]> git.proxmox.com Git - mirror_zfs.git/blob - cmd/zdb/zdb.c
zdb: show BRT statistics and dump its contents
[mirror_zfs.git] / cmd / zdb / zdb.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
25 * Copyright (c) 2014 Integros [integros.com]
26 * Copyright 2016 Nexenta Systems, Inc.
27 * Copyright (c) 2017, 2018 Lawrence Livermore National Security, LLC.
28 * Copyright (c) 2015, 2017, Intel Corporation.
29 * Copyright (c) 2020 Datto Inc.
30 * Copyright (c) 2020, The FreeBSD Foundation [1]
31 *
32 * [1] Portions of this software were developed by Allan Jude
33 * under sponsorship from the FreeBSD Foundation.
34 * Copyright (c) 2021 Allan Jude
35 * Copyright (c) 2021 Toomas Soome <tsoome@me.com>
36 * Copyright (c) 2023, Klara Inc.
37 * Copyright (c) 2023, Rob Norris <robn@despairlabs.com>
38 */
39
40 #include <stdio.h>
41 #include <unistd.h>
42 #include <stdlib.h>
43 #include <ctype.h>
44 #include <getopt.h>
45 #include <openssl/evp.h>
46 #include <sys/zfs_context.h>
47 #include <sys/spa.h>
48 #include <sys/spa_impl.h>
49 #include <sys/dmu.h>
50 #include <sys/zap.h>
51 #include <sys/fs/zfs.h>
52 #include <sys/zfs_znode.h>
53 #include <sys/zfs_sa.h>
54 #include <sys/sa.h>
55 #include <sys/sa_impl.h>
56 #include <sys/vdev.h>
57 #include <sys/vdev_impl.h>
58 #include <sys/metaslab_impl.h>
59 #include <sys/dmu_objset.h>
60 #include <sys/dsl_dir.h>
61 #include <sys/dsl_dataset.h>
62 #include <sys/dsl_pool.h>
63 #include <sys/dsl_bookmark.h>
64 #include <sys/dbuf.h>
65 #include <sys/zil.h>
66 #include <sys/zil_impl.h>
67 #include <sys/stat.h>
68 #include <sys/resource.h>
69 #include <sys/dmu_send.h>
70 #include <sys/dmu_traverse.h>
71 #include <sys/zio_checksum.h>
72 #include <sys/zio_compress.h>
73 #include <sys/zfs_fuid.h>
74 #include <sys/arc.h>
75 #include <sys/arc_impl.h>
76 #include <sys/ddt.h>
77 #include <sys/zfeature.h>
78 #include <sys/abd.h>
79 #include <sys/blkptr.h>
80 #include <sys/dsl_crypt.h>
81 #include <sys/dsl_scan.h>
82 #include <sys/btree.h>
83 #include <sys/brt.h>
84 #include <sys/brt_impl.h>
85 #include <zfs_comutil.h>
86 #include <sys/zstd/zstd.h>
87
88 #include <libnvpair.h>
89 #include <libzutil.h>
90
91 #include "zdb.h"
92
93 #define ZDB_COMPRESS_NAME(idx) ((idx) < ZIO_COMPRESS_FUNCTIONS ? \
94 zio_compress_table[(idx)].ci_name : "UNKNOWN")
95 #define ZDB_CHECKSUM_NAME(idx) ((idx) < ZIO_CHECKSUM_FUNCTIONS ? \
96 zio_checksum_table[(idx)].ci_name : "UNKNOWN")
97 #define ZDB_OT_TYPE(idx) ((idx) < DMU_OT_NUMTYPES ? (idx) : \
98 (idx) == DMU_OTN_ZAP_DATA || (idx) == DMU_OTN_ZAP_METADATA ? \
99 DMU_OT_ZAP_OTHER : \
100 (idx) == DMU_OTN_UINT64_DATA || (idx) == DMU_OTN_UINT64_METADATA ? \
101 DMU_OT_UINT64_OTHER : DMU_OT_NUMTYPES)
102
103 /* Some platforms require part of inode IDs to be remapped */
104 #ifdef __APPLE__
105 #define ZDB_MAP_OBJECT_ID(obj) INO_XNUTOZFS(obj, 2)
106 #else
107 #define ZDB_MAP_OBJECT_ID(obj) (obj)
108 #endif
109
110 static const char *
111 zdb_ot_name(dmu_object_type_t type)
112 {
113 if (type < DMU_OT_NUMTYPES)
114 return (dmu_ot[type].ot_name);
115 else if ((type & DMU_OT_NEWTYPE) &&
116 ((type & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS))
117 return (dmu_ot_byteswap[type & DMU_OT_BYTESWAP_MASK].ob_name);
118 else
119 return ("UNKNOWN");
120 }
121
122 extern int reference_tracking_enable;
123 extern int zfs_recover;
124 extern uint_t zfs_vdev_async_read_max_active;
125 extern boolean_t spa_load_verify_dryrun;
126 extern boolean_t spa_mode_readable_spacemaps;
127 extern uint_t zfs_reconstruct_indirect_combinations_max;
128 extern uint_t zfs_btree_verify_intensity;
129
130 static const char cmdname[] = "zdb";
131 uint8_t dump_opt[256];
132
133 typedef void object_viewer_t(objset_t *, uint64_t, void *data, size_t size);
134
135 static uint64_t *zopt_metaslab = NULL;
136 static unsigned zopt_metaslab_args = 0;
137
138 typedef struct zopt_object_range {
139 uint64_t zor_obj_start;
140 uint64_t zor_obj_end;
141 uint64_t zor_flags;
142 } zopt_object_range_t;
143
144 static zopt_object_range_t *zopt_object_ranges = NULL;
145 static unsigned zopt_object_args = 0;
146
147 static int flagbits[256];
148
149 #define ZOR_FLAG_PLAIN_FILE 0x0001
150 #define ZOR_FLAG_DIRECTORY 0x0002
151 #define ZOR_FLAG_SPACE_MAP 0x0004
152 #define ZOR_FLAG_ZAP 0x0008
153 #define ZOR_FLAG_ALL_TYPES -1
154 #define ZOR_SUPPORTED_FLAGS (ZOR_FLAG_PLAIN_FILE | \
155 ZOR_FLAG_DIRECTORY | \
156 ZOR_FLAG_SPACE_MAP | \
157 ZOR_FLAG_ZAP)
158
159 #define ZDB_FLAG_CHECKSUM 0x0001
160 #define ZDB_FLAG_DECOMPRESS 0x0002
161 #define ZDB_FLAG_BSWAP 0x0004
162 #define ZDB_FLAG_GBH 0x0008
163 #define ZDB_FLAG_INDIRECT 0x0010
164 #define ZDB_FLAG_RAW 0x0020
165 #define ZDB_FLAG_PRINT_BLKPTR 0x0040
166 #define ZDB_FLAG_VERBOSE 0x0080
167
168 static uint64_t max_inflight_bytes = 256 * 1024 * 1024; /* 256MB */
169 static int leaked_objects = 0;
170 static range_tree_t *mos_refd_objs;
171
172 static void snprintf_blkptr_compact(char *, size_t, const blkptr_t *,
173 boolean_t);
174 static void mos_obj_refd(uint64_t);
175 static void mos_obj_refd_multiple(uint64_t);
176 static int dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t free,
177 dmu_tx_t *tx);
178
179 typedef struct sublivelist_verify {
180 /* FREE's that haven't yet matched to an ALLOC, in one sub-livelist */
181 zfs_btree_t sv_pair;
182
183 /* ALLOC's without a matching FREE, accumulates across sub-livelists */
184 zfs_btree_t sv_leftover;
185 } sublivelist_verify_t;
186
187 static int
188 livelist_compare(const void *larg, const void *rarg)
189 {
190 const blkptr_t *l = larg;
191 const blkptr_t *r = rarg;
192
193 /* Sort them according to dva[0] */
194 uint64_t l_dva0_vdev, r_dva0_vdev;
195 l_dva0_vdev = DVA_GET_VDEV(&l->blk_dva[0]);
196 r_dva0_vdev = DVA_GET_VDEV(&r->blk_dva[0]);
197 if (l_dva0_vdev < r_dva0_vdev)
198 return (-1);
199 else if (l_dva0_vdev > r_dva0_vdev)
200 return (+1);
201
202 /* if vdevs are equal, sort by offsets. */
203 uint64_t l_dva0_offset;
204 uint64_t r_dva0_offset;
205 l_dva0_offset = DVA_GET_OFFSET(&l->blk_dva[0]);
206 r_dva0_offset = DVA_GET_OFFSET(&r->blk_dva[0]);
207 if (l_dva0_offset < r_dva0_offset) {
208 return (-1);
209 } else if (l_dva0_offset > r_dva0_offset) {
210 return (+1);
211 }
212
213 /*
214 * Since we're storing blkptrs without cancelling FREE/ALLOC pairs,
215 * it's possible the offsets are equal. In that case, sort by txg
216 */
217 if (l->blk_birth < r->blk_birth) {
218 return (-1);
219 } else if (l->blk_birth > r->blk_birth) {
220 return (+1);
221 }
222 return (0);
223 }
224
225 typedef struct sublivelist_verify_block {
226 dva_t svb_dva;
227
228 /*
229 * We need this to check if the block marked as allocated
230 * in the livelist was freed (and potentially reallocated)
231 * in the metaslab spacemaps at a later TXG.
232 */
233 uint64_t svb_allocated_txg;
234 } sublivelist_verify_block_t;
235
236 static void zdb_print_blkptr(const blkptr_t *bp, int flags);
237
238 typedef struct sublivelist_verify_block_refcnt {
239 /* block pointer entry in livelist being verified */
240 blkptr_t svbr_blk;
241
242 /*
243 * Refcount gets incremented to 1 when we encounter the first
244 * FREE entry for the svfbr block pointer and a node for it
245 * is created in our ZDB verification/tracking metadata.
246 *
247 * As we encounter more FREE entries we increment this counter
248 * and similarly decrement it whenever we find the respective
249 * ALLOC entries for this block.
250 *
251 * When the refcount gets to 0 it means that all the FREE and
252 * ALLOC entries of this block have paired up and we no longer
253 * need to track it in our verification logic (e.g. the node
254 * containing this struct in our verification data structure
255 * should be freed).
256 *
257 * [refer to sublivelist_verify_blkptr() for the actual code]
258 */
259 uint32_t svbr_refcnt;
260 } sublivelist_verify_block_refcnt_t;
261
262 static int
263 sublivelist_block_refcnt_compare(const void *larg, const void *rarg)
264 {
265 const sublivelist_verify_block_refcnt_t *l = larg;
266 const sublivelist_verify_block_refcnt_t *r = rarg;
267 return (livelist_compare(&l->svbr_blk, &r->svbr_blk));
268 }
269
270 static int
271 sublivelist_verify_blkptr(void *arg, const blkptr_t *bp, boolean_t free,
272 dmu_tx_t *tx)
273 {
274 ASSERT3P(tx, ==, NULL);
275 struct sublivelist_verify *sv = arg;
276 sublivelist_verify_block_refcnt_t current = {
277 .svbr_blk = *bp,
278
279 /*
280 * Start with 1 in case this is the first free entry.
281 * This field is not used for our B-Tree comparisons
282 * anyway.
283 */
284 .svbr_refcnt = 1,
285 };
286
287 zfs_btree_index_t where;
288 sublivelist_verify_block_refcnt_t *pair =
289 zfs_btree_find(&sv->sv_pair, &current, &where);
290 if (free) {
291 if (pair == NULL) {
292 /* first free entry for this block pointer */
293 zfs_btree_add(&sv->sv_pair, &current);
294 } else {
295 pair->svbr_refcnt++;
296 }
297 } else {
298 if (pair == NULL) {
299 /* block that is currently marked as allocated */
300 for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
301 if (DVA_IS_EMPTY(&bp->blk_dva[i]))
302 break;
303 sublivelist_verify_block_t svb = {
304 .svb_dva = bp->blk_dva[i],
305 .svb_allocated_txg = bp->blk_birth
306 };
307
308 if (zfs_btree_find(&sv->sv_leftover, &svb,
309 &where) == NULL) {
310 zfs_btree_add_idx(&sv->sv_leftover,
311 &svb, &where);
312 }
313 }
314 } else {
315 /* alloc matches a free entry */
316 pair->svbr_refcnt--;
317 if (pair->svbr_refcnt == 0) {
318 /* all allocs and frees have been matched */
319 zfs_btree_remove_idx(&sv->sv_pair, &where);
320 }
321 }
322 }
323
324 return (0);
325 }
326
327 static int
328 sublivelist_verify_func(void *args, dsl_deadlist_entry_t *dle)
329 {
330 int err;
331 struct sublivelist_verify *sv = args;
332
333 zfs_btree_create(&sv->sv_pair, sublivelist_block_refcnt_compare, NULL,
334 sizeof (sublivelist_verify_block_refcnt_t));
335
336 err = bpobj_iterate_nofree(&dle->dle_bpobj, sublivelist_verify_blkptr,
337 sv, NULL);
338
339 sublivelist_verify_block_refcnt_t *e;
340 zfs_btree_index_t *cookie = NULL;
341 while ((e = zfs_btree_destroy_nodes(&sv->sv_pair, &cookie)) != NULL) {
342 char blkbuf[BP_SPRINTF_LEN];
343 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf),
344 &e->svbr_blk, B_TRUE);
345 (void) printf("\tERROR: %d unmatched FREE(s): %s\n",
346 e->svbr_refcnt, blkbuf);
347 }
348 zfs_btree_destroy(&sv->sv_pair);
349
350 return (err);
351 }
352
353 static int
354 livelist_block_compare(const void *larg, const void *rarg)
355 {
356 const sublivelist_verify_block_t *l = larg;
357 const sublivelist_verify_block_t *r = rarg;
358
359 if (DVA_GET_VDEV(&l->svb_dva) < DVA_GET_VDEV(&r->svb_dva))
360 return (-1);
361 else if (DVA_GET_VDEV(&l->svb_dva) > DVA_GET_VDEV(&r->svb_dva))
362 return (+1);
363
364 if (DVA_GET_OFFSET(&l->svb_dva) < DVA_GET_OFFSET(&r->svb_dva))
365 return (-1);
366 else if (DVA_GET_OFFSET(&l->svb_dva) > DVA_GET_OFFSET(&r->svb_dva))
367 return (+1);
368
369 if (DVA_GET_ASIZE(&l->svb_dva) < DVA_GET_ASIZE(&r->svb_dva))
370 return (-1);
371 else if (DVA_GET_ASIZE(&l->svb_dva) > DVA_GET_ASIZE(&r->svb_dva))
372 return (+1);
373
374 return (0);
375 }
376
377 /*
378 * Check for errors in a livelist while tracking all unfreed ALLOCs in the
379 * sublivelist_verify_t: sv->sv_leftover
380 */
381 static void
382 livelist_verify(dsl_deadlist_t *dl, void *arg)
383 {
384 sublivelist_verify_t *sv = arg;
385 dsl_deadlist_iterate(dl, sublivelist_verify_func, sv);
386 }
387
388 /*
389 * Check for errors in the livelist entry and discard the intermediary
390 * data structures
391 */
392 static int
393 sublivelist_verify_lightweight(void *args, dsl_deadlist_entry_t *dle)
394 {
395 (void) args;
396 sublivelist_verify_t sv;
397 zfs_btree_create(&sv.sv_leftover, livelist_block_compare, NULL,
398 sizeof (sublivelist_verify_block_t));
399 int err = sublivelist_verify_func(&sv, dle);
400 zfs_btree_clear(&sv.sv_leftover);
401 zfs_btree_destroy(&sv.sv_leftover);
402 return (err);
403 }
404
405 typedef struct metaslab_verify {
406 /*
407 * Tree containing all the leftover ALLOCs from the livelists
408 * that are part of this metaslab.
409 */
410 zfs_btree_t mv_livelist_allocs;
411
412 /*
413 * Metaslab information.
414 */
415 uint64_t mv_vdid;
416 uint64_t mv_msid;
417 uint64_t mv_start;
418 uint64_t mv_end;
419
420 /*
421 * What's currently allocated for this metaslab.
422 */
423 range_tree_t *mv_allocated;
424 } metaslab_verify_t;
425
426 typedef void ll_iter_t(dsl_deadlist_t *ll, void *arg);
427
428 typedef int (*zdb_log_sm_cb_t)(spa_t *spa, space_map_entry_t *sme, uint64_t txg,
429 void *arg);
430
431 typedef struct unflushed_iter_cb_arg {
432 spa_t *uic_spa;
433 uint64_t uic_txg;
434 void *uic_arg;
435 zdb_log_sm_cb_t uic_cb;
436 } unflushed_iter_cb_arg_t;
437
438 static int
439 iterate_through_spacemap_logs_cb(space_map_entry_t *sme, void *arg)
440 {
441 unflushed_iter_cb_arg_t *uic = arg;
442 return (uic->uic_cb(uic->uic_spa, sme, uic->uic_txg, uic->uic_arg));
443 }
444
445 static void
446 iterate_through_spacemap_logs(spa_t *spa, zdb_log_sm_cb_t cb, void *arg)
447 {
448 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
449 return;
450
451 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
452 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
453 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) {
454 space_map_t *sm = NULL;
455 VERIFY0(space_map_open(&sm, spa_meta_objset(spa),
456 sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT));
457
458 unflushed_iter_cb_arg_t uic = {
459 .uic_spa = spa,
460 .uic_txg = sls->sls_txg,
461 .uic_arg = arg,
462 .uic_cb = cb
463 };
464 VERIFY0(space_map_iterate(sm, space_map_length(sm),
465 iterate_through_spacemap_logs_cb, &uic));
466 space_map_close(sm);
467 }
468 spa_config_exit(spa, SCL_CONFIG, FTAG);
469 }
470
471 static void
472 verify_livelist_allocs(metaslab_verify_t *mv, uint64_t txg,
473 uint64_t offset, uint64_t size)
474 {
475 sublivelist_verify_block_t svb = {{{0}}};
476 DVA_SET_VDEV(&svb.svb_dva, mv->mv_vdid);
477 DVA_SET_OFFSET(&svb.svb_dva, offset);
478 DVA_SET_ASIZE(&svb.svb_dva, size);
479 zfs_btree_index_t where;
480 uint64_t end_offset = offset + size;
481
482 /*
483 * Look for an exact match for spacemap entry in the livelist entries.
484 * Then, look for other livelist entries that fall within the range
485 * of the spacemap entry as it may have been condensed
486 */
487 sublivelist_verify_block_t *found =
488 zfs_btree_find(&mv->mv_livelist_allocs, &svb, &where);
489 if (found == NULL) {
490 found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where);
491 }
492 for (; found != NULL && DVA_GET_VDEV(&found->svb_dva) == mv->mv_vdid &&
493 DVA_GET_OFFSET(&found->svb_dva) < end_offset;
494 found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) {
495 if (found->svb_allocated_txg <= txg) {
496 (void) printf("ERROR: Livelist ALLOC [%llx:%llx] "
497 "from TXG %llx FREED at TXG %llx\n",
498 (u_longlong_t)DVA_GET_OFFSET(&found->svb_dva),
499 (u_longlong_t)DVA_GET_ASIZE(&found->svb_dva),
500 (u_longlong_t)found->svb_allocated_txg,
501 (u_longlong_t)txg);
502 }
503 }
504 }
505
506 static int
507 metaslab_spacemap_validation_cb(space_map_entry_t *sme, void *arg)
508 {
509 metaslab_verify_t *mv = arg;
510 uint64_t offset = sme->sme_offset;
511 uint64_t size = sme->sme_run;
512 uint64_t txg = sme->sme_txg;
513
514 if (sme->sme_type == SM_ALLOC) {
515 if (range_tree_contains(mv->mv_allocated,
516 offset, size)) {
517 (void) printf("ERROR: DOUBLE ALLOC: "
518 "%llu [%llx:%llx] "
519 "%llu:%llu LOG_SM\n",
520 (u_longlong_t)txg, (u_longlong_t)offset,
521 (u_longlong_t)size, (u_longlong_t)mv->mv_vdid,
522 (u_longlong_t)mv->mv_msid);
523 } else {
524 range_tree_add(mv->mv_allocated,
525 offset, size);
526 }
527 } else {
528 if (!range_tree_contains(mv->mv_allocated,
529 offset, size)) {
530 (void) printf("ERROR: DOUBLE FREE: "
531 "%llu [%llx:%llx] "
532 "%llu:%llu LOG_SM\n",
533 (u_longlong_t)txg, (u_longlong_t)offset,
534 (u_longlong_t)size, (u_longlong_t)mv->mv_vdid,
535 (u_longlong_t)mv->mv_msid);
536 } else {
537 range_tree_remove(mv->mv_allocated,
538 offset, size);
539 }
540 }
541
542 if (sme->sme_type != SM_ALLOC) {
543 /*
544 * If something is freed in the spacemap, verify that
545 * it is not listed as allocated in the livelist.
546 */
547 verify_livelist_allocs(mv, txg, offset, size);
548 }
549 return (0);
550 }
551
552 static int
553 spacemap_check_sm_log_cb(spa_t *spa, space_map_entry_t *sme,
554 uint64_t txg, void *arg)
555 {
556 metaslab_verify_t *mv = arg;
557 uint64_t offset = sme->sme_offset;
558 uint64_t vdev_id = sme->sme_vdev;
559
560 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
561
562 /* skip indirect vdevs */
563 if (!vdev_is_concrete(vd))
564 return (0);
565
566 if (vdev_id != mv->mv_vdid)
567 return (0);
568
569 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
570 if (ms->ms_id != mv->mv_msid)
571 return (0);
572
573 if (txg < metaslab_unflushed_txg(ms))
574 return (0);
575
576
577 ASSERT3U(txg, ==, sme->sme_txg);
578 return (metaslab_spacemap_validation_cb(sme, mv));
579 }
580
581 static void
582 spacemap_check_sm_log(spa_t *spa, metaslab_verify_t *mv)
583 {
584 iterate_through_spacemap_logs(spa, spacemap_check_sm_log_cb, mv);
585 }
586
587 static void
588 spacemap_check_ms_sm(space_map_t *sm, metaslab_verify_t *mv)
589 {
590 if (sm == NULL)
591 return;
592
593 VERIFY0(space_map_iterate(sm, space_map_length(sm),
594 metaslab_spacemap_validation_cb, mv));
595 }
596
597 static void iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg);
598
599 /*
600 * Transfer blocks from sv_leftover tree to the mv_livelist_allocs if
601 * they are part of that metaslab (mv_msid).
602 */
603 static void
604 mv_populate_livelist_allocs(metaslab_verify_t *mv, sublivelist_verify_t *sv)
605 {
606 zfs_btree_index_t where;
607 sublivelist_verify_block_t *svb;
608 ASSERT3U(zfs_btree_numnodes(&mv->mv_livelist_allocs), ==, 0);
609 for (svb = zfs_btree_first(&sv->sv_leftover, &where);
610 svb != NULL;
611 svb = zfs_btree_next(&sv->sv_leftover, &where, &where)) {
612 if (DVA_GET_VDEV(&svb->svb_dva) != mv->mv_vdid)
613 continue;
614
615 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start &&
616 (DVA_GET_OFFSET(&svb->svb_dva) +
617 DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_start) {
618 (void) printf("ERROR: Found block that crosses "
619 "metaslab boundary: <%llu:%llx:%llx>\n",
620 (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva),
621 (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva),
622 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva));
623 continue;
624 }
625
626 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start)
627 continue;
628
629 if (DVA_GET_OFFSET(&svb->svb_dva) >= mv->mv_end)
630 continue;
631
632 if ((DVA_GET_OFFSET(&svb->svb_dva) +
633 DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_end) {
634 (void) printf("ERROR: Found block that crosses "
635 "metaslab boundary: <%llu:%llx:%llx>\n",
636 (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva),
637 (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva),
638 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva));
639 continue;
640 }
641
642 zfs_btree_add(&mv->mv_livelist_allocs, svb);
643 }
644
645 for (svb = zfs_btree_first(&mv->mv_livelist_allocs, &where);
646 svb != NULL;
647 svb = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) {
648 zfs_btree_remove(&sv->sv_leftover, svb);
649 }
650 }
651
652 /*
653 * [Livelist Check]
654 * Iterate through all the sublivelists and:
655 * - report leftover frees (**)
656 * - record leftover ALLOCs together with their TXG [see Cross Check]
657 *
658 * (**) Note: Double ALLOCs are valid in datasets that have dedup
659 * enabled. Similarly double FREEs are allowed as well but
660 * only if they pair up with a corresponding ALLOC entry once
661 * we our done with our sublivelist iteration.
662 *
663 * [Spacemap Check]
664 * for each metaslab:
665 * - iterate over spacemap and then the metaslab's entries in the
666 * spacemap log, then report any double FREEs and ALLOCs (do not
667 * blow up).
668 *
669 * [Cross Check]
670 * After finishing the Livelist Check phase and while being in the
671 * Spacemap Check phase, we find all the recorded leftover ALLOCs
672 * of the livelist check that are part of the metaslab that we are
673 * currently looking at in the Spacemap Check. We report any entries
674 * that are marked as ALLOCs in the livelists but have been actually
675 * freed (and potentially allocated again) after their TXG stamp in
676 * the spacemaps. Also report any ALLOCs from the livelists that
677 * belong to indirect vdevs (e.g. their vdev completed removal).
678 *
679 * Note that this will miss Log Spacemap entries that cancelled each other
680 * out before being flushed to the metaslab, so we are not guaranteed
681 * to match all erroneous ALLOCs.
682 */
683 static void
684 livelist_metaslab_validate(spa_t *spa)
685 {
686 (void) printf("Verifying deleted livelist entries\n");
687
688 sublivelist_verify_t sv;
689 zfs_btree_create(&sv.sv_leftover, livelist_block_compare, NULL,
690 sizeof (sublivelist_verify_block_t));
691 iterate_deleted_livelists(spa, livelist_verify, &sv);
692
693 (void) printf("Verifying metaslab entries\n");
694 vdev_t *rvd = spa->spa_root_vdev;
695 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
696 vdev_t *vd = rvd->vdev_child[c];
697
698 if (!vdev_is_concrete(vd))
699 continue;
700
701 for (uint64_t mid = 0; mid < vd->vdev_ms_count; mid++) {
702 metaslab_t *m = vd->vdev_ms[mid];
703
704 (void) fprintf(stderr,
705 "\rverifying concrete vdev %llu, "
706 "metaslab %llu of %llu ...",
707 (longlong_t)vd->vdev_id,
708 (longlong_t)mid,
709 (longlong_t)vd->vdev_ms_count);
710
711 uint64_t shift, start;
712 range_seg_type_t type =
713 metaslab_calculate_range_tree_type(vd, m,
714 &start, &shift);
715 metaslab_verify_t mv;
716 mv.mv_allocated = range_tree_create(NULL,
717 type, NULL, start, shift);
718 mv.mv_vdid = vd->vdev_id;
719 mv.mv_msid = m->ms_id;
720 mv.mv_start = m->ms_start;
721 mv.mv_end = m->ms_start + m->ms_size;
722 zfs_btree_create(&mv.mv_livelist_allocs,
723 livelist_block_compare, NULL,
724 sizeof (sublivelist_verify_block_t));
725
726 mv_populate_livelist_allocs(&mv, &sv);
727
728 spacemap_check_ms_sm(m->ms_sm, &mv);
729 spacemap_check_sm_log(spa, &mv);
730
731 range_tree_vacate(mv.mv_allocated, NULL, NULL);
732 range_tree_destroy(mv.mv_allocated);
733 zfs_btree_clear(&mv.mv_livelist_allocs);
734 zfs_btree_destroy(&mv.mv_livelist_allocs);
735 }
736 }
737 (void) fprintf(stderr, "\n");
738
739 /*
740 * If there are any segments in the leftover tree after we walked
741 * through all the metaslabs in the concrete vdevs then this means
742 * that we have segments in the livelists that belong to indirect
743 * vdevs and are marked as allocated.
744 */
745 if (zfs_btree_numnodes(&sv.sv_leftover) == 0) {
746 zfs_btree_destroy(&sv.sv_leftover);
747 return;
748 }
749 (void) printf("ERROR: Found livelist blocks marked as allocated "
750 "for indirect vdevs:\n");
751
752 zfs_btree_index_t *where = NULL;
753 sublivelist_verify_block_t *svb;
754 while ((svb = zfs_btree_destroy_nodes(&sv.sv_leftover, &where)) !=
755 NULL) {
756 int vdev_id = DVA_GET_VDEV(&svb->svb_dva);
757 ASSERT3U(vdev_id, <, rvd->vdev_children);
758 vdev_t *vd = rvd->vdev_child[vdev_id];
759 ASSERT(!vdev_is_concrete(vd));
760 (void) printf("<%d:%llx:%llx> TXG %llx\n",
761 vdev_id, (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva),
762 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva),
763 (u_longlong_t)svb->svb_allocated_txg);
764 }
765 (void) printf("\n");
766 zfs_btree_destroy(&sv.sv_leftover);
767 }
768
769 /*
770 * These libumem hooks provide a reasonable set of defaults for the allocator's
771 * debugging facilities.
772 */
773 const char *
774 _umem_debug_init(void)
775 {
776 return ("default,verbose"); /* $UMEM_DEBUG setting */
777 }
778
779 const char *
780 _umem_logging_init(void)
781 {
782 return ("fail,contents"); /* $UMEM_LOGGING setting */
783 }
784
785 static void
786 usage(void)
787 {
788 (void) fprintf(stderr,
789 "Usage:\t%s [-AbcdDFGhikLMPsvXy] [-e [-V] [-p <path> ...]] "
790 "[-I <inflight I/Os>]\n"
791 "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n"
792 "\t\t[-K <key>]\n"
793 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]]\n"
794 "\t%s [-AdiPv] [-e [-V] [-p <path> ...]] [-U <cache>] [-K <key>]\n"
795 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]\n"
796 "\t%s -B [-e [-V] [-p <path> ...]] [-I <inflight I/Os>]\n"
797 "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n"
798 "\t\t[-K <key>] <poolname>/<objset id> [<backupflags>]\n"
799 "\t%s [-v] <bookmark>\n"
800 "\t%s -C [-A] [-U <cache>] [<poolname>]\n"
801 "\t%s -l [-Aqu] <device>\n"
802 "\t%s -m [-AFLPX] [-e [-V] [-p <path> ...]] [-t <txg>] "
803 "[-U <cache>]\n\t\t<poolname> [<vdev> [<metaslab> ...]]\n"
804 "\t%s -O [-K <key>] <dataset> <path>\n"
805 "\t%s -r [-K <key>] <dataset> <path> <destination>\n"
806 "\t%s -R [-A] [-e [-V] [-p <path> ...]] [-U <cache>]\n"
807 "\t\t<poolname> <vdev>:<offset>:<size>[:<flags>]\n"
808 "\t%s -E [-A] word0:word1:...:word15\n"
809 "\t%s -S [-AP] [-e [-V] [-p <path> ...]] [-U <cache>] "
810 "<poolname>\n\n",
811 cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, cmdname,
812 cmdname, cmdname, cmdname, cmdname, cmdname);
813
814 (void) fprintf(stderr, " Dataset name must include at least one "
815 "separator character '/' or '@'\n");
816 (void) fprintf(stderr, " If dataset name is specified, only that "
817 "dataset is dumped\n");
818 (void) fprintf(stderr, " If object numbers or object number "
819 "ranges are specified, only those\n"
820 " objects or ranges are dumped.\n\n");
821 (void) fprintf(stderr,
822 " Object ranges take the form <start>:<end>[:<flags>]\n"
823 " start Starting object number\n"
824 " end Ending object number, or -1 for no upper bound\n"
825 " flags Optional flags to select object types:\n"
826 " A All objects (this is the default)\n"
827 " d ZFS directories\n"
828 " f ZFS files \n"
829 " m SPA space maps\n"
830 " z ZAPs\n"
831 " - Negate effect of next flag\n\n");
832 (void) fprintf(stderr, " Options to control amount of output:\n");
833 (void) fprintf(stderr, " -b --block-stats "
834 "block statistics\n");
835 (void) fprintf(stderr, " -B --backup "
836 "backup stream\n");
837 (void) fprintf(stderr, " -c --checksum "
838 "checksum all metadata (twice for all data) blocks\n");
839 (void) fprintf(stderr, " -C --config "
840 "config (or cachefile if alone)\n");
841 (void) fprintf(stderr, " -d --datasets "
842 "dataset(s)\n");
843 (void) fprintf(stderr, " -D --dedup-stats "
844 "dedup statistics\n");
845 (void) fprintf(stderr, " -E --embedded-block-pointer=INTEGER\n"
846 " decode and display block "
847 "from an embedded block pointer\n");
848 (void) fprintf(stderr, " -h --history "
849 "pool history\n");
850 (void) fprintf(stderr, " -i --intent-logs "
851 "intent logs\n");
852 (void) fprintf(stderr, " -l --label "
853 "read label contents\n");
854 (void) fprintf(stderr, " -k --checkpointed-state "
855 "examine the checkpointed state of the pool\n");
856 (void) fprintf(stderr, " -L --disable-leak-tracking "
857 "disable leak tracking (do not load spacemaps)\n");
858 (void) fprintf(stderr, " -m --metaslabs "
859 "metaslabs\n");
860 (void) fprintf(stderr, " -M --metaslab-groups "
861 "metaslab groups\n");
862 (void) fprintf(stderr, " -O --object-lookups "
863 "perform object lookups by path\n");
864 (void) fprintf(stderr, " -r --copy-object "
865 "copy an object by path to file\n");
866 (void) fprintf(stderr, " -R --read-block "
867 "read and display block from a device\n");
868 (void) fprintf(stderr, " -s --io-stats "
869 "report stats on zdb's I/O\n");
870 (void) fprintf(stderr, " -S --simulate-dedup "
871 "simulate dedup to measure effect\n");
872 (void) fprintf(stderr, " -v --verbose "
873 "verbose (applies to all others)\n");
874 (void) fprintf(stderr, " -y --livelist "
875 "perform livelist and metaslab validation on any livelists being "
876 "deleted\n\n");
877 (void) fprintf(stderr, " Below options are intended for use "
878 "with other options:\n");
879 (void) fprintf(stderr, " -A --ignore-assertions "
880 "ignore assertions (-A), enable panic recovery (-AA) or both "
881 "(-AAA)\n");
882 (void) fprintf(stderr, " -e --exported "
883 "pool is exported/destroyed/has altroot/not in a cachefile\n");
884 (void) fprintf(stderr, " -F --automatic-rewind "
885 "attempt automatic rewind within safe range of transaction "
886 "groups\n");
887 (void) fprintf(stderr, " -G --dump-debug-msg "
888 "dump zfs_dbgmsg buffer before exiting\n");
889 (void) fprintf(stderr, " -I --inflight=INTEGER "
890 "specify the maximum number of checksumming I/Os "
891 "[default is 200]\n");
892 (void) fprintf(stderr, " -K --key=KEY "
893 "decryption key for encrypted dataset\n");
894 (void) fprintf(stderr, " -o --option=\"OPTION=INTEGER\" "
895 "set global variable to an unsigned 32-bit integer\n");
896 (void) fprintf(stderr, " -p --path==PATH "
897 "use one or more with -e to specify path to vdev dir\n");
898 (void) fprintf(stderr, " -P --parseable "
899 "print numbers in parseable form\n");
900 (void) fprintf(stderr, " -q --skip-label "
901 "don't print label contents\n");
902 (void) fprintf(stderr, " -t --txg=INTEGER "
903 "highest txg to use when searching for uberblocks\n");
904 (void) fprintf(stderr, " -T --brt-stats "
905 "BRT statistics\n");
906 (void) fprintf(stderr, " -u --uberblock "
907 "uberblock\n");
908 (void) fprintf(stderr, " -U --cachefile=PATH "
909 "use alternate cachefile\n");
910 (void) fprintf(stderr, " -V --verbatim "
911 "do verbatim import\n");
912 (void) fprintf(stderr, " -x --dump-blocks=PATH "
913 "dump all read blocks into specified directory\n");
914 (void) fprintf(stderr, " -X --extreme-rewind "
915 "attempt extreme rewind (does not work with dataset)\n");
916 (void) fprintf(stderr, " -Y --all-reconstruction "
917 "attempt all reconstruction combinations for split blocks\n");
918 (void) fprintf(stderr, " -Z --zstd-headers "
919 "show ZSTD headers \n");
920 (void) fprintf(stderr, "Specify an option more than once (e.g. -bb) "
921 "to make only that option verbose\n");
922 (void) fprintf(stderr, "Default is to dump everything non-verbosely\n");
923 exit(1);
924 }
925
926 static void
927 dump_debug_buffer(void)
928 {
929 if (dump_opt['G']) {
930 (void) printf("\n");
931 (void) fflush(stdout);
932 zfs_dbgmsg_print("zdb");
933 }
934 }
935
936 /*
937 * Called for usage errors that are discovered after a call to spa_open(),
938 * dmu_bonus_hold(), or pool_match(). abort() is called for other errors.
939 */
940
941 static void
942 fatal(const char *fmt, ...)
943 {
944 va_list ap;
945
946 va_start(ap, fmt);
947 (void) fprintf(stderr, "%s: ", cmdname);
948 (void) vfprintf(stderr, fmt, ap);
949 va_end(ap);
950 (void) fprintf(stderr, "\n");
951
952 dump_debug_buffer();
953
954 exit(1);
955 }
956
957 static void
958 dump_packed_nvlist(objset_t *os, uint64_t object, void *data, size_t size)
959 {
960 (void) size;
961 nvlist_t *nv;
962 size_t nvsize = *(uint64_t *)data;
963 char *packed = umem_alloc(nvsize, UMEM_NOFAIL);
964
965 VERIFY(0 == dmu_read(os, object, 0, nvsize, packed, DMU_READ_PREFETCH));
966
967 VERIFY(nvlist_unpack(packed, nvsize, &nv, 0) == 0);
968
969 umem_free(packed, nvsize);
970
971 dump_nvlist(nv, 8);
972
973 nvlist_free(nv);
974 }
975
976 static void
977 dump_history_offsets(objset_t *os, uint64_t object, void *data, size_t size)
978 {
979 (void) os, (void) object, (void) size;
980 spa_history_phys_t *shp = data;
981
982 if (shp == NULL)
983 return;
984
985 (void) printf("\t\tpool_create_len = %llu\n",
986 (u_longlong_t)shp->sh_pool_create_len);
987 (void) printf("\t\tphys_max_off = %llu\n",
988 (u_longlong_t)shp->sh_phys_max_off);
989 (void) printf("\t\tbof = %llu\n",
990 (u_longlong_t)shp->sh_bof);
991 (void) printf("\t\teof = %llu\n",
992 (u_longlong_t)shp->sh_eof);
993 (void) printf("\t\trecords_lost = %llu\n",
994 (u_longlong_t)shp->sh_records_lost);
995 }
996
997 static void
998 zdb_nicenum(uint64_t num, char *buf, size_t buflen)
999 {
1000 if (dump_opt['P'])
1001 (void) snprintf(buf, buflen, "%llu", (longlong_t)num);
1002 else
1003 nicenum(num, buf, buflen);
1004 }
1005
1006 static void
1007 zdb_nicebytes(uint64_t bytes, char *buf, size_t buflen)
1008 {
1009 if (dump_opt['P'])
1010 (void) snprintf(buf, buflen, "%llu", (longlong_t)bytes);
1011 else
1012 zfs_nicebytes(bytes, buf, buflen);
1013 }
1014
1015 static const char histo_stars[] = "****************************************";
1016 static const uint64_t histo_width = sizeof (histo_stars) - 1;
1017
1018 static void
1019 dump_histogram(const uint64_t *histo, int size, int offset)
1020 {
1021 int i;
1022 int minidx = size - 1;
1023 int maxidx = 0;
1024 uint64_t max = 0;
1025
1026 for (i = 0; i < size; i++) {
1027 if (histo[i] == 0)
1028 continue;
1029 if (histo[i] > max)
1030 max = histo[i];
1031 if (i > maxidx)
1032 maxidx = i;
1033 if (i < minidx)
1034 minidx = i;
1035 }
1036
1037 if (max < histo_width)
1038 max = histo_width;
1039
1040 for (i = minidx; i <= maxidx; i++) {
1041 (void) printf("\t\t\t%3u: %6llu %s\n",
1042 i + offset, (u_longlong_t)histo[i],
1043 &histo_stars[(max - histo[i]) * histo_width / max]);
1044 }
1045 }
1046
1047 static void
1048 dump_zap_stats(objset_t *os, uint64_t object)
1049 {
1050 int error;
1051 zap_stats_t zs;
1052
1053 error = zap_get_stats(os, object, &zs);
1054 if (error)
1055 return;
1056
1057 if (zs.zs_ptrtbl_len == 0) {
1058 ASSERT(zs.zs_num_blocks == 1);
1059 (void) printf("\tmicrozap: %llu bytes, %llu entries\n",
1060 (u_longlong_t)zs.zs_blocksize,
1061 (u_longlong_t)zs.zs_num_entries);
1062 return;
1063 }
1064
1065 (void) printf("\tFat ZAP stats:\n");
1066
1067 (void) printf("\t\tPointer table:\n");
1068 (void) printf("\t\t\t%llu elements\n",
1069 (u_longlong_t)zs.zs_ptrtbl_len);
1070 (void) printf("\t\t\tzt_blk: %llu\n",
1071 (u_longlong_t)zs.zs_ptrtbl_zt_blk);
1072 (void) printf("\t\t\tzt_numblks: %llu\n",
1073 (u_longlong_t)zs.zs_ptrtbl_zt_numblks);
1074 (void) printf("\t\t\tzt_shift: %llu\n",
1075 (u_longlong_t)zs.zs_ptrtbl_zt_shift);
1076 (void) printf("\t\t\tzt_blks_copied: %llu\n",
1077 (u_longlong_t)zs.zs_ptrtbl_blks_copied);
1078 (void) printf("\t\t\tzt_nextblk: %llu\n",
1079 (u_longlong_t)zs.zs_ptrtbl_nextblk);
1080
1081 (void) printf("\t\tZAP entries: %llu\n",
1082 (u_longlong_t)zs.zs_num_entries);
1083 (void) printf("\t\tLeaf blocks: %llu\n",
1084 (u_longlong_t)zs.zs_num_leafs);
1085 (void) printf("\t\tTotal blocks: %llu\n",
1086 (u_longlong_t)zs.zs_num_blocks);
1087 (void) printf("\t\tzap_block_type: 0x%llx\n",
1088 (u_longlong_t)zs.zs_block_type);
1089 (void) printf("\t\tzap_magic: 0x%llx\n",
1090 (u_longlong_t)zs.zs_magic);
1091 (void) printf("\t\tzap_salt: 0x%llx\n",
1092 (u_longlong_t)zs.zs_salt);
1093
1094 (void) printf("\t\tLeafs with 2^n pointers:\n");
1095 dump_histogram(zs.zs_leafs_with_2n_pointers, ZAP_HISTOGRAM_SIZE, 0);
1096
1097 (void) printf("\t\tBlocks with n*5 entries:\n");
1098 dump_histogram(zs.zs_blocks_with_n5_entries, ZAP_HISTOGRAM_SIZE, 0);
1099
1100 (void) printf("\t\tBlocks n/10 full:\n");
1101 dump_histogram(zs.zs_blocks_n_tenths_full, ZAP_HISTOGRAM_SIZE, 0);
1102
1103 (void) printf("\t\tEntries with n chunks:\n");
1104 dump_histogram(zs.zs_entries_using_n_chunks, ZAP_HISTOGRAM_SIZE, 0);
1105
1106 (void) printf("\t\tBuckets with n entries:\n");
1107 dump_histogram(zs.zs_buckets_with_n_entries, ZAP_HISTOGRAM_SIZE, 0);
1108 }
1109
1110 static void
1111 dump_none(objset_t *os, uint64_t object, void *data, size_t size)
1112 {
1113 (void) os, (void) object, (void) data, (void) size;
1114 }
1115
1116 static void
1117 dump_unknown(objset_t *os, uint64_t object, void *data, size_t size)
1118 {
1119 (void) os, (void) object, (void) data, (void) size;
1120 (void) printf("\tUNKNOWN OBJECT TYPE\n");
1121 }
1122
1123 static void
1124 dump_uint8(objset_t *os, uint64_t object, void *data, size_t size)
1125 {
1126 (void) os, (void) object, (void) data, (void) size;
1127 }
1128
1129 static void
1130 dump_uint64(objset_t *os, uint64_t object, void *data, size_t size)
1131 {
1132 uint64_t *arr;
1133 uint64_t oursize;
1134 if (dump_opt['d'] < 6)
1135 return;
1136
1137 if (data == NULL) {
1138 dmu_object_info_t doi;
1139
1140 VERIFY0(dmu_object_info(os, object, &doi));
1141 size = doi.doi_max_offset;
1142 /*
1143 * We cap the size at 1 mebibyte here to prevent
1144 * allocation failures and nigh-infinite printing if the
1145 * object is extremely large.
1146 */
1147 oursize = MIN(size, 1 << 20);
1148 arr = kmem_alloc(oursize, KM_SLEEP);
1149
1150 int err = dmu_read(os, object, 0, oursize, arr, 0);
1151 if (err != 0) {
1152 (void) printf("got error %u from dmu_read\n", err);
1153 kmem_free(arr, oursize);
1154 return;
1155 }
1156 } else {
1157 /*
1158 * Even though the allocation is already done in this code path,
1159 * we still cap the size to prevent excessive printing.
1160 */
1161 oursize = MIN(size, 1 << 20);
1162 arr = data;
1163 }
1164
1165 if (size == 0) {
1166 if (data == NULL)
1167 kmem_free(arr, oursize);
1168 (void) printf("\t\t[]\n");
1169 return;
1170 }
1171
1172 (void) printf("\t\t[%0llx", (u_longlong_t)arr[0]);
1173 for (size_t i = 1; i * sizeof (uint64_t) < oursize; i++) {
1174 if (i % 4 != 0)
1175 (void) printf(", %0llx", (u_longlong_t)arr[i]);
1176 else
1177 (void) printf(",\n\t\t%0llx", (u_longlong_t)arr[i]);
1178 }
1179 if (oursize != size)
1180 (void) printf(", ... ");
1181 (void) printf("]\n");
1182
1183 if (data == NULL)
1184 kmem_free(arr, oursize);
1185 }
1186
1187 static void
1188 dump_zap(objset_t *os, uint64_t object, void *data, size_t size)
1189 {
1190 (void) data, (void) size;
1191 zap_cursor_t zc;
1192 zap_attribute_t attr;
1193 void *prop;
1194 unsigned i;
1195
1196 dump_zap_stats(os, object);
1197 (void) printf("\n");
1198
1199 for (zap_cursor_init(&zc, os, object);
1200 zap_cursor_retrieve(&zc, &attr) == 0;
1201 zap_cursor_advance(&zc)) {
1202 (void) printf("\t\t%s = ", attr.za_name);
1203 if (attr.za_num_integers == 0) {
1204 (void) printf("\n");
1205 continue;
1206 }
1207 prop = umem_zalloc(attr.za_num_integers *
1208 attr.za_integer_length, UMEM_NOFAIL);
1209 (void) zap_lookup(os, object, attr.za_name,
1210 attr.za_integer_length, attr.za_num_integers, prop);
1211 if (attr.za_integer_length == 1) {
1212 if (strcmp(attr.za_name,
1213 DSL_CRYPTO_KEY_MASTER_KEY) == 0 ||
1214 strcmp(attr.za_name,
1215 DSL_CRYPTO_KEY_HMAC_KEY) == 0 ||
1216 strcmp(attr.za_name, DSL_CRYPTO_KEY_IV) == 0 ||
1217 strcmp(attr.za_name, DSL_CRYPTO_KEY_MAC) == 0 ||
1218 strcmp(attr.za_name, DMU_POOL_CHECKSUM_SALT) == 0) {
1219 uint8_t *u8 = prop;
1220
1221 for (i = 0; i < attr.za_num_integers; i++) {
1222 (void) printf("%02x", u8[i]);
1223 }
1224 } else {
1225 (void) printf("%s", (char *)prop);
1226 }
1227 } else {
1228 for (i = 0; i < attr.za_num_integers; i++) {
1229 switch (attr.za_integer_length) {
1230 case 2:
1231 (void) printf("%u ",
1232 ((uint16_t *)prop)[i]);
1233 break;
1234 case 4:
1235 (void) printf("%u ",
1236 ((uint32_t *)prop)[i]);
1237 break;
1238 case 8:
1239 (void) printf("%lld ",
1240 (u_longlong_t)((int64_t *)prop)[i]);
1241 break;
1242 }
1243 }
1244 }
1245 (void) printf("\n");
1246 umem_free(prop, attr.za_num_integers * attr.za_integer_length);
1247 }
1248 zap_cursor_fini(&zc);
1249 }
1250
1251 static void
1252 dump_bpobj(objset_t *os, uint64_t object, void *data, size_t size)
1253 {
1254 bpobj_phys_t *bpop = data;
1255 uint64_t i;
1256 char bytes[32], comp[32], uncomp[32];
1257
1258 /* make sure the output won't get truncated */
1259 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
1260 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated");
1261 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated");
1262
1263 if (bpop == NULL)
1264 return;
1265
1266 zdb_nicenum(bpop->bpo_bytes, bytes, sizeof (bytes));
1267 zdb_nicenum(bpop->bpo_comp, comp, sizeof (comp));
1268 zdb_nicenum(bpop->bpo_uncomp, uncomp, sizeof (uncomp));
1269
1270 (void) printf("\t\tnum_blkptrs = %llu\n",
1271 (u_longlong_t)bpop->bpo_num_blkptrs);
1272 (void) printf("\t\tbytes = %s\n", bytes);
1273 if (size >= BPOBJ_SIZE_V1) {
1274 (void) printf("\t\tcomp = %s\n", comp);
1275 (void) printf("\t\tuncomp = %s\n", uncomp);
1276 }
1277 if (size >= BPOBJ_SIZE_V2) {
1278 (void) printf("\t\tsubobjs = %llu\n",
1279 (u_longlong_t)bpop->bpo_subobjs);
1280 (void) printf("\t\tnum_subobjs = %llu\n",
1281 (u_longlong_t)bpop->bpo_num_subobjs);
1282 }
1283 if (size >= sizeof (*bpop)) {
1284 (void) printf("\t\tnum_freed = %llu\n",
1285 (u_longlong_t)bpop->bpo_num_freed);
1286 }
1287
1288 if (dump_opt['d'] < 5)
1289 return;
1290
1291 for (i = 0; i < bpop->bpo_num_blkptrs; i++) {
1292 char blkbuf[BP_SPRINTF_LEN];
1293 blkptr_t bp;
1294
1295 int err = dmu_read(os, object,
1296 i * sizeof (bp), sizeof (bp), &bp, 0);
1297 if (err != 0) {
1298 (void) printf("got error %u from dmu_read\n", err);
1299 break;
1300 }
1301 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), &bp,
1302 BP_GET_FREE(&bp));
1303 (void) printf("\t%s\n", blkbuf);
1304 }
1305 }
1306
1307 static void
1308 dump_bpobj_subobjs(objset_t *os, uint64_t object, void *data, size_t size)
1309 {
1310 (void) data, (void) size;
1311 dmu_object_info_t doi;
1312 int64_t i;
1313
1314 VERIFY0(dmu_object_info(os, object, &doi));
1315 uint64_t *subobjs = kmem_alloc(doi.doi_max_offset, KM_SLEEP);
1316
1317 int err = dmu_read(os, object, 0, doi.doi_max_offset, subobjs, 0);
1318 if (err != 0) {
1319 (void) printf("got error %u from dmu_read\n", err);
1320 kmem_free(subobjs, doi.doi_max_offset);
1321 return;
1322 }
1323
1324 int64_t last_nonzero = -1;
1325 for (i = 0; i < doi.doi_max_offset / 8; i++) {
1326 if (subobjs[i] != 0)
1327 last_nonzero = i;
1328 }
1329
1330 for (i = 0; i <= last_nonzero; i++) {
1331 (void) printf("\t%llu\n", (u_longlong_t)subobjs[i]);
1332 }
1333 kmem_free(subobjs, doi.doi_max_offset);
1334 }
1335
1336 static void
1337 dump_ddt_zap(objset_t *os, uint64_t object, void *data, size_t size)
1338 {
1339 (void) data, (void) size;
1340 dump_zap_stats(os, object);
1341 /* contents are printed elsewhere, properly decoded */
1342 }
1343
1344 static void
1345 dump_sa_attrs(objset_t *os, uint64_t object, void *data, size_t size)
1346 {
1347 (void) data, (void) size;
1348 zap_cursor_t zc;
1349 zap_attribute_t attr;
1350
1351 dump_zap_stats(os, object);
1352 (void) printf("\n");
1353
1354 for (zap_cursor_init(&zc, os, object);
1355 zap_cursor_retrieve(&zc, &attr) == 0;
1356 zap_cursor_advance(&zc)) {
1357 (void) printf("\t\t%s = ", attr.za_name);
1358 if (attr.za_num_integers == 0) {
1359 (void) printf("\n");
1360 continue;
1361 }
1362 (void) printf(" %llx : [%d:%d:%d]\n",
1363 (u_longlong_t)attr.za_first_integer,
1364 (int)ATTR_LENGTH(attr.za_first_integer),
1365 (int)ATTR_BSWAP(attr.za_first_integer),
1366 (int)ATTR_NUM(attr.za_first_integer));
1367 }
1368 zap_cursor_fini(&zc);
1369 }
1370
1371 static void
1372 dump_sa_layouts(objset_t *os, uint64_t object, void *data, size_t size)
1373 {
1374 (void) data, (void) size;
1375 zap_cursor_t zc;
1376 zap_attribute_t attr;
1377 uint16_t *layout_attrs;
1378 unsigned i;
1379
1380 dump_zap_stats(os, object);
1381 (void) printf("\n");
1382
1383 for (zap_cursor_init(&zc, os, object);
1384 zap_cursor_retrieve(&zc, &attr) == 0;
1385 zap_cursor_advance(&zc)) {
1386 (void) printf("\t\t%s = [", attr.za_name);
1387 if (attr.za_num_integers == 0) {
1388 (void) printf("\n");
1389 continue;
1390 }
1391
1392 VERIFY(attr.za_integer_length == 2);
1393 layout_attrs = umem_zalloc(attr.za_num_integers *
1394 attr.za_integer_length, UMEM_NOFAIL);
1395
1396 VERIFY(zap_lookup(os, object, attr.za_name,
1397 attr.za_integer_length,
1398 attr.za_num_integers, layout_attrs) == 0);
1399
1400 for (i = 0; i != attr.za_num_integers; i++)
1401 (void) printf(" %d ", (int)layout_attrs[i]);
1402 (void) printf("]\n");
1403 umem_free(layout_attrs,
1404 attr.za_num_integers * attr.za_integer_length);
1405 }
1406 zap_cursor_fini(&zc);
1407 }
1408
1409 static void
1410 dump_zpldir(objset_t *os, uint64_t object, void *data, size_t size)
1411 {
1412 (void) data, (void) size;
1413 zap_cursor_t zc;
1414 zap_attribute_t attr;
1415 const char *typenames[] = {
1416 /* 0 */ "not specified",
1417 /* 1 */ "FIFO",
1418 /* 2 */ "Character Device",
1419 /* 3 */ "3 (invalid)",
1420 /* 4 */ "Directory",
1421 /* 5 */ "5 (invalid)",
1422 /* 6 */ "Block Device",
1423 /* 7 */ "7 (invalid)",
1424 /* 8 */ "Regular File",
1425 /* 9 */ "9 (invalid)",
1426 /* 10 */ "Symbolic Link",
1427 /* 11 */ "11 (invalid)",
1428 /* 12 */ "Socket",
1429 /* 13 */ "Door",
1430 /* 14 */ "Event Port",
1431 /* 15 */ "15 (invalid)",
1432 };
1433
1434 dump_zap_stats(os, object);
1435 (void) printf("\n");
1436
1437 for (zap_cursor_init(&zc, os, object);
1438 zap_cursor_retrieve(&zc, &attr) == 0;
1439 zap_cursor_advance(&zc)) {
1440 (void) printf("\t\t%s = %lld (type: %s)\n",
1441 attr.za_name, ZFS_DIRENT_OBJ(attr.za_first_integer),
1442 typenames[ZFS_DIRENT_TYPE(attr.za_first_integer)]);
1443 }
1444 zap_cursor_fini(&zc);
1445 }
1446
1447 static int
1448 get_dtl_refcount(vdev_t *vd)
1449 {
1450 int refcount = 0;
1451
1452 if (vd->vdev_ops->vdev_op_leaf) {
1453 space_map_t *sm = vd->vdev_dtl_sm;
1454
1455 if (sm != NULL &&
1456 sm->sm_dbuf->db_size == sizeof (space_map_phys_t))
1457 return (1);
1458 return (0);
1459 }
1460
1461 for (unsigned c = 0; c < vd->vdev_children; c++)
1462 refcount += get_dtl_refcount(vd->vdev_child[c]);
1463 return (refcount);
1464 }
1465
1466 static int
1467 get_metaslab_refcount(vdev_t *vd)
1468 {
1469 int refcount = 0;
1470
1471 if (vd->vdev_top == vd) {
1472 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
1473 space_map_t *sm = vd->vdev_ms[m]->ms_sm;
1474
1475 if (sm != NULL &&
1476 sm->sm_dbuf->db_size == sizeof (space_map_phys_t))
1477 refcount++;
1478 }
1479 }
1480 for (unsigned c = 0; c < vd->vdev_children; c++)
1481 refcount += get_metaslab_refcount(vd->vdev_child[c]);
1482
1483 return (refcount);
1484 }
1485
1486 static int
1487 get_obsolete_refcount(vdev_t *vd)
1488 {
1489 uint64_t obsolete_sm_object;
1490 int refcount = 0;
1491
1492 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
1493 if (vd->vdev_top == vd && obsolete_sm_object != 0) {
1494 dmu_object_info_t doi;
1495 VERIFY0(dmu_object_info(vd->vdev_spa->spa_meta_objset,
1496 obsolete_sm_object, &doi));
1497 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) {
1498 refcount++;
1499 }
1500 } else {
1501 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
1502 ASSERT3U(obsolete_sm_object, ==, 0);
1503 }
1504 for (unsigned c = 0; c < vd->vdev_children; c++) {
1505 refcount += get_obsolete_refcount(vd->vdev_child[c]);
1506 }
1507
1508 return (refcount);
1509 }
1510
1511 static int
1512 get_prev_obsolete_spacemap_refcount(spa_t *spa)
1513 {
1514 uint64_t prev_obj =
1515 spa->spa_condensing_indirect_phys.scip_prev_obsolete_sm_object;
1516 if (prev_obj != 0) {
1517 dmu_object_info_t doi;
1518 VERIFY0(dmu_object_info(spa->spa_meta_objset, prev_obj, &doi));
1519 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) {
1520 return (1);
1521 }
1522 }
1523 return (0);
1524 }
1525
1526 static int
1527 get_checkpoint_refcount(vdev_t *vd)
1528 {
1529 int refcount = 0;
1530
1531 if (vd->vdev_top == vd && vd->vdev_top_zap != 0 &&
1532 zap_contains(spa_meta_objset(vd->vdev_spa),
1533 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) == 0)
1534 refcount++;
1535
1536 for (uint64_t c = 0; c < vd->vdev_children; c++)
1537 refcount += get_checkpoint_refcount(vd->vdev_child[c]);
1538
1539 return (refcount);
1540 }
1541
1542 static int
1543 get_log_spacemap_refcount(spa_t *spa)
1544 {
1545 return (avl_numnodes(&spa->spa_sm_logs_by_txg));
1546 }
1547
1548 static int
1549 verify_spacemap_refcounts(spa_t *spa)
1550 {
1551 uint64_t expected_refcount = 0;
1552 uint64_t actual_refcount;
1553
1554 (void) feature_get_refcount(spa,
1555 &spa_feature_table[SPA_FEATURE_SPACEMAP_HISTOGRAM],
1556 &expected_refcount);
1557 actual_refcount = get_dtl_refcount(spa->spa_root_vdev);
1558 actual_refcount += get_metaslab_refcount(spa->spa_root_vdev);
1559 actual_refcount += get_obsolete_refcount(spa->spa_root_vdev);
1560 actual_refcount += get_prev_obsolete_spacemap_refcount(spa);
1561 actual_refcount += get_checkpoint_refcount(spa->spa_root_vdev);
1562 actual_refcount += get_log_spacemap_refcount(spa);
1563
1564 if (expected_refcount != actual_refcount) {
1565 (void) printf("space map refcount mismatch: expected %lld != "
1566 "actual %lld\n",
1567 (longlong_t)expected_refcount,
1568 (longlong_t)actual_refcount);
1569 return (2);
1570 }
1571 return (0);
1572 }
1573
1574 static void
1575 dump_spacemap(objset_t *os, space_map_t *sm)
1576 {
1577 const char *ddata[] = { "ALLOC", "FREE", "CONDENSE", "INVALID",
1578 "INVALID", "INVALID", "INVALID", "INVALID" };
1579
1580 if (sm == NULL)
1581 return;
1582
1583 (void) printf("space map object %llu:\n",
1584 (longlong_t)sm->sm_object);
1585 (void) printf(" smp_length = 0x%llx\n",
1586 (longlong_t)sm->sm_phys->smp_length);
1587 (void) printf(" smp_alloc = 0x%llx\n",
1588 (longlong_t)sm->sm_phys->smp_alloc);
1589
1590 if (dump_opt['d'] < 6 && dump_opt['m'] < 4)
1591 return;
1592
1593 /*
1594 * Print out the freelist entries in both encoded and decoded form.
1595 */
1596 uint8_t mapshift = sm->sm_shift;
1597 int64_t alloc = 0;
1598 uint64_t word, entry_id = 0;
1599 for (uint64_t offset = 0; offset < space_map_length(sm);
1600 offset += sizeof (word)) {
1601
1602 VERIFY0(dmu_read(os, space_map_object(sm), offset,
1603 sizeof (word), &word, DMU_READ_PREFETCH));
1604
1605 if (sm_entry_is_debug(word)) {
1606 uint64_t de_txg = SM_DEBUG_TXG_DECODE(word);
1607 uint64_t de_sync_pass = SM_DEBUG_SYNCPASS_DECODE(word);
1608 if (de_txg == 0) {
1609 (void) printf(
1610 "\t [%6llu] PADDING\n",
1611 (u_longlong_t)entry_id);
1612 } else {
1613 (void) printf(
1614 "\t [%6llu] %s: txg %llu pass %llu\n",
1615 (u_longlong_t)entry_id,
1616 ddata[SM_DEBUG_ACTION_DECODE(word)],
1617 (u_longlong_t)de_txg,
1618 (u_longlong_t)de_sync_pass);
1619 }
1620 entry_id++;
1621 continue;
1622 }
1623
1624 uint8_t words;
1625 char entry_type;
1626 uint64_t entry_off, entry_run, entry_vdev = SM_NO_VDEVID;
1627
1628 if (sm_entry_is_single_word(word)) {
1629 entry_type = (SM_TYPE_DECODE(word) == SM_ALLOC) ?
1630 'A' : 'F';
1631 entry_off = (SM_OFFSET_DECODE(word) << mapshift) +
1632 sm->sm_start;
1633 entry_run = SM_RUN_DECODE(word) << mapshift;
1634 words = 1;
1635 } else {
1636 /* it is a two-word entry so we read another word */
1637 ASSERT(sm_entry_is_double_word(word));
1638
1639 uint64_t extra_word;
1640 offset += sizeof (extra_word);
1641 VERIFY0(dmu_read(os, space_map_object(sm), offset,
1642 sizeof (extra_word), &extra_word,
1643 DMU_READ_PREFETCH));
1644
1645 ASSERT3U(offset, <=, space_map_length(sm));
1646
1647 entry_run = SM2_RUN_DECODE(word) << mapshift;
1648 entry_vdev = SM2_VDEV_DECODE(word);
1649 entry_type = (SM2_TYPE_DECODE(extra_word) == SM_ALLOC) ?
1650 'A' : 'F';
1651 entry_off = (SM2_OFFSET_DECODE(extra_word) <<
1652 mapshift) + sm->sm_start;
1653 words = 2;
1654 }
1655
1656 (void) printf("\t [%6llu] %c range:"
1657 " %010llx-%010llx size: %06llx vdev: %06llu words: %u\n",
1658 (u_longlong_t)entry_id,
1659 entry_type, (u_longlong_t)entry_off,
1660 (u_longlong_t)(entry_off + entry_run),
1661 (u_longlong_t)entry_run,
1662 (u_longlong_t)entry_vdev, words);
1663
1664 if (entry_type == 'A')
1665 alloc += entry_run;
1666 else
1667 alloc -= entry_run;
1668 entry_id++;
1669 }
1670 if (alloc != space_map_allocated(sm)) {
1671 (void) printf("space_map_object alloc (%lld) INCONSISTENT "
1672 "with space map summary (%lld)\n",
1673 (longlong_t)space_map_allocated(sm), (longlong_t)alloc);
1674 }
1675 }
1676
1677 static void
1678 dump_metaslab_stats(metaslab_t *msp)
1679 {
1680 char maxbuf[32];
1681 range_tree_t *rt = msp->ms_allocatable;
1682 zfs_btree_t *t = &msp->ms_allocatable_by_size;
1683 int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
1684
1685 /* max sure nicenum has enough space */
1686 _Static_assert(sizeof (maxbuf) >= NN_NUMBUF_SZ, "maxbuf truncated");
1687
1688 zdb_nicenum(metaslab_largest_allocatable(msp), maxbuf, sizeof (maxbuf));
1689
1690 (void) printf("\t %25s %10lu %7s %6s %4s %4d%%\n",
1691 "segments", zfs_btree_numnodes(t), "maxsize", maxbuf,
1692 "freepct", free_pct);
1693 (void) printf("\tIn-memory histogram:\n");
1694 dump_histogram(rt->rt_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
1695 }
1696
1697 static void
1698 dump_metaslab(metaslab_t *msp)
1699 {
1700 vdev_t *vd = msp->ms_group->mg_vd;
1701 spa_t *spa = vd->vdev_spa;
1702 space_map_t *sm = msp->ms_sm;
1703 char freebuf[32];
1704
1705 zdb_nicenum(msp->ms_size - space_map_allocated(sm), freebuf,
1706 sizeof (freebuf));
1707
1708 (void) printf(
1709 "\tmetaslab %6llu offset %12llx spacemap %6llu free %5s\n",
1710 (u_longlong_t)msp->ms_id, (u_longlong_t)msp->ms_start,
1711 (u_longlong_t)space_map_object(sm), freebuf);
1712
1713 if (dump_opt['m'] > 2 && !dump_opt['L']) {
1714 mutex_enter(&msp->ms_lock);
1715 VERIFY0(metaslab_load(msp));
1716 range_tree_stat_verify(msp->ms_allocatable);
1717 dump_metaslab_stats(msp);
1718 metaslab_unload(msp);
1719 mutex_exit(&msp->ms_lock);
1720 }
1721
1722 if (dump_opt['m'] > 1 && sm != NULL &&
1723 spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
1724 /*
1725 * The space map histogram represents free space in chunks
1726 * of sm_shift (i.e. bucket 0 refers to 2^sm_shift).
1727 */
1728 (void) printf("\tOn-disk histogram:\t\tfragmentation %llu\n",
1729 (u_longlong_t)msp->ms_fragmentation);
1730 dump_histogram(sm->sm_phys->smp_histogram,
1731 SPACE_MAP_HISTOGRAM_SIZE, sm->sm_shift);
1732 }
1733
1734 if (vd->vdev_ops == &vdev_draid_ops)
1735 ASSERT3U(msp->ms_size, <=, 1ULL << vd->vdev_ms_shift);
1736 else
1737 ASSERT3U(msp->ms_size, ==, 1ULL << vd->vdev_ms_shift);
1738
1739 dump_spacemap(spa->spa_meta_objset, msp->ms_sm);
1740
1741 if (spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
1742 (void) printf("\tFlush data:\n\tunflushed txg=%llu\n\n",
1743 (u_longlong_t)metaslab_unflushed_txg(msp));
1744 }
1745 }
1746
1747 static void
1748 print_vdev_metaslab_header(vdev_t *vd)
1749 {
1750 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
1751 const char *bias_str = "";
1752 if (alloc_bias == VDEV_BIAS_LOG || vd->vdev_islog) {
1753 bias_str = VDEV_ALLOC_BIAS_LOG;
1754 } else if (alloc_bias == VDEV_BIAS_SPECIAL) {
1755 bias_str = VDEV_ALLOC_BIAS_SPECIAL;
1756 } else if (alloc_bias == VDEV_BIAS_DEDUP) {
1757 bias_str = VDEV_ALLOC_BIAS_DEDUP;
1758 }
1759
1760 uint64_t ms_flush_data_obj = 0;
1761 if (vd->vdev_top_zap != 0) {
1762 int error = zap_lookup(spa_meta_objset(vd->vdev_spa),
1763 vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS,
1764 sizeof (uint64_t), 1, &ms_flush_data_obj);
1765 if (error != ENOENT) {
1766 ASSERT0(error);
1767 }
1768 }
1769
1770 (void) printf("\tvdev %10llu %s",
1771 (u_longlong_t)vd->vdev_id, bias_str);
1772
1773 if (ms_flush_data_obj != 0) {
1774 (void) printf(" ms_unflushed_phys object %llu",
1775 (u_longlong_t)ms_flush_data_obj);
1776 }
1777
1778 (void) printf("\n\t%-10s%5llu %-19s %-15s %-12s\n",
1779 "metaslabs", (u_longlong_t)vd->vdev_ms_count,
1780 "offset", "spacemap", "free");
1781 (void) printf("\t%15s %19s %15s %12s\n",
1782 "---------------", "-------------------",
1783 "---------------", "------------");
1784 }
1785
1786 static void
1787 dump_metaslab_groups(spa_t *spa, boolean_t show_special)
1788 {
1789 vdev_t *rvd = spa->spa_root_vdev;
1790 metaslab_class_t *mc = spa_normal_class(spa);
1791 metaslab_class_t *smc = spa_special_class(spa);
1792 uint64_t fragmentation;
1793
1794 metaslab_class_histogram_verify(mc);
1795
1796 for (unsigned c = 0; c < rvd->vdev_children; c++) {
1797 vdev_t *tvd = rvd->vdev_child[c];
1798 metaslab_group_t *mg = tvd->vdev_mg;
1799
1800 if (mg == NULL || (mg->mg_class != mc &&
1801 (!show_special || mg->mg_class != smc)))
1802 continue;
1803
1804 metaslab_group_histogram_verify(mg);
1805 mg->mg_fragmentation = metaslab_group_fragmentation(mg);
1806
1807 (void) printf("\tvdev %10llu\t\tmetaslabs%5llu\t\t"
1808 "fragmentation",
1809 (u_longlong_t)tvd->vdev_id,
1810 (u_longlong_t)tvd->vdev_ms_count);
1811 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
1812 (void) printf("%3s\n", "-");
1813 } else {
1814 (void) printf("%3llu%%\n",
1815 (u_longlong_t)mg->mg_fragmentation);
1816 }
1817 dump_histogram(mg->mg_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
1818 }
1819
1820 (void) printf("\tpool %s\tfragmentation", spa_name(spa));
1821 fragmentation = metaslab_class_fragmentation(mc);
1822 if (fragmentation == ZFS_FRAG_INVALID)
1823 (void) printf("\t%3s\n", "-");
1824 else
1825 (void) printf("\t%3llu%%\n", (u_longlong_t)fragmentation);
1826 dump_histogram(mc->mc_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
1827 }
1828
1829 static void
1830 print_vdev_indirect(vdev_t *vd)
1831 {
1832 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1833 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1834 vdev_indirect_births_t *vib = vd->vdev_indirect_births;
1835
1836 if (vim == NULL) {
1837 ASSERT3P(vib, ==, NULL);
1838 return;
1839 }
1840
1841 ASSERT3U(vdev_indirect_mapping_object(vim), ==,
1842 vic->vic_mapping_object);
1843 ASSERT3U(vdev_indirect_births_object(vib), ==,
1844 vic->vic_births_object);
1845
1846 (void) printf("indirect births obj %llu:\n",
1847 (longlong_t)vic->vic_births_object);
1848 (void) printf(" vib_count = %llu\n",
1849 (longlong_t)vdev_indirect_births_count(vib));
1850 for (uint64_t i = 0; i < vdev_indirect_births_count(vib); i++) {
1851 vdev_indirect_birth_entry_phys_t *cur_vibe =
1852 &vib->vib_entries[i];
1853 (void) printf("\toffset %llx -> txg %llu\n",
1854 (longlong_t)cur_vibe->vibe_offset,
1855 (longlong_t)cur_vibe->vibe_phys_birth_txg);
1856 }
1857 (void) printf("\n");
1858
1859 (void) printf("indirect mapping obj %llu:\n",
1860 (longlong_t)vic->vic_mapping_object);
1861 (void) printf(" vim_max_offset = 0x%llx\n",
1862 (longlong_t)vdev_indirect_mapping_max_offset(vim));
1863 (void) printf(" vim_bytes_mapped = 0x%llx\n",
1864 (longlong_t)vdev_indirect_mapping_bytes_mapped(vim));
1865 (void) printf(" vim_count = %llu\n",
1866 (longlong_t)vdev_indirect_mapping_num_entries(vim));
1867
1868 if (dump_opt['d'] <= 5 && dump_opt['m'] <= 3)
1869 return;
1870
1871 uint32_t *counts = vdev_indirect_mapping_load_obsolete_counts(vim);
1872
1873 for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) {
1874 vdev_indirect_mapping_entry_phys_t *vimep =
1875 &vim->vim_entries[i];
1876 (void) printf("\t<%llx:%llx:%llx> -> "
1877 "<%llx:%llx:%llx> (%x obsolete)\n",
1878 (longlong_t)vd->vdev_id,
1879 (longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep),
1880 (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst),
1881 (longlong_t)DVA_GET_VDEV(&vimep->vimep_dst),
1882 (longlong_t)DVA_GET_OFFSET(&vimep->vimep_dst),
1883 (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst),
1884 counts[i]);
1885 }
1886 (void) printf("\n");
1887
1888 uint64_t obsolete_sm_object;
1889 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
1890 if (obsolete_sm_object != 0) {
1891 objset_t *mos = vd->vdev_spa->spa_meta_objset;
1892 (void) printf("obsolete space map object %llu:\n",
1893 (u_longlong_t)obsolete_sm_object);
1894 ASSERT(vd->vdev_obsolete_sm != NULL);
1895 ASSERT3U(space_map_object(vd->vdev_obsolete_sm), ==,
1896 obsolete_sm_object);
1897 dump_spacemap(mos, vd->vdev_obsolete_sm);
1898 (void) printf("\n");
1899 }
1900 }
1901
1902 static void
1903 dump_metaslabs(spa_t *spa)
1904 {
1905 vdev_t *vd, *rvd = spa->spa_root_vdev;
1906 uint64_t m, c = 0, children = rvd->vdev_children;
1907
1908 (void) printf("\nMetaslabs:\n");
1909
1910 if (!dump_opt['d'] && zopt_metaslab_args > 0) {
1911 c = zopt_metaslab[0];
1912
1913 if (c >= children)
1914 (void) fatal("bad vdev id: %llu", (u_longlong_t)c);
1915
1916 if (zopt_metaslab_args > 1) {
1917 vd = rvd->vdev_child[c];
1918 print_vdev_metaslab_header(vd);
1919
1920 for (m = 1; m < zopt_metaslab_args; m++) {
1921 if (zopt_metaslab[m] < vd->vdev_ms_count)
1922 dump_metaslab(
1923 vd->vdev_ms[zopt_metaslab[m]]);
1924 else
1925 (void) fprintf(stderr, "bad metaslab "
1926 "number %llu\n",
1927 (u_longlong_t)zopt_metaslab[m]);
1928 }
1929 (void) printf("\n");
1930 return;
1931 }
1932 children = c + 1;
1933 }
1934 for (; c < children; c++) {
1935 vd = rvd->vdev_child[c];
1936 print_vdev_metaslab_header(vd);
1937
1938 print_vdev_indirect(vd);
1939
1940 for (m = 0; m < vd->vdev_ms_count; m++)
1941 dump_metaslab(vd->vdev_ms[m]);
1942 (void) printf("\n");
1943 }
1944 }
1945
1946 static void
1947 dump_log_spacemaps(spa_t *spa)
1948 {
1949 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1950 return;
1951
1952 (void) printf("\nLog Space Maps in Pool:\n");
1953 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
1954 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) {
1955 space_map_t *sm = NULL;
1956 VERIFY0(space_map_open(&sm, spa_meta_objset(spa),
1957 sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT));
1958
1959 (void) printf("Log Spacemap object %llu txg %llu\n",
1960 (u_longlong_t)sls->sls_sm_obj, (u_longlong_t)sls->sls_txg);
1961 dump_spacemap(spa->spa_meta_objset, sm);
1962 space_map_close(sm);
1963 }
1964 (void) printf("\n");
1965 }
1966
1967 static void
1968 dump_dde(const ddt_t *ddt, const ddt_entry_t *dde, uint64_t index)
1969 {
1970 const ddt_phys_t *ddp = dde->dde_phys;
1971 const ddt_key_t *ddk = &dde->dde_key;
1972 const char *types[4] = { "ditto", "single", "double", "triple" };
1973 char blkbuf[BP_SPRINTF_LEN];
1974 blkptr_t blk;
1975 int p;
1976
1977 for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
1978 if (ddp->ddp_phys_birth == 0)
1979 continue;
1980 ddt_bp_create(ddt->ddt_checksum, ddk, ddp, &blk);
1981 snprintf_blkptr(blkbuf, sizeof (blkbuf), &blk);
1982 (void) printf("index %llx refcnt %llu %s %s\n",
1983 (u_longlong_t)index, (u_longlong_t)ddp->ddp_refcnt,
1984 types[p], blkbuf);
1985 }
1986 }
1987
1988 static void
1989 dump_dedup_ratio(const ddt_stat_t *dds)
1990 {
1991 double rL, rP, rD, D, dedup, compress, copies;
1992
1993 if (dds->dds_blocks == 0)
1994 return;
1995
1996 rL = (double)dds->dds_ref_lsize;
1997 rP = (double)dds->dds_ref_psize;
1998 rD = (double)dds->dds_ref_dsize;
1999 D = (double)dds->dds_dsize;
2000
2001 dedup = rD / D;
2002 compress = rL / rP;
2003 copies = rD / rP;
2004
2005 (void) printf("dedup = %.2f, compress = %.2f, copies = %.2f, "
2006 "dedup * compress / copies = %.2f\n\n",
2007 dedup, compress, copies, dedup * compress / copies);
2008 }
2009
2010 static void
2011 dump_ddt(ddt_t *ddt, enum ddt_type type, enum ddt_class class)
2012 {
2013 char name[DDT_NAMELEN];
2014 ddt_entry_t dde;
2015 uint64_t walk = 0;
2016 dmu_object_info_t doi;
2017 uint64_t count, dspace, mspace;
2018 int error;
2019
2020 error = ddt_object_info(ddt, type, class, &doi);
2021
2022 if (error == ENOENT)
2023 return;
2024 ASSERT(error == 0);
2025
2026 error = ddt_object_count(ddt, type, class, &count);
2027 ASSERT(error == 0);
2028 if (count == 0)
2029 return;
2030
2031 dspace = doi.doi_physical_blocks_512 << 9;
2032 mspace = doi.doi_fill_count * doi.doi_data_block_size;
2033
2034 ddt_object_name(ddt, type, class, name);
2035
2036 (void) printf("%s: %llu entries, size %llu on disk, %llu in core\n",
2037 name,
2038 (u_longlong_t)count,
2039 (u_longlong_t)(dspace / count),
2040 (u_longlong_t)(mspace / count));
2041
2042 if (dump_opt['D'] < 3)
2043 return;
2044
2045 zpool_dump_ddt(NULL, &ddt->ddt_histogram[type][class]);
2046
2047 if (dump_opt['D'] < 4)
2048 return;
2049
2050 if (dump_opt['D'] < 5 && class == DDT_CLASS_UNIQUE)
2051 return;
2052
2053 (void) printf("%s contents:\n\n", name);
2054
2055 while ((error = ddt_object_walk(ddt, type, class, &walk, &dde)) == 0)
2056 dump_dde(ddt, &dde, walk);
2057
2058 ASSERT3U(error, ==, ENOENT);
2059
2060 (void) printf("\n");
2061 }
2062
2063 static void
2064 dump_all_ddts(spa_t *spa)
2065 {
2066 ddt_histogram_t ddh_total = {{{0}}};
2067 ddt_stat_t dds_total = {0};
2068
2069 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
2070 ddt_t *ddt = spa->spa_ddt[c];
2071 for (enum ddt_type type = 0; type < DDT_TYPES; type++) {
2072 for (enum ddt_class class = 0; class < DDT_CLASSES;
2073 class++) {
2074 dump_ddt(ddt, type, class);
2075 }
2076 }
2077 }
2078
2079 ddt_get_dedup_stats(spa, &dds_total);
2080
2081 if (dds_total.dds_blocks == 0) {
2082 (void) printf("All DDTs are empty\n");
2083 return;
2084 }
2085
2086 (void) printf("\n");
2087
2088 if (dump_opt['D'] > 1) {
2089 (void) printf("DDT histogram (aggregated over all DDTs):\n");
2090 ddt_get_dedup_histogram(spa, &ddh_total);
2091 zpool_dump_ddt(&dds_total, &ddh_total);
2092 }
2093
2094 dump_dedup_ratio(&dds_total);
2095 }
2096
2097 static void
2098 dump_brt(spa_t *spa)
2099 {
2100 if (!spa_feature_is_enabled(spa, SPA_FEATURE_BLOCK_CLONING)) {
2101 printf("BRT: unsupported on this pool\n");
2102 return;
2103 }
2104
2105 if (!spa_feature_is_active(spa, SPA_FEATURE_BLOCK_CLONING)) {
2106 printf("BRT: empty\n");
2107 return;
2108 }
2109
2110 brt_t *brt = spa->spa_brt;
2111 VERIFY(brt);
2112
2113 char count[32], used[32], saved[32];
2114 zdb_nicebytes(brt_get_used(spa), used, sizeof (used));
2115 zdb_nicebytes(brt_get_saved(spa), saved, sizeof (saved));
2116 uint64_t ratio = brt_get_ratio(spa);
2117 printf("BRT: used %s; saved %s; ratio %llu.%02llux\n", used, saved,
2118 (u_longlong_t)(ratio / 100), (u_longlong_t)(ratio % 100));
2119
2120 if (dump_opt['T'] < 2)
2121 return;
2122
2123 for (uint64_t vdevid = 0; vdevid < brt->brt_nvdevs; vdevid++) {
2124 brt_vdev_t *brtvd = &brt->brt_vdevs[vdevid];
2125 if (brtvd == NULL)
2126 continue;
2127
2128 if (!brtvd->bv_initiated) {
2129 printf("BRT: vdev %lu: empty\n", vdevid);
2130 continue;
2131 }
2132
2133 zdb_nicenum(brtvd->bv_totalcount, count, sizeof (count));
2134 zdb_nicebytes(brtvd->bv_usedspace, used, sizeof (used));
2135 zdb_nicebytes(brtvd->bv_savedspace, saved, sizeof (saved));
2136 printf("BRT: vdev %lu: refcnt %s; used %s; saved %s\n",
2137 vdevid, count, used, saved);
2138 }
2139
2140 if (dump_opt['T'] < 3)
2141 return;
2142
2143 char dva[64];
2144 printf("\n%-16s %-10s\n", "DVA", "REFCNT");
2145
2146 for (uint64_t vdevid = 0; vdevid < brt->brt_nvdevs; vdevid++) {
2147 brt_vdev_t *brtvd = &brt->brt_vdevs[vdevid];
2148 if (brtvd == NULL || !brtvd->bv_initiated)
2149 continue;
2150
2151 zap_cursor_t zc;
2152 zap_attribute_t za;
2153 for (zap_cursor_init(&zc, brt->brt_mos, brtvd->bv_mos_entries);
2154 zap_cursor_retrieve(&zc, &za) == 0;
2155 zap_cursor_advance(&zc)) {
2156 uint64_t offset = *(uint64_t *)za.za_name;
2157 uint64_t refcnt = za.za_first_integer;
2158
2159 snprintf(dva, sizeof (dva), "%lu:%llx", vdevid,
2160 (u_longlong_t)offset);
2161 printf("%-16s %-10llu\n", dva, (u_longlong_t)refcnt);
2162 }
2163 zap_cursor_fini(&zc);
2164 }
2165 }
2166
2167 static void
2168 dump_dtl_seg(void *arg, uint64_t start, uint64_t size)
2169 {
2170 char *prefix = arg;
2171
2172 (void) printf("%s [%llu,%llu) length %llu\n",
2173 prefix,
2174 (u_longlong_t)start,
2175 (u_longlong_t)(start + size),
2176 (u_longlong_t)(size));
2177 }
2178
2179 static void
2180 dump_dtl(vdev_t *vd, int indent)
2181 {
2182 spa_t *spa = vd->vdev_spa;
2183 boolean_t required;
2184 const char *name[DTL_TYPES] = { "missing", "partial", "scrub",
2185 "outage" };
2186 char prefix[256];
2187
2188 spa_vdev_state_enter(spa, SCL_NONE);
2189 required = vdev_dtl_required(vd);
2190 (void) spa_vdev_state_exit(spa, NULL, 0);
2191
2192 if (indent == 0)
2193 (void) printf("\nDirty time logs:\n\n");
2194
2195 (void) printf("\t%*s%s [%s]\n", indent, "",
2196 vd->vdev_path ? vd->vdev_path :
2197 vd->vdev_parent ? vd->vdev_ops->vdev_op_type : spa_name(spa),
2198 required ? "DTL-required" : "DTL-expendable");
2199
2200 for (int t = 0; t < DTL_TYPES; t++) {
2201 range_tree_t *rt = vd->vdev_dtl[t];
2202 if (range_tree_space(rt) == 0)
2203 continue;
2204 (void) snprintf(prefix, sizeof (prefix), "\t%*s%s",
2205 indent + 2, "", name[t]);
2206 range_tree_walk(rt, dump_dtl_seg, prefix);
2207 if (dump_opt['d'] > 5 && vd->vdev_children == 0)
2208 dump_spacemap(spa->spa_meta_objset,
2209 vd->vdev_dtl_sm);
2210 }
2211
2212 for (unsigned c = 0; c < vd->vdev_children; c++)
2213 dump_dtl(vd->vdev_child[c], indent + 4);
2214 }
2215
2216 static void
2217 dump_history(spa_t *spa)
2218 {
2219 nvlist_t **events = NULL;
2220 char *buf;
2221 uint64_t resid, len, off = 0;
2222 uint_t num = 0;
2223 int error;
2224 char tbuf[30];
2225
2226 if ((buf = malloc(SPA_OLD_MAXBLOCKSIZE)) == NULL) {
2227 (void) fprintf(stderr, "%s: unable to allocate I/O buffer\n",
2228 __func__);
2229 return;
2230 }
2231
2232 do {
2233 len = SPA_OLD_MAXBLOCKSIZE;
2234
2235 if ((error = spa_history_get(spa, &off, &len, buf)) != 0) {
2236 (void) fprintf(stderr, "Unable to read history: "
2237 "error %d\n", error);
2238 free(buf);
2239 return;
2240 }
2241
2242 if (zpool_history_unpack(buf, len, &resid, &events, &num) != 0)
2243 break;
2244
2245 off -= resid;
2246 } while (len != 0);
2247
2248 (void) printf("\nHistory:\n");
2249 for (unsigned i = 0; i < num; i++) {
2250 boolean_t printed = B_FALSE;
2251
2252 if (nvlist_exists(events[i], ZPOOL_HIST_TIME)) {
2253 time_t tsec;
2254 struct tm t;
2255
2256 tsec = fnvlist_lookup_uint64(events[i],
2257 ZPOOL_HIST_TIME);
2258 (void) localtime_r(&tsec, &t);
2259 (void) strftime(tbuf, sizeof (tbuf), "%F.%T", &t);
2260 } else {
2261 tbuf[0] = '\0';
2262 }
2263
2264 if (nvlist_exists(events[i], ZPOOL_HIST_CMD)) {
2265 (void) printf("%s %s\n", tbuf,
2266 fnvlist_lookup_string(events[i], ZPOOL_HIST_CMD));
2267 } else if (nvlist_exists(events[i], ZPOOL_HIST_INT_EVENT)) {
2268 uint64_t ievent;
2269
2270 ievent = fnvlist_lookup_uint64(events[i],
2271 ZPOOL_HIST_INT_EVENT);
2272 if (ievent >= ZFS_NUM_LEGACY_HISTORY_EVENTS)
2273 goto next;
2274
2275 (void) printf(" %s [internal %s txg:%ju] %s\n",
2276 tbuf,
2277 zfs_history_event_names[ievent],
2278 fnvlist_lookup_uint64(events[i],
2279 ZPOOL_HIST_TXG),
2280 fnvlist_lookup_string(events[i],
2281 ZPOOL_HIST_INT_STR));
2282 } else if (nvlist_exists(events[i], ZPOOL_HIST_INT_NAME)) {
2283 (void) printf("%s [txg:%ju] %s", tbuf,
2284 fnvlist_lookup_uint64(events[i],
2285 ZPOOL_HIST_TXG),
2286 fnvlist_lookup_string(events[i],
2287 ZPOOL_HIST_INT_NAME));
2288
2289 if (nvlist_exists(events[i], ZPOOL_HIST_DSNAME)) {
2290 (void) printf(" %s (%llu)",
2291 fnvlist_lookup_string(events[i],
2292 ZPOOL_HIST_DSNAME),
2293 (u_longlong_t)fnvlist_lookup_uint64(
2294 events[i],
2295 ZPOOL_HIST_DSID));
2296 }
2297
2298 (void) printf(" %s\n", fnvlist_lookup_string(events[i],
2299 ZPOOL_HIST_INT_STR));
2300 } else if (nvlist_exists(events[i], ZPOOL_HIST_IOCTL)) {
2301 (void) printf("%s ioctl %s\n", tbuf,
2302 fnvlist_lookup_string(events[i],
2303 ZPOOL_HIST_IOCTL));
2304
2305 if (nvlist_exists(events[i], ZPOOL_HIST_INPUT_NVL)) {
2306 (void) printf(" input:\n");
2307 dump_nvlist(fnvlist_lookup_nvlist(events[i],
2308 ZPOOL_HIST_INPUT_NVL), 8);
2309 }
2310 if (nvlist_exists(events[i], ZPOOL_HIST_OUTPUT_NVL)) {
2311 (void) printf(" output:\n");
2312 dump_nvlist(fnvlist_lookup_nvlist(events[i],
2313 ZPOOL_HIST_OUTPUT_NVL), 8);
2314 }
2315 if (nvlist_exists(events[i], ZPOOL_HIST_ERRNO)) {
2316 (void) printf(" errno: %lld\n",
2317 (longlong_t)fnvlist_lookup_int64(events[i],
2318 ZPOOL_HIST_ERRNO));
2319 }
2320 } else {
2321 goto next;
2322 }
2323
2324 printed = B_TRUE;
2325 next:
2326 if (dump_opt['h'] > 1) {
2327 if (!printed)
2328 (void) printf("unrecognized record:\n");
2329 dump_nvlist(events[i], 2);
2330 }
2331 }
2332 free(buf);
2333 }
2334
2335 static void
2336 dump_dnode(objset_t *os, uint64_t object, void *data, size_t size)
2337 {
2338 (void) os, (void) object, (void) data, (void) size;
2339 }
2340
2341 static uint64_t
2342 blkid2offset(const dnode_phys_t *dnp, const blkptr_t *bp,
2343 const zbookmark_phys_t *zb)
2344 {
2345 if (dnp == NULL) {
2346 ASSERT(zb->zb_level < 0);
2347 if (zb->zb_object == 0)
2348 return (zb->zb_blkid);
2349 return (zb->zb_blkid * BP_GET_LSIZE(bp));
2350 }
2351
2352 ASSERT(zb->zb_level >= 0);
2353
2354 return ((zb->zb_blkid <<
2355 (zb->zb_level * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT))) *
2356 dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
2357 }
2358
2359 static void
2360 snprintf_zstd_header(spa_t *spa, char *blkbuf, size_t buflen,
2361 const blkptr_t *bp)
2362 {
2363 abd_t *pabd;
2364 void *buf;
2365 zio_t *zio;
2366 zfs_zstdhdr_t zstd_hdr;
2367 int error;
2368
2369 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_ZSTD)
2370 return;
2371
2372 if (BP_IS_HOLE(bp))
2373 return;
2374
2375 if (BP_IS_EMBEDDED(bp)) {
2376 buf = malloc(SPA_MAXBLOCKSIZE);
2377 if (buf == NULL) {
2378 (void) fprintf(stderr, "out of memory\n");
2379 exit(1);
2380 }
2381 decode_embedded_bp_compressed(bp, buf);
2382 memcpy(&zstd_hdr, buf, sizeof (zstd_hdr));
2383 free(buf);
2384 zstd_hdr.c_len = BE_32(zstd_hdr.c_len);
2385 zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level);
2386 (void) snprintf(blkbuf + strlen(blkbuf),
2387 buflen - strlen(blkbuf),
2388 " ZSTD:size=%u:version=%u:level=%u:EMBEDDED",
2389 zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr),
2390 zfs_get_hdrlevel(&zstd_hdr));
2391 return;
2392 }
2393
2394 pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE);
2395 zio = zio_root(spa, NULL, NULL, 0);
2396
2397 /* Decrypt but don't decompress so we can read the compression header */
2398 zio_nowait(zio_read(zio, spa, bp, pabd, BP_GET_PSIZE(bp), NULL, NULL,
2399 ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW_COMPRESS,
2400 NULL));
2401 error = zio_wait(zio);
2402 if (error) {
2403 (void) fprintf(stderr, "read failed: %d\n", error);
2404 return;
2405 }
2406 buf = abd_borrow_buf_copy(pabd, BP_GET_LSIZE(bp));
2407 memcpy(&zstd_hdr, buf, sizeof (zstd_hdr));
2408 zstd_hdr.c_len = BE_32(zstd_hdr.c_len);
2409 zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level);
2410
2411 (void) snprintf(blkbuf + strlen(blkbuf),
2412 buflen - strlen(blkbuf),
2413 " ZSTD:size=%u:version=%u:level=%u:NORMAL",
2414 zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr),
2415 zfs_get_hdrlevel(&zstd_hdr));
2416
2417 abd_return_buf_copy(pabd, buf, BP_GET_LSIZE(bp));
2418 }
2419
2420 static void
2421 snprintf_blkptr_compact(char *blkbuf, size_t buflen, const blkptr_t *bp,
2422 boolean_t bp_freed)
2423 {
2424 const dva_t *dva = bp->blk_dva;
2425 int ndvas = dump_opt['d'] > 5 ? BP_GET_NDVAS(bp) : 1;
2426 int i;
2427
2428 if (dump_opt['b'] >= 6) {
2429 snprintf_blkptr(blkbuf, buflen, bp);
2430 if (bp_freed) {
2431 (void) snprintf(blkbuf + strlen(blkbuf),
2432 buflen - strlen(blkbuf), " %s", "FREE");
2433 }
2434 return;
2435 }
2436
2437 if (BP_IS_EMBEDDED(bp)) {
2438 (void) sprintf(blkbuf,
2439 "EMBEDDED et=%u %llxL/%llxP B=%llu",
2440 (int)BPE_GET_ETYPE(bp),
2441 (u_longlong_t)BPE_GET_LSIZE(bp),
2442 (u_longlong_t)BPE_GET_PSIZE(bp),
2443 (u_longlong_t)bp->blk_birth);
2444 return;
2445 }
2446
2447 blkbuf[0] = '\0';
2448
2449 for (i = 0; i < ndvas; i++)
2450 (void) snprintf(blkbuf + strlen(blkbuf),
2451 buflen - strlen(blkbuf), "%llu:%llx:%llx ",
2452 (u_longlong_t)DVA_GET_VDEV(&dva[i]),
2453 (u_longlong_t)DVA_GET_OFFSET(&dva[i]),
2454 (u_longlong_t)DVA_GET_ASIZE(&dva[i]));
2455
2456 if (BP_IS_HOLE(bp)) {
2457 (void) snprintf(blkbuf + strlen(blkbuf),
2458 buflen - strlen(blkbuf),
2459 "%llxL B=%llu",
2460 (u_longlong_t)BP_GET_LSIZE(bp),
2461 (u_longlong_t)bp->blk_birth);
2462 } else {
2463 (void) snprintf(blkbuf + strlen(blkbuf),
2464 buflen - strlen(blkbuf),
2465 "%llxL/%llxP F=%llu B=%llu/%llu",
2466 (u_longlong_t)BP_GET_LSIZE(bp),
2467 (u_longlong_t)BP_GET_PSIZE(bp),
2468 (u_longlong_t)BP_GET_FILL(bp),
2469 (u_longlong_t)bp->blk_birth,
2470 (u_longlong_t)BP_PHYSICAL_BIRTH(bp));
2471 if (bp_freed)
2472 (void) snprintf(blkbuf + strlen(blkbuf),
2473 buflen - strlen(blkbuf), " %s", "FREE");
2474 (void) snprintf(blkbuf + strlen(blkbuf),
2475 buflen - strlen(blkbuf),
2476 " cksum=%016llx:%016llx:%016llx:%016llx",
2477 (u_longlong_t)bp->blk_cksum.zc_word[0],
2478 (u_longlong_t)bp->blk_cksum.zc_word[1],
2479 (u_longlong_t)bp->blk_cksum.zc_word[2],
2480 (u_longlong_t)bp->blk_cksum.zc_word[3]);
2481 }
2482 }
2483
2484 static void
2485 print_indirect(spa_t *spa, blkptr_t *bp, const zbookmark_phys_t *zb,
2486 const dnode_phys_t *dnp)
2487 {
2488 char blkbuf[BP_SPRINTF_LEN];
2489 int l;
2490
2491 if (!BP_IS_EMBEDDED(bp)) {
2492 ASSERT3U(BP_GET_TYPE(bp), ==, dnp->dn_type);
2493 ASSERT3U(BP_GET_LEVEL(bp), ==, zb->zb_level);
2494 }
2495
2496 (void) printf("%16llx ", (u_longlong_t)blkid2offset(dnp, bp, zb));
2497
2498 ASSERT(zb->zb_level >= 0);
2499
2500 for (l = dnp->dn_nlevels - 1; l >= -1; l--) {
2501 if (l == zb->zb_level) {
2502 (void) printf("L%llx", (u_longlong_t)zb->zb_level);
2503 } else {
2504 (void) printf(" ");
2505 }
2506 }
2507
2508 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, B_FALSE);
2509 if (dump_opt['Z'] && BP_GET_COMPRESS(bp) == ZIO_COMPRESS_ZSTD)
2510 snprintf_zstd_header(spa, blkbuf, sizeof (blkbuf), bp);
2511 (void) printf("%s\n", blkbuf);
2512 }
2513
2514 static int
2515 visit_indirect(spa_t *spa, const dnode_phys_t *dnp,
2516 blkptr_t *bp, const zbookmark_phys_t *zb)
2517 {
2518 int err = 0;
2519
2520 if (bp->blk_birth == 0)
2521 return (0);
2522
2523 print_indirect(spa, bp, zb, dnp);
2524
2525 if (BP_GET_LEVEL(bp) > 0 && !BP_IS_HOLE(bp)) {
2526 arc_flags_t flags = ARC_FLAG_WAIT;
2527 int i;
2528 blkptr_t *cbp;
2529 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
2530 arc_buf_t *buf;
2531 uint64_t fill = 0;
2532 ASSERT(!BP_IS_REDACTED(bp));
2533
2534 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2535 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb);
2536 if (err)
2537 return (err);
2538 ASSERT(buf->b_data);
2539
2540 /* recursively visit blocks below this */
2541 cbp = buf->b_data;
2542 for (i = 0; i < epb; i++, cbp++) {
2543 zbookmark_phys_t czb;
2544
2545 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
2546 zb->zb_level - 1,
2547 zb->zb_blkid * epb + i);
2548 err = visit_indirect(spa, dnp, cbp, &czb);
2549 if (err)
2550 break;
2551 fill += BP_GET_FILL(cbp);
2552 }
2553 if (!err)
2554 ASSERT3U(fill, ==, BP_GET_FILL(bp));
2555 arc_buf_destroy(buf, &buf);
2556 }
2557
2558 return (err);
2559 }
2560
2561 static void
2562 dump_indirect(dnode_t *dn)
2563 {
2564 dnode_phys_t *dnp = dn->dn_phys;
2565 zbookmark_phys_t czb;
2566
2567 (void) printf("Indirect blocks:\n");
2568
2569 SET_BOOKMARK(&czb, dmu_objset_id(dn->dn_objset),
2570 dn->dn_object, dnp->dn_nlevels - 1, 0);
2571 for (int j = 0; j < dnp->dn_nblkptr; j++) {
2572 czb.zb_blkid = j;
2573 (void) visit_indirect(dmu_objset_spa(dn->dn_objset), dnp,
2574 &dnp->dn_blkptr[j], &czb);
2575 }
2576
2577 (void) printf("\n");
2578 }
2579
2580 static void
2581 dump_dsl_dir(objset_t *os, uint64_t object, void *data, size_t size)
2582 {
2583 (void) os, (void) object;
2584 dsl_dir_phys_t *dd = data;
2585 time_t crtime;
2586 char nice[32];
2587
2588 /* make sure nicenum has enough space */
2589 _Static_assert(sizeof (nice) >= NN_NUMBUF_SZ, "nice truncated");
2590
2591 if (dd == NULL)
2592 return;
2593
2594 ASSERT3U(size, >=, sizeof (dsl_dir_phys_t));
2595
2596 crtime = dd->dd_creation_time;
2597 (void) printf("\t\tcreation_time = %s", ctime(&crtime));
2598 (void) printf("\t\thead_dataset_obj = %llu\n",
2599 (u_longlong_t)dd->dd_head_dataset_obj);
2600 (void) printf("\t\tparent_dir_obj = %llu\n",
2601 (u_longlong_t)dd->dd_parent_obj);
2602 (void) printf("\t\torigin_obj = %llu\n",
2603 (u_longlong_t)dd->dd_origin_obj);
2604 (void) printf("\t\tchild_dir_zapobj = %llu\n",
2605 (u_longlong_t)dd->dd_child_dir_zapobj);
2606 zdb_nicenum(dd->dd_used_bytes, nice, sizeof (nice));
2607 (void) printf("\t\tused_bytes = %s\n", nice);
2608 zdb_nicenum(dd->dd_compressed_bytes, nice, sizeof (nice));
2609 (void) printf("\t\tcompressed_bytes = %s\n", nice);
2610 zdb_nicenum(dd->dd_uncompressed_bytes, nice, sizeof (nice));
2611 (void) printf("\t\tuncompressed_bytes = %s\n", nice);
2612 zdb_nicenum(dd->dd_quota, nice, sizeof (nice));
2613 (void) printf("\t\tquota = %s\n", nice);
2614 zdb_nicenum(dd->dd_reserved, nice, sizeof (nice));
2615 (void) printf("\t\treserved = %s\n", nice);
2616 (void) printf("\t\tprops_zapobj = %llu\n",
2617 (u_longlong_t)dd->dd_props_zapobj);
2618 (void) printf("\t\tdeleg_zapobj = %llu\n",
2619 (u_longlong_t)dd->dd_deleg_zapobj);
2620 (void) printf("\t\tflags = %llx\n",
2621 (u_longlong_t)dd->dd_flags);
2622
2623 #define DO(which) \
2624 zdb_nicenum(dd->dd_used_breakdown[DD_USED_ ## which], nice, \
2625 sizeof (nice)); \
2626 (void) printf("\t\tused_breakdown[" #which "] = %s\n", nice)
2627 DO(HEAD);
2628 DO(SNAP);
2629 DO(CHILD);
2630 DO(CHILD_RSRV);
2631 DO(REFRSRV);
2632 #undef DO
2633 (void) printf("\t\tclones = %llu\n",
2634 (u_longlong_t)dd->dd_clones);
2635 }
2636
2637 static void
2638 dump_dsl_dataset(objset_t *os, uint64_t object, void *data, size_t size)
2639 {
2640 (void) os, (void) object;
2641 dsl_dataset_phys_t *ds = data;
2642 time_t crtime;
2643 char used[32], compressed[32], uncompressed[32], unique[32];
2644 char blkbuf[BP_SPRINTF_LEN];
2645
2646 /* make sure nicenum has enough space */
2647 _Static_assert(sizeof (used) >= NN_NUMBUF_SZ, "used truncated");
2648 _Static_assert(sizeof (compressed) >= NN_NUMBUF_SZ,
2649 "compressed truncated");
2650 _Static_assert(sizeof (uncompressed) >= NN_NUMBUF_SZ,
2651 "uncompressed truncated");
2652 _Static_assert(sizeof (unique) >= NN_NUMBUF_SZ, "unique truncated");
2653
2654 if (ds == NULL)
2655 return;
2656
2657 ASSERT(size == sizeof (*ds));
2658 crtime = ds->ds_creation_time;
2659 zdb_nicenum(ds->ds_referenced_bytes, used, sizeof (used));
2660 zdb_nicenum(ds->ds_compressed_bytes, compressed, sizeof (compressed));
2661 zdb_nicenum(ds->ds_uncompressed_bytes, uncompressed,
2662 sizeof (uncompressed));
2663 zdb_nicenum(ds->ds_unique_bytes, unique, sizeof (unique));
2664 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ds->ds_bp);
2665
2666 (void) printf("\t\tdir_obj = %llu\n",
2667 (u_longlong_t)ds->ds_dir_obj);
2668 (void) printf("\t\tprev_snap_obj = %llu\n",
2669 (u_longlong_t)ds->ds_prev_snap_obj);
2670 (void) printf("\t\tprev_snap_txg = %llu\n",
2671 (u_longlong_t)ds->ds_prev_snap_txg);
2672 (void) printf("\t\tnext_snap_obj = %llu\n",
2673 (u_longlong_t)ds->ds_next_snap_obj);
2674 (void) printf("\t\tsnapnames_zapobj = %llu\n",
2675 (u_longlong_t)ds->ds_snapnames_zapobj);
2676 (void) printf("\t\tnum_children = %llu\n",
2677 (u_longlong_t)ds->ds_num_children);
2678 (void) printf("\t\tuserrefs_obj = %llu\n",
2679 (u_longlong_t)ds->ds_userrefs_obj);
2680 (void) printf("\t\tcreation_time = %s", ctime(&crtime));
2681 (void) printf("\t\tcreation_txg = %llu\n",
2682 (u_longlong_t)ds->ds_creation_txg);
2683 (void) printf("\t\tdeadlist_obj = %llu\n",
2684 (u_longlong_t)ds->ds_deadlist_obj);
2685 (void) printf("\t\tused_bytes = %s\n", used);
2686 (void) printf("\t\tcompressed_bytes = %s\n", compressed);
2687 (void) printf("\t\tuncompressed_bytes = %s\n", uncompressed);
2688 (void) printf("\t\tunique = %s\n", unique);
2689 (void) printf("\t\tfsid_guid = %llu\n",
2690 (u_longlong_t)ds->ds_fsid_guid);
2691 (void) printf("\t\tguid = %llu\n",
2692 (u_longlong_t)ds->ds_guid);
2693 (void) printf("\t\tflags = %llx\n",
2694 (u_longlong_t)ds->ds_flags);
2695 (void) printf("\t\tnext_clones_obj = %llu\n",
2696 (u_longlong_t)ds->ds_next_clones_obj);
2697 (void) printf("\t\tprops_obj = %llu\n",
2698 (u_longlong_t)ds->ds_props_obj);
2699 (void) printf("\t\tbp = %s\n", blkbuf);
2700 }
2701
2702 static int
2703 dump_bptree_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2704 {
2705 (void) arg, (void) tx;
2706 char blkbuf[BP_SPRINTF_LEN];
2707
2708 if (bp->blk_birth != 0) {
2709 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
2710 (void) printf("\t%s\n", blkbuf);
2711 }
2712 return (0);
2713 }
2714
2715 static void
2716 dump_bptree(objset_t *os, uint64_t obj, const char *name)
2717 {
2718 char bytes[32];
2719 bptree_phys_t *bt;
2720 dmu_buf_t *db;
2721
2722 /* make sure nicenum has enough space */
2723 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
2724
2725 if (dump_opt['d'] < 3)
2726 return;
2727
2728 VERIFY3U(0, ==, dmu_bonus_hold(os, obj, FTAG, &db));
2729 bt = db->db_data;
2730 zdb_nicenum(bt->bt_bytes, bytes, sizeof (bytes));
2731 (void) printf("\n %s: %llu datasets, %s\n",
2732 name, (unsigned long long)(bt->bt_end - bt->bt_begin), bytes);
2733 dmu_buf_rele(db, FTAG);
2734
2735 if (dump_opt['d'] < 5)
2736 return;
2737
2738 (void) printf("\n");
2739
2740 (void) bptree_iterate(os, obj, B_FALSE, dump_bptree_cb, NULL, NULL);
2741 }
2742
2743 static int
2744 dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx)
2745 {
2746 (void) arg, (void) tx;
2747 char blkbuf[BP_SPRINTF_LEN];
2748
2749 ASSERT(bp->blk_birth != 0);
2750 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, bp_freed);
2751 (void) printf("\t%s\n", blkbuf);
2752 return (0);
2753 }
2754
2755 static void
2756 dump_full_bpobj(bpobj_t *bpo, const char *name, int indent)
2757 {
2758 char bytes[32];
2759 char comp[32];
2760 char uncomp[32];
2761 uint64_t i;
2762
2763 /* make sure nicenum has enough space */
2764 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
2765 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated");
2766 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated");
2767
2768 if (dump_opt['d'] < 3)
2769 return;
2770
2771 zdb_nicenum(bpo->bpo_phys->bpo_bytes, bytes, sizeof (bytes));
2772 if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) {
2773 zdb_nicenum(bpo->bpo_phys->bpo_comp, comp, sizeof (comp));
2774 zdb_nicenum(bpo->bpo_phys->bpo_uncomp, uncomp, sizeof (uncomp));
2775 if (bpo->bpo_havefreed) {
2776 (void) printf(" %*s: object %llu, %llu local "
2777 "blkptrs, %llu freed, %llu subobjs in object %llu, "
2778 "%s (%s/%s comp)\n",
2779 indent * 8, name,
2780 (u_longlong_t)bpo->bpo_object,
2781 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2782 (u_longlong_t)bpo->bpo_phys->bpo_num_freed,
2783 (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs,
2784 (u_longlong_t)bpo->bpo_phys->bpo_subobjs,
2785 bytes, comp, uncomp);
2786 } else {
2787 (void) printf(" %*s: object %llu, %llu local "
2788 "blkptrs, %llu subobjs in object %llu, "
2789 "%s (%s/%s comp)\n",
2790 indent * 8, name,
2791 (u_longlong_t)bpo->bpo_object,
2792 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2793 (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs,
2794 (u_longlong_t)bpo->bpo_phys->bpo_subobjs,
2795 bytes, comp, uncomp);
2796 }
2797
2798 for (i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) {
2799 uint64_t subobj;
2800 bpobj_t subbpo;
2801 int error;
2802 VERIFY0(dmu_read(bpo->bpo_os,
2803 bpo->bpo_phys->bpo_subobjs,
2804 i * sizeof (subobj), sizeof (subobj), &subobj, 0));
2805 error = bpobj_open(&subbpo, bpo->bpo_os, subobj);
2806 if (error != 0) {
2807 (void) printf("ERROR %u while trying to open "
2808 "subobj id %llu\n",
2809 error, (u_longlong_t)subobj);
2810 continue;
2811 }
2812 dump_full_bpobj(&subbpo, "subobj", indent + 1);
2813 bpobj_close(&subbpo);
2814 }
2815 } else {
2816 if (bpo->bpo_havefreed) {
2817 (void) printf(" %*s: object %llu, %llu blkptrs, "
2818 "%llu freed, %s\n",
2819 indent * 8, name,
2820 (u_longlong_t)bpo->bpo_object,
2821 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2822 (u_longlong_t)bpo->bpo_phys->bpo_num_freed,
2823 bytes);
2824 } else {
2825 (void) printf(" %*s: object %llu, %llu blkptrs, "
2826 "%s\n",
2827 indent * 8, name,
2828 (u_longlong_t)bpo->bpo_object,
2829 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2830 bytes);
2831 }
2832 }
2833
2834 if (dump_opt['d'] < 5)
2835 return;
2836
2837
2838 if (indent == 0) {
2839 (void) bpobj_iterate_nofree(bpo, dump_bpobj_cb, NULL, NULL);
2840 (void) printf("\n");
2841 }
2842 }
2843
2844 static int
2845 dump_bookmark(dsl_pool_t *dp, char *name, boolean_t print_redact,
2846 boolean_t print_list)
2847 {
2848 int err = 0;
2849 zfs_bookmark_phys_t prop;
2850 objset_t *mos = dp->dp_spa->spa_meta_objset;
2851 err = dsl_bookmark_lookup(dp, name, NULL, &prop);
2852
2853 if (err != 0) {
2854 return (err);
2855 }
2856
2857 (void) printf("\t#%s: ", strchr(name, '#') + 1);
2858 (void) printf("{guid: %llx creation_txg: %llu creation_time: "
2859 "%llu redaction_obj: %llu}\n", (u_longlong_t)prop.zbm_guid,
2860 (u_longlong_t)prop.zbm_creation_txg,
2861 (u_longlong_t)prop.zbm_creation_time,
2862 (u_longlong_t)prop.zbm_redaction_obj);
2863
2864 IMPLY(print_list, print_redact);
2865 if (!print_redact || prop.zbm_redaction_obj == 0)
2866 return (0);
2867
2868 redaction_list_t *rl;
2869 VERIFY0(dsl_redaction_list_hold_obj(dp,
2870 prop.zbm_redaction_obj, FTAG, &rl));
2871
2872 redaction_list_phys_t *rlp = rl->rl_phys;
2873 (void) printf("\tRedacted:\n\t\tProgress: ");
2874 if (rlp->rlp_last_object != UINT64_MAX ||
2875 rlp->rlp_last_blkid != UINT64_MAX) {
2876 (void) printf("%llu %llu (incomplete)\n",
2877 (u_longlong_t)rlp->rlp_last_object,
2878 (u_longlong_t)rlp->rlp_last_blkid);
2879 } else {
2880 (void) printf("complete\n");
2881 }
2882 (void) printf("\t\tSnapshots: [");
2883 for (unsigned int i = 0; i < rlp->rlp_num_snaps; i++) {
2884 if (i > 0)
2885 (void) printf(", ");
2886 (void) printf("%0llu",
2887 (u_longlong_t)rlp->rlp_snaps[i]);
2888 }
2889 (void) printf("]\n\t\tLength: %llu\n",
2890 (u_longlong_t)rlp->rlp_num_entries);
2891
2892 if (!print_list) {
2893 dsl_redaction_list_rele(rl, FTAG);
2894 return (0);
2895 }
2896
2897 if (rlp->rlp_num_entries == 0) {
2898 dsl_redaction_list_rele(rl, FTAG);
2899 (void) printf("\t\tRedaction List: []\n\n");
2900 return (0);
2901 }
2902
2903 redact_block_phys_t *rbp_buf;
2904 uint64_t size;
2905 dmu_object_info_t doi;
2906
2907 VERIFY0(dmu_object_info(mos, prop.zbm_redaction_obj, &doi));
2908 size = doi.doi_max_offset;
2909 rbp_buf = kmem_alloc(size, KM_SLEEP);
2910
2911 err = dmu_read(mos, prop.zbm_redaction_obj, 0, size,
2912 rbp_buf, 0);
2913 if (err != 0) {
2914 dsl_redaction_list_rele(rl, FTAG);
2915 kmem_free(rbp_buf, size);
2916 return (err);
2917 }
2918
2919 (void) printf("\t\tRedaction List: [{object: %llx, offset: "
2920 "%llx, blksz: %x, count: %llx}",
2921 (u_longlong_t)rbp_buf[0].rbp_object,
2922 (u_longlong_t)rbp_buf[0].rbp_blkid,
2923 (uint_t)(redact_block_get_size(&rbp_buf[0])),
2924 (u_longlong_t)redact_block_get_count(&rbp_buf[0]));
2925
2926 for (size_t i = 1; i < rlp->rlp_num_entries; i++) {
2927 (void) printf(",\n\t\t{object: %llx, offset: %llx, "
2928 "blksz: %x, count: %llx}",
2929 (u_longlong_t)rbp_buf[i].rbp_object,
2930 (u_longlong_t)rbp_buf[i].rbp_blkid,
2931 (uint_t)(redact_block_get_size(&rbp_buf[i])),
2932 (u_longlong_t)redact_block_get_count(&rbp_buf[i]));
2933 }
2934 dsl_redaction_list_rele(rl, FTAG);
2935 kmem_free(rbp_buf, size);
2936 (void) printf("]\n\n");
2937 return (0);
2938 }
2939
2940 static void
2941 dump_bookmarks(objset_t *os, int verbosity)
2942 {
2943 zap_cursor_t zc;
2944 zap_attribute_t attr;
2945 dsl_dataset_t *ds = dmu_objset_ds(os);
2946 dsl_pool_t *dp = spa_get_dsl(os->os_spa);
2947 objset_t *mos = os->os_spa->spa_meta_objset;
2948 if (verbosity < 4)
2949 return;
2950 dsl_pool_config_enter(dp, FTAG);
2951
2952 for (zap_cursor_init(&zc, mos, ds->ds_bookmarks_obj);
2953 zap_cursor_retrieve(&zc, &attr) == 0;
2954 zap_cursor_advance(&zc)) {
2955 char osname[ZFS_MAX_DATASET_NAME_LEN];
2956 char buf[ZFS_MAX_DATASET_NAME_LEN];
2957 int len;
2958 dmu_objset_name(os, osname);
2959 len = snprintf(buf, sizeof (buf), "%s#%s", osname,
2960 attr.za_name);
2961 VERIFY3S(len, <, ZFS_MAX_DATASET_NAME_LEN);
2962 (void) dump_bookmark(dp, buf, verbosity >= 5, verbosity >= 6);
2963 }
2964 zap_cursor_fini(&zc);
2965 dsl_pool_config_exit(dp, FTAG);
2966 }
2967
2968 static void
2969 bpobj_count_refd(bpobj_t *bpo)
2970 {
2971 mos_obj_refd(bpo->bpo_object);
2972
2973 if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) {
2974 mos_obj_refd(bpo->bpo_phys->bpo_subobjs);
2975 for (uint64_t i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) {
2976 uint64_t subobj;
2977 bpobj_t subbpo;
2978 int error;
2979 VERIFY0(dmu_read(bpo->bpo_os,
2980 bpo->bpo_phys->bpo_subobjs,
2981 i * sizeof (subobj), sizeof (subobj), &subobj, 0));
2982 error = bpobj_open(&subbpo, bpo->bpo_os, subobj);
2983 if (error != 0) {
2984 (void) printf("ERROR %u while trying to open "
2985 "subobj id %llu\n",
2986 error, (u_longlong_t)subobj);
2987 continue;
2988 }
2989 bpobj_count_refd(&subbpo);
2990 bpobj_close(&subbpo);
2991 }
2992 }
2993 }
2994
2995 static int
2996 dsl_deadlist_entry_count_refd(void *arg, dsl_deadlist_entry_t *dle)
2997 {
2998 spa_t *spa = arg;
2999 uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj;
3000 if (dle->dle_bpobj.bpo_object != empty_bpobj)
3001 bpobj_count_refd(&dle->dle_bpobj);
3002 return (0);
3003 }
3004
3005 static int
3006 dsl_deadlist_entry_dump(void *arg, dsl_deadlist_entry_t *dle)
3007 {
3008 ASSERT(arg == NULL);
3009 if (dump_opt['d'] >= 5) {
3010 char buf[128];
3011 (void) snprintf(buf, sizeof (buf),
3012 "mintxg %llu -> obj %llu",
3013 (longlong_t)dle->dle_mintxg,
3014 (longlong_t)dle->dle_bpobj.bpo_object);
3015
3016 dump_full_bpobj(&dle->dle_bpobj, buf, 0);
3017 } else {
3018 (void) printf("mintxg %llu -> obj %llu\n",
3019 (longlong_t)dle->dle_mintxg,
3020 (longlong_t)dle->dle_bpobj.bpo_object);
3021 }
3022 return (0);
3023 }
3024
3025 static void
3026 dump_blkptr_list(dsl_deadlist_t *dl, const char *name)
3027 {
3028 char bytes[32];
3029 char comp[32];
3030 char uncomp[32];
3031 char entries[32];
3032 spa_t *spa = dmu_objset_spa(dl->dl_os);
3033 uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj;
3034
3035 if (dl->dl_oldfmt) {
3036 if (dl->dl_bpobj.bpo_object != empty_bpobj)
3037 bpobj_count_refd(&dl->dl_bpobj);
3038 } else {
3039 mos_obj_refd(dl->dl_object);
3040 dsl_deadlist_iterate(dl, dsl_deadlist_entry_count_refd, spa);
3041 }
3042
3043 /* make sure nicenum has enough space */
3044 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
3045 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated");
3046 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated");
3047 _Static_assert(sizeof (entries) >= NN_NUMBUF_SZ, "entries truncated");
3048
3049 if (dump_opt['d'] < 3)
3050 return;
3051
3052 if (dl->dl_oldfmt) {
3053 dump_full_bpobj(&dl->dl_bpobj, "old-format deadlist", 0);
3054 return;
3055 }
3056
3057 zdb_nicenum(dl->dl_phys->dl_used, bytes, sizeof (bytes));
3058 zdb_nicenum(dl->dl_phys->dl_comp, comp, sizeof (comp));
3059 zdb_nicenum(dl->dl_phys->dl_uncomp, uncomp, sizeof (uncomp));
3060 zdb_nicenum(avl_numnodes(&dl->dl_tree), entries, sizeof (entries));
3061 (void) printf("\n %s: %s (%s/%s comp), %s entries\n",
3062 name, bytes, comp, uncomp, entries);
3063
3064 if (dump_opt['d'] < 4)
3065 return;
3066
3067 (void) putchar('\n');
3068
3069 dsl_deadlist_iterate(dl, dsl_deadlist_entry_dump, NULL);
3070 }
3071
3072 static int
3073 verify_dd_livelist(objset_t *os)
3074 {
3075 uint64_t ll_used, used, ll_comp, comp, ll_uncomp, uncomp;
3076 dsl_pool_t *dp = spa_get_dsl(os->os_spa);
3077 dsl_dir_t *dd = os->os_dsl_dataset->ds_dir;
3078
3079 ASSERT(!dmu_objset_is_snapshot(os));
3080 if (!dsl_deadlist_is_open(&dd->dd_livelist))
3081 return (0);
3082
3083 /* Iterate through the livelist to check for duplicates */
3084 dsl_deadlist_iterate(&dd->dd_livelist, sublivelist_verify_lightweight,
3085 NULL);
3086
3087 dsl_pool_config_enter(dp, FTAG);
3088 dsl_deadlist_space(&dd->dd_livelist, &ll_used,
3089 &ll_comp, &ll_uncomp);
3090
3091 dsl_dataset_t *origin_ds;
3092 ASSERT(dsl_pool_config_held(dp));
3093 VERIFY0(dsl_dataset_hold_obj(dp,
3094 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &origin_ds));
3095 VERIFY0(dsl_dataset_space_written(origin_ds, os->os_dsl_dataset,
3096 &used, &comp, &uncomp));
3097 dsl_dataset_rele(origin_ds, FTAG);
3098 dsl_pool_config_exit(dp, FTAG);
3099 /*
3100 * It's possible that the dataset's uncomp space is larger than the
3101 * livelist's because livelists do not track embedded block pointers
3102 */
3103 if (used != ll_used || comp != ll_comp || uncomp < ll_uncomp) {
3104 char nice_used[32], nice_comp[32], nice_uncomp[32];
3105 (void) printf("Discrepancy in space accounting:\n");
3106 zdb_nicenum(used, nice_used, sizeof (nice_used));
3107 zdb_nicenum(comp, nice_comp, sizeof (nice_comp));
3108 zdb_nicenum(uncomp, nice_uncomp, sizeof (nice_uncomp));
3109 (void) printf("dir: used %s, comp %s, uncomp %s\n",
3110 nice_used, nice_comp, nice_uncomp);
3111 zdb_nicenum(ll_used, nice_used, sizeof (nice_used));
3112 zdb_nicenum(ll_comp, nice_comp, sizeof (nice_comp));
3113 zdb_nicenum(ll_uncomp, nice_uncomp, sizeof (nice_uncomp));
3114 (void) printf("livelist: used %s, comp %s, uncomp %s\n",
3115 nice_used, nice_comp, nice_uncomp);
3116 return (1);
3117 }
3118 return (0);
3119 }
3120
3121 static char *key_material = NULL;
3122
3123 static boolean_t
3124 zdb_derive_key(dsl_dir_t *dd, uint8_t *key_out)
3125 {
3126 uint64_t keyformat, salt, iters;
3127 int i;
3128 unsigned char c;
3129
3130 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj,
3131 zfs_prop_to_name(ZFS_PROP_KEYFORMAT), sizeof (uint64_t),
3132 1, &keyformat));
3133
3134 switch (keyformat) {
3135 case ZFS_KEYFORMAT_HEX:
3136 for (i = 0; i < WRAPPING_KEY_LEN * 2; i += 2) {
3137 if (!isxdigit(key_material[i]) ||
3138 !isxdigit(key_material[i+1]))
3139 return (B_FALSE);
3140 if (sscanf(&key_material[i], "%02hhx", &c) != 1)
3141 return (B_FALSE);
3142 key_out[i / 2] = c;
3143 }
3144 break;
3145
3146 case ZFS_KEYFORMAT_PASSPHRASE:
3147 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset,
3148 dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT),
3149 sizeof (uint64_t), 1, &salt));
3150 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset,
3151 dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS),
3152 sizeof (uint64_t), 1, &iters));
3153
3154 if (PKCS5_PBKDF2_HMAC_SHA1(key_material, strlen(key_material),
3155 ((uint8_t *)&salt), sizeof (uint64_t), iters,
3156 WRAPPING_KEY_LEN, key_out) != 1)
3157 return (B_FALSE);
3158
3159 break;
3160
3161 default:
3162 fatal("no support for key format %u\n",
3163 (unsigned int) keyformat);
3164 }
3165
3166 return (B_TRUE);
3167 }
3168
3169 static char encroot[ZFS_MAX_DATASET_NAME_LEN];
3170 static boolean_t key_loaded = B_FALSE;
3171
3172 static void
3173 zdb_load_key(objset_t *os)
3174 {
3175 dsl_pool_t *dp;
3176 dsl_dir_t *dd, *rdd;
3177 uint8_t key[WRAPPING_KEY_LEN];
3178 uint64_t rddobj;
3179 int err;
3180
3181 dp = spa_get_dsl(os->os_spa);
3182 dd = os->os_dsl_dataset->ds_dir;
3183
3184 dsl_pool_config_enter(dp, FTAG);
3185 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj,
3186 DSL_CRYPTO_KEY_ROOT_DDOBJ, sizeof (uint64_t), 1, &rddobj));
3187 VERIFY0(dsl_dir_hold_obj(dd->dd_pool, rddobj, NULL, FTAG, &rdd));
3188 dsl_dir_name(rdd, encroot);
3189 dsl_dir_rele(rdd, FTAG);
3190
3191 if (!zdb_derive_key(dd, key))
3192 fatal("couldn't derive encryption key");
3193
3194 dsl_pool_config_exit(dp, FTAG);
3195
3196 ASSERT3U(dsl_dataset_get_keystatus(dd), ==, ZFS_KEYSTATUS_UNAVAILABLE);
3197
3198 dsl_crypto_params_t *dcp;
3199 nvlist_t *crypto_args;
3200
3201 crypto_args = fnvlist_alloc();
3202 fnvlist_add_uint8_array(crypto_args, "wkeydata",
3203 (uint8_t *)key, WRAPPING_KEY_LEN);
3204 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE,
3205 NULL, crypto_args, &dcp));
3206 err = spa_keystore_load_wkey(encroot, dcp, B_FALSE);
3207
3208 dsl_crypto_params_free(dcp, (err != 0));
3209 fnvlist_free(crypto_args);
3210
3211 if (err != 0)
3212 fatal(
3213 "couldn't load encryption key for %s: %s",
3214 encroot, err == ZFS_ERR_CRYPTO_NOTSUP ?
3215 "crypto params not supported" : strerror(err));
3216
3217 ASSERT3U(dsl_dataset_get_keystatus(dd), ==, ZFS_KEYSTATUS_AVAILABLE);
3218
3219 printf("Unlocked encryption root: %s\n", encroot);
3220 key_loaded = B_TRUE;
3221 }
3222
3223 static void
3224 zdb_unload_key(void)
3225 {
3226 if (!key_loaded)
3227 return;
3228
3229 VERIFY0(spa_keystore_unload_wkey(encroot));
3230 key_loaded = B_FALSE;
3231 }
3232
3233 static avl_tree_t idx_tree;
3234 static avl_tree_t domain_tree;
3235 static boolean_t fuid_table_loaded;
3236 static objset_t *sa_os = NULL;
3237 static sa_attr_type_t *sa_attr_table = NULL;
3238
3239 static int
3240 open_objset(const char *path, const void *tag, objset_t **osp)
3241 {
3242 int err;
3243 uint64_t sa_attrs = 0;
3244 uint64_t version = 0;
3245
3246 VERIFY3P(sa_os, ==, NULL);
3247
3248 /*
3249 * We can't own an objset if it's redacted. Therefore, we do this
3250 * dance: hold the objset, then acquire a long hold on its dataset, then
3251 * release the pool (which is held as part of holding the objset).
3252 */
3253
3254 if (dump_opt['K']) {
3255 /* decryption requested, try to load keys */
3256 err = dmu_objset_hold(path, tag, osp);
3257 if (err != 0) {
3258 (void) fprintf(stderr, "failed to hold dataset "
3259 "'%s': %s\n",
3260 path, strerror(err));
3261 return (err);
3262 }
3263 dsl_dataset_long_hold(dmu_objset_ds(*osp), tag);
3264 dsl_pool_rele(dmu_objset_pool(*osp), tag);
3265
3266 /* succeeds or dies */
3267 zdb_load_key(*osp);
3268
3269 /* release it all */
3270 dsl_dataset_long_rele(dmu_objset_ds(*osp), tag);
3271 dsl_dataset_rele(dmu_objset_ds(*osp), tag);
3272 }
3273
3274 int ds_hold_flags = key_loaded ? DS_HOLD_FLAG_DECRYPT : 0;
3275
3276 err = dmu_objset_hold_flags(path, ds_hold_flags, tag, osp);
3277 if (err != 0) {
3278 (void) fprintf(stderr, "failed to hold dataset '%s': %s\n",
3279 path, strerror(err));
3280 return (err);
3281 }
3282 dsl_dataset_long_hold(dmu_objset_ds(*osp), tag);
3283 dsl_pool_rele(dmu_objset_pool(*osp), tag);
3284
3285 if (dmu_objset_type(*osp) == DMU_OST_ZFS &&
3286 (key_loaded || !(*osp)->os_encrypted)) {
3287 (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZPL_VERSION_STR,
3288 8, 1, &version);
3289 if (version >= ZPL_VERSION_SA) {
3290 (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS,
3291 8, 1, &sa_attrs);
3292 }
3293 err = sa_setup(*osp, sa_attrs, zfs_attr_table, ZPL_END,
3294 &sa_attr_table);
3295 if (err != 0) {
3296 (void) fprintf(stderr, "sa_setup failed: %s\n",
3297 strerror(err));
3298 dsl_dataset_long_rele(dmu_objset_ds(*osp), tag);
3299 dsl_dataset_rele_flags(dmu_objset_ds(*osp),
3300 ds_hold_flags, tag);
3301 *osp = NULL;
3302 }
3303 }
3304 sa_os = *osp;
3305
3306 return (err);
3307 }
3308
3309 static void
3310 close_objset(objset_t *os, const void *tag)
3311 {
3312 VERIFY3P(os, ==, sa_os);
3313 if (os->os_sa != NULL)
3314 sa_tear_down(os);
3315 dsl_dataset_long_rele(dmu_objset_ds(os), tag);
3316 dsl_dataset_rele_flags(dmu_objset_ds(os),
3317 key_loaded ? DS_HOLD_FLAG_DECRYPT : 0, tag);
3318 sa_attr_table = NULL;
3319 sa_os = NULL;
3320
3321 zdb_unload_key();
3322 }
3323
3324 static void
3325 fuid_table_destroy(void)
3326 {
3327 if (fuid_table_loaded) {
3328 zfs_fuid_table_destroy(&idx_tree, &domain_tree);
3329 fuid_table_loaded = B_FALSE;
3330 }
3331 }
3332
3333 /*
3334 * print uid or gid information.
3335 * For normal POSIX id just the id is printed in decimal format.
3336 * For CIFS files with FUID the fuid is printed in hex followed by
3337 * the domain-rid string.
3338 */
3339 static void
3340 print_idstr(uint64_t id, const char *id_type)
3341 {
3342 if (FUID_INDEX(id)) {
3343 const char *domain =
3344 zfs_fuid_idx_domain(&idx_tree, FUID_INDEX(id));
3345 (void) printf("\t%s %llx [%s-%d]\n", id_type,
3346 (u_longlong_t)id, domain, (int)FUID_RID(id));
3347 } else {
3348 (void) printf("\t%s %llu\n", id_type, (u_longlong_t)id);
3349 }
3350
3351 }
3352
3353 static void
3354 dump_uidgid(objset_t *os, uint64_t uid, uint64_t gid)
3355 {
3356 uint32_t uid_idx, gid_idx;
3357
3358 uid_idx = FUID_INDEX(uid);
3359 gid_idx = FUID_INDEX(gid);
3360
3361 /* Load domain table, if not already loaded */
3362 if (!fuid_table_loaded && (uid_idx || gid_idx)) {
3363 uint64_t fuid_obj;
3364
3365 /* first find the fuid object. It lives in the master node */
3366 VERIFY(zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES,
3367 8, 1, &fuid_obj) == 0);
3368 zfs_fuid_avl_tree_create(&idx_tree, &domain_tree);
3369 (void) zfs_fuid_table_load(os, fuid_obj,
3370 &idx_tree, &domain_tree);
3371 fuid_table_loaded = B_TRUE;
3372 }
3373
3374 print_idstr(uid, "uid");
3375 print_idstr(gid, "gid");
3376 }
3377
3378 static void
3379 dump_znode_sa_xattr(sa_handle_t *hdl)
3380 {
3381 nvlist_t *sa_xattr;
3382 nvpair_t *elem = NULL;
3383 int sa_xattr_size = 0;
3384 int sa_xattr_entries = 0;
3385 int error;
3386 char *sa_xattr_packed;
3387
3388 error = sa_size(hdl, sa_attr_table[ZPL_DXATTR], &sa_xattr_size);
3389 if (error || sa_xattr_size == 0)
3390 return;
3391
3392 sa_xattr_packed = malloc(sa_xattr_size);
3393 if (sa_xattr_packed == NULL)
3394 return;
3395
3396 error = sa_lookup(hdl, sa_attr_table[ZPL_DXATTR],
3397 sa_xattr_packed, sa_xattr_size);
3398 if (error) {
3399 free(sa_xattr_packed);
3400 return;
3401 }
3402
3403 error = nvlist_unpack(sa_xattr_packed, sa_xattr_size, &sa_xattr, 0);
3404 if (error) {
3405 free(sa_xattr_packed);
3406 return;
3407 }
3408
3409 while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL)
3410 sa_xattr_entries++;
3411
3412 (void) printf("\tSA xattrs: %d bytes, %d entries\n\n",
3413 sa_xattr_size, sa_xattr_entries);
3414 while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) {
3415 boolean_t can_print = !dump_opt['P'];
3416 uchar_t *value;
3417 uint_t cnt, idx;
3418
3419 (void) printf("\t\t%s = ", nvpair_name(elem));
3420 nvpair_value_byte_array(elem, &value, &cnt);
3421
3422 for (idx = 0; idx < cnt; ++idx) {
3423 if (!isprint(value[idx])) {
3424 can_print = B_FALSE;
3425 break;
3426 }
3427 }
3428
3429 for (idx = 0; idx < cnt; ++idx) {
3430 if (can_print)
3431 (void) putchar(value[idx]);
3432 else
3433 (void) printf("\\%3.3o", value[idx]);
3434 }
3435 (void) putchar('\n');
3436 }
3437
3438 nvlist_free(sa_xattr);
3439 free(sa_xattr_packed);
3440 }
3441
3442 static void
3443 dump_znode_symlink(sa_handle_t *hdl)
3444 {
3445 int sa_symlink_size = 0;
3446 char linktarget[MAXPATHLEN];
3447 int error;
3448
3449 error = sa_size(hdl, sa_attr_table[ZPL_SYMLINK], &sa_symlink_size);
3450 if (error || sa_symlink_size == 0) {
3451 return;
3452 }
3453 if (sa_symlink_size >= sizeof (linktarget)) {
3454 (void) printf("symlink size %d is too large\n",
3455 sa_symlink_size);
3456 return;
3457 }
3458 linktarget[sa_symlink_size] = '\0';
3459 if (sa_lookup(hdl, sa_attr_table[ZPL_SYMLINK],
3460 &linktarget, sa_symlink_size) == 0)
3461 (void) printf("\ttarget %s\n", linktarget);
3462 }
3463
3464 static void
3465 dump_znode(objset_t *os, uint64_t object, void *data, size_t size)
3466 {
3467 (void) data, (void) size;
3468 char path[MAXPATHLEN * 2]; /* allow for xattr and failure prefix */
3469 sa_handle_t *hdl;
3470 uint64_t xattr, rdev, gen;
3471 uint64_t uid, gid, mode, fsize, parent, links;
3472 uint64_t pflags;
3473 uint64_t acctm[2], modtm[2], chgtm[2], crtm[2];
3474 time_t z_crtime, z_atime, z_mtime, z_ctime;
3475 sa_bulk_attr_t bulk[12];
3476 int idx = 0;
3477 int error;
3478
3479 VERIFY3P(os, ==, sa_os);
3480 if (sa_handle_get(os, object, NULL, SA_HDL_PRIVATE, &hdl)) {
3481 (void) printf("Failed to get handle for SA znode\n");
3482 return;
3483 }
3484
3485 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_UID], NULL, &uid, 8);
3486 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GID], NULL, &gid, 8);
3487 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_LINKS], NULL,
3488 &links, 8);
3489 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GEN], NULL, &gen, 8);
3490 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MODE], NULL,
3491 &mode, 8);
3492 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_PARENT],
3493 NULL, &parent, 8);
3494 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_SIZE], NULL,
3495 &fsize, 8);
3496 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_ATIME], NULL,
3497 acctm, 16);
3498 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MTIME], NULL,
3499 modtm, 16);
3500 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CRTIME], NULL,
3501 crtm, 16);
3502 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CTIME], NULL,
3503 chgtm, 16);
3504 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_FLAGS], NULL,
3505 &pflags, 8);
3506
3507 if (sa_bulk_lookup(hdl, bulk, idx)) {
3508 (void) sa_handle_destroy(hdl);
3509 return;
3510 }
3511
3512 z_crtime = (time_t)crtm[0];
3513 z_atime = (time_t)acctm[0];
3514 z_mtime = (time_t)modtm[0];
3515 z_ctime = (time_t)chgtm[0];
3516
3517 if (dump_opt['d'] > 4) {
3518 error = zfs_obj_to_path(os, object, path, sizeof (path));
3519 if (error == ESTALE) {
3520 (void) snprintf(path, sizeof (path), "on delete queue");
3521 } else if (error != 0) {
3522 leaked_objects++;
3523 (void) snprintf(path, sizeof (path),
3524 "path not found, possibly leaked");
3525 }
3526 (void) printf("\tpath %s\n", path);
3527 }
3528
3529 if (S_ISLNK(mode))
3530 dump_znode_symlink(hdl);
3531 dump_uidgid(os, uid, gid);
3532 (void) printf("\tatime %s", ctime(&z_atime));
3533 (void) printf("\tmtime %s", ctime(&z_mtime));
3534 (void) printf("\tctime %s", ctime(&z_ctime));
3535 (void) printf("\tcrtime %s", ctime(&z_crtime));
3536 (void) printf("\tgen %llu\n", (u_longlong_t)gen);
3537 (void) printf("\tmode %llo\n", (u_longlong_t)mode);
3538 (void) printf("\tsize %llu\n", (u_longlong_t)fsize);
3539 (void) printf("\tparent %llu\n", (u_longlong_t)parent);
3540 (void) printf("\tlinks %llu\n", (u_longlong_t)links);
3541 (void) printf("\tpflags %llx\n", (u_longlong_t)pflags);
3542 if (dmu_objset_projectquota_enabled(os) && (pflags & ZFS_PROJID)) {
3543 uint64_t projid;
3544
3545 if (sa_lookup(hdl, sa_attr_table[ZPL_PROJID], &projid,
3546 sizeof (uint64_t)) == 0)
3547 (void) printf("\tprojid %llu\n", (u_longlong_t)projid);
3548 }
3549 if (sa_lookup(hdl, sa_attr_table[ZPL_XATTR], &xattr,
3550 sizeof (uint64_t)) == 0)
3551 (void) printf("\txattr %llu\n", (u_longlong_t)xattr);
3552 if (sa_lookup(hdl, sa_attr_table[ZPL_RDEV], &rdev,
3553 sizeof (uint64_t)) == 0)
3554 (void) printf("\trdev 0x%016llx\n", (u_longlong_t)rdev);
3555 dump_znode_sa_xattr(hdl);
3556 sa_handle_destroy(hdl);
3557 }
3558
3559 static void
3560 dump_acl(objset_t *os, uint64_t object, void *data, size_t size)
3561 {
3562 (void) os, (void) object, (void) data, (void) size;
3563 }
3564
3565 static void
3566 dump_dmu_objset(objset_t *os, uint64_t object, void *data, size_t size)
3567 {
3568 (void) os, (void) object, (void) data, (void) size;
3569 }
3570
3571 static object_viewer_t *object_viewer[DMU_OT_NUMTYPES + 1] = {
3572 dump_none, /* unallocated */
3573 dump_zap, /* object directory */
3574 dump_uint64, /* object array */
3575 dump_none, /* packed nvlist */
3576 dump_packed_nvlist, /* packed nvlist size */
3577 dump_none, /* bpobj */
3578 dump_bpobj, /* bpobj header */
3579 dump_none, /* SPA space map header */
3580 dump_none, /* SPA space map */
3581 dump_none, /* ZIL intent log */
3582 dump_dnode, /* DMU dnode */
3583 dump_dmu_objset, /* DMU objset */
3584 dump_dsl_dir, /* DSL directory */
3585 dump_zap, /* DSL directory child map */
3586 dump_zap, /* DSL dataset snap map */
3587 dump_zap, /* DSL props */
3588 dump_dsl_dataset, /* DSL dataset */
3589 dump_znode, /* ZFS znode */
3590 dump_acl, /* ZFS V0 ACL */
3591 dump_uint8, /* ZFS plain file */
3592 dump_zpldir, /* ZFS directory */
3593 dump_zap, /* ZFS master node */
3594 dump_zap, /* ZFS delete queue */
3595 dump_uint8, /* zvol object */
3596 dump_zap, /* zvol prop */
3597 dump_uint8, /* other uint8[] */
3598 dump_uint64, /* other uint64[] */
3599 dump_zap, /* other ZAP */
3600 dump_zap, /* persistent error log */
3601 dump_uint8, /* SPA history */
3602 dump_history_offsets, /* SPA history offsets */
3603 dump_zap, /* Pool properties */
3604 dump_zap, /* DSL permissions */
3605 dump_acl, /* ZFS ACL */
3606 dump_uint8, /* ZFS SYSACL */
3607 dump_none, /* FUID nvlist */
3608 dump_packed_nvlist, /* FUID nvlist size */
3609 dump_zap, /* DSL dataset next clones */
3610 dump_zap, /* DSL scrub queue */
3611 dump_zap, /* ZFS user/group/project used */
3612 dump_zap, /* ZFS user/group/project quota */
3613 dump_zap, /* snapshot refcount tags */
3614 dump_ddt_zap, /* DDT ZAP object */
3615 dump_zap, /* DDT statistics */
3616 dump_znode, /* SA object */
3617 dump_zap, /* SA Master Node */
3618 dump_sa_attrs, /* SA attribute registration */
3619 dump_sa_layouts, /* SA attribute layouts */
3620 dump_zap, /* DSL scrub translations */
3621 dump_none, /* fake dedup BP */
3622 dump_zap, /* deadlist */
3623 dump_none, /* deadlist hdr */
3624 dump_zap, /* dsl clones */
3625 dump_bpobj_subobjs, /* bpobj subobjs */
3626 dump_unknown, /* Unknown type, must be last */
3627 };
3628
3629 static boolean_t
3630 match_object_type(dmu_object_type_t obj_type, uint64_t flags)
3631 {
3632 boolean_t match = B_TRUE;
3633
3634 switch (obj_type) {
3635 case DMU_OT_DIRECTORY_CONTENTS:
3636 if (!(flags & ZOR_FLAG_DIRECTORY))
3637 match = B_FALSE;
3638 break;
3639 case DMU_OT_PLAIN_FILE_CONTENTS:
3640 if (!(flags & ZOR_FLAG_PLAIN_FILE))
3641 match = B_FALSE;
3642 break;
3643 case DMU_OT_SPACE_MAP:
3644 if (!(flags & ZOR_FLAG_SPACE_MAP))
3645 match = B_FALSE;
3646 break;
3647 default:
3648 if (strcmp(zdb_ot_name(obj_type), "zap") == 0) {
3649 if (!(flags & ZOR_FLAG_ZAP))
3650 match = B_FALSE;
3651 break;
3652 }
3653
3654 /*
3655 * If all bits except some of the supported flags are
3656 * set, the user combined the all-types flag (A) with
3657 * a negated flag to exclude some types (e.g. A-f to
3658 * show all object types except plain files).
3659 */
3660 if ((flags | ZOR_SUPPORTED_FLAGS) != ZOR_FLAG_ALL_TYPES)
3661 match = B_FALSE;
3662
3663 break;
3664 }
3665
3666 return (match);
3667 }
3668
3669 static void
3670 dump_object(objset_t *os, uint64_t object, int verbosity,
3671 boolean_t *print_header, uint64_t *dnode_slots_used, uint64_t flags)
3672 {
3673 dmu_buf_t *db = NULL;
3674 dmu_object_info_t doi;
3675 dnode_t *dn;
3676 boolean_t dnode_held = B_FALSE;
3677 void *bonus = NULL;
3678 size_t bsize = 0;
3679 char iblk[32], dblk[32], lsize[32], asize[32], fill[32], dnsize[32];
3680 char bonus_size[32];
3681 char aux[50];
3682 int error;
3683
3684 /* make sure nicenum has enough space */
3685 _Static_assert(sizeof (iblk) >= NN_NUMBUF_SZ, "iblk truncated");
3686 _Static_assert(sizeof (dblk) >= NN_NUMBUF_SZ, "dblk truncated");
3687 _Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ, "lsize truncated");
3688 _Static_assert(sizeof (asize) >= NN_NUMBUF_SZ, "asize truncated");
3689 _Static_assert(sizeof (bonus_size) >= NN_NUMBUF_SZ,
3690 "bonus_size truncated");
3691
3692 if (*print_header) {
3693 (void) printf("\n%10s %3s %5s %5s %5s %6s %5s %6s %s\n",
3694 "Object", "lvl", "iblk", "dblk", "dsize", "dnsize",
3695 "lsize", "%full", "type");
3696 *print_header = 0;
3697 }
3698
3699 if (object == 0) {
3700 dn = DMU_META_DNODE(os);
3701 dmu_object_info_from_dnode(dn, &doi);
3702 } else {
3703 /*
3704 * Encrypted datasets will have sensitive bonus buffers
3705 * encrypted. Therefore we cannot hold the bonus buffer and
3706 * must hold the dnode itself instead.
3707 */
3708 error = dmu_object_info(os, object, &doi);
3709 if (error)
3710 fatal("dmu_object_info() failed, errno %u", error);
3711
3712 if (!key_loaded && os->os_encrypted &&
3713 DMU_OT_IS_ENCRYPTED(doi.doi_bonus_type)) {
3714 error = dnode_hold(os, object, FTAG, &dn);
3715 if (error)
3716 fatal("dnode_hold() failed, errno %u", error);
3717 dnode_held = B_TRUE;
3718 } else {
3719 error = dmu_bonus_hold(os, object, FTAG, &db);
3720 if (error)
3721 fatal("dmu_bonus_hold(%llu) failed, errno %u",
3722 object, error);
3723 bonus = db->db_data;
3724 bsize = db->db_size;
3725 dn = DB_DNODE((dmu_buf_impl_t *)db);
3726 }
3727 }
3728
3729 /*
3730 * Default to showing all object types if no flags were specified.
3731 */
3732 if (flags != 0 && flags != ZOR_FLAG_ALL_TYPES &&
3733 !match_object_type(doi.doi_type, flags))
3734 goto out;
3735
3736 if (dnode_slots_used)
3737 *dnode_slots_used = doi.doi_dnodesize / DNODE_MIN_SIZE;
3738
3739 zdb_nicenum(doi.doi_metadata_block_size, iblk, sizeof (iblk));
3740 zdb_nicenum(doi.doi_data_block_size, dblk, sizeof (dblk));
3741 zdb_nicenum(doi.doi_max_offset, lsize, sizeof (lsize));
3742 zdb_nicenum(doi.doi_physical_blocks_512 << 9, asize, sizeof (asize));
3743 zdb_nicenum(doi.doi_bonus_size, bonus_size, sizeof (bonus_size));
3744 zdb_nicenum(doi.doi_dnodesize, dnsize, sizeof (dnsize));
3745 (void) snprintf(fill, sizeof (fill), "%6.2f", 100.0 *
3746 doi.doi_fill_count * doi.doi_data_block_size / (object == 0 ?
3747 DNODES_PER_BLOCK : 1) / doi.doi_max_offset);
3748
3749 aux[0] = '\0';
3750
3751 if (doi.doi_checksum != ZIO_CHECKSUM_INHERIT || verbosity >= 6) {
3752 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux),
3753 " (K=%s)", ZDB_CHECKSUM_NAME(doi.doi_checksum));
3754 }
3755
3756 if (doi.doi_compress == ZIO_COMPRESS_INHERIT &&
3757 ZIO_COMPRESS_HASLEVEL(os->os_compress) && verbosity >= 6) {
3758 const char *compname = NULL;
3759 if (zfs_prop_index_to_string(ZFS_PROP_COMPRESSION,
3760 ZIO_COMPRESS_RAW(os->os_compress, os->os_complevel),
3761 &compname) == 0) {
3762 (void) snprintf(aux + strlen(aux),
3763 sizeof (aux) - strlen(aux), " (Z=inherit=%s)",
3764 compname);
3765 } else {
3766 (void) snprintf(aux + strlen(aux),
3767 sizeof (aux) - strlen(aux),
3768 " (Z=inherit=%s-unknown)",
3769 ZDB_COMPRESS_NAME(os->os_compress));
3770 }
3771 } else if (doi.doi_compress == ZIO_COMPRESS_INHERIT && verbosity >= 6) {
3772 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux),
3773 " (Z=inherit=%s)", ZDB_COMPRESS_NAME(os->os_compress));
3774 } else if (doi.doi_compress != ZIO_COMPRESS_INHERIT || verbosity >= 6) {
3775 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux),
3776 " (Z=%s)", ZDB_COMPRESS_NAME(doi.doi_compress));
3777 }
3778
3779 (void) printf("%10lld %3u %5s %5s %5s %6s %5s %6s %s%s\n",
3780 (u_longlong_t)object, doi.doi_indirection, iblk, dblk,
3781 asize, dnsize, lsize, fill, zdb_ot_name(doi.doi_type), aux);
3782
3783 if (doi.doi_bonus_type != DMU_OT_NONE && verbosity > 3) {
3784 (void) printf("%10s %3s %5s %5s %5s %5s %5s %6s %s\n",
3785 "", "", "", "", "", "", bonus_size, "bonus",
3786 zdb_ot_name(doi.doi_bonus_type));
3787 }
3788
3789 if (verbosity >= 4) {
3790 (void) printf("\tdnode flags: %s%s%s%s\n",
3791 (dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) ?
3792 "USED_BYTES " : "",
3793 (dn->dn_phys->dn_flags & DNODE_FLAG_USERUSED_ACCOUNTED) ?
3794 "USERUSED_ACCOUNTED " : "",
3795 (dn->dn_phys->dn_flags & DNODE_FLAG_USEROBJUSED_ACCOUNTED) ?
3796 "USEROBJUSED_ACCOUNTED " : "",
3797 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) ?
3798 "SPILL_BLKPTR" : "");
3799 (void) printf("\tdnode maxblkid: %llu\n",
3800 (longlong_t)dn->dn_phys->dn_maxblkid);
3801
3802 if (!dnode_held) {
3803 object_viewer[ZDB_OT_TYPE(doi.doi_bonus_type)](os,
3804 object, bonus, bsize);
3805 } else {
3806 (void) printf("\t\t(bonus encrypted)\n");
3807 }
3808
3809 if (key_loaded ||
3810 (!os->os_encrypted || !DMU_OT_IS_ENCRYPTED(doi.doi_type))) {
3811 object_viewer[ZDB_OT_TYPE(doi.doi_type)](os, object,
3812 NULL, 0);
3813 } else {
3814 (void) printf("\t\t(object encrypted)\n");
3815 }
3816
3817 *print_header = B_TRUE;
3818 }
3819
3820 if (verbosity >= 5) {
3821 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
3822 char blkbuf[BP_SPRINTF_LEN];
3823 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf),
3824 DN_SPILL_BLKPTR(dn->dn_phys), B_FALSE);
3825 (void) printf("\nSpill block: %s\n", blkbuf);
3826 }
3827 dump_indirect(dn);
3828 }
3829
3830 if (verbosity >= 5) {
3831 /*
3832 * Report the list of segments that comprise the object.
3833 */
3834 uint64_t start = 0;
3835 uint64_t end;
3836 uint64_t blkfill = 1;
3837 int minlvl = 1;
3838
3839 if (dn->dn_type == DMU_OT_DNODE) {
3840 minlvl = 0;
3841 blkfill = DNODES_PER_BLOCK;
3842 }
3843
3844 for (;;) {
3845 char segsize[32];
3846 /* make sure nicenum has enough space */
3847 _Static_assert(sizeof (segsize) >= NN_NUMBUF_SZ,
3848 "segsize truncated");
3849 error = dnode_next_offset(dn,
3850 0, &start, minlvl, blkfill, 0);
3851 if (error)
3852 break;
3853 end = start;
3854 error = dnode_next_offset(dn,
3855 DNODE_FIND_HOLE, &end, minlvl, blkfill, 0);
3856 zdb_nicenum(end - start, segsize, sizeof (segsize));
3857 (void) printf("\t\tsegment [%016llx, %016llx)"
3858 " size %5s\n", (u_longlong_t)start,
3859 (u_longlong_t)end, segsize);
3860 if (error)
3861 break;
3862 start = end;
3863 }
3864 }
3865
3866 out:
3867 if (db != NULL)
3868 dmu_buf_rele(db, FTAG);
3869 if (dnode_held)
3870 dnode_rele(dn, FTAG);
3871 }
3872
3873 static void
3874 count_dir_mos_objects(dsl_dir_t *dd)
3875 {
3876 mos_obj_refd(dd->dd_object);
3877 mos_obj_refd(dsl_dir_phys(dd)->dd_child_dir_zapobj);
3878 mos_obj_refd(dsl_dir_phys(dd)->dd_deleg_zapobj);
3879 mos_obj_refd(dsl_dir_phys(dd)->dd_props_zapobj);
3880 mos_obj_refd(dsl_dir_phys(dd)->dd_clones);
3881
3882 /*
3883 * The dd_crypto_obj can be referenced by multiple dsl_dir's.
3884 * Ignore the references after the first one.
3885 */
3886 mos_obj_refd_multiple(dd->dd_crypto_obj);
3887 }
3888
3889 static void
3890 count_ds_mos_objects(dsl_dataset_t *ds)
3891 {
3892 mos_obj_refd(ds->ds_object);
3893 mos_obj_refd(dsl_dataset_phys(ds)->ds_next_clones_obj);
3894 mos_obj_refd(dsl_dataset_phys(ds)->ds_props_obj);
3895 mos_obj_refd(dsl_dataset_phys(ds)->ds_userrefs_obj);
3896 mos_obj_refd(dsl_dataset_phys(ds)->ds_snapnames_zapobj);
3897 mos_obj_refd(ds->ds_bookmarks_obj);
3898
3899 if (!dsl_dataset_is_snapshot(ds)) {
3900 count_dir_mos_objects(ds->ds_dir);
3901 }
3902 }
3903
3904 static const char *const objset_types[DMU_OST_NUMTYPES] = {
3905 "NONE", "META", "ZPL", "ZVOL", "OTHER", "ANY" };
3906
3907 /*
3908 * Parse a string denoting a range of object IDs of the form
3909 * <start>[:<end>[:flags]], and store the results in zor.
3910 * Return 0 on success. On error, return 1 and update the msg
3911 * pointer to point to a descriptive error message.
3912 */
3913 static int
3914 parse_object_range(char *range, zopt_object_range_t *zor, const char **msg)
3915 {
3916 uint64_t flags = 0;
3917 char *p, *s, *dup, *flagstr, *tmp = NULL;
3918 size_t len;
3919 int i;
3920 int rc = 0;
3921
3922 if (strchr(range, ':') == NULL) {
3923 zor->zor_obj_start = strtoull(range, &p, 0);
3924 if (*p != '\0') {
3925 *msg = "Invalid characters in object ID";
3926 rc = 1;
3927 }
3928 zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start);
3929 zor->zor_obj_end = zor->zor_obj_start;
3930 return (rc);
3931 }
3932
3933 if (strchr(range, ':') == range) {
3934 *msg = "Invalid leading colon";
3935 rc = 1;
3936 return (rc);
3937 }
3938
3939 len = strlen(range);
3940 if (range[len - 1] == ':') {
3941 *msg = "Invalid trailing colon";
3942 rc = 1;
3943 return (rc);
3944 }
3945
3946 dup = strdup(range);
3947 s = strtok_r(dup, ":", &tmp);
3948 zor->zor_obj_start = strtoull(s, &p, 0);
3949
3950 if (*p != '\0') {
3951 *msg = "Invalid characters in start object ID";
3952 rc = 1;
3953 goto out;
3954 }
3955
3956 s = strtok_r(NULL, ":", &tmp);
3957 zor->zor_obj_end = strtoull(s, &p, 0);
3958
3959 if (*p != '\0') {
3960 *msg = "Invalid characters in end object ID";
3961 rc = 1;
3962 goto out;
3963 }
3964
3965 if (zor->zor_obj_start > zor->zor_obj_end) {
3966 *msg = "Start object ID may not exceed end object ID";
3967 rc = 1;
3968 goto out;
3969 }
3970
3971 s = strtok_r(NULL, ":", &tmp);
3972 if (s == NULL) {
3973 zor->zor_flags = ZOR_FLAG_ALL_TYPES;
3974 goto out;
3975 } else if (strtok_r(NULL, ":", &tmp) != NULL) {
3976 *msg = "Invalid colon-delimited field after flags";
3977 rc = 1;
3978 goto out;
3979 }
3980
3981 flagstr = s;
3982 for (i = 0; flagstr[i]; i++) {
3983 int bit;
3984 boolean_t negation = (flagstr[i] == '-');
3985
3986 if (negation) {
3987 i++;
3988 if (flagstr[i] == '\0') {
3989 *msg = "Invalid trailing negation operator";
3990 rc = 1;
3991 goto out;
3992 }
3993 }
3994 bit = flagbits[(uchar_t)flagstr[i]];
3995 if (bit == 0) {
3996 *msg = "Invalid flag";
3997 rc = 1;
3998 goto out;
3999 }
4000 if (negation)
4001 flags &= ~bit;
4002 else
4003 flags |= bit;
4004 }
4005 zor->zor_flags = flags;
4006
4007 zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start);
4008 zor->zor_obj_end = ZDB_MAP_OBJECT_ID(zor->zor_obj_end);
4009
4010 out:
4011 free(dup);
4012 return (rc);
4013 }
4014
4015 static void
4016 dump_objset(objset_t *os)
4017 {
4018 dmu_objset_stats_t dds = { 0 };
4019 uint64_t object, object_count;
4020 uint64_t refdbytes, usedobjs, scratch;
4021 char numbuf[32];
4022 char blkbuf[BP_SPRINTF_LEN + 20];
4023 char osname[ZFS_MAX_DATASET_NAME_LEN];
4024 const char *type = "UNKNOWN";
4025 int verbosity = dump_opt['d'];
4026 boolean_t print_header;
4027 unsigned i;
4028 int error;
4029 uint64_t total_slots_used = 0;
4030 uint64_t max_slot_used = 0;
4031 uint64_t dnode_slots;
4032 uint64_t obj_start;
4033 uint64_t obj_end;
4034 uint64_t flags;
4035
4036 /* make sure nicenum has enough space */
4037 _Static_assert(sizeof (numbuf) >= NN_NUMBUF_SZ, "numbuf truncated");
4038
4039 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
4040 dmu_objset_fast_stat(os, &dds);
4041 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
4042
4043 print_header = B_TRUE;
4044
4045 if (dds.dds_type < DMU_OST_NUMTYPES)
4046 type = objset_types[dds.dds_type];
4047
4048 if (dds.dds_type == DMU_OST_META) {
4049 dds.dds_creation_txg = TXG_INITIAL;
4050 usedobjs = BP_GET_FILL(os->os_rootbp);
4051 refdbytes = dsl_dir_phys(os->os_spa->spa_dsl_pool->dp_mos_dir)->
4052 dd_used_bytes;
4053 } else {
4054 dmu_objset_space(os, &refdbytes, &scratch, &usedobjs, &scratch);
4055 }
4056
4057 ASSERT3U(usedobjs, ==, BP_GET_FILL(os->os_rootbp));
4058
4059 zdb_nicenum(refdbytes, numbuf, sizeof (numbuf));
4060
4061 if (verbosity >= 4) {
4062 (void) snprintf(blkbuf, sizeof (blkbuf), ", rootbp ");
4063 (void) snprintf_blkptr(blkbuf + strlen(blkbuf),
4064 sizeof (blkbuf) - strlen(blkbuf), os->os_rootbp);
4065 } else {
4066 blkbuf[0] = '\0';
4067 }
4068
4069 dmu_objset_name(os, osname);
4070
4071 (void) printf("Dataset %s [%s], ID %llu, cr_txg %llu, "
4072 "%s, %llu objects%s%s\n",
4073 osname, type, (u_longlong_t)dmu_objset_id(os),
4074 (u_longlong_t)dds.dds_creation_txg,
4075 numbuf, (u_longlong_t)usedobjs, blkbuf,
4076 (dds.dds_inconsistent) ? " (inconsistent)" : "");
4077
4078 for (i = 0; i < zopt_object_args; i++) {
4079 obj_start = zopt_object_ranges[i].zor_obj_start;
4080 obj_end = zopt_object_ranges[i].zor_obj_end;
4081 flags = zopt_object_ranges[i].zor_flags;
4082
4083 object = obj_start;
4084 if (object == 0 || obj_start == obj_end)
4085 dump_object(os, object, verbosity, &print_header, NULL,
4086 flags);
4087 else
4088 object--;
4089
4090 while ((dmu_object_next(os, &object, B_FALSE, 0) == 0) &&
4091 object <= obj_end) {
4092 dump_object(os, object, verbosity, &print_header, NULL,
4093 flags);
4094 }
4095 }
4096
4097 if (zopt_object_args > 0) {
4098 (void) printf("\n");
4099 return;
4100 }
4101
4102 if (dump_opt['i'] != 0 || verbosity >= 2)
4103 dump_intent_log(dmu_objset_zil(os));
4104
4105 if (dmu_objset_ds(os) != NULL) {
4106 dsl_dataset_t *ds = dmu_objset_ds(os);
4107 dump_blkptr_list(&ds->ds_deadlist, "Deadlist");
4108 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) &&
4109 !dmu_objset_is_snapshot(os)) {
4110 dump_blkptr_list(&ds->ds_dir->dd_livelist, "Livelist");
4111 if (verify_dd_livelist(os) != 0)
4112 fatal("livelist is incorrect");
4113 }
4114
4115 if (dsl_dataset_remap_deadlist_exists(ds)) {
4116 (void) printf("ds_remap_deadlist:\n");
4117 dump_blkptr_list(&ds->ds_remap_deadlist, "Deadlist");
4118 }
4119 count_ds_mos_objects(ds);
4120 }
4121
4122 if (dmu_objset_ds(os) != NULL)
4123 dump_bookmarks(os, verbosity);
4124
4125 if (verbosity < 2)
4126 return;
4127
4128 if (BP_IS_HOLE(os->os_rootbp))
4129 return;
4130
4131 dump_object(os, 0, verbosity, &print_header, NULL, 0);
4132 object_count = 0;
4133 if (DMU_USERUSED_DNODE(os) != NULL &&
4134 DMU_USERUSED_DNODE(os)->dn_type != 0) {
4135 dump_object(os, DMU_USERUSED_OBJECT, verbosity, &print_header,
4136 NULL, 0);
4137 dump_object(os, DMU_GROUPUSED_OBJECT, verbosity, &print_header,
4138 NULL, 0);
4139 }
4140
4141 if (DMU_PROJECTUSED_DNODE(os) != NULL &&
4142 DMU_PROJECTUSED_DNODE(os)->dn_type != 0)
4143 dump_object(os, DMU_PROJECTUSED_OBJECT, verbosity,
4144 &print_header, NULL, 0);
4145
4146 object = 0;
4147 while ((error = dmu_object_next(os, &object, B_FALSE, 0)) == 0) {
4148 dump_object(os, object, verbosity, &print_header, &dnode_slots,
4149 0);
4150 object_count++;
4151 total_slots_used += dnode_slots;
4152 max_slot_used = object + dnode_slots - 1;
4153 }
4154
4155 (void) printf("\n");
4156
4157 (void) printf(" Dnode slots:\n");
4158 (void) printf("\tTotal used: %10llu\n",
4159 (u_longlong_t)total_slots_used);
4160 (void) printf("\tMax used: %10llu\n",
4161 (u_longlong_t)max_slot_used);
4162 (void) printf("\tPercent empty: %10lf\n",
4163 (double)(max_slot_used - total_slots_used)*100 /
4164 (double)max_slot_used);
4165 (void) printf("\n");
4166
4167 if (error != ESRCH) {
4168 (void) fprintf(stderr, "dmu_object_next() = %d\n", error);
4169 abort();
4170 }
4171
4172 ASSERT3U(object_count, ==, usedobjs);
4173
4174 if (leaked_objects != 0) {
4175 (void) printf("%d potentially leaked objects detected\n",
4176 leaked_objects);
4177 leaked_objects = 0;
4178 }
4179 }
4180
4181 static void
4182 dump_uberblock(uberblock_t *ub, const char *header, const char *footer)
4183 {
4184 time_t timestamp = ub->ub_timestamp;
4185
4186 (void) printf("%s", header ? header : "");
4187 (void) printf("\tmagic = %016llx\n", (u_longlong_t)ub->ub_magic);
4188 (void) printf("\tversion = %llu\n", (u_longlong_t)ub->ub_version);
4189 (void) printf("\ttxg = %llu\n", (u_longlong_t)ub->ub_txg);
4190 (void) printf("\tguid_sum = %llu\n", (u_longlong_t)ub->ub_guid_sum);
4191 (void) printf("\ttimestamp = %llu UTC = %s",
4192 (u_longlong_t)ub->ub_timestamp, ctime(&timestamp));
4193
4194 (void) printf("\tmmp_magic = %016llx\n",
4195 (u_longlong_t)ub->ub_mmp_magic);
4196 if (MMP_VALID(ub)) {
4197 (void) printf("\tmmp_delay = %0llu\n",
4198 (u_longlong_t)ub->ub_mmp_delay);
4199 if (MMP_SEQ_VALID(ub))
4200 (void) printf("\tmmp_seq = %u\n",
4201 (unsigned int) MMP_SEQ(ub));
4202 if (MMP_FAIL_INT_VALID(ub))
4203 (void) printf("\tmmp_fail = %u\n",
4204 (unsigned int) MMP_FAIL_INT(ub));
4205 if (MMP_INTERVAL_VALID(ub))
4206 (void) printf("\tmmp_write = %u\n",
4207 (unsigned int) MMP_INTERVAL(ub));
4208 /* After MMP_* to make summarize_uberblock_mmp cleaner */
4209 (void) printf("\tmmp_valid = %x\n",
4210 (unsigned int) ub->ub_mmp_config & 0xFF);
4211 }
4212
4213 if (dump_opt['u'] >= 4) {
4214 char blkbuf[BP_SPRINTF_LEN];
4215 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp);
4216 (void) printf("\trootbp = %s\n", blkbuf);
4217 }
4218 (void) printf("\tcheckpoint_txg = %llu\n",
4219 (u_longlong_t)ub->ub_checkpoint_txg);
4220
4221 (void) printf("\traidz_reflow state=%u off=%llu\n",
4222 (int)RRSS_GET_STATE(ub),
4223 (u_longlong_t)RRSS_GET_OFFSET(ub));
4224
4225 (void) printf("%s", footer ? footer : "");
4226 }
4227
4228 static void
4229 dump_config(spa_t *spa)
4230 {
4231 dmu_buf_t *db;
4232 size_t nvsize = 0;
4233 int error = 0;
4234
4235
4236 error = dmu_bonus_hold(spa->spa_meta_objset,
4237 spa->spa_config_object, FTAG, &db);
4238
4239 if (error == 0) {
4240 nvsize = *(uint64_t *)db->db_data;
4241 dmu_buf_rele(db, FTAG);
4242
4243 (void) printf("\nMOS Configuration:\n");
4244 dump_packed_nvlist(spa->spa_meta_objset,
4245 spa->spa_config_object, (void *)&nvsize, 1);
4246 } else {
4247 (void) fprintf(stderr, "dmu_bonus_hold(%llu) failed, errno %d",
4248 (u_longlong_t)spa->spa_config_object, error);
4249 }
4250 }
4251
4252 static void
4253 dump_cachefile(const char *cachefile)
4254 {
4255 int fd;
4256 struct stat64 statbuf;
4257 char *buf;
4258 nvlist_t *config;
4259
4260 if ((fd = open64(cachefile, O_RDONLY)) < 0) {
4261 (void) printf("cannot open '%s': %s\n", cachefile,
4262 strerror(errno));
4263 exit(1);
4264 }
4265
4266 if (fstat64(fd, &statbuf) != 0) {
4267 (void) printf("failed to stat '%s': %s\n", cachefile,
4268 strerror(errno));
4269 exit(1);
4270 }
4271
4272 if ((buf = malloc(statbuf.st_size)) == NULL) {
4273 (void) fprintf(stderr, "failed to allocate %llu bytes\n",
4274 (u_longlong_t)statbuf.st_size);
4275 exit(1);
4276 }
4277
4278 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
4279 (void) fprintf(stderr, "failed to read %llu bytes\n",
4280 (u_longlong_t)statbuf.st_size);
4281 exit(1);
4282 }
4283
4284 (void) close(fd);
4285
4286 if (nvlist_unpack(buf, statbuf.st_size, &config, 0) != 0) {
4287 (void) fprintf(stderr, "failed to unpack nvlist\n");
4288 exit(1);
4289 }
4290
4291 free(buf);
4292
4293 dump_nvlist(config, 0);
4294
4295 nvlist_free(config);
4296 }
4297
4298 /*
4299 * ZFS label nvlist stats
4300 */
4301 typedef struct zdb_nvl_stats {
4302 int zns_list_count;
4303 int zns_leaf_count;
4304 size_t zns_leaf_largest;
4305 size_t zns_leaf_total;
4306 nvlist_t *zns_string;
4307 nvlist_t *zns_uint64;
4308 nvlist_t *zns_boolean;
4309 } zdb_nvl_stats_t;
4310
4311 static void
4312 collect_nvlist_stats(nvlist_t *nvl, zdb_nvl_stats_t *stats)
4313 {
4314 nvlist_t *list, **array;
4315 nvpair_t *nvp = NULL;
4316 const char *name;
4317 uint_t i, items;
4318
4319 stats->zns_list_count++;
4320
4321 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
4322 name = nvpair_name(nvp);
4323
4324 switch (nvpair_type(nvp)) {
4325 case DATA_TYPE_STRING:
4326 fnvlist_add_string(stats->zns_string, name,
4327 fnvpair_value_string(nvp));
4328 break;
4329 case DATA_TYPE_UINT64:
4330 fnvlist_add_uint64(stats->zns_uint64, name,
4331 fnvpair_value_uint64(nvp));
4332 break;
4333 case DATA_TYPE_BOOLEAN:
4334 fnvlist_add_boolean(stats->zns_boolean, name);
4335 break;
4336 case DATA_TYPE_NVLIST:
4337 if (nvpair_value_nvlist(nvp, &list) == 0)
4338 collect_nvlist_stats(list, stats);
4339 break;
4340 case DATA_TYPE_NVLIST_ARRAY:
4341 if (nvpair_value_nvlist_array(nvp, &array, &items) != 0)
4342 break;
4343
4344 for (i = 0; i < items; i++) {
4345 collect_nvlist_stats(array[i], stats);
4346
4347 /* collect stats on leaf vdev */
4348 if (strcmp(name, "children") == 0) {
4349 size_t size;
4350
4351 (void) nvlist_size(array[i], &size,
4352 NV_ENCODE_XDR);
4353 stats->zns_leaf_total += size;
4354 if (size > stats->zns_leaf_largest)
4355 stats->zns_leaf_largest = size;
4356 stats->zns_leaf_count++;
4357 }
4358 }
4359 break;
4360 default:
4361 (void) printf("skip type %d!\n", (int)nvpair_type(nvp));
4362 }
4363 }
4364 }
4365
4366 static void
4367 dump_nvlist_stats(nvlist_t *nvl, size_t cap)
4368 {
4369 zdb_nvl_stats_t stats = { 0 };
4370 size_t size, sum = 0, total;
4371 size_t noise;
4372
4373 /* requires nvlist with non-unique names for stat collection */
4374 VERIFY0(nvlist_alloc(&stats.zns_string, 0, 0));
4375 VERIFY0(nvlist_alloc(&stats.zns_uint64, 0, 0));
4376 VERIFY0(nvlist_alloc(&stats.zns_boolean, 0, 0));
4377 VERIFY0(nvlist_size(stats.zns_boolean, &noise, NV_ENCODE_XDR));
4378
4379 (void) printf("\n\nZFS Label NVList Config Stats:\n");
4380
4381 VERIFY0(nvlist_size(nvl, &total, NV_ENCODE_XDR));
4382 (void) printf(" %d bytes used, %d bytes free (using %4.1f%%)\n\n",
4383 (int)total, (int)(cap - total), 100.0 * total / cap);
4384
4385 collect_nvlist_stats(nvl, &stats);
4386
4387 VERIFY0(nvlist_size(stats.zns_uint64, &size, NV_ENCODE_XDR));
4388 size -= noise;
4389 sum += size;
4390 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "integers:",
4391 (int)fnvlist_num_pairs(stats.zns_uint64),
4392 (int)size, 100.0 * size / total);
4393
4394 VERIFY0(nvlist_size(stats.zns_string, &size, NV_ENCODE_XDR));
4395 size -= noise;
4396 sum += size;
4397 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "strings:",
4398 (int)fnvlist_num_pairs(stats.zns_string),
4399 (int)size, 100.0 * size / total);
4400
4401 VERIFY0(nvlist_size(stats.zns_boolean, &size, NV_ENCODE_XDR));
4402 size -= noise;
4403 sum += size;
4404 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "booleans:",
4405 (int)fnvlist_num_pairs(stats.zns_boolean),
4406 (int)size, 100.0 * size / total);
4407
4408 size = total - sum; /* treat remainder as nvlist overhead */
4409 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n\n", "nvlists:",
4410 stats.zns_list_count, (int)size, 100.0 * size / total);
4411
4412 if (stats.zns_leaf_count > 0) {
4413 size_t average = stats.zns_leaf_total / stats.zns_leaf_count;
4414
4415 (void) printf("%12s %4d %6d bytes average\n", "leaf vdevs:",
4416 stats.zns_leaf_count, (int)average);
4417 (void) printf("%24d bytes largest\n",
4418 (int)stats.zns_leaf_largest);
4419
4420 if (dump_opt['l'] >= 3 && average > 0)
4421 (void) printf(" space for %d additional leaf vdevs\n",
4422 (int)((cap - total) / average));
4423 }
4424 (void) printf("\n");
4425
4426 nvlist_free(stats.zns_string);
4427 nvlist_free(stats.zns_uint64);
4428 nvlist_free(stats.zns_boolean);
4429 }
4430
4431 typedef struct cksum_record {
4432 zio_cksum_t cksum;
4433 boolean_t labels[VDEV_LABELS];
4434 avl_node_t link;
4435 } cksum_record_t;
4436
4437 static int
4438 cksum_record_compare(const void *x1, const void *x2)
4439 {
4440 const cksum_record_t *l = (cksum_record_t *)x1;
4441 const cksum_record_t *r = (cksum_record_t *)x2;
4442 int arraysize = ARRAY_SIZE(l->cksum.zc_word);
4443 int difference = 0;
4444
4445 for (int i = 0; i < arraysize; i++) {
4446 difference = TREE_CMP(l->cksum.zc_word[i], r->cksum.zc_word[i]);
4447 if (difference)
4448 break;
4449 }
4450
4451 return (difference);
4452 }
4453
4454 static cksum_record_t *
4455 cksum_record_alloc(zio_cksum_t *cksum, int l)
4456 {
4457 cksum_record_t *rec;
4458
4459 rec = umem_zalloc(sizeof (*rec), UMEM_NOFAIL);
4460 rec->cksum = *cksum;
4461 rec->labels[l] = B_TRUE;
4462
4463 return (rec);
4464 }
4465
4466 static cksum_record_t *
4467 cksum_record_lookup(avl_tree_t *tree, zio_cksum_t *cksum)
4468 {
4469 cksum_record_t lookup = { .cksum = *cksum };
4470 avl_index_t where;
4471
4472 return (avl_find(tree, &lookup, &where));
4473 }
4474
4475 static cksum_record_t *
4476 cksum_record_insert(avl_tree_t *tree, zio_cksum_t *cksum, int l)
4477 {
4478 cksum_record_t *rec;
4479
4480 rec = cksum_record_lookup(tree, cksum);
4481 if (rec) {
4482 rec->labels[l] = B_TRUE;
4483 } else {
4484 rec = cksum_record_alloc(cksum, l);
4485 avl_add(tree, rec);
4486 }
4487
4488 return (rec);
4489 }
4490
4491 static int
4492 first_label(cksum_record_t *rec)
4493 {
4494 for (int i = 0; i < VDEV_LABELS; i++)
4495 if (rec->labels[i])
4496 return (i);
4497
4498 return (-1);
4499 }
4500
4501 static void
4502 print_label_numbers(const char *prefix, const cksum_record_t *rec)
4503 {
4504 fputs(prefix, stdout);
4505 for (int i = 0; i < VDEV_LABELS; i++)
4506 if (rec->labels[i] == B_TRUE)
4507 printf("%d ", i);
4508 putchar('\n');
4509 }
4510
4511 #define MAX_UBERBLOCK_COUNT (VDEV_UBERBLOCK_RING >> UBERBLOCK_SHIFT)
4512
4513 typedef struct zdb_label {
4514 vdev_label_t label;
4515 uint64_t label_offset;
4516 nvlist_t *config_nv;
4517 cksum_record_t *config;
4518 cksum_record_t *uberblocks[MAX_UBERBLOCK_COUNT];
4519 boolean_t header_printed;
4520 boolean_t read_failed;
4521 boolean_t cksum_valid;
4522 } zdb_label_t;
4523
4524 static void
4525 print_label_header(zdb_label_t *label, int l)
4526 {
4527
4528 if (dump_opt['q'])
4529 return;
4530
4531 if (label->header_printed == B_TRUE)
4532 return;
4533
4534 (void) printf("------------------------------------\n");
4535 (void) printf("LABEL %d %s\n", l,
4536 label->cksum_valid ? "" : "(Bad label cksum)");
4537 (void) printf("------------------------------------\n");
4538
4539 label->header_printed = B_TRUE;
4540 }
4541
4542 static void
4543 print_l2arc_header(void)
4544 {
4545 (void) printf("------------------------------------\n");
4546 (void) printf("L2ARC device header\n");
4547 (void) printf("------------------------------------\n");
4548 }
4549
4550 static void
4551 print_l2arc_log_blocks(void)
4552 {
4553 (void) printf("------------------------------------\n");
4554 (void) printf("L2ARC device log blocks\n");
4555 (void) printf("------------------------------------\n");
4556 }
4557
4558 static void
4559 dump_l2arc_log_entries(uint64_t log_entries,
4560 l2arc_log_ent_phys_t *le, uint64_t i)
4561 {
4562 for (int j = 0; j < log_entries; j++) {
4563 dva_t dva = le[j].le_dva;
4564 (void) printf("lb[%4llu]\tle[%4d]\tDVA asize: %llu, "
4565 "vdev: %llu, offset: %llu\n",
4566 (u_longlong_t)i, j + 1,
4567 (u_longlong_t)DVA_GET_ASIZE(&dva),
4568 (u_longlong_t)DVA_GET_VDEV(&dva),
4569 (u_longlong_t)DVA_GET_OFFSET(&dva));
4570 (void) printf("|\t\t\t\tbirth: %llu\n",
4571 (u_longlong_t)le[j].le_birth);
4572 (void) printf("|\t\t\t\tlsize: %llu\n",
4573 (u_longlong_t)L2BLK_GET_LSIZE((&le[j])->le_prop));
4574 (void) printf("|\t\t\t\tpsize: %llu\n",
4575 (u_longlong_t)L2BLK_GET_PSIZE((&le[j])->le_prop));
4576 (void) printf("|\t\t\t\tcompr: %llu\n",
4577 (u_longlong_t)L2BLK_GET_COMPRESS((&le[j])->le_prop));
4578 (void) printf("|\t\t\t\tcomplevel: %llu\n",
4579 (u_longlong_t)(&le[j])->le_complevel);
4580 (void) printf("|\t\t\t\ttype: %llu\n",
4581 (u_longlong_t)L2BLK_GET_TYPE((&le[j])->le_prop));
4582 (void) printf("|\t\t\t\tprotected: %llu\n",
4583 (u_longlong_t)L2BLK_GET_PROTECTED((&le[j])->le_prop));
4584 (void) printf("|\t\t\t\tprefetch: %llu\n",
4585 (u_longlong_t)L2BLK_GET_PREFETCH((&le[j])->le_prop));
4586 (void) printf("|\t\t\t\taddress: %llu\n",
4587 (u_longlong_t)le[j].le_daddr);
4588 (void) printf("|\t\t\t\tARC state: %llu\n",
4589 (u_longlong_t)L2BLK_GET_STATE((&le[j])->le_prop));
4590 (void) printf("|\n");
4591 }
4592 (void) printf("\n");
4593 }
4594
4595 static void
4596 dump_l2arc_log_blkptr(const l2arc_log_blkptr_t *lbps)
4597 {
4598 (void) printf("|\t\tdaddr: %llu\n", (u_longlong_t)lbps->lbp_daddr);
4599 (void) printf("|\t\tpayload_asize: %llu\n",
4600 (u_longlong_t)lbps->lbp_payload_asize);
4601 (void) printf("|\t\tpayload_start: %llu\n",
4602 (u_longlong_t)lbps->lbp_payload_start);
4603 (void) printf("|\t\tlsize: %llu\n",
4604 (u_longlong_t)L2BLK_GET_LSIZE(lbps->lbp_prop));
4605 (void) printf("|\t\tasize: %llu\n",
4606 (u_longlong_t)L2BLK_GET_PSIZE(lbps->lbp_prop));
4607 (void) printf("|\t\tcompralgo: %llu\n",
4608 (u_longlong_t)L2BLK_GET_COMPRESS(lbps->lbp_prop));
4609 (void) printf("|\t\tcksumalgo: %llu\n",
4610 (u_longlong_t)L2BLK_GET_CHECKSUM(lbps->lbp_prop));
4611 (void) printf("|\n\n");
4612 }
4613
4614 static void
4615 dump_l2arc_log_blocks(int fd, const l2arc_dev_hdr_phys_t *l2dhdr,
4616 l2arc_dev_hdr_phys_t *rebuild)
4617 {
4618 l2arc_log_blk_phys_t this_lb;
4619 uint64_t asize;
4620 l2arc_log_blkptr_t lbps[2];
4621 abd_t *abd;
4622 zio_cksum_t cksum;
4623 int failed = 0;
4624 l2arc_dev_t dev;
4625
4626 if (!dump_opt['q'])
4627 print_l2arc_log_blocks();
4628 memcpy(lbps, l2dhdr->dh_start_lbps, sizeof (lbps));
4629
4630 dev.l2ad_evict = l2dhdr->dh_evict;
4631 dev.l2ad_start = l2dhdr->dh_start;
4632 dev.l2ad_end = l2dhdr->dh_end;
4633
4634 if (l2dhdr->dh_start_lbps[0].lbp_daddr == 0) {
4635 /* no log blocks to read */
4636 if (!dump_opt['q']) {
4637 (void) printf("No log blocks to read\n");
4638 (void) printf("\n");
4639 }
4640 return;
4641 } else {
4642 dev.l2ad_hand = lbps[0].lbp_daddr +
4643 L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
4644 }
4645
4646 dev.l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST);
4647
4648 for (;;) {
4649 if (!l2arc_log_blkptr_valid(&dev, &lbps[0]))
4650 break;
4651
4652 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
4653 asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
4654 if (pread64(fd, &this_lb, asize, lbps[0].lbp_daddr) != asize) {
4655 if (!dump_opt['q']) {
4656 (void) printf("Error while reading next log "
4657 "block\n\n");
4658 }
4659 break;
4660 }
4661
4662 fletcher_4_native_varsize(&this_lb, asize, &cksum);
4663 if (!ZIO_CHECKSUM_EQUAL(cksum, lbps[0].lbp_cksum)) {
4664 failed++;
4665 if (!dump_opt['q']) {
4666 (void) printf("Invalid cksum\n");
4667 dump_l2arc_log_blkptr(&lbps[0]);
4668 }
4669 break;
4670 }
4671
4672 switch (L2BLK_GET_COMPRESS((&lbps[0])->lbp_prop)) {
4673 case ZIO_COMPRESS_OFF:
4674 break;
4675 default:
4676 abd = abd_alloc_for_io(asize, B_TRUE);
4677 abd_copy_from_buf_off(abd, &this_lb, 0, asize);
4678 if (zio_decompress_data(L2BLK_GET_COMPRESS(
4679 (&lbps[0])->lbp_prop), abd, &this_lb,
4680 asize, sizeof (this_lb), NULL) != 0) {
4681 (void) printf("L2ARC block decompression "
4682 "failed\n");
4683 abd_free(abd);
4684 goto out;
4685 }
4686 abd_free(abd);
4687 break;
4688 }
4689
4690 if (this_lb.lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC))
4691 byteswap_uint64_array(&this_lb, sizeof (this_lb));
4692 if (this_lb.lb_magic != L2ARC_LOG_BLK_MAGIC) {
4693 if (!dump_opt['q'])
4694 (void) printf("Invalid log block magic\n\n");
4695 break;
4696 }
4697
4698 rebuild->dh_lb_count++;
4699 rebuild->dh_lb_asize += asize;
4700 if (dump_opt['l'] > 1 && !dump_opt['q']) {
4701 (void) printf("lb[%4llu]\tmagic: %llu\n",
4702 (u_longlong_t)rebuild->dh_lb_count,
4703 (u_longlong_t)this_lb.lb_magic);
4704 dump_l2arc_log_blkptr(&lbps[0]);
4705 }
4706
4707 if (dump_opt['l'] > 2 && !dump_opt['q'])
4708 dump_l2arc_log_entries(l2dhdr->dh_log_entries,
4709 this_lb.lb_entries,
4710 rebuild->dh_lb_count);
4711
4712 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start,
4713 lbps[0].lbp_payload_start, dev.l2ad_evict) &&
4714 !dev.l2ad_first)
4715 break;
4716
4717 lbps[0] = lbps[1];
4718 lbps[1] = this_lb.lb_prev_lbp;
4719 }
4720 out:
4721 if (!dump_opt['q']) {
4722 (void) printf("log_blk_count:\t %llu with valid cksum\n",
4723 (u_longlong_t)rebuild->dh_lb_count);
4724 (void) printf("\t\t %d with invalid cksum\n", failed);
4725 (void) printf("log_blk_asize:\t %llu\n\n",
4726 (u_longlong_t)rebuild->dh_lb_asize);
4727 }
4728 }
4729
4730 static int
4731 dump_l2arc_header(int fd)
4732 {
4733 l2arc_dev_hdr_phys_t l2dhdr = {0}, rebuild = {0};
4734 int error = B_FALSE;
4735
4736 if (pread64(fd, &l2dhdr, sizeof (l2dhdr),
4737 VDEV_LABEL_START_SIZE) != sizeof (l2dhdr)) {
4738 error = B_TRUE;
4739 } else {
4740 if (l2dhdr.dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC))
4741 byteswap_uint64_array(&l2dhdr, sizeof (l2dhdr));
4742
4743 if (l2dhdr.dh_magic != L2ARC_DEV_HDR_MAGIC)
4744 error = B_TRUE;
4745 }
4746
4747 if (error) {
4748 (void) printf("L2ARC device header not found\n\n");
4749 /* Do not return an error here for backward compatibility */
4750 return (0);
4751 } else if (!dump_opt['q']) {
4752 print_l2arc_header();
4753
4754 (void) printf(" magic: %llu\n",
4755 (u_longlong_t)l2dhdr.dh_magic);
4756 (void) printf(" version: %llu\n",
4757 (u_longlong_t)l2dhdr.dh_version);
4758 (void) printf(" pool_guid: %llu\n",
4759 (u_longlong_t)l2dhdr.dh_spa_guid);
4760 (void) printf(" flags: %llu\n",
4761 (u_longlong_t)l2dhdr.dh_flags);
4762 (void) printf(" start_lbps[0]: %llu\n",
4763 (u_longlong_t)
4764 l2dhdr.dh_start_lbps[0].lbp_daddr);
4765 (void) printf(" start_lbps[1]: %llu\n",
4766 (u_longlong_t)
4767 l2dhdr.dh_start_lbps[1].lbp_daddr);
4768 (void) printf(" log_blk_ent: %llu\n",
4769 (u_longlong_t)l2dhdr.dh_log_entries);
4770 (void) printf(" start: %llu\n",
4771 (u_longlong_t)l2dhdr.dh_start);
4772 (void) printf(" end: %llu\n",
4773 (u_longlong_t)l2dhdr.dh_end);
4774 (void) printf(" evict: %llu\n",
4775 (u_longlong_t)l2dhdr.dh_evict);
4776 (void) printf(" lb_asize_refcount: %llu\n",
4777 (u_longlong_t)l2dhdr.dh_lb_asize);
4778 (void) printf(" lb_count_refcount: %llu\n",
4779 (u_longlong_t)l2dhdr.dh_lb_count);
4780 (void) printf(" trim_action_time: %llu\n",
4781 (u_longlong_t)l2dhdr.dh_trim_action_time);
4782 (void) printf(" trim_state: %llu\n\n",
4783 (u_longlong_t)l2dhdr.dh_trim_state);
4784 }
4785
4786 dump_l2arc_log_blocks(fd, &l2dhdr, &rebuild);
4787 /*
4788 * The total aligned size of log blocks and the number of log blocks
4789 * reported in the header of the device may be less than what zdb
4790 * reports by dump_l2arc_log_blocks() which emulates l2arc_rebuild().
4791 * This happens because dump_l2arc_log_blocks() lacks the memory
4792 * pressure valve that l2arc_rebuild() has. Thus, if we are on a system
4793 * with low memory, l2arc_rebuild will exit prematurely and dh_lb_asize
4794 * and dh_lb_count will be lower to begin with than what exists on the
4795 * device. This is normal and zdb should not exit with an error. The
4796 * opposite case should never happen though, the values reported in the
4797 * header should never be higher than what dump_l2arc_log_blocks() and
4798 * l2arc_rebuild() report. If this happens there is a leak in the
4799 * accounting of log blocks.
4800 */
4801 if (l2dhdr.dh_lb_asize > rebuild.dh_lb_asize ||
4802 l2dhdr.dh_lb_count > rebuild.dh_lb_count)
4803 return (1);
4804
4805 return (0);
4806 }
4807
4808 static void
4809 dump_config_from_label(zdb_label_t *label, size_t buflen, int l)
4810 {
4811 if (dump_opt['q'])
4812 return;
4813
4814 if ((dump_opt['l'] < 3) && (first_label(label->config) != l))
4815 return;
4816
4817 print_label_header(label, l);
4818 dump_nvlist(label->config_nv, 4);
4819 print_label_numbers(" labels = ", label->config);
4820
4821 if (dump_opt['l'] >= 2)
4822 dump_nvlist_stats(label->config_nv, buflen);
4823 }
4824
4825 #define ZDB_MAX_UB_HEADER_SIZE 32
4826
4827 static void
4828 dump_label_uberblocks(zdb_label_t *label, uint64_t ashift, int label_num)
4829 {
4830
4831 vdev_t vd;
4832 char header[ZDB_MAX_UB_HEADER_SIZE];
4833
4834 vd.vdev_ashift = ashift;
4835 vd.vdev_top = &vd;
4836
4837 for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) {
4838 uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i);
4839 uberblock_t *ub = (void *)((char *)&label->label + uoff);
4840 cksum_record_t *rec = label->uberblocks[i];
4841
4842 if (rec == NULL) {
4843 if (dump_opt['u'] >= 2) {
4844 print_label_header(label, label_num);
4845 (void) printf(" Uberblock[%d] invalid\n", i);
4846 }
4847 continue;
4848 }
4849
4850 if ((dump_opt['u'] < 3) && (first_label(rec) != label_num))
4851 continue;
4852
4853 if ((dump_opt['u'] < 4) &&
4854 (ub->ub_mmp_magic == MMP_MAGIC) && ub->ub_mmp_delay &&
4855 (i >= VDEV_UBERBLOCK_COUNT(&vd) - MMP_BLOCKS_PER_LABEL))
4856 continue;
4857
4858 print_label_header(label, label_num);
4859 (void) snprintf(header, ZDB_MAX_UB_HEADER_SIZE,
4860 " Uberblock[%d]\n", i);
4861 dump_uberblock(ub, header, "");
4862 print_label_numbers(" labels = ", rec);
4863 }
4864 }
4865
4866 static char curpath[PATH_MAX];
4867
4868 /*
4869 * Iterate through the path components, recursively passing
4870 * current one's obj and remaining path until we find the obj
4871 * for the last one.
4872 */
4873 static int
4874 dump_path_impl(objset_t *os, uint64_t obj, char *name, uint64_t *retobj)
4875 {
4876 int err;
4877 boolean_t header = B_TRUE;
4878 uint64_t child_obj;
4879 char *s;
4880 dmu_buf_t *db;
4881 dmu_object_info_t doi;
4882
4883 if ((s = strchr(name, '/')) != NULL)
4884 *s = '\0';
4885 err = zap_lookup(os, obj, name, 8, 1, &child_obj);
4886
4887 (void) strlcat(curpath, name, sizeof (curpath));
4888
4889 if (err != 0) {
4890 (void) fprintf(stderr, "failed to lookup %s: %s\n",
4891 curpath, strerror(err));
4892 return (err);
4893 }
4894
4895 child_obj = ZFS_DIRENT_OBJ(child_obj);
4896 err = sa_buf_hold(os, child_obj, FTAG, &db);
4897 if (err != 0) {
4898 (void) fprintf(stderr,
4899 "failed to get SA dbuf for obj %llu: %s\n",
4900 (u_longlong_t)child_obj, strerror(err));
4901 return (EINVAL);
4902 }
4903 dmu_object_info_from_db(db, &doi);
4904 sa_buf_rele(db, FTAG);
4905
4906 if (doi.doi_bonus_type != DMU_OT_SA &&
4907 doi.doi_bonus_type != DMU_OT_ZNODE) {
4908 (void) fprintf(stderr, "invalid bonus type %d for obj %llu\n",
4909 doi.doi_bonus_type, (u_longlong_t)child_obj);
4910 return (EINVAL);
4911 }
4912
4913 if (dump_opt['v'] > 6) {
4914 (void) printf("obj=%llu %s type=%d bonustype=%d\n",
4915 (u_longlong_t)child_obj, curpath, doi.doi_type,
4916 doi.doi_bonus_type);
4917 }
4918
4919 (void) strlcat(curpath, "/", sizeof (curpath));
4920
4921 switch (doi.doi_type) {
4922 case DMU_OT_DIRECTORY_CONTENTS:
4923 if (s != NULL && *(s + 1) != '\0')
4924 return (dump_path_impl(os, child_obj, s + 1, retobj));
4925 zfs_fallthrough;
4926 case DMU_OT_PLAIN_FILE_CONTENTS:
4927 if (retobj != NULL) {
4928 *retobj = child_obj;
4929 } else {
4930 dump_object(os, child_obj, dump_opt['v'], &header,
4931 NULL, 0);
4932 }
4933 return (0);
4934 default:
4935 (void) fprintf(stderr, "object %llu has non-file/directory "
4936 "type %d\n", (u_longlong_t)obj, doi.doi_type);
4937 break;
4938 }
4939
4940 return (EINVAL);
4941 }
4942
4943 /*
4944 * Dump the blocks for the object specified by path inside the dataset.
4945 */
4946 static int
4947 dump_path(char *ds, char *path, uint64_t *retobj)
4948 {
4949 int err;
4950 objset_t *os;
4951 uint64_t root_obj;
4952
4953 err = open_objset(ds, FTAG, &os);
4954 if (err != 0)
4955 return (err);
4956
4957 err = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &root_obj);
4958 if (err != 0) {
4959 (void) fprintf(stderr, "can't lookup root znode: %s\n",
4960 strerror(err));
4961 close_objset(os, FTAG);
4962 return (EINVAL);
4963 }
4964
4965 (void) snprintf(curpath, sizeof (curpath), "dataset=%s path=/", ds);
4966
4967 err = dump_path_impl(os, root_obj, path, retobj);
4968
4969 close_objset(os, FTAG);
4970 return (err);
4971 }
4972
4973 static int
4974 dump_backup_bytes(objset_t *os, void *buf, int len, void *arg)
4975 {
4976 const char *p = (const char *)buf;
4977 ssize_t nwritten;
4978
4979 (void) os;
4980 (void) arg;
4981
4982 /* Write the data out, handling short writes and signals. */
4983 while ((nwritten = write(STDOUT_FILENO, p, len)) < len) {
4984 if (nwritten < 0) {
4985 if (errno == EINTR)
4986 continue;
4987 return (errno);
4988 }
4989 p += nwritten;
4990 len -= nwritten;
4991 }
4992
4993 return (0);
4994 }
4995
4996 static void
4997 dump_backup(const char *pool, uint64_t objset_id, const char *flagstr)
4998 {
4999 boolean_t embed = B_FALSE;
5000 boolean_t large_block = B_FALSE;
5001 boolean_t compress = B_FALSE;
5002 boolean_t raw = B_FALSE;
5003
5004 const char *c;
5005 for (c = flagstr; c != NULL && *c != '\0'; c++) {
5006 switch (*c) {
5007 case 'e':
5008 embed = B_TRUE;
5009 break;
5010 case 'L':
5011 large_block = B_TRUE;
5012 break;
5013 case 'c':
5014 compress = B_TRUE;
5015 break;
5016 case 'w':
5017 raw = B_TRUE;
5018 break;
5019 default:
5020 fprintf(stderr, "dump_backup: invalid flag "
5021 "'%c'\n", *c);
5022 return;
5023 }
5024 }
5025
5026 if (isatty(STDOUT_FILENO)) {
5027 fprintf(stderr, "dump_backup: stream cannot be written "
5028 "to a terminal\n");
5029 return;
5030 }
5031
5032 offset_t off = 0;
5033 dmu_send_outparams_t out = {
5034 .dso_outfunc = dump_backup_bytes,
5035 .dso_dryrun = B_FALSE,
5036 };
5037
5038 int err = dmu_send_obj(pool, objset_id, /* fromsnap */0, embed,
5039 large_block, compress, raw, /* saved */ B_FALSE, STDOUT_FILENO,
5040 &off, &out);
5041 if (err != 0) {
5042 fprintf(stderr, "dump_backup: dmu_send_obj: %s\n",
5043 strerror(err));
5044 return;
5045 }
5046 }
5047
5048 static int
5049 zdb_copy_object(objset_t *os, uint64_t srcobj, char *destfile)
5050 {
5051 int err = 0;
5052 uint64_t size, readsize, oursize, offset;
5053 ssize_t writesize;
5054 sa_handle_t *hdl;
5055
5056 (void) printf("Copying object %" PRIu64 " to file %s\n", srcobj,
5057 destfile);
5058
5059 VERIFY3P(os, ==, sa_os);
5060 if ((err = sa_handle_get(os, srcobj, NULL, SA_HDL_PRIVATE, &hdl))) {
5061 (void) printf("Failed to get handle for SA znode\n");
5062 return (err);
5063 }
5064 if ((err = sa_lookup(hdl, sa_attr_table[ZPL_SIZE], &size, 8))) {
5065 (void) sa_handle_destroy(hdl);
5066 return (err);
5067 }
5068 (void) sa_handle_destroy(hdl);
5069
5070 (void) printf("Object %" PRIu64 " is %" PRIu64 " bytes\n", srcobj,
5071 size);
5072 if (size == 0) {
5073 return (EINVAL);
5074 }
5075
5076 int fd = open(destfile, O_WRONLY | O_CREAT | O_TRUNC, 0644);
5077 if (fd == -1)
5078 return (errno);
5079 /*
5080 * We cap the size at 1 mebibyte here to prevent
5081 * allocation failures and nigh-infinite printing if the
5082 * object is extremely large.
5083 */
5084 oursize = MIN(size, 1 << 20);
5085 offset = 0;
5086 char *buf = kmem_alloc(oursize, KM_NOSLEEP);
5087 if (buf == NULL) {
5088 (void) close(fd);
5089 return (ENOMEM);
5090 }
5091
5092 while (offset < size) {
5093 readsize = MIN(size - offset, 1 << 20);
5094 err = dmu_read(os, srcobj, offset, readsize, buf, 0);
5095 if (err != 0) {
5096 (void) printf("got error %u from dmu_read\n", err);
5097 kmem_free(buf, oursize);
5098 (void) close(fd);
5099 return (err);
5100 }
5101 if (dump_opt['v'] > 3) {
5102 (void) printf("Read offset=%" PRIu64 " size=%" PRIu64
5103 " error=%d\n", offset, readsize, err);
5104 }
5105
5106 writesize = write(fd, buf, readsize);
5107 if (writesize < 0) {
5108 err = errno;
5109 break;
5110 } else if (writesize != readsize) {
5111 /* Incomplete write */
5112 (void) fprintf(stderr, "Short write, only wrote %llu of"
5113 " %" PRIu64 " bytes, exiting...\n",
5114 (u_longlong_t)writesize, readsize);
5115 break;
5116 }
5117
5118 offset += readsize;
5119 }
5120
5121 (void) close(fd);
5122
5123 if (buf != NULL)
5124 kmem_free(buf, oursize);
5125
5126 return (err);
5127 }
5128
5129 static boolean_t
5130 label_cksum_valid(vdev_label_t *label, uint64_t offset)
5131 {
5132 zio_checksum_info_t *ci = &zio_checksum_table[ZIO_CHECKSUM_LABEL];
5133 zio_cksum_t expected_cksum;
5134 zio_cksum_t actual_cksum;
5135 zio_cksum_t verifier;
5136 zio_eck_t *eck;
5137 int byteswap;
5138
5139 void *data = (char *)label + offsetof(vdev_label_t, vl_vdev_phys);
5140 eck = (zio_eck_t *)((char *)(data) + VDEV_PHYS_SIZE) - 1;
5141
5142 offset += offsetof(vdev_label_t, vl_vdev_phys);
5143 ZIO_SET_CHECKSUM(&verifier, offset, 0, 0, 0);
5144
5145 byteswap = (eck->zec_magic == BSWAP_64(ZEC_MAGIC));
5146 if (byteswap)
5147 byteswap_uint64_array(&verifier, sizeof (zio_cksum_t));
5148
5149 expected_cksum = eck->zec_cksum;
5150 eck->zec_cksum = verifier;
5151
5152 abd_t *abd = abd_get_from_buf(data, VDEV_PHYS_SIZE);
5153 ci->ci_func[byteswap](abd, VDEV_PHYS_SIZE, NULL, &actual_cksum);
5154 abd_free(abd);
5155
5156 if (byteswap)
5157 byteswap_uint64_array(&expected_cksum, sizeof (zio_cksum_t));
5158
5159 if (ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum))
5160 return (B_TRUE);
5161
5162 return (B_FALSE);
5163 }
5164
5165 static int
5166 dump_label(const char *dev)
5167 {
5168 char path[MAXPATHLEN];
5169 zdb_label_t labels[VDEV_LABELS] = {{{{0}}}};
5170 uint64_t psize, ashift, l2cache;
5171 struct stat64 statbuf;
5172 boolean_t config_found = B_FALSE;
5173 boolean_t error = B_FALSE;
5174 boolean_t read_l2arc_header = B_FALSE;
5175 avl_tree_t config_tree;
5176 avl_tree_t uberblock_tree;
5177 void *node, *cookie;
5178 int fd;
5179
5180 /*
5181 * Check if we were given absolute path and use it as is.
5182 * Otherwise if the provided vdev name doesn't point to a file,
5183 * try prepending expected disk paths and partition numbers.
5184 */
5185 (void) strlcpy(path, dev, sizeof (path));
5186 if (dev[0] != '/' && stat64(path, &statbuf) != 0) {
5187 int error;
5188
5189 error = zfs_resolve_shortname(dev, path, MAXPATHLEN);
5190 if (error == 0 && zfs_dev_is_whole_disk(path)) {
5191 if (zfs_append_partition(path, MAXPATHLEN) == -1)
5192 error = ENOENT;
5193 }
5194
5195 if (error || (stat64(path, &statbuf) != 0)) {
5196 (void) printf("failed to find device %s, try "
5197 "specifying absolute path instead\n", dev);
5198 return (1);
5199 }
5200 }
5201
5202 if ((fd = open64(path, O_RDONLY)) < 0) {
5203 (void) printf("cannot open '%s': %s\n", path, strerror(errno));
5204 exit(1);
5205 }
5206
5207 if (fstat64_blk(fd, &statbuf) != 0) {
5208 (void) printf("failed to stat '%s': %s\n", path,
5209 strerror(errno));
5210 (void) close(fd);
5211 exit(1);
5212 }
5213
5214 if (S_ISBLK(statbuf.st_mode) && zfs_dev_flush(fd) != 0)
5215 (void) printf("failed to invalidate cache '%s' : %s\n", path,
5216 strerror(errno));
5217
5218 avl_create(&config_tree, cksum_record_compare,
5219 sizeof (cksum_record_t), offsetof(cksum_record_t, link));
5220 avl_create(&uberblock_tree, cksum_record_compare,
5221 sizeof (cksum_record_t), offsetof(cksum_record_t, link));
5222
5223 psize = statbuf.st_size;
5224 psize = P2ALIGN(psize, (uint64_t)sizeof (vdev_label_t));
5225 ashift = SPA_MINBLOCKSHIFT;
5226
5227 /*
5228 * 1. Read the label from disk
5229 * 2. Verify label cksum
5230 * 3. Unpack the configuration and insert in config tree.
5231 * 4. Traverse all uberblocks and insert in uberblock tree.
5232 */
5233 for (int l = 0; l < VDEV_LABELS; l++) {
5234 zdb_label_t *label = &labels[l];
5235 char *buf = label->label.vl_vdev_phys.vp_nvlist;
5236 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist);
5237 nvlist_t *config;
5238 cksum_record_t *rec;
5239 zio_cksum_t cksum;
5240 vdev_t vd;
5241
5242 label->label_offset = vdev_label_offset(psize, l, 0);
5243
5244 if (pread64(fd, &label->label, sizeof (label->label),
5245 label->label_offset) != sizeof (label->label)) {
5246 if (!dump_opt['q'])
5247 (void) printf("failed to read label %d\n", l);
5248 label->read_failed = B_TRUE;
5249 error = B_TRUE;
5250 continue;
5251 }
5252
5253 label->read_failed = B_FALSE;
5254 label->cksum_valid = label_cksum_valid(&label->label,
5255 label->label_offset);
5256
5257 if (nvlist_unpack(buf, buflen, &config, 0) == 0) {
5258 nvlist_t *vdev_tree = NULL;
5259 size_t size;
5260
5261 if ((nvlist_lookup_nvlist(config,
5262 ZPOOL_CONFIG_VDEV_TREE, &vdev_tree) != 0) ||
5263 (nvlist_lookup_uint64(vdev_tree,
5264 ZPOOL_CONFIG_ASHIFT, &ashift) != 0))
5265 ashift = SPA_MINBLOCKSHIFT;
5266
5267 if (nvlist_size(config, &size, NV_ENCODE_XDR) != 0)
5268 size = buflen;
5269
5270 /* If the device is a cache device read the header. */
5271 if (!read_l2arc_header) {
5272 if (nvlist_lookup_uint64(config,
5273 ZPOOL_CONFIG_POOL_STATE, &l2cache) == 0 &&
5274 l2cache == POOL_STATE_L2CACHE) {
5275 read_l2arc_header = B_TRUE;
5276 }
5277 }
5278
5279 fletcher_4_native_varsize(buf, size, &cksum);
5280 rec = cksum_record_insert(&config_tree, &cksum, l);
5281
5282 label->config = rec;
5283 label->config_nv = config;
5284 config_found = B_TRUE;
5285 } else {
5286 error = B_TRUE;
5287 }
5288
5289 vd.vdev_ashift = ashift;
5290 vd.vdev_top = &vd;
5291
5292 for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) {
5293 uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i);
5294 uberblock_t *ub = (void *)((char *)label + uoff);
5295
5296 if (uberblock_verify(ub))
5297 continue;
5298
5299 fletcher_4_native_varsize(ub, sizeof (*ub), &cksum);
5300 rec = cksum_record_insert(&uberblock_tree, &cksum, l);
5301
5302 label->uberblocks[i] = rec;
5303 }
5304 }
5305
5306 /*
5307 * Dump the label and uberblocks.
5308 */
5309 for (int l = 0; l < VDEV_LABELS; l++) {
5310 zdb_label_t *label = &labels[l];
5311 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist);
5312
5313 if (label->read_failed == B_TRUE)
5314 continue;
5315
5316 if (label->config_nv) {
5317 dump_config_from_label(label, buflen, l);
5318 } else {
5319 if (!dump_opt['q'])
5320 (void) printf("failed to unpack label %d\n", l);
5321 }
5322
5323 if (dump_opt['u'])
5324 dump_label_uberblocks(label, ashift, l);
5325
5326 nvlist_free(label->config_nv);
5327 }
5328
5329 /*
5330 * Dump the L2ARC header, if existent.
5331 */
5332 if (read_l2arc_header)
5333 error |= dump_l2arc_header(fd);
5334
5335 cookie = NULL;
5336 while ((node = avl_destroy_nodes(&config_tree, &cookie)) != NULL)
5337 umem_free(node, sizeof (cksum_record_t));
5338
5339 cookie = NULL;
5340 while ((node = avl_destroy_nodes(&uberblock_tree, &cookie)) != NULL)
5341 umem_free(node, sizeof (cksum_record_t));
5342
5343 avl_destroy(&config_tree);
5344 avl_destroy(&uberblock_tree);
5345
5346 (void) close(fd);
5347
5348 return (config_found == B_FALSE ? 2 :
5349 (error == B_TRUE ? 1 : 0));
5350 }
5351
5352 static uint64_t dataset_feature_count[SPA_FEATURES];
5353 static uint64_t global_feature_count[SPA_FEATURES];
5354 static uint64_t remap_deadlist_count = 0;
5355
5356 static int
5357 dump_one_objset(const char *dsname, void *arg)
5358 {
5359 (void) arg;
5360 int error;
5361 objset_t *os;
5362 spa_feature_t f;
5363
5364 error = open_objset(dsname, FTAG, &os);
5365 if (error != 0)
5366 return (0);
5367
5368 for (f = 0; f < SPA_FEATURES; f++) {
5369 if (!dsl_dataset_feature_is_active(dmu_objset_ds(os), f))
5370 continue;
5371 ASSERT(spa_feature_table[f].fi_flags &
5372 ZFEATURE_FLAG_PER_DATASET);
5373 dataset_feature_count[f]++;
5374 }
5375
5376 if (dsl_dataset_remap_deadlist_exists(dmu_objset_ds(os))) {
5377 remap_deadlist_count++;
5378 }
5379
5380 for (dsl_bookmark_node_t *dbn =
5381 avl_first(&dmu_objset_ds(os)->ds_bookmarks); dbn != NULL;
5382 dbn = AVL_NEXT(&dmu_objset_ds(os)->ds_bookmarks, dbn)) {
5383 mos_obj_refd(dbn->dbn_phys.zbm_redaction_obj);
5384 if (dbn->dbn_phys.zbm_redaction_obj != 0) {
5385 global_feature_count[
5386 SPA_FEATURE_REDACTION_BOOKMARKS]++;
5387 objset_t *mos = os->os_spa->spa_meta_objset;
5388 dnode_t *rl;
5389 VERIFY0(dnode_hold(mos,
5390 dbn->dbn_phys.zbm_redaction_obj, FTAG, &rl));
5391 if (rl->dn_have_spill) {
5392 global_feature_count[
5393 SPA_FEATURE_REDACTION_LIST_SPILL]++;
5394 }
5395 }
5396 if (dbn->dbn_phys.zbm_flags & ZBM_FLAG_HAS_FBN)
5397 global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN]++;
5398 }
5399
5400 if (dsl_deadlist_is_open(&dmu_objset_ds(os)->ds_dir->dd_livelist) &&
5401 !dmu_objset_is_snapshot(os)) {
5402 global_feature_count[SPA_FEATURE_LIVELIST]++;
5403 }
5404
5405 dump_objset(os);
5406 close_objset(os, FTAG);
5407 fuid_table_destroy();
5408 return (0);
5409 }
5410
5411 /*
5412 * Block statistics.
5413 */
5414 #define PSIZE_HISTO_SIZE (SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 2)
5415 typedef struct zdb_blkstats {
5416 uint64_t zb_asize;
5417 uint64_t zb_lsize;
5418 uint64_t zb_psize;
5419 uint64_t zb_count;
5420 uint64_t zb_gangs;
5421 uint64_t zb_ditto_samevdev;
5422 uint64_t zb_ditto_same_ms;
5423 uint64_t zb_psize_histogram[PSIZE_HISTO_SIZE];
5424 } zdb_blkstats_t;
5425
5426 /*
5427 * Extended object types to report deferred frees and dedup auto-ditto blocks.
5428 */
5429 #define ZDB_OT_DEFERRED (DMU_OT_NUMTYPES + 0)
5430 #define ZDB_OT_DITTO (DMU_OT_NUMTYPES + 1)
5431 #define ZDB_OT_OTHER (DMU_OT_NUMTYPES + 2)
5432 #define ZDB_OT_TOTAL (DMU_OT_NUMTYPES + 3)
5433
5434 static const char *zdb_ot_extname[] = {
5435 "deferred free",
5436 "dedup ditto",
5437 "other",
5438 "Total",
5439 };
5440
5441 #define ZB_TOTAL DN_MAX_LEVELS
5442 #define SPA_MAX_FOR_16M (SPA_MAXBLOCKSHIFT+1)
5443
5444 typedef struct zdb_brt_entry {
5445 dva_t zbre_dva;
5446 uint64_t zbre_refcount;
5447 avl_node_t zbre_node;
5448 } zdb_brt_entry_t;
5449
5450 typedef struct zdb_cb {
5451 zdb_blkstats_t zcb_type[ZB_TOTAL + 1][ZDB_OT_TOTAL + 1];
5452 uint64_t zcb_removing_size;
5453 uint64_t zcb_checkpoint_size;
5454 uint64_t zcb_dedup_asize;
5455 uint64_t zcb_dedup_blocks;
5456 uint64_t zcb_clone_asize;
5457 uint64_t zcb_clone_blocks;
5458 uint64_t zcb_psize_count[SPA_MAX_FOR_16M];
5459 uint64_t zcb_lsize_count[SPA_MAX_FOR_16M];
5460 uint64_t zcb_asize_count[SPA_MAX_FOR_16M];
5461 uint64_t zcb_psize_len[SPA_MAX_FOR_16M];
5462 uint64_t zcb_lsize_len[SPA_MAX_FOR_16M];
5463 uint64_t zcb_asize_len[SPA_MAX_FOR_16M];
5464 uint64_t zcb_psize_total;
5465 uint64_t zcb_lsize_total;
5466 uint64_t zcb_asize_total;
5467 uint64_t zcb_embedded_blocks[NUM_BP_EMBEDDED_TYPES];
5468 uint64_t zcb_embedded_histogram[NUM_BP_EMBEDDED_TYPES]
5469 [BPE_PAYLOAD_SIZE + 1];
5470 uint64_t zcb_start;
5471 hrtime_t zcb_lastprint;
5472 uint64_t zcb_totalasize;
5473 uint64_t zcb_errors[256];
5474 int zcb_readfails;
5475 int zcb_haderrors;
5476 spa_t *zcb_spa;
5477 uint32_t **zcb_vd_obsolete_counts;
5478 avl_tree_t zcb_brt;
5479 boolean_t zcb_brt_is_active;
5480 } zdb_cb_t;
5481
5482 /* test if two DVA offsets from same vdev are within the same metaslab */
5483 static boolean_t
5484 same_metaslab(spa_t *spa, uint64_t vdev, uint64_t off1, uint64_t off2)
5485 {
5486 vdev_t *vd = vdev_lookup_top(spa, vdev);
5487 uint64_t ms_shift = vd->vdev_ms_shift;
5488
5489 return ((off1 >> ms_shift) == (off2 >> ms_shift));
5490 }
5491
5492 /*
5493 * Used to simplify reporting of the histogram data.
5494 */
5495 typedef struct one_histo {
5496 const char *name;
5497 uint64_t *count;
5498 uint64_t *len;
5499 uint64_t cumulative;
5500 } one_histo_t;
5501
5502 /*
5503 * The number of separate histograms processed for psize, lsize and asize.
5504 */
5505 #define NUM_HISTO 3
5506
5507 /*
5508 * This routine will create a fixed column size output of three different
5509 * histograms showing by blocksize of 512 - 2^ SPA_MAX_FOR_16M
5510 * the count, length and cumulative length of the psize, lsize and
5511 * asize blocks.
5512 *
5513 * All three types of blocks are listed on a single line
5514 *
5515 * By default the table is printed in nicenumber format (e.g. 123K) but
5516 * if the '-P' parameter is specified then the full raw number (parseable)
5517 * is printed out.
5518 */
5519 static void
5520 dump_size_histograms(zdb_cb_t *zcb)
5521 {
5522 /*
5523 * A temporary buffer that allows us to convert a number into
5524 * a string using zdb_nicenumber to allow either raw or human
5525 * readable numbers to be output.
5526 */
5527 char numbuf[32];
5528
5529 /*
5530 * Define titles which are used in the headers of the tables
5531 * printed by this routine.
5532 */
5533 const char blocksize_title1[] = "block";
5534 const char blocksize_title2[] = "size";
5535 const char count_title[] = "Count";
5536 const char length_title[] = "Size";
5537 const char cumulative_title[] = "Cum.";
5538
5539 /*
5540 * Setup the histogram arrays (psize, lsize, and asize).
5541 */
5542 one_histo_t parm_histo[NUM_HISTO];
5543
5544 parm_histo[0].name = "psize";
5545 parm_histo[0].count = zcb->zcb_psize_count;
5546 parm_histo[0].len = zcb->zcb_psize_len;
5547 parm_histo[0].cumulative = 0;
5548
5549 parm_histo[1].name = "lsize";
5550 parm_histo[1].count = zcb->zcb_lsize_count;
5551 parm_histo[1].len = zcb->zcb_lsize_len;
5552 parm_histo[1].cumulative = 0;
5553
5554 parm_histo[2].name = "asize";
5555 parm_histo[2].count = zcb->zcb_asize_count;
5556 parm_histo[2].len = zcb->zcb_asize_len;
5557 parm_histo[2].cumulative = 0;
5558
5559
5560 (void) printf("\nBlock Size Histogram\n");
5561 /*
5562 * Print the first line titles
5563 */
5564 if (dump_opt['P'])
5565 (void) printf("\n%s\t", blocksize_title1);
5566 else
5567 (void) printf("\n%7s ", blocksize_title1);
5568
5569 for (int j = 0; j < NUM_HISTO; j++) {
5570 if (dump_opt['P']) {
5571 if (j < NUM_HISTO - 1) {
5572 (void) printf("%s\t\t\t", parm_histo[j].name);
5573 } else {
5574 /* Don't print trailing spaces */
5575 (void) printf(" %s", parm_histo[j].name);
5576 }
5577 } else {
5578 if (j < NUM_HISTO - 1) {
5579 /* Left aligned strings in the output */
5580 (void) printf("%-7s ",
5581 parm_histo[j].name);
5582 } else {
5583 /* Don't print trailing spaces */
5584 (void) printf("%s", parm_histo[j].name);
5585 }
5586 }
5587 }
5588 (void) printf("\n");
5589
5590 /*
5591 * Print the second line titles
5592 */
5593 if (dump_opt['P']) {
5594 (void) printf("%s\t", blocksize_title2);
5595 } else {
5596 (void) printf("%7s ", blocksize_title2);
5597 }
5598
5599 for (int i = 0; i < NUM_HISTO; i++) {
5600 if (dump_opt['P']) {
5601 (void) printf("%s\t%s\t%s\t",
5602 count_title, length_title, cumulative_title);
5603 } else {
5604 (void) printf("%7s%7s%7s",
5605 count_title, length_title, cumulative_title);
5606 }
5607 }
5608 (void) printf("\n");
5609
5610 /*
5611 * Print the rows
5612 */
5613 for (int i = SPA_MINBLOCKSHIFT; i < SPA_MAX_FOR_16M; i++) {
5614
5615 /*
5616 * Print the first column showing the blocksize
5617 */
5618 zdb_nicenum((1ULL << i), numbuf, sizeof (numbuf));
5619
5620 if (dump_opt['P']) {
5621 printf("%s", numbuf);
5622 } else {
5623 printf("%7s:", numbuf);
5624 }
5625
5626 /*
5627 * Print the remaining set of 3 columns per size:
5628 * for psize, lsize and asize
5629 */
5630 for (int j = 0; j < NUM_HISTO; j++) {
5631 parm_histo[j].cumulative += parm_histo[j].len[i];
5632
5633 zdb_nicenum(parm_histo[j].count[i],
5634 numbuf, sizeof (numbuf));
5635 if (dump_opt['P'])
5636 (void) printf("\t%s", numbuf);
5637 else
5638 (void) printf("%7s", numbuf);
5639
5640 zdb_nicenum(parm_histo[j].len[i],
5641 numbuf, sizeof (numbuf));
5642 if (dump_opt['P'])
5643 (void) printf("\t%s", numbuf);
5644 else
5645 (void) printf("%7s", numbuf);
5646
5647 zdb_nicenum(parm_histo[j].cumulative,
5648 numbuf, sizeof (numbuf));
5649 if (dump_opt['P'])
5650 (void) printf("\t%s", numbuf);
5651 else
5652 (void) printf("%7s", numbuf);
5653 }
5654 (void) printf("\n");
5655 }
5656 }
5657
5658 static void
5659 zdb_count_block(zdb_cb_t *zcb, zilog_t *zilog, const blkptr_t *bp,
5660 dmu_object_type_t type)
5661 {
5662 uint64_t refcnt = 0;
5663 int i;
5664
5665 ASSERT(type < ZDB_OT_TOTAL);
5666
5667 if (zilog && zil_bp_tree_add(zilog, bp) != 0)
5668 return;
5669
5670 spa_config_enter(zcb->zcb_spa, SCL_CONFIG, FTAG, RW_READER);
5671
5672 for (i = 0; i < 4; i++) {
5673 int l = (i < 2) ? BP_GET_LEVEL(bp) : ZB_TOTAL;
5674 int t = (i & 1) ? type : ZDB_OT_TOTAL;
5675 int equal;
5676 zdb_blkstats_t *zb = &zcb->zcb_type[l][t];
5677
5678 zb->zb_asize += BP_GET_ASIZE(bp);
5679 zb->zb_lsize += BP_GET_LSIZE(bp);
5680 zb->zb_psize += BP_GET_PSIZE(bp);
5681 zb->zb_count++;
5682
5683 /*
5684 * The histogram is only big enough to record blocks up to
5685 * SPA_OLD_MAXBLOCKSIZE; larger blocks go into the last,
5686 * "other", bucket.
5687 */
5688 unsigned idx = BP_GET_PSIZE(bp) >> SPA_MINBLOCKSHIFT;
5689 idx = MIN(idx, SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 1);
5690 zb->zb_psize_histogram[idx]++;
5691
5692 zb->zb_gangs += BP_COUNT_GANG(bp);
5693
5694 switch (BP_GET_NDVAS(bp)) {
5695 case 2:
5696 if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
5697 DVA_GET_VDEV(&bp->blk_dva[1])) {
5698 zb->zb_ditto_samevdev++;
5699
5700 if (same_metaslab(zcb->zcb_spa,
5701 DVA_GET_VDEV(&bp->blk_dva[0]),
5702 DVA_GET_OFFSET(&bp->blk_dva[0]),
5703 DVA_GET_OFFSET(&bp->blk_dva[1])))
5704 zb->zb_ditto_same_ms++;
5705 }
5706 break;
5707 case 3:
5708 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
5709 DVA_GET_VDEV(&bp->blk_dva[1])) +
5710 (DVA_GET_VDEV(&bp->blk_dva[0]) ==
5711 DVA_GET_VDEV(&bp->blk_dva[2])) +
5712 (DVA_GET_VDEV(&bp->blk_dva[1]) ==
5713 DVA_GET_VDEV(&bp->blk_dva[2]));
5714 if (equal != 0) {
5715 zb->zb_ditto_samevdev++;
5716
5717 if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
5718 DVA_GET_VDEV(&bp->blk_dva[1]) &&
5719 same_metaslab(zcb->zcb_spa,
5720 DVA_GET_VDEV(&bp->blk_dva[0]),
5721 DVA_GET_OFFSET(&bp->blk_dva[0]),
5722 DVA_GET_OFFSET(&bp->blk_dva[1])))
5723 zb->zb_ditto_same_ms++;
5724 else if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
5725 DVA_GET_VDEV(&bp->blk_dva[2]) &&
5726 same_metaslab(zcb->zcb_spa,
5727 DVA_GET_VDEV(&bp->blk_dva[0]),
5728 DVA_GET_OFFSET(&bp->blk_dva[0]),
5729 DVA_GET_OFFSET(&bp->blk_dva[2])))
5730 zb->zb_ditto_same_ms++;
5731 else if (DVA_GET_VDEV(&bp->blk_dva[1]) ==
5732 DVA_GET_VDEV(&bp->blk_dva[2]) &&
5733 same_metaslab(zcb->zcb_spa,
5734 DVA_GET_VDEV(&bp->blk_dva[1]),
5735 DVA_GET_OFFSET(&bp->blk_dva[1]),
5736 DVA_GET_OFFSET(&bp->blk_dva[2])))
5737 zb->zb_ditto_same_ms++;
5738 }
5739 break;
5740 }
5741 }
5742
5743 spa_config_exit(zcb->zcb_spa, SCL_CONFIG, FTAG);
5744
5745 if (BP_IS_EMBEDDED(bp)) {
5746 zcb->zcb_embedded_blocks[BPE_GET_ETYPE(bp)]++;
5747 zcb->zcb_embedded_histogram[BPE_GET_ETYPE(bp)]
5748 [BPE_GET_PSIZE(bp)]++;
5749 return;
5750 }
5751 /*
5752 * The binning histogram bins by powers of two up to
5753 * SPA_MAXBLOCKSIZE rather than creating bins for
5754 * every possible blocksize found in the pool.
5755 */
5756 int bin = highbit64(BP_GET_PSIZE(bp)) - 1;
5757
5758 zcb->zcb_psize_count[bin]++;
5759 zcb->zcb_psize_len[bin] += BP_GET_PSIZE(bp);
5760 zcb->zcb_psize_total += BP_GET_PSIZE(bp);
5761
5762 bin = highbit64(BP_GET_LSIZE(bp)) - 1;
5763
5764 zcb->zcb_lsize_count[bin]++;
5765 zcb->zcb_lsize_len[bin] += BP_GET_LSIZE(bp);
5766 zcb->zcb_lsize_total += BP_GET_LSIZE(bp);
5767
5768 bin = highbit64(BP_GET_ASIZE(bp)) - 1;
5769
5770 zcb->zcb_asize_count[bin]++;
5771 zcb->zcb_asize_len[bin] += BP_GET_ASIZE(bp);
5772 zcb->zcb_asize_total += BP_GET_ASIZE(bp);
5773
5774 if (zcb->zcb_brt_is_active && brt_maybe_exists(zcb->zcb_spa, bp)) {
5775 /*
5776 * Cloned blocks are special. We need to count them, so we can
5777 * later uncount them when reporting leaked space, and we must
5778 * only claim them them once.
5779 *
5780 * To do this, we keep our own in-memory BRT. For each block
5781 * we haven't seen before, we look it up in the real BRT and
5782 * if its there, we note it and its refcount then proceed as
5783 * normal. If we see the block again, we count it as a clone
5784 * and then give it no further consideration.
5785 */
5786 zdb_brt_entry_t zbre_search, *zbre;
5787 avl_index_t where;
5788
5789 zbre_search.zbre_dva = bp->blk_dva[0];
5790 zbre = avl_find(&zcb->zcb_brt, &zbre_search, &where);
5791 if (zbre != NULL) {
5792 zcb->zcb_clone_asize += BP_GET_ASIZE(bp);
5793 zcb->zcb_clone_blocks++;
5794
5795 zbre->zbre_refcount--;
5796 if (zbre->zbre_refcount == 0) {
5797 avl_remove(&zcb->zcb_brt, zbre);
5798 umem_free(zbre, sizeof (zdb_brt_entry_t));
5799 }
5800 return;
5801 }
5802
5803 uint64_t crefcnt = brt_entry_get_refcount(zcb->zcb_spa, bp);
5804 if (crefcnt > 0) {
5805 zbre = umem_zalloc(sizeof (zdb_brt_entry_t),
5806 UMEM_NOFAIL);
5807 zbre->zbre_dva = bp->blk_dva[0];
5808 zbre->zbre_refcount = crefcnt;
5809 avl_insert(&zcb->zcb_brt, zbre, where);
5810 }
5811 }
5812
5813 if (dump_opt['L'])
5814 return;
5815
5816 if (BP_GET_DEDUP(bp)) {
5817 ddt_t *ddt;
5818 ddt_entry_t *dde;
5819
5820 ddt = ddt_select(zcb->zcb_spa, bp);
5821 ddt_enter(ddt);
5822 dde = ddt_lookup(ddt, bp, B_FALSE);
5823
5824 if (dde == NULL) {
5825 refcnt = 0;
5826 } else {
5827 ddt_phys_t *ddp = ddt_phys_select(dde, bp);
5828 ddt_phys_decref(ddp);
5829 refcnt = ddp->ddp_refcnt;
5830 if (ddt_phys_total_refcnt(dde) == 0)
5831 ddt_remove(ddt, dde);
5832 }
5833 ddt_exit(ddt);
5834 }
5835
5836 VERIFY3U(zio_wait(zio_claim(NULL, zcb->zcb_spa,
5837 refcnt ? 0 : spa_min_claim_txg(zcb->zcb_spa),
5838 bp, NULL, NULL, ZIO_FLAG_CANFAIL)), ==, 0);
5839 }
5840
5841 static void
5842 zdb_blkptr_done(zio_t *zio)
5843 {
5844 spa_t *spa = zio->io_spa;
5845 blkptr_t *bp = zio->io_bp;
5846 int ioerr = zio->io_error;
5847 zdb_cb_t *zcb = zio->io_private;
5848 zbookmark_phys_t *zb = &zio->io_bookmark;
5849
5850 mutex_enter(&spa->spa_scrub_lock);
5851 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
5852 cv_broadcast(&spa->spa_scrub_io_cv);
5853
5854 if (ioerr && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
5855 char blkbuf[BP_SPRINTF_LEN];
5856
5857 zcb->zcb_haderrors = 1;
5858 zcb->zcb_errors[ioerr]++;
5859
5860 if (dump_opt['b'] >= 2)
5861 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
5862 else
5863 blkbuf[0] = '\0';
5864
5865 (void) printf("zdb_blkptr_cb: "
5866 "Got error %d reading "
5867 "<%llu, %llu, %lld, %llx> %s -- skipping\n",
5868 ioerr,
5869 (u_longlong_t)zb->zb_objset,
5870 (u_longlong_t)zb->zb_object,
5871 (u_longlong_t)zb->zb_level,
5872 (u_longlong_t)zb->zb_blkid,
5873 blkbuf);
5874 }
5875 mutex_exit(&spa->spa_scrub_lock);
5876
5877 abd_free(zio->io_abd);
5878 }
5879
5880 static int
5881 zdb_blkptr_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
5882 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
5883 {
5884 zdb_cb_t *zcb = arg;
5885 dmu_object_type_t type;
5886 boolean_t is_metadata;
5887
5888 if (zb->zb_level == ZB_DNODE_LEVEL)
5889 return (0);
5890
5891 if (dump_opt['b'] >= 5 && bp->blk_birth > 0) {
5892 char blkbuf[BP_SPRINTF_LEN];
5893 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
5894 (void) printf("objset %llu object %llu "
5895 "level %lld offset 0x%llx %s\n",
5896 (u_longlong_t)zb->zb_objset,
5897 (u_longlong_t)zb->zb_object,
5898 (longlong_t)zb->zb_level,
5899 (u_longlong_t)blkid2offset(dnp, bp, zb),
5900 blkbuf);
5901 }
5902
5903 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp))
5904 return (0);
5905
5906 type = BP_GET_TYPE(bp);
5907
5908 zdb_count_block(zcb, zilog, bp,
5909 (type & DMU_OT_NEWTYPE) ? ZDB_OT_OTHER : type);
5910
5911 is_metadata = (BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type));
5912
5913 if (!BP_IS_EMBEDDED(bp) &&
5914 (dump_opt['c'] > 1 || (dump_opt['c'] && is_metadata))) {
5915 size_t size = BP_GET_PSIZE(bp);
5916 abd_t *abd = abd_alloc(size, B_FALSE);
5917 int flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB | ZIO_FLAG_RAW;
5918
5919 /* If it's an intent log block, failure is expected. */
5920 if (zb->zb_level == ZB_ZIL_LEVEL)
5921 flags |= ZIO_FLAG_SPECULATIVE;
5922
5923 mutex_enter(&spa->spa_scrub_lock);
5924 while (spa->spa_load_verify_bytes > max_inflight_bytes)
5925 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
5926 spa->spa_load_verify_bytes += size;
5927 mutex_exit(&spa->spa_scrub_lock);
5928
5929 zio_nowait(zio_read(NULL, spa, bp, abd, size,
5930 zdb_blkptr_done, zcb, ZIO_PRIORITY_ASYNC_READ, flags, zb));
5931 }
5932
5933 zcb->zcb_readfails = 0;
5934
5935 /* only call gethrtime() every 100 blocks */
5936 static int iters;
5937 if (++iters > 100)
5938 iters = 0;
5939 else
5940 return (0);
5941
5942 if (dump_opt['b'] < 5 && gethrtime() > zcb->zcb_lastprint + NANOSEC) {
5943 uint64_t now = gethrtime();
5944 char buf[10];
5945 uint64_t bytes = zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL].zb_asize;
5946 uint64_t kb_per_sec =
5947 1 + bytes / (1 + ((now - zcb->zcb_start) / 1000 / 1000));
5948 uint64_t sec_remaining =
5949 (zcb->zcb_totalasize - bytes) / 1024 / kb_per_sec;
5950
5951 /* make sure nicenum has enough space */
5952 _Static_assert(sizeof (buf) >= NN_NUMBUF_SZ, "buf truncated");
5953
5954 zfs_nicebytes(bytes, buf, sizeof (buf));
5955 (void) fprintf(stderr,
5956 "\r%5s completed (%4"PRIu64"MB/s) "
5957 "estimated time remaining: "
5958 "%"PRIu64"hr %02"PRIu64"min %02"PRIu64"sec ",
5959 buf, kb_per_sec / 1024,
5960 sec_remaining / 60 / 60,
5961 sec_remaining / 60 % 60,
5962 sec_remaining % 60);
5963
5964 zcb->zcb_lastprint = now;
5965 }
5966
5967 return (0);
5968 }
5969
5970 static void
5971 zdb_leak(void *arg, uint64_t start, uint64_t size)
5972 {
5973 vdev_t *vd = arg;
5974
5975 (void) printf("leaked space: vdev %llu, offset 0x%llx, size %llu\n",
5976 (u_longlong_t)vd->vdev_id, (u_longlong_t)start, (u_longlong_t)size);
5977 }
5978
5979 static metaslab_ops_t zdb_metaslab_ops = {
5980 NULL /* alloc */
5981 };
5982
5983 static int
5984 load_unflushed_svr_segs_cb(spa_t *spa, space_map_entry_t *sme,
5985 uint64_t txg, void *arg)
5986 {
5987 spa_vdev_removal_t *svr = arg;
5988
5989 uint64_t offset = sme->sme_offset;
5990 uint64_t size = sme->sme_run;
5991
5992 /* skip vdevs we don't care about */
5993 if (sme->sme_vdev != svr->svr_vdev_id)
5994 return (0);
5995
5996 vdev_t *vd = vdev_lookup_top(spa, sme->sme_vdev);
5997 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5998 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
5999
6000 if (txg < metaslab_unflushed_txg(ms))
6001 return (0);
6002
6003 if (sme->sme_type == SM_ALLOC)
6004 range_tree_add(svr->svr_allocd_segs, offset, size);
6005 else
6006 range_tree_remove(svr->svr_allocd_segs, offset, size);
6007
6008 return (0);
6009 }
6010
6011 static void
6012 claim_segment_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
6013 uint64_t size, void *arg)
6014 {
6015 (void) inner_offset, (void) arg;
6016
6017 /*
6018 * This callback was called through a remap from
6019 * a device being removed. Therefore, the vdev that
6020 * this callback is applied to is a concrete
6021 * vdev.
6022 */
6023 ASSERT(vdev_is_concrete(vd));
6024
6025 VERIFY0(metaslab_claim_impl(vd, offset, size,
6026 spa_min_claim_txg(vd->vdev_spa)));
6027 }
6028
6029 static void
6030 claim_segment_cb(void *arg, uint64_t offset, uint64_t size)
6031 {
6032 vdev_t *vd = arg;
6033
6034 vdev_indirect_ops.vdev_op_remap(vd, offset, size,
6035 claim_segment_impl_cb, NULL);
6036 }
6037
6038 /*
6039 * After accounting for all allocated blocks that are directly referenced,
6040 * we might have missed a reference to a block from a partially complete
6041 * (and thus unused) indirect mapping object. We perform a secondary pass
6042 * through the metaslabs we have already mapped and claim the destination
6043 * blocks.
6044 */
6045 static void
6046 zdb_claim_removing(spa_t *spa, zdb_cb_t *zcb)
6047 {
6048 if (dump_opt['L'])
6049 return;
6050
6051 if (spa->spa_vdev_removal == NULL)
6052 return;
6053
6054 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6055
6056 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
6057 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
6058 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6059
6060 ASSERT0(range_tree_space(svr->svr_allocd_segs));
6061
6062 range_tree_t *allocs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
6063 for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
6064 metaslab_t *msp = vd->vdev_ms[msi];
6065
6066 ASSERT0(range_tree_space(allocs));
6067 if (msp->ms_sm != NULL)
6068 VERIFY0(space_map_load(msp->ms_sm, allocs, SM_ALLOC));
6069 range_tree_vacate(allocs, range_tree_add, svr->svr_allocd_segs);
6070 }
6071 range_tree_destroy(allocs);
6072
6073 iterate_through_spacemap_logs(spa, load_unflushed_svr_segs_cb, svr);
6074
6075 /*
6076 * Clear everything past what has been synced,
6077 * because we have not allocated mappings for
6078 * it yet.
6079 */
6080 range_tree_clear(svr->svr_allocd_segs,
6081 vdev_indirect_mapping_max_offset(vim),
6082 vd->vdev_asize - vdev_indirect_mapping_max_offset(vim));
6083
6084 zcb->zcb_removing_size += range_tree_space(svr->svr_allocd_segs);
6085 range_tree_vacate(svr->svr_allocd_segs, claim_segment_cb, vd);
6086
6087 spa_config_exit(spa, SCL_CONFIG, FTAG);
6088 }
6089
6090 static int
6091 increment_indirect_mapping_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
6092 dmu_tx_t *tx)
6093 {
6094 (void) tx;
6095 zdb_cb_t *zcb = arg;
6096 spa_t *spa = zcb->zcb_spa;
6097 vdev_t *vd;
6098 const dva_t *dva = &bp->blk_dva[0];
6099
6100 ASSERT(!bp_freed);
6101 ASSERT(!dump_opt['L']);
6102 ASSERT3U(BP_GET_NDVAS(bp), ==, 1);
6103
6104 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
6105 vd = vdev_lookup_top(zcb->zcb_spa, DVA_GET_VDEV(dva));
6106 ASSERT3P(vd, !=, NULL);
6107 spa_config_exit(spa, SCL_VDEV, FTAG);
6108
6109 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
6110 ASSERT3P(zcb->zcb_vd_obsolete_counts[vd->vdev_id], !=, NULL);
6111
6112 vdev_indirect_mapping_increment_obsolete_count(
6113 vd->vdev_indirect_mapping,
6114 DVA_GET_OFFSET(dva), DVA_GET_ASIZE(dva),
6115 zcb->zcb_vd_obsolete_counts[vd->vdev_id]);
6116
6117 return (0);
6118 }
6119
6120 static uint32_t *
6121 zdb_load_obsolete_counts(vdev_t *vd)
6122 {
6123 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6124 spa_t *spa = vd->vdev_spa;
6125 spa_condensing_indirect_phys_t *scip =
6126 &spa->spa_condensing_indirect_phys;
6127 uint64_t obsolete_sm_object;
6128 uint32_t *counts;
6129
6130 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
6131 EQUIV(obsolete_sm_object != 0, vd->vdev_obsolete_sm != NULL);
6132 counts = vdev_indirect_mapping_load_obsolete_counts(vim);
6133 if (vd->vdev_obsolete_sm != NULL) {
6134 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts,
6135 vd->vdev_obsolete_sm);
6136 }
6137 if (scip->scip_vdev == vd->vdev_id &&
6138 scip->scip_prev_obsolete_sm_object != 0) {
6139 space_map_t *prev_obsolete_sm = NULL;
6140 VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset,
6141 scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0));
6142 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts,
6143 prev_obsolete_sm);
6144 space_map_close(prev_obsolete_sm);
6145 }
6146 return (counts);
6147 }
6148
6149 static void
6150 zdb_ddt_leak_init(spa_t *spa, zdb_cb_t *zcb)
6151 {
6152 ddt_bookmark_t ddb = {0};
6153 ddt_entry_t dde;
6154 int error;
6155 int p;
6156
6157 ASSERT(!dump_opt['L']);
6158
6159 while ((error = ddt_walk(spa, &ddb, &dde)) == 0) {
6160 blkptr_t blk;
6161 ddt_phys_t *ddp = dde.dde_phys;
6162
6163 if (ddb.ddb_class == DDT_CLASS_UNIQUE)
6164 return;
6165
6166 ASSERT(ddt_phys_total_refcnt(&dde) > 1);
6167
6168 for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
6169 if (ddp->ddp_phys_birth == 0)
6170 continue;
6171 ddt_bp_create(ddb.ddb_checksum,
6172 &dde.dde_key, ddp, &blk);
6173 if (p == DDT_PHYS_DITTO) {
6174 zdb_count_block(zcb, NULL, &blk, ZDB_OT_DITTO);
6175 } else {
6176 zcb->zcb_dedup_asize +=
6177 BP_GET_ASIZE(&blk) * (ddp->ddp_refcnt - 1);
6178 zcb->zcb_dedup_blocks++;
6179 }
6180 }
6181 ddt_t *ddt = spa->spa_ddt[ddb.ddb_checksum];
6182 ddt_enter(ddt);
6183 VERIFY(ddt_lookup(ddt, &blk, B_TRUE) != NULL);
6184 ddt_exit(ddt);
6185 }
6186
6187 ASSERT(error == ENOENT);
6188 }
6189
6190 typedef struct checkpoint_sm_exclude_entry_arg {
6191 vdev_t *cseea_vd;
6192 uint64_t cseea_checkpoint_size;
6193 } checkpoint_sm_exclude_entry_arg_t;
6194
6195 static int
6196 checkpoint_sm_exclude_entry_cb(space_map_entry_t *sme, void *arg)
6197 {
6198 checkpoint_sm_exclude_entry_arg_t *cseea = arg;
6199 vdev_t *vd = cseea->cseea_vd;
6200 metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift];
6201 uint64_t end = sme->sme_offset + sme->sme_run;
6202
6203 ASSERT(sme->sme_type == SM_FREE);
6204
6205 /*
6206 * Since the vdev_checkpoint_sm exists in the vdev level
6207 * and the ms_sm space maps exist in the metaslab level,
6208 * an entry in the checkpoint space map could theoretically
6209 * cross the boundaries of the metaslab that it belongs.
6210 *
6211 * In reality, because of the way that we populate and
6212 * manipulate the checkpoint's space maps currently,
6213 * there shouldn't be any entries that cross metaslabs.
6214 * Hence the assertion below.
6215 *
6216 * That said, there is no fundamental requirement that
6217 * the checkpoint's space map entries should not cross
6218 * metaslab boundaries. So if needed we could add code
6219 * that handles metaslab-crossing segments in the future.
6220 */
6221 VERIFY3U(sme->sme_offset, >=, ms->ms_start);
6222 VERIFY3U(end, <=, ms->ms_start + ms->ms_size);
6223
6224 /*
6225 * By removing the entry from the allocated segments we
6226 * also verify that the entry is there to begin with.
6227 */
6228 mutex_enter(&ms->ms_lock);
6229 range_tree_remove(ms->ms_allocatable, sme->sme_offset, sme->sme_run);
6230 mutex_exit(&ms->ms_lock);
6231
6232 cseea->cseea_checkpoint_size += sme->sme_run;
6233 return (0);
6234 }
6235
6236 static void
6237 zdb_leak_init_vdev_exclude_checkpoint(vdev_t *vd, zdb_cb_t *zcb)
6238 {
6239 spa_t *spa = vd->vdev_spa;
6240 space_map_t *checkpoint_sm = NULL;
6241 uint64_t checkpoint_sm_obj;
6242
6243 /*
6244 * If there is no vdev_top_zap, we are in a pool whose
6245 * version predates the pool checkpoint feature.
6246 */
6247 if (vd->vdev_top_zap == 0)
6248 return;
6249
6250 /*
6251 * If there is no reference of the vdev_checkpoint_sm in
6252 * the vdev_top_zap, then one of the following scenarios
6253 * is true:
6254 *
6255 * 1] There is no checkpoint
6256 * 2] There is a checkpoint, but no checkpointed blocks
6257 * have been freed yet
6258 * 3] The current vdev is indirect
6259 *
6260 * In these cases we return immediately.
6261 */
6262 if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap,
6263 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0)
6264 return;
6265
6266 VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap,
6267 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1,
6268 &checkpoint_sm_obj));
6269
6270 checkpoint_sm_exclude_entry_arg_t cseea;
6271 cseea.cseea_vd = vd;
6272 cseea.cseea_checkpoint_size = 0;
6273
6274 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa),
6275 checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift));
6276
6277 VERIFY0(space_map_iterate(checkpoint_sm,
6278 space_map_length(checkpoint_sm),
6279 checkpoint_sm_exclude_entry_cb, &cseea));
6280 space_map_close(checkpoint_sm);
6281
6282 zcb->zcb_checkpoint_size += cseea.cseea_checkpoint_size;
6283 }
6284
6285 static void
6286 zdb_leak_init_exclude_checkpoint(spa_t *spa, zdb_cb_t *zcb)
6287 {
6288 ASSERT(!dump_opt['L']);
6289
6290 vdev_t *rvd = spa->spa_root_vdev;
6291 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
6292 ASSERT3U(c, ==, rvd->vdev_child[c]->vdev_id);
6293 zdb_leak_init_vdev_exclude_checkpoint(rvd->vdev_child[c], zcb);
6294 }
6295 }
6296
6297 static int
6298 count_unflushed_space_cb(spa_t *spa, space_map_entry_t *sme,
6299 uint64_t txg, void *arg)
6300 {
6301 int64_t *ualloc_space = arg;
6302
6303 uint64_t offset = sme->sme_offset;
6304 uint64_t vdev_id = sme->sme_vdev;
6305
6306 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
6307 if (!vdev_is_concrete(vd))
6308 return (0);
6309
6310 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6311 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
6312
6313 if (txg < metaslab_unflushed_txg(ms))
6314 return (0);
6315
6316 if (sme->sme_type == SM_ALLOC)
6317 *ualloc_space += sme->sme_run;
6318 else
6319 *ualloc_space -= sme->sme_run;
6320
6321 return (0);
6322 }
6323
6324 static int64_t
6325 get_unflushed_alloc_space(spa_t *spa)
6326 {
6327 if (dump_opt['L'])
6328 return (0);
6329
6330 int64_t ualloc_space = 0;
6331 iterate_through_spacemap_logs(spa, count_unflushed_space_cb,
6332 &ualloc_space);
6333 return (ualloc_space);
6334 }
6335
6336 static int
6337 load_unflushed_cb(spa_t *spa, space_map_entry_t *sme, uint64_t txg, void *arg)
6338 {
6339 maptype_t *uic_maptype = arg;
6340
6341 uint64_t offset = sme->sme_offset;
6342 uint64_t size = sme->sme_run;
6343 uint64_t vdev_id = sme->sme_vdev;
6344
6345 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
6346
6347 /* skip indirect vdevs */
6348 if (!vdev_is_concrete(vd))
6349 return (0);
6350
6351 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6352
6353 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
6354 ASSERT(*uic_maptype == SM_ALLOC || *uic_maptype == SM_FREE);
6355
6356 if (txg < metaslab_unflushed_txg(ms))
6357 return (0);
6358
6359 if (*uic_maptype == sme->sme_type)
6360 range_tree_add(ms->ms_allocatable, offset, size);
6361 else
6362 range_tree_remove(ms->ms_allocatable, offset, size);
6363
6364 return (0);
6365 }
6366
6367 static void
6368 load_unflushed_to_ms_allocatables(spa_t *spa, maptype_t maptype)
6369 {
6370 iterate_through_spacemap_logs(spa, load_unflushed_cb, &maptype);
6371 }
6372
6373 static void
6374 load_concrete_ms_allocatable_trees(spa_t *spa, maptype_t maptype)
6375 {
6376 vdev_t *rvd = spa->spa_root_vdev;
6377 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
6378 vdev_t *vd = rvd->vdev_child[i];
6379
6380 ASSERT3U(i, ==, vd->vdev_id);
6381
6382 if (vd->vdev_ops == &vdev_indirect_ops)
6383 continue;
6384
6385 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
6386 metaslab_t *msp = vd->vdev_ms[m];
6387
6388 (void) fprintf(stderr,
6389 "\rloading concrete vdev %llu, "
6390 "metaslab %llu of %llu ...",
6391 (longlong_t)vd->vdev_id,
6392 (longlong_t)msp->ms_id,
6393 (longlong_t)vd->vdev_ms_count);
6394
6395 mutex_enter(&msp->ms_lock);
6396 range_tree_vacate(msp->ms_allocatable, NULL, NULL);
6397
6398 /*
6399 * We don't want to spend the CPU manipulating the
6400 * size-ordered tree, so clear the range_tree ops.
6401 */
6402 msp->ms_allocatable->rt_ops = NULL;
6403
6404 if (msp->ms_sm != NULL) {
6405 VERIFY0(space_map_load(msp->ms_sm,
6406 msp->ms_allocatable, maptype));
6407 }
6408 if (!msp->ms_loaded)
6409 msp->ms_loaded = B_TRUE;
6410 mutex_exit(&msp->ms_lock);
6411 }
6412 }
6413
6414 load_unflushed_to_ms_allocatables(spa, maptype);
6415 }
6416
6417 /*
6418 * vm_idxp is an in-out parameter which (for indirect vdevs) is the
6419 * index in vim_entries that has the first entry in this metaslab.
6420 * On return, it will be set to the first entry after this metaslab.
6421 */
6422 static void
6423 load_indirect_ms_allocatable_tree(vdev_t *vd, metaslab_t *msp,
6424 uint64_t *vim_idxp)
6425 {
6426 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6427
6428 mutex_enter(&msp->ms_lock);
6429 range_tree_vacate(msp->ms_allocatable, NULL, NULL);
6430
6431 /*
6432 * We don't want to spend the CPU manipulating the
6433 * size-ordered tree, so clear the range_tree ops.
6434 */
6435 msp->ms_allocatable->rt_ops = NULL;
6436
6437 for (; *vim_idxp < vdev_indirect_mapping_num_entries(vim);
6438 (*vim_idxp)++) {
6439 vdev_indirect_mapping_entry_phys_t *vimep =
6440 &vim->vim_entries[*vim_idxp];
6441 uint64_t ent_offset = DVA_MAPPING_GET_SRC_OFFSET(vimep);
6442 uint64_t ent_len = DVA_GET_ASIZE(&vimep->vimep_dst);
6443 ASSERT3U(ent_offset, >=, msp->ms_start);
6444 if (ent_offset >= msp->ms_start + msp->ms_size)
6445 break;
6446
6447 /*
6448 * Mappings do not cross metaslab boundaries,
6449 * because we create them by walking the metaslabs.
6450 */
6451 ASSERT3U(ent_offset + ent_len, <=,
6452 msp->ms_start + msp->ms_size);
6453 range_tree_add(msp->ms_allocatable, ent_offset, ent_len);
6454 }
6455
6456 if (!msp->ms_loaded)
6457 msp->ms_loaded = B_TRUE;
6458 mutex_exit(&msp->ms_lock);
6459 }
6460
6461 static void
6462 zdb_leak_init_prepare_indirect_vdevs(spa_t *spa, zdb_cb_t *zcb)
6463 {
6464 ASSERT(!dump_opt['L']);
6465
6466 vdev_t *rvd = spa->spa_root_vdev;
6467 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
6468 vdev_t *vd = rvd->vdev_child[c];
6469
6470 ASSERT3U(c, ==, vd->vdev_id);
6471
6472 if (vd->vdev_ops != &vdev_indirect_ops)
6473 continue;
6474
6475 /*
6476 * Note: we don't check for mapping leaks on
6477 * removing vdevs because their ms_allocatable's
6478 * are used to look for leaks in allocated space.
6479 */
6480 zcb->zcb_vd_obsolete_counts[c] = zdb_load_obsolete_counts(vd);
6481
6482 /*
6483 * Normally, indirect vdevs don't have any
6484 * metaslabs. We want to set them up for
6485 * zio_claim().
6486 */
6487 vdev_metaslab_group_create(vd);
6488 VERIFY0(vdev_metaslab_init(vd, 0));
6489
6490 vdev_indirect_mapping_t *vim __maybe_unused =
6491 vd->vdev_indirect_mapping;
6492 uint64_t vim_idx = 0;
6493 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
6494
6495 (void) fprintf(stderr,
6496 "\rloading indirect vdev %llu, "
6497 "metaslab %llu of %llu ...",
6498 (longlong_t)vd->vdev_id,
6499 (longlong_t)vd->vdev_ms[m]->ms_id,
6500 (longlong_t)vd->vdev_ms_count);
6501
6502 load_indirect_ms_allocatable_tree(vd, vd->vdev_ms[m],
6503 &vim_idx);
6504 }
6505 ASSERT3U(vim_idx, ==, vdev_indirect_mapping_num_entries(vim));
6506 }
6507 }
6508
6509 static void
6510 zdb_leak_init(spa_t *spa, zdb_cb_t *zcb)
6511 {
6512 zcb->zcb_spa = spa;
6513
6514 if (dump_opt['L'])
6515 return;
6516
6517 dsl_pool_t *dp = spa->spa_dsl_pool;
6518 vdev_t *rvd = spa->spa_root_vdev;
6519
6520 /*
6521 * We are going to be changing the meaning of the metaslab's
6522 * ms_allocatable. Ensure that the allocator doesn't try to
6523 * use the tree.
6524 */
6525 spa->spa_normal_class->mc_ops = &zdb_metaslab_ops;
6526 spa->spa_log_class->mc_ops = &zdb_metaslab_ops;
6527 spa->spa_embedded_log_class->mc_ops = &zdb_metaslab_ops;
6528
6529 zcb->zcb_vd_obsolete_counts =
6530 umem_zalloc(rvd->vdev_children * sizeof (uint32_t *),
6531 UMEM_NOFAIL);
6532
6533 /*
6534 * For leak detection, we overload the ms_allocatable trees
6535 * to contain allocated segments instead of free segments.
6536 * As a result, we can't use the normal metaslab_load/unload
6537 * interfaces.
6538 */
6539 zdb_leak_init_prepare_indirect_vdevs(spa, zcb);
6540 load_concrete_ms_allocatable_trees(spa, SM_ALLOC);
6541
6542 /*
6543 * On load_concrete_ms_allocatable_trees() we loaded all the
6544 * allocated entries from the ms_sm to the ms_allocatable for
6545 * each metaslab. If the pool has a checkpoint or is in the
6546 * middle of discarding a checkpoint, some of these blocks
6547 * may have been freed but their ms_sm may not have been
6548 * updated because they are referenced by the checkpoint. In
6549 * order to avoid false-positives during leak-detection, we
6550 * go through the vdev's checkpoint space map and exclude all
6551 * its entries from their relevant ms_allocatable.
6552 *
6553 * We also aggregate the space held by the checkpoint and add
6554 * it to zcb_checkpoint_size.
6555 *
6556 * Note that at this point we are also verifying that all the
6557 * entries on the checkpoint_sm are marked as allocated in
6558 * the ms_sm of their relevant metaslab.
6559 * [see comment in checkpoint_sm_exclude_entry_cb()]
6560 */
6561 zdb_leak_init_exclude_checkpoint(spa, zcb);
6562 ASSERT3U(zcb->zcb_checkpoint_size, ==, spa_get_checkpoint_space(spa));
6563
6564 /* for cleaner progress output */
6565 (void) fprintf(stderr, "\n");
6566
6567 if (bpobj_is_open(&dp->dp_obsolete_bpobj)) {
6568 ASSERT(spa_feature_is_enabled(spa,
6569 SPA_FEATURE_DEVICE_REMOVAL));
6570 (void) bpobj_iterate_nofree(&dp->dp_obsolete_bpobj,
6571 increment_indirect_mapping_cb, zcb, NULL);
6572 }
6573
6574 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6575 zdb_ddt_leak_init(spa, zcb);
6576 spa_config_exit(spa, SCL_CONFIG, FTAG);
6577 }
6578
6579 static boolean_t
6580 zdb_check_for_obsolete_leaks(vdev_t *vd, zdb_cb_t *zcb)
6581 {
6582 boolean_t leaks = B_FALSE;
6583 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6584 uint64_t total_leaked = 0;
6585 boolean_t are_precise = B_FALSE;
6586
6587 ASSERT(vim != NULL);
6588
6589 for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) {
6590 vdev_indirect_mapping_entry_phys_t *vimep =
6591 &vim->vim_entries[i];
6592 uint64_t obsolete_bytes = 0;
6593 uint64_t offset = DVA_MAPPING_GET_SRC_OFFSET(vimep);
6594 metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6595
6596 /*
6597 * This is not very efficient but it's easy to
6598 * verify correctness.
6599 */
6600 for (uint64_t inner_offset = 0;
6601 inner_offset < DVA_GET_ASIZE(&vimep->vimep_dst);
6602 inner_offset += 1ULL << vd->vdev_ashift) {
6603 if (range_tree_contains(msp->ms_allocatable,
6604 offset + inner_offset, 1ULL << vd->vdev_ashift)) {
6605 obsolete_bytes += 1ULL << vd->vdev_ashift;
6606 }
6607 }
6608
6609 int64_t bytes_leaked = obsolete_bytes -
6610 zcb->zcb_vd_obsolete_counts[vd->vdev_id][i];
6611 ASSERT3U(DVA_GET_ASIZE(&vimep->vimep_dst), >=,
6612 zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]);
6613
6614 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
6615 if (bytes_leaked != 0 && (are_precise || dump_opt['d'] >= 5)) {
6616 (void) printf("obsolete indirect mapping count "
6617 "mismatch on %llu:%llx:%llx : %llx bytes leaked\n",
6618 (u_longlong_t)vd->vdev_id,
6619 (u_longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep),
6620 (u_longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst),
6621 (u_longlong_t)bytes_leaked);
6622 }
6623 total_leaked += ABS(bytes_leaked);
6624 }
6625
6626 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
6627 if (!are_precise && total_leaked > 0) {
6628 int pct_leaked = total_leaked * 100 /
6629 vdev_indirect_mapping_bytes_mapped(vim);
6630 (void) printf("cannot verify obsolete indirect mapping "
6631 "counts of vdev %llu because precise feature was not "
6632 "enabled when it was removed: %d%% (%llx bytes) of mapping"
6633 "unreferenced\n",
6634 (u_longlong_t)vd->vdev_id, pct_leaked,
6635 (u_longlong_t)total_leaked);
6636 } else if (total_leaked > 0) {
6637 (void) printf("obsolete indirect mapping count mismatch "
6638 "for vdev %llu -- %llx total bytes mismatched\n",
6639 (u_longlong_t)vd->vdev_id,
6640 (u_longlong_t)total_leaked);
6641 leaks |= B_TRUE;
6642 }
6643
6644 vdev_indirect_mapping_free_obsolete_counts(vim,
6645 zcb->zcb_vd_obsolete_counts[vd->vdev_id]);
6646 zcb->zcb_vd_obsolete_counts[vd->vdev_id] = NULL;
6647
6648 return (leaks);
6649 }
6650
6651 static boolean_t
6652 zdb_leak_fini(spa_t *spa, zdb_cb_t *zcb)
6653 {
6654 if (dump_opt['L'])
6655 return (B_FALSE);
6656
6657 boolean_t leaks = B_FALSE;
6658 vdev_t *rvd = spa->spa_root_vdev;
6659 for (unsigned c = 0; c < rvd->vdev_children; c++) {
6660 vdev_t *vd = rvd->vdev_child[c];
6661
6662 if (zcb->zcb_vd_obsolete_counts[c] != NULL) {
6663 leaks |= zdb_check_for_obsolete_leaks(vd, zcb);
6664 }
6665
6666 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
6667 metaslab_t *msp = vd->vdev_ms[m];
6668 ASSERT3P(msp->ms_group, ==, (msp->ms_group->mg_class ==
6669 spa_embedded_log_class(spa)) ?
6670 vd->vdev_log_mg : vd->vdev_mg);
6671
6672 /*
6673 * ms_allocatable has been overloaded
6674 * to contain allocated segments. Now that
6675 * we finished traversing all blocks, any
6676 * block that remains in the ms_allocatable
6677 * represents an allocated block that we
6678 * did not claim during the traversal.
6679 * Claimed blocks would have been removed
6680 * from the ms_allocatable. For indirect
6681 * vdevs, space remaining in the tree
6682 * represents parts of the mapping that are
6683 * not referenced, which is not a bug.
6684 */
6685 if (vd->vdev_ops == &vdev_indirect_ops) {
6686 range_tree_vacate(msp->ms_allocatable,
6687 NULL, NULL);
6688 } else {
6689 range_tree_vacate(msp->ms_allocatable,
6690 zdb_leak, vd);
6691 }
6692 if (msp->ms_loaded) {
6693 msp->ms_loaded = B_FALSE;
6694 }
6695 }
6696 }
6697
6698 umem_free(zcb->zcb_vd_obsolete_counts,
6699 rvd->vdev_children * sizeof (uint32_t *));
6700 zcb->zcb_vd_obsolete_counts = NULL;
6701
6702 return (leaks);
6703 }
6704
6705 static int
6706 count_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6707 {
6708 (void) tx;
6709 zdb_cb_t *zcb = arg;
6710
6711 if (dump_opt['b'] >= 5) {
6712 char blkbuf[BP_SPRINTF_LEN];
6713 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
6714 (void) printf("[%s] %s\n",
6715 "deferred free", blkbuf);
6716 }
6717 zdb_count_block(zcb, NULL, bp, ZDB_OT_DEFERRED);
6718 return (0);
6719 }
6720
6721 /*
6722 * Iterate over livelists which have been destroyed by the user but
6723 * are still present in the MOS, waiting to be freed
6724 */
6725 static void
6726 iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg)
6727 {
6728 objset_t *mos = spa->spa_meta_objset;
6729 uint64_t zap_obj;
6730 int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT,
6731 DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj);
6732 if (err == ENOENT)
6733 return;
6734 ASSERT0(err);
6735
6736 zap_cursor_t zc;
6737 zap_attribute_t attr;
6738 dsl_deadlist_t ll;
6739 /* NULL out os prior to dsl_deadlist_open in case it's garbage */
6740 ll.dl_os = NULL;
6741 for (zap_cursor_init(&zc, mos, zap_obj);
6742 zap_cursor_retrieve(&zc, &attr) == 0;
6743 (void) zap_cursor_advance(&zc)) {
6744 dsl_deadlist_open(&ll, mos, attr.za_first_integer);
6745 func(&ll, arg);
6746 dsl_deadlist_close(&ll);
6747 }
6748 zap_cursor_fini(&zc);
6749 }
6750
6751 static int
6752 bpobj_count_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
6753 dmu_tx_t *tx)
6754 {
6755 ASSERT(!bp_freed);
6756 return (count_block_cb(arg, bp, tx));
6757 }
6758
6759 static int
6760 livelist_entry_count_blocks_cb(void *args, dsl_deadlist_entry_t *dle)
6761 {
6762 zdb_cb_t *zbc = args;
6763 bplist_t blks;
6764 bplist_create(&blks);
6765 /* determine which blocks have been alloc'd but not freed */
6766 VERIFY0(dsl_process_sub_livelist(&dle->dle_bpobj, &blks, NULL, NULL));
6767 /* count those blocks */
6768 (void) bplist_iterate(&blks, count_block_cb, zbc, NULL);
6769 bplist_destroy(&blks);
6770 return (0);
6771 }
6772
6773 static void
6774 livelist_count_blocks(dsl_deadlist_t *ll, void *arg)
6775 {
6776 dsl_deadlist_iterate(ll, livelist_entry_count_blocks_cb, arg);
6777 }
6778
6779 /*
6780 * Count the blocks in the livelists that have been destroyed by the user
6781 * but haven't yet been freed.
6782 */
6783 static void
6784 deleted_livelists_count_blocks(spa_t *spa, zdb_cb_t *zbc)
6785 {
6786 iterate_deleted_livelists(spa, livelist_count_blocks, zbc);
6787 }
6788
6789 static void
6790 dump_livelist_cb(dsl_deadlist_t *ll, void *arg)
6791 {
6792 ASSERT3P(arg, ==, NULL);
6793 global_feature_count[SPA_FEATURE_LIVELIST]++;
6794 dump_blkptr_list(ll, "Deleted Livelist");
6795 dsl_deadlist_iterate(ll, sublivelist_verify_lightweight, NULL);
6796 }
6797
6798 /*
6799 * Print out, register object references to, and increment feature counts for
6800 * livelists that have been destroyed by the user but haven't yet been freed.
6801 */
6802 static void
6803 deleted_livelists_dump_mos(spa_t *spa)
6804 {
6805 uint64_t zap_obj;
6806 objset_t *mos = spa->spa_meta_objset;
6807 int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT,
6808 DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj);
6809 if (err == ENOENT)
6810 return;
6811 mos_obj_refd(zap_obj);
6812 iterate_deleted_livelists(spa, dump_livelist_cb, NULL);
6813 }
6814
6815 static int
6816 zdb_brt_entry_compare(const void *zcn1, const void *zcn2)
6817 {
6818 const dva_t *dva1 = &((const zdb_brt_entry_t *)zcn1)->zbre_dva;
6819 const dva_t *dva2 = &((const zdb_brt_entry_t *)zcn2)->zbre_dva;
6820 int cmp;
6821
6822 cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
6823 if (cmp == 0)
6824 cmp = TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2));
6825
6826 return (cmp);
6827 }
6828
6829 static int
6830 dump_block_stats(spa_t *spa)
6831 {
6832 zdb_cb_t *zcb;
6833 zdb_blkstats_t *zb, *tzb;
6834 uint64_t norm_alloc, norm_space, total_alloc, total_found;
6835 int flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
6836 TRAVERSE_NO_DECRYPT | TRAVERSE_HARD;
6837 boolean_t leaks = B_FALSE;
6838 int e, c, err;
6839 bp_embedded_type_t i;
6840
6841 zcb = umem_zalloc(sizeof (zdb_cb_t), UMEM_NOFAIL);
6842
6843 if (spa_feature_is_active(spa, SPA_FEATURE_BLOCK_CLONING)) {
6844 avl_create(&zcb->zcb_brt, zdb_brt_entry_compare,
6845 sizeof (zdb_brt_entry_t),
6846 offsetof(zdb_brt_entry_t, zbre_node));
6847 zcb->zcb_brt_is_active = B_TRUE;
6848 }
6849
6850 (void) printf("\nTraversing all blocks %s%s%s%s%s...\n\n",
6851 (dump_opt['c'] || !dump_opt['L']) ? "to verify " : "",
6852 (dump_opt['c'] == 1) ? "metadata " : "",
6853 dump_opt['c'] ? "checksums " : "",
6854 (dump_opt['c'] && !dump_opt['L']) ? "and verify " : "",
6855 !dump_opt['L'] ? "nothing leaked " : "");
6856
6857 /*
6858 * When leak detection is enabled we load all space maps as SM_ALLOC
6859 * maps, then traverse the pool claiming each block we discover. If
6860 * the pool is perfectly consistent, the segment trees will be empty
6861 * when we're done. Anything left over is a leak; any block we can't
6862 * claim (because it's not part of any space map) is a double
6863 * allocation, reference to a freed block, or an unclaimed log block.
6864 *
6865 * When leak detection is disabled (-L option) we still traverse the
6866 * pool claiming each block we discover, but we skip opening any space
6867 * maps.
6868 */
6869 zdb_leak_init(spa, zcb);
6870
6871 /*
6872 * If there's a deferred-free bplist, process that first.
6873 */
6874 (void) bpobj_iterate_nofree(&spa->spa_deferred_bpobj,
6875 bpobj_count_block_cb, zcb, NULL);
6876
6877 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
6878 (void) bpobj_iterate_nofree(&spa->spa_dsl_pool->dp_free_bpobj,
6879 bpobj_count_block_cb, zcb, NULL);
6880 }
6881
6882 zdb_claim_removing(spa, zcb);
6883
6884 if (spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
6885 VERIFY3U(0, ==, bptree_iterate(spa->spa_meta_objset,
6886 spa->spa_dsl_pool->dp_bptree_obj, B_FALSE, count_block_cb,
6887 zcb, NULL));
6888 }
6889
6890 deleted_livelists_count_blocks(spa, zcb);
6891
6892 if (dump_opt['c'] > 1)
6893 flags |= TRAVERSE_PREFETCH_DATA;
6894
6895 zcb->zcb_totalasize = metaslab_class_get_alloc(spa_normal_class(spa));
6896 zcb->zcb_totalasize += metaslab_class_get_alloc(spa_special_class(spa));
6897 zcb->zcb_totalasize += metaslab_class_get_alloc(spa_dedup_class(spa));
6898 zcb->zcb_totalasize +=
6899 metaslab_class_get_alloc(spa_embedded_log_class(spa));
6900 zcb->zcb_start = zcb->zcb_lastprint = gethrtime();
6901 err = traverse_pool(spa, 0, flags, zdb_blkptr_cb, zcb);
6902
6903 /*
6904 * If we've traversed the data blocks then we need to wait for those
6905 * I/Os to complete. We leverage "The Godfather" zio to wait on
6906 * all async I/Os to complete.
6907 */
6908 if (dump_opt['c']) {
6909 for (c = 0; c < max_ncpus; c++) {
6910 (void) zio_wait(spa->spa_async_zio_root[c]);
6911 spa->spa_async_zio_root[c] = zio_root(spa, NULL, NULL,
6912 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
6913 ZIO_FLAG_GODFATHER);
6914 }
6915 }
6916 ASSERT0(spa->spa_load_verify_bytes);
6917
6918 /*
6919 * Done after zio_wait() since zcb_haderrors is modified in
6920 * zdb_blkptr_done()
6921 */
6922 zcb->zcb_haderrors |= err;
6923
6924 if (zcb->zcb_haderrors) {
6925 (void) printf("\nError counts:\n\n");
6926 (void) printf("\t%5s %s\n", "errno", "count");
6927 for (e = 0; e < 256; e++) {
6928 if (zcb->zcb_errors[e] != 0) {
6929 (void) printf("\t%5d %llu\n",
6930 e, (u_longlong_t)zcb->zcb_errors[e]);
6931 }
6932 }
6933 }
6934
6935 /*
6936 * Report any leaked segments.
6937 */
6938 leaks |= zdb_leak_fini(spa, zcb);
6939
6940 tzb = &zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL];
6941
6942 norm_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
6943 norm_space = metaslab_class_get_space(spa_normal_class(spa));
6944
6945 total_alloc = norm_alloc +
6946 metaslab_class_get_alloc(spa_log_class(spa)) +
6947 metaslab_class_get_alloc(spa_embedded_log_class(spa)) +
6948 metaslab_class_get_alloc(spa_special_class(spa)) +
6949 metaslab_class_get_alloc(spa_dedup_class(spa)) +
6950 get_unflushed_alloc_space(spa);
6951 total_found =
6952 tzb->zb_asize - zcb->zcb_dedup_asize - zcb->zcb_clone_asize +
6953 zcb->zcb_removing_size + zcb->zcb_checkpoint_size;
6954
6955 if (total_found == total_alloc && !dump_opt['L']) {
6956 (void) printf("\n\tNo leaks (block sum matches space"
6957 " maps exactly)\n");
6958 } else if (!dump_opt['L']) {
6959 (void) printf("block traversal size %llu != alloc %llu "
6960 "(%s %lld)\n",
6961 (u_longlong_t)total_found,
6962 (u_longlong_t)total_alloc,
6963 (dump_opt['L']) ? "unreachable" : "leaked",
6964 (longlong_t)(total_alloc - total_found));
6965 leaks = B_TRUE;
6966 }
6967
6968 if (tzb->zb_count == 0) {
6969 umem_free(zcb, sizeof (zdb_cb_t));
6970 return (2);
6971 }
6972
6973 (void) printf("\n");
6974 (void) printf("\t%-16s %14llu\n", "bp count:",
6975 (u_longlong_t)tzb->zb_count);
6976 (void) printf("\t%-16s %14llu\n", "ganged count:",
6977 (longlong_t)tzb->zb_gangs);
6978 (void) printf("\t%-16s %14llu avg: %6llu\n", "bp logical:",
6979 (u_longlong_t)tzb->zb_lsize,
6980 (u_longlong_t)(tzb->zb_lsize / tzb->zb_count));
6981 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n",
6982 "bp physical:", (u_longlong_t)tzb->zb_psize,
6983 (u_longlong_t)(tzb->zb_psize / tzb->zb_count),
6984 (double)tzb->zb_lsize / tzb->zb_psize);
6985 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n",
6986 "bp allocated:", (u_longlong_t)tzb->zb_asize,
6987 (u_longlong_t)(tzb->zb_asize / tzb->zb_count),
6988 (double)tzb->zb_lsize / tzb->zb_asize);
6989 (void) printf("\t%-16s %14llu ref>1: %6llu deduplication: %6.2f\n",
6990 "bp deduped:", (u_longlong_t)zcb->zcb_dedup_asize,
6991 (u_longlong_t)zcb->zcb_dedup_blocks,
6992 (double)zcb->zcb_dedup_asize / tzb->zb_asize + 1.0);
6993 (void) printf("\t%-16s %14llu count: %6llu\n",
6994 "bp cloned:", (u_longlong_t)zcb->zcb_clone_asize,
6995 (u_longlong_t)zcb->zcb_clone_blocks);
6996 (void) printf("\t%-16s %14llu used: %5.2f%%\n", "Normal class:",
6997 (u_longlong_t)norm_alloc, 100.0 * norm_alloc / norm_space);
6998
6999 if (spa_special_class(spa)->mc_allocator[0].mca_rotor != NULL) {
7000 uint64_t alloc = metaslab_class_get_alloc(
7001 spa_special_class(spa));
7002 uint64_t space = metaslab_class_get_space(
7003 spa_special_class(spa));
7004
7005 (void) printf("\t%-16s %14llu used: %5.2f%%\n",
7006 "Special class", (u_longlong_t)alloc,
7007 100.0 * alloc / space);
7008 }
7009
7010 if (spa_dedup_class(spa)->mc_allocator[0].mca_rotor != NULL) {
7011 uint64_t alloc = metaslab_class_get_alloc(
7012 spa_dedup_class(spa));
7013 uint64_t space = metaslab_class_get_space(
7014 spa_dedup_class(spa));
7015
7016 (void) printf("\t%-16s %14llu used: %5.2f%%\n",
7017 "Dedup class", (u_longlong_t)alloc,
7018 100.0 * alloc / space);
7019 }
7020
7021 if (spa_embedded_log_class(spa)->mc_allocator[0].mca_rotor != NULL) {
7022 uint64_t alloc = metaslab_class_get_alloc(
7023 spa_embedded_log_class(spa));
7024 uint64_t space = metaslab_class_get_space(
7025 spa_embedded_log_class(spa));
7026
7027 (void) printf("\t%-16s %14llu used: %5.2f%%\n",
7028 "Embedded log class", (u_longlong_t)alloc,
7029 100.0 * alloc / space);
7030 }
7031
7032 for (i = 0; i < NUM_BP_EMBEDDED_TYPES; i++) {
7033 if (zcb->zcb_embedded_blocks[i] == 0)
7034 continue;
7035 (void) printf("\n");
7036 (void) printf("\tadditional, non-pointer bps of type %u: "
7037 "%10llu\n",
7038 i, (u_longlong_t)zcb->zcb_embedded_blocks[i]);
7039
7040 if (dump_opt['b'] >= 3) {
7041 (void) printf("\t number of (compressed) bytes: "
7042 "number of bps\n");
7043 dump_histogram(zcb->zcb_embedded_histogram[i],
7044 sizeof (zcb->zcb_embedded_histogram[i]) /
7045 sizeof (zcb->zcb_embedded_histogram[i][0]), 0);
7046 }
7047 }
7048
7049 if (tzb->zb_ditto_samevdev != 0) {
7050 (void) printf("\tDittoed blocks on same vdev: %llu\n",
7051 (longlong_t)tzb->zb_ditto_samevdev);
7052 }
7053 if (tzb->zb_ditto_same_ms != 0) {
7054 (void) printf("\tDittoed blocks in same metaslab: %llu\n",
7055 (longlong_t)tzb->zb_ditto_same_ms);
7056 }
7057
7058 for (uint64_t v = 0; v < spa->spa_root_vdev->vdev_children; v++) {
7059 vdev_t *vd = spa->spa_root_vdev->vdev_child[v];
7060 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
7061
7062 if (vim == NULL) {
7063 continue;
7064 }
7065
7066 char mem[32];
7067 zdb_nicenum(vdev_indirect_mapping_num_entries(vim),
7068 mem, vdev_indirect_mapping_size(vim));
7069
7070 (void) printf("\tindirect vdev id %llu has %llu segments "
7071 "(%s in memory)\n",
7072 (longlong_t)vd->vdev_id,
7073 (longlong_t)vdev_indirect_mapping_num_entries(vim), mem);
7074 }
7075
7076 if (dump_opt['b'] >= 2) {
7077 int l, t, level;
7078 char csize[32], lsize[32], psize[32], asize[32];
7079 char avg[32], gang[32];
7080 (void) printf("\nBlocks\tLSIZE\tPSIZE\tASIZE"
7081 "\t avg\t comp\t%%Total\tType\n");
7082
7083 zfs_blkstat_t *mdstats = umem_zalloc(sizeof (zfs_blkstat_t),
7084 UMEM_NOFAIL);
7085
7086 for (t = 0; t <= ZDB_OT_TOTAL; t++) {
7087 const char *typename;
7088
7089 /* make sure nicenum has enough space */
7090 _Static_assert(sizeof (csize) >= NN_NUMBUF_SZ,
7091 "csize truncated");
7092 _Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ,
7093 "lsize truncated");
7094 _Static_assert(sizeof (psize) >= NN_NUMBUF_SZ,
7095 "psize truncated");
7096 _Static_assert(sizeof (asize) >= NN_NUMBUF_SZ,
7097 "asize truncated");
7098 _Static_assert(sizeof (avg) >= NN_NUMBUF_SZ,
7099 "avg truncated");
7100 _Static_assert(sizeof (gang) >= NN_NUMBUF_SZ,
7101 "gang truncated");
7102
7103 if (t < DMU_OT_NUMTYPES)
7104 typename = dmu_ot[t].ot_name;
7105 else
7106 typename = zdb_ot_extname[t - DMU_OT_NUMTYPES];
7107
7108 if (zcb->zcb_type[ZB_TOTAL][t].zb_asize == 0) {
7109 (void) printf("%6s\t%5s\t%5s\t%5s"
7110 "\t%5s\t%5s\t%6s\t%s\n",
7111 "-",
7112 "-",
7113 "-",
7114 "-",
7115 "-",
7116 "-",
7117 "-",
7118 typename);
7119 continue;
7120 }
7121
7122 for (l = ZB_TOTAL - 1; l >= -1; l--) {
7123 level = (l == -1 ? ZB_TOTAL : l);
7124 zb = &zcb->zcb_type[level][t];
7125
7126 if (zb->zb_asize == 0)
7127 continue;
7128
7129 if (level != ZB_TOTAL && t < DMU_OT_NUMTYPES &&
7130 (level > 0 || DMU_OT_IS_METADATA(t))) {
7131 mdstats->zb_count += zb->zb_count;
7132 mdstats->zb_lsize += zb->zb_lsize;
7133 mdstats->zb_psize += zb->zb_psize;
7134 mdstats->zb_asize += zb->zb_asize;
7135 mdstats->zb_gangs += zb->zb_gangs;
7136 }
7137
7138 if (dump_opt['b'] < 3 && level != ZB_TOTAL)
7139 continue;
7140
7141 if (level == 0 && zb->zb_asize ==
7142 zcb->zcb_type[ZB_TOTAL][t].zb_asize)
7143 continue;
7144
7145 zdb_nicenum(zb->zb_count, csize,
7146 sizeof (csize));
7147 zdb_nicenum(zb->zb_lsize, lsize,
7148 sizeof (lsize));
7149 zdb_nicenum(zb->zb_psize, psize,
7150 sizeof (psize));
7151 zdb_nicenum(zb->zb_asize, asize,
7152 sizeof (asize));
7153 zdb_nicenum(zb->zb_asize / zb->zb_count, avg,
7154 sizeof (avg));
7155 zdb_nicenum(zb->zb_gangs, gang, sizeof (gang));
7156
7157 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s"
7158 "\t%5.2f\t%6.2f\t",
7159 csize, lsize, psize, asize, avg,
7160 (double)zb->zb_lsize / zb->zb_psize,
7161 100.0 * zb->zb_asize / tzb->zb_asize);
7162
7163 if (level == ZB_TOTAL)
7164 (void) printf("%s\n", typename);
7165 else
7166 (void) printf(" L%d %s\n",
7167 level, typename);
7168
7169 if (dump_opt['b'] >= 3 && zb->zb_gangs > 0) {
7170 (void) printf("\t number of ganged "
7171 "blocks: %s\n", gang);
7172 }
7173
7174 if (dump_opt['b'] >= 4) {
7175 (void) printf("psize "
7176 "(in 512-byte sectors): "
7177 "number of blocks\n");
7178 dump_histogram(zb->zb_psize_histogram,
7179 PSIZE_HISTO_SIZE, 0);
7180 }
7181 }
7182 }
7183 zdb_nicenum(mdstats->zb_count, csize,
7184 sizeof (csize));
7185 zdb_nicenum(mdstats->zb_lsize, lsize,
7186 sizeof (lsize));
7187 zdb_nicenum(mdstats->zb_psize, psize,
7188 sizeof (psize));
7189 zdb_nicenum(mdstats->zb_asize, asize,
7190 sizeof (asize));
7191 zdb_nicenum(mdstats->zb_asize / mdstats->zb_count, avg,
7192 sizeof (avg));
7193 zdb_nicenum(mdstats->zb_gangs, gang, sizeof (gang));
7194
7195 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s"
7196 "\t%5.2f\t%6.2f\t",
7197 csize, lsize, psize, asize, avg,
7198 (double)mdstats->zb_lsize / mdstats->zb_psize,
7199 100.0 * mdstats->zb_asize / tzb->zb_asize);
7200 (void) printf("%s\n", "Metadata Total");
7201
7202 /* Output a table summarizing block sizes in the pool */
7203 if (dump_opt['b'] >= 2) {
7204 dump_size_histograms(zcb);
7205 }
7206
7207 umem_free(mdstats, sizeof (zfs_blkstat_t));
7208 }
7209
7210 (void) printf("\n");
7211
7212 if (leaks) {
7213 umem_free(zcb, sizeof (zdb_cb_t));
7214 return (2);
7215 }
7216
7217 if (zcb->zcb_haderrors) {
7218 umem_free(zcb, sizeof (zdb_cb_t));
7219 return (3);
7220 }
7221
7222 umem_free(zcb, sizeof (zdb_cb_t));
7223 return (0);
7224 }
7225
7226 typedef struct zdb_ddt_entry {
7227 ddt_key_t zdde_key;
7228 uint64_t zdde_ref_blocks;
7229 uint64_t zdde_ref_lsize;
7230 uint64_t zdde_ref_psize;
7231 uint64_t zdde_ref_dsize;
7232 avl_node_t zdde_node;
7233 } zdb_ddt_entry_t;
7234
7235 static int
7236 zdb_ddt_add_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
7237 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
7238 {
7239 (void) zilog, (void) dnp;
7240 avl_tree_t *t = arg;
7241 avl_index_t where;
7242 zdb_ddt_entry_t *zdde, zdde_search;
7243
7244 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
7245 BP_IS_EMBEDDED(bp))
7246 return (0);
7247
7248 if (dump_opt['S'] > 1 && zb->zb_level == ZB_ROOT_LEVEL) {
7249 (void) printf("traversing objset %llu, %llu objects, "
7250 "%lu blocks so far\n",
7251 (u_longlong_t)zb->zb_objset,
7252 (u_longlong_t)BP_GET_FILL(bp),
7253 avl_numnodes(t));
7254 }
7255
7256 if (BP_IS_HOLE(bp) || BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_OFF ||
7257 BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp)))
7258 return (0);
7259
7260 ddt_key_fill(&zdde_search.zdde_key, bp);
7261
7262 zdde = avl_find(t, &zdde_search, &where);
7263
7264 if (zdde == NULL) {
7265 zdde = umem_zalloc(sizeof (*zdde), UMEM_NOFAIL);
7266 zdde->zdde_key = zdde_search.zdde_key;
7267 avl_insert(t, zdde, where);
7268 }
7269
7270 zdde->zdde_ref_blocks += 1;
7271 zdde->zdde_ref_lsize += BP_GET_LSIZE(bp);
7272 zdde->zdde_ref_psize += BP_GET_PSIZE(bp);
7273 zdde->zdde_ref_dsize += bp_get_dsize_sync(spa, bp);
7274
7275 return (0);
7276 }
7277
7278 static void
7279 dump_simulated_ddt(spa_t *spa)
7280 {
7281 avl_tree_t t;
7282 void *cookie = NULL;
7283 zdb_ddt_entry_t *zdde;
7284 ddt_histogram_t ddh_total = {{{0}}};
7285 ddt_stat_t dds_total = {0};
7286
7287 avl_create(&t, ddt_entry_compare,
7288 sizeof (zdb_ddt_entry_t), offsetof(zdb_ddt_entry_t, zdde_node));
7289
7290 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7291
7292 (void) traverse_pool(spa, 0, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
7293 TRAVERSE_NO_DECRYPT, zdb_ddt_add_cb, &t);
7294
7295 spa_config_exit(spa, SCL_CONFIG, FTAG);
7296
7297 while ((zdde = avl_destroy_nodes(&t, &cookie)) != NULL) {
7298 ddt_stat_t dds;
7299 uint64_t refcnt = zdde->zdde_ref_blocks;
7300 ASSERT(refcnt != 0);
7301
7302 dds.dds_blocks = zdde->zdde_ref_blocks / refcnt;
7303 dds.dds_lsize = zdde->zdde_ref_lsize / refcnt;
7304 dds.dds_psize = zdde->zdde_ref_psize / refcnt;
7305 dds.dds_dsize = zdde->zdde_ref_dsize / refcnt;
7306
7307 dds.dds_ref_blocks = zdde->zdde_ref_blocks;
7308 dds.dds_ref_lsize = zdde->zdde_ref_lsize;
7309 dds.dds_ref_psize = zdde->zdde_ref_psize;
7310 dds.dds_ref_dsize = zdde->zdde_ref_dsize;
7311
7312 ddt_stat_add(&ddh_total.ddh_stat[highbit64(refcnt) - 1],
7313 &dds, 0);
7314
7315 umem_free(zdde, sizeof (*zdde));
7316 }
7317
7318 avl_destroy(&t);
7319
7320 ddt_histogram_stat(&dds_total, &ddh_total);
7321
7322 (void) printf("Simulated DDT histogram:\n");
7323
7324 zpool_dump_ddt(&dds_total, &ddh_total);
7325
7326 dump_dedup_ratio(&dds_total);
7327 }
7328
7329 static int
7330 verify_device_removal_feature_counts(spa_t *spa)
7331 {
7332 uint64_t dr_feature_refcount = 0;
7333 uint64_t oc_feature_refcount = 0;
7334 uint64_t indirect_vdev_count = 0;
7335 uint64_t precise_vdev_count = 0;
7336 uint64_t obsolete_counts_object_count = 0;
7337 uint64_t obsolete_sm_count = 0;
7338 uint64_t obsolete_counts_count = 0;
7339 uint64_t scip_count = 0;
7340 uint64_t obsolete_bpobj_count = 0;
7341 int ret = 0;
7342
7343 spa_condensing_indirect_phys_t *scip =
7344 &spa->spa_condensing_indirect_phys;
7345 if (scip->scip_next_mapping_object != 0) {
7346 vdev_t *vd = spa->spa_root_vdev->vdev_child[scip->scip_vdev];
7347 ASSERT(scip->scip_prev_obsolete_sm_object != 0);
7348 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
7349
7350 (void) printf("Condensing indirect vdev %llu: new mapping "
7351 "object %llu, prev obsolete sm %llu\n",
7352 (u_longlong_t)scip->scip_vdev,
7353 (u_longlong_t)scip->scip_next_mapping_object,
7354 (u_longlong_t)scip->scip_prev_obsolete_sm_object);
7355 if (scip->scip_prev_obsolete_sm_object != 0) {
7356 space_map_t *prev_obsolete_sm = NULL;
7357 VERIFY0(space_map_open(&prev_obsolete_sm,
7358 spa->spa_meta_objset,
7359 scip->scip_prev_obsolete_sm_object,
7360 0, vd->vdev_asize, 0));
7361 dump_spacemap(spa->spa_meta_objset, prev_obsolete_sm);
7362 (void) printf("\n");
7363 space_map_close(prev_obsolete_sm);
7364 }
7365
7366 scip_count += 2;
7367 }
7368
7369 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
7370 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
7371 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
7372
7373 if (vic->vic_mapping_object != 0) {
7374 ASSERT(vd->vdev_ops == &vdev_indirect_ops ||
7375 vd->vdev_removing);
7376 indirect_vdev_count++;
7377
7378 if (vd->vdev_indirect_mapping->vim_havecounts) {
7379 obsolete_counts_count++;
7380 }
7381 }
7382
7383 boolean_t are_precise;
7384 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
7385 if (are_precise) {
7386 ASSERT(vic->vic_mapping_object != 0);
7387 precise_vdev_count++;
7388 }
7389
7390 uint64_t obsolete_sm_object;
7391 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
7392 if (obsolete_sm_object != 0) {
7393 ASSERT(vic->vic_mapping_object != 0);
7394 obsolete_sm_count++;
7395 }
7396 }
7397
7398 (void) feature_get_refcount(spa,
7399 &spa_feature_table[SPA_FEATURE_DEVICE_REMOVAL],
7400 &dr_feature_refcount);
7401 (void) feature_get_refcount(spa,
7402 &spa_feature_table[SPA_FEATURE_OBSOLETE_COUNTS],
7403 &oc_feature_refcount);
7404
7405 if (dr_feature_refcount != indirect_vdev_count) {
7406 ret = 1;
7407 (void) printf("Number of indirect vdevs (%llu) " \
7408 "does not match feature count (%llu)\n",
7409 (u_longlong_t)indirect_vdev_count,
7410 (u_longlong_t)dr_feature_refcount);
7411 } else {
7412 (void) printf("Verified device_removal feature refcount " \
7413 "of %llu is correct\n",
7414 (u_longlong_t)dr_feature_refcount);
7415 }
7416
7417 if (zap_contains(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT,
7418 DMU_POOL_OBSOLETE_BPOBJ) == 0) {
7419 obsolete_bpobj_count++;
7420 }
7421
7422
7423 obsolete_counts_object_count = precise_vdev_count;
7424 obsolete_counts_object_count += obsolete_sm_count;
7425 obsolete_counts_object_count += obsolete_counts_count;
7426 obsolete_counts_object_count += scip_count;
7427 obsolete_counts_object_count += obsolete_bpobj_count;
7428 obsolete_counts_object_count += remap_deadlist_count;
7429
7430 if (oc_feature_refcount != obsolete_counts_object_count) {
7431 ret = 1;
7432 (void) printf("Number of obsolete counts objects (%llu) " \
7433 "does not match feature count (%llu)\n",
7434 (u_longlong_t)obsolete_counts_object_count,
7435 (u_longlong_t)oc_feature_refcount);
7436 (void) printf("pv:%llu os:%llu oc:%llu sc:%llu "
7437 "ob:%llu rd:%llu\n",
7438 (u_longlong_t)precise_vdev_count,
7439 (u_longlong_t)obsolete_sm_count,
7440 (u_longlong_t)obsolete_counts_count,
7441 (u_longlong_t)scip_count,
7442 (u_longlong_t)obsolete_bpobj_count,
7443 (u_longlong_t)remap_deadlist_count);
7444 } else {
7445 (void) printf("Verified indirect_refcount feature refcount " \
7446 "of %llu is correct\n",
7447 (u_longlong_t)oc_feature_refcount);
7448 }
7449 return (ret);
7450 }
7451
7452 static void
7453 zdb_set_skip_mmp(char *target)
7454 {
7455 spa_t *spa;
7456
7457 /*
7458 * Disable the activity check to allow examination of
7459 * active pools.
7460 */
7461 mutex_enter(&spa_namespace_lock);
7462 if ((spa = spa_lookup(target)) != NULL) {
7463 spa->spa_import_flags |= ZFS_IMPORT_SKIP_MMP;
7464 }
7465 mutex_exit(&spa_namespace_lock);
7466 }
7467
7468 #define BOGUS_SUFFIX "_CHECKPOINTED_UNIVERSE"
7469 /*
7470 * Import the checkpointed state of the pool specified by the target
7471 * parameter as readonly. The function also accepts a pool config
7472 * as an optional parameter, else it attempts to infer the config by
7473 * the name of the target pool.
7474 *
7475 * Note that the checkpointed state's pool name will be the name of
7476 * the original pool with the above suffix appended to it. In addition,
7477 * if the target is not a pool name (e.g. a path to a dataset) then
7478 * the new_path parameter is populated with the updated path to
7479 * reflect the fact that we are looking into the checkpointed state.
7480 *
7481 * The function returns a newly-allocated copy of the name of the
7482 * pool containing the checkpointed state. When this copy is no
7483 * longer needed it should be freed with free(3C). Same thing
7484 * applies to the new_path parameter if allocated.
7485 */
7486 static char *
7487 import_checkpointed_state(char *target, nvlist_t *cfg, char **new_path)
7488 {
7489 int error = 0;
7490 char *poolname, *bogus_name = NULL;
7491 boolean_t freecfg = B_FALSE;
7492
7493 /* If the target is not a pool, the extract the pool name */
7494 char *path_start = strchr(target, '/');
7495 if (path_start != NULL) {
7496 size_t poolname_len = path_start - target;
7497 poolname = strndup(target, poolname_len);
7498 } else {
7499 poolname = target;
7500 }
7501
7502 if (cfg == NULL) {
7503 zdb_set_skip_mmp(poolname);
7504 error = spa_get_stats(poolname, &cfg, NULL, 0);
7505 if (error != 0) {
7506 fatal("Tried to read config of pool \"%s\" but "
7507 "spa_get_stats() failed with error %d\n",
7508 poolname, error);
7509 }
7510 freecfg = B_TRUE;
7511 }
7512
7513 if (asprintf(&bogus_name, "%s%s", poolname, BOGUS_SUFFIX) == -1) {
7514 if (target != poolname)
7515 free(poolname);
7516 return (NULL);
7517 }
7518 fnvlist_add_string(cfg, ZPOOL_CONFIG_POOL_NAME, bogus_name);
7519
7520 error = spa_import(bogus_name, cfg, NULL,
7521 ZFS_IMPORT_MISSING_LOG | ZFS_IMPORT_CHECKPOINT |
7522 ZFS_IMPORT_SKIP_MMP);
7523 if (freecfg)
7524 nvlist_free(cfg);
7525 if (error != 0) {
7526 fatal("Tried to import pool \"%s\" but spa_import() failed "
7527 "with error %d\n", bogus_name, error);
7528 }
7529
7530 if (new_path != NULL && path_start != NULL) {
7531 if (asprintf(new_path, "%s%s", bogus_name, path_start) == -1) {
7532 free(bogus_name);
7533 if (path_start != NULL)
7534 free(poolname);
7535 return (NULL);
7536 }
7537 }
7538
7539 if (target != poolname)
7540 free(poolname);
7541
7542 return (bogus_name);
7543 }
7544
7545 typedef struct verify_checkpoint_sm_entry_cb_arg {
7546 vdev_t *vcsec_vd;
7547
7548 /* the following fields are only used for printing progress */
7549 uint64_t vcsec_entryid;
7550 uint64_t vcsec_num_entries;
7551 } verify_checkpoint_sm_entry_cb_arg_t;
7552
7553 #define ENTRIES_PER_PROGRESS_UPDATE 10000
7554
7555 static int
7556 verify_checkpoint_sm_entry_cb(space_map_entry_t *sme, void *arg)
7557 {
7558 verify_checkpoint_sm_entry_cb_arg_t *vcsec = arg;
7559 vdev_t *vd = vcsec->vcsec_vd;
7560 metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift];
7561 uint64_t end = sme->sme_offset + sme->sme_run;
7562
7563 ASSERT(sme->sme_type == SM_FREE);
7564
7565 if ((vcsec->vcsec_entryid % ENTRIES_PER_PROGRESS_UPDATE) == 0) {
7566 (void) fprintf(stderr,
7567 "\rverifying vdev %llu, space map entry %llu of %llu ...",
7568 (longlong_t)vd->vdev_id,
7569 (longlong_t)vcsec->vcsec_entryid,
7570 (longlong_t)vcsec->vcsec_num_entries);
7571 }
7572 vcsec->vcsec_entryid++;
7573
7574 /*
7575 * See comment in checkpoint_sm_exclude_entry_cb()
7576 */
7577 VERIFY3U(sme->sme_offset, >=, ms->ms_start);
7578 VERIFY3U(end, <=, ms->ms_start + ms->ms_size);
7579
7580 /*
7581 * The entries in the vdev_checkpoint_sm should be marked as
7582 * allocated in the checkpointed state of the pool, therefore
7583 * their respective ms_allocateable trees should not contain them.
7584 */
7585 mutex_enter(&ms->ms_lock);
7586 range_tree_verify_not_present(ms->ms_allocatable,
7587 sme->sme_offset, sme->sme_run);
7588 mutex_exit(&ms->ms_lock);
7589
7590 return (0);
7591 }
7592
7593 /*
7594 * Verify that all segments in the vdev_checkpoint_sm are allocated
7595 * according to the checkpoint's ms_sm (i.e. are not in the checkpoint's
7596 * ms_allocatable).
7597 *
7598 * Do so by comparing the checkpoint space maps (vdev_checkpoint_sm) of
7599 * each vdev in the current state of the pool to the metaslab space maps
7600 * (ms_sm) of the checkpointed state of the pool.
7601 *
7602 * Note that the function changes the state of the ms_allocatable
7603 * trees of the current spa_t. The entries of these ms_allocatable
7604 * trees are cleared out and then repopulated from with the free
7605 * entries of their respective ms_sm space maps.
7606 */
7607 static void
7608 verify_checkpoint_vdev_spacemaps(spa_t *checkpoint, spa_t *current)
7609 {
7610 vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev;
7611 vdev_t *current_rvd = current->spa_root_vdev;
7612
7613 load_concrete_ms_allocatable_trees(checkpoint, SM_FREE);
7614
7615 for (uint64_t c = 0; c < ckpoint_rvd->vdev_children; c++) {
7616 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[c];
7617 vdev_t *current_vd = current_rvd->vdev_child[c];
7618
7619 space_map_t *checkpoint_sm = NULL;
7620 uint64_t checkpoint_sm_obj;
7621
7622 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) {
7623 /*
7624 * Since we don't allow device removal in a pool
7625 * that has a checkpoint, we expect that all removed
7626 * vdevs were removed from the pool before the
7627 * checkpoint.
7628 */
7629 ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops);
7630 continue;
7631 }
7632
7633 /*
7634 * If the checkpoint space map doesn't exist, then nothing
7635 * here is checkpointed so there's nothing to verify.
7636 */
7637 if (current_vd->vdev_top_zap == 0 ||
7638 zap_contains(spa_meta_objset(current),
7639 current_vd->vdev_top_zap,
7640 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0)
7641 continue;
7642
7643 VERIFY0(zap_lookup(spa_meta_objset(current),
7644 current_vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
7645 sizeof (uint64_t), 1, &checkpoint_sm_obj));
7646
7647 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(current),
7648 checkpoint_sm_obj, 0, current_vd->vdev_asize,
7649 current_vd->vdev_ashift));
7650
7651 verify_checkpoint_sm_entry_cb_arg_t vcsec;
7652 vcsec.vcsec_vd = ckpoint_vd;
7653 vcsec.vcsec_entryid = 0;
7654 vcsec.vcsec_num_entries =
7655 space_map_length(checkpoint_sm) / sizeof (uint64_t);
7656 VERIFY0(space_map_iterate(checkpoint_sm,
7657 space_map_length(checkpoint_sm),
7658 verify_checkpoint_sm_entry_cb, &vcsec));
7659 if (dump_opt['m'] > 3)
7660 dump_spacemap(current->spa_meta_objset, checkpoint_sm);
7661 space_map_close(checkpoint_sm);
7662 }
7663
7664 /*
7665 * If we've added vdevs since we took the checkpoint, ensure
7666 * that their checkpoint space maps are empty.
7667 */
7668 if (ckpoint_rvd->vdev_children < current_rvd->vdev_children) {
7669 for (uint64_t c = ckpoint_rvd->vdev_children;
7670 c < current_rvd->vdev_children; c++) {
7671 vdev_t *current_vd = current_rvd->vdev_child[c];
7672 VERIFY3P(current_vd->vdev_checkpoint_sm, ==, NULL);
7673 }
7674 }
7675
7676 /* for cleaner progress output */
7677 (void) fprintf(stderr, "\n");
7678 }
7679
7680 /*
7681 * Verifies that all space that's allocated in the checkpoint is
7682 * still allocated in the current version, by checking that everything
7683 * in checkpoint's ms_allocatable (which is actually allocated, not
7684 * allocatable/free) is not present in current's ms_allocatable.
7685 *
7686 * Note that the function changes the state of the ms_allocatable
7687 * trees of both spas when called. The entries of all ms_allocatable
7688 * trees are cleared out and then repopulated from their respective
7689 * ms_sm space maps. In the checkpointed state we load the allocated
7690 * entries, and in the current state we load the free entries.
7691 */
7692 static void
7693 verify_checkpoint_ms_spacemaps(spa_t *checkpoint, spa_t *current)
7694 {
7695 vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev;
7696 vdev_t *current_rvd = current->spa_root_vdev;
7697
7698 load_concrete_ms_allocatable_trees(checkpoint, SM_ALLOC);
7699 load_concrete_ms_allocatable_trees(current, SM_FREE);
7700
7701 for (uint64_t i = 0; i < ckpoint_rvd->vdev_children; i++) {
7702 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[i];
7703 vdev_t *current_vd = current_rvd->vdev_child[i];
7704
7705 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) {
7706 /*
7707 * See comment in verify_checkpoint_vdev_spacemaps()
7708 */
7709 ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops);
7710 continue;
7711 }
7712
7713 for (uint64_t m = 0; m < ckpoint_vd->vdev_ms_count; m++) {
7714 metaslab_t *ckpoint_msp = ckpoint_vd->vdev_ms[m];
7715 metaslab_t *current_msp = current_vd->vdev_ms[m];
7716
7717 (void) fprintf(stderr,
7718 "\rverifying vdev %llu of %llu, "
7719 "metaslab %llu of %llu ...",
7720 (longlong_t)current_vd->vdev_id,
7721 (longlong_t)current_rvd->vdev_children,
7722 (longlong_t)current_vd->vdev_ms[m]->ms_id,
7723 (longlong_t)current_vd->vdev_ms_count);
7724
7725 /*
7726 * We walk through the ms_allocatable trees that
7727 * are loaded with the allocated blocks from the
7728 * ms_sm spacemaps of the checkpoint. For each
7729 * one of these ranges we ensure that none of them
7730 * exists in the ms_allocatable trees of the
7731 * current state which are loaded with the ranges
7732 * that are currently free.
7733 *
7734 * This way we ensure that none of the blocks that
7735 * are part of the checkpoint were freed by mistake.
7736 */
7737 range_tree_walk(ckpoint_msp->ms_allocatable,
7738 (range_tree_func_t *)range_tree_verify_not_present,
7739 current_msp->ms_allocatable);
7740 }
7741 }
7742
7743 /* for cleaner progress output */
7744 (void) fprintf(stderr, "\n");
7745 }
7746
7747 static void
7748 verify_checkpoint_blocks(spa_t *spa)
7749 {
7750 ASSERT(!dump_opt['L']);
7751
7752 spa_t *checkpoint_spa;
7753 char *checkpoint_pool;
7754 int error = 0;
7755
7756 /*
7757 * We import the checkpointed state of the pool (under a different
7758 * name) so we can do verification on it against the current state
7759 * of the pool.
7760 */
7761 checkpoint_pool = import_checkpointed_state(spa->spa_name, NULL,
7762 NULL);
7763 ASSERT(strcmp(spa->spa_name, checkpoint_pool) != 0);
7764
7765 error = spa_open(checkpoint_pool, &checkpoint_spa, FTAG);
7766 if (error != 0) {
7767 fatal("Tried to open pool \"%s\" but spa_open() failed with "
7768 "error %d\n", checkpoint_pool, error);
7769 }
7770
7771 /*
7772 * Ensure that ranges in the checkpoint space maps of each vdev
7773 * are allocated according to the checkpointed state's metaslab
7774 * space maps.
7775 */
7776 verify_checkpoint_vdev_spacemaps(checkpoint_spa, spa);
7777
7778 /*
7779 * Ensure that allocated ranges in the checkpoint's metaslab
7780 * space maps remain allocated in the metaslab space maps of
7781 * the current state.
7782 */
7783 verify_checkpoint_ms_spacemaps(checkpoint_spa, spa);
7784
7785 /*
7786 * Once we are done, we get rid of the checkpointed state.
7787 */
7788 spa_close(checkpoint_spa, FTAG);
7789 free(checkpoint_pool);
7790 }
7791
7792 static void
7793 dump_leftover_checkpoint_blocks(spa_t *spa)
7794 {
7795 vdev_t *rvd = spa->spa_root_vdev;
7796
7797 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
7798 vdev_t *vd = rvd->vdev_child[i];
7799
7800 space_map_t *checkpoint_sm = NULL;
7801 uint64_t checkpoint_sm_obj;
7802
7803 if (vd->vdev_top_zap == 0)
7804 continue;
7805
7806 if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap,
7807 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0)
7808 continue;
7809
7810 VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap,
7811 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
7812 sizeof (uint64_t), 1, &checkpoint_sm_obj));
7813
7814 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa),
7815 checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift));
7816 dump_spacemap(spa->spa_meta_objset, checkpoint_sm);
7817 space_map_close(checkpoint_sm);
7818 }
7819 }
7820
7821 static int
7822 verify_checkpoint(spa_t *spa)
7823 {
7824 uberblock_t checkpoint;
7825 int error;
7826
7827 if (!spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT))
7828 return (0);
7829
7830 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
7831 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
7832 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
7833
7834 if (error == ENOENT && !dump_opt['L']) {
7835 /*
7836 * If the feature is active but the uberblock is missing
7837 * then we must be in the middle of discarding the
7838 * checkpoint.
7839 */
7840 (void) printf("\nPartially discarded checkpoint "
7841 "state found:\n");
7842 if (dump_opt['m'] > 3)
7843 dump_leftover_checkpoint_blocks(spa);
7844 return (0);
7845 } else if (error != 0) {
7846 (void) printf("lookup error %d when looking for "
7847 "checkpointed uberblock in MOS\n", error);
7848 return (error);
7849 }
7850 dump_uberblock(&checkpoint, "\nCheckpointed uberblock found:\n", "\n");
7851
7852 if (checkpoint.ub_checkpoint_txg == 0) {
7853 (void) printf("\nub_checkpoint_txg not set in checkpointed "
7854 "uberblock\n");
7855 error = 3;
7856 }
7857
7858 if (error == 0 && !dump_opt['L'])
7859 verify_checkpoint_blocks(spa);
7860
7861 return (error);
7862 }
7863
7864 static void
7865 mos_leaks_cb(void *arg, uint64_t start, uint64_t size)
7866 {
7867 (void) arg;
7868 for (uint64_t i = start; i < size; i++) {
7869 (void) printf("MOS object %llu referenced but not allocated\n",
7870 (u_longlong_t)i);
7871 }
7872 }
7873
7874 static void
7875 mos_obj_refd(uint64_t obj)
7876 {
7877 if (obj != 0 && mos_refd_objs != NULL)
7878 range_tree_add(mos_refd_objs, obj, 1);
7879 }
7880
7881 /*
7882 * Call on a MOS object that may already have been referenced.
7883 */
7884 static void
7885 mos_obj_refd_multiple(uint64_t obj)
7886 {
7887 if (obj != 0 && mos_refd_objs != NULL &&
7888 !range_tree_contains(mos_refd_objs, obj, 1))
7889 range_tree_add(mos_refd_objs, obj, 1);
7890 }
7891
7892 static void
7893 mos_leak_vdev_top_zap(vdev_t *vd)
7894 {
7895 uint64_t ms_flush_data_obj;
7896 int error = zap_lookup(spa_meta_objset(vd->vdev_spa),
7897 vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS,
7898 sizeof (ms_flush_data_obj), 1, &ms_flush_data_obj);
7899 if (error == ENOENT)
7900 return;
7901 ASSERT0(error);
7902
7903 mos_obj_refd(ms_flush_data_obj);
7904 }
7905
7906 static void
7907 mos_leak_vdev(vdev_t *vd)
7908 {
7909 mos_obj_refd(vd->vdev_dtl_object);
7910 mos_obj_refd(vd->vdev_ms_array);
7911 mos_obj_refd(vd->vdev_indirect_config.vic_births_object);
7912 mos_obj_refd(vd->vdev_indirect_config.vic_mapping_object);
7913 mos_obj_refd(vd->vdev_leaf_zap);
7914 if (vd->vdev_checkpoint_sm != NULL)
7915 mos_obj_refd(vd->vdev_checkpoint_sm->sm_object);
7916 if (vd->vdev_indirect_mapping != NULL) {
7917 mos_obj_refd(vd->vdev_indirect_mapping->
7918 vim_phys->vimp_counts_object);
7919 }
7920 if (vd->vdev_obsolete_sm != NULL)
7921 mos_obj_refd(vd->vdev_obsolete_sm->sm_object);
7922
7923 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
7924 metaslab_t *ms = vd->vdev_ms[m];
7925 mos_obj_refd(space_map_object(ms->ms_sm));
7926 }
7927
7928 if (vd->vdev_root_zap != 0)
7929 mos_obj_refd(vd->vdev_root_zap);
7930
7931 if (vd->vdev_top_zap != 0) {
7932 mos_obj_refd(vd->vdev_top_zap);
7933 mos_leak_vdev_top_zap(vd);
7934 }
7935
7936 for (uint64_t c = 0; c < vd->vdev_children; c++) {
7937 mos_leak_vdev(vd->vdev_child[c]);
7938 }
7939 }
7940
7941 static void
7942 mos_leak_log_spacemaps(spa_t *spa)
7943 {
7944 uint64_t spacemap_zap;
7945 int error = zap_lookup(spa_meta_objset(spa),
7946 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_LOG_SPACEMAP_ZAP,
7947 sizeof (spacemap_zap), 1, &spacemap_zap);
7948 if (error == ENOENT)
7949 return;
7950 ASSERT0(error);
7951
7952 mos_obj_refd(spacemap_zap);
7953 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
7954 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls))
7955 mos_obj_refd(sls->sls_sm_obj);
7956 }
7957
7958 static void
7959 errorlog_count_refd(objset_t *mos, uint64_t errlog)
7960 {
7961 zap_cursor_t zc;
7962 zap_attribute_t za;
7963 for (zap_cursor_init(&zc, mos, errlog);
7964 zap_cursor_retrieve(&zc, &za) == 0;
7965 zap_cursor_advance(&zc)) {
7966 mos_obj_refd(za.za_first_integer);
7967 }
7968 zap_cursor_fini(&zc);
7969 }
7970
7971 static int
7972 dump_mos_leaks(spa_t *spa)
7973 {
7974 int rv = 0;
7975 objset_t *mos = spa->spa_meta_objset;
7976 dsl_pool_t *dp = spa->spa_dsl_pool;
7977
7978 /* Visit and mark all referenced objects in the MOS */
7979
7980 mos_obj_refd(DMU_POOL_DIRECTORY_OBJECT);
7981 mos_obj_refd(spa->spa_pool_props_object);
7982 mos_obj_refd(spa->spa_config_object);
7983 mos_obj_refd(spa->spa_ddt_stat_object);
7984 mos_obj_refd(spa->spa_feat_desc_obj);
7985 mos_obj_refd(spa->spa_feat_enabled_txg_obj);
7986 mos_obj_refd(spa->spa_feat_for_read_obj);
7987 mos_obj_refd(spa->spa_feat_for_write_obj);
7988 mos_obj_refd(spa->spa_history);
7989 mos_obj_refd(spa->spa_errlog_last);
7990 mos_obj_refd(spa->spa_errlog_scrub);
7991
7992 if (spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) {
7993 errorlog_count_refd(mos, spa->spa_errlog_last);
7994 errorlog_count_refd(mos, spa->spa_errlog_scrub);
7995 }
7996
7997 mos_obj_refd(spa->spa_all_vdev_zaps);
7998 mos_obj_refd(spa->spa_dsl_pool->dp_bptree_obj);
7999 mos_obj_refd(spa->spa_dsl_pool->dp_tmp_userrefs_obj);
8000 mos_obj_refd(spa->spa_dsl_pool->dp_scan->scn_phys.scn_queue_obj);
8001 bpobj_count_refd(&spa->spa_deferred_bpobj);
8002 mos_obj_refd(dp->dp_empty_bpobj);
8003 bpobj_count_refd(&dp->dp_obsolete_bpobj);
8004 bpobj_count_refd(&dp->dp_free_bpobj);
8005 mos_obj_refd(spa->spa_l2cache.sav_object);
8006 mos_obj_refd(spa->spa_spares.sav_object);
8007
8008 if (spa->spa_syncing_log_sm != NULL)
8009 mos_obj_refd(spa->spa_syncing_log_sm->sm_object);
8010 mos_leak_log_spacemaps(spa);
8011
8012 mos_obj_refd(spa->spa_condensing_indirect_phys.
8013 scip_next_mapping_object);
8014 mos_obj_refd(spa->spa_condensing_indirect_phys.
8015 scip_prev_obsolete_sm_object);
8016 if (spa->spa_condensing_indirect_phys.scip_next_mapping_object != 0) {
8017 vdev_indirect_mapping_t *vim =
8018 vdev_indirect_mapping_open(mos,
8019 spa->spa_condensing_indirect_phys.scip_next_mapping_object);
8020 mos_obj_refd(vim->vim_phys->vimp_counts_object);
8021 vdev_indirect_mapping_close(vim);
8022 }
8023 deleted_livelists_dump_mos(spa);
8024
8025 if (dp->dp_origin_snap != NULL) {
8026 dsl_dataset_t *ds;
8027
8028 dsl_pool_config_enter(dp, FTAG);
8029 VERIFY0(dsl_dataset_hold_obj(dp,
8030 dsl_dataset_phys(dp->dp_origin_snap)->ds_next_snap_obj,
8031 FTAG, &ds));
8032 count_ds_mos_objects(ds);
8033 dump_blkptr_list(&ds->ds_deadlist, "Deadlist");
8034 dsl_dataset_rele(ds, FTAG);
8035 dsl_pool_config_exit(dp, FTAG);
8036
8037 count_ds_mos_objects(dp->dp_origin_snap);
8038 dump_blkptr_list(&dp->dp_origin_snap->ds_deadlist, "Deadlist");
8039 }
8040 count_dir_mos_objects(dp->dp_mos_dir);
8041 if (dp->dp_free_dir != NULL)
8042 count_dir_mos_objects(dp->dp_free_dir);
8043 if (dp->dp_leak_dir != NULL)
8044 count_dir_mos_objects(dp->dp_leak_dir);
8045
8046 mos_leak_vdev(spa->spa_root_vdev);
8047
8048 for (uint64_t class = 0; class < DDT_CLASSES; class++) {
8049 for (uint64_t type = 0; type < DDT_TYPES; type++) {
8050 for (uint64_t cksum = 0;
8051 cksum < ZIO_CHECKSUM_FUNCTIONS; cksum++) {
8052 ddt_t *ddt = spa->spa_ddt[cksum];
8053 mos_obj_refd(ddt->ddt_object[type][class]);
8054 }
8055 }
8056 }
8057
8058 /*
8059 * Visit all allocated objects and make sure they are referenced.
8060 */
8061 uint64_t object = 0;
8062 while (dmu_object_next(mos, &object, B_FALSE, 0) == 0) {
8063 if (range_tree_contains(mos_refd_objs, object, 1)) {
8064 range_tree_remove(mos_refd_objs, object, 1);
8065 } else {
8066 dmu_object_info_t doi;
8067 const char *name;
8068 VERIFY0(dmu_object_info(mos, object, &doi));
8069 if (doi.doi_type & DMU_OT_NEWTYPE) {
8070 dmu_object_byteswap_t bswap =
8071 DMU_OT_BYTESWAP(doi.doi_type);
8072 name = dmu_ot_byteswap[bswap].ob_name;
8073 } else {
8074 name = dmu_ot[doi.doi_type].ot_name;
8075 }
8076
8077 (void) printf("MOS object %llu (%s) leaked\n",
8078 (u_longlong_t)object, name);
8079 rv = 2;
8080 }
8081 }
8082 (void) range_tree_walk(mos_refd_objs, mos_leaks_cb, NULL);
8083 if (!range_tree_is_empty(mos_refd_objs))
8084 rv = 2;
8085 range_tree_vacate(mos_refd_objs, NULL, NULL);
8086 range_tree_destroy(mos_refd_objs);
8087 return (rv);
8088 }
8089
8090 typedef struct log_sm_obsolete_stats_arg {
8091 uint64_t lsos_current_txg;
8092
8093 uint64_t lsos_total_entries;
8094 uint64_t lsos_valid_entries;
8095
8096 uint64_t lsos_sm_entries;
8097 uint64_t lsos_valid_sm_entries;
8098 } log_sm_obsolete_stats_arg_t;
8099
8100 static int
8101 log_spacemap_obsolete_stats_cb(spa_t *spa, space_map_entry_t *sme,
8102 uint64_t txg, void *arg)
8103 {
8104 log_sm_obsolete_stats_arg_t *lsos = arg;
8105
8106 uint64_t offset = sme->sme_offset;
8107 uint64_t vdev_id = sme->sme_vdev;
8108
8109 if (lsos->lsos_current_txg == 0) {
8110 /* this is the first log */
8111 lsos->lsos_current_txg = txg;
8112 } else if (lsos->lsos_current_txg < txg) {
8113 /* we just changed log - print stats and reset */
8114 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n",
8115 (u_longlong_t)lsos->lsos_valid_sm_entries,
8116 (u_longlong_t)lsos->lsos_sm_entries,
8117 (u_longlong_t)lsos->lsos_current_txg);
8118 lsos->lsos_valid_sm_entries = 0;
8119 lsos->lsos_sm_entries = 0;
8120 lsos->lsos_current_txg = txg;
8121 }
8122 ASSERT3U(lsos->lsos_current_txg, ==, txg);
8123
8124 lsos->lsos_sm_entries++;
8125 lsos->lsos_total_entries++;
8126
8127 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
8128 if (!vdev_is_concrete(vd))
8129 return (0);
8130
8131 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
8132 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
8133
8134 if (txg < metaslab_unflushed_txg(ms))
8135 return (0);
8136 lsos->lsos_valid_sm_entries++;
8137 lsos->lsos_valid_entries++;
8138 return (0);
8139 }
8140
8141 static void
8142 dump_log_spacemap_obsolete_stats(spa_t *spa)
8143 {
8144 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
8145 return;
8146
8147 log_sm_obsolete_stats_arg_t lsos = {0};
8148
8149 (void) printf("Log Space Map Obsolete Entry Statistics:\n");
8150
8151 iterate_through_spacemap_logs(spa,
8152 log_spacemap_obsolete_stats_cb, &lsos);
8153
8154 /* print stats for latest log */
8155 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n",
8156 (u_longlong_t)lsos.lsos_valid_sm_entries,
8157 (u_longlong_t)lsos.lsos_sm_entries,
8158 (u_longlong_t)lsos.lsos_current_txg);
8159
8160 (void) printf("%-8llu valid entries out of %-8llu - total\n\n",
8161 (u_longlong_t)lsos.lsos_valid_entries,
8162 (u_longlong_t)lsos.lsos_total_entries);
8163 }
8164
8165 static void
8166 dump_zpool(spa_t *spa)
8167 {
8168 dsl_pool_t *dp = spa_get_dsl(spa);
8169 int rc = 0;
8170
8171 if (dump_opt['y']) {
8172 livelist_metaslab_validate(spa);
8173 }
8174
8175 if (dump_opt['S']) {
8176 dump_simulated_ddt(spa);
8177 return;
8178 }
8179
8180 if (!dump_opt['e'] && dump_opt['C'] > 1) {
8181 (void) printf("\nCached configuration:\n");
8182 dump_nvlist(spa->spa_config, 8);
8183 }
8184
8185 if (dump_opt['C'])
8186 dump_config(spa);
8187
8188 if (dump_opt['u'])
8189 dump_uberblock(&spa->spa_uberblock, "\nUberblock:\n", "\n");
8190
8191 if (dump_opt['D'])
8192 dump_all_ddts(spa);
8193
8194 if (dump_opt['T'])
8195 dump_brt(spa);
8196
8197 if (dump_opt['d'] > 2 || dump_opt['m'])
8198 dump_metaslabs(spa);
8199 if (dump_opt['M'])
8200 dump_metaslab_groups(spa, dump_opt['M'] > 1);
8201 if (dump_opt['d'] > 2 || dump_opt['m']) {
8202 dump_log_spacemaps(spa);
8203 dump_log_spacemap_obsolete_stats(spa);
8204 }
8205
8206 if (dump_opt['d'] || dump_opt['i']) {
8207 spa_feature_t f;
8208 mos_refd_objs = range_tree_create(NULL, RANGE_SEG64, NULL, 0,
8209 0);
8210 dump_objset(dp->dp_meta_objset);
8211
8212 if (dump_opt['d'] >= 3) {
8213 dsl_pool_t *dp = spa->spa_dsl_pool;
8214 dump_full_bpobj(&spa->spa_deferred_bpobj,
8215 "Deferred frees", 0);
8216 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
8217 dump_full_bpobj(&dp->dp_free_bpobj,
8218 "Pool snapshot frees", 0);
8219 }
8220 if (bpobj_is_open(&dp->dp_obsolete_bpobj)) {
8221 ASSERT(spa_feature_is_enabled(spa,
8222 SPA_FEATURE_DEVICE_REMOVAL));
8223 dump_full_bpobj(&dp->dp_obsolete_bpobj,
8224 "Pool obsolete blocks", 0);
8225 }
8226
8227 if (spa_feature_is_active(spa,
8228 SPA_FEATURE_ASYNC_DESTROY)) {
8229 dump_bptree(spa->spa_meta_objset,
8230 dp->dp_bptree_obj,
8231 "Pool dataset frees");
8232 }
8233 dump_dtl(spa->spa_root_vdev, 0);
8234 }
8235
8236 for (spa_feature_t f = 0; f < SPA_FEATURES; f++)
8237 global_feature_count[f] = UINT64_MAX;
8238 global_feature_count[SPA_FEATURE_REDACTION_BOOKMARKS] = 0;
8239 global_feature_count[SPA_FEATURE_REDACTION_LIST_SPILL] = 0;
8240 global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN] = 0;
8241 global_feature_count[SPA_FEATURE_LIVELIST] = 0;
8242
8243 (void) dmu_objset_find(spa_name(spa), dump_one_objset,
8244 NULL, DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
8245
8246 if (rc == 0 && !dump_opt['L'])
8247 rc = dump_mos_leaks(spa);
8248
8249 for (f = 0; f < SPA_FEATURES; f++) {
8250 uint64_t refcount;
8251
8252 uint64_t *arr;
8253 if (!(spa_feature_table[f].fi_flags &
8254 ZFEATURE_FLAG_PER_DATASET)) {
8255 if (global_feature_count[f] == UINT64_MAX)
8256 continue;
8257 if (!spa_feature_is_enabled(spa, f)) {
8258 ASSERT0(global_feature_count[f]);
8259 continue;
8260 }
8261 arr = global_feature_count;
8262 } else {
8263 if (!spa_feature_is_enabled(spa, f)) {
8264 ASSERT0(dataset_feature_count[f]);
8265 continue;
8266 }
8267 arr = dataset_feature_count;
8268 }
8269 if (feature_get_refcount(spa, &spa_feature_table[f],
8270 &refcount) == ENOTSUP)
8271 continue;
8272 if (arr[f] != refcount) {
8273 (void) printf("%s feature refcount mismatch: "
8274 "%lld consumers != %lld refcount\n",
8275 spa_feature_table[f].fi_uname,
8276 (longlong_t)arr[f], (longlong_t)refcount);
8277 rc = 2;
8278 } else {
8279 (void) printf("Verified %s feature refcount "
8280 "of %llu is correct\n",
8281 spa_feature_table[f].fi_uname,
8282 (longlong_t)refcount);
8283 }
8284 }
8285
8286 if (rc == 0)
8287 rc = verify_device_removal_feature_counts(spa);
8288 }
8289
8290 if (rc == 0 && (dump_opt['b'] || dump_opt['c']))
8291 rc = dump_block_stats(spa);
8292
8293 if (rc == 0)
8294 rc = verify_spacemap_refcounts(spa);
8295
8296 if (dump_opt['s'])
8297 show_pool_stats(spa);
8298
8299 if (dump_opt['h'])
8300 dump_history(spa);
8301
8302 if (rc == 0)
8303 rc = verify_checkpoint(spa);
8304
8305 if (rc != 0) {
8306 dump_debug_buffer();
8307 exit(rc);
8308 }
8309 }
8310
8311 #define ZDB_FLAG_CHECKSUM 0x0001
8312 #define ZDB_FLAG_DECOMPRESS 0x0002
8313 #define ZDB_FLAG_BSWAP 0x0004
8314 #define ZDB_FLAG_GBH 0x0008
8315 #define ZDB_FLAG_INDIRECT 0x0010
8316 #define ZDB_FLAG_RAW 0x0020
8317 #define ZDB_FLAG_PRINT_BLKPTR 0x0040
8318 #define ZDB_FLAG_VERBOSE 0x0080
8319
8320 static int flagbits[256];
8321 static char flagbitstr[16];
8322
8323 static void
8324 zdb_print_blkptr(const blkptr_t *bp, int flags)
8325 {
8326 char blkbuf[BP_SPRINTF_LEN];
8327
8328 if (flags & ZDB_FLAG_BSWAP)
8329 byteswap_uint64_array((void *)bp, sizeof (blkptr_t));
8330
8331 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
8332 (void) printf("%s\n", blkbuf);
8333 }
8334
8335 static void
8336 zdb_dump_indirect(blkptr_t *bp, int nbps, int flags)
8337 {
8338 int i;
8339
8340 for (i = 0; i < nbps; i++)
8341 zdb_print_blkptr(&bp[i], flags);
8342 }
8343
8344 static void
8345 zdb_dump_gbh(void *buf, int flags)
8346 {
8347 zdb_dump_indirect((blkptr_t *)buf, SPA_GBH_NBLKPTRS, flags);
8348 }
8349
8350 static void
8351 zdb_dump_block_raw(void *buf, uint64_t size, int flags)
8352 {
8353 if (flags & ZDB_FLAG_BSWAP)
8354 byteswap_uint64_array(buf, size);
8355 VERIFY(write(fileno(stdout), buf, size) == size);
8356 }
8357
8358 static void
8359 zdb_dump_block(char *label, void *buf, uint64_t size, int flags)
8360 {
8361 uint64_t *d = (uint64_t *)buf;
8362 unsigned nwords = size / sizeof (uint64_t);
8363 int do_bswap = !!(flags & ZDB_FLAG_BSWAP);
8364 unsigned i, j;
8365 const char *hdr;
8366 char *c;
8367
8368
8369 if (do_bswap)
8370 hdr = " 7 6 5 4 3 2 1 0 f e d c b a 9 8";
8371 else
8372 hdr = " 0 1 2 3 4 5 6 7 8 9 a b c d e f";
8373
8374 (void) printf("\n%s\n%6s %s 0123456789abcdef\n", label, "", hdr);
8375
8376 #ifdef _LITTLE_ENDIAN
8377 /* correct the endianness */
8378 do_bswap = !do_bswap;
8379 #endif
8380 for (i = 0; i < nwords; i += 2) {
8381 (void) printf("%06llx: %016llx %016llx ",
8382 (u_longlong_t)(i * sizeof (uint64_t)),
8383 (u_longlong_t)(do_bswap ? BSWAP_64(d[i]) : d[i]),
8384 (u_longlong_t)(do_bswap ? BSWAP_64(d[i + 1]) : d[i + 1]));
8385
8386 c = (char *)&d[i];
8387 for (j = 0; j < 2 * sizeof (uint64_t); j++)
8388 (void) printf("%c", isprint(c[j]) ? c[j] : '.');
8389 (void) printf("\n");
8390 }
8391 }
8392
8393 /*
8394 * There are two acceptable formats:
8395 * leaf_name - For example: c1t0d0 or /tmp/ztest.0a
8396 * child[.child]* - For example: 0.1.1
8397 *
8398 * The second form can be used to specify arbitrary vdevs anywhere
8399 * in the hierarchy. For example, in a pool with a mirror of
8400 * RAID-Zs, you can specify either RAID-Z vdev with 0.0 or 0.1 .
8401 */
8402 static vdev_t *
8403 zdb_vdev_lookup(vdev_t *vdev, const char *path)
8404 {
8405 char *s, *p, *q;
8406 unsigned i;
8407
8408 if (vdev == NULL)
8409 return (NULL);
8410
8411 /* First, assume the x.x.x.x format */
8412 i = strtoul(path, &s, 10);
8413 if (s == path || (s && *s != '.' && *s != '\0'))
8414 goto name;
8415 if (i >= vdev->vdev_children)
8416 return (NULL);
8417
8418 vdev = vdev->vdev_child[i];
8419 if (s && *s == '\0')
8420 return (vdev);
8421 return (zdb_vdev_lookup(vdev, s+1));
8422
8423 name:
8424 for (i = 0; i < vdev->vdev_children; i++) {
8425 vdev_t *vc = vdev->vdev_child[i];
8426
8427 if (vc->vdev_path == NULL) {
8428 vc = zdb_vdev_lookup(vc, path);
8429 if (vc == NULL)
8430 continue;
8431 else
8432 return (vc);
8433 }
8434
8435 p = strrchr(vc->vdev_path, '/');
8436 p = p ? p + 1 : vc->vdev_path;
8437 q = &vc->vdev_path[strlen(vc->vdev_path) - 2];
8438
8439 if (strcmp(vc->vdev_path, path) == 0)
8440 return (vc);
8441 if (strcmp(p, path) == 0)
8442 return (vc);
8443 if (strcmp(q, "s0") == 0 && strncmp(p, path, q - p) == 0)
8444 return (vc);
8445 }
8446
8447 return (NULL);
8448 }
8449
8450 static int
8451 name_from_objset_id(spa_t *spa, uint64_t objset_id, char *outstr)
8452 {
8453 dsl_dataset_t *ds;
8454
8455 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
8456 int error = dsl_dataset_hold_obj(spa->spa_dsl_pool, objset_id,
8457 NULL, &ds);
8458 if (error != 0) {
8459 (void) fprintf(stderr, "failed to hold objset %llu: %s\n",
8460 (u_longlong_t)objset_id, strerror(error));
8461 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
8462 return (error);
8463 }
8464 dsl_dataset_name(ds, outstr);
8465 dsl_dataset_rele(ds, NULL);
8466 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
8467 return (0);
8468 }
8469
8470 static boolean_t
8471 zdb_parse_block_sizes(char *sizes, uint64_t *lsize, uint64_t *psize)
8472 {
8473 char *s0, *s1, *tmp = NULL;
8474
8475 if (sizes == NULL)
8476 return (B_FALSE);
8477
8478 s0 = strtok_r(sizes, "/", &tmp);
8479 if (s0 == NULL)
8480 return (B_FALSE);
8481 s1 = strtok_r(NULL, "/", &tmp);
8482 *lsize = strtoull(s0, NULL, 16);
8483 *psize = s1 ? strtoull(s1, NULL, 16) : *lsize;
8484 return (*lsize >= *psize && *psize > 0);
8485 }
8486
8487 #define ZIO_COMPRESS_MASK(alg) (1ULL << (ZIO_COMPRESS_##alg))
8488
8489 static boolean_t
8490 zdb_decompress_block(abd_t *pabd, void *buf, void *lbuf, uint64_t lsize,
8491 uint64_t psize, int flags)
8492 {
8493 (void) buf;
8494 boolean_t exceeded = B_FALSE;
8495 /*
8496 * We don't know how the data was compressed, so just try
8497 * every decompress function at every inflated blocksize.
8498 */
8499 void *lbuf2 = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL);
8500 int cfuncs[ZIO_COMPRESS_FUNCTIONS] = { 0 };
8501 int *cfuncp = cfuncs;
8502 uint64_t maxlsize = SPA_MAXBLOCKSIZE;
8503 uint64_t mask = ZIO_COMPRESS_MASK(ON) | ZIO_COMPRESS_MASK(OFF) |
8504 ZIO_COMPRESS_MASK(INHERIT) | ZIO_COMPRESS_MASK(EMPTY) |
8505 (getenv("ZDB_NO_ZLE") ? ZIO_COMPRESS_MASK(ZLE) : 0);
8506 *cfuncp++ = ZIO_COMPRESS_LZ4;
8507 *cfuncp++ = ZIO_COMPRESS_LZJB;
8508 mask |= ZIO_COMPRESS_MASK(LZ4) | ZIO_COMPRESS_MASK(LZJB);
8509 for (int c = 0; c < ZIO_COMPRESS_FUNCTIONS; c++)
8510 if (((1ULL << c) & mask) == 0)
8511 *cfuncp++ = c;
8512
8513 /*
8514 * On the one hand, with SPA_MAXBLOCKSIZE at 16MB, this
8515 * could take a while and we should let the user know
8516 * we are not stuck. On the other hand, printing progress
8517 * info gets old after a while. User can specify 'v' flag
8518 * to see the progression.
8519 */
8520 if (lsize == psize)
8521 lsize += SPA_MINBLOCKSIZE;
8522 else
8523 maxlsize = lsize;
8524 for (; lsize <= maxlsize; lsize += SPA_MINBLOCKSIZE) {
8525 for (cfuncp = cfuncs; *cfuncp; cfuncp++) {
8526 if (flags & ZDB_FLAG_VERBOSE) {
8527 (void) fprintf(stderr,
8528 "Trying %05llx -> %05llx (%s)\n",
8529 (u_longlong_t)psize,
8530 (u_longlong_t)lsize,
8531 zio_compress_table[*cfuncp].\
8532 ci_name);
8533 }
8534
8535 /*
8536 * We randomize lbuf2, and decompress to both
8537 * lbuf and lbuf2. This way, we will know if
8538 * decompression fill exactly to lsize.
8539 */
8540 VERIFY0(random_get_pseudo_bytes(lbuf2, lsize));
8541
8542 if (zio_decompress_data(*cfuncp, pabd,
8543 lbuf, psize, lsize, NULL) == 0 &&
8544 zio_decompress_data(*cfuncp, pabd,
8545 lbuf2, psize, lsize, NULL) == 0 &&
8546 memcmp(lbuf, lbuf2, lsize) == 0)
8547 break;
8548 }
8549 if (*cfuncp != 0)
8550 break;
8551 }
8552 umem_free(lbuf2, SPA_MAXBLOCKSIZE);
8553
8554 if (lsize > maxlsize) {
8555 exceeded = B_TRUE;
8556 }
8557 if (*cfuncp == ZIO_COMPRESS_ZLE) {
8558 printf("\nZLE decompression was selected. If you "
8559 "suspect the results are wrong,\ntry avoiding ZLE "
8560 "by setting and exporting ZDB_NO_ZLE=\"true\"\n");
8561 }
8562
8563 return (exceeded);
8564 }
8565
8566 /*
8567 * Read a block from a pool and print it out. The syntax of the
8568 * block descriptor is:
8569 *
8570 * pool:vdev_specifier:offset:[lsize/]psize[:flags]
8571 *
8572 * pool - The name of the pool you wish to read from
8573 * vdev_specifier - Which vdev (see comment for zdb_vdev_lookup)
8574 * offset - offset, in hex, in bytes
8575 * size - Amount of data to read, in hex, in bytes
8576 * flags - A string of characters specifying options
8577 * b: Decode a blkptr at given offset within block
8578 * c: Calculate and display checksums
8579 * d: Decompress data before dumping
8580 * e: Byteswap data before dumping
8581 * g: Display data as a gang block header
8582 * i: Display as an indirect block
8583 * r: Dump raw data to stdout
8584 * v: Verbose
8585 *
8586 */
8587 static void
8588 zdb_read_block(char *thing, spa_t *spa)
8589 {
8590 blkptr_t blk, *bp = &blk;
8591 dva_t *dva = bp->blk_dva;
8592 int flags = 0;
8593 uint64_t offset = 0, psize = 0, lsize = 0, blkptr_offset = 0;
8594 zio_t *zio;
8595 vdev_t *vd;
8596 abd_t *pabd;
8597 void *lbuf, *buf;
8598 char *s, *p, *dup, *flagstr, *sizes, *tmp = NULL;
8599 const char *vdev, *errmsg = NULL;
8600 int i, error;
8601 boolean_t borrowed = B_FALSE, found = B_FALSE;
8602
8603 dup = strdup(thing);
8604 s = strtok_r(dup, ":", &tmp);
8605 vdev = s ?: "";
8606 s = strtok_r(NULL, ":", &tmp);
8607 offset = strtoull(s ? s : "", NULL, 16);
8608 sizes = strtok_r(NULL, ":", &tmp);
8609 s = strtok_r(NULL, ":", &tmp);
8610 flagstr = strdup(s ?: "");
8611
8612 if (!zdb_parse_block_sizes(sizes, &lsize, &psize))
8613 errmsg = "invalid size(s)";
8614 if (!IS_P2ALIGNED(psize, DEV_BSIZE) || !IS_P2ALIGNED(lsize, DEV_BSIZE))
8615 errmsg = "size must be a multiple of sector size";
8616 if (!IS_P2ALIGNED(offset, DEV_BSIZE))
8617 errmsg = "offset must be a multiple of sector size";
8618 if (errmsg) {
8619 (void) printf("Invalid block specifier: %s - %s\n",
8620 thing, errmsg);
8621 goto done;
8622 }
8623
8624 tmp = NULL;
8625 for (s = strtok_r(flagstr, ":", &tmp);
8626 s != NULL;
8627 s = strtok_r(NULL, ":", &tmp)) {
8628 for (i = 0; i < strlen(flagstr); i++) {
8629 int bit = flagbits[(uchar_t)flagstr[i]];
8630
8631 if (bit == 0) {
8632 (void) printf("***Ignoring flag: %c\n",
8633 (uchar_t)flagstr[i]);
8634 continue;
8635 }
8636 found = B_TRUE;
8637 flags |= bit;
8638
8639 p = &flagstr[i + 1];
8640 if (*p != ':' && *p != '\0') {
8641 int j = 0, nextbit = flagbits[(uchar_t)*p];
8642 char *end, offstr[8] = { 0 };
8643 if ((bit == ZDB_FLAG_PRINT_BLKPTR) &&
8644 (nextbit == 0)) {
8645 /* look ahead to isolate the offset */
8646 while (nextbit == 0 &&
8647 strchr(flagbitstr, *p) == NULL) {
8648 offstr[j] = *p;
8649 j++;
8650 if (i + j > strlen(flagstr))
8651 break;
8652 p++;
8653 nextbit = flagbits[(uchar_t)*p];
8654 }
8655 blkptr_offset = strtoull(offstr, &end,
8656 16);
8657 i += j;
8658 } else if (nextbit == 0) {
8659 (void) printf("***Ignoring flag arg:"
8660 " '%c'\n", (uchar_t)*p);
8661 }
8662 }
8663 }
8664 }
8665 if (blkptr_offset % sizeof (blkptr_t)) {
8666 printf("Block pointer offset 0x%llx "
8667 "must be divisible by 0x%x\n",
8668 (longlong_t)blkptr_offset, (int)sizeof (blkptr_t));
8669 goto done;
8670 }
8671 if (found == B_FALSE && strlen(flagstr) > 0) {
8672 printf("Invalid flag arg: '%s'\n", flagstr);
8673 goto done;
8674 }
8675
8676 vd = zdb_vdev_lookup(spa->spa_root_vdev, vdev);
8677 if (vd == NULL) {
8678 (void) printf("***Invalid vdev: %s\n", vdev);
8679 goto done;
8680 } else {
8681 if (vd->vdev_path)
8682 (void) fprintf(stderr, "Found vdev: %s\n",
8683 vd->vdev_path);
8684 else
8685 (void) fprintf(stderr, "Found vdev type: %s\n",
8686 vd->vdev_ops->vdev_op_type);
8687 }
8688
8689 pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE);
8690 lbuf = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL);
8691
8692 BP_ZERO(bp);
8693
8694 DVA_SET_VDEV(&dva[0], vd->vdev_id);
8695 DVA_SET_OFFSET(&dva[0], offset);
8696 DVA_SET_GANG(&dva[0], !!(flags & ZDB_FLAG_GBH));
8697 DVA_SET_ASIZE(&dva[0], vdev_psize_to_asize(vd, psize));
8698
8699 BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL);
8700
8701 BP_SET_LSIZE(bp, lsize);
8702 BP_SET_PSIZE(bp, psize);
8703 BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF);
8704 BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF);
8705 BP_SET_TYPE(bp, DMU_OT_NONE);
8706 BP_SET_LEVEL(bp, 0);
8707 BP_SET_DEDUP(bp, 0);
8708 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
8709
8710 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8711 zio = zio_root(spa, NULL, NULL, 0);
8712
8713 if (vd == vd->vdev_top) {
8714 /*
8715 * Treat this as a normal block read.
8716 */
8717 zio_nowait(zio_read(zio, spa, bp, pabd, psize, NULL, NULL,
8718 ZIO_PRIORITY_SYNC_READ,
8719 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW, NULL));
8720 } else {
8721 /*
8722 * Treat this as a vdev child I/O.
8723 */
8724 zio_nowait(zio_vdev_child_io(zio, bp, vd, offset, pabd,
8725 psize, ZIO_TYPE_READ, ZIO_PRIORITY_SYNC_READ,
8726 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY |
8727 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | ZIO_FLAG_OPTIONAL,
8728 NULL, NULL));
8729 }
8730
8731 error = zio_wait(zio);
8732 spa_config_exit(spa, SCL_STATE, FTAG);
8733
8734 if (error) {
8735 (void) printf("Read of %s failed, error: %d\n", thing, error);
8736 goto out;
8737 }
8738
8739 uint64_t orig_lsize = lsize;
8740 buf = lbuf;
8741 if (flags & ZDB_FLAG_DECOMPRESS) {
8742 boolean_t failed = zdb_decompress_block(pabd, buf, lbuf,
8743 lsize, psize, flags);
8744 if (failed) {
8745 (void) printf("Decompress of %s failed\n", thing);
8746 goto out;
8747 }
8748 } else {
8749 buf = abd_borrow_buf_copy(pabd, lsize);
8750 borrowed = B_TRUE;
8751 }
8752 /*
8753 * Try to detect invalid block pointer. If invalid, try
8754 * decompressing.
8755 */
8756 if ((flags & ZDB_FLAG_PRINT_BLKPTR || flags & ZDB_FLAG_INDIRECT) &&
8757 !(flags & ZDB_FLAG_DECOMPRESS)) {
8758 const blkptr_t *b = (const blkptr_t *)(void *)
8759 ((uintptr_t)buf + (uintptr_t)blkptr_offset);
8760 if (zfs_blkptr_verify(spa, b,
8761 BLK_CONFIG_NEEDED, BLK_VERIFY_ONLY) == B_FALSE) {
8762 abd_return_buf_copy(pabd, buf, lsize);
8763 borrowed = B_FALSE;
8764 buf = lbuf;
8765 boolean_t failed = zdb_decompress_block(pabd, buf,
8766 lbuf, lsize, psize, flags);
8767 b = (const blkptr_t *)(void *)
8768 ((uintptr_t)buf + (uintptr_t)blkptr_offset);
8769 if (failed || zfs_blkptr_verify(spa, b,
8770 BLK_CONFIG_NEEDED, BLK_VERIFY_LOG) == B_FALSE) {
8771 printf("invalid block pointer at this DVA\n");
8772 goto out;
8773 }
8774 }
8775 }
8776
8777 if (flags & ZDB_FLAG_PRINT_BLKPTR)
8778 zdb_print_blkptr((blkptr_t *)(void *)
8779 ((uintptr_t)buf + (uintptr_t)blkptr_offset), flags);
8780 else if (flags & ZDB_FLAG_RAW)
8781 zdb_dump_block_raw(buf, lsize, flags);
8782 else if (flags & ZDB_FLAG_INDIRECT)
8783 zdb_dump_indirect((blkptr_t *)buf,
8784 orig_lsize / sizeof (blkptr_t), flags);
8785 else if (flags & ZDB_FLAG_GBH)
8786 zdb_dump_gbh(buf, flags);
8787 else
8788 zdb_dump_block(thing, buf, lsize, flags);
8789
8790 /*
8791 * If :c was specified, iterate through the checksum table to
8792 * calculate and display each checksum for our specified
8793 * DVA and length.
8794 */
8795 if ((flags & ZDB_FLAG_CHECKSUM) && !(flags & ZDB_FLAG_RAW) &&
8796 !(flags & ZDB_FLAG_GBH)) {
8797 zio_t *czio;
8798 (void) printf("\n");
8799 for (enum zio_checksum ck = ZIO_CHECKSUM_LABEL;
8800 ck < ZIO_CHECKSUM_FUNCTIONS; ck++) {
8801
8802 if ((zio_checksum_table[ck].ci_flags &
8803 ZCHECKSUM_FLAG_EMBEDDED) ||
8804 ck == ZIO_CHECKSUM_NOPARITY) {
8805 continue;
8806 }
8807 BP_SET_CHECKSUM(bp, ck);
8808 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8809 czio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
8810 if (vd == vd->vdev_top) {
8811 zio_nowait(zio_read(czio, spa, bp, pabd, psize,
8812 NULL, NULL,
8813 ZIO_PRIORITY_SYNC_READ,
8814 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW |
8815 ZIO_FLAG_DONT_RETRY, NULL));
8816 } else {
8817 zio_nowait(zio_vdev_child_io(czio, bp, vd,
8818 offset, pabd, psize, ZIO_TYPE_READ,
8819 ZIO_PRIORITY_SYNC_READ,
8820 ZIO_FLAG_DONT_PROPAGATE |
8821 ZIO_FLAG_DONT_RETRY |
8822 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW |
8823 ZIO_FLAG_SPECULATIVE |
8824 ZIO_FLAG_OPTIONAL, NULL, NULL));
8825 }
8826 error = zio_wait(czio);
8827 if (error == 0 || error == ECKSUM) {
8828 zio_t *ck_zio = zio_null(NULL, spa, NULL,
8829 NULL, NULL, 0);
8830 ck_zio->io_offset =
8831 DVA_GET_OFFSET(&bp->blk_dva[0]);
8832 ck_zio->io_bp = bp;
8833 zio_checksum_compute(ck_zio, ck, pabd, lsize);
8834 printf(
8835 "%12s\t"
8836 "cksum=%016llx:%016llx:%016llx:%016llx\n",
8837 zio_checksum_table[ck].ci_name,
8838 (u_longlong_t)bp->blk_cksum.zc_word[0],
8839 (u_longlong_t)bp->blk_cksum.zc_word[1],
8840 (u_longlong_t)bp->blk_cksum.zc_word[2],
8841 (u_longlong_t)bp->blk_cksum.zc_word[3]);
8842 zio_wait(ck_zio);
8843 } else {
8844 printf("error %d reading block\n", error);
8845 }
8846 spa_config_exit(spa, SCL_STATE, FTAG);
8847 }
8848 }
8849
8850 if (borrowed)
8851 abd_return_buf_copy(pabd, buf, lsize);
8852
8853 out:
8854 abd_free(pabd);
8855 umem_free(lbuf, SPA_MAXBLOCKSIZE);
8856 done:
8857 free(flagstr);
8858 free(dup);
8859 }
8860
8861 static void
8862 zdb_embedded_block(char *thing)
8863 {
8864 blkptr_t bp = {{{{0}}}};
8865 unsigned long long *words = (void *)&bp;
8866 char *buf;
8867 int err;
8868
8869 err = sscanf(thing, "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx:"
8870 "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx",
8871 words + 0, words + 1, words + 2, words + 3,
8872 words + 4, words + 5, words + 6, words + 7,
8873 words + 8, words + 9, words + 10, words + 11,
8874 words + 12, words + 13, words + 14, words + 15);
8875 if (err != 16) {
8876 (void) fprintf(stderr, "invalid input format\n");
8877 exit(1);
8878 }
8879 ASSERT3U(BPE_GET_LSIZE(&bp), <=, SPA_MAXBLOCKSIZE);
8880 buf = malloc(SPA_MAXBLOCKSIZE);
8881 if (buf == NULL) {
8882 (void) fprintf(stderr, "out of memory\n");
8883 exit(1);
8884 }
8885 err = decode_embedded_bp(&bp, buf, BPE_GET_LSIZE(&bp));
8886 if (err != 0) {
8887 (void) fprintf(stderr, "decode failed: %u\n", err);
8888 exit(1);
8889 }
8890 zdb_dump_block_raw(buf, BPE_GET_LSIZE(&bp), 0);
8891 free(buf);
8892 }
8893
8894 /* check for valid hex or decimal numeric string */
8895 static boolean_t
8896 zdb_numeric(char *str)
8897 {
8898 int i = 0;
8899
8900 if (strlen(str) == 0)
8901 return (B_FALSE);
8902 if (strncmp(str, "0x", 2) == 0 || strncmp(str, "0X", 2) == 0)
8903 i = 2;
8904 for (; i < strlen(str); i++) {
8905 if (!isxdigit(str[i]))
8906 return (B_FALSE);
8907 }
8908 return (B_TRUE);
8909 }
8910
8911 int
8912 main(int argc, char **argv)
8913 {
8914 int c;
8915 spa_t *spa = NULL;
8916 objset_t *os = NULL;
8917 int dump_all = 1;
8918 int verbose = 0;
8919 int error = 0;
8920 char **searchdirs = NULL;
8921 int nsearch = 0;
8922 char *target, *target_pool, dsname[ZFS_MAX_DATASET_NAME_LEN];
8923 nvlist_t *policy = NULL;
8924 uint64_t max_txg = UINT64_MAX;
8925 int64_t objset_id = -1;
8926 uint64_t object;
8927 int flags = ZFS_IMPORT_MISSING_LOG;
8928 int rewind = ZPOOL_NEVER_REWIND;
8929 char *spa_config_path_env, *objset_str;
8930 boolean_t target_is_spa = B_TRUE, dataset_lookup = B_FALSE;
8931 nvlist_t *cfg = NULL;
8932
8933 dprintf_setup(&argc, argv);
8934
8935 /*
8936 * If there is an environment variable SPA_CONFIG_PATH it overrides
8937 * default spa_config_path setting. If -U flag is specified it will
8938 * override this environment variable settings once again.
8939 */
8940 spa_config_path_env = getenv("SPA_CONFIG_PATH");
8941 if (spa_config_path_env != NULL)
8942 spa_config_path = spa_config_path_env;
8943
8944 /*
8945 * For performance reasons, we set this tunable down. We do so before
8946 * the arg parsing section so that the user can override this value if
8947 * they choose.
8948 */
8949 zfs_btree_verify_intensity = 3;
8950
8951 struct option long_options[] = {
8952 {"ignore-assertions", no_argument, NULL, 'A'},
8953 {"block-stats", no_argument, NULL, 'b'},
8954 {"backup", no_argument, NULL, 'B'},
8955 {"checksum", no_argument, NULL, 'c'},
8956 {"config", no_argument, NULL, 'C'},
8957 {"datasets", no_argument, NULL, 'd'},
8958 {"dedup-stats", no_argument, NULL, 'D'},
8959 {"exported", no_argument, NULL, 'e'},
8960 {"embedded-block-pointer", no_argument, NULL, 'E'},
8961 {"automatic-rewind", no_argument, NULL, 'F'},
8962 {"dump-debug-msg", no_argument, NULL, 'G'},
8963 {"history", no_argument, NULL, 'h'},
8964 {"intent-logs", no_argument, NULL, 'i'},
8965 {"inflight", required_argument, NULL, 'I'},
8966 {"checkpointed-state", no_argument, NULL, 'k'},
8967 {"key", required_argument, NULL, 'K'},
8968 {"label", no_argument, NULL, 'l'},
8969 {"disable-leak-tracking", no_argument, NULL, 'L'},
8970 {"metaslabs", no_argument, NULL, 'm'},
8971 {"metaslab-groups", no_argument, NULL, 'M'},
8972 {"numeric", no_argument, NULL, 'N'},
8973 {"option", required_argument, NULL, 'o'},
8974 {"object-lookups", no_argument, NULL, 'O'},
8975 {"path", required_argument, NULL, 'p'},
8976 {"parseable", no_argument, NULL, 'P'},
8977 {"skip-label", no_argument, NULL, 'q'},
8978 {"copy-object", no_argument, NULL, 'r'},
8979 {"read-block", no_argument, NULL, 'R'},
8980 {"io-stats", no_argument, NULL, 's'},
8981 {"simulate-dedup", no_argument, NULL, 'S'},
8982 {"txg", required_argument, NULL, 't'},
8983 {"brt-stats", no_argument, NULL, 'T'},
8984 {"uberblock", no_argument, NULL, 'u'},
8985 {"cachefile", required_argument, NULL, 'U'},
8986 {"verbose", no_argument, NULL, 'v'},
8987 {"verbatim", no_argument, NULL, 'V'},
8988 {"dump-blocks", required_argument, NULL, 'x'},
8989 {"extreme-rewind", no_argument, NULL, 'X'},
8990 {"all-reconstruction", no_argument, NULL, 'Y'},
8991 {"livelist", no_argument, NULL, 'y'},
8992 {"zstd-headers", no_argument, NULL, 'Z'},
8993 {0, 0, 0, 0}
8994 };
8995
8996 while ((c = getopt_long(argc, argv,
8997 "AbBcCdDeEFGhiI:kK:lLmMNo:Op:PqrRsSt:TuU:vVx:XYyZ",
8998 long_options, NULL)) != -1) {
8999 switch (c) {
9000 case 'b':
9001 case 'B':
9002 case 'c':
9003 case 'C':
9004 case 'd':
9005 case 'D':
9006 case 'E':
9007 case 'G':
9008 case 'h':
9009 case 'i':
9010 case 'l':
9011 case 'm':
9012 case 'M':
9013 case 'N':
9014 case 'O':
9015 case 'r':
9016 case 'R':
9017 case 's':
9018 case 'S':
9019 case 'T':
9020 case 'u':
9021 case 'y':
9022 case 'Z':
9023 dump_opt[c]++;
9024 dump_all = 0;
9025 break;
9026 case 'A':
9027 case 'e':
9028 case 'F':
9029 case 'k':
9030 case 'L':
9031 case 'P':
9032 case 'q':
9033 case 'X':
9034 dump_opt[c]++;
9035 break;
9036 case 'Y':
9037 zfs_reconstruct_indirect_combinations_max = INT_MAX;
9038 zfs_deadman_enabled = 0;
9039 break;
9040 /* NB: Sort single match options below. */
9041 case 'I':
9042 max_inflight_bytes = strtoull(optarg, NULL, 0);
9043 if (max_inflight_bytes == 0) {
9044 (void) fprintf(stderr, "maximum number "
9045 "of inflight bytes must be greater "
9046 "than 0\n");
9047 usage();
9048 }
9049 break;
9050 case 'K':
9051 dump_opt[c]++;
9052 key_material = strdup(optarg);
9053 /* redact key material in process table */
9054 while (*optarg != '\0') { *optarg++ = '*'; }
9055 break;
9056 case 'o':
9057 error = set_global_var(optarg);
9058 if (error != 0)
9059 usage();
9060 break;
9061 case 'p':
9062 if (searchdirs == NULL) {
9063 searchdirs = umem_alloc(sizeof (char *),
9064 UMEM_NOFAIL);
9065 } else {
9066 char **tmp = umem_alloc((nsearch + 1) *
9067 sizeof (char *), UMEM_NOFAIL);
9068 memcpy(tmp, searchdirs, nsearch *
9069 sizeof (char *));
9070 umem_free(searchdirs,
9071 nsearch * sizeof (char *));
9072 searchdirs = tmp;
9073 }
9074 searchdirs[nsearch++] = optarg;
9075 break;
9076 case 't':
9077 max_txg = strtoull(optarg, NULL, 0);
9078 if (max_txg < TXG_INITIAL) {
9079 (void) fprintf(stderr, "incorrect txg "
9080 "specified: %s\n", optarg);
9081 usage();
9082 }
9083 break;
9084 case 'U':
9085 spa_config_path = optarg;
9086 if (spa_config_path[0] != '/') {
9087 (void) fprintf(stderr,
9088 "cachefile must be an absolute path "
9089 "(i.e. start with a slash)\n");
9090 usage();
9091 }
9092 break;
9093 case 'v':
9094 verbose++;
9095 break;
9096 case 'V':
9097 flags = ZFS_IMPORT_VERBATIM;
9098 break;
9099 case 'x':
9100 vn_dumpdir = optarg;
9101 break;
9102 default:
9103 usage();
9104 break;
9105 }
9106 }
9107
9108 if (!dump_opt['e'] && searchdirs != NULL) {
9109 (void) fprintf(stderr, "-p option requires use of -e\n");
9110 usage();
9111 }
9112 #if defined(_LP64)
9113 /*
9114 * ZDB does not typically re-read blocks; therefore limit the ARC
9115 * to 256 MB, which can be used entirely for metadata.
9116 */
9117 zfs_arc_min = 2ULL << SPA_MAXBLOCKSHIFT;
9118 zfs_arc_max = 256 * 1024 * 1024;
9119 #endif
9120
9121 /*
9122 * "zdb -c" uses checksum-verifying scrub i/os which are async reads.
9123 * "zdb -b" uses traversal prefetch which uses async reads.
9124 * For good performance, let several of them be active at once.
9125 */
9126 zfs_vdev_async_read_max_active = 10;
9127
9128 /*
9129 * Disable reference tracking for better performance.
9130 */
9131 reference_tracking_enable = B_FALSE;
9132
9133 /*
9134 * Do not fail spa_load when spa_load_verify fails. This is needed
9135 * to load non-idle pools.
9136 */
9137 spa_load_verify_dryrun = B_TRUE;
9138
9139 /*
9140 * ZDB should have ability to read spacemaps.
9141 */
9142 spa_mode_readable_spacemaps = B_TRUE;
9143
9144 kernel_init(SPA_MODE_READ);
9145
9146 if (dump_all)
9147 verbose = MAX(verbose, 1);
9148
9149 for (c = 0; c < 256; c++) {
9150 if (dump_all && strchr("ABeEFkKlLNOPrRSXy", c) == NULL)
9151 dump_opt[c] = 1;
9152 if (dump_opt[c])
9153 dump_opt[c] += verbose;
9154 }
9155
9156 libspl_set_assert_ok((dump_opt['A'] == 1) || (dump_opt['A'] > 2));
9157 zfs_recover = (dump_opt['A'] > 1);
9158
9159 argc -= optind;
9160 argv += optind;
9161 if (argc < 2 && dump_opt['R'])
9162 usage();
9163
9164 if (dump_opt['E']) {
9165 if (argc != 1)
9166 usage();
9167 zdb_embedded_block(argv[0]);
9168 return (0);
9169 }
9170
9171 if (argc < 1) {
9172 if (!dump_opt['e'] && dump_opt['C']) {
9173 dump_cachefile(spa_config_path);
9174 return (0);
9175 }
9176 usage();
9177 }
9178
9179 if (dump_opt['l'])
9180 return (dump_label(argv[0]));
9181
9182 if (dump_opt['O']) {
9183 if (argc != 2)
9184 usage();
9185 dump_opt['v'] = verbose + 3;
9186 return (dump_path(argv[0], argv[1], NULL));
9187 }
9188 if (dump_opt['r']) {
9189 target_is_spa = B_FALSE;
9190 if (argc != 3)
9191 usage();
9192 dump_opt['v'] = verbose;
9193 error = dump_path(argv[0], argv[1], &object);
9194 if (error != 0)
9195 fatal("internal error: %s", strerror(error));
9196 }
9197
9198 if (dump_opt['X'] || dump_opt['F'])
9199 rewind = ZPOOL_DO_REWIND |
9200 (dump_opt['X'] ? ZPOOL_EXTREME_REWIND : 0);
9201
9202 /* -N implies -d */
9203 if (dump_opt['N'] && dump_opt['d'] == 0)
9204 dump_opt['d'] = dump_opt['N'];
9205
9206 if (nvlist_alloc(&policy, NV_UNIQUE_NAME_TYPE, 0) != 0 ||
9207 nvlist_add_uint64(policy, ZPOOL_LOAD_REQUEST_TXG, max_txg) != 0 ||
9208 nvlist_add_uint32(policy, ZPOOL_LOAD_REWIND_POLICY, rewind) != 0)
9209 fatal("internal error: %s", strerror(ENOMEM));
9210
9211 error = 0;
9212 target = argv[0];
9213
9214 if (strpbrk(target, "/@") != NULL) {
9215 size_t targetlen;
9216
9217 target_pool = strdup(target);
9218 *strpbrk(target_pool, "/@") = '\0';
9219
9220 target_is_spa = B_FALSE;
9221 targetlen = strlen(target);
9222 if (targetlen && target[targetlen - 1] == '/')
9223 target[targetlen - 1] = '\0';
9224
9225 /*
9226 * See if an objset ID was supplied (-d <pool>/<objset ID>).
9227 * To disambiguate tank/100, consider the 100 as objsetID
9228 * if -N was given, otherwise 100 is an objsetID iff
9229 * tank/100 as a named dataset fails on lookup.
9230 */
9231 objset_str = strchr(target, '/');
9232 if (objset_str && strlen(objset_str) > 1 &&
9233 zdb_numeric(objset_str + 1)) {
9234 char *endptr;
9235 errno = 0;
9236 objset_str++;
9237 objset_id = strtoull(objset_str, &endptr, 0);
9238 /* dataset 0 is the same as opening the pool */
9239 if (errno == 0 && endptr != objset_str &&
9240 objset_id != 0) {
9241 if (dump_opt['N'])
9242 dataset_lookup = B_TRUE;
9243 }
9244 /* normal dataset name not an objset ID */
9245 if (endptr == objset_str) {
9246 objset_id = -1;
9247 }
9248 } else if (objset_str && !zdb_numeric(objset_str + 1) &&
9249 dump_opt['N']) {
9250 printf("Supply a numeric objset ID with -N\n");
9251 exit(1);
9252 }
9253 } else {
9254 target_pool = target;
9255 }
9256
9257 if (dump_opt['e']) {
9258 importargs_t args = { 0 };
9259
9260 args.paths = nsearch;
9261 args.path = searchdirs;
9262 args.can_be_active = B_TRUE;
9263
9264 libpc_handle_t lpch = {
9265 .lpc_lib_handle = NULL,
9266 .lpc_ops = &libzpool_config_ops,
9267 .lpc_printerr = B_TRUE
9268 };
9269 error = zpool_find_config(&lpch, target_pool, &cfg, &args);
9270
9271 if (error == 0) {
9272
9273 if (nvlist_add_nvlist(cfg,
9274 ZPOOL_LOAD_POLICY, policy) != 0) {
9275 fatal("can't open '%s': %s",
9276 target, strerror(ENOMEM));
9277 }
9278
9279 if (dump_opt['C'] > 1) {
9280 (void) printf("\nConfiguration for import:\n");
9281 dump_nvlist(cfg, 8);
9282 }
9283
9284 /*
9285 * Disable the activity check to allow examination of
9286 * active pools.
9287 */
9288 error = spa_import(target_pool, cfg, NULL,
9289 flags | ZFS_IMPORT_SKIP_MMP);
9290 }
9291 }
9292
9293 if (searchdirs != NULL) {
9294 umem_free(searchdirs, nsearch * sizeof (char *));
9295 searchdirs = NULL;
9296 }
9297
9298 /*
9299 * import_checkpointed_state makes the assumption that the
9300 * target pool that we pass it is already part of the spa
9301 * namespace. Because of that we need to make sure to call
9302 * it always after the -e option has been processed, which
9303 * imports the pool to the namespace if it's not in the
9304 * cachefile.
9305 */
9306 char *checkpoint_pool = NULL;
9307 char *checkpoint_target = NULL;
9308 if (dump_opt['k']) {
9309 checkpoint_pool = import_checkpointed_state(target, cfg,
9310 &checkpoint_target);
9311
9312 if (checkpoint_target != NULL)
9313 target = checkpoint_target;
9314 }
9315
9316 if (cfg != NULL) {
9317 nvlist_free(cfg);
9318 cfg = NULL;
9319 }
9320
9321 if (target_pool != target)
9322 free(target_pool);
9323
9324 if (error == 0) {
9325 if (dump_opt['k'] && (target_is_spa || dump_opt['R'])) {
9326 ASSERT(checkpoint_pool != NULL);
9327 ASSERT(checkpoint_target == NULL);
9328
9329 error = spa_open(checkpoint_pool, &spa, FTAG);
9330 if (error != 0) {
9331 fatal("Tried to open pool \"%s\" but "
9332 "spa_open() failed with error %d\n",
9333 checkpoint_pool, error);
9334 }
9335
9336 } else if (target_is_spa || dump_opt['R'] || dump_opt['B'] ||
9337 objset_id == 0) {
9338 zdb_set_skip_mmp(target);
9339 error = spa_open_rewind(target, &spa, FTAG, policy,
9340 NULL);
9341 if (error) {
9342 /*
9343 * If we're missing the log device then
9344 * try opening the pool after clearing the
9345 * log state.
9346 */
9347 mutex_enter(&spa_namespace_lock);
9348 if ((spa = spa_lookup(target)) != NULL &&
9349 spa->spa_log_state == SPA_LOG_MISSING) {
9350 spa->spa_log_state = SPA_LOG_CLEAR;
9351 error = 0;
9352 }
9353 mutex_exit(&spa_namespace_lock);
9354
9355 if (!error) {
9356 error = spa_open_rewind(target, &spa,
9357 FTAG, policy, NULL);
9358 }
9359 }
9360 } else if (strpbrk(target, "#") != NULL) {
9361 dsl_pool_t *dp;
9362 error = dsl_pool_hold(target, FTAG, &dp);
9363 if (error != 0) {
9364 fatal("can't dump '%s': %s", target,
9365 strerror(error));
9366 }
9367 error = dump_bookmark(dp, target, B_TRUE, verbose > 1);
9368 dsl_pool_rele(dp, FTAG);
9369 if (error != 0) {
9370 fatal("can't dump '%s': %s", target,
9371 strerror(error));
9372 }
9373 return (error);
9374 } else {
9375 target_pool = strdup(target);
9376 if (strpbrk(target, "/@") != NULL)
9377 *strpbrk(target_pool, "/@") = '\0';
9378
9379 zdb_set_skip_mmp(target);
9380 /*
9381 * If -N was supplied, the user has indicated that
9382 * zdb -d <pool>/<objsetID> is in effect. Otherwise
9383 * we first assume that the dataset string is the
9384 * dataset name. If dmu_objset_hold fails with the
9385 * dataset string, and we have an objset_id, retry the
9386 * lookup with the objsetID.
9387 */
9388 boolean_t retry = B_TRUE;
9389 retry_lookup:
9390 if (dataset_lookup == B_TRUE) {
9391 /*
9392 * Use the supplied id to get the name
9393 * for open_objset.
9394 */
9395 error = spa_open(target_pool, &spa, FTAG);
9396 if (error == 0) {
9397 error = name_from_objset_id(spa,
9398 objset_id, dsname);
9399 spa_close(spa, FTAG);
9400 if (error == 0)
9401 target = dsname;
9402 }
9403 }
9404 if (error == 0) {
9405 if (objset_id > 0 && retry) {
9406 int err = dmu_objset_hold(target, FTAG,
9407 &os);
9408 if (err) {
9409 dataset_lookup = B_TRUE;
9410 retry = B_FALSE;
9411 goto retry_lookup;
9412 } else {
9413 dmu_objset_rele(os, FTAG);
9414 }
9415 }
9416 error = open_objset(target, FTAG, &os);
9417 }
9418 if (error == 0)
9419 spa = dmu_objset_spa(os);
9420 free(target_pool);
9421 }
9422 }
9423 nvlist_free(policy);
9424
9425 if (error)
9426 fatal("can't open '%s': %s", target, strerror(error));
9427
9428 /*
9429 * Set the pool failure mode to panic in order to prevent the pool
9430 * from suspending. A suspended I/O will have no way to resume and
9431 * can prevent the zdb(8) command from terminating as expected.
9432 */
9433 if (spa != NULL)
9434 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC;
9435
9436 argv++;
9437 argc--;
9438 if (dump_opt['r']) {
9439 error = zdb_copy_object(os, object, argv[1]);
9440 } else if (!dump_opt['R']) {
9441 flagbits['d'] = ZOR_FLAG_DIRECTORY;
9442 flagbits['f'] = ZOR_FLAG_PLAIN_FILE;
9443 flagbits['m'] = ZOR_FLAG_SPACE_MAP;
9444 flagbits['z'] = ZOR_FLAG_ZAP;
9445 flagbits['A'] = ZOR_FLAG_ALL_TYPES;
9446
9447 if (argc > 0 && dump_opt['d']) {
9448 zopt_object_args = argc;
9449 zopt_object_ranges = calloc(zopt_object_args,
9450 sizeof (zopt_object_range_t));
9451 for (unsigned i = 0; i < zopt_object_args; i++) {
9452 int err;
9453 const char *msg = NULL;
9454
9455 err = parse_object_range(argv[i],
9456 &zopt_object_ranges[i], &msg);
9457 if (err != 0)
9458 fatal("Bad object or range: '%s': %s\n",
9459 argv[i], msg ?: "");
9460 }
9461 } else if (argc > 0 && dump_opt['m']) {
9462 zopt_metaslab_args = argc;
9463 zopt_metaslab = calloc(zopt_metaslab_args,
9464 sizeof (uint64_t));
9465 for (unsigned i = 0; i < zopt_metaslab_args; i++) {
9466 errno = 0;
9467 zopt_metaslab[i] = strtoull(argv[i], NULL, 0);
9468 if (zopt_metaslab[i] == 0 && errno != 0)
9469 fatal("bad number %s: %s", argv[i],
9470 strerror(errno));
9471 }
9472 }
9473 if (dump_opt['B']) {
9474 dump_backup(target, objset_id,
9475 argc > 0 ? argv[0] : NULL);
9476 } else if (os != NULL) {
9477 dump_objset(os);
9478 } else if (zopt_object_args > 0 && !dump_opt['m']) {
9479 dump_objset(spa->spa_meta_objset);
9480 } else {
9481 dump_zpool(spa);
9482 }
9483 } else {
9484 flagbits['b'] = ZDB_FLAG_PRINT_BLKPTR;
9485 flagbits['c'] = ZDB_FLAG_CHECKSUM;
9486 flagbits['d'] = ZDB_FLAG_DECOMPRESS;
9487 flagbits['e'] = ZDB_FLAG_BSWAP;
9488 flagbits['g'] = ZDB_FLAG_GBH;
9489 flagbits['i'] = ZDB_FLAG_INDIRECT;
9490 flagbits['r'] = ZDB_FLAG_RAW;
9491 flagbits['v'] = ZDB_FLAG_VERBOSE;
9492
9493 for (int i = 0; i < argc; i++)
9494 zdb_read_block(argv[i], spa);
9495 }
9496
9497 if (dump_opt['k']) {
9498 free(checkpoint_pool);
9499 if (!target_is_spa)
9500 free(checkpoint_target);
9501 }
9502
9503 if (os != NULL) {
9504 close_objset(os, FTAG);
9505 } else {
9506 spa_close(spa, FTAG);
9507 }
9508
9509 fuid_table_destroy();
9510
9511 dump_debug_buffer();
9512
9513 kernel_fini();
9514
9515 return (error);
9516 }