]> git.proxmox.com Git - mirror_zfs-debian.git/blob - cmd/zpool/zpool_vdev.c
Add helper functions for manipulating device names
[mirror_zfs-debian.git] / cmd / zpool / zpool_vdev.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25
26 /*
27 * Functions to convert between a list of vdevs and an nvlist representing the
28 * configuration. Each entry in the list can be one of:
29 *
30 * Device vdevs
31 * disk=(path=..., devid=...)
32 * file=(path=...)
33 *
34 * Group vdevs
35 * raidz[1|2]=(...)
36 * mirror=(...)
37 *
38 * Hot spares
39 *
40 * While the underlying implementation supports it, group vdevs cannot contain
41 * other group vdevs. All userland verification of devices is contained within
42 * this file. If successful, the nvlist returned can be passed directly to the
43 * kernel; we've done as much verification as possible in userland.
44 *
45 * Hot spares are a special case, and passed down as an array of disk vdevs, at
46 * the same level as the root of the vdev tree.
47 *
48 * The only function exported by this file is 'make_root_vdev'. The
49 * function performs several passes:
50 *
51 * 1. Construct the vdev specification. Performs syntax validation and
52 * makes sure each device is valid.
53 * 2. Check for devices in use. Using libblkid to make sure that no
54 * devices are also in use. Some can be overridden using the 'force'
55 * flag, others cannot.
56 * 3. Check for replication errors if the 'force' flag is not specified.
57 * validates that the replication level is consistent across the
58 * entire pool.
59 * 4. Call libzfs to label any whole disks with an EFI label.
60 */
61
62 #include <assert.h>
63 #include <ctype.h>
64 #include <devid.h>
65 #include <errno.h>
66 #include <fcntl.h>
67 #include <libintl.h>
68 #include <libnvpair.h>
69 #include <limits.h>
70 #include <stdio.h>
71 #include <string.h>
72 #include <unistd.h>
73 #include <sys/efi_partition.h>
74 #include <sys/stat.h>
75 #include <sys/vtoc.h>
76 #include <sys/mntent.h>
77 #include <uuid/uuid.h>
78 #ifdef HAVE_LIBBLKID
79 #include <blkid/blkid.h>
80 #else
81 #define blkid_cache void *
82 #endif /* HAVE_LIBBLKID */
83
84 #include "zpool_util.h"
85
86 /*
87 * For any given vdev specification, we can have multiple errors. The
88 * vdev_error() function keeps track of whether we have seen an error yet, and
89 * prints out a header if its the first error we've seen.
90 */
91 boolean_t error_seen;
92 boolean_t is_force;
93
94 /*PRINTFLIKE1*/
95 static void
96 vdev_error(const char *fmt, ...)
97 {
98 va_list ap;
99
100 if (!error_seen) {
101 (void) fprintf(stderr, gettext("invalid vdev specification\n"));
102 if (!is_force)
103 (void) fprintf(stderr, gettext("use '-f' to override "
104 "the following errors:\n"));
105 else
106 (void) fprintf(stderr, gettext("the following errors "
107 "must be manually repaired:\n"));
108 error_seen = B_TRUE;
109 }
110
111 va_start(ap, fmt);
112 (void) vfprintf(stderr, fmt, ap);
113 va_end(ap);
114 }
115
116 /*
117 * Check that a file is valid. All we can do in this case is check that it's
118 * not in use by another pool, and not in use by swap.
119 */
120 static int
121 check_file(const char *file, boolean_t force, boolean_t isspare)
122 {
123 char *name;
124 int fd;
125 int ret = 0;
126 pool_state_t state;
127 boolean_t inuse;
128
129 if ((fd = open(file, O_RDONLY)) < 0)
130 return (0);
131
132 if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) == 0 && inuse) {
133 const char *desc;
134
135 switch (state) {
136 case POOL_STATE_ACTIVE:
137 desc = gettext("active");
138 break;
139
140 case POOL_STATE_EXPORTED:
141 desc = gettext("exported");
142 break;
143
144 case POOL_STATE_POTENTIALLY_ACTIVE:
145 desc = gettext("potentially active");
146 break;
147
148 default:
149 desc = gettext("unknown");
150 break;
151 }
152
153 /*
154 * Allow hot spares to be shared between pools.
155 */
156 if (state == POOL_STATE_SPARE && isspare)
157 return (0);
158
159 if (state == POOL_STATE_ACTIVE ||
160 state == POOL_STATE_SPARE || !force) {
161 switch (state) {
162 case POOL_STATE_SPARE:
163 vdev_error(gettext("%s is reserved as a hot "
164 "spare for pool %s\n"), file, name);
165 break;
166 default:
167 vdev_error(gettext("%s is part of %s pool "
168 "'%s'\n"), file, desc, name);
169 break;
170 }
171 ret = -1;
172 }
173
174 free(name);
175 }
176
177 (void) close(fd);
178 return (ret);
179 }
180
181 static void
182 check_error(int err)
183 {
184 (void) fprintf(stderr, gettext("warning: device in use checking "
185 "failed: %s\n"), strerror(err));
186 }
187
188 static int
189 check_slice(const char *path, blkid_cache cache, int force, boolean_t isspare)
190 {
191 struct stat64 statbuf;
192 int err;
193 #ifdef HAVE_LIBBLKID
194 char *value;
195 #endif /* HAVE_LIBBLKID */
196
197 if (stat64(path, &statbuf) != 0) {
198 vdev_error(gettext("cannot stat %s: %s\n"),
199 path, strerror(errno));
200 return (-1);
201 }
202
203 #ifdef HAVE_LIBBLKID
204 /* No valid type detected device is safe to use */
205 value = blkid_get_tag_value(cache, "TYPE", path);
206 if (value == NULL)
207 return (0);
208
209 /*
210 * If libblkid detects a ZFS device, we check the device
211 * using check_file() to see if it's safe. The one safe
212 * case is a spare device shared between multiple pools.
213 */
214 if (strcmp(value, "zfs") == 0) {
215 err = check_file(path, force, isspare);
216 } else {
217 if (force) {
218 err = 0;
219 } else {
220 err = -1;
221 vdev_error(gettext("%s contains a filesystem of "
222 "type '%s'\n"), path, value);
223 }
224 }
225
226 free(value);
227 #else
228 err = check_file(path, force, isspare);
229 #endif /* HAVE_LIBBLKID */
230
231 return (err);
232 }
233
234 /*
235 * Validate a whole disk. Iterate over all slices on the disk and make sure
236 * that none is in use by calling check_slice().
237 */
238 static int
239 check_disk(const char *path, blkid_cache cache, int force,
240 boolean_t isspare, boolean_t iswholedisk)
241 {
242 struct dk_gpt *vtoc;
243 char slice_path[MAXPATHLEN];
244 int err = 0;
245 int fd, i;
246
247 /* This is not a wholedisk we only check the given partition */
248 if (!iswholedisk)
249 return check_slice(path, cache, force, isspare);
250
251 /*
252 * When the device is a whole disk try to read the efi partition
253 * label. If this is successful we safely check the all of the
254 * partitions. However, when it fails it may simply be because
255 * the disk is partitioned via the MBR. Since we currently can
256 * not easily decode the MBR return a failure and prompt to the
257 * user to use force option since we cannot check the partitions.
258 */
259 if ((fd = open(path, O_RDWR|O_DIRECT|O_EXCL)) < 0) {
260 check_error(errno);
261 return -1;
262 }
263
264 if ((err = efi_alloc_and_read(fd, &vtoc)) != 0) {
265 (void) close(fd);
266
267 if (force) {
268 return 0;
269 } else {
270 vdev_error(gettext("%s does not contain an EFI "
271 "label but it may contain partition\n"
272 "information in the MBR.\n"), path);
273 return -1;
274 }
275 }
276
277 /*
278 * The primary efi partition label is damaged however the secondary
279 * label at the end of the device is intact. Rather than use this
280 * label we should play it safe and treat this as a non efi device.
281 */
282 if (vtoc->efi_flags & EFI_GPT_PRIMARY_CORRUPT) {
283 efi_free(vtoc);
284 (void) close(fd);
285
286 if (force) {
287 /* Partitions will no be created using the backup */
288 return 0;
289 } else {
290 vdev_error(gettext("%s contains a corrupt primary "
291 "EFI label.\n"), path);
292 return -1;
293 }
294 }
295
296 for (i = 0; i < vtoc->efi_nparts; i++) {
297
298 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED ||
299 uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid))
300 continue;
301
302 if (strncmp(path, UDISK_ROOT, strlen(UDISK_ROOT)) == 0)
303 (void) snprintf(slice_path, sizeof (slice_path),
304 "%s%s%d", path, "-part", i+1);
305 else
306 (void) snprintf(slice_path, sizeof (slice_path),
307 "%s%s%d", path, isdigit(path[strlen(path)-1]) ?
308 "p" : "", i+1);
309
310 err = check_slice(slice_path, cache, force, isspare);
311 if (err)
312 break;
313 }
314
315 efi_free(vtoc);
316 (void) close(fd);
317
318 return (err);
319 }
320
321 static int
322 check_device(const char *path, boolean_t force,
323 boolean_t isspare, boolean_t iswholedisk)
324 {
325 static blkid_cache cache = NULL;
326
327 #ifdef HAVE_LIBBLKID
328 /*
329 * There is no easy way to add a correct blkid_put_cache() call,
330 * memory will be reclaimed when the command exits.
331 */
332 if (cache == NULL) {
333 int err;
334
335 if ((err = blkid_get_cache(&cache, NULL)) != 0) {
336 check_error(err);
337 return -1;
338 }
339
340 if ((err = blkid_probe_all(cache)) != 0) {
341 blkid_put_cache(cache);
342 check_error(err);
343 return -1;
344 }
345 }
346 #endif /* HAVE_LIBBLKID */
347
348 return check_disk(path, cache, force, isspare, iswholedisk);
349 }
350
351 /*
352 * By "whole disk" we mean an entire physical disk (something we can
353 * label, toggle the write cache on, etc.) as opposed to the full
354 * capacity of a pseudo-device such as lofi or did. We act as if we
355 * are labeling the disk, which should be a pretty good test of whether
356 * it's a viable device or not. Returns B_TRUE if it is and B_FALSE if
357 * it isn't.
358 */
359 static boolean_t
360 is_whole_disk(const char *path)
361 {
362 struct dk_gpt *label;
363 int fd;
364
365 if ((fd = open(path, O_RDWR|O_DIRECT|O_EXCL)) < 0)
366 return (B_FALSE);
367 if (efi_alloc_and_init(fd, EFI_NUMPAR, &label) != 0) {
368 (void) close(fd);
369 return (B_FALSE);
370 }
371 efi_free(label);
372 (void) close(fd);
373 return (B_TRUE);
374 }
375
376 /*
377 * This may be a shorthand device path or it could be total gibberish.
378 * Check to see if it's a known device in /dev/, /dev/disk/by-id,
379 * /dev/disk/by-label, /dev/disk/by-path, /dev/disk/by-uuid, or
380 * /dev/disk/zpool/. As part of this check, see if we've been given
381 * an entire disk (minus the slice number).
382 */
383 static int
384 is_shorthand_path(const char *arg, char *path,
385 struct stat64 *statbuf, boolean_t *wholedisk)
386 {
387 if (zfs_resolve_shortname(arg, path, MAXPATHLEN) == 0) {
388 *wholedisk = is_whole_disk(path);
389 if (*wholedisk || (stat64(path, statbuf) == 0))
390 return (0);
391 }
392
393 strlcpy(path, arg, sizeof(path));
394 memset(statbuf, 0, sizeof(*statbuf));
395 *wholedisk = B_FALSE;
396
397 return (ENOENT);
398 }
399
400 /*
401 * Create a leaf vdev. Determine if this is a file or a device. If it's a
402 * device, fill in the device id to make a complete nvlist. Valid forms for a
403 * leaf vdev are:
404 *
405 * /dev/xxx Complete disk path
406 * /xxx Full path to file
407 * xxx Shorthand for /dev/disk/yyy/xxx
408 */
409 static nvlist_t *
410 make_leaf_vdev(const char *arg, uint64_t is_log)
411 {
412 char path[MAXPATHLEN];
413 struct stat64 statbuf;
414 nvlist_t *vdev = NULL;
415 char *type = NULL;
416 boolean_t wholedisk = B_FALSE;
417 int err;
418
419 /*
420 * Determine what type of vdev this is, and put the full path into
421 * 'path'. We detect whether this is a device of file afterwards by
422 * checking the st_mode of the file.
423 */
424 if (arg[0] == '/') {
425 /*
426 * Complete device or file path. Exact type is determined by
427 * examining the file descriptor afterwards. Symbolic links
428 * are resolved to their real paths for the is_whole_disk()
429 * and S_ISBLK/S_ISREG type checks. However, we are careful
430 * to store the given path as ZPOOL_CONFIG_PATH to ensure we
431 * can leverage udev's persistent device labels.
432 */
433 if (realpath(arg, path) == NULL) {
434 (void) fprintf(stderr,
435 gettext("cannot resolve path '%s'\n"), arg);
436 return (NULL);
437 }
438
439 wholedisk = is_whole_disk(path);
440 if (!wholedisk && (stat64(path, &statbuf) != 0)) {
441 (void) fprintf(stderr,
442 gettext("cannot open '%s': %s\n"),
443 path, strerror(errno));
444 return (NULL);
445 }
446
447 /* After is_whole_disk() check restore original passed path */
448 strlcpy(path, arg, MAXPATHLEN);
449 } else {
450 err = is_shorthand_path(arg, path, &statbuf, &wholedisk);
451 if (err != 0) {
452 /*
453 * If we got ENOENT, then the user gave us
454 * gibberish, so try to direct them with a
455 * reasonable error message. Otherwise,
456 * regurgitate strerror() since it's the best we
457 * can do.
458 */
459 if (err == ENOENT) {
460 (void) fprintf(stderr,
461 gettext("cannot open '%s': no such "
462 "device in %s\n"), arg, DISK_ROOT);
463 (void) fprintf(stderr,
464 gettext("must be a full path or "
465 "shorthand device name\n"));
466 return (NULL);
467 } else {
468 (void) fprintf(stderr,
469 gettext("cannot open '%s': %s\n"),
470 path, strerror(errno));
471 return (NULL);
472 }
473 }
474 }
475
476 /*
477 * Determine whether this is a device or a file.
478 */
479 if (wholedisk || S_ISBLK(statbuf.st_mode)) {
480 type = VDEV_TYPE_DISK;
481 } else if (S_ISREG(statbuf.st_mode)) {
482 type = VDEV_TYPE_FILE;
483 } else {
484 (void) fprintf(stderr, gettext("cannot use '%s': must be a "
485 "block device or regular file\n"), path);
486 return (NULL);
487 }
488
489 /*
490 * Finally, we have the complete device or file, and we know that it is
491 * acceptable to use. Construct the nvlist to describe this vdev. All
492 * vdevs have a 'path' element, and devices also have a 'devid' element.
493 */
494 verify(nvlist_alloc(&vdev, NV_UNIQUE_NAME, 0) == 0);
495 verify(nvlist_add_string(vdev, ZPOOL_CONFIG_PATH, path) == 0);
496 verify(nvlist_add_string(vdev, ZPOOL_CONFIG_TYPE, type) == 0);
497 verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_IS_LOG, is_log) == 0);
498 if (strcmp(type, VDEV_TYPE_DISK) == 0)
499 verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK,
500 (uint64_t)wholedisk) == 0);
501
502 #if defined(__sun__) || defined(__sun)
503 /*
504 * For a whole disk, defer getting its devid until after labeling it.
505 */
506 if (S_ISBLK(statbuf.st_mode) && !wholedisk) {
507 /*
508 * Get the devid for the device.
509 */
510 int fd;
511 ddi_devid_t devid;
512 char *minor = NULL, *devid_str = NULL;
513
514 if ((fd = open(path, O_RDONLY|O_EXCL)) < 0) {
515 (void) fprintf(stderr, gettext("cannot open '%s': "
516 "%s\n"), path, strerror(errno));
517 nvlist_free(vdev);
518 return (NULL);
519 }
520
521 if (devid_get(fd, &devid) == 0) {
522 if (devid_get_minor_name(fd, &minor) == 0 &&
523 (devid_str = devid_str_encode(devid, minor)) !=
524 NULL) {
525 verify(nvlist_add_string(vdev,
526 ZPOOL_CONFIG_DEVID, devid_str) == 0);
527 }
528 if (devid_str != NULL)
529 devid_str_free(devid_str);
530 if (minor != NULL)
531 devid_str_free(minor);
532 devid_free(devid);
533 }
534
535 (void) close(fd);
536 }
537 #endif
538
539 return (vdev);
540 }
541
542 /*
543 * Go through and verify the replication level of the pool is consistent.
544 * Performs the following checks:
545 *
546 * For the new spec, verifies that devices in mirrors and raidz are the
547 * same size.
548 *
549 * If the current configuration already has inconsistent replication
550 * levels, ignore any other potential problems in the new spec.
551 *
552 * Otherwise, make sure that the current spec (if there is one) and the new
553 * spec have consistent replication levels.
554 */
555 typedef struct replication_level {
556 char *zprl_type;
557 uint64_t zprl_children;
558 uint64_t zprl_parity;
559 } replication_level_t;
560
561 #define ZPOOL_FUZZ (16 * 1024 * 1024)
562
563 /*
564 * Given a list of toplevel vdevs, return the current replication level. If
565 * the config is inconsistent, then NULL is returned. If 'fatal' is set, then
566 * an error message will be displayed for each self-inconsistent vdev.
567 */
568 static replication_level_t *
569 get_replication(nvlist_t *nvroot, boolean_t fatal)
570 {
571 nvlist_t **top;
572 uint_t t, toplevels;
573 nvlist_t **child;
574 uint_t c, children;
575 nvlist_t *nv;
576 char *type;
577 replication_level_t lastrep = { 0 }, rep, *ret;
578 boolean_t dontreport;
579
580 ret = safe_malloc(sizeof (replication_level_t));
581
582 verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
583 &top, &toplevels) == 0);
584
585 lastrep.zprl_type = NULL;
586 for (t = 0; t < toplevels; t++) {
587 uint64_t is_log = B_FALSE;
588
589 nv = top[t];
590
591 /*
592 * For separate logs we ignore the top level vdev replication
593 * constraints.
594 */
595 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &is_log);
596 if (is_log)
597 continue;
598
599 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE,
600 &type) == 0);
601 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
602 &child, &children) != 0) {
603 /*
604 * This is a 'file' or 'disk' vdev.
605 */
606 rep.zprl_type = type;
607 rep.zprl_children = 1;
608 rep.zprl_parity = 0;
609 } else {
610 uint64_t vdev_size;
611
612 /*
613 * This is a mirror or RAID-Z vdev. Go through and make
614 * sure the contents are all the same (files vs. disks),
615 * keeping track of the number of elements in the
616 * process.
617 *
618 * We also check that the size of each vdev (if it can
619 * be determined) is the same.
620 */
621 rep.zprl_type = type;
622 rep.zprl_children = 0;
623
624 if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
625 verify(nvlist_lookup_uint64(nv,
626 ZPOOL_CONFIG_NPARITY,
627 &rep.zprl_parity) == 0);
628 assert(rep.zprl_parity != 0);
629 } else {
630 rep.zprl_parity = 0;
631 }
632
633 /*
634 * The 'dontreport' variable indicates that we've
635 * already reported an error for this spec, so don't
636 * bother doing it again.
637 */
638 type = NULL;
639 dontreport = 0;
640 vdev_size = -1ULL;
641 for (c = 0; c < children; c++) {
642 nvlist_t *cnv = child[c];
643 char *path;
644 struct stat64 statbuf;
645 uint64_t size = -1ULL;
646 char *childtype;
647 int fd, err;
648
649 rep.zprl_children++;
650
651 verify(nvlist_lookup_string(cnv,
652 ZPOOL_CONFIG_TYPE, &childtype) == 0);
653
654 /*
655 * If this is a replacing or spare vdev, then
656 * get the real first child of the vdev.
657 */
658 if (strcmp(childtype,
659 VDEV_TYPE_REPLACING) == 0 ||
660 strcmp(childtype, VDEV_TYPE_SPARE) == 0) {
661 nvlist_t **rchild;
662 uint_t rchildren;
663
664 verify(nvlist_lookup_nvlist_array(cnv,
665 ZPOOL_CONFIG_CHILDREN, &rchild,
666 &rchildren) == 0);
667 assert(rchildren == 2);
668 cnv = rchild[0];
669
670 verify(nvlist_lookup_string(cnv,
671 ZPOOL_CONFIG_TYPE,
672 &childtype) == 0);
673 }
674
675 verify(nvlist_lookup_string(cnv,
676 ZPOOL_CONFIG_PATH, &path) == 0);
677
678 /*
679 * If we have a raidz/mirror that combines disks
680 * with files, report it as an error.
681 */
682 if (!dontreport && type != NULL &&
683 strcmp(type, childtype) != 0) {
684 if (ret != NULL)
685 free(ret);
686 ret = NULL;
687 if (fatal)
688 vdev_error(gettext(
689 "mismatched replication "
690 "level: %s contains both "
691 "files and devices\n"),
692 rep.zprl_type);
693 else
694 return (NULL);
695 dontreport = B_TRUE;
696 }
697
698 /*
699 * According to stat(2), the value of 'st_size'
700 * is undefined for block devices and character
701 * devices. But there is no effective way to
702 * determine the real size in userland.
703 *
704 * Instead, we'll take advantage of an
705 * implementation detail of spec_size(). If the
706 * device is currently open, then we (should)
707 * return a valid size.
708 *
709 * If we still don't get a valid size (indicated
710 * by a size of 0 or MAXOFFSET_T), then ignore
711 * this device altogether.
712 */
713 if ((fd = open(path, O_RDONLY)) >= 0) {
714 err = fstat64(fd, &statbuf);
715 (void) close(fd);
716 } else {
717 err = stat64(path, &statbuf);
718 }
719
720 if (err != 0 ||
721 statbuf.st_size == 0 ||
722 statbuf.st_size == MAXOFFSET_T)
723 continue;
724
725 size = statbuf.st_size;
726
727 /*
728 * Also make sure that devices and
729 * slices have a consistent size. If
730 * they differ by a significant amount
731 * (~16MB) then report an error.
732 */
733 if (!dontreport &&
734 (vdev_size != -1ULL &&
735 (labs(size - vdev_size) >
736 ZPOOL_FUZZ))) {
737 if (ret != NULL)
738 free(ret);
739 ret = NULL;
740 if (fatal)
741 vdev_error(gettext(
742 "%s contains devices of "
743 "different sizes\n"),
744 rep.zprl_type);
745 else
746 return (NULL);
747 dontreport = B_TRUE;
748 }
749
750 type = childtype;
751 vdev_size = size;
752 }
753 }
754
755 /*
756 * At this point, we have the replication of the last toplevel
757 * vdev in 'rep'. Compare it to 'lastrep' to see if its
758 * different.
759 */
760 if (lastrep.zprl_type != NULL) {
761 if (strcmp(lastrep.zprl_type, rep.zprl_type) != 0) {
762 if (ret != NULL)
763 free(ret);
764 ret = NULL;
765 if (fatal)
766 vdev_error(gettext(
767 "mismatched replication level: "
768 "both %s and %s vdevs are "
769 "present\n"),
770 lastrep.zprl_type, rep.zprl_type);
771 else
772 return (NULL);
773 } else if (lastrep.zprl_parity != rep.zprl_parity) {
774 if (ret)
775 free(ret);
776 ret = NULL;
777 if (fatal)
778 vdev_error(gettext(
779 "mismatched replication level: "
780 "both %llu and %llu device parity "
781 "%s vdevs are present\n"),
782 lastrep.zprl_parity,
783 rep.zprl_parity,
784 rep.zprl_type);
785 else
786 return (NULL);
787 } else if (lastrep.zprl_children != rep.zprl_children) {
788 if (ret)
789 free(ret);
790 ret = NULL;
791 if (fatal)
792 vdev_error(gettext(
793 "mismatched replication level: "
794 "both %llu-way and %llu-way %s "
795 "vdevs are present\n"),
796 lastrep.zprl_children,
797 rep.zprl_children,
798 rep.zprl_type);
799 else
800 return (NULL);
801 }
802 }
803 lastrep = rep;
804 }
805
806 if (ret != NULL)
807 *ret = rep;
808
809 return (ret);
810 }
811
812 /*
813 * Check the replication level of the vdev spec against the current pool. Calls
814 * get_replication() to make sure the new spec is self-consistent. If the pool
815 * has a consistent replication level, then we ignore any errors. Otherwise,
816 * report any difference between the two.
817 */
818 static int
819 check_replication(nvlist_t *config, nvlist_t *newroot)
820 {
821 nvlist_t **child;
822 uint_t children;
823 replication_level_t *current = NULL, *new;
824 int ret;
825
826 /*
827 * If we have a current pool configuration, check to see if it's
828 * self-consistent. If not, simply return success.
829 */
830 if (config != NULL) {
831 nvlist_t *nvroot;
832
833 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
834 &nvroot) == 0);
835 if ((current = get_replication(nvroot, B_FALSE)) == NULL)
836 return (0);
837 }
838 /*
839 * for spares there may be no children, and therefore no
840 * replication level to check
841 */
842 if ((nvlist_lookup_nvlist_array(newroot, ZPOOL_CONFIG_CHILDREN,
843 &child, &children) != 0) || (children == 0)) {
844 free(current);
845 return (0);
846 }
847
848 /*
849 * If all we have is logs then there's no replication level to check.
850 */
851 if (num_logs(newroot) == children) {
852 free(current);
853 return (0);
854 }
855
856 /*
857 * Get the replication level of the new vdev spec, reporting any
858 * inconsistencies found.
859 */
860 if ((new = get_replication(newroot, B_TRUE)) == NULL) {
861 free(current);
862 return (-1);
863 }
864
865 /*
866 * Check to see if the new vdev spec matches the replication level of
867 * the current pool.
868 */
869 ret = 0;
870 if (current != NULL) {
871 if (strcmp(current->zprl_type, new->zprl_type) != 0) {
872 vdev_error(gettext(
873 "mismatched replication level: pool uses %s "
874 "and new vdev is %s\n"),
875 current->zprl_type, new->zprl_type);
876 ret = -1;
877 } else if (current->zprl_parity != new->zprl_parity) {
878 vdev_error(gettext(
879 "mismatched replication level: pool uses %llu "
880 "device parity and new vdev uses %llu\n"),
881 current->zprl_parity, new->zprl_parity);
882 ret = -1;
883 } else if (current->zprl_children != new->zprl_children) {
884 vdev_error(gettext(
885 "mismatched replication level: pool uses %llu-way "
886 "%s and new vdev uses %llu-way %s\n"),
887 current->zprl_children, current->zprl_type,
888 new->zprl_children, new->zprl_type);
889 ret = -1;
890 }
891 }
892
893 free(new);
894 if (current != NULL)
895 free(current);
896
897 return (ret);
898 }
899
900 static int
901 zero_label(char *path)
902 {
903 const int size = 4096;
904 char buf[size];
905 int err, fd;
906
907 if ((fd = open(path, O_WRONLY|O_EXCL)) < 0) {
908 (void) fprintf(stderr, gettext("cannot open '%s': %s\n"),
909 path, strerror(errno));
910 return (-1);
911 }
912
913 memset(buf, 0, size);
914 err = write(fd, buf, size);
915 (void) fdatasync(fd);
916 (void) close(fd);
917
918 if (err == -1) {
919 (void) fprintf(stderr, gettext("cannot zero first %d bytes "
920 "of '%s': %s\n"), size, path, strerror(errno));
921 return (-1);
922 }
923
924 if (err != size) {
925 (void) fprintf(stderr, gettext("could only zero %d/%d bytes "
926 "of '%s'\n"), err, size, path);
927 return (-1);
928 }
929
930 return 0;
931 }
932
933 /*
934 * Go through and find any whole disks in the vdev specification, labelling them
935 * as appropriate. When constructing the vdev spec, we were unable to open this
936 * device in order to provide a devid. Now that we have labelled the disk and
937 * know that slice 0 is valid, we can construct the devid now.
938 *
939 * If the disk was already labeled with an EFI label, we will have gotten the
940 * devid already (because we were able to open the whole disk). Otherwise, we
941 * need to get the devid after we label the disk.
942 */
943 static int
944 make_disks(zpool_handle_t *zhp, nvlist_t *nv)
945 {
946 nvlist_t **child;
947 uint_t c, children;
948 char *type, *path, *diskname;
949 char buf[MAXPATHLEN];
950 uint64_t wholedisk;
951 int ret;
952
953 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
954
955 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
956 &child, &children) != 0) {
957
958 if (strcmp(type, VDEV_TYPE_DISK) != 0)
959 return (0);
960
961 /*
962 * We have a disk device. If this is a whole disk write
963 * out the efi partition table, otherwise write zero's to
964 * the first 4k of the partition. This is to ensure that
965 * libblkid will not misidentify the partition due to a
966 * magic value left by the previous filesystem.
967 */
968 verify(!nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path));
969 verify(!nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
970 &wholedisk));
971
972 if (!wholedisk) {
973 ret = zero_label(path);
974 return (ret);
975 }
976
977 if (realpath(path, buf) == NULL) {
978 ret = errno;
979 (void) fprintf(stderr,
980 gettext("cannot resolve path '%s'\n"), path);
981 return (ret);
982 }
983
984 diskname = strrchr(buf, '/');
985 assert(diskname != NULL);
986 diskname++;
987 if (zpool_label_disk(g_zfs, zhp, diskname) == -1)
988 return (-1);
989
990 /*
991 * Now the we've labeled the disk and the partitions have
992 * been created. We still need to wait for udev to create
993 * the symlinks to those partitions. If we are accessing
994 * the devices via a udev disk path, /dev/disk, then wait
995 * for *-part# to be created. Otherwise just use the normal
996 * syntax for devices in /dev.
997 */
998 zfs_append_partition(path, buf, sizeof (buf));
999
1000 if ((ret = zpool_label_disk_wait(buf, 1000)) != 0) {
1001 (void) fprintf(stderr,
1002 gettext( "cannot resolve path '%s'\n"), buf);
1003 return (-1);
1004 }
1005
1006 /*
1007 * Update the path to refer to FIRST_SLICE. The presence of
1008 * the 'whole_disk' field indicates to the CLI that we should
1009 * chop off the slice number when displaying the device in
1010 * future output.
1011 */
1012 verify(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, buf) == 0);
1013
1014 /* Just in case this partition already existed. */
1015 (void) zero_label(buf);
1016
1017 return (0);
1018 }
1019
1020 for (c = 0; c < children; c++)
1021 if ((ret = make_disks(zhp, child[c])) != 0)
1022 return (ret);
1023
1024 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
1025 &child, &children) == 0)
1026 for (c = 0; c < children; c++)
1027 if ((ret = make_disks(zhp, child[c])) != 0)
1028 return (ret);
1029
1030 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
1031 &child, &children) == 0)
1032 for (c = 0; c < children; c++)
1033 if ((ret = make_disks(zhp, child[c])) != 0)
1034 return (ret);
1035
1036 return (0);
1037 }
1038
1039 /*
1040 * Determine if the given path is a hot spare within the given configuration.
1041 */
1042 static boolean_t
1043 is_spare(nvlist_t *config, const char *path)
1044 {
1045 int fd;
1046 pool_state_t state;
1047 char *name = NULL;
1048 nvlist_t *label;
1049 uint64_t guid, spareguid;
1050 nvlist_t *nvroot;
1051 nvlist_t **spares;
1052 uint_t i, nspares;
1053 boolean_t inuse;
1054
1055 if ((fd = open(path, O_RDONLY|O_EXCL)) < 0)
1056 return (B_FALSE);
1057
1058 if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) != 0 ||
1059 !inuse ||
1060 state != POOL_STATE_SPARE ||
1061 zpool_read_label(fd, &label) != 0) {
1062 free(name);
1063 (void) close(fd);
1064 return (B_FALSE);
1065 }
1066 free(name);
1067 (void) close(fd);
1068
1069 verify(nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) == 0);
1070 nvlist_free(label);
1071
1072 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
1073 &nvroot) == 0);
1074 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1075 &spares, &nspares) == 0) {
1076 for (i = 0; i < nspares; i++) {
1077 verify(nvlist_lookup_uint64(spares[i],
1078 ZPOOL_CONFIG_GUID, &spareguid) == 0);
1079 if (spareguid == guid)
1080 return (B_TRUE);
1081 }
1082 }
1083
1084 return (B_FALSE);
1085 }
1086
1087 /*
1088 * Go through and find any devices that are in use. We rely on libdiskmgt for
1089 * the majority of this task.
1090 */
1091 static int
1092 check_in_use(nvlist_t *config, nvlist_t *nv, boolean_t force,
1093 boolean_t replacing, boolean_t isspare)
1094 {
1095 nvlist_t **child;
1096 uint_t c, children;
1097 char *type, *path;
1098 int ret = 0;
1099 char buf[MAXPATHLEN];
1100 uint64_t wholedisk = B_FALSE;
1101
1102 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
1103
1104 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1105 &child, &children) != 0) {
1106
1107 verify(!nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path));
1108 if (strcmp(type, VDEV_TYPE_DISK) == 0)
1109 verify(!nvlist_lookup_uint64(nv,
1110 ZPOOL_CONFIG_WHOLE_DISK, &wholedisk));
1111
1112 /*
1113 * As a generic check, we look to see if this is a replace of a
1114 * hot spare within the same pool. If so, we allow it
1115 * regardless of what libblkid or zpool_in_use() says.
1116 */
1117 if (replacing) {
1118 if (wholedisk)
1119 (void) snprintf(buf, sizeof (buf), "%ss0",
1120 path);
1121 else
1122 (void) strlcpy(buf, path, sizeof (buf));
1123
1124 if (is_spare(config, buf))
1125 return (0);
1126 }
1127
1128 if (strcmp(type, VDEV_TYPE_DISK) == 0)
1129 ret = check_device(path, force, isspare, wholedisk);
1130
1131 if (strcmp(type, VDEV_TYPE_FILE) == 0)
1132 ret = check_file(path, force, isspare);
1133
1134 return (ret);
1135 }
1136
1137 for (c = 0; c < children; c++)
1138 if ((ret = check_in_use(config, child[c], force,
1139 replacing, B_FALSE)) != 0)
1140 return (ret);
1141
1142 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
1143 &child, &children) == 0)
1144 for (c = 0; c < children; c++)
1145 if ((ret = check_in_use(config, child[c], force,
1146 replacing, B_TRUE)) != 0)
1147 return (ret);
1148
1149 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
1150 &child, &children) == 0)
1151 for (c = 0; c < children; c++)
1152 if ((ret = check_in_use(config, child[c], force,
1153 replacing, B_FALSE)) != 0)
1154 return (ret);
1155
1156 return (0);
1157 }
1158
1159 static const char *
1160 is_grouping(const char *type, int *mindev, int *maxdev)
1161 {
1162 if (strncmp(type, "raidz", 5) == 0) {
1163 const char *p = type + 5;
1164 char *end;
1165 long nparity;
1166
1167 if (*p == '\0') {
1168 nparity = 1;
1169 } else if (*p == '0') {
1170 return (NULL); /* no zero prefixes allowed */
1171 } else {
1172 errno = 0;
1173 nparity = strtol(p, &end, 10);
1174 if (errno != 0 || nparity < 1 || nparity >= 255 ||
1175 *end != '\0')
1176 return (NULL);
1177 }
1178
1179 if (mindev != NULL)
1180 *mindev = nparity + 1;
1181 if (maxdev != NULL)
1182 *maxdev = 255;
1183 return (VDEV_TYPE_RAIDZ);
1184 }
1185
1186 if (maxdev != NULL)
1187 *maxdev = INT_MAX;
1188
1189 if (strcmp(type, "mirror") == 0) {
1190 if (mindev != NULL)
1191 *mindev = 2;
1192 return (VDEV_TYPE_MIRROR);
1193 }
1194
1195 if (strcmp(type, "spare") == 0) {
1196 if (mindev != NULL)
1197 *mindev = 1;
1198 return (VDEV_TYPE_SPARE);
1199 }
1200
1201 if (strcmp(type, "log") == 0) {
1202 if (mindev != NULL)
1203 *mindev = 1;
1204 return (VDEV_TYPE_LOG);
1205 }
1206
1207 if (strcmp(type, "cache") == 0) {
1208 if (mindev != NULL)
1209 *mindev = 1;
1210 return (VDEV_TYPE_L2CACHE);
1211 }
1212
1213 return (NULL);
1214 }
1215
1216 /*
1217 * Construct a syntactically valid vdev specification,
1218 * and ensure that all devices and files exist and can be opened.
1219 * Note: we don't bother freeing anything in the error paths
1220 * because the program is just going to exit anyway.
1221 */
1222 nvlist_t *
1223 construct_spec(int argc, char **argv)
1224 {
1225 nvlist_t *nvroot, *nv, **top, **spares, **l2cache;
1226 int t, toplevels, mindev, maxdev, nspares, nlogs, nl2cache;
1227 const char *type;
1228 uint64_t is_log;
1229 boolean_t seen_logs;
1230
1231 top = NULL;
1232 toplevels = 0;
1233 spares = NULL;
1234 l2cache = NULL;
1235 nspares = 0;
1236 nlogs = 0;
1237 nl2cache = 0;
1238 is_log = B_FALSE;
1239 seen_logs = B_FALSE;
1240
1241 while (argc > 0) {
1242 nv = NULL;
1243
1244 /*
1245 * If it's a mirror or raidz, the subsequent arguments are
1246 * its leaves -- until we encounter the next mirror or raidz.
1247 */
1248 if ((type = is_grouping(argv[0], &mindev, &maxdev)) != NULL) {
1249 nvlist_t **child = NULL;
1250 int c, children = 0;
1251
1252 if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1253 if (spares != NULL) {
1254 (void) fprintf(stderr,
1255 gettext("invalid vdev "
1256 "specification: 'spare' can be "
1257 "specified only once\n"));
1258 return (NULL);
1259 }
1260 is_log = B_FALSE;
1261 }
1262
1263 if (strcmp(type, VDEV_TYPE_LOG) == 0) {
1264 if (seen_logs) {
1265 (void) fprintf(stderr,
1266 gettext("invalid vdev "
1267 "specification: 'log' can be "
1268 "specified only once\n"));
1269 return (NULL);
1270 }
1271 seen_logs = B_TRUE;
1272 is_log = B_TRUE;
1273 argc--;
1274 argv++;
1275 /*
1276 * A log is not a real grouping device.
1277 * We just set is_log and continue.
1278 */
1279 continue;
1280 }
1281
1282 if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1283 if (l2cache != NULL) {
1284 (void) fprintf(stderr,
1285 gettext("invalid vdev "
1286 "specification: 'cache' can be "
1287 "specified only once\n"));
1288 return (NULL);
1289 }
1290 is_log = B_FALSE;
1291 }
1292
1293 if (is_log) {
1294 if (strcmp(type, VDEV_TYPE_MIRROR) != 0) {
1295 (void) fprintf(stderr,
1296 gettext("invalid vdev "
1297 "specification: unsupported 'log' "
1298 "device: %s\n"), type);
1299 return (NULL);
1300 }
1301 nlogs++;
1302 }
1303
1304 for (c = 1; c < argc; c++) {
1305 if (is_grouping(argv[c], NULL, NULL) != NULL)
1306 break;
1307 children++;
1308 child = realloc(child,
1309 children * sizeof (nvlist_t *));
1310 if (child == NULL)
1311 zpool_no_memory();
1312 if ((nv = make_leaf_vdev(argv[c], B_FALSE))
1313 == NULL)
1314 return (NULL);
1315 child[children - 1] = nv;
1316 }
1317
1318 if (children < mindev) {
1319 (void) fprintf(stderr, gettext("invalid vdev "
1320 "specification: %s requires at least %d "
1321 "devices\n"), argv[0], mindev);
1322 return (NULL);
1323 }
1324
1325 if (children > maxdev) {
1326 (void) fprintf(stderr, gettext("invalid vdev "
1327 "specification: %s supports no more than "
1328 "%d devices\n"), argv[0], maxdev);
1329 return (NULL);
1330 }
1331
1332 argc -= c;
1333 argv += c;
1334
1335 if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1336 spares = child;
1337 nspares = children;
1338 continue;
1339 } else if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1340 l2cache = child;
1341 nl2cache = children;
1342 continue;
1343 } else {
1344 verify(nvlist_alloc(&nv, NV_UNIQUE_NAME,
1345 0) == 0);
1346 verify(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
1347 type) == 0);
1348 verify(nvlist_add_uint64(nv,
1349 ZPOOL_CONFIG_IS_LOG, is_log) == 0);
1350 if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
1351 verify(nvlist_add_uint64(nv,
1352 ZPOOL_CONFIG_NPARITY,
1353 mindev - 1) == 0);
1354 }
1355 verify(nvlist_add_nvlist_array(nv,
1356 ZPOOL_CONFIG_CHILDREN, child,
1357 children) == 0);
1358
1359 for (c = 0; c < children; c++)
1360 nvlist_free(child[c]);
1361 free(child);
1362 }
1363 } else {
1364 /*
1365 * We have a device. Pass off to make_leaf_vdev() to
1366 * construct the appropriate nvlist describing the vdev.
1367 */
1368 if ((nv = make_leaf_vdev(argv[0], is_log)) == NULL)
1369 return (NULL);
1370 if (is_log)
1371 nlogs++;
1372 argc--;
1373 argv++;
1374 }
1375
1376 toplevels++;
1377 top = realloc(top, toplevels * sizeof (nvlist_t *));
1378 if (top == NULL)
1379 zpool_no_memory();
1380 top[toplevels - 1] = nv;
1381 }
1382
1383 if (toplevels == 0 && nspares == 0 && nl2cache == 0) {
1384 (void) fprintf(stderr, gettext("invalid vdev "
1385 "specification: at least one toplevel vdev must be "
1386 "specified\n"));
1387 return (NULL);
1388 }
1389
1390 if (seen_logs && nlogs == 0) {
1391 (void) fprintf(stderr, gettext("invalid vdev specification: "
1392 "log requires at least 1 device\n"));
1393 return (NULL);
1394 }
1395
1396 /*
1397 * Finally, create nvroot and add all top-level vdevs to it.
1398 */
1399 verify(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) == 0);
1400 verify(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
1401 VDEV_TYPE_ROOT) == 0);
1402 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1403 top, toplevels) == 0);
1404 if (nspares != 0)
1405 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1406 spares, nspares) == 0);
1407 if (nl2cache != 0)
1408 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
1409 l2cache, nl2cache) == 0);
1410
1411 for (t = 0; t < toplevels; t++)
1412 nvlist_free(top[t]);
1413 for (t = 0; t < nspares; t++)
1414 nvlist_free(spares[t]);
1415 for (t = 0; t < nl2cache; t++)
1416 nvlist_free(l2cache[t]);
1417 if (spares)
1418 free(spares);
1419 if (l2cache)
1420 free(l2cache);
1421 free(top);
1422
1423 return (nvroot);
1424 }
1425
1426 nvlist_t *
1427 split_mirror_vdev(zpool_handle_t *zhp, char *newname, nvlist_t *props,
1428 splitflags_t flags, int argc, char **argv)
1429 {
1430 nvlist_t *newroot = NULL, **child;
1431 uint_t c, children;
1432
1433 if (argc > 0) {
1434 if ((newroot = construct_spec(argc, argv)) == NULL) {
1435 (void) fprintf(stderr, gettext("Unable to build a "
1436 "pool from the specified devices\n"));
1437 return (NULL);
1438 }
1439
1440 if (!flags.dryrun && make_disks(zhp, newroot) != 0) {
1441 nvlist_free(newroot);
1442 return (NULL);
1443 }
1444
1445 /* avoid any tricks in the spec */
1446 verify(nvlist_lookup_nvlist_array(newroot,
1447 ZPOOL_CONFIG_CHILDREN, &child, &children) == 0);
1448 for (c = 0; c < children; c++) {
1449 char *path;
1450 const char *type;
1451 int min, max;
1452
1453 verify(nvlist_lookup_string(child[c],
1454 ZPOOL_CONFIG_PATH, &path) == 0);
1455 if ((type = is_grouping(path, &min, &max)) != NULL) {
1456 (void) fprintf(stderr, gettext("Cannot use "
1457 "'%s' as a device for splitting\n"), type);
1458 nvlist_free(newroot);
1459 return (NULL);
1460 }
1461 }
1462 }
1463
1464 if (zpool_vdev_split(zhp, newname, &newroot, props, flags) != 0) {
1465 if (newroot != NULL)
1466 nvlist_free(newroot);
1467 return (NULL);
1468 }
1469
1470 return (newroot);
1471 }
1472
1473 /*
1474 * Get and validate the contents of the given vdev specification. This ensures
1475 * that the nvlist returned is well-formed, that all the devices exist, and that
1476 * they are not currently in use by any other known consumer. The 'poolconfig'
1477 * parameter is the current configuration of the pool when adding devices
1478 * existing pool, and is used to perform additional checks, such as changing the
1479 * replication level of the pool. It can be 'NULL' to indicate that this is a
1480 * new pool. The 'force' flag controls whether devices should be forcefully
1481 * added, even if they appear in use.
1482 */
1483 nvlist_t *
1484 make_root_vdev(zpool_handle_t *zhp, int force, int check_rep,
1485 boolean_t replacing, boolean_t dryrun, int argc, char **argv)
1486 {
1487 nvlist_t *newroot;
1488 nvlist_t *poolconfig = NULL;
1489 is_force = force;
1490
1491 /*
1492 * Construct the vdev specification. If this is successful, we know
1493 * that we have a valid specification, and that all devices can be
1494 * opened.
1495 */
1496 if ((newroot = construct_spec(argc, argv)) == NULL)
1497 return (NULL);
1498
1499 if (zhp && ((poolconfig = zpool_get_config(zhp, NULL)) == NULL))
1500 return (NULL);
1501
1502 /*
1503 * Validate each device to make sure that its not shared with another
1504 * subsystem. We do this even if 'force' is set, because there are some
1505 * uses (such as a dedicated dump device) that even '-f' cannot
1506 * override.
1507 */
1508 if (check_in_use(poolconfig, newroot, force, replacing, B_FALSE) != 0) {
1509 nvlist_free(newroot);
1510 return (NULL);
1511 }
1512
1513 /*
1514 * Check the replication level of the given vdevs and report any errors
1515 * found. We include the existing pool spec, if any, as we need to
1516 * catch changes against the existing replication level.
1517 */
1518 if (check_rep && check_replication(poolconfig, newroot) != 0) {
1519 nvlist_free(newroot);
1520 return (NULL);
1521 }
1522
1523 /*
1524 * Run through the vdev specification and label any whole disks found.
1525 */
1526 if (!dryrun && make_disks(zhp, newroot) != 0) {
1527 nvlist_free(newroot);
1528 return (NULL);
1529 }
1530
1531 return (newroot);
1532 }