]> git.proxmox.com Git - mirror_zfs.git/blob - cmd/zfs/zfs_iter.c
Speed up 'zfs list -t snapshot -o name -s name'
[mirror_zfs.git] / cmd / zfs / zfs_iter.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012 Pawel Jakub Dawidek <pawel@dawidek.net>.
24 */
25
26 #include <libintl.h>
27 #include <libuutil.h>
28 #include <stddef.h>
29 #include <stdio.h>
30 #include <stdlib.h>
31 #include <strings.h>
32
33 #include <libzfs.h>
34
35 #include "zfs_util.h"
36 #include "zfs_iter.h"
37
38 /*
39 * This is a private interface used to gather up all the datasets specified on
40 * the command line so that we can iterate over them in order.
41 *
42 * First, we iterate over all filesystems, gathering them together into an
43 * AVL tree. We report errors for any explicitly specified datasets
44 * that we couldn't open.
45 *
46 * When finished, we have an AVL tree of ZFS handles. We go through and execute
47 * the provided callback for each one, passing whatever data the user supplied.
48 */
49
50 typedef struct zfs_node {
51 zfs_handle_t *zn_handle;
52 uu_avl_node_t zn_avlnode;
53 } zfs_node_t;
54
55 typedef struct callback_data {
56 uu_avl_t *cb_avl;
57 int cb_flags;
58 zfs_type_t cb_types;
59 zfs_sort_column_t *cb_sortcol;
60 zprop_list_t **cb_proplist;
61 int cb_depth_limit;
62 int cb_depth;
63 uint8_t cb_props_table[ZFS_NUM_PROPS];
64 } callback_data_t;
65
66 uu_avl_pool_t *avl_pool;
67
68 /*
69 * Include snaps if they were requested or if this a zfs list where types
70 * were not specified and the "listsnapshots" property is set on this pool.
71 */
72 static int
73 zfs_include_snapshots(zfs_handle_t *zhp, callback_data_t *cb)
74 {
75 zpool_handle_t *zph;
76
77 if ((cb->cb_flags & ZFS_ITER_PROP_LISTSNAPS) == 0)
78 return (cb->cb_types & ZFS_TYPE_SNAPSHOT);
79
80 zph = zfs_get_pool_handle(zhp);
81 return (zpool_get_prop_int(zph, ZPOOL_PROP_LISTSNAPS, NULL));
82 }
83
84 /*
85 * Called for each dataset. If the object is of an appropriate type,
86 * add it to the avl tree and recurse over any children as necessary.
87 */
88 static int
89 zfs_callback(zfs_handle_t *zhp, void *data)
90 {
91 callback_data_t *cb = data;
92 int dontclose = 0;
93 int include_snaps = zfs_include_snapshots(zhp, cb);
94
95 if ((zfs_get_type(zhp) & cb->cb_types) ||
96 ((zfs_get_type(zhp) == ZFS_TYPE_SNAPSHOT) && include_snaps)) {
97 uu_avl_index_t idx;
98 zfs_node_t *node = safe_malloc(sizeof (zfs_node_t));
99
100 node->zn_handle = zhp;
101 uu_avl_node_init(node, &node->zn_avlnode, avl_pool);
102 if (uu_avl_find(cb->cb_avl, node, cb->cb_sortcol,
103 &idx) == NULL) {
104 if (cb->cb_proplist) {
105 if ((*cb->cb_proplist) &&
106 !(*cb->cb_proplist)->pl_all)
107 zfs_prune_proplist(zhp,
108 cb->cb_props_table);
109
110 if (zfs_expand_proplist(zhp, cb->cb_proplist,
111 (cb->cb_flags & ZFS_ITER_RECVD_PROPS))
112 != 0) {
113 free(node);
114 return (-1);
115 }
116 }
117 uu_avl_insert(cb->cb_avl, node, idx);
118 dontclose = 1;
119 } else {
120 free(node);
121 }
122 }
123
124 /*
125 * Recurse if necessary.
126 */
127 if (cb->cb_flags & ZFS_ITER_RECURSE &&
128 ((cb->cb_flags & ZFS_ITER_DEPTH_LIMIT) == 0 ||
129 cb->cb_depth < cb->cb_depth_limit)) {
130 cb->cb_depth++;
131 if (zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM)
132 (void) zfs_iter_filesystems(zhp, zfs_callback, data);
133 if ((zfs_get_type(zhp) != ZFS_TYPE_SNAPSHOT) && include_snaps) {
134 (void) zfs_iter_snapshots(zhp,
135 (cb->cb_flags & ZFS_ITER_SIMPLE) != 0, zfs_callback,
136 data);
137 }
138 cb->cb_depth--;
139 }
140
141 if (!dontclose)
142 zfs_close(zhp);
143
144 return (0);
145 }
146
147 int
148 zfs_add_sort_column(zfs_sort_column_t **sc, const char *name,
149 boolean_t reverse)
150 {
151 zfs_sort_column_t *col;
152 zfs_prop_t prop;
153
154 if ((prop = zfs_name_to_prop(name)) == ZPROP_INVAL &&
155 !zfs_prop_user(name))
156 return (-1);
157
158 col = safe_malloc(sizeof (zfs_sort_column_t));
159
160 col->sc_prop = prop;
161 col->sc_reverse = reverse;
162 if (prop == ZPROP_INVAL) {
163 col->sc_user_prop = safe_malloc(strlen(name) + 1);
164 (void) strcpy(col->sc_user_prop, name);
165 }
166
167 if (*sc == NULL) {
168 col->sc_last = col;
169 *sc = col;
170 } else {
171 (*sc)->sc_last->sc_next = col;
172 (*sc)->sc_last = col;
173 }
174
175 return (0);
176 }
177
178 void
179 zfs_free_sort_columns(zfs_sort_column_t *sc)
180 {
181 zfs_sort_column_t *col;
182
183 while (sc != NULL) {
184 col = sc->sc_next;
185 free(sc->sc_user_prop);
186 free(sc);
187 sc = col;
188 }
189 }
190
191 int
192 zfs_sort_only_by_name(const zfs_sort_column_t *sc)
193 {
194 return (sc != NULL && sc->sc_next == NULL &&
195 sc->sc_prop == ZFS_PROP_NAME);
196 }
197
198 /* ARGSUSED */
199 static int
200 zfs_compare(const void *larg, const void *rarg, void *unused)
201 {
202 zfs_handle_t *l = ((zfs_node_t *)larg)->zn_handle;
203 zfs_handle_t *r = ((zfs_node_t *)rarg)->zn_handle;
204 const char *lname = zfs_get_name(l);
205 const char *rname = zfs_get_name(r);
206 char *lat, *rat;
207 uint64_t lcreate, rcreate;
208 int ret;
209
210 lat = (char *)strchr(lname, '@');
211 rat = (char *)strchr(rname, '@');
212
213 if (lat != NULL)
214 *lat = '\0';
215 if (rat != NULL)
216 *rat = '\0';
217
218 ret = strcmp(lname, rname);
219 if (ret == 0) {
220 /*
221 * If we're comparing a dataset to one of its snapshots, we
222 * always make the full dataset first.
223 */
224 if (lat == NULL) {
225 ret = -1;
226 } else if (rat == NULL) {
227 ret = 1;
228 } else {
229 /*
230 * If we have two snapshots from the same dataset, then
231 * we want to sort them according to creation time. We
232 * use the hidden CREATETXG property to get an absolute
233 * ordering of snapshots.
234 */
235 lcreate = zfs_prop_get_int(l, ZFS_PROP_CREATETXG);
236 rcreate = zfs_prop_get_int(r, ZFS_PROP_CREATETXG);
237
238 /*
239 * Both lcreate and rcreate being 0 means we don't have
240 * properties and we should compare full name.
241 */
242 if (lcreate == 0 && rcreate == 0)
243 ret = strcmp(lat + 1, rat + 1);
244 else if (lcreate < rcreate)
245 ret = -1;
246 else if (lcreate > rcreate)
247 ret = 1;
248 }
249 }
250
251 if (lat != NULL)
252 *lat = '@';
253 if (rat != NULL)
254 *rat = '@';
255
256 return (ret);
257 }
258
259 /*
260 * Sort datasets by specified columns.
261 *
262 * o Numeric types sort in ascending order.
263 * o String types sort in alphabetical order.
264 * o Types inappropriate for a row sort that row to the literal
265 * bottom, regardless of the specified ordering.
266 *
267 * If no sort columns are specified, or two datasets compare equally
268 * across all specified columns, they are sorted alphabetically by name
269 * with snapshots grouped under their parents.
270 */
271 static int
272 zfs_sort(const void *larg, const void *rarg, void *data)
273 {
274 zfs_handle_t *l = ((zfs_node_t *)larg)->zn_handle;
275 zfs_handle_t *r = ((zfs_node_t *)rarg)->zn_handle;
276 zfs_sort_column_t *sc = (zfs_sort_column_t *)data;
277 zfs_sort_column_t *psc;
278
279 for (psc = sc; psc != NULL; psc = psc->sc_next) {
280 char lbuf[ZFS_MAXPROPLEN], rbuf[ZFS_MAXPROPLEN];
281 char *lstr, *rstr;
282 uint64_t lnum, rnum;
283 boolean_t lvalid, rvalid;
284 int ret = 0;
285
286 /*
287 * We group the checks below the generic code. If 'lstr' and
288 * 'rstr' are non-NULL, then we do a string based comparison.
289 * Otherwise, we compare 'lnum' and 'rnum'.
290 */
291 lstr = rstr = NULL;
292 if (psc->sc_prop == ZPROP_INVAL) {
293 nvlist_t *luser, *ruser;
294 nvlist_t *lval, *rval;
295
296 luser = zfs_get_user_props(l);
297 ruser = zfs_get_user_props(r);
298
299 lvalid = (nvlist_lookup_nvlist(luser,
300 psc->sc_user_prop, &lval) == 0);
301 rvalid = (nvlist_lookup_nvlist(ruser,
302 psc->sc_user_prop, &rval) == 0);
303
304 if (lvalid)
305 verify(nvlist_lookup_string(lval,
306 ZPROP_VALUE, &lstr) == 0);
307 if (rvalid)
308 verify(nvlist_lookup_string(rval,
309 ZPROP_VALUE, &rstr) == 0);
310 } else if (psc->sc_prop == ZFS_PROP_NAME) {
311 lvalid = rvalid = B_TRUE;
312
313 (void) strlcpy(lbuf, zfs_get_name(l), sizeof(lbuf));
314 (void) strlcpy(rbuf, zfs_get_name(r), sizeof(rbuf));
315
316 lstr = lbuf;
317 rstr = rbuf;
318 } else if (zfs_prop_is_string(psc->sc_prop)) {
319 lvalid = (zfs_prop_get(l, psc->sc_prop, lbuf,
320 sizeof (lbuf), NULL, NULL, 0, B_TRUE) == 0);
321 rvalid = (zfs_prop_get(r, psc->sc_prop, rbuf,
322 sizeof (rbuf), NULL, NULL, 0, B_TRUE) == 0);
323
324 lstr = lbuf;
325 rstr = rbuf;
326 } else {
327 lvalid = zfs_prop_valid_for_type(psc->sc_prop,
328 zfs_get_type(l));
329 rvalid = zfs_prop_valid_for_type(psc->sc_prop,
330 zfs_get_type(r));
331
332 if (lvalid)
333 (void) zfs_prop_get_numeric(l, psc->sc_prop,
334 &lnum, NULL, NULL, 0);
335 if (rvalid)
336 (void) zfs_prop_get_numeric(r, psc->sc_prop,
337 &rnum, NULL, NULL, 0);
338 }
339
340 if (!lvalid && !rvalid)
341 continue;
342 else if (!lvalid)
343 return (1);
344 else if (!rvalid)
345 return (-1);
346
347 if (lstr)
348 ret = strcmp(lstr, rstr);
349 else if (lnum < rnum)
350 ret = -1;
351 else if (lnum > rnum)
352 ret = 1;
353
354 if (ret != 0) {
355 if (psc->sc_reverse == B_TRUE)
356 ret = (ret < 0) ? 1 : -1;
357 return (ret);
358 }
359 }
360
361 return (zfs_compare(larg, rarg, NULL));
362 }
363
364 int
365 zfs_for_each(int argc, char **argv, int flags, zfs_type_t types,
366 zfs_sort_column_t *sortcol, zprop_list_t **proplist, int limit,
367 zfs_iter_f callback, void *data)
368 {
369 callback_data_t cb = {0};
370 int ret = 0;
371 zfs_node_t *node;
372 uu_avl_walk_t *walk;
373
374 avl_pool = uu_avl_pool_create("zfs_pool", sizeof (zfs_node_t),
375 offsetof(zfs_node_t, zn_avlnode), zfs_sort, UU_DEFAULT);
376
377 if (avl_pool == NULL)
378 nomem();
379
380 cb.cb_sortcol = sortcol;
381 cb.cb_flags = flags;
382 cb.cb_proplist = proplist;
383 cb.cb_types = types;
384 cb.cb_depth_limit = limit;
385 /*
386 * If cb_proplist is provided then in the zfs_handles created we
387 * retain only those properties listed in cb_proplist and sortcol.
388 * The rest are pruned. So, the caller should make sure that no other
389 * properties other than those listed in cb_proplist/sortcol are
390 * accessed.
391 *
392 * If cb_proplist is NULL then we retain all the properties. We
393 * always retain the zoned property, which some other properties
394 * need (userquota & friends), and the createtxg property, which
395 * we need to sort snapshots.
396 */
397 if (cb.cb_proplist && *cb.cb_proplist) {
398 zprop_list_t *p = *cb.cb_proplist;
399
400 while (p) {
401 if (p->pl_prop >= ZFS_PROP_TYPE &&
402 p->pl_prop < ZFS_NUM_PROPS) {
403 cb.cb_props_table[p->pl_prop] = B_TRUE;
404 }
405 p = p->pl_next;
406 }
407
408 while (sortcol) {
409 if (sortcol->sc_prop >= ZFS_PROP_TYPE &&
410 sortcol->sc_prop < ZFS_NUM_PROPS) {
411 cb.cb_props_table[sortcol->sc_prop] = B_TRUE;
412 }
413 sortcol = sortcol->sc_next;
414 }
415
416 cb.cb_props_table[ZFS_PROP_ZONED] = B_TRUE;
417 cb.cb_props_table[ZFS_PROP_CREATETXG] = B_TRUE;
418 } else {
419 (void) memset(cb.cb_props_table, B_TRUE,
420 sizeof (cb.cb_props_table));
421 }
422
423 if ((cb.cb_avl = uu_avl_create(avl_pool, NULL, UU_DEFAULT)) == NULL)
424 nomem();
425
426 if (argc == 0) {
427 /*
428 * If given no arguments, iterate over all datasets.
429 */
430 cb.cb_flags |= ZFS_ITER_RECURSE;
431 ret = zfs_iter_root(g_zfs, zfs_callback, &cb);
432 } else {
433 int i;
434 zfs_handle_t *zhp;
435 zfs_type_t argtype;
436
437 /*
438 * If we're recursive, then we always allow filesystems as
439 * arguments. If we also are interested in snapshots, then we
440 * can take volumes as well.
441 */
442 argtype = types;
443 if (flags & ZFS_ITER_RECURSE) {
444 argtype |= ZFS_TYPE_FILESYSTEM;
445 if (types & ZFS_TYPE_SNAPSHOT)
446 argtype |= ZFS_TYPE_VOLUME;
447 }
448
449 for (i = 0; i < argc; i++) {
450 if (flags & ZFS_ITER_ARGS_CAN_BE_PATHS) {
451 zhp = zfs_path_to_zhandle(g_zfs, argv[i],
452 argtype);
453 } else {
454 zhp = zfs_open(g_zfs, argv[i], argtype);
455 }
456 if (zhp != NULL)
457 ret |= zfs_callback(zhp, &cb);
458 else
459 ret = 1;
460 }
461 }
462
463 /*
464 * At this point we've got our AVL tree full of zfs handles, so iterate
465 * over each one and execute the real user callback.
466 */
467 for (node = uu_avl_first(cb.cb_avl); node != NULL;
468 node = uu_avl_next(cb.cb_avl, node))
469 ret |= callback(node->zn_handle, data);
470
471 /*
472 * Finally, clean up the AVL tree.
473 */
474 if ((walk = uu_avl_walk_start(cb.cb_avl, UU_WALK_ROBUST)) == NULL)
475 nomem();
476
477 while ((node = uu_avl_walk_next(walk)) != NULL) {
478 uu_avl_remove(cb.cb_avl, node);
479 zfs_close(node->zn_handle);
480 free(node);
481 }
482
483 uu_avl_walk_end(walk);
484 uu_avl_destroy(cb.cb_avl);
485 uu_avl_pool_destroy(avl_pool);
486
487 return (ret);
488 }