALL, FTAG);
6772 spa->spa_l2cache.sav_sync = B_TRUE;
6773 }
6774
6775 /*
6776 * Check for any removed devices.
6777 */
6778 if (spa->spa_autoreplace) {
6779 spa_aux_check_removed(&spa->spa_spares);
6780 spa_aux_check_removed(&spa->spa_l2cache);
6781 }
6782
6783 if (spa_writeable(spa)) {
6784 /*
6785 * Update the config cache to include the newly-imported pool.
6786 */
6787 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6788 }
6789
6790 /*
6791 * It's possible that the pool was expanded while it was exported.
6792 * We kick off an async task to handle this for us.
6793 */
6794 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
6795
6796 spa_history_log_version(spa, "import", NULL);
6797
6798 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6799
6800 mutex_exit(&spa_namespace_lock);
6801
6802 zvol_create_minors_recursive(pool);
6803
6804 spa_import_os(spa);
6805
6806 return (0);
6807}
6808
6809nvlist_t *
6810spa_tryimport(nvlist_t *tryconfig)
6811{
6812 nvlist_t *config = NULL;
6813 const char *poolname, *cachefile;
6814 spa_t *spa;
6815 uint64_t state;
6816 int error;
6817 zpool_load_policy_t policy;
6818
6819 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
6820 return (NULL);
6821
6822 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
6823 return (NULL);
6824
6825 /*
6826 * Create and initialize the spa structure.
6827 */
6828 char *name = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6829 (void) snprintf(name, MAXPATHLEN, "%s-%llx-%s",
6830 TRYIMPORT_NAME, (u_longlong_t)curthread, poolname);
6831
6832 mutex_enter(&spa_namespace_lock);
6833 spa = spa_add(name, tryconfig, NULL);
6834 spa_activate(spa, SPA_MODE_READ);
6835 kmem_free(name, MAXPATHLEN);
6836
6837 /*
6838 * Rewind pool if a max txg was provided.
6839 */
6840 zpool_get_load_policy(spa->spa_config, &policy);
6841 if (policy.zlp_txg != UINT64_MAX) {
6842 spa->spa_load_max_txg = policy.zlp_txg;
6843 spa->spa_extreme_rewind = B_TRUE;
6844 zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
6845 poolname, (longlong_t)policy.zlp_txg);
6846 } else {
6847 zfs_dbgmsg("spa_tryimport: importing %s", poolname);
6848 }
6849
6850 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
6851 == 0) {
6852 zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
6853 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
6854 } else {
6855 spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
6856 }
6857
6858 /*
6859 * spa_import() relies on a pool config fetched by spa_try_import()
6860 * for spare/cache devices. Import flags are not passed to
6861 * spa_tryimport(), which makes it return early due to a missing log
6862 * device and missing retrieving the cache device and spare eventually.
6863 * Passing ZFS_IMPORT_MISSING_LOG to spa_tryimport() makes it fetch
6864 * the correct configuration regardless of the missing log device.
6865 */
6866 spa->spa_import_flags |= ZFS_IMPORT_MISSING_LOG;
6867
6868 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
6869
6870 /*
6871 * If 'tryconfig' was at least parsable, return the current config.
6872 */
6873 if (spa->spa_root_vdev != NULL) {
6874 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
6875 fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname);
6876 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state);
6877 fnvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
6878 spa->spa_uberblock.ub_timestamp);
6879 fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
6880 spa->spa_load_info);
6881 fnvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
6882 spa->spa_errata);
6883
6884 /*
6885 * If the bootfs property exists on this pool then we
6886 * copy it out so that external consumers can tell which
6887 * pools are bootable.
6888 */
6889 if ((!error || error == EEXIST) && spa->spa_bootfs) {
6890 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6891
6892 /*
6893 * We have to play games with the name since the
6894 * pool was opened as TRYIMPORT_NAME.
6895 */
6896 if (dsl_dsobj_to_dsname(spa_name(spa),
6897 spa->spa_bootfs, tmpname) == 0) {
6898 char *cp;
6899 char *dsname;
6900
6901 dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6902
6903 cp = strchr(tmpname, '/');
6904 if (cp == NULL) {
6905 (void) strlcpy(dsname, tmpname,
6906 MAXPATHLEN);
6907 } else {
6908 (void) snprintf(dsname, MAXPATHLEN,
6909 "%s/%s", poolname, ++cp);
6910 }
6911 fnvlist_add_string(config, ZPOOL_CONFIG_BOOTFS,
6912 dsname);
6913 kmem_free(dsname, MAXPATHLEN);
6914 }
6915 kmem_free(tmpname, MAXPATHLEN);
6916 }
6917
6918 /*
6919 * Add the list of hot spares and level 2 cache devices.
6920 */
6921 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6922 spa_add_spares(spa, config);
6923 spa_add_l2cache(spa, config);
6924 spa_config_exit(spa, SCL_CONFIG, FTAG);
6925 }
6926
6927 spa_unload(spa);
6928 spa_deactivate(spa);
6929 spa_remove(spa);
6930 mutex_exit(&spa_namespace_lock);
6931
6932 return (config);
6933}
6934
6935/*
6936 * Pool export/destroy
6937 *
6938 * The act of destroying or exporting a pool is very simple. We make sure there
6939 * is no more pending I/O and any references to the pool are gone. Then, we
6940 * update the pool state and sync all the labels to disk, removing the
6941 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
6942 * we don't sync the labels or remove the configuration cache.
6943 */
6944static int
6945spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig,
6946 boolean_t force, boolean_t hardforce)
6947{
6948 int error = 0;
6949 spa_t *spa;
6950 hrtime_t export_start = gethrtime();
6951
6952 if (oldconfig)
6953 *oldconfig = NULL;
6954
6955 if (!(spa_mode_global & SPA_MODE_WRITE))
6956 return (SET_ERROR(EROFS));
6957
6958 mutex_enter(&spa_namespace_lock);
6959 if ((spa = spa_lookup(pool)) == NULL) {
6960 mutex_exit(&spa_namespace_lock);
6961 return (SET_ERROR(ENOENT));
6962 }
6963
6964 if (spa->spa_is_exporting) {
6965 /* the pool is being exported by another thread */
6966 mutex_exit(&spa_namespace_lock);
6967 return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS));
6968 }
6969 spa->spa_is_exporting = B_TRUE;
6970
6971 /*
6972 * Put a hold on the pool, drop the namespace lock, stop async tasks
6973 * and see if we can export.
6974 */
6975 spa_open_ref(spa, FTAG);
6976 mutex_exit(&spa_namespace_lock);
6977 spa_async_suspend(spa);
6978 if (spa->spa_zvol_taskq) {
6979 zvol_remove_minors(spa, spa_name(spa), B_TRUE);
6980 taskq_wait(spa->spa_zvol_taskq);
6981 }
6982 mutex_enter(&spa_namespace_lock);
6983 spa->spa_export_thread = curthread;
6984 spa_close(spa, FTAG);
6985
6986 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
6987 mutex_exit(&spa_namespace_lock);
6988 goto export_spa;
6989 }
6990
6991 /*
6992 * The pool will be in core if it's openable, in which case we can
6993 * modify its state. Objsets may be open only because they're dirty,
6994 * so we have to force it to sync before checking spa_refcnt.
6995 */
6996 if (spa->spa_sync_on) {
6997 txg_wait_synced(spa->spa_dsl_pool, 0);
6998 spa_evicting_os_wait(spa);
6999 }
7000
7001 /*
7002 * A pool cannot be exported or destroyed if there are active
7003 * references. If we are resetting a pool, allow references by
7004 * fault injection handlers.
7005 */
7006 if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) {
7007 error = SET_ERROR(EBUSY);
7008 goto fail;
7009 }
7010
7011 mutex_exit(&spa_namespace_lock);
7012 /*
7013 * At this point we no longer hold the spa_namespace_lock and
7014 * there were no references on the spa. Future spa_lookups will
7015 * notice the spa->spa_export_thread and wait until we signal
7016 * that we are finshed.
7017 */
7018
7019 if (spa->spa_sync_on) {
7020 vdev_t *rvd = spa->spa_root_vdev;
7021 /*
7022 * A pool cannot be exported if it has an active shared spare.
7023 * This is to prevent other pools stealing the active spare
7024 * from an exported pool. At user's own will, such pool can
7025 * be forcedly exported.
7026 */
7027 if (!force && new_state == POOL_STATE_EXPORTED &&
7028 spa_has_active_shared_spare(spa)) {
7029 error = SET_ERROR(EXDEV);
7030 mutex_enter(&spa_namespace_lock);
7031 goto fail;
7032 }
7033
7034 /*
7035 * We're about to export or destroy this pool. Make sure
7036 * we stop all initialization and trim activity here before
7037 * we set the spa_final_txg. This will ensure that all
7038 * dirty data resulting from the initialization is
7039 * committed to disk before we unload the pool.
7040 */
7041 vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
7042 vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
7043 vdev_autotrim_stop_all(spa);
7044 vdev_rebuild_stop_all(spa);
7045
7046 /*
7047 * We want this to be reflected on every label,
7048 * so mark them all dirty. spa_unload() will do the
7049 * final sync that pushes these changes out.
7050 */
7051 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
7052 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7053 spa->spa_state = new_state;
7054 vdev_config_dirty(rvd);
7055 spa_config_exit(spa, SCL_ALL, FTAG);
7056 }
7057
7058 /*
7059 * If the log space map feature is enabled and the pool is
7060 * getting exported (but not destroyed), we want to spend some
7061 * time flushing as many metaslabs as we can in an attempt to
7062 * destroy log space maps and save import time. This has to be
7063 * done before we set the spa_final_txg, otherwise
7064 * spa_sync() -> spa_flush_metaslabs() may dirty the final TXGs.
7065 * spa_should_flush_logs_on_unload() should be called after
7066 * spa_state has been set to the new_state.
7067 */
7068 if (spa_should_flush_logs_on_unload(spa))
7069 spa_unload_log_sm_flush_all(spa);
7070
7071 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
7072 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7073 spa->spa_final_txg = spa_last_synced_txg(spa) +
7074 TXG_DEFER_SIZE + 1;
7075 spa_config_exit(spa, SCL_ALL, FTAG);
7076 }
7077 }
7078
7079export_spa:
7080 spa_export_os(spa);
7081
7082 if (new_state == POOL_STATE_DESTROYED)
7083 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
7084 else if (new_state == POOL_STATE_EXPORTED)
7085 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
7086
7087 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
7088 spa_unload(spa);
7089 spa_deactivate(spa);
7090 }
7091
7092 if (oldconfig && spa->spa_config)
7093 *oldconfig = fnvlist_dup(spa->spa_config);
7094
7095 if (new_state == POOL_STATE_EXPORTED)
7096 zio_handle_export_delay(spa, gethrtime() - export_start);
7097
7098 /*
7099 * Take the namespace lock for the actual spa_t removal
7100 */
7101 mutex_enter(&spa_namespace_lock);
7102 if (new_state != POOL_STATE_UNINITIALIZED) {
7103 if (!hardforce)
7104 spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
7105 spa_remove(spa);
7106 } else {
7107 /*
7108 * If spa_remove() is not called for this spa_t and
7109 * there is any possibility that it can be reused,
7110 * we make sure to reset the exporting flag.
7111 */
7112 spa->spa_is_exporting = B_FALSE;
7113 spa->spa_export_thread = NULL;
7114 }
7115
7116 /*
7117 * Wake up any waiters in spa_lookup()
7118 */
7119 cv_broadcast(&spa_namespace_cv);
7120 mutex_exit(&spa_namespace_lock);
7121 return (0);
7122
7123fail:
7124 spa->spa_is_exporting = B_FALSE;
7125 spa->spa_export_thread = NULL;
7126
7127 spa_async_resume(spa);
7128 /*
7129 * Wake up any waiters in spa_lookup()
7130 */
7131 cv_broadcast(&spa_namespace_cv);
7132 mutex_exit(&spa_namespace_lock);
7133 return (error);
7134}
7135
7136/*
7137 * Destroy a storage pool.
7138 */
7139int
7140spa_destroy(const char *pool)
7141{
7142 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
7143 B_FALSE, B_FALSE));
7144}
7145
7146/*
7147 * Export a storage pool.
7148 */
7149int
7150spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force,
7151 boolean_t hardforce)
7152{
7153 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
7154 force, hardforce));
7155}
7156
7157/*
7158 * Similar to spa_export(), this unloads the spa_t without actually removing it
7159 * from the namespace in any way.
7160 */
7161int
7162spa_reset(const char *pool)
7163{
7164 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
7165 B_FALSE, B_FALSE));
7166}
7167
7168/*
7169 * ==========================================================================
7170 * Device manipulation
7171 * ==========================================================================
7172 */
7173
7174/*
7175 * This is called as a synctask to increment the draid feature flag
7176 */
7177static void
7178spa_draid_feature_incr(void *arg, dmu_tx_t *tx)
7179{
7180 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
7181 int draid = (int)(uintptr_t)arg;
7182
7183 for (int c = 0; c < draid; c++)
7184 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
7185}
7186
7187/*
7188 * Add a device to a storage pool.
7189 */
7190int
7191spa_vdev_add(spa_t *spa, nvlist_t *nvroot, boolean_t check_ashift)
7192{
7193 uint64_t txg, ndraid = 0;
7194 int error;
7195 vdev_t *rvd = spa->spa_root_vdev;
7196 vdev_t *vd, *tvd;
7197 nvlist_t **spares, **l2cache;
7198 uint_t nspares, nl2cache;
7199
7200 ASSERT(spa_writeable(spa));
7201
7202 txg = spa_vdev_enter(spa);
7203
7204 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
7205 VDEV_ALLOC_ADD)) != 0)
7206 return (spa_vdev_exit(spa, NULL, txg, error));
7207
7208 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
7209
7210 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
7211 &nspares) != 0)
7212 nspares = 0;
7213
7214 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
7215 &nl2cache) != 0)
7216 nl2cache = 0;
7217
7218 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
7219 return (spa_vdev_exit(spa, vd, txg, EINVAL));
7220
7221 if (vd->vdev_children != 0 &&
7222 (error = vdev_create(vd, txg, B_FALSE)) != 0) {
7223 return (spa_vdev_exit(spa, vd, txg, error));
7224 }
7225
7226 /*
7227 * The virtual dRAID spares must be added after vdev tree is created
7228 * and the vdev guids are generated. The guid of their associated
7229 * dRAID is stored in the config and used when opening the spare.
7230 */
7231 if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid,
7232 rvd->vdev_children)) == 0) {
7233 if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot,
7234 ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)
7235 nspares = 0;
7236 } else {
7237 return (spa_vdev_exit(spa, vd, txg, error));
7238 }
7239
7240 /*
7241 * We must validate the spares and l2cache devices after checking the
7242 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
7243 */
7244 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
7245 return (spa_vdev_exit(spa, vd, txg, error));
7246
7247 /*
7248 * If we are in the middle of a device removal, we can only add
7249 * devices which match the existing devices in the pool.
7250 * If we are in the middle of a removal, or have some indirect
7251 * vdevs, we can not add raidz or dRAID top levels.
7252 */
7253 if (spa->spa_vdev_removal != NULL ||
7254 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
7255 for (int c = 0; c < vd->vdev_children; c++) {
7256 tvd = vd->vdev_child[c];
7257 if (spa->spa_vdev_removal != NULL &&
7258 tvd->vdev_ashift != spa->spa_max_ashift) {
7259 return (spa_vdev_exit(spa, vd, txg, EINVAL));
7260 }
7261 /* Fail if top level vdev is raidz or a dRAID */
7262 if (vdev_get_nparity(tvd) != 0)
7263 return (spa_vdev_exit(spa, vd, txg, EINVAL));
7264
7265 /*
7266 * Need the top level mirror to be
7267 * a mirror of leaf vdevs only
7268 */
7269 if (tvd->vdev_ops == &vdev_mirror_ops) {
7270 for (uint64_t cid = 0;
7271 cid < tvd->vdev_children; cid++) {
7272 vdev_t *cvd = tvd->vdev_child[cid];
7273 if (!cvd->vdev_ops->vdev_op_leaf) {
7274 return (spa_vdev_exit(spa, vd,
7275 txg, EINVAL));
7276 }
7277 }
7278 }
7279 }
7280 }
7281
7282 if (check_ashift && spa->spa_max_ashift == spa->spa_min_ashift) {
7283 for (int c = 0; c < vd->vdev_children; c++) {
7284 tvd = vd->vdev_child[c];
7285 if (tvd->vdev_ashift != spa->spa_max_ashift) {
7286 return (spa_vdev_exit(spa, vd, txg,
7287 ZFS_ERR_ASHIFT_MISMATCH));
7288 }
7289 }
7290 }
7291
7292 for (int c = 0; c < vd->vdev_children; c++) {
7293 tvd = vd->vdev_child[c];
7294 vdev_remove_child(vd, tvd);
7295 tvd->vdev_id = rvd->vdev_children;
7296 vdev_add_child(rvd, tvd);
7297 vdev_config_dirty(tvd);
7298 }
7299
7300 if (nspares != 0) {
7301 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
7302 ZPOOL_CONFIG_SPARES);
7303 spa_load_spares(spa);
7304 spa->spa_spares.sav_sync = B_TRUE;
7305 }
7306
7307 if (nl2cache != 0) {
7308 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
7309 ZPOOL_CONFIG_L2CACHE);
7310 spa_load_l2cache(spa);
7311 spa->spa_l2cache.sav_sync = B_TRUE;
7312 }
7313
7314 /*
7315 * We can't increment a feature while holding spa_vdev so we
7316 * have to do it in a synctask.
7317 */
7318 if (ndraid != 0) {
7319 dmu_tx_t *tx;
7320
7321 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
7322 dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr,
7323 (void *)(uintptr_t)ndraid, tx);
7324 dmu_tx_commit(tx);
7325 }
7326
7327 /*
7328 * We have to be careful when adding new vdevs to an existing pool.
7329 * If other threads start allocating from these vdevs before we
7330 * sync the config cache, and we lose power, then upon reboot we may
7331 * fail to open the pool because there are DVAs that the config cache
7332 * can't translate. Therefore, we first add the vdevs without
7333 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
7334 * and then let spa_config_update() initialize the new metaslabs.
7335 *
7336 * spa_load() checks for added-but-not-initialized vdevs, so that
7337 * if we lose power at any point in this sequence, the remaining
7338 * steps will be completed the next time we load the pool.
7339 */
7340 (void) spa_vdev_exit(spa, vd, txg, 0);
7341
7342 mutex_enter(&spa_namespace_lock);
7343 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
7344 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
7345 mutex_exit(&spa_namespace_lock);
7346
7347 return (0);
7348}
7349
7350/*
7351 * Attach a device to a vdev specified by its guid. The vdev type can be
7352 * a mirror, a raidz, or a leaf device that is also a top-level (e.g. a
7353 * single device). When the vdev is a single device, a mirror vdev will be
7354 * automatically inserted.
7355 *
7356 * If 'replacing' is specified, the new device is intended to replace the
7357 * existing device; in this case the two devices are made into their own
7358 * mirror using the 'replacing' vdev, which is functionally identical to
7359 * the mirror vdev (it actually reuses all the same ops) but has a few
7360 * extra rules: you can't attach to it after it's been created, and upon
7361 * completion of resilvering, the first disk (the one being replaced)
7362 * is automatically detached.
7363 *
7364 * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild)
7365 * should be performed instead of traditional healing reconstruction. From
7366 * an administrators perspective these are both resilver operations.
7367 */
7368int
7369spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing,
7370 int rebuild)
7371{
7372 uint64_t txg, dtl_max_txg;
7373 vdev_t *rvd = spa->spa_root_vdev;
7374 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
7375 vdev_ops_t *pvops;
7376 char *oldvdpath, *newvdpath;
7377 int newvd_isspare = B_FALSE;
7378 int error;
7379
7380 ASSERT(spa_writeable(spa));
7381
7382 txg = spa_vdev_enter(spa);
7383
7384 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
7385
7386 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7387 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7388 error = (spa_has_checkpoint(spa)) ?
7389 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7390 return (spa_vdev_exit(spa, NULL, txg, error));
7391 }
7392
7393 if (rebuild) {
7394 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
7395 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7396
7397 if (dsl_scan_resilvering(spa_get_dsl(spa)) ||
7398 dsl_scan_resilver_scheduled(spa_get_dsl(spa))) {
7399 return (spa_vdev_exit(spa, NULL, txg,
7400 ZFS_ERR_RESILVER_IN_PROGRESS));
7401 }
7402 } else {
7403 if (vdev_rebuild_active(rvd))
7404 return (spa_vdev_exit(spa, NULL, txg,
7405 ZFS_ERR_REBUILD_IN_PROGRESS));
7406 }
7407
7408 if (spa->spa_vdev_removal != NULL) {
7409 return (spa_vdev_exit(spa, NULL, txg,
7410 ZFS_ERR_DEVRM_IN_PROGRESS));
7411 }
7412
7413 if (oldvd == NULL)
7414 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
7415
7416 boolean_t raidz = oldvd->vdev_ops == &vdev_raidz_ops;
7417
7418 if (raidz) {
7419 if (!spa_feature_is_enabled(spa, SPA_FEATURE_RAIDZ_EXPANSION))
7420 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7421
7422 /*
7423 * Can't expand a raidz while prior expand is in progress.
7424 */
7425 if (spa->spa_raidz_expand != NULL) {
7426 return (spa_vdev_exit(spa, NULL, txg,
7427 ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS));
7428 }
7429 } else if (!oldvd->vdev_ops->vdev_op_leaf) {
7430 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7431 }
7432
7433 if (raidz)
7434 pvd = oldvd;
7435 else
7436 pvd = oldvd->vdev_parent;
7437
7438 if (spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
7439 VDEV_ALLOC_ATTACH) != 0)
7440 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7441
7442 if (newrootvd->vdev_children != 1)
7443 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
7444
7445 newvd = newrootvd->vdev_child[0];
7446
7447 if (!newvd->vdev_ops->vdev_op_leaf)
7448 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
7449
7450 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
7451 return (spa_vdev_exit(spa, newrootvd, txg, error));
7452
7453 /*
7454 * log, dedup and special vdevs should not be replaced by spares.
7455 */
7456 if ((oldvd->vdev_top->vdev_alloc_bias != VDEV_BIAS_NONE ||
7457 oldvd->vdev_top->vdev_islog) && newvd->vdev_isspare) {
7458 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7459 }
7460
7461 /*
7462 * A dRAID spare can only replace a child of its parent dRAID vdev.
7463 */
7464 if (newvd->vdev_ops == &vdev_draid_spare_ops &&
7465 oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) {
7466 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7467 }
7468
7469 if (rebuild) {
7470 /*
7471 * For rebuilds, the top vdev must support reconstruction
7472 * using only space maps. This means the only allowable
7473 * vdevs types are the root vdev, a mirror, or dRAID.
7474 */
7475 tvd = pvd;
7476 if (pvd->vdev_top != NULL)
7477 tvd = pvd->vdev_top;
7478
7479 if (tvd->vdev_ops != &vdev_mirror_ops &&
7480 tvd->vdev_ops != &vdev_root_ops &&
7481 tvd->vdev_ops != &vdev_draid_ops) {
7482 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7483 }
7484 }
7485
7486 if (!replacing) {
7487 /*
7488 * For attach, the only allowable parent is a mirror or
7489 * the root vdev. A raidz vdev can be attached to, but
7490 * you cannot attach to a raidz child.
7491 */
7492 if (pvd->vdev_ops != &vdev_mirror_ops &&
7493 pvd->vdev_ops != &vdev_root_ops &&
7494 !raidz)
7495 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7496
7497 pvops = &vdev_mirror_ops;
7498 } else {
7499 /*
7500 * Active hot spares can only be replaced by inactive hot
7501 * spares.
7502 */
7503 if (pvd->vdev_ops == &vdev_spare_ops &&
7504 oldvd->vdev_isspare &&
7505 !spa_has_spare(spa, newvd->vdev_guid))
7506 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7507
7508 /*
7509 * If the source is a hot spare, and the parent isn't already a
7510 * spare, then we want to create a new hot spare. Otherwise, we
7511 * want to create a replacing vdev. The user is not allowed to
7512 * attach to a spared vdev child unless the 'isspare' state is
7513 * the same (spare replaces spare, non-spare replaces
7514 * non-spare).
7515 */
7516 if (pvd->vdev_ops == &vdev_replacing_ops &&
7517 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
7518 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7519 } else if (pvd->vdev_ops == &vdev_spare_ops &&
7520 newvd->vdev_isspare != oldvd->vdev_isspare) {
7521 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7522 }
7523
7524 if (newvd->vdev_isspare)
7525 pvops = &vdev_spare_ops;
7526 else
7527 pvops = &vdev_replacing_ops;
7528 }
7529
7530 /*
7531 * Make sure the new device is big enough.
7532 */
7533 vdev_t *min_vdev = raidz ? oldvd->vdev_child[0] : oldvd;
7534 if (newvd->vdev_asize < vdev_get_min_asize(min_vdev))
7535 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
7536
7537 /*
7538 * The new device cannot have a higher alignment requirement
7539 * than the top-level vdev.
7540 */
7541 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
7542 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7543
7544 /*
7545 * RAIDZ-expansion-specific checks.
7546 */
7547 if (raidz) {
7548 if (vdev_raidz_attach_check(newvd) != 0)
7549 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7550
7551 /*
7552 * Fail early if a child is not healthy or being replaced
7553 */
7554 for (int i = 0; i < oldvd->vdev_children; i++) {
7555 if (vdev_is_dead(oldvd->vdev_child[i]) ||
7556 !oldvd->vdev_child[i]->vdev_ops->vdev_op_leaf) {
7557 return (spa_vdev_exit(spa, newrootvd, txg,
7558 ENXIO));
7559 }
7560 /* Also fail if reserved boot area is in-use */
7561 if (vdev_check_boot_reserve(spa, oldvd->vdev_child[i])
7562 != 0) {
7563 return (spa_vdev_exit(spa, newrootvd, txg,
7564 EADDRINUSE));
7565 }
7566 }
7567 }
7568
7569 if (raidz) {
7570 /*
7571 * Note: oldvdpath is freed by spa_strfree(), but
7572 * kmem_asprintf() is freed by kmem_strfree(), so we have to
7573 * move it to a spa_strdup-ed string.
7574 */
7575 char *tmp = kmem_asprintf("raidz%u-%u",
7576 (uint_t)vdev_get_nparity(oldvd), (uint_t)oldvd->vdev_id);
7577 oldvdpath = spa_strdup(tmp);
7578 kmem_strfree(tmp);
7579 } else {
7580 oldvdpath = spa_strdup(oldvd->vdev_path);
7581 }
7582 newvdpath = spa_strdup(newvd->vdev_path);
7583
7584 /*
7585 * If this is an in-place replacement, update oldvd's path and devid
7586 * to make it distinguishable from newvd, and unopenable from now on.
7587 */
7588 if (strcmp(oldvdpath, newvdpath) == 0) {
7589 spa_strfree(oldvd->vdev_path);
7590 oldvd->vdev_path = kmem_alloc(strlen(newvdpath) + 5,
7591 KM_SLEEP);
7592 (void) sprintf(oldvd->vdev_path, "%s/old",
7593 newvdpath);
7594 if (oldvd->vdev_devid != NULL) {
7595 spa_strfree(oldvd->vdev_devid);
7596 oldvd->vdev_devid = NULL;
7597 }
7598 spa_strfree(oldvdpath);
7599 oldvdpath = spa_strdup(oldvd->vdev_path);
7600 }
7601
7602 /*
7603 * If the parent is not a mirror, or if we're replacing, insert the new
7604 * mirror/replacing/spare vdev above oldvd.
7605 */
7606 if (!raidz && pvd->vdev_ops != pvops) {
7607 pvd = vdev_add_parent(oldvd, pvops);
7608 ASSERT(pvd->vdev_ops == pvops);
7609 ASSERT(oldvd->vdev_parent == pvd);
7610 }
7611
7612 ASSERT(pvd->vdev_top->vdev_parent == rvd);
7613
7614 /*
7615 * Extract the new device from its root and add it to pvd.
7616 */
7617 vdev_remove_child(newrootvd, newvd);
7618 newvd->vdev_id = pvd->vdev_children;
7619 newvd->vdev_crtxg = oldvd->vdev_crtxg;
7620 vdev_add_child(pvd, newvd);
7621
7622 /*
7623 * Reevaluate the parent vdev state.
7624 */
7625 vdev_propagate_state(pvd);
7626
7627 tvd = newvd->vdev_top;
7628 ASSERT(pvd->vdev_top == tvd);
7629 ASSERT(tvd->vdev_parent == rvd);
7630
7631 vdev_config_dirty(tvd);
7632
7633 /*
7634 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
7635 * for any dmu_sync-ed blocks. It will propagate upward when
7636 * spa_vdev_exit() calls vdev_dtl_reassess().
7637 */
7638 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
7639
7640 if (raidz) {
7641 /*
7642 * Wait for the youngest allocations and frees to sync,
7643 * and then wait for the deferral of those frees to finish.
7644 */
7645 spa_vdev_config_exit(spa, NULL,
7646 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
7647
7648 vdev_initialize_stop_all(tvd, VDEV_INITIALIZE_ACTIVE);
7649 vdev_trim_stop_all(tvd, VDEV_TRIM_ACTIVE);
7650 vdev_autotrim_stop_wait(tvd);
7651
7652 dtl_max_txg = spa_vdev_config_enter(spa);
7653
7654 tvd->vdev_rz_expanding = B_TRUE;
7655
7656 vdev_dirty_leaves(tvd, VDD_DTL, dtl_max_txg);
7657 vdev_config_dirty(tvd);
7658
7659 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool,
7660 dtl_max_txg);
7661 dsl_sync_task_nowait(spa->spa_dsl_pool, vdev_raidz_attach_sync,
7662 newvd, tx);
7663 dmu_tx_commit(tx);
7664 } else {
7665 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
7666 dtl_max_txg - TXG_INITIAL);
7667
7668 if (newvd->vdev_isspare) {
7669 spa_spare_activate(newvd);
7670 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
7671 }
7672
7673 newvd_isspare = newvd->vdev_isspare;
7674
7675 /*
7676 * Mark newvd's DTL dirty in this txg.
7677 */
7678 vdev_dirty(tvd, VDD_DTL, newvd, txg);
7679
7680 /*
7681 * Schedule the resilver or rebuild to restart in the future.
7682 * We do this to ensure that dmu_sync-ed blocks have been
7683 * stitched into the respective datasets.
7684 */
7685 if (rebuild) {
7686 newvd->vdev_rebuild_txg = txg;
7687
7688 vdev_rebuild(tvd);
7689 } else {
7690 newvd->vdev_resilver_txg = txg;
7691
7692 if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
7693 spa_feature_is_enabled(spa,
7694 SPA_FEATURE_RESILVER_DEFER)) {
7695 vdev_defer_resilver(newvd);
7696 } else {
7697 dsl_scan_restart_resilver(spa->spa_dsl_pool,
7698 dtl_max_txg);
7699 }
7700 }
7701 }
7702
7703 if (spa->spa_bootfs)
7704 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
7705
7706 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
7707
7708 /*
7709 * Commit the config
7710 */
7711 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
7712
7713 spa_history_log_internal(spa, "vdev attach", NULL,
7714 "%s vdev=%s %s vdev=%s",
7715 replacing && newvd_isspare ? "spare in" :
7716 replacing ? "replace" : "attach", newvdpath,
7717 replacing ? "for" : "to", oldvdpath);
7718
7719 spa_strfree(oldvdpath);
7720 spa_strfree(newvdpath);
7721
7722 return (0);
7723}
7724
7725/*
7726 * Detach a device from a mirror or replacing vdev.
7727 *
7728 * If 'replace_done' is specified, only detach if the parent
7729 * is a replacing or a spare vdev.
7730 */
7731int
7732spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
7733{
7734 uint64_t txg;
7735 int error;
7736 vdev_t *rvd __maybe_unused = spa->spa_root_vdev;
7737 vdev_t *vd, *pvd, *cvd, *tvd;
7738 boolean_t unspare = B_FALSE;
7739 uint64_t unspare_guid = 0;
7740 char *vdpath;
7741
7742 ASSERT(spa_writeable(spa));
7743
7744 txg = spa_vdev_detach_enter(spa, guid);
7745
7746 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7747
7748 /*
7749 * Besides being called directly from the userland through the
7750 * ioctl interface, spa_vdev_detach() can be potentially called
7751 * at the end of spa_vdev_resilver_done().
7752 *
7753 * In the regular case, when we have a checkpoint this shouldn't
7754 * happen as we never empty the DTLs of a vdev during the scrub
7755 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
7756 * should never get here when we have a checkpoint.
7757 *
7758 * That said, even in a case when we checkpoint the pool exactly
7759 * as spa_vdev_resilver_done() calls this function everything
7760 * should be fine as the resilver will return right away.
7761 */
7762 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7763 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7764 error = (spa_has_checkpoint(spa)) ?
7765 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7766 return (spa_vdev_exit(spa, NULL, txg, error));
7767 }
7768
7769 if (vd == NULL)
7770 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
7771
7772 if (!vd->vdev_ops->vdev_op_leaf)
7773 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7774
7775 pvd = vd->vdev_parent;
7776
7777 /*
7778 * If the parent/child relationship is not as expected, don't do it.
7779 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
7780 * vdev that's replacing B with C. The user's intent in replacing
7781 * is to go from M(A,B) to M(A,C). If the user decides to cancel
7782 * the replace by detaching C, the expected behavior is to end up
7783 * M(A,B). But suppose that right after deciding to detach C,
7784 * the replacement of B completes. We would have M(A,C), and then
7785 * ask to detach C, which would leave us with just A -- not what
7786 * the user wanted. To prevent this, we make sure that the
7787 * parent/child relationship hasn't changed -- in this example,
7788 * that C's parent is still the replacing vdev R.
7789 */
7790 if (pvd->vdev_guid != pguid && pguid != 0)
7791 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7792
7793 /*
7794 * Only 'replacing' or 'spare' vdevs can be replaced.
7795 */
7796 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
7797 pvd->vdev_ops != &vdev_spare_ops)
7798 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7799
7800 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
7801 spa_version(spa) >= SPA_VERSION_SPARES);
7802
7803 /*
7804 * Only mirror, replacing, and spare vdevs support detach.
7805 */
7806 if (pvd->vdev_ops != &vdev_replacing_ops &&
7807 pvd->vdev_ops != &vdev_mirror_ops &&
7808 pvd->vdev_ops != &vdev_spare_ops)
7809 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7810
7811 /*
7812 * If this device has the only valid copy of some data,
7813 * we cannot safely detach it.
7814 */
7815 if (vdev_dtl_required(vd))
7816 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7817
7818 ASSERT(pvd->vdev_children >= 2);
7819
7820 /*
7821 * If we are detaching the second disk from a replacing vdev, then
7822 * check to see if we changed the original vdev's path to have "/old"
7823 * at the end in spa_vdev_attach(). If so, undo that change now.
7824 */
7825 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
7826 vd->vdev_path != NULL) {
7827 size_t len = strlen(vd->vdev_path);
7828
7829 for (int c = 0; c < pvd->vdev_children; c++) {
7830 cvd = pvd->vdev_child[c];
7831
7832 if (cvd == vd || cvd->vdev_path == NULL)
7833 continue;
7834
7835 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
7836 strcmp(cvd->vdev_path + len, "/old") == 0) {
7837 spa_strfree(cvd->vdev_path);
7838 cvd->vdev_path = spa_strdup(vd->vdev_path);
7839 break;
7840 }
7841 }
7842 }
7843
7844 /*
7845 * If we are detaching the original disk from a normal spare, then it
7846 * implies that the spare should become a real disk, and be removed
7847 * from the active spare list for the pool. dRAID spares on the
7848 * other hand are coupled to the pool and thus should never be removed
7849 * from the spares list.
7850 */
7851 if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) {
7852 vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1];
7853
7854 if (last_cvd->vdev_isspare &&
7855 last_cvd->vdev_ops != &vdev_draid_spare_ops) {
7856 unspare = B_TRUE;
7857 }
7858 }
7859
7860 /*
7861 * Erase the disk labels so the disk can be used for other things.
7862 * This must be done after all other error cases are handled,
7863 * but before we disembowel vd (so we can still do I/O to it).
7864 * But if we can't do it, don't treat the error as fatal --
7865 * it may be that the unwritability of the disk is the reason
7866 * it's being detached!
7867 */
7868 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
7869
7870 /*
7871 * Remove vd from its parent and compact the parent's children.
7872 */
7873 vdev_remove_child(pvd, vd);
7874 vdev_compact_children(pvd);
7875
7876 /*
7877 * Remember one of the remaining children so we can get tvd below.
7878 */
7879 cvd = pvd->vdev_child[pvd->vdev_children - 1];
7880
7881 /*
7882 * If we need to remove the remaining child from the list of hot spares,
7883 * do it now, marking the vdev as no longer a spare in the process.
7884 * We must do this before vdev_remove_parent(), because that can
7885 * change the GUID if it creates a new toplevel GUID. For a similar
7886 * reason, we must remove the spare now, in the same txg as the detach;
7887 * otherwise someone could attach a new sibling, change the GUID, and
7888 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
7889 */
7890 if (unspare) {
7891 ASSERT(cvd->vdev_isspare);
7892 spa_spare_remove(cvd);
7893 unspare_guid = cvd->vdev_guid;
7894 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
7895 cvd->vdev_unspare = B_TRUE;
7896 }
7897
7898 /*
7899 * If the parent mirror/replacing vdev only has one child,
7900 * the parent is no longer needed. Remove it from the tree.
7901 */
7902 if (pvd->vdev_children == 1) {
7903 if (pvd->vdev_ops == &vdev_spare_ops)
7904 cvd->vdev_unspare = B_FALSE;
7905 vdev_remove_parent(cvd);
7906 }
7907
7908 /*
7909 * We don't set tvd until now because the parent we just removed
7910 * may have been the previous top-level vdev.
7911 */
7912 tvd = cvd->vdev_top;
7913 ASSERT(tvd->vdev_parent == rvd);
7914
7915 /*
7916 * Reevaluate the parent vdev state.
7917 */
7918 vdev_propagate_state(cvd);
7919
7920 /*
7921 * If the 'autoexpand' property is set on the pool then automatically
7922 * try to expand the size of the pool. For example if the device we
7923 * just detached was smaller than the others, it may be possible to
7924 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
7925 * first so that we can obtain the updated sizes of the leaf vdevs.
7926 */
7927 if (spa->spa_autoexpand) {
7928 vdev_reopen(tvd);
7929 vdev_expand(tvd, txg);
7930 }
7931
7932 vdev_config_dirty(tvd);
7933
7934 /*
7935 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
7936 * vd->vdev_detached is set and free vd's DTL object in syncing context.
7937 * But first make sure we're not on any *other* txg's DTL list, to
7938 * prevent vd from being accessed after it's freed.
7939 */
7940 vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
7941 for (int t = 0; t < TXG_SIZE; t++)
7942 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
7943 vd->vdev_detached = B_TRUE;
7944 vdev_dirty(tvd, VDD_DTL, vd, txg);
7945
7946 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
7947 spa_notify_waiters(spa);
7948
7949 /* hang on to the spa before we release the lock */
7950 spa_open_ref(spa, FTAG);
7951
7952 error = spa_vdev_exit(spa, vd, txg, 0);
7953
7954 spa_history_log_internal(spa, "detach", NULL,
7955 "vdev=%s", vdpath);
7956 spa_strfree(vdpath);
7957
7958 /*
7959 * If this was the removal of the original device in a hot spare vdev,
7960 * then we want to go through and remove the device from the hot spare
7961 * list of every other pool.
7962 */
7963 if (unspare) {
7964 spa_t *altspa = NULL;
7965
7966 mutex_enter(&spa_namespace_lock);
7967 while ((altspa = spa_next(altspa)) != NULL) {
7968 if (altspa->spa_state != POOL_STATE_ACTIVE ||
7969 altspa == spa)
7970 continue;
7971
7972 spa_open_ref(altspa, FTAG);
7973 mutex_exit(&spa_namespace_lock);
7974 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
7975 mutex_enter(&spa_namespace_lock);
7976 spa_close(altspa, FTAG);
7977 }
7978 mutex_exit(&spa_namespace_lock);
7979
7980 /* search the rest of the vdevs for spares to remove */
7981 spa_vdev_resilver_done(spa);
7982 }
7983
7984 /* all done with the spa; OK to release */
7985 mutex_enter(&spa_namespace_lock);
7986 spa_close(spa, FTAG);
7987 mutex_exit(&spa_namespace_lock);
7988
7989 return (error);
7990}
7991
7992static int
7993spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7994 list_t *vd_list)
7995{
7996 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7997
7998 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7999
8000 /* Look up vdev and ensure it's a leaf. */
8001 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
8002 if (vd == NULL || vd->vdev_detached) {
8003 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8004 return (SET_ERROR(ENODEV));
8005 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
8006 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8007 return (SET_ERROR(EINVAL));
8008 } else if (!vdev_writeable(vd)) {
8009 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8010 return (SET_ERROR(EROFS));
8011 }
8012 mutex_enter(&vd->vdev_initialize_lock);
8013 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8014
8015 /*
8016 * When we activate an initialize action we check to see
8017 * if the vdev_initialize_thread is NULL. We do this instead
8018 * of using the vdev_initialize_state since there might be
8019 * a previous initialization process which has completed but
8020 * the thread is not exited.
8021 */
8022 if (cmd_type == POOL_INITIALIZE_START &&
8023 (vd->vdev_initialize_thread != NULL ||
8024 vd->vdev_top->vdev_removing || vd->vdev_top->vdev_rz_expanding)) {
8025 mutex_exit(&vd->vdev_initialize_lock);
8026 return (SET_ERROR(EBUSY));
8027 } else if (cmd_type == POOL_INITIALIZE_CANCEL &&
8028 (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
8029 vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
8030 mutex_exit(&vd->vdev_initialize_lock);
8031 return (SET_ERROR(ESRCH));
8032 } else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
8033 vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
8034 mutex_exit(&vd->vdev_initialize_lock);
8035 return (SET_ERROR(ESRCH));
8036 } else if (cmd_type == POOL_INITIALIZE_UNINIT &&
8037 vd->vdev_initialize_thread != NULL) {
8038 mutex_exit(&vd->vdev_initialize_lock);
8039 return (SET_ERROR(EBUSY));
8040 }
8041
8042 switch (cmd_type) {
8043 case POOL_INITIALIZE_START:
8044 vdev_initialize(vd);
8045 break;
8046 case POOL_INITIALIZE_CANCEL:
8047 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
8048 break;
8049 case POOL_INITIALIZE_SUSPEND:
8050 vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
8051 break;
8052 case POOL_INITIALIZE_UNINIT:
8053 vdev_uninitialize(vd);
8054 break;
8055 default:
8056 panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
8057 }
8058 mutex_exit(&vd->vdev_initialize_lock);
8059
8060 return (0);
8061}
8062
8063int
8064spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
8065 nvlist_t *vdev_errlist)
8066{
8067 int total_errors = 0;
8068 list_t vd_list;
8069
8070 list_create(&vd_list, sizeof (vdev_t),
8071 offsetof(vdev_t, vdev_initialize_node));
8072
8073 /*
8074 * We hold the namespace lock through the whole function
8075 * to prevent any changes to the pool while we're starting or
8076 * stopping initialization. The config and state locks are held so that
8077 * we can properly assess the vdev state before we commit to
8078 * the initializing operation.
8079 */
8080 mutex_enter(&spa_namespace_lock);
8081
8082 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
8083 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
8084 uint64_t vdev_guid = fnvpair_value_uint64(pair);
8085
8086 int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
8087 &vd_list);
8088 if (error != 0) {
8089 char guid_as_str[MAXNAMELEN];
8090
8091 (void) snprintf(guid_as_str, sizeof (guid_as_str),
8092 "%llu", (unsigned long long)vdev_guid);
8093 fnvlist_add_int64(vdev_errlist, guid_as_str, error);
8094 total_errors++;
8095 }
8096 }
8097
8098 /* Wait for all initialize threads to stop. */
8099 vdev_initialize_stop_wait(spa, &vd_list);
8100
8101 /* Sync out the initializing state */
8102 txg_wait_synced(spa->spa_dsl_pool, 0);
8103 mutex_exit(&spa_namespace_lock);
8104
8105 list_destroy(&vd_list);
8106
8107 return (total_errors);
8108}
8109
8110static int
8111spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
8112 uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
8113{
8114 ASSERT(MUTEX_HELD(&spa_namespace_lock));
8115
8116 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
8117
8118 /* Look up vdev and ensure it's a leaf. */
8119 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
8120 if (vd == NULL || vd->vdev_detached) {
8121 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8122 return (SET_ERROR(ENODEV));
8123 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
8124 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8125 return (SET_ERROR(EINVAL));
8126 } else if (!vdev_writeable(vd)) {
8127 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8128 return (SET_ERROR(EROFS));
8129 } else if (!vd->vdev_has_trim) {
8130 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8131 return (SET_ERROR(EOPNOTSUPP));
8132 } else if (secure && !vd->vdev_has_securetrim) {
8133 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8134 return (SET_ERROR(EOPNOTSUPP));
8135 }
8136 mutex_enter(&vd->vdev_trim_lock);
8137 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8138
8139 /*
8140 * When we activate a TRIM action we check to see if the
8141 * vdev_trim_thread is NULL. We do this instead of using the
8142 * vdev_trim_state since there might be a previous TRIM process
8143 * which has completed but the thread is not exited.
8144 */
8145 if (cmd_type == POOL_TRIM_START &&
8146 (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing ||
8147 vd->vdev_top->vdev_rz_expanding)) {
8148 mutex_exit(&vd->vdev_trim_lock);
8149 return (SET_ERROR(EBUSY));
8150 } else if (cmd_type == POOL_TRIM_CANCEL &&
8151 (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
8152 vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
8153 mutex_exit(&vd->vdev_trim_lock);
8154 return (SET_ERROR(ESRCH));
8155 } else if (cmd_type == POOL_TRIM_SUSPEND &&
8156 vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
8157 mutex_exit(&vd->vdev_trim_lock);
8158 return (SET_ERROR(ESRCH));
8159 }
8160
8161 switch (cmd_type) {
8162 case POOL_TRIM_START:
8163 vdev_trim(vd, rate, partial, secure);
8164 break;
8165 case POOL_TRIM_CANCEL:
8166 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
8167 break;
8168 case POOL_TRIM_SUSPEND:
8169 vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
8170 break;
8171 default:
8172 panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
8173 }
8174 mutex_exit(&vd->vdev_trim_lock);
8175
8176 return (0);
8177}
8178
8179/*
8180 * Initiates a manual TRIM for the requested vdevs. This kicks off individual
8181 * TRIM threads for each child vdev. These threads pass over all of the free
8182 * space in the vdev's metaslabs and issues TRIM commands for that space.
8183 */
8184int
8185spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
8186 boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
8187{
8188 int total_errors = 0;
8189 list_t vd_list;
8190
8191 list_create(&vd_list, sizeof (vdev_t),
8192 offsetof(vdev_t, vdev_trim_node));
8193
8194 /*
8195 * We hold the namespace lock through the whole function
8196 * to prevent any changes to the pool while we're starting or
8197 * stopping TRIM. The config and state locks are held so that
8198 * we can properly assess the vdev state before we commit to
8199 * the TRIM operation.
8200 */
8201 mutex_enter(&spa_namespace_lock);
8202
8203 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
8204 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
8205 uint64_t vdev_guid = fnvpair_value_uint64(pair);
8206
8207 int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
8208 rate, partial, secure, &vd_list);
8209 if (error != 0) {
8210 char guid_as_str[MAXNAMELEN];
8211
8212 (void) snprintf(guid_as_str, sizeof (guid_as_str),
8213 "%llu", (unsigned long long)vdev_guid);
8214 fnvlist_add_int64(vdev_errlist, guid_as_str, error);
8215 total_errors++;
8216 }
8217 }
8218
8219 /* Wait for all TRIM threads to stop. */
8220 vdev_trim_stop_wait(spa, &vd_list);
8221
8222 /* Sync out the TRIM state */
8223 txg_wait_synced(spa->spa_dsl_pool, 0);
8224 mutex_exit(&spa_namespace_lock);
8225
8226 list_destroy(&vd_list);
8227
8228 return (total_errors);
8229}
8230
8231/*
8232 * Split a set of devices from their mirrors, and create a new pool from them.
8233 */
8234int
8235spa_vdev_split_mirror(spa_t *spa, const char *newname, nvlist_t *config,
8236 nvlist_t *props, boolean_t exp)
8237{
8238 int error = 0;
8239 uint64_t txg, *glist;
8240 spa_t *newspa;
8241 uint_t c, children, lastlog;
8242 nvlist_t **child, *nvl, *tmp;
8243 dmu_tx_t *tx;
8244 const char *altroot = NULL;
8245 vdev_t *rvd, **vml = NULL; /* vdev modify list */
8246 boolean_t activate_slog;
8247
8248 ASSERT(spa_writeable(spa));
8249
8250 txg = spa_vdev_enter(spa);
8251
8252 ASSERT(MUTEX_HELD(&spa_namespace_lock));
8253 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
8254 error = (spa_has_checkpoint(spa)) ?
8255 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
8256 return (spa_vdev_exit(spa, NULL, txg, error));
8257 }
8258
8259 /* clear the log and flush everything up to now */
8260 activate_slog = spa_passivate_log(spa);
8261 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
8262 error = spa_reset_logs(spa);
8263 txg = spa_vdev_config_enter(spa);
8264
8265 if (activate_slog)
8266 spa_activate_log(spa);
8267
8268 if (error != 0)
8269 return (spa_vdev_exit(spa, NULL, txg, error));
8270
8271 /* check new spa name before going any further */
8272 if (spa_lookup(newname) != NULL)
8273 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
8274
8275 /*
8276 * scan through all the children to ensure they're all mirrors
8277 */
8278 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
8279 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
8280 &children) != 0)
8281 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8282
8283 /* first, check to ensure we've got the right child count */
8284 rvd = spa->spa_root_vdev;
8285 lastlog = 0;
8286 for (c = 0; c < rvd->vdev_children; c++) {
8287 vdev_t *vd = rvd->vdev_child[c];
8288
8289 /* don't count the holes & logs as children */
8290 if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops &&
8291 !vdev_is_concrete(vd))) {
8292 if (lastlog == 0)
8293 lastlog = c;
8294 continue;
8295 }
8296
8297 lastlog = 0;
8298 }
8299 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
8300 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8301
8302 /* next, ensure no spare or cache devices are part of the split */
8303 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
8304 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
8305 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8306
8307 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
8308 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
8309
8310 /* then, loop over each vdev and validate it */
8311 for (c = 0; c < children; c++) {
8312 uint64_t is_hole = 0;
8313
8314 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
8315 &is_hole);
8316
8317 if (is_hole != 0) {
8318 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
8319 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
8320 continue;
8321 } else {
8322 error = SET_ERROR(EINVAL);
8323 break;
8324 }
8325 }
8326
8327 /* deal with indirect vdevs */
8328 if (spa->spa_root_vdev->vdev_child[c]->vdev_ops ==
8329 &vdev_indirect_ops)
8330 continue;
8331
8332 /* which disk is going to be split? */
8333 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
8334 &glist[c]) != 0) {
8335 error = SET_ERROR(EINVAL);
8336 break;
8337 }
8338
8339 /* look it up in the spa */
8340 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
8341 if (vml[c] == NULL) {
8342 error = SET_ERROR(ENODEV);
8343 break;
8344 }
8345
8346 /* make sure there's nothing stopping the split */
8347 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
8348 vml[c]->vdev_islog ||
8349 !vdev_is_concrete(vml[c]) ||
8350 vml[c]->vdev_isspare ||
8351 vml[c]->vdev_isl2cache ||
8352 !vdev_writeable(vml[c]) ||
8353 vml[c]->vdev_children != 0 ||
8354 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
8355 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
8356 error = SET_ERROR(EINVAL);
8357 break;
8358 }
8359
8360 if (vdev_dtl_required(vml[c]) ||
8361 vdev_resilver_needed(vml[c], NULL, NULL)) {
8362 error = SET_ERROR(EBUSY);
8363 break;
8364 }
8365
8366 /* we need certain info from the top level */
8367 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
8368 vml[c]->vdev_top->vdev_ms_array);
8369 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
8370 vml[c]->vdev_top->vdev_ms_shift);
8371 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
8372 vml[c]->vdev_top->vdev_asize);
8373 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
8374 vml[c]->vdev_top->vdev_ashift);
8375
8376 /* transfer per-vdev ZAPs */
8377 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
8378 VERIFY0(nvlist_add_uint64(child[c],
8379 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
8380
8381 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
8382 VERIFY0(nvlist_add_uint64(child[c],
8383 ZPOOL_CONFIG_VDEV_TOP_ZAP,
8384 vml[c]->vdev_parent->vdev_top_zap));
8385 }
8386
8387 if (error != 0) {
8388 kmem_free(vml, children * sizeof (vdev_t *));
8389 kmem_free(glist, children * sizeof (uint64_t));
8390 return (spa_vdev_exit(spa, NULL, txg, error));
8391 }
8392
8393 /* stop writers from using the disks */
8394 for (c = 0; c < children; c++) {
8395 if (vml[c] != NULL)
8396 vml[c]->vdev_offline = B_TRUE;
8397 }
8398 vdev_reopen(spa->spa_root_vdev);
8399
8400 /*
8401 * Temporarily record the splitting vdevs in the spa config. This
8402 * will disappear once the config is regenerated.
8403 */
8404 nvl = fnvlist_alloc();
8405 fnvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children);
8406 kmem_free(glist, children * sizeof (uint64_t));
8407
8408 mutex_enter(&spa->spa_props_lock);
8409 fnvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl);
8410 mutex_exit(&spa->spa_props_lock);
8411 spa->spa_config_splitting = nvl;
8412 vdev_config_dirty(spa->spa_root_vdev);
8413
8414 /* configure and create the new pool */
8415 fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname);
8416 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
8417 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE);
8418 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa));
8419 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg);
8420 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
8421 spa_generate_guid(NULL));
8422 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
8423 (void) nvlist_lookup_string(props,
8424 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
8425
8426 /* add the new pool to the namespace */
8427 newspa = spa_add(newname, config, altroot);
8428 newspa->spa_avz_action = AVZ_ACTION_REBUILD;
8429 newspa->spa_config_txg = spa->spa_config_txg;
8430 spa_set_log_state(newspa, SPA_LOG_CLEAR);
8431
8432 /* release the spa config lock, retaining the namespace lock */
8433 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
8434
8435 if (zio_injection_enabled)
8436 zio_handle_panic_injection(spa, FTAG, 1);
8437
8438 spa_activate(newspa, spa_mode_global);
8439 spa_async_suspend(newspa);
8440
8441 /*
8442 * Temporarily stop the initializing and TRIM activity. We set the
8443 * state to ACTIVE so that we know to resume initializing or TRIM
8444 * once the split has completed.
8445 */
8446 list_t vd_initialize_list;
8447 list_create(&vd_initialize_list, sizeof (vdev_t),
8448 offsetof(vdev_t, vdev_initialize_node));
8449
8450 list_t vd_trim_list;
8451 list_create(&vd_trim_list, sizeof (vdev_t),
8452 offsetof(vdev_t, vdev_trim_node));
8453
8454 for (c = 0; c < children; c++) {
8455 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
8456 mutex_enter(&vml[c]->vdev_initialize_lock);
8457 vdev_initialize_stop(vml[c],
8458 VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
8459 mutex_exit(&vml[c]->vdev_initialize_lock);
8460
8461 mutex_enter(&vml[c]->vdev_trim_lock);
8462 vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
8463 mutex_exit(&vml[c]->vdev_trim_lock);
8464 }
8465 }
8466
8467 vdev_initialize_stop_wait(spa, &vd_initialize_list);
8468 vdev_trim_stop_wait(spa, &vd_trim_list);
8469
8470 list_destroy(&vd_initialize_list);
8471 list_destroy(&vd_trim_list);
8472
8473 newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
8474 newspa->spa_is_splitting = B_TRUE;
8475
8476 /* create the new pool from the disks of the original pool */
8477 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
8478 if (error)
8479 goto out;
8480
8481 /* if that worked, generate a real config for the new pool */
8482 if (newspa->spa_root_vdev != NULL) {
8483 newspa->spa_config_splitting = fnvlist_alloc();
8484 fnvlist_add_uint64(newspa->spa_config_splitting,
8485 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa));
8486 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
8487 B_TRUE));
8488 }
8489
8490 /* set the props */
8491 if (props != NULL) {
8492 spa_configfile_set(newspa, props, B_FALSE);
8493 error = spa_prop_set(newspa, props);
8494 if (error)
8495 goto out;
8496 }
8497
8498 /* flush everything */
8499 txg = spa_vdev_config_enter(newspa);
8500 vdev_config_dirty(newspa->spa_root_vdev);
8501 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
8502
8503 if (zio_injection_enabled)
8504 zio_handle_panic_injection(spa, FTAG, 2);
8505
8506 spa_async_resume(newspa);
8507
8508 /* finally, update the original pool's config */
8509 txg = spa_vdev_config_enter(spa);
8510 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
8511 error = dmu_tx_assign(tx, TXG_WAIT);
8512 if (error != 0)
8513 dmu_tx_abort(tx);
8514 for (c = 0; c < children; c++) {
8515 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
8516 vdev_t *tvd = vml[c]->vdev_top;
8517
8518 /*
8519 * Need to be sure the detachable VDEV is not
8520 * on any *other* txg's DTL list to prevent it
8521 * from being accessed after it's freed.
8522 */
8523 for (int t = 0; t < TXG_SIZE; t++) {
8524 (void) txg_list_remove_this(
8525 &tvd->vdev_dtl_list, vml[c], t);
8526 }
8527
8528 vdev_split(vml[c]);
8529 if (error == 0)
8530 spa_history_log_internal(spa, "detach", tx,
8531 "vdev=%s", vml[c]->vdev_path);
8532
8533 vdev_free(vml[c]);
8534 }
8535 }
8536 spa->spa_avz_action = AVZ_ACTION_REBUILD;
8537 vdev_config_dirty(spa->spa_root_vdev);
8538 spa->spa_config_splitting = NULL;
8539 nvlist_free(nvl);
8540 if (error == 0)
8541 dmu_tx_commit(tx);
8542 (void) spa_vdev_exit(spa, NULL, txg, 0);
8543
8544 if (zio_injection_enabled)
8545 zio_handle_panic_injection(spa, FTAG, 3);
8546
8547 /* split is complete; log a history record */
8548 spa_history_log_internal(newspa, "split", NULL,
8549 "from pool %s", spa_name(spa));
8550
8551 newspa->spa_is_splitting = B_FALSE;
8552 kmem_free(vml, children * sizeof (vdev_t *));
8553
8554 /* if we're not going to mount the filesystems in userland, export */
8555 if (exp)
8556 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
8557 B_FALSE, B_FALSE);
8558
8559 return (error);
8560
8561out:
8562 spa_unload(newspa);
8563 spa_deactivate(newspa);
8564 spa_remove(newspa);
8565
8566 txg = spa_vdev_config_enter(spa);
8567
8568 /* re-online all offlined disks */
8569 for (c = 0; c < children; c++) {
8570 if (vml[c] != NULL)
8571 vml[c]->vdev_offline = B_FALSE;
8572 }
8573
8574 /* restart initializing or trimming disks as necessary */
8575 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
8576 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
8577 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
8578
8579 vdev_reopen(spa->spa_root_vdev);
8580
8581 nvlist_free(spa->spa_config_splitting);
8582 spa->spa_config_splitting = NULL;
8583 (void) spa_vdev_exit(spa, NULL, txg, error);
8584
8585 kmem_free(vml, children * sizeof (vdev_t *));
8586 return (error);
8587}
8588
8589/*
8590 * Find any device that's done replacing, or a vdev marked 'unspare' that's
8591 * currently spared, so we can detach it.
8592 */
8593static vdev_t *
8594spa_vdev_resilver_done_hunt(vdev_t *vd)
8595{
8596 vdev_t *newvd, *oldvd;
8597
8598 for (int c = 0; c < vd->vdev_children; c++) {
8599 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
8600 if (oldvd != NULL)
8601 return (oldvd);
8602 }
8603
8604 /*
8605 * Check for a completed replacement. We always consider the first
8606 * vdev in the list to be the oldest vdev, and the last one to be
8607 * the newest (see spa_vdev_attach() for how that works). In
8608 * the case where the newest vdev is faulted, we will not automatically
8609 * remove it after a resilver completes. This is OK as it will require
8610 * user intervention to determine which disk the admin wishes to keep.
8611 */
8612 if (vd->vdev_ops == &vdev_replacing_ops) {
8613 ASSERT(vd->vdev_children > 1);
8614
8615 newvd = vd->vdev_child[vd->vdev_children - 1];
8616 oldvd = vd->vdev_child[0];
8617
8618 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
8619 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
8620 !vdev_dtl_required(oldvd))
8621 return (oldvd);
8622 }
8623
8624 /*
8625 * Check for a completed resilver with the 'unspare' flag set.
8626 * Also potentially update faulted state.
8627 */
8628 if (vd->vdev_ops == &vdev_spare_ops) {
8629 vdev_t *first = vd->vdev_child[0];
8630 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
8631
8632 if (last->vdev_unspare) {
8633 oldvd = first;
8634 newvd = last;
8635 } else if (first->vdev_unspare) {
8636 oldvd = last;
8637 newvd = first;
8638 } else {
8639 oldvd = NULL;
8640 }
8641
8642 if (oldvd != NULL &&
8643 vdev_dtl_empty(newvd, DTL_MISSING) &&
8644 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
8645 !vdev_dtl_required(oldvd))
8646 return (oldvd);
8647
8648 vdev_propagate_state(vd);
8649
8650 /*
8651 * If there are more than two spares attached to a disk,
8652 * and those spares are not required, then we want to
8653 * attempt to free them up now so that they can be used
8654 * by other pools. Once we're back down to a single
8655 * disk+spare, we stop removing them.
8656 */
8657 if (vd->vdev_children > 2) {
8658 newvd = vd->vdev_child[1];
8659
8660 if (newvd->vdev_isspare && last->vdev_isspare &&
8661 vdev_dtl_empty(last, DTL_MISSING) &&
8662 vdev_dtl_empty(last, DTL_OUTAGE) &&
8663 !vdev_dtl_required(newvd))
8664 return (newvd);
8665 }
8666 }
8667
8668 return (NULL);
8669}
8670
8671static void
8672spa_vdev_resilver_done(spa_t *spa)
8673{
8674 vdev_t *vd, *pvd, *ppvd;
8675 uint64_t guid, sguid, pguid, ppguid;
8676
8677 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8678
8679 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
8680 pvd = vd->vdev_parent;
8681 ppvd = pvd->vdev_parent;
8682 guid = vd->vdev_guid;
8683 pguid = pvd->vdev_guid;
8684 ppguid = ppvd->vdev_guid;
8685 sguid = 0;
8686 /*
8687 * If we have just finished replacing a hot spared device, then
8688 * we need to detach the parent's first child (the original hot
8689 * spare) as well.
8690 */
8691 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
8692 ppvd->vdev_children == 2) {
8693 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
8694 sguid = ppvd->vdev_child[1]->vdev_guid;
8695 }
8696 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
8697
8698 spa_config_exit(spa, SCL_ALL, FTAG);
8699 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
8700 return;
8701 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
8702 return;
8703 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8704 }
8705
8706 spa_config_exit(spa, SCL_ALL, FTAG);
8707
8708 /*
8709 * If a detach was not performed above replace waiters will not have
8710 * been notified. In which case we must do so now.
8711 */
8712 spa_notify_waiters(spa);
8713}
8714
8715/*
8716 * Update the stored path or FRU for this vdev.
8717 */
8718static int
8719spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
8720 boolean_t ispath)
8721{
8722 vdev_t *vd;
8723 boolean_t sync = B_FALSE;
8724
8725 ASSERT(spa_writeable(spa));
8726
8727 spa_vdev_state_enter(spa, SCL_ALL);
8728
8729 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
8730 return (spa_vdev_state_exit(spa, NULL, ENOENT));
8731
8732 if (!vd->vdev_ops->vdev_op_leaf)
8733 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
8734
8735 if (ispath) {
8736 if (strcmp(value, vd->vdev_path) != 0) {
8737 spa_strfree(vd->vdev_path);
8738 vd->vdev_path = spa_strdup(value);
8739 sync = B_TRUE;
8740 }
8741 } else {
8742 if (vd->vdev_fru == NULL) {
8743 vd->vdev_fru = spa_strdup(value);
8744 sync = B_TRUE;
8745 } else if (strcmp(value, vd->vdev_fru) != 0) {
8746 spa_strfree(vd->vdev_fru);
8747 vd->vdev_fru = spa_strdup(value);
8748 sync = B_TRUE;
8749 }
8750 }
8751
8752 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
8753}
8754
8755int
8756spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
8757{
8758 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
8759}
8760
8761int
8762spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
8763{
8764 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
8765}
8766
8767/*
8768 * ==========================================================================
8769 * SPA Scanning
8770 * ==========================================================================
8771 */
8772int
8773spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
8774{
8775 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8776
8777 if (dsl_scan_resilvering(spa->spa_dsl_pool))
8778 return (SET_ERROR(EBUSY));
8779
8780 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
8781}
8782
8783int
8784spa_scan_stop(spa_t *spa)
8785{
8786 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8787 if (dsl_scan_resilvering(spa->spa_dsl_pool))
8788 return (SET_ERROR(EBUSY));
8789
8790 return (dsl_scan_cancel(spa->spa_dsl_pool));
8791}
8792
8793int
8794spa_scan(spa_t *spa, pool_scan_func_t func)
8795{
8796 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8797
8798 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
8799 return (SET_ERROR(ENOTSUP));
8800
8801 if (func == POOL_SCAN_RESILVER &&
8802 !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
8803 return (SET_ERROR(ENOTSUP));
8804
8805 /*
8806 * If a resilver was requested, but there is no DTL on a
8807 * writeable leaf device, we have nothing to do.
8808 */
8809 if (func == POOL_SCAN_RESILVER &&
8810 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
8811 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
8812 return (0);
8813 }
8814
8815 if (func == POOL_SCAN_ERRORSCRUB &&
8816 !spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG))
8817 return (SET_ERROR(ENOTSUP));
8818
8819 return (dsl_scan(spa->spa_dsl_pool, func));
8820}
8821
8822/*
8823 * ==========================================================================
8824 * SPA async task processing
8825 * ==========================================================================
8826 */
8827
8828static void
8829spa_async_remove(spa_t *spa, vdev_t *vd)
8830{
8831 if (vd->vdev_remove_wanted) {
8832 vd->vdev_remove_wanted = B_FALSE;
8833 vd->vdev_delayed_close = B_FALSE;
8834 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
8835
8836 /*
8837 * We want to clear the stats, but we don't want to do a full
8838 * vdev_clear() as that will cause us to throw away
8839 * degraded/faulted state as well as attempt to reopen the
8840 * device, all of which is a waste.
8841 */
8842 vd->vdev_stat.vs_read_errors = 0;
8843 vd->vdev_stat.vs_write_errors = 0;
8844 vd->vdev_stat.vs_checksum_errors = 0;
8845
8846 vdev_state_dirty(vd->vdev_top);
8847
8848 /* Tell userspace that the vdev is gone. */
8849 zfs_post_remove(spa, vd);
8850 }
8851
8852 for (int c = 0; c < vd->vdev_children; c++)
8853 spa_async_remove(spa, vd->vdev_child[c]);
8854}
8855
8856static void
8857spa_async_fault_vdev(spa_t *spa, vdev_t *vd)
8858{
8859 if (vd->vdev_fault_wanted) {
8860 vd->vdev_fault_wanted = B_FALSE;
8861 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
8862 VDEV_AUX_ERR_EXCEEDED);
8863 }
8864
8865 for (int c = 0; c < vd->vdev_children; c++)
8866 spa_async_fault_vdev(spa, vd->vdev_child[c]);
8867}
8868
8869static void
8870spa_async_autoexpand(spa_t *spa, vdev_t *vd)
8871{
8872 if (!spa->spa_autoexpand)
8873 return;
8874
8875 for (int c = 0; c < vd->vdev_children; c++) {
8876 vdev_t *cvd = vd->vdev_child[c];
8877 spa_async_autoexpand(spa, cvd);
8878 }
8879
8880 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
8881 return;
8882
8883 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
8884}
8885
8886static __attribute__((noreturn)) void
8887spa_async_thread(void *arg)
8888{
8889 spa_t *spa = (spa_t *)arg;
8890 dsl_pool_t *dp = spa->spa_dsl_pool;
8891 int tasks;
8892
8893 ASSERT(spa->spa_sync_on);
8894
8895 mutex_enter(&spa->spa_async_lock);
8896 tasks = spa->spa_async_tasks;
8897 spa->spa_async_tasks = 0;
8898 mutex_exit(&spa->spa_async_lock);
8899
8900 /*
8901 * See if the config needs to be updated.
8902 */
8903 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
8904 uint64_t old_space, new_space;
8905
8906 mutex_enter(&spa_namespace_lock);
8907 old_space = metaslab_class_get_space(spa_normal_class(spa));
8908 old_space += metaslab_class_get_space(spa_special_class(spa));
8909 old_space += metaslab_class_get_space(spa_dedup_class(spa));
8910 old_space += metaslab_class_get_space(
8911 spa_embedded_log_class(spa));
8912
8913 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
8914
8915 new_space = metaslab_class_get_space(spa_normal_class(spa));
8916 new_space += metaslab_class_get_space(spa_special_class(spa));
8917 new_space += metaslab_class_get_space(spa_dedup_class(spa));
8918 new_space += metaslab_class_get_space(
8919 spa_embedded_log_class(spa));
8920 mutex_exit(&spa_namespace_lock);
8921
8922 /*
8923 * If the pool grew as a result of the config update,
8924 * then log an internal history event.
8925 */
8926 if (new_space != old_space) {
8927 spa_history_log_internal(spa, "vdev online", NULL,
8928 "pool '%s' size: %llu(+%llu)",
8929 spa_name(spa), (u_longlong_t)new_space,
8930 (u_longlong_t)(new_space - old_space));
8931 }
8932 }
8933
8934 /*
8935 * See if any devices need to be marked REMOVED.
8936 */
8937 if (tasks & SPA_ASYNC_REMOVE) {
8938 spa_vdev_state_enter(spa, SCL_NONE);
8939 spa_async_remove(spa, spa->spa_root_vdev);
8940 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
8941 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
8942 for (int i = 0; i < spa->spa_spares.sav_count; i++)
8943 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
8944 (void) spa_vdev_state_exit(spa, NULL, 0);
8945 }
8946
8947 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
8948 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8949 spa_async_autoexpand(spa, spa->spa_root_vdev);
8950 spa_config_exit(spa, SCL_CONFIG, FTAG);
8951 }
8952
8953 /*
8954 * See if any devices need to be marked faulted.
8955 */
8956 if (tasks & SPA_ASYNC_FAULT_VDEV) {
8957 spa_vdev_state_enter(spa, SCL_NONE);
8958 spa_async_fault_vdev(spa, spa->spa_root_vdev);
8959 (void) spa_vdev_state_exit(spa, NULL, 0);
8960 }
8961
8962 /*
8963 * If any devices are done replacing, detach them.
8964 */
8965 if (tasks & SPA_ASYNC_RESILVER_DONE ||
8966 tasks & SPA_ASYNC_REBUILD_DONE ||
8967 tasks & SPA_ASYNC_DETACH_SPARE) {
8968 spa_vdev_resilver_done(spa);
8969 }
8970
8971 /*
8972 * Kick off a resilver.
8973 */
8974 if (tasks & SPA_ASYNC_RESILVER &&
8975 !vdev_rebuild_active(spa->spa_root_vdev) &&
8976 (!dsl_scan_resilvering(dp) ||
8977 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
8978 dsl_scan_restart_resilver(dp, 0);
8979
8980 if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
8981 mutex_enter(&spa_namespace_lock);
8982 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8983 vdev_initialize_restart(spa->spa_root_vdev);
8984 spa_config_exit(spa, SCL_CONFIG, FTAG);
8985 mutex_exit(&spa_namespace_lock);
8986 }
8987
8988 if (tasks & SPA_ASYNC_TRIM_RESTART) {
8989 mutex_enter(&spa_namespace_lock);
8990 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8991 vdev_trim_restart(spa->spa_root_vdev);
8992 spa_config_exit(spa, SCL_CONFIG, FTAG);
8993 mutex_exit(&spa_namespace_lock);
8994 }
8995
8996 if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
8997 mutex_enter(&spa_namespace_lock);
8998 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8999 vdev_autotrim_restart(spa);
9000 spa_config_exit(spa, SCL_CONFIG, FTAG);
9001 mutex_exit(&spa_namespace_lock);
9002 }
9003
9004 /*
9005 * Kick off L2 cache whole device TRIM.
9006 */
9007 if (tasks & SPA_ASYNC_L2CACHE_TRIM) {
9008 mutex_enter(&spa_namespace_lock);
9009 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9010 vdev_trim_l2arc(spa);
9011 spa_config_exit(spa, SCL_CONFIG, FTAG);
9012 mutex_exit(&spa_namespace_lock);
9013 }
9014
9015 /*
9016 * Kick off L2 cache rebuilding.
9017 */
9018 if (tasks & SPA_ASYNC_L2CACHE_REBUILD) {
9019 mutex_enter(&spa_namespace_lock);
9020 spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER);
9021 l2arc_spa_rebuild_start(spa);
9022 spa_config_exit(spa, SCL_L2ARC, FTAG);
9023 mutex_exit(&spa_namespace_lock);
9024 }
9025
9026 /*
9027 * Let the world know that we're done.
9028 */
9029 mutex_enter(&spa->spa_async_lock);
9030 spa->spa_async_thread = NULL;
9031 cv_broadcast(&spa->spa_async_cv);
9032 mutex_exit(&spa->spa_async_lock);
9033 thread_exit();
9034}
9035
9036void
9037spa_async_suspend(spa_t *spa)
9038{
9039 mutex_enter(&spa->spa_async_lock);
9040 spa->spa_async_suspended++;
9041 while (spa->spa_async_thread != NULL)
9042 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
9043 mutex_exit(&spa->spa_async_lock);
9044
9045 spa_vdev_remove_suspend(spa);
9046
9047 zthr_t *condense_thread = spa->spa_condense_zthr;
9048 if (condense_thread != NULL)
9049 zthr_cancel(condense_thread);
9050
9051 zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr;
9052 if (raidz_expand_thread != NULL)
9053 zthr_cancel(raidz_expand_thread);
9054
9055 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
9056 if (discard_thread != NULL)
9057 zthr_cancel(discard_thread);
9058
9059 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
9060 if (ll_delete_thread != NULL)
9061 zthr_cancel(ll_delete_thread);
9062
9063 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
9064 if (ll_condense_thread != NULL)
9065 zthr_cancel(ll_condense_thread);
9066}
9067
9068void
9069spa_async_resume(spa_t *spa)
9070{
9071 mutex_enter(&spa->spa_async_lock);
9072 ASSERT(spa->spa_async_suspended != 0);
9073 spa->spa_async_suspended--;
9074 mutex_exit(&spa->spa_async_lock);
9075 spa_restart_removal(spa);
9076
9077 zthr_t *condense_thread = spa->spa_condense_zthr;
9078 if (condense_thread != NULL)
9079 zthr_resume(condense_thread);
9080
9081 zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr;
9082 if (raidz_expand_thread != NULL)
9083 zthr_resume(raidz_expand_thread);
9084
9085 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
9086 if (discard_thread != NULL)
9087 zthr_resume(discard_thread);
9088
9089 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
9090 if (ll_delete_thread != NULL)
9091 zthr_resume(ll_delete_thread);
9092
9093 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
9094 if (ll_condense_thread != NULL)
9095 zthr_resume(ll_condense_thread);
9096}
9097
9098static boolean_t
9099spa_async_tasks_pending(spa_t *spa)
9100{
9101 uint_t non_config_tasks;
9102 uint_t config_task;
9103 boolean_t config_task_suspended;
9104
9105 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
9106 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
9107 if (spa->spa_ccw_fail_time == 0) {
9108 config_task_suspended = B_FALSE;
9109 } else {
9110 config_task_suspended =
9111 (gethrtime() - spa->spa_ccw_fail_time) <
9112 ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
9113 }
9114
9115 return (non_config_tasks || (config_task && !config_task_suspended));
9116}
9117
9118static void
9119spa_async_dispatch(spa_t *spa)
9120{
9121 mutex_enter(&spa->spa_async_lock);
9122 if (spa_async_tasks_pending(spa) &&
9123 !spa->spa_async_suspended &&
9124 spa->spa_async_thread == NULL)
9125 spa->spa_async_thread = thread_create(NULL, 0,
9126 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
9127 mutex_exit(&spa->spa_async_lock);
9128}
9129
9130void
9131spa_async_request(spa_t *spa, int task)
9132{
9133 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
9134 mutex_enter(&spa->spa_async_lock);
9135 spa->spa_async_tasks |= task;
9136 mutex_exit(&spa->spa_async_lock);
9137}
9138
9139int
9140spa_async_tasks(spa_t *spa)
9141{
9142 return (spa->spa_async_tasks);
9143}
9144
9145/*
9146 * ==========================================================================
9147 * SPA syncing routines
9148 * ==========================================================================
9149 */
9150
9151
9152static int
9153bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
9154 dmu_tx_t *tx)
9155{
9156 bpobj_t *bpo = arg;
9157 bpobj_enqueue(bpo, bp, bp_freed, tx);
9158 return (0);
9159}
9160
9161int
9162bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9163{
9164 return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx));
9165}
9166
9167int
9168bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9169{
9170 return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx));
9171}
9172
9173static int
9174spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9175{
9176 zio_t *pio = arg;
9177
9178 zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp,
9179 pio->io_flags));
9180 return (0);
9181}
9182
9183static int
9184bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
9185 dmu_tx_t *tx)
9186{
9187 ASSERT(!bp_freed);
9188 return (spa_free_sync_cb(arg, bp, tx));
9189}
9190
9191/*
9192 * Note: this simple function is not inlined to make it easier to dtrace the
9193 * amount of time spent syncing frees.
9194 */
9195static void
9196spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
9197{
9198 zio_t *zio = zio_root(spa, NULL, NULL, 0);
9199 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
9200 VERIFY(zio_wait(zio) == 0);
9201}
9202
9203/*
9204 * Note: this simple function is not inlined to make it easier to dtrace the
9205 * amount of time spent syncing deferred frees.
9206 */
9207static void
9208spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
9209{
9210 if (spa_sync_pass(spa) != 1)
9211 return;
9212
9213 /*
9214 * Note:
9215 * If the log space map feature is active, we stop deferring
9216 * frees to the next TXG and therefore running this function
9217 * would be considered a no-op as spa_deferred_bpobj should
9218 * not have any entries.
9219 *
9220 * That said we run this function anyway (instead of returning
9221 * immediately) for the edge-case scenario where we just
9222 * activated the log space map feature in this TXG but we have
9223 * deferred frees from the previous TXG.
9224 */
9225 zio_t *zio = zio_root(spa, NULL, NULL, 0);
9226 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
9227 bpobj_spa_free_sync_cb, zio, tx), ==, 0);
9228 VERIFY0(zio_wait(zio));
9229}
9230
9231static void
9232spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
9233{
9234 char *packed = NULL;
9235 size_t bufsize;
9236 size_t nvsize = 0;
9237 dmu_buf_t *db;
9238
9239 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
9240
9241 /*
9242 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
9243 * information. This avoids the dmu_buf_will_dirty() path and
9244 * saves us a pre-read to get data we don't actually care about.
9245 */
9246 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
9247 packed = vmem_alloc(bufsize, KM_SLEEP);
9248
9249 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
9250 KM_SLEEP) == 0);
9251 memset(packed + nvsize, 0, bufsize - nvsize);
9252
9253 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
9254
9255 vmem_free(packed, bufsize);
9256
9257 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
9258 dmu_buf_will_dirty(db, tx);
9259 *(uint64_t *)db->db_data = nvsize;
9260 dmu_buf_rele(db, FTAG);
9261}
9262
9263static void
9264spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
9265 const char *config, const char *entry)
9266{
9267 nvlist_t *nvroot;
9268 nvlist_t **list;
9269 int i;
9270
9271 if (!sav->sav_sync)
9272 return;
9273
9274 /*
9275 * Update the MOS nvlist describing the list of available devices.
9276 * spa_validate_aux() will have already made sure this nvlist is
9277 * valid and the vdevs are labeled appropriately.
9278 */
9279 if (sav->sav_object == 0) {
9280 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
9281 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
9282 sizeof (uint64_t), tx);
9283 VERIFY(zap_update(spa->spa_meta_objset,
9284 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
9285 &sav->sav_object, tx) == 0);
9286 }
9287
9288 nvroot = fnvlist_alloc();
9289 if (sav->sav_count == 0) {
9290 fnvlist_add_nvlist_array(nvroot, config,
9291 (const nvlist_t * const *)NULL, 0);
9292 } else {
9293 list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
9294 for (i = 0; i < sav->sav_count; i++)
9295 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
9296 B_FALSE, VDEV_CONFIG_L2CACHE);
9297 fnvlist_add_nvlist_array(nvroot, config,
9298 (const nvlist_t * const *)list, sav->sav_count);
9299 for (i = 0; i < sav->sav_count; i++)
9300 nvlist_free(list[i]);
9301 kmem_free(list, sav->sav_count * sizeof (void *));
9302 }
9303
9304 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
9305 nvlist_free(nvroot);
9306
9307 sav->sav_sync = B_FALSE;
9308}
9309
9310/*
9311 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
9312 * The all-vdev ZAP must be empty.
9313 */
9314static void
9315spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
9316{
9317 spa_t *spa = vd->vdev_spa;
9318
9319 if (vd->vdev_root_zap != 0 &&
9320 spa_feature_is_active(spa, SPA_FEATURE_AVZ_V2)) {
9321 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9322 vd->vdev_root_zap, tx));
9323 }
9324 if (vd->vdev_top_zap != 0) {
9325 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9326 vd->vdev_top_zap, tx));
9327 }
9328 if (vd->vdev_leaf_zap != 0) {
9329 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9330 vd->vdev_leaf_zap, tx));
9331 }
9332 for (uint64_t i = 0; i < vd->vdev_children; i++) {
9333 spa_avz_build(vd->vdev_child[i], avz, tx);
9334 }
9335}
9336
9337static void
9338spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
9339{
9340 nvlist_t *config;
9341
9342 /*
9343 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
9344 * its config may not be dirty but we still need to build per-vdev ZAPs.
9345 * Similarly, if the pool is being assembled (e.g. after a split), we
9346 * need to rebuild the AVZ although the config may not be dirty.
9347 */
9348 if (list_is_empty(&spa->spa_config_dirty_list) &&
9349 spa->spa_avz_action == AVZ_ACTION_NONE)
9350 return;
9351
9352 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9353
9354 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
9355 spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
9356 spa->spa_all_vdev_zaps != 0);
9357
9358 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
9359 /* Make and build the new AVZ */
9360 uint64_t new_avz = zap_create(spa->spa_meta_objset,
9361 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
9362 spa_avz_build(spa->spa_root_vdev, new_avz, tx);
9363
9364 /* Diff old AVZ with new one */
9365 zap_cursor_t zc;
9366 zap_attribute_t za;
9367
9368 for (zap_cursor_init(&zc, spa->spa_meta_objset,
9369 spa->spa_all_vdev_zaps);
9370 zap_cursor_retrieve(&zc, &za) == 0;
9371 zap_cursor_advance(&zc)) {
9372 uint64_t vdzap = za.za_first_integer;
9373 if (zap_lookup_int(spa->spa_meta_objset, new_avz,
9374 vdzap) == ENOENT) {
9375 /*
9376 * ZAP is listed in old AVZ but not in new one;
9377 * destroy it
9378 */
9379 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
9380 tx));
9381 }
9382 }
9383
9384 zap_cursor_fini(&zc);
9385
9386 /* Destroy the old AVZ */
9387 VERIFY0(zap_destroy(spa->spa_meta_objset,
9388 spa->spa_all_vdev_zaps, tx));
9389
9390 /* Replace the old AVZ in the dir obj with the new one */
9391 VERIFY0(zap_update(spa->spa_meta_objset,
9392 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
9393 sizeof (new_avz), 1, &new_avz, tx));
9394
9395 spa->spa_all_vdev_zaps = new_avz;
9396 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
9397 zap_cursor_t zc;
9398 zap_attribute_t za;
9399
9400 /* Walk through the AVZ and destroy all listed ZAPs */
9401 for (zap_cursor_init(&zc, spa->spa_meta_objset,
9402 spa->spa_all_vdev_zaps);
9403 zap_cursor_retrieve(&zc, &za) == 0;
9404 zap_cursor_advance(&zc)) {
9405 uint64_t zap = za.za_first_integer;
9406 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
9407 }
9408
9409 zap_cursor_fini(&zc);
9410
9411 /* Destroy and unlink the AVZ itself */
9412 VERIFY0(zap_destroy(spa->spa_meta_objset,
9413 spa->spa_all_vdev_zaps, tx));
9414 VERIFY0(zap_remove(spa->spa_meta_objset,
9415 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
9416 spa->spa_all_vdev_zaps = 0;
9417 }
9418
9419 if (spa->spa_all_vdev_zaps == 0) {
9420 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
9421 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
9422 DMU_POOL_VDEV_ZAP_MAP, tx);
9423 }
9424 spa->spa_avz_action = AVZ_ACTION_NONE;
9425
9426 /* Create ZAPs for vdevs that don't have them. */
9427 vdev_construct_zaps(spa->spa_root_vdev, tx);
9428
9429 config = spa_config_generate(spa, spa->spa_root_vdev,
9430 dmu_tx_get_txg(tx), B_FALSE);
9431
9432 /*
9433 * If we're upgrading the spa version then make sure that
9434 * the config object gets updated with the correct version.
9435 */
9436 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
9437 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
9438 spa->spa_uberblock.ub_version);
9439
9440 spa_config_exit(spa, SCL_STATE, FTAG);
9441
9442 nvlist_free(spa->spa_config_syncing);
9443 spa->spa_config_syncing = config;
9444
9445 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
9446}
9447
9448static void
9449spa_sync_version(void *arg, dmu_tx_t *tx)
9450{
9451 uint64_t *versionp = arg;
9452 uint64_t version = *versionp;
9453 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
9454
9455 /*
9456 * Setting the version is special cased when first creating the pool.
9457 */
9458 ASSERT(tx->tx_txg != TXG_INITIAL);
9459
9460 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
9461 ASSERT(version >= spa_version(spa));
9462
9463 spa->spa_uberblock.ub_version = version;
9464 vdev_config_dirty(spa->spa_root_vdev);
9465 spa_history_log_internal(spa, "set", tx, "version=%lld",
9466 (longlong_t)version);
9467}
9468
9469/*
9470 * Set zpool properties.
9471 */
9472static void
9473spa_sync_props(void *arg, dmu_tx_t *tx)
9474{
9475 nvlist_t *nvp = arg;
9476 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
9477 objset_t *mos = spa->spa_meta_objset;
9478 nvpair_t *elem = NULL;
9479
9480 mutex_enter(&spa->spa_props_lock);
9481
9482 while ((elem = nvlist_next_nvpair(nvp, elem))) {
9483 uint64_t intval;
9484 const char *strval, *fname;
9485 zpool_prop_t prop;
9486 const char *propname;
9487 const char *elemname = nvpair_name(elem);
9488 zprop_type_t proptype;
9489 spa_feature_t fid;
9490
9491 switch (prop = zpool_name_to_prop(elemname)) {
9492 case ZPOOL_PROP_VERSION:
9493 intval = fnvpair_value_uint64(elem);
9494 /*
9495 * The version is synced separately before other
9496 * properties and should be correct by now.
9497 */
9498 ASSERT3U(spa_version(spa), >=, intval);
9499 break;
9500
9501 case ZPOOL_PROP_ALTROOT:
9502 /*
9503 * 'altroot' is a non-persistent property. It should
9504 * have been set temporarily at creation or import time.
9505 */
9506 ASSERT(spa->spa_root != NULL);
9507 break;
9508
9509 case ZPOOL_PROP_READONLY:
9510 case ZPOOL_PROP_CACHEFILE:
9511 /*
9512 * 'readonly' and 'cachefile' are also non-persistent
9513 * properties.
9514 */
9515 break;
9516 case ZPOOL_PROP_COMMENT:
9517 strval = fnvpair_value_string(elem);
9518 if (spa->spa_comment != NULL)
9519 spa_strfree(spa->spa_comment);
9520 spa->spa_comment = spa_strdup(strval);
9521 /*
9522 * We need to dirty the configuration on all the vdevs
9523 * so that their labels get updated. We also need to
9524 * update the cache file to keep it in sync with the
9525 * MOS version. It's unnecessary to do this for pool
9526 * creation since the vdev's configuration has already
9527 * been dirtied.
9528 */
9529 if (tx->tx_txg != TXG_INITIAL) {
9530 vdev_config_dirty(spa->spa_root_vdev);
9531 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
9532 }
9533 spa_history_log_internal(spa, "set", tx,
9534 "%s=%s", elemname, strval);
9535 break;
9536 case ZPOOL_PROP_COMPATIBILITY:
9537 strval = fnvpair_value_string(elem);
9538 if (spa->spa_compatibility != NULL)
9539 spa_strfree(spa->spa_compatibility);
9540 spa->spa_compatibility = spa_strdup(strval);
9541 /*
9542 * Dirty the configuration on vdevs as above.
9543 */
9544 if (tx->tx_txg != TXG_INITIAL) {
9545 vdev_config_dirty(spa->spa_root_vdev);
9546 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
9547 }
9548
9549 spa_history_log_internal(spa, "set", tx,
9550 "%s=%s", nvpair_name(elem), strval);
9551 break;
9552
9553 case ZPOOL_PROP_INVAL:
9554 if (zpool_prop_feature(elemname)) {
9555 fname = strchr(elemname, '@') + 1;
9556 VERIFY0(zfeature_lookup_name(fname, &fid));
9557
9558 spa_feature_enable(spa, fid, tx);
9559 spa_history_log_internal(spa, "set", tx,
9560 "%s=enabled", elemname);
9561 break;
9562 } else if (!zfs_prop_user(elemname)) {
9563 ASSERT(zpool_prop_feature(elemname));
9564 break;
9565 }
9566 zfs_fallthrough;
9567 default:
9568 /*
9569 * Set pool property values in the poolprops mos object.
9570 */
9571 if (spa->spa_pool_props_object == 0) {
9572 spa->spa_pool_props_object =
9573 zap_create_link(mos, DMU_OT_POOL_PROPS,
9574 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
9575 tx);
9576 }
9577
9578 /* normalize the property name */
9579 if (prop == ZPOOL_PROP_INVAL) {
9580 propname = elemname;
9581 proptype = PROP_TYPE_STRING;
9582 } else {
9583 propname = zpool_prop_to_name(prop);
9584 proptype = zpool_prop_get_type(prop);
9585 }
9586
9587 if (nvpair_type(elem) == DATA_TYPE_STRING) {
9588 ASSERT(proptype == PROP_TYPE_STRING);
9589 strval = fnvpair_value_string(elem);
9590 VERIFY0(zap_update(mos,
9591 spa->spa_pool_props_object, propname,
9592 1, strlen(strval) + 1, strval, tx));
9593 spa_history_log_internal(spa, "set", tx,
9594 "%s=%s", elemname, strval);
9595 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
9596 intval = fnvpair_value_uint64(elem);
9597
9598 if (proptype == PROP_TYPE_INDEX) {
9599 const char *unused;
9600 VERIFY0(zpool_prop_index_to_string(
9601 prop, intval, &unused));
9602 }
9603 VERIFY0(zap_update(mos,
9604 spa->spa_pool_props_object, propname,
9605 8, 1, &intval, tx));
9606 spa_history_log_internal(spa, "set", tx,
9607 "%s=%lld", elemname,
9608 (longlong_t)intval);
9609
9610 switch (prop) {
9611 case ZPOOL_PROP_DELEGATION:
9612 spa->spa_delegation = intval;
9613 break;
9614 case ZPOOL_PROP_BOOTFS:
9615 spa->spa_bootfs = intval;
9616 break;
9617 case ZPOOL_PROP_FAILUREMODE:
9618 spa->spa_failmode = intval;
9619 break;
9620 case ZPOOL_PROP_AUTOTRIM:
9621 spa->spa_autotrim = intval;
9622 spa_async_request(spa,
9623 SPA_ASYNC_AUTOTRIM_RESTART);
9624 break;
9625 case ZPOOL_PROP_AUTOEXPAND:
9626 spa->spa_autoexpand = intval;
9627 if (tx->tx_txg != TXG_INITIAL)
9628 spa_async_request(spa,
9629 SPA_ASYNC_AUTOEXPAND);
9630 break;
9631 case ZPOOL_PROP_MULTIHOST:
9632 spa->spa_multihost = intval;
9633 break;
9634 default:
9635 break;
9636 }
9637 } else {
9638 ASSERT(0); /* not allowed */
9639 }
9640 }
9641
9642 }
9643
9644 mutex_exit(&spa->spa_props_lock);
9645}
9646
9647/*
9648 * Perform one-time upgrade on-disk changes. spa_version() does not
9649 * reflect the new version this txg, so there must be no changes this
9650 * txg to anything that the upgrade code depends on after it executes.
9651 * Therefore this must be called after dsl_pool_sync() does the sync
9652 * tasks.
9653 */
9654static void
9655spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
9656{
9657 if (spa_sync_pass(spa) != 1)
9658 return;
9659
9660 dsl_pool_t *dp = spa->spa_dsl_pool;
9661 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
9662
9663 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
9664 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
9665 dsl_pool_create_origin(dp, tx);
9666
9667 /* Keeping the origin open increases spa_minref */
9668 spa->spa_minref += 3;
9669 }
9670
9671 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
9672 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
9673 dsl_pool_upgrade_clones(dp, tx);
9674 }
9675
9676 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
9677 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
9678 dsl_pool_upgrade_dir_clones(dp, tx);
9679
9680 /* Keeping the freedir open increases spa_minref */
9681 spa->spa_minref += 3;
9682 }
9683
9684 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
9685 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
9686 spa_feature_create_zap_objects(spa, tx);
9687 }
9688
9689 /*
9690 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
9691 * when possibility to use lz4 compression for metadata was added
9692 * Old pools that have this feature enabled must be upgraded to have
9693 * this feature active
9694 */
9695 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
9696 boolean_t lz4_en = spa_feature_is_enabled(spa,
9697 SPA_FEATURE_LZ4_COMPRESS);
9698 boolean_t lz4_ac = spa_feature_is_active(spa,
9699 SPA_FEATURE_LZ4_COMPRESS);
9700
9701 if (lz4_en && !lz4_ac)
9702 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
9703 }
9704
9705 /*
9706 * If we haven't written the salt, do so now. Note that the
9707 * feature may not be activated yet, but that's fine since
9708 * the presence of this ZAP entry is backwards compatible.
9709 */
9710 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
9711 DMU_POOL_CHECKSUM_SALT) == ENOENT) {
9712 VERIFY0(zap_add(spa->spa_meta_objset,
9713 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
9714 sizeof (spa->spa_cksum_salt.zcs_bytes),
9715 spa->spa_cksum_salt.zcs_bytes, tx));
9716 }
9717
9718 rrw_exit(&dp->dp_config_rwlock, FTAG);
9719}
9720
9721static void
9722vdev_indirect_state_sync_verify(vdev_t *vd)
9723{
9724 vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping;
9725 vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births;
9726
9727 if (vd->vdev_ops == &vdev_indirect_ops) {
9728 ASSERT(vim != NULL);
9729 ASSERT(vib != NULL);
9730 }
9731
9732 uint64_t obsolete_sm_object = 0;
9733 ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
9734 if (obsolete_sm_object != 0) {
9735 ASSERT(vd->vdev_obsolete_sm != NULL);
9736 ASSERT(vd->vdev_removing ||
9737 vd->vdev_ops == &vdev_indirect_ops);
9738 ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
9739 ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
9740 ASSERT3U(obsolete_sm_object, ==,
9741 space_map_object(vd->vdev_obsolete_sm));
9742 ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
9743 space_map_allocated(vd->vdev_obsolete_sm));
9744 }
9745 ASSERT(vd->vdev_obsolete_segments != NULL);
9746
9747 /*
9748 * Since frees / remaps to an indirect vdev can only
9749 * happen in syncing context, the obsolete segments
9750 * tree must be empty when we start syncing.
9751 */
9752 ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
9753}
9754
9755/*
9756 * Set the top-level vdev's max queue depth. Evaluate each top-level's
9757 * async write queue depth in case it changed. The max queue depth will
9758 * not change in the middle of syncing out this txg.
9759 */
9760static void
9761spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
9762{
9763 ASSERT(spa_writeable(spa));
9764
9765 vdev_t *rvd = spa->spa_root_vdev;
9766 uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
9767 zfs_vdev_queue_depth_pct / 100;
9768 metaslab_class_t *normal = spa_normal_class(spa);
9769 metaslab_class_t *special = spa_special_class(spa);
9770 metaslab_class_t *dedup = spa_dedup_class(spa);
9771
9772 uint64_t slots_per_allocator = 0;
9773 for (int c = 0; c < rvd->vdev_children; c++) {
9774 vdev_t *tvd = rvd->vdev_child[c];
9775
9776 metaslab_group_t *mg = tvd->vdev_mg;
9777 if (mg == NULL || !metaslab_group_initialized(mg))
9778 continue;
9779
9780 metaslab_class_t *mc = mg->mg_class;
9781 if (mc != normal && mc != special && mc != dedup)
9782 continue;
9783
9784 /*
9785 * It is safe to do a lock-free check here because only async
9786 * allocations look at mg_max_alloc_queue_depth, and async
9787 * allocations all happen from spa_sync().
9788 */
9789 for (int i = 0; i < mg->mg_allocators; i++) {
9790 ASSERT0(zfs_refcount_count(
9791 &(mg->mg_allocator[i].mga_alloc_queue_depth)));
9792 }
9793 mg->mg_max_alloc_queue_depth = max_queue_depth;
9794
9795 for (int i = 0; i < mg->mg_allocators; i++) {
9796 mg->mg_allocator[i].mga_cur_max_alloc_queue_depth =
9797 zfs_vdev_def_queue_depth;
9798 }
9799 slots_per_allocator += zfs_vdev_def_queue_depth;
9800 }
9801
9802 for (int i = 0; i < spa->spa_alloc_count; i++) {
9803 ASSERT0(zfs_refcount_count(&normal->mc_allocator[i].
9804 mca_alloc_slots));
9805 ASSERT0(zfs_refcount_count(&special->mc_allocator[i].
9806 mca_alloc_slots));
9807 ASSERT0(zfs_refcount_count(&dedup->mc_allocator[i].
9808 mca_alloc_slots));
9809 normal->mc_allocator[i].mca_alloc_max_slots =
9810 slots_per_allocator;
9811 special->mc_allocator[i].mca_alloc_max_slots =
9812 slots_per_allocator;
9813 dedup->mc_allocator[i].mca_alloc_max_slots =
9814 slots_per_allocator;
9815 }
9816 normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9817 special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9818 dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9819}
9820
9821static void
9822spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
9823{
9824 ASSERT(spa_writeable(spa));
9825
9826 vdev_t *rvd = spa->spa_root_vdev;
9827 for (int c = 0; c < rvd->vdev_children; c++) {
9828 vdev_t *vd = rvd->vdev_child[c];
9829 vdev_indirect_state_sync_verify(vd);
9830
9831 if (vdev_indirect_should_condense(vd)) {
9832 spa_condense_indirect_start_sync(vd, tx);
9833 break;
9834 }
9835 }
9836}
9837
9838static void
9839spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
9840{
9841 objset_t *mos = spa->spa_meta_objset;
9842 dsl_pool_t *dp = spa->spa_dsl_pool;
9843 uint64_t txg = tx->tx_txg;
9844 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
9845
9846 do {
9847 int pass = ++spa->spa_sync_pass;
9848
9849 spa_sync_config_object(spa, tx);
9850 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
9851 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
9852 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
9853 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
9854 spa_errlog_sync(spa, txg);
9855 dsl_pool_sync(dp, txg);
9856
9857 if (pass < zfs_sync_pass_deferred_free ||
9858 spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
9859 /*
9860 * If the log space map feature is active we don't
9861 * care about deferred frees and the deferred bpobj
9862 * as the log space map should effectively have the
9863 * same results (i.e. appending only to one object).
9864 */
9865 spa_sync_frees(spa, free_bpl, tx);
9866 } else {
9867 /*
9868 * We can not defer frees in pass 1, because
9869 * we sync the deferred frees later in pass 1.
9870 */
9871 ASSERT3U(pass, >, 1);
9872 bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb,
9873 &spa->spa_deferred_bpobj, tx);
9874 }
9875
9876 brt_sync(spa, txg);
9877 ddt_sync(spa, txg);
9878 dsl_scan_sync(dp, tx);
9879 dsl_errorscrub_sync(dp, tx);
9880 svr_sync(spa, tx);
9881 spa_sync_upgrades(spa, tx);
9882
9883 spa_flush_metaslabs(spa, tx);
9884
9885 vdev_t *vd = NULL;
9886 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
9887 != NULL)
9888 vdev_sync(vd, txg);
9889
9890 if (pass == 1) {
9891 /*
9892 * dsl_pool_sync() -> dp_sync_tasks may have dirtied
9893 * the config. If that happens, this txg should not
9894 * be a no-op. So we must sync the config to the MOS
9895 * before checking for no-op.
9896 *
9897 * Note that when the config is dirty, it will
9898 * be written to the MOS (i.e. the MOS will be
9899 * dirtied) every time we call spa_sync_config_object()
9900 * in this txg. Therefore we can't call this after
9901 * dsl_pool_sync() every pass, because it would
9902 * prevent us from converging, since we'd dirty
9903 * the MOS every pass.
9904 *
9905 * Sync tasks can only be processed in pass 1, so
9906 * there's no need to do this in later passes.
9907 */
9908 spa_sync_config_object(spa, tx);
9909 }
9910
9911 /*
9912 * Note: We need to check if the MOS is dirty because we could
9913 * have marked the MOS dirty without updating the uberblock
9914 * (e.g. if we have sync tasks but no dirty user data). We need
9915 * to check the uberblock's rootbp because it is updated if we
9916 * have synced out dirty data (though in this case the MOS will
9917 * most likely also be dirty due to second order effects, we
9918 * don't want to rely on that here).
9919 */
9920 if (pass == 1 &&
9921 BP_GET_LOGICAL_BIRTH(&spa->spa_uberblock.ub_rootbp) < txg &&
9922 !dmu_objset_is_dirty(mos, txg)) {
9923 /*
9924 * Nothing changed on the first pass, therefore this
9925 * TXG is a no-op. Avoid syncing deferred frees, so
9926 * that we can keep this TXG as a no-op.
9927 */
9928 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9929 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9930 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
9931 ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
9932 break;
9933 }
9934
9935 spa_sync_deferred_frees(spa, tx);
9936 } while (dmu_objset_is_dirty(mos, txg));
9937}
9938
9939/*
9940 * Rewrite the vdev configuration (which includes the uberblock) to
9941 * commit the transaction group.
9942 *
9943 * If there are no dirty vdevs, we sync the uberblock to a few random
9944 * top-level vdevs that are known to be visible in the config cache
9945 * (see spa_vdev_add() for a complete description). If there *are* dirty
9946 * vdevs, sync the uberblock to all vdevs.
9947 */
9948static void
9949spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
9950{
9951 vdev_t *rvd = spa->spa_root_vdev;
9952 uint64_t txg = tx->tx_txg;
9953
9954 for (;;) {
9955 int error = 0;
9956
9957 /*
9958 * We hold SCL_STATE to prevent vdev open/close/etc.
9959 * while we're attempting to write the vdev labels.
9960 */
9961 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9962
9963 if (list_is_empty(&spa->spa_config_dirty_list)) {
9964 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
9965 int svdcount = 0;
9966 int children = rvd->vdev_children;
9967 int c0 = random_in_range(children);
9968
9969 for (int c = 0; c < children; c++) {
9970 vdev_t *vd =
9971 rvd->vdev_child[(c0 + c) % children];
9972
9973 /* Stop when revisiting the first vdev */
9974 if (c > 0 && svd[0] == vd)
9975 break;
9976
9977 if (vd->vdev_ms_array == 0 ||
9978 vd->vdev_islog ||
9979 !vdev_is_concrete(vd))
9980 continue;
9981
9982 svd[svdcount++] = vd;
9983 if (svdcount == SPA_SYNC_MIN_VDEVS)
9984 break;
9985 }
9986 error = vdev_config_sync(svd, svdcount, txg);
9987 } else {
9988 error = vdev_config_sync(rvd->vdev_child,
9989 rvd->vdev_children, txg);
9990 }
9991
9992 if (error == 0)
9993 spa->spa_last_synced_guid = rvd->vdev_guid;
9994
9995 spa_config_exit(spa, SCL_STATE, FTAG);
9996
9997 if (error == 0)
9998 break;
9999 zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
10000 zio_resume_wait(spa);
10001 }
10002}
10003
10004/*
10005 * Sync the specified transaction group. New blocks may be dirtied as
10006 * part of the process, so we iterate until it converges.
10007 */
10008void
10009spa_sync(spa_t *spa, uint64_t txg)
10010{
10011 vdev_t *vd = NULL;
10012
10013 VERIFY(spa_writeable(spa));
10014
10015 /*
10016 * Wait for i/os issued in open context that need to complete
10017 * before this txg syncs.
10018 */
10019 (void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
10020 spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
10021 ZIO_FLAG_CANFAIL);
10022
10023 /*
10024 * Now that there can be no more cloning in this transaction group,
10025 * but we are still before issuing frees, we can process pending BRT
10026 * updates.
10027 */
10028 brt_pending_apply(spa, txg);
10029
10030 /*
10031 * Lock out configuration changes.
10032 */
10033 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
10034
10035 spa->spa_syncing_txg = txg;
10036 spa->spa_sync_pass = 0;
10037
10038 for (int i = 0; i < spa->spa_alloc_count; i++) {
10039 mutex_enter(&spa->spa_allocs[i].spaa_lock);
10040 VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
10041 mutex_exit(&spa->spa_allocs[i].spaa_lock);
10042 }
10043
10044 /*
10045 * If there are any pending vdev state changes, convert them
10046 * into config changes that go out with this transaction group.
10047 */
10048 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
10049 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
10050 /* Avoid holding the write lock unless actually necessary */
10051 if (vd->vdev_aux == NULL) {
10052 vdev_state_clean(vd);
10053 vdev_config_dirty(vd);
10054 continue;
10055 }
10056 /*
10057 * We need the write lock here because, for aux vdevs,
10058 * calling vdev_config_dirty() modifies sav_config.
10059 * This is ugly and will become unnecessary when we
10060 * eliminate the aux vdev wart by integrating all vdevs
10061 * into the root vdev tree.
10062 */
10063 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10064 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
10065 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
10066 vdev_state_clean(vd);
10067 vdev_config_dirty(vd);
10068 }
10069 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10070 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10071 }
10072 spa_config_exit(spa, SCL_STATE, FTAG);
10073
10074 dsl_pool_t *dp = spa->spa_dsl_pool;
10075 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
10076
10077 spa->spa_sync_starttime = gethrtime();
10078 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
10079 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
10080 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
10081 NSEC_TO_TICK(spa->spa_deadman_synctime));
10082
10083 /*
10084 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
10085 * set spa_deflate if we have no raid-z vdevs.
10086 */
10087 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
10088 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
10089 vdev_t *rvd = spa->spa_root_vdev;
10090
10091 int i;
10092 for (i = 0; i < rvd->vdev_children; i++) {
10093 vd = rvd->vdev_child[i];
10094 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
10095 break;
10096 }
10097 if (i == rvd->vdev_children) {
10098 spa->spa_deflate = TRUE;
10099 VERIFY0(zap_add(spa->spa_meta_objset,
10100 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
10101 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
10102 }
10103 }
10104
10105 spa_sync_adjust_vdev_max_queue_depth(spa);
10106
10107 spa_sync_condense_indirect(spa, tx);
10108
10109 spa_sync_iterate_to_convergence(spa, tx);
10110
10111#ifdef ZFS_DEBUG
10112 if (!list_is_empty(&spa->spa_config_dirty_list)) {
10113 /*
10114 * Make sure that the number of ZAPs for all the vdevs matches
10115 * the number of ZAPs in the per-vdev ZAP list. This only gets
10116 * called if the config is dirty; otherwise there may be
10117 * outstanding AVZ operations that weren't completed in
10118 * spa_sync_config_object.
10119 */
10120 uint64_t all_vdev_zap_entry_count;
10121 ASSERT0(zap_count(spa->spa_meta_objset,
10122 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
10123 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
10124 all_vdev_zap_entry_count);
10125 }
10126#endif
10127
10128 if (spa->spa_vdev_removal != NULL) {
10129 ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
10130 }
10131
10132 spa_sync_rewrite_vdev_config(spa, tx);
10133 dmu_tx_commit(tx);
10134
10135 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
10136 spa->spa_deadman_tqid = 0;
10137
10138 /*
10139 * Clear the dirty config list.
10140 */
10141 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
10142 vdev_config_clean(vd);
10143
10144 /*
10145 * Now that the new config has synced transactionally,
10146 * let it become visible to the config cache.
10147 */
10148 if (spa->spa_config_syncing != NULL) {
10149 spa_config_set(spa, spa->spa_config_syncing);
10150 spa->spa_config_txg = txg;
10151 spa->spa_config_syncing = NULL;
10152 }
10153
10154 dsl_pool_sync_done(dp, txg);
10155
10156 for (int i = 0; i < spa->spa_alloc_count; i++) {
10157 mutex_enter(&spa->spa_allocs[i].spaa_lock);
10158 VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
10159 mutex_exit(&spa->spa_allocs[i].spaa_lock);
10160 }
10161
10162 /*
10163 * Update usable space statistics.
10164 */
10165 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
10166 != NULL)
10167 vdev_sync_done(vd, txg);
10168
10169 metaslab_class_evict_old(spa->spa_normal_class, txg);
10170 metaslab_class_evict_old(spa->spa_log_class, txg);
10171
10172 spa_sync_close_syncing_log_sm(spa);
10173
10174 spa_update_dspace(spa);
10175
10176 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON)
10177 vdev_autotrim_kick(spa);
10178
10179 /*
10180 * It had better be the case that we didn't dirty anything
10181 * since vdev_config_sync().
10182 */
10183 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
10184 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
10185 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
10186
10187 while (zfs_pause_spa_sync)
10188 delay(1);
10189
10190 spa->spa_sync_pass = 0;
10191
10192 /*
10193 * Update the last synced uberblock here. We want to do this at
10194 * the end of spa_sync() so that consumers of spa_last_synced_txg()
10195 * will be guaranteed that all the processing associated with
10196 * that txg has been completed.
10197 */
10198 spa->spa_ubsync = spa->spa_uberblock;
10199 spa_config_exit(spa, SCL_CONFIG, FTAG);
10200
10201 spa_handle_ignored_writes(spa);
10202
10203 /*
10204 * If any async tasks have been requested, kick them off.
10205 */
10206 spa_async_dispatch(spa);
10207}
10208
10209/*
10210 * Sync all pools. We don't want to hold the namespace lock across these
10211 * operations, so we take a reference on the spa_t and drop the lock during the
10212 * sync.
10213 */
10214void
10215spa_sync_allpools(void)
10216{
10217 spa_t *spa = NULL;
10218 mutex_enter(&spa_namespace_lock);
10219 while ((spa = spa_next(spa)) != NULL) {
10220 if (spa_state(spa) != POOL_STATE_ACTIVE ||
10221 !spa_writeable(spa) || spa_suspended(spa))
10222 continue;
10223 spa_open_ref(spa, FTAG);
10224 mutex_exit(&spa_namespace_lock);
10225 txg_wait_synced(spa_get_dsl(spa), 0);
10226 mutex_enter(&spa_namespace_lock);
10227 spa_close(spa, FTAG);
10228 }
10229 mutex_exit(&spa_namespace_lock);
10230}
10231
10232taskq_t *
10233spa_sync_tq_create(spa_t *spa, const char *name)
10234{
10235 kthread_t **kthreads;
10236
10237 ASSERT(spa->spa_sync_tq == NULL);
10238 ASSERT3S(spa->spa_alloc_count, <=, boot_ncpus);
10239
10240 /*
10241 * - do not allow more allocators than cpus.
10242 * - there may be more cpus than allocators.
10243 * - do not allow more sync taskq threads than allocators or cpus.
10244 */
10245 int nthreads = spa->spa_alloc_count;
10246 spa->spa_syncthreads = kmem_zalloc(sizeof (spa_syncthread_info_t) *
10247 nthreads, KM_SLEEP);
10248
10249 spa->spa_sync_tq = taskq_create_synced(name, nthreads, minclsyspri,
10250 nthreads, INT_MAX, TASKQ_PREPOPULATE, &kthreads);
10251 VERIFY(spa->spa_sync_tq != NULL);
10252 VERIFY(kthreads != NULL);
10253
10254 spa_syncthread_info_t *ti = spa->spa_syncthreads;
10255 for (int i = 0; i < nthreads; i++, ti++) {
10256 ti->sti_thread = kthreads[i];
10257 ti->sti_allocator = i;
10258 }
10259
10260 kmem_free(kthreads, sizeof (*kthreads) * nthreads);
10261 return (spa->spa_sync_tq);
10262}
10263
10264void
10265spa_sync_tq_destroy(spa_t *spa)
10266{
10267 ASSERT(spa->spa_sync_tq != NULL);
10268
10269 taskq_wait(spa->spa_sync_tq);
10270 taskq_destroy(spa->spa_sync_tq);
10271 kmem_free(spa->spa_syncthreads,
10272 sizeof (spa_syncthread_info_t) * spa->spa_alloc_count);
10273 spa->spa_sync_tq = NULL;
10274}
10275
10276uint_t
10277spa_acq_allocator(spa_t *spa)
10278{
10279 int i;
10280
10281 if (spa->spa_alloc_count == 1)
10282 return (0);
10283
10284 mutex_enter(&spa->spa_allocs_use->sau_lock);
10285 uint_t r = spa->spa_allocs_use->sau_rotor;
10286 do {
10287 if (++r == spa->spa_alloc_count)
10288 r = 0;
10289 } while (spa->spa_allocs_use->sau_inuse[r]);
10290 spa->spa_allocs_use->sau_inuse[r] = B_TRUE;
10291 spa->spa_allocs_use->sau_rotor = r;
10292 mutex_exit(&spa->spa_allocs_use->sau_lock);
10293
10294 spa_syncthread_info_t *ti = spa->spa_syncthreads;
10295 for (i = 0; i < spa->spa_alloc_count; i++, ti++) {
10296 if (ti->sti_thread == curthread) {
10297 ti->sti_allocator = r;
10298 break;
10299 }
10300 }
10301 ASSERT3S(i, <, spa->spa_alloc_count);
10302 return (r);
10303}
10304
10305void
10306spa_rel_allocator(spa_t *spa, uint_t allocator)
10307{
10308 if (spa->spa_alloc_count > 1)
10309 spa->spa_allocs_use->sau_inuse[allocator] = B_FALSE;
10310}
10311
10312void
10313spa_select_allocator(zio_t *zio)
10314{
10315 zbookmark_phys_t *bm = &zio->io_bookmark;
10316 spa_t *spa = zio->io_spa;
10317
10318 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
10319
10320 /*
10321 * A gang block (for example) may have inherited its parent's
10322 * allocator, in which case there is nothing further to do here.
10323 */
10324 if (ZIO_HAS_ALLOCATOR(zio))
10325 return;
10326
10327 ASSERT(spa != NULL);
10328 ASSERT(bm != NULL);
10329
10330 /*
10331 * First try to use an allocator assigned to the syncthread, and set
10332 * the corresponding write issue taskq for the allocator.
10333 * Note, we must have an open pool to do this.
10334 */
10335 if (spa->spa_sync_tq != NULL) {
10336 spa_syncthread_info_t *ti = spa->spa_syncthreads;
10337 for (int i = 0; i < spa->spa_alloc_count; i++, ti++) {
10338 if (ti->sti_thread == curthread) {
10339 zio->io_allocator = ti->sti_allocator;
10340 return;
10341 }
10342 }
10343 }
10344
10345 /*
10346 * We want to try to use as many allocators as possible to help improve
10347 * performance, but we also want logically adjacent IOs to be physically
10348 * adjacent to improve sequential read performance. We chunk each object
10349 * into 2^20 block regions, and then hash based on the objset, object,
10350 * level, and region to accomplish both of these goals.
10351 */
10352 uint64_t hv = cityhash4(bm->zb_objset, bm->zb_object, bm->zb_level,
10353 bm->zb_blkid >> 20);
10354
10355 zio->io_allocator = (uint_t)hv % spa->spa_alloc_count;
10356}
10357
10358/*
10359 * ==========================================================================
10360 * Miscellaneous routines
10361 * ==========================================================================
10362 */
10363
10364/*
10365 * Remove all pools in the system.
10366 */
10367void
10368spa_evict_all(void)
10369{
10370 spa_t *spa;
10371
10372 /*
10373 * Remove all cached state. All pools should be closed now,
10374 * so every spa in the AVL tree should be unreferenced.
10375 */
10376 mutex_enter(&spa_namespace_lock);
10377 while ((spa = spa_next(NULL)) != NULL) {
10378 /*
10379 * Stop async tasks. The async thread may need to detach
10380 * a device that's been replaced, which requires grabbing
10381 * spa_namespace_lock, so we must drop it here.
10382 */
10383 spa_open_ref(spa, FTAG);
10384 mutex_exit(&spa_namespace_lock);
10385 spa_async_suspend(spa);
10386 mutex_enter(&spa_namespace_lock);
10387 spa_close(spa, FTAG);
10388
10389 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
10390 spa_unload(spa);
10391 spa_deactivate(spa);
10392 }
10393 spa_remove(spa);
10394 }
10395 mutex_exit(&spa_namespace_lock);
10396}
10397
10398vdev_t *
10399spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
10400{
10401 vdev_t *vd;
10402 int i;
10403
10404 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
10405 return (vd);
10406
10407 if (aux) {
10408 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
10409 vd = spa->spa_l2cache.sav_vdevs[i];
10410 if (vd->vdev_guid == guid)
10411 return (vd);
10412 }
10413
10414 for (i = 0; i < spa->spa_spares.sav_count; i++) {
10415 vd = spa->spa_spares.sav_vdevs[i];
10416 if (vd->vdev_guid == guid)
10417 return (vd);
10418 }
10419 }
10420
10421 return (NULL);
10422}
10423
10424void
10425spa_upgrade(spa_t *spa, uint64_t version)
10426{
10427 ASSERT(spa_writeable(spa));
10428
10429 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
10430
10431 /*
10432 * This should only be called for a non-faulted pool, and since a
10433 * future version would result in an unopenable pool, this shouldn't be
10434 * possible.
10435 */
10436 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
10437 ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
10438
10439 spa->spa_uberblock.ub_version = version;
10440 vdev_config_dirty(spa->spa_root_vdev);
10441
10442 spa_config_exit(spa, SCL_ALL, FTAG);
10443
10444 txg_wait_synced(spa_get_dsl(spa), 0);
10445}
10446
10447static boolean_t
10448spa_has_aux_vdev(spa_t *spa, uint64_t guid, spa_aux_vdev_t *sav)
10449{
10450 (void) spa;
10451 int i;
10452 uint64_t vdev_guid;
10453
10454 for (i = 0; i < sav->sav_count; i++)
10455 if (sav->sav_vdevs[i]->vdev_guid == guid)
10456 return (B_TRUE);
10457
10458 for (i = 0; i < sav->sav_npending; i++) {
10459 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
10460 &vdev_guid) == 0 && vdev_guid == guid)
10461 return (B_TRUE);
10462 }
10463
10464 return (B_FALSE);
10465}
10466
10467boolean_t
10468spa_has_l2cache(spa_t *spa, uint64_t guid)
10469{
10470 return (spa_has_aux_vdev(spa, guid, &spa->spa_l2cache));
10471}
10472
10473boolean_t
10474spa_has_spare(spa_t *spa, uint64_t guid)
10475{
10476 return (spa_has_aux_vdev(spa, guid, &spa->spa_spares));
10477}
10478
10479/*
10480 * Check if a pool has an active shared spare device.
10481 * Note: reference count of an active spare is 2, as a spare and as a replace
10482 */
10483static boolean_t
10484spa_has_active_shared_spare(spa_t *spa)
10485{
10486 int i, refcnt;
10487 uint64_t pool;
10488 spa_aux_vdev_t *sav = &spa->spa_spares;
10489
10490 for (i = 0; i < sav->sav_count; i++) {
10491 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
10492 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
10493 refcnt > 2)
10494 return (B_TRUE);
10495 }
10496
10497 return (B_FALSE);
10498}
10499
10500uint64_t
10501spa_total_metaslabs(spa_t *spa)
10502{
10503 vdev_t *rvd = spa->spa_root_vdev;
10504
10505 uint64_t m = 0;
10506 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
10507 vdev_t *vd = rvd->vdev_child[c];
10508 if (!vdev_is_concrete(vd))
10509 continue;
10510 m += vd->vdev_ms_count;
10511 }
10512 return (m);
10513}
10514
10515/*
10516 * Notify any waiting threads that some activity has switched from being in-
10517 * progress to not-in-progress so that the thread can wake up and determine
10518 * whether it is finished waiting.
10519 */
10520void
10521spa_notify_waiters(spa_t *spa)
10522{
10523 /*
10524 * Acquiring spa_activities_lock here prevents the cv_broadcast from
10525 * happening between the waiting thread's check and cv_wait.
10526 */
10527 mutex_enter(&spa->spa_activities_lock);
10528 cv_broadcast(&spa->spa_activities_cv);
10529 mutex_exit(&spa->spa_activities_lock);
10530}
10531
10532/*
10533 * Notify any waiting threads that the pool is exporting, and then block until
10534 * they are finished using the spa_t.
10535 */
10536void
10537spa_wake_waiters(spa_t *spa)
10538{
10539 mutex_enter(&spa->spa_activities_lock);
10540 spa->spa_waiters_cancel = B_TRUE;
10541 cv_broadcast(&spa->spa_activities_cv);
10542 while (spa->spa_waiters != 0)
10543 cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock);
10544 spa->spa_waiters_cancel = B_FALSE;
10545 mutex_exit(&spa->spa_activities_lock);
10546}
10547
10548/* Whether the vdev or any of its descendants are being initialized/trimmed. */
10549static boolean_t
10550spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity)
10551{
10552 spa_t *spa = vd->vdev_spa;
10553
10554 ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER));
10555 ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
10556 ASSERT(activity == ZPOOL_WAIT_INITIALIZE ||
10557 activity == ZPOOL_WAIT_TRIM);
10558
10559 kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ?
10560 &vd->vdev_initialize_lock : &vd->vdev_trim_lock;
10561
10562 mutex_exit(&spa->spa_activities_lock);
10563 mutex_enter(lock);
10564 mutex_enter(&spa->spa_activities_lock);
10565
10566 boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ?
10567 (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) :
10568 (vd->vdev_trim_state == VDEV_TRIM_ACTIVE);
10569 mutex_exit(lock);
10570
10571 if (in_progress)
10572 return (B_TRUE);
10573
10574 for (int i = 0; i < vd->vdev_children; i++) {
10575 if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i],
10576 activity))
10577 return (B_TRUE);
10578 }
10579
10580 return (B_FALSE);
10581}
10582
10583/*
10584 * If use_guid is true, this checks whether the vdev specified by guid is
10585 * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool
10586 * is being initialized/trimmed. The caller must hold the config lock and
10587 * spa_activities_lock.
10588 */
10589static int
10590spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid,
10591 zpool_wait_activity_t activity, boolean_t *in_progress)
10592{
10593 mutex_exit(&spa->spa_activities_lock);
10594 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10595 mutex_enter(&spa->spa_activities_lock);
10596
10597 vdev_t *vd;
10598 if (use_guid) {
10599 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
10600 if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) {
10601 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10602 return (EINVAL);
10603 }
10604 } else {
10605 vd = spa->spa_root_vdev;
10606 }
10607
10608 *in_progress = spa_vdev_activity_in_progress_impl(vd, activity);
10609
10610 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10611 return (0);
10612}
10613
10614/*
10615 * Locking for waiting threads
10616 * ---------------------------
10617 *
10618 * Waiting threads need a way to check whether a given activity is in progress,
10619 * and then, if it is, wait for it to complete. Each activity will have some
10620 * in-memory representation of the relevant on-disk state which can be used to
10621 * determine whether or not the activity is in progress. The in-memory state and
10622 * the locking used to protect it will be different for each activity, and may
10623 * not be suitable for use with a cvar (e.g., some state is protected by the
10624 * config lock). To allow waiting threads to wait without any races, another
10625 * lock, spa_activities_lock, is used.
10626 *
10627 * When the state is checked, both the activity-specific lock (if there is one)
10628 * and spa_activities_lock are held. In some cases, the activity-specific lock
10629 * is acquired explicitly (e.g. the config lock). In others, the locking is
10630 * internal to some check (e.g. bpobj_is_empty). After checking, the waiting
10631 * thread releases the activity-specific lock and, if the activity is in
10632 * progress, then cv_waits using spa_activities_lock.
10633 *
10634 * The waiting thread is woken when another thread, one completing some
10635 * activity, updates the state of the activity and then calls
10636 * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only
10637 * needs to hold its activity-specific lock when updating the state, and this
10638 * lock can (but doesn't have to) be dropped before calling spa_notify_waiters.
10639 *
10640 * Because spa_notify_waiters acquires spa_activities_lock before broadcasting,
10641 * and because it is held when the waiting thread checks the state of the
10642 * activity, it can never be the case that the completing thread both updates
10643 * the activity state and cv_broadcasts in between the waiting thread's check
10644 * and cv_wait. Thus, a waiting thread can never miss a wakeup.
10645 *
10646 * In order to prevent deadlock, when the waiting thread does its check, in some
10647 * cases it will temporarily drop spa_activities_lock in order to acquire the
10648 * activity-specific lock. The order in which spa_activities_lock and the
10649 * activity specific lock are acquired in the waiting thread is determined by
10650 * the order in which they are acquired in the completing thread; if the
10651 * completing thread calls spa_notify_waiters with the activity-specific lock
10652 * held, then the waiting thread must also acquire the activity-specific lock
10653 * first.
10654 */
10655
10656static int
10657spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity,
10658 boolean_t use_tag, uint64_t tag, boolean_t *in_progress)
10659{
10660 int error = 0;
10661
10662 ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
10663
10664 switch (activity) {
10665 case ZPOOL_WAIT_CKPT_DISCARD:
10666 *in_progress =
10667 (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) &&
10668 zap_contains(spa_meta_objset(spa),
10669 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) ==
10670 ENOENT);
10671 break;
10672 case ZPOOL_WAIT_FREE:
10673 *in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS &&
10674 !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) ||
10675 spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) ||
10676 spa_livelist_delete_check(spa));
10677 break;
10678 case ZPOOL_WAIT_INITIALIZE:
10679 case ZPOOL_WAIT_TRIM:
10680 error = spa_vdev_activity_in_progress(spa, use_tag, tag,
10681 activity, in_progress);
10682 break;
10683 case ZPOOL_WAIT_REPLACE:
10684 mutex_exit(&spa->spa_activities_lock);
10685 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10686 mutex_enter(&spa->spa_activities_lock);
10687
10688 *in_progress = vdev_replace_in_progress(spa->spa_root_vdev);
10689 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10690 break;
10691 case ZPOOL_WAIT_REMOVE:
10692 *in_progress = (spa->spa_removing_phys.sr_state ==
10693 DSS_SCANNING);
10694 break;
10695 case ZPOOL_WAIT_RESILVER:
10696 *in_progress = vdev_rebuild_active(spa->spa_root_vdev);
10697 if (*in_progress)
10698 break;
10699 zfs_fallthrough;
10700 case ZPOOL_WAIT_SCRUB:
10701 {
10702 boolean_t scanning, paused, is_scrub;
10703 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
10704
10705 is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB);
10706 scanning = (scn->scn_phys.scn_state == DSS_SCANNING);
10707 paused = dsl_scan_is_paused_scrub(scn);
10708 *in_progress = (scanning && !paused &&
10709 is_scrub == (activity == ZPOOL_WAIT_SCRUB));
10710 break;
10711 }
10712 case ZPOOL_WAIT_RAIDZ_EXPAND:
10713 {
10714 vdev_raidz_expand_t *vre = spa->spa_raidz_expand;
10715 *in_progress = (vre != NULL && vre->vre_state == DSS_SCANNING);
10716 break;
10717 }
10718 default:
10719 panic("unrecognized value for activity %d", activity);
10720 }
10721
10722 return (error);
10723}
10724
10725static int
10726spa_wait_common(const char *pool, zpool_wait_activity_t activity,
10727 boolean_t use_tag, uint64_t tag, boolean_t *waited)
10728{
10729 /*
10730 * The tag is used to distinguish between instances of an activity.
10731 * 'initialize' and 'trim' are the only activities that we use this for.
10732 * The other activities can only have a single instance in progress in a
10733 * pool at one time, making the tag unnecessary.
10734 *
10735 * There can be multiple devices being replaced at once, but since they
10736 * all finish once resilvering finishes, we don't bother keeping track
10737 * of them individually, we just wait for them all to finish.
10738 */
10739 if (use_tag && activity != ZPOOL_WAIT_INITIALIZE &&
10740 activity != ZPOOL_WAIT_TRIM)
10741 return (EINVAL);
10742
10743 if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES)
10744 return (EINVAL);
10745
10746 spa_t *spa;
10747 int error = spa_open(pool, &spa, FTAG);
10748 if (error != 0)
10749 return (error);
10750
10751 /*
10752 * Increment the spa's waiter count so that we can call spa_close and
10753 * still ensure that the spa_t doesn't get freed before this thread is
10754 * finished with it when the pool is exported. We want to call spa_close
10755 * before we start waiting because otherwise the additional ref would
10756 * prevent the pool from being exported or destroyed throughout the
10757 * potentially long wait.
10758 */
10759 mutex_enter(&spa->spa_activities_lock);
10760 spa->spa_waiters++;
10761 spa_close(spa, FTAG);
10762
10763 *waited = B_FALSE;
10764 for (;;) {
10765 boolean_t in_progress;
10766 error = spa_activity_in_progress(spa, activity, use_tag, tag,
10767 &in_progress);
10768
10769 if (error || !in_progress || spa->spa_waiters_cancel)
10770 break;
10771
10772 *waited = B_TRUE;
10773
10774 if (cv_wait_sig(&spa->spa_activities_cv,
10775 &spa->spa_activities_lock) == 0) {
10776 error = EINTR;
10777 break;
10778 }
10779 }
10780
10781 spa->spa_waiters--;
10782 cv_signal(&spa->spa_waiters_cv);
10783 mutex_exit(&spa->spa_activities_lock);
10784
10785 return (error);
10786}
10787
10788/*
10789 * Wait for a particular instance of the specified activity to complete, where
10790 * the instance is identified by 'tag'
10791 */
10792int
10793spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag,
10794 boolean_t *waited)
10795{
10796 return (spa_wait_common(pool, activity, B_TRUE, tag, waited));
10797}
10798
10799/*
10800 * Wait for all instances of the specified activity complete
10801 */
10802int
10803spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited)
10804{
10805
10806 return (spa_wait_common(pool, activity, B_FALSE, 0, waited));
10807}
10808
10809sysevent_t *
10810spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
10811{
10812 sysevent_t *ev = NULL;
10813#ifdef _KERNEL
10814 nvlist_t *resource;
10815
10816 resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
10817 if (resource) {
10818 ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
10819 ev->resource = resource;
10820 }
10821#else
10822 (void) spa, (void) vd, (void) hist_nvl, (void) name;
10823#endif
10824 return (ev);
10825}
10826
10827void
10828spa_event_post(sysevent_t *ev)
10829{
10830#ifdef _KERNEL
10831 if (ev) {
10832 zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
10833 kmem_free(ev, sizeof (*ev));
10834 }
10835#else
10836 (void) ev;
10837#endif
10838}
10839
10840/*
10841 * Post a zevent corresponding to the given sysevent. The 'name' must be one
10842 * of the event definitions in sys/sysevent/eventdefs.h. The payload will be
10843 * filled in from the spa and (optionally) the vdev. This doesn't do anything
10844 * in the userland libzpool, as we don't want consumers to misinterpret ztest
10845 * or zdb as real changes.
10846 */
10847void
10848spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
10849{
10850 spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
10851}
10852
10853/* state manipulation functions */
10854EXPORT_SYMBOL(spa_open);
10855EXPORT_SYMBOL(spa_open_rewind);
10856EXPORT_SYMBOL(spa_get_stats);
10857EXPORT_SYMBOL(spa_create);
10858EXPORT_SYMBOL(spa_import);
10859EXPORT_SYMBOL(spa_tryimport);
10860EXPORT_SYMBOL(spa_destroy);
10861EXPORT_SYMBOL(spa_export);
10862EXPORT_SYMBOL(spa_reset);
10863EXPORT_SYMBOL(spa_async_request);
10864EXPORT_SYMBOL(spa_async_suspend);
10865EXPORT_SYMBOL(spa_async_resume);
10866EXPORT_SYMBOL(spa_inject_addref);
10867EXPORT_SYMBOL(spa_inject_delref);
10868EXPORT_SYMBOL(spa_scan_stat_init);
10869EXPORT_SYMBOL(spa_scan_get_stats);
10870
10871/* device manipulation */
10872EXPORT_SYMBOL(spa_vdev_add);
10873EXPORT_SYMBOL(spa_vdev_attach);
10874EXPORT_SYMBOL(spa_vdev_detach);
10875EXPORT_SYMBOL(spa_vdev_setpath);
10876EXPORT_SYMBOL(spa_vdev_setfru);
10877EXPORT_SYMBOL(spa_vdev_split_mirror);
10878
10879/* spare statech is global across all pools) */
10880EXPORT_SYMBOL(spa_spare_add);
10881EXPORT_SYMBOL(spa_spare_remove);
10882EXPORT_SYMBOL(spa_spare_exists);
10883EXPORT_SYMBOL(spa_spare_activate);
10884
10885/* L2ARC statech is global across all pools) */
10886EXPORT_SYMBOL(spa_l2cache_add);
10887EXPORT_SYMBOL(spa_l2cache_remove);
10888EXPORT_SYMBOL(spa_l2cache_exists);
10889EXPORT_SYMBOL(spa_l2cache_activate);
10890EXPORT_SYMBOL(spa_l2cache_drop);
10891
10892/* scanning */
10893EXPORT_SYMBOL(spa_scan);
10894EXPORT_SYMBOL(spa_scan_stop);
10895
10896/* spa syncing */
10897EXPORT_SYMBOL(spa_sync); /* only for DMU use */
10898EXPORT_SYMBOL(spa_sync_allpools);
10899
10900/* properties */
10901EXPORT_SYMBOL(spa_prop_set);
10902EXPORT_SYMBOL(spa_prop_get);
10903EXPORT_SYMBOL(spa_prop_clear_bootfs);
10904
10905/* asynchronous event notification */
10906EXPORT_SYMBOL(spa_event_notify);
10907
10908ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_pct, UINT, ZMOD_RW,
10909 "Percentage of CPUs to run a metaslab preload taskq");
10910
10911/* BEGIN CSTYLED */
10912ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, UINT, ZMOD_RW,
10913 "log2 fraction of arc that can be used by inflight I/Os when "
10914 "verifying pool during import");
10915/* END CSTYLED */
10916
10917ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW,
10918 "Set to traverse metadata on pool import");
10919
10920ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW,
10921 "Set to traverse data on pool import");
10922
10923ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW,
10924 "Print vdev tree to zfs_dbgmsg during pool import");
10925
10926ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RW,
10927 "Percentage of CPUs to run an IO worker thread");
10928
10929ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_tpq, UINT, ZMOD_RW,
10930 "Number of threads per IO worker taskqueue");
10931
10932/* BEGIN CSTYLED */
10933ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, U64, ZMOD_RW,
10934 "Allow importing pool with up to this number of missing top-level "
10935 "vdevs (in read-only mode)");
10936/* END CSTYLED */
10937
10938ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT,
10939 ZMOD_RW, "Set the livelist condense zthr to pause");
10940
10941ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT,
10942 ZMOD_RW, "Set the livelist condense synctask to pause");
10943
10944/* BEGIN CSTYLED */
10945ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel,
10946 INT, ZMOD_RW,
10947 "Whether livelist condensing was canceled in the synctask");
10948
10949ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel,
10950 INT, ZMOD_RW,
10951 "Whether livelist condensing was canceled in the zthr function");
10952
10953ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT,
10954 ZMOD_RW,
10955 "Whether extra ALLOC blkptrs were added to a livelist entry while it "
10956 "was being condensed");
10957
10958#ifdef _KERNEL
10959ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs_zio, zio_, taskq_read,
10960 spa_taskq_read_param_set, spa_taskq_read_param_get, ZMOD_RW,
10961 "Configure IO queues for read IO");
10962ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs_zio, zio_, taskq_write,
10963 spa_taskq_write_param_set, spa_taskq_write_param_get, ZMOD_RW,
10964 "Configure IO queues for write IO");
10965#endif
10966/* END CSTYLED */
10967
10968ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_write_tpq, UINT, ZMOD_RW,
10969 "Number of CPUs per write issue taskq");