]> git.proxmox.com Git - mirror_zfs.git/blob - cmd/zpool/zpool_vdev.c
Illumos 6659 - nvlist_free(NULL) is a no-op
[mirror_zfs.git] / cmd / zpool / zpool_vdev.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 * Copyright (c) 2016 Intel Corporation.
26 */
27
28 /*
29 * Functions to convert between a list of vdevs and an nvlist representing the
30 * configuration. Each entry in the list can be one of:
31 *
32 * Device vdevs
33 * disk=(path=..., devid=...)
34 * file=(path=...)
35 *
36 * Group vdevs
37 * raidz[1|2]=(...)
38 * mirror=(...)
39 *
40 * Hot spares
41 *
42 * While the underlying implementation supports it, group vdevs cannot contain
43 * other group vdevs. All userland verification of devices is contained within
44 * this file. If successful, the nvlist returned can be passed directly to the
45 * kernel; we've done as much verification as possible in userland.
46 *
47 * Hot spares are a special case, and passed down as an array of disk vdevs, at
48 * the same level as the root of the vdev tree.
49 *
50 * The only function exported by this file is 'make_root_vdev'. The
51 * function performs several passes:
52 *
53 * 1. Construct the vdev specification. Performs syntax validation and
54 * makes sure each device is valid.
55 * 2. Check for devices in use. Using libblkid to make sure that no
56 * devices are also in use. Some can be overridden using the 'force'
57 * flag, others cannot.
58 * 3. Check for replication errors if the 'force' flag is not specified.
59 * validates that the replication level is consistent across the
60 * entire pool.
61 * 4. Call libzfs to label any whole disks with an EFI label.
62 */
63
64 #include <assert.h>
65 #include <ctype.h>
66 #include <devid.h>
67 #include <errno.h>
68 #include <fcntl.h>
69 #include <libintl.h>
70 #include <libnvpair.h>
71 #include <limits.h>
72 #include <scsi/scsi.h>
73 #include <scsi/sg.h>
74 #include <stdio.h>
75 #include <string.h>
76 #include <unistd.h>
77 #include <sys/efi_partition.h>
78 #include <sys/stat.h>
79 #include <sys/vtoc.h>
80 #include <sys/mntent.h>
81 #include <uuid/uuid.h>
82 #include <blkid/blkid.h>
83 #include "zpool_util.h"
84 #include <sys/zfs_context.h>
85
86 /*
87 * For any given vdev specification, we can have multiple errors. The
88 * vdev_error() function keeps track of whether we have seen an error yet, and
89 * prints out a header if its the first error we've seen.
90 */
91 boolean_t error_seen;
92 boolean_t is_force;
93
94 typedef struct vdev_disk_db_entry
95 {
96 char id[24];
97 int sector_size;
98 } vdev_disk_db_entry_t;
99
100 /*
101 * Database of block devices that lie about physical sector sizes. The
102 * identification string must be precisely 24 characters to avoid false
103 * negatives
104 */
105 static vdev_disk_db_entry_t vdev_disk_database[] = {
106 {"ATA ADATA SSD S396 3", 8192},
107 {"ATA APPLE SSD SM128E", 8192},
108 {"ATA APPLE SSD SM256E", 8192},
109 {"ATA APPLE SSD SM512E", 8192},
110 {"ATA APPLE SSD SM768E", 8192},
111 {"ATA C400-MTFDDAC064M", 8192},
112 {"ATA C400-MTFDDAC128M", 8192},
113 {"ATA C400-MTFDDAC256M", 8192},
114 {"ATA C400-MTFDDAC512M", 8192},
115 {"ATA Corsair Force 3 ", 8192},
116 {"ATA Corsair Force GS", 8192},
117 {"ATA INTEL SSDSA2CT04", 8192},
118 {"ATA INTEL SSDSA2BZ10", 8192},
119 {"ATA INTEL SSDSA2BZ20", 8192},
120 {"ATA INTEL SSDSA2BZ30", 8192},
121 {"ATA INTEL SSDSA2CW04", 8192},
122 {"ATA INTEL SSDSA2CW08", 8192},
123 {"ATA INTEL SSDSA2CW12", 8192},
124 {"ATA INTEL SSDSA2CW16", 8192},
125 {"ATA INTEL SSDSA2CW30", 8192},
126 {"ATA INTEL SSDSA2CW60", 8192},
127 {"ATA INTEL SSDSC2CT06", 8192},
128 {"ATA INTEL SSDSC2CT12", 8192},
129 {"ATA INTEL SSDSC2CT18", 8192},
130 {"ATA INTEL SSDSC2CT24", 8192},
131 {"ATA INTEL SSDSC2CW06", 8192},
132 {"ATA INTEL SSDSC2CW12", 8192},
133 {"ATA INTEL SSDSC2CW18", 8192},
134 {"ATA INTEL SSDSC2CW24", 8192},
135 {"ATA INTEL SSDSC2CW48", 8192},
136 {"ATA KINGSTON SH100S3", 8192},
137 {"ATA KINGSTON SH103S3", 8192},
138 {"ATA M4-CT064M4SSD2 ", 8192},
139 {"ATA M4-CT128M4SSD2 ", 8192},
140 {"ATA M4-CT256M4SSD2 ", 8192},
141 {"ATA M4-CT512M4SSD2 ", 8192},
142 {"ATA OCZ-AGILITY2 ", 8192},
143 {"ATA OCZ-AGILITY3 ", 8192},
144 {"ATA OCZ-VERTEX2 3.5 ", 8192},
145 {"ATA OCZ-VERTEX3 ", 8192},
146 {"ATA OCZ-VERTEX3 LT ", 8192},
147 {"ATA OCZ-VERTEX3 MI ", 8192},
148 {"ATA OCZ-VERTEX4 ", 8192},
149 {"ATA SAMSUNG MZ7WD120", 8192},
150 {"ATA SAMSUNG MZ7WD240", 8192},
151 {"ATA SAMSUNG MZ7WD480", 8192},
152 {"ATA SAMSUNG MZ7WD960", 8192},
153 {"ATA SAMSUNG SSD 830 ", 8192},
154 {"ATA Samsung SSD 840 ", 8192},
155 {"ATA SanDisk SSD U100", 8192},
156 {"ATA TOSHIBA THNSNH06", 8192},
157 {"ATA TOSHIBA THNSNH12", 8192},
158 {"ATA TOSHIBA THNSNH25", 8192},
159 {"ATA TOSHIBA THNSNH51", 8192},
160 {"ATA APPLE SSD TS064C", 4096},
161 {"ATA APPLE SSD TS128C", 4096},
162 {"ATA APPLE SSD TS256C", 4096},
163 {"ATA APPLE SSD TS512C", 4096},
164 {"ATA INTEL SSDSA2M040", 4096},
165 {"ATA INTEL SSDSA2M080", 4096},
166 {"ATA INTEL SSDSA2M160", 4096},
167 {"ATA INTEL SSDSC2MH12", 4096},
168 {"ATA INTEL SSDSC2MH25", 4096},
169 {"ATA OCZ CORE_SSD ", 4096},
170 {"ATA OCZ-VERTEX ", 4096},
171 {"ATA SAMSUNG MCCOE32G", 4096},
172 {"ATA SAMSUNG MCCOE64G", 4096},
173 {"ATA SAMSUNG SSD PM80", 4096},
174 /* Flash drives optimized for 4KB IOs on larger pages */
175 {"ATA INTEL SSDSC2BA10", 4096},
176 {"ATA INTEL SSDSC2BA20", 4096},
177 {"ATA INTEL SSDSC2BA40", 4096},
178 {"ATA INTEL SSDSC2BA80", 4096},
179 {"ATA INTEL SSDSC2BB08", 4096},
180 {"ATA INTEL SSDSC2BB12", 4096},
181 {"ATA INTEL SSDSC2BB16", 4096},
182 {"ATA INTEL SSDSC2BB24", 4096},
183 {"ATA INTEL SSDSC2BB30", 4096},
184 {"ATA INTEL SSDSC2BB40", 4096},
185 {"ATA INTEL SSDSC2BB48", 4096},
186 {"ATA INTEL SSDSC2BB60", 4096},
187 {"ATA INTEL SSDSC2BB80", 4096},
188 {"ATA INTEL SSDSC2BW24", 4096},
189 {"ATA INTEL SSDSC2BP24", 4096},
190 {"ATA INTEL SSDSC2BP48", 4096},
191 {"NA SmrtStorSDLKAE9W", 4096},
192 /* Imported from Open Solaris */
193 {"ATA MARVELL SD88SA02", 4096},
194 /* Advanced format Hard drives */
195 {"ATA Hitachi HDS5C303", 4096},
196 {"ATA SAMSUNG HD204UI ", 4096},
197 {"ATA ST2000DL004 HD20", 4096},
198 {"ATA WDC WD10EARS-00M", 4096},
199 {"ATA WDC WD10EARS-00S", 4096},
200 {"ATA WDC WD10EARS-00Z", 4096},
201 {"ATA WDC WD15EARS-00M", 4096},
202 {"ATA WDC WD15EARS-00S", 4096},
203 {"ATA WDC WD15EARS-00Z", 4096},
204 {"ATA WDC WD20EARS-00M", 4096},
205 {"ATA WDC WD20EARS-00S", 4096},
206 {"ATA WDC WD20EARS-00Z", 4096},
207 {"ATA WDC WD1600BEVT-0", 4096},
208 {"ATA WDC WD2500BEVT-0", 4096},
209 {"ATA WDC WD3200BEVT-0", 4096},
210 {"ATA WDC WD5000BEVT-0", 4096},
211 /* Virtual disks: Assume zvols with default volblocksize */
212 #if 0
213 {"ATA QEMU HARDDISK ", 8192},
214 {"IET VIRTUAL-DISK ", 8192},
215 {"OI COMSTAR ", 8192},
216 {"SUN COMSTAR ", 8192},
217 {"NETAPP LUN ", 8192},
218 #endif
219 };
220
221 static const int vdev_disk_database_size =
222 sizeof (vdev_disk_database) / sizeof (vdev_disk_database[0]);
223
224 #define INQ_REPLY_LEN 96
225 #define INQ_CMD_LEN 6
226
227 static boolean_t
228 check_sector_size_database(char *path, int *sector_size)
229 {
230 unsigned char inq_buff[INQ_REPLY_LEN];
231 unsigned char sense_buffer[32];
232 unsigned char inq_cmd_blk[INQ_CMD_LEN] =
233 {INQUIRY, 0, 0, 0, INQ_REPLY_LEN, 0};
234 sg_io_hdr_t io_hdr;
235 int error;
236 int fd;
237 int i;
238
239 /* Prepare INQUIRY command */
240 memset(&io_hdr, 0, sizeof (sg_io_hdr_t));
241 io_hdr.interface_id = 'S';
242 io_hdr.cmd_len = sizeof (inq_cmd_blk);
243 io_hdr.mx_sb_len = sizeof (sense_buffer);
244 io_hdr.dxfer_direction = SG_DXFER_FROM_DEV;
245 io_hdr.dxfer_len = INQ_REPLY_LEN;
246 io_hdr.dxferp = inq_buff;
247 io_hdr.cmdp = inq_cmd_blk;
248 io_hdr.sbp = sense_buffer;
249 io_hdr.timeout = 10; /* 10 milliseconds is ample time */
250
251 if ((fd = open(path, O_RDONLY|O_DIRECT)) < 0)
252 return (B_FALSE);
253
254 error = ioctl(fd, SG_IO, (unsigned long) &io_hdr);
255
256 (void) close(fd);
257
258 if (error < 0)
259 return (B_FALSE);
260
261 if ((io_hdr.info & SG_INFO_OK_MASK) != SG_INFO_OK)
262 return (B_FALSE);
263
264 for (i = 0; i < vdev_disk_database_size; i++) {
265 if (memcmp(inq_buff + 8, vdev_disk_database[i].id, 24))
266 continue;
267
268 *sector_size = vdev_disk_database[i].sector_size;
269 return (B_TRUE);
270 }
271
272 return (B_FALSE);
273 }
274
275 /*PRINTFLIKE1*/
276 static void
277 vdev_error(const char *fmt, ...)
278 {
279 va_list ap;
280
281 if (!error_seen) {
282 (void) fprintf(stderr, gettext("invalid vdev specification\n"));
283 if (!is_force)
284 (void) fprintf(stderr, gettext("use '-f' to override "
285 "the following errors:\n"));
286 else
287 (void) fprintf(stderr, gettext("the following errors "
288 "must be manually repaired:\n"));
289 error_seen = B_TRUE;
290 }
291
292 va_start(ap, fmt);
293 (void) vfprintf(stderr, fmt, ap);
294 va_end(ap);
295 }
296
297 /*
298 * Check that a file is valid. All we can do in this case is check that it's
299 * not in use by another pool, and not in use by swap.
300 */
301 static int
302 check_file(const char *file, boolean_t force, boolean_t isspare)
303 {
304 char *name;
305 int fd;
306 int ret = 0;
307 pool_state_t state;
308 boolean_t inuse;
309
310 if ((fd = open(file, O_RDONLY)) < 0)
311 return (0);
312
313 if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) == 0 && inuse) {
314 const char *desc;
315
316 switch (state) {
317 case POOL_STATE_ACTIVE:
318 desc = gettext("active");
319 break;
320
321 case POOL_STATE_EXPORTED:
322 desc = gettext("exported");
323 break;
324
325 case POOL_STATE_POTENTIALLY_ACTIVE:
326 desc = gettext("potentially active");
327 break;
328
329 default:
330 desc = gettext("unknown");
331 break;
332 }
333
334 /*
335 * Allow hot spares to be shared between pools.
336 */
337 if (state == POOL_STATE_SPARE && isspare)
338 return (0);
339
340 if (state == POOL_STATE_ACTIVE ||
341 state == POOL_STATE_SPARE || !force) {
342 switch (state) {
343 case POOL_STATE_SPARE:
344 vdev_error(gettext("%s is reserved as a hot "
345 "spare for pool %s\n"), file, name);
346 break;
347 default:
348 vdev_error(gettext("%s is part of %s pool "
349 "'%s'\n"), file, desc, name);
350 break;
351 }
352 ret = -1;
353 }
354
355 free(name);
356 }
357
358 (void) close(fd);
359 return (ret);
360 }
361
362 static void
363 check_error(int err)
364 {
365 (void) fprintf(stderr, gettext("warning: device in use checking "
366 "failed: %s\n"), strerror(err));
367 }
368
369 static int
370 check_slice(const char *path, blkid_cache cache, int force, boolean_t isspare)
371 {
372 int err;
373 char *value;
374
375 /* No valid type detected device is safe to use */
376 value = blkid_get_tag_value(cache, "TYPE", path);
377 if (value == NULL)
378 return (0);
379
380 /*
381 * If libblkid detects a ZFS device, we check the device
382 * using check_file() to see if it's safe. The one safe
383 * case is a spare device shared between multiple pools.
384 */
385 if (strcmp(value, "zfs_member") == 0) {
386 err = check_file(path, force, isspare);
387 } else {
388 if (force) {
389 err = 0;
390 } else {
391 err = -1;
392 vdev_error(gettext("%s contains a filesystem of "
393 "type '%s'\n"), path, value);
394 }
395 }
396
397 free(value);
398
399 return (err);
400 }
401
402 /*
403 * Validate that a disk including all partitions are safe to use.
404 *
405 * For EFI labeled disks this can done relatively easily with the libefi
406 * library. The partition numbers are extracted from the label and used
407 * to generate the expected /dev/ paths. Each partition can then be
408 * checked for conflicts.
409 *
410 * For non-EFI labeled disks (MBR/EBR/etc) the same process is possible
411 * but due to the lack of a readily available libraries this scanning is
412 * not implemented. Instead only the device path as given is checked.
413 */
414 static int
415 check_disk(const char *path, blkid_cache cache, int force,
416 boolean_t isspare, boolean_t iswholedisk)
417 {
418 struct dk_gpt *vtoc;
419 char slice_path[MAXPATHLEN];
420 int err = 0;
421 int fd, i;
422
423 if (!iswholedisk)
424 return (check_slice(path, cache, force, isspare));
425
426 if ((fd = open(path, O_RDONLY|O_DIRECT)) < 0) {
427 check_error(errno);
428 return (-1);
429 }
430
431 /*
432 * Expected to fail for non-EFI labled disks. Just check the device
433 * as given and do not attempt to detect and scan partitions.
434 */
435 err = efi_alloc_and_read(fd, &vtoc);
436 if (err) {
437 (void) close(fd);
438 return (check_slice(path, cache, force, isspare));
439 }
440
441 /*
442 * The primary efi partition label is damaged however the secondary
443 * label at the end of the device is intact. Rather than use this
444 * label we should play it safe and treat this as a non efi device.
445 */
446 if (vtoc->efi_flags & EFI_GPT_PRIMARY_CORRUPT) {
447 efi_free(vtoc);
448 (void) close(fd);
449
450 if (force) {
451 /* Partitions will now be created using the backup */
452 return (0);
453 } else {
454 vdev_error(gettext("%s contains a corrupt primary "
455 "EFI label.\n"), path);
456 return (-1);
457 }
458 }
459
460 for (i = 0; i < vtoc->efi_nparts; i++) {
461
462 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED ||
463 uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid))
464 continue;
465
466 if (strncmp(path, UDISK_ROOT, strlen(UDISK_ROOT)) == 0)
467 (void) snprintf(slice_path, sizeof (slice_path),
468 "%s%s%d", path, "-part", i+1);
469 else
470 (void) snprintf(slice_path, sizeof (slice_path),
471 "%s%s%d", path, isdigit(path[strlen(path)-1]) ?
472 "p" : "", i+1);
473
474 err = check_slice(slice_path, cache, force, isspare);
475 if (err)
476 break;
477 }
478
479 efi_free(vtoc);
480 (void) close(fd);
481
482 return (err);
483 }
484
485 static int
486 check_device(const char *path, boolean_t force,
487 boolean_t isspare, boolean_t iswholedisk)
488 {
489 static blkid_cache cache = NULL;
490
491 /*
492 * There is no easy way to add a correct blkid_put_cache() call,
493 * memory will be reclaimed when the command exits.
494 */
495 if (cache == NULL) {
496 int err;
497
498 if ((err = blkid_get_cache(&cache, NULL)) != 0) {
499 check_error(err);
500 return (-1);
501 }
502
503 if ((err = blkid_probe_all(cache)) != 0) {
504 blkid_put_cache(cache);
505 check_error(err);
506 return (-1);
507 }
508 }
509
510 return (check_disk(path, cache, force, isspare, iswholedisk));
511 }
512
513 /*
514 * By "whole disk" we mean an entire physical disk (something we can
515 * label, toggle the write cache on, etc.) as opposed to the full
516 * capacity of a pseudo-device such as lofi or did. We act as if we
517 * are labeling the disk, which should be a pretty good test of whether
518 * it's a viable device or not. Returns B_TRUE if it is and B_FALSE if
519 * it isn't.
520 */
521 static boolean_t
522 is_whole_disk(const char *path)
523 {
524 struct dk_gpt *label;
525 int fd;
526
527 if ((fd = open(path, O_RDONLY|O_DIRECT)) < 0)
528 return (B_FALSE);
529 if (efi_alloc_and_init(fd, EFI_NUMPAR, &label) != 0) {
530 (void) close(fd);
531 return (B_FALSE);
532 }
533 efi_free(label);
534 (void) close(fd);
535 return (B_TRUE);
536 }
537
538 /*
539 * This may be a shorthand device path or it could be total gibberish.
540 * Check to see if it is a known device available in zfs_vdev_paths.
541 * As part of this check, see if we've been given an entire disk
542 * (minus the slice number).
543 */
544 static int
545 is_shorthand_path(const char *arg, char *path,
546 struct stat64 *statbuf, boolean_t *wholedisk)
547 {
548 int error;
549
550 error = zfs_resolve_shortname(arg, path, MAXPATHLEN);
551 if (error == 0) {
552 *wholedisk = is_whole_disk(path);
553 if (*wholedisk || (stat64(path, statbuf) == 0))
554 return (0);
555 }
556
557 strlcpy(path, arg, sizeof (path));
558 memset(statbuf, 0, sizeof (*statbuf));
559 *wholedisk = B_FALSE;
560
561 return (error);
562 }
563
564 /*
565 * Determine if the given path is a hot spare within the given configuration.
566 * If no configuration is given we rely solely on the label.
567 */
568 static boolean_t
569 is_spare(nvlist_t *config, const char *path)
570 {
571 int fd;
572 pool_state_t state;
573 char *name = NULL;
574 nvlist_t *label;
575 uint64_t guid, spareguid;
576 nvlist_t *nvroot;
577 nvlist_t **spares;
578 uint_t i, nspares;
579 boolean_t inuse;
580
581 if ((fd = open(path, O_RDONLY)) < 0)
582 return (B_FALSE);
583
584 if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) != 0 ||
585 !inuse ||
586 state != POOL_STATE_SPARE ||
587 zpool_read_label(fd, &label, NULL) != 0) {
588 free(name);
589 (void) close(fd);
590 return (B_FALSE);
591 }
592 free(name);
593 (void) close(fd);
594
595 if (config == NULL)
596 return (B_TRUE);
597
598 verify(nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) == 0);
599 nvlist_free(label);
600
601 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
602 &nvroot) == 0);
603 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
604 &spares, &nspares) == 0) {
605 for (i = 0; i < nspares; i++) {
606 verify(nvlist_lookup_uint64(spares[i],
607 ZPOOL_CONFIG_GUID, &spareguid) == 0);
608 if (spareguid == guid)
609 return (B_TRUE);
610 }
611 }
612
613 return (B_FALSE);
614 }
615
616 /*
617 * Create a leaf vdev. Determine if this is a file or a device. If it's a
618 * device, fill in the device id to make a complete nvlist. Valid forms for a
619 * leaf vdev are:
620 *
621 * /dev/xxx Complete disk path
622 * /xxx Full path to file
623 * xxx Shorthand for <zfs_vdev_paths>/xxx
624 */
625 static nvlist_t *
626 make_leaf_vdev(nvlist_t *props, const char *arg, uint64_t is_log)
627 {
628 char path[MAXPATHLEN];
629 struct stat64 statbuf;
630 nvlist_t *vdev = NULL;
631 char *type = NULL;
632 boolean_t wholedisk = B_FALSE;
633 uint64_t ashift = 0;
634 int err;
635
636 /*
637 * Determine what type of vdev this is, and put the full path into
638 * 'path'. We detect whether this is a device of file afterwards by
639 * checking the st_mode of the file.
640 */
641 if (arg[0] == '/') {
642 /*
643 * Complete device or file path. Exact type is determined by
644 * examining the file descriptor afterwards. Symbolic links
645 * are resolved to their real paths for the is_whole_disk()
646 * and S_ISBLK/S_ISREG type checks. However, we are careful
647 * to store the given path as ZPOOL_CONFIG_PATH to ensure we
648 * can leverage udev's persistent device labels.
649 */
650 if (realpath(arg, path) == NULL) {
651 (void) fprintf(stderr,
652 gettext("cannot resolve path '%s'\n"), arg);
653 return (NULL);
654 }
655
656 wholedisk = is_whole_disk(path);
657 if (!wholedisk && (stat64(path, &statbuf) != 0)) {
658 (void) fprintf(stderr,
659 gettext("cannot open '%s': %s\n"),
660 path, strerror(errno));
661 return (NULL);
662 }
663
664 /* After is_whole_disk() check restore original passed path */
665 strlcpy(path, arg, MAXPATHLEN);
666 } else {
667 err = is_shorthand_path(arg, path, &statbuf, &wholedisk);
668 if (err != 0) {
669 /*
670 * If we got ENOENT, then the user gave us
671 * gibberish, so try to direct them with a
672 * reasonable error message. Otherwise,
673 * regurgitate strerror() since it's the best we
674 * can do.
675 */
676 if (err == ENOENT) {
677 (void) fprintf(stderr,
678 gettext("cannot open '%s': no such "
679 "device in %s\n"), arg, DISK_ROOT);
680 (void) fprintf(stderr,
681 gettext("must be a full path or "
682 "shorthand device name\n"));
683 return (NULL);
684 } else {
685 (void) fprintf(stderr,
686 gettext("cannot open '%s': %s\n"),
687 path, strerror(errno));
688 return (NULL);
689 }
690 }
691 }
692
693 /*
694 * Determine whether this is a device or a file.
695 */
696 if (wholedisk || S_ISBLK(statbuf.st_mode)) {
697 type = VDEV_TYPE_DISK;
698 } else if (S_ISREG(statbuf.st_mode)) {
699 type = VDEV_TYPE_FILE;
700 } else {
701 (void) fprintf(stderr, gettext("cannot use '%s': must be a "
702 "block device or regular file\n"), path);
703 return (NULL);
704 }
705
706 /*
707 * Finally, we have the complete device or file, and we know that it is
708 * acceptable to use. Construct the nvlist to describe this vdev. All
709 * vdevs have a 'path' element, and devices also have a 'devid' element.
710 */
711 verify(nvlist_alloc(&vdev, NV_UNIQUE_NAME, 0) == 0);
712 verify(nvlist_add_string(vdev, ZPOOL_CONFIG_PATH, path) == 0);
713 verify(nvlist_add_string(vdev, ZPOOL_CONFIG_TYPE, type) == 0);
714 verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_IS_LOG, is_log) == 0);
715 if (strcmp(type, VDEV_TYPE_DISK) == 0)
716 verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK,
717 (uint64_t)wholedisk) == 0);
718
719 /*
720 * Override defaults if custom properties are provided.
721 */
722 if (props != NULL) {
723 char *value = NULL;
724
725 if (nvlist_lookup_string(props,
726 zpool_prop_to_name(ZPOOL_PROP_ASHIFT), &value) == 0)
727 zfs_nicestrtonum(NULL, value, &ashift);
728 }
729
730 /*
731 * If the device is known to incorrectly report its physical sector
732 * size explicitly provide the known correct value.
733 */
734 if (ashift == 0) {
735 int sector_size;
736
737 if (check_sector_size_database(path, &sector_size) == B_TRUE)
738 ashift = highbit64(sector_size) - 1;
739 }
740
741 if (ashift > 0)
742 nvlist_add_uint64(vdev, ZPOOL_CONFIG_ASHIFT, ashift);
743
744 return (vdev);
745 }
746
747 /*
748 * Go through and verify the replication level of the pool is consistent.
749 * Performs the following checks:
750 *
751 * For the new spec, verifies that devices in mirrors and raidz are the
752 * same size.
753 *
754 * If the current configuration already has inconsistent replication
755 * levels, ignore any other potential problems in the new spec.
756 *
757 * Otherwise, make sure that the current spec (if there is one) and the new
758 * spec have consistent replication levels.
759 */
760 typedef struct replication_level {
761 char *zprl_type;
762 uint64_t zprl_children;
763 uint64_t zprl_parity;
764 } replication_level_t;
765
766 #define ZPOOL_FUZZ (16 * 1024 * 1024)
767
768 /*
769 * Given a list of toplevel vdevs, return the current replication level. If
770 * the config is inconsistent, then NULL is returned. If 'fatal' is set, then
771 * an error message will be displayed for each self-inconsistent vdev.
772 */
773 static replication_level_t *
774 get_replication(nvlist_t *nvroot, boolean_t fatal)
775 {
776 nvlist_t **top;
777 uint_t t, toplevels;
778 nvlist_t **child;
779 uint_t c, children;
780 nvlist_t *nv;
781 char *type;
782 replication_level_t lastrep = { 0 }, rep, *ret;
783 boolean_t dontreport;
784
785 ret = safe_malloc(sizeof (replication_level_t));
786
787 verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
788 &top, &toplevels) == 0);
789
790 lastrep.zprl_type = NULL;
791 for (t = 0; t < toplevels; t++) {
792 uint64_t is_log = B_FALSE;
793
794 nv = top[t];
795
796 /*
797 * For separate logs we ignore the top level vdev replication
798 * constraints.
799 */
800 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &is_log);
801 if (is_log)
802 continue;
803
804 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE,
805 &type) == 0);
806 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
807 &child, &children) != 0) {
808 /*
809 * This is a 'file' or 'disk' vdev.
810 */
811 rep.zprl_type = type;
812 rep.zprl_children = 1;
813 rep.zprl_parity = 0;
814 } else {
815 uint64_t vdev_size;
816
817 /*
818 * This is a mirror or RAID-Z vdev. Go through and make
819 * sure the contents are all the same (files vs. disks),
820 * keeping track of the number of elements in the
821 * process.
822 *
823 * We also check that the size of each vdev (if it can
824 * be determined) is the same.
825 */
826 rep.zprl_type = type;
827 rep.zprl_children = 0;
828
829 if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
830 verify(nvlist_lookup_uint64(nv,
831 ZPOOL_CONFIG_NPARITY,
832 &rep.zprl_parity) == 0);
833 assert(rep.zprl_parity != 0);
834 } else {
835 rep.zprl_parity = 0;
836 }
837
838 /*
839 * The 'dontreport' variable indicates that we've
840 * already reported an error for this spec, so don't
841 * bother doing it again.
842 */
843 type = NULL;
844 dontreport = 0;
845 vdev_size = -1ULL;
846 for (c = 0; c < children; c++) {
847 nvlist_t *cnv = child[c];
848 char *path;
849 struct stat64 statbuf;
850 uint64_t size = -1ULL;
851 char *childtype;
852 int fd, err;
853
854 rep.zprl_children++;
855
856 verify(nvlist_lookup_string(cnv,
857 ZPOOL_CONFIG_TYPE, &childtype) == 0);
858
859 /*
860 * If this is a replacing or spare vdev, then
861 * get the real first child of the vdev.
862 */
863 if (strcmp(childtype,
864 VDEV_TYPE_REPLACING) == 0 ||
865 strcmp(childtype, VDEV_TYPE_SPARE) == 0) {
866 nvlist_t **rchild;
867 uint_t rchildren;
868
869 verify(nvlist_lookup_nvlist_array(cnv,
870 ZPOOL_CONFIG_CHILDREN, &rchild,
871 &rchildren) == 0);
872 assert(rchildren == 2);
873 cnv = rchild[0];
874
875 verify(nvlist_lookup_string(cnv,
876 ZPOOL_CONFIG_TYPE,
877 &childtype) == 0);
878 }
879
880 verify(nvlist_lookup_string(cnv,
881 ZPOOL_CONFIG_PATH, &path) == 0);
882
883 /*
884 * If we have a raidz/mirror that combines disks
885 * with files, report it as an error.
886 */
887 if (!dontreport && type != NULL &&
888 strcmp(type, childtype) != 0) {
889 if (ret != NULL)
890 free(ret);
891 ret = NULL;
892 if (fatal)
893 vdev_error(gettext(
894 "mismatched replication "
895 "level: %s contains both "
896 "files and devices\n"),
897 rep.zprl_type);
898 else
899 return (NULL);
900 dontreport = B_TRUE;
901 }
902
903 /*
904 * According to stat(2), the value of 'st_size'
905 * is undefined for block devices and character
906 * devices. But there is no effective way to
907 * determine the real size in userland.
908 *
909 * Instead, we'll take advantage of an
910 * implementation detail of spec_size(). If the
911 * device is currently open, then we (should)
912 * return a valid size.
913 *
914 * If we still don't get a valid size (indicated
915 * by a size of 0 or MAXOFFSET_T), then ignore
916 * this device altogether.
917 */
918 if ((fd = open(path, O_RDONLY)) >= 0) {
919 err = fstat64(fd, &statbuf);
920 (void) close(fd);
921 } else {
922 err = stat64(path, &statbuf);
923 }
924
925 if (err != 0 ||
926 statbuf.st_size == 0 ||
927 statbuf.st_size == MAXOFFSET_T)
928 continue;
929
930 size = statbuf.st_size;
931
932 /*
933 * Also make sure that devices and
934 * slices have a consistent size. If
935 * they differ by a significant amount
936 * (~16MB) then report an error.
937 */
938 if (!dontreport &&
939 (vdev_size != -1ULL &&
940 (labs(size - vdev_size) >
941 ZPOOL_FUZZ))) {
942 if (ret != NULL)
943 free(ret);
944 ret = NULL;
945 if (fatal)
946 vdev_error(gettext(
947 "%s contains devices of "
948 "different sizes\n"),
949 rep.zprl_type);
950 else
951 return (NULL);
952 dontreport = B_TRUE;
953 }
954
955 type = childtype;
956 vdev_size = size;
957 }
958 }
959
960 /*
961 * At this point, we have the replication of the last toplevel
962 * vdev in 'rep'. Compare it to 'lastrep' to see if its
963 * different.
964 */
965 if (lastrep.zprl_type != NULL) {
966 if (strcmp(lastrep.zprl_type, rep.zprl_type) != 0) {
967 if (ret != NULL)
968 free(ret);
969 ret = NULL;
970 if (fatal)
971 vdev_error(gettext(
972 "mismatched replication level: "
973 "both %s and %s vdevs are "
974 "present\n"),
975 lastrep.zprl_type, rep.zprl_type);
976 else
977 return (NULL);
978 } else if (lastrep.zprl_parity != rep.zprl_parity) {
979 if (ret)
980 free(ret);
981 ret = NULL;
982 if (fatal)
983 vdev_error(gettext(
984 "mismatched replication level: "
985 "both %llu and %llu device parity "
986 "%s vdevs are present\n"),
987 lastrep.zprl_parity,
988 rep.zprl_parity,
989 rep.zprl_type);
990 else
991 return (NULL);
992 } else if (lastrep.zprl_children != rep.zprl_children) {
993 if (ret)
994 free(ret);
995 ret = NULL;
996 if (fatal)
997 vdev_error(gettext(
998 "mismatched replication level: "
999 "both %llu-way and %llu-way %s "
1000 "vdevs are present\n"),
1001 lastrep.zprl_children,
1002 rep.zprl_children,
1003 rep.zprl_type);
1004 else
1005 return (NULL);
1006 }
1007 }
1008 lastrep = rep;
1009 }
1010
1011 if (ret != NULL)
1012 *ret = rep;
1013
1014 return (ret);
1015 }
1016
1017 /*
1018 * Check the replication level of the vdev spec against the current pool. Calls
1019 * get_replication() to make sure the new spec is self-consistent. If the pool
1020 * has a consistent replication level, then we ignore any errors. Otherwise,
1021 * report any difference between the two.
1022 */
1023 static int
1024 check_replication(nvlist_t *config, nvlist_t *newroot)
1025 {
1026 nvlist_t **child;
1027 uint_t children;
1028 replication_level_t *current = NULL, *new;
1029 int ret;
1030
1031 /*
1032 * If we have a current pool configuration, check to see if it's
1033 * self-consistent. If not, simply return success.
1034 */
1035 if (config != NULL) {
1036 nvlist_t *nvroot;
1037
1038 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
1039 &nvroot) == 0);
1040 if ((current = get_replication(nvroot, B_FALSE)) == NULL)
1041 return (0);
1042 }
1043 /*
1044 * for spares there may be no children, and therefore no
1045 * replication level to check
1046 */
1047 if ((nvlist_lookup_nvlist_array(newroot, ZPOOL_CONFIG_CHILDREN,
1048 &child, &children) != 0) || (children == 0)) {
1049 free(current);
1050 return (0);
1051 }
1052
1053 /*
1054 * If all we have is logs then there's no replication level to check.
1055 */
1056 if (num_logs(newroot) == children) {
1057 free(current);
1058 return (0);
1059 }
1060
1061 /*
1062 * Get the replication level of the new vdev spec, reporting any
1063 * inconsistencies found.
1064 */
1065 if ((new = get_replication(newroot, B_TRUE)) == NULL) {
1066 free(current);
1067 return (-1);
1068 }
1069
1070 /*
1071 * Check to see if the new vdev spec matches the replication level of
1072 * the current pool.
1073 */
1074 ret = 0;
1075 if (current != NULL) {
1076 if (strcmp(current->zprl_type, new->zprl_type) != 0) {
1077 vdev_error(gettext(
1078 "mismatched replication level: pool uses %s "
1079 "and new vdev is %s\n"),
1080 current->zprl_type, new->zprl_type);
1081 ret = -1;
1082 } else if (current->zprl_parity != new->zprl_parity) {
1083 vdev_error(gettext(
1084 "mismatched replication level: pool uses %llu "
1085 "device parity and new vdev uses %llu\n"),
1086 current->zprl_parity, new->zprl_parity);
1087 ret = -1;
1088 } else if (current->zprl_children != new->zprl_children) {
1089 vdev_error(gettext(
1090 "mismatched replication level: pool uses %llu-way "
1091 "%s and new vdev uses %llu-way %s\n"),
1092 current->zprl_children, current->zprl_type,
1093 new->zprl_children, new->zprl_type);
1094 ret = -1;
1095 }
1096 }
1097
1098 free(new);
1099 if (current != NULL)
1100 free(current);
1101
1102 return (ret);
1103 }
1104
1105 static int
1106 zero_label(char *path)
1107 {
1108 const int size = 4096;
1109 char buf[size];
1110 int err, fd;
1111
1112 if ((fd = open(path, O_WRONLY|O_EXCL)) < 0) {
1113 (void) fprintf(stderr, gettext("cannot open '%s': %s\n"),
1114 path, strerror(errno));
1115 return (-1);
1116 }
1117
1118 memset(buf, 0, size);
1119 err = write(fd, buf, size);
1120 (void) fdatasync(fd);
1121 (void) close(fd);
1122
1123 if (err == -1) {
1124 (void) fprintf(stderr, gettext("cannot zero first %d bytes "
1125 "of '%s': %s\n"), size, path, strerror(errno));
1126 return (-1);
1127 }
1128
1129 if (err != size) {
1130 (void) fprintf(stderr, gettext("could only zero %d/%d bytes "
1131 "of '%s'\n"), err, size, path);
1132 return (-1);
1133 }
1134
1135 return (0);
1136 }
1137
1138 /*
1139 * Go through and find any whole disks in the vdev specification, labelling them
1140 * as appropriate. When constructing the vdev spec, we were unable to open this
1141 * device in order to provide a devid. Now that we have labelled the disk and
1142 * know that slice 0 is valid, we can construct the devid now.
1143 *
1144 * If the disk was already labeled with an EFI label, we will have gotten the
1145 * devid already (because we were able to open the whole disk). Otherwise, we
1146 * need to get the devid after we label the disk.
1147 */
1148 static int
1149 make_disks(zpool_handle_t *zhp, nvlist_t *nv)
1150 {
1151 nvlist_t **child;
1152 uint_t c, children;
1153 char *type, *path;
1154 char devpath[MAXPATHLEN];
1155 char udevpath[MAXPATHLEN];
1156 uint64_t wholedisk;
1157 struct stat64 statbuf;
1158 int is_exclusive = 0;
1159 int fd;
1160 int ret;
1161
1162 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
1163
1164 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1165 &child, &children) != 0) {
1166
1167 if (strcmp(type, VDEV_TYPE_DISK) != 0)
1168 return (0);
1169
1170 /*
1171 * We have a disk device. If this is a whole disk write
1172 * out the efi partition table, otherwise write zero's to
1173 * the first 4k of the partition. This is to ensure that
1174 * libblkid will not misidentify the partition due to a
1175 * magic value left by the previous filesystem.
1176 */
1177 verify(!nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path));
1178 verify(!nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
1179 &wholedisk));
1180
1181 if (!wholedisk) {
1182 /*
1183 * Update device id string for mpath nodes (Linux only)
1184 */
1185 if (is_mpath_whole_disk(path))
1186 update_vdev_config_dev_strs(nv);
1187
1188 (void) zero_label(path);
1189 return (0);
1190 }
1191
1192 if (realpath(path, devpath) == NULL) {
1193 ret = errno;
1194 (void) fprintf(stderr,
1195 gettext("cannot resolve path '%s'\n"), path);
1196 return (ret);
1197 }
1198
1199 /*
1200 * Remove any previously existing symlink from a udev path to
1201 * the device before labeling the disk. This ensures that
1202 * only newly created links are used. Otherwise there is a
1203 * window between when udev deletes and recreates the link
1204 * during which access attempts will fail with ENOENT.
1205 */
1206 strncpy(udevpath, path, MAXPATHLEN);
1207 (void) zfs_append_partition(udevpath, MAXPATHLEN);
1208
1209 fd = open(devpath, O_RDWR|O_EXCL);
1210 if (fd == -1) {
1211 if (errno == EBUSY)
1212 is_exclusive = 1;
1213 } else {
1214 (void) close(fd);
1215 }
1216
1217 /*
1218 * If the partition exists, contains a valid spare label,
1219 * and is opened exclusively there is no need to partition
1220 * it. Hot spares have already been partitioned and are
1221 * held open exclusively by the kernel as a safety measure.
1222 *
1223 * If the provided path is for a /dev/disk/ device its
1224 * symbolic link will be removed, partition table created,
1225 * and then block until udev creates the new link.
1226 */
1227 if (!is_exclusive || !is_spare(NULL, udevpath)) {
1228 char *devnode = strrchr(devpath, '/') + 1;
1229
1230 ret = strncmp(udevpath, UDISK_ROOT, strlen(UDISK_ROOT));
1231 if (ret == 0) {
1232 ret = lstat64(udevpath, &statbuf);
1233 if (ret == 0 && S_ISLNK(statbuf.st_mode))
1234 (void) unlink(udevpath);
1235 }
1236
1237 /*
1238 * When labeling a pool the raw device node name
1239 * is provided as it appears under /dev/.
1240 */
1241 if (zpool_label_disk(g_zfs, zhp, devnode) == -1)
1242 return (-1);
1243
1244 /*
1245 * Wait for udev to signal the device is available
1246 * by the provided path.
1247 */
1248 ret = zpool_label_disk_wait(udevpath, DISK_LABEL_WAIT);
1249 if (ret) {
1250 (void) fprintf(stderr,
1251 gettext("missing link: %s was "
1252 "partitioned but %s is missing\n"),
1253 devnode, udevpath);
1254 return (ret);
1255 }
1256
1257 ret = zero_label(udevpath);
1258 if (ret)
1259 return (ret);
1260 }
1261
1262 /*
1263 * Update the path to refer to the partition. The presence of
1264 * the 'whole_disk' field indicates to the CLI that we should
1265 * chop off the partition number when displaying the device in
1266 * future output.
1267 */
1268 verify(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, udevpath) == 0);
1269
1270 /*
1271 * Update device id strings for whole disks (Linux only)
1272 */
1273 update_vdev_config_dev_strs(nv);
1274
1275 return (0);
1276 }
1277
1278 for (c = 0; c < children; c++)
1279 if ((ret = make_disks(zhp, child[c])) != 0)
1280 return (ret);
1281
1282 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
1283 &child, &children) == 0)
1284 for (c = 0; c < children; c++)
1285 if ((ret = make_disks(zhp, child[c])) != 0)
1286 return (ret);
1287
1288 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
1289 &child, &children) == 0)
1290 for (c = 0; c < children; c++)
1291 if ((ret = make_disks(zhp, child[c])) != 0)
1292 return (ret);
1293
1294 return (0);
1295 }
1296
1297 /*
1298 * Go through and find any devices that are in use. We rely on libdiskmgt for
1299 * the majority of this task.
1300 */
1301 static boolean_t
1302 is_device_in_use(nvlist_t *config, nvlist_t *nv, boolean_t force,
1303 boolean_t replacing, boolean_t isspare)
1304 {
1305 nvlist_t **child;
1306 uint_t c, children;
1307 char *type, *path;
1308 int ret = 0;
1309 char buf[MAXPATHLEN];
1310 uint64_t wholedisk = B_FALSE;
1311 boolean_t anyinuse = B_FALSE;
1312
1313 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
1314
1315 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1316 &child, &children) != 0) {
1317
1318 verify(!nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path));
1319 if (strcmp(type, VDEV_TYPE_DISK) == 0)
1320 verify(!nvlist_lookup_uint64(nv,
1321 ZPOOL_CONFIG_WHOLE_DISK, &wholedisk));
1322
1323 /*
1324 * As a generic check, we look to see if this is a replace of a
1325 * hot spare within the same pool. If so, we allow it
1326 * regardless of what libblkid or zpool_in_use() says.
1327 */
1328 if (replacing) {
1329 (void) strlcpy(buf, path, sizeof (buf));
1330 if (wholedisk) {
1331 ret = zfs_append_partition(buf, sizeof (buf));
1332 if (ret == -1)
1333 return (-1);
1334 }
1335
1336 if (is_spare(config, buf))
1337 return (B_FALSE);
1338 }
1339
1340 if (strcmp(type, VDEV_TYPE_DISK) == 0)
1341 ret = check_device(path, force, isspare, wholedisk);
1342
1343 else if (strcmp(type, VDEV_TYPE_FILE) == 0)
1344 ret = check_file(path, force, isspare);
1345
1346 return (ret != 0);
1347 }
1348
1349 for (c = 0; c < children; c++)
1350 if (is_device_in_use(config, child[c], force, replacing,
1351 B_FALSE))
1352 anyinuse = B_TRUE;
1353
1354 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
1355 &child, &children) == 0)
1356 for (c = 0; c < children; c++)
1357 if (is_device_in_use(config, child[c], force, replacing,
1358 B_TRUE))
1359 anyinuse = B_TRUE;
1360
1361 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
1362 &child, &children) == 0)
1363 for (c = 0; c < children; c++)
1364 if (is_device_in_use(config, child[c], force, replacing,
1365 B_FALSE))
1366 anyinuse = B_TRUE;
1367
1368 return (anyinuse);
1369 }
1370
1371 static const char *
1372 is_grouping(const char *type, int *mindev, int *maxdev)
1373 {
1374 if (strncmp(type, "raidz", 5) == 0) {
1375 const char *p = type + 5;
1376 char *end;
1377 long nparity;
1378
1379 if (*p == '\0') {
1380 nparity = 1;
1381 } else if (*p == '0') {
1382 return (NULL); /* no zero prefixes allowed */
1383 } else {
1384 errno = 0;
1385 nparity = strtol(p, &end, 10);
1386 if (errno != 0 || nparity < 1 || nparity >= 255 ||
1387 *end != '\0')
1388 return (NULL);
1389 }
1390
1391 if (mindev != NULL)
1392 *mindev = nparity + 1;
1393 if (maxdev != NULL)
1394 *maxdev = 255;
1395 return (VDEV_TYPE_RAIDZ);
1396 }
1397
1398 if (maxdev != NULL)
1399 *maxdev = INT_MAX;
1400
1401 if (strcmp(type, "mirror") == 0) {
1402 if (mindev != NULL)
1403 *mindev = 2;
1404 return (VDEV_TYPE_MIRROR);
1405 }
1406
1407 if (strcmp(type, "spare") == 0) {
1408 if (mindev != NULL)
1409 *mindev = 1;
1410 return (VDEV_TYPE_SPARE);
1411 }
1412
1413 if (strcmp(type, "log") == 0) {
1414 if (mindev != NULL)
1415 *mindev = 1;
1416 return (VDEV_TYPE_LOG);
1417 }
1418
1419 if (strcmp(type, "cache") == 0) {
1420 if (mindev != NULL)
1421 *mindev = 1;
1422 return (VDEV_TYPE_L2CACHE);
1423 }
1424
1425 return (NULL);
1426 }
1427
1428 /*
1429 * Construct a syntactically valid vdev specification,
1430 * and ensure that all devices and files exist and can be opened.
1431 * Note: we don't bother freeing anything in the error paths
1432 * because the program is just going to exit anyway.
1433 */
1434 nvlist_t *
1435 construct_spec(nvlist_t *props, int argc, char **argv)
1436 {
1437 nvlist_t *nvroot, *nv, **top, **spares, **l2cache;
1438 int t, toplevels, mindev, maxdev, nspares, nlogs, nl2cache;
1439 const char *type;
1440 uint64_t is_log;
1441 boolean_t seen_logs;
1442
1443 top = NULL;
1444 toplevels = 0;
1445 spares = NULL;
1446 l2cache = NULL;
1447 nspares = 0;
1448 nlogs = 0;
1449 nl2cache = 0;
1450 is_log = B_FALSE;
1451 seen_logs = B_FALSE;
1452
1453 while (argc > 0) {
1454 nv = NULL;
1455
1456 /*
1457 * If it's a mirror or raidz, the subsequent arguments are
1458 * its leaves -- until we encounter the next mirror or raidz.
1459 */
1460 if ((type = is_grouping(argv[0], &mindev, &maxdev)) != NULL) {
1461 nvlist_t **child = NULL;
1462 int c, children = 0;
1463
1464 if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1465 if (spares != NULL) {
1466 (void) fprintf(stderr,
1467 gettext("invalid vdev "
1468 "specification: 'spare' can be "
1469 "specified only once\n"));
1470 return (NULL);
1471 }
1472 is_log = B_FALSE;
1473 }
1474
1475 if (strcmp(type, VDEV_TYPE_LOG) == 0) {
1476 if (seen_logs) {
1477 (void) fprintf(stderr,
1478 gettext("invalid vdev "
1479 "specification: 'log' can be "
1480 "specified only once\n"));
1481 return (NULL);
1482 }
1483 seen_logs = B_TRUE;
1484 is_log = B_TRUE;
1485 argc--;
1486 argv++;
1487 /*
1488 * A log is not a real grouping device.
1489 * We just set is_log and continue.
1490 */
1491 continue;
1492 }
1493
1494 if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1495 if (l2cache != NULL) {
1496 (void) fprintf(stderr,
1497 gettext("invalid vdev "
1498 "specification: 'cache' can be "
1499 "specified only once\n"));
1500 return (NULL);
1501 }
1502 is_log = B_FALSE;
1503 }
1504
1505 if (is_log) {
1506 if (strcmp(type, VDEV_TYPE_MIRROR) != 0) {
1507 (void) fprintf(stderr,
1508 gettext("invalid vdev "
1509 "specification: unsupported 'log' "
1510 "device: %s\n"), type);
1511 return (NULL);
1512 }
1513 nlogs++;
1514 }
1515
1516 for (c = 1; c < argc; c++) {
1517 if (is_grouping(argv[c], NULL, NULL) != NULL)
1518 break;
1519 children++;
1520 child = realloc(child,
1521 children * sizeof (nvlist_t *));
1522 if (child == NULL)
1523 zpool_no_memory();
1524 if ((nv = make_leaf_vdev(props, argv[c],
1525 B_FALSE)) == NULL)
1526 return (NULL);
1527 child[children - 1] = nv;
1528 }
1529
1530 if (children < mindev) {
1531 (void) fprintf(stderr, gettext("invalid vdev "
1532 "specification: %s requires at least %d "
1533 "devices\n"), argv[0], mindev);
1534 return (NULL);
1535 }
1536
1537 if (children > maxdev) {
1538 (void) fprintf(stderr, gettext("invalid vdev "
1539 "specification: %s supports no more than "
1540 "%d devices\n"), argv[0], maxdev);
1541 return (NULL);
1542 }
1543
1544 argc -= c;
1545 argv += c;
1546
1547 if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1548 spares = child;
1549 nspares = children;
1550 continue;
1551 } else if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1552 l2cache = child;
1553 nl2cache = children;
1554 continue;
1555 } else {
1556 verify(nvlist_alloc(&nv, NV_UNIQUE_NAME,
1557 0) == 0);
1558 verify(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
1559 type) == 0);
1560 verify(nvlist_add_uint64(nv,
1561 ZPOOL_CONFIG_IS_LOG, is_log) == 0);
1562 if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
1563 verify(nvlist_add_uint64(nv,
1564 ZPOOL_CONFIG_NPARITY,
1565 mindev - 1) == 0);
1566 }
1567 verify(nvlist_add_nvlist_array(nv,
1568 ZPOOL_CONFIG_CHILDREN, child,
1569 children) == 0);
1570
1571 for (c = 0; c < children; c++)
1572 nvlist_free(child[c]);
1573 free(child);
1574 }
1575 } else {
1576 /*
1577 * We have a device. Pass off to make_leaf_vdev() to
1578 * construct the appropriate nvlist describing the vdev.
1579 */
1580 if ((nv = make_leaf_vdev(props, argv[0],
1581 is_log)) == NULL)
1582 return (NULL);
1583 if (is_log)
1584 nlogs++;
1585 argc--;
1586 argv++;
1587 }
1588
1589 toplevels++;
1590 top = realloc(top, toplevels * sizeof (nvlist_t *));
1591 if (top == NULL)
1592 zpool_no_memory();
1593 top[toplevels - 1] = nv;
1594 }
1595
1596 if (toplevels == 0 && nspares == 0 && nl2cache == 0) {
1597 (void) fprintf(stderr, gettext("invalid vdev "
1598 "specification: at least one toplevel vdev must be "
1599 "specified\n"));
1600 return (NULL);
1601 }
1602
1603 if (seen_logs && nlogs == 0) {
1604 (void) fprintf(stderr, gettext("invalid vdev specification: "
1605 "log requires at least 1 device\n"));
1606 return (NULL);
1607 }
1608
1609 /*
1610 * Finally, create nvroot and add all top-level vdevs to it.
1611 */
1612 verify(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) == 0);
1613 verify(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
1614 VDEV_TYPE_ROOT) == 0);
1615 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1616 top, toplevels) == 0);
1617 if (nspares != 0)
1618 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1619 spares, nspares) == 0);
1620 if (nl2cache != 0)
1621 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
1622 l2cache, nl2cache) == 0);
1623
1624 for (t = 0; t < toplevels; t++)
1625 nvlist_free(top[t]);
1626 for (t = 0; t < nspares; t++)
1627 nvlist_free(spares[t]);
1628 for (t = 0; t < nl2cache; t++)
1629 nvlist_free(l2cache[t]);
1630 if (spares)
1631 free(spares);
1632 if (l2cache)
1633 free(l2cache);
1634 free(top);
1635
1636 return (nvroot);
1637 }
1638
1639 nvlist_t *
1640 split_mirror_vdev(zpool_handle_t *zhp, char *newname, nvlist_t *props,
1641 splitflags_t flags, int argc, char **argv)
1642 {
1643 nvlist_t *newroot = NULL, **child;
1644 uint_t c, children;
1645
1646 if (argc > 0) {
1647 if ((newroot = construct_spec(props, argc, argv)) == NULL) {
1648 (void) fprintf(stderr, gettext("Unable to build a "
1649 "pool from the specified devices\n"));
1650 return (NULL);
1651 }
1652
1653 if (!flags.dryrun && make_disks(zhp, newroot) != 0) {
1654 nvlist_free(newroot);
1655 return (NULL);
1656 }
1657
1658 /* avoid any tricks in the spec */
1659 verify(nvlist_lookup_nvlist_array(newroot,
1660 ZPOOL_CONFIG_CHILDREN, &child, &children) == 0);
1661 for (c = 0; c < children; c++) {
1662 char *path;
1663 const char *type;
1664 int min, max;
1665
1666 verify(nvlist_lookup_string(child[c],
1667 ZPOOL_CONFIG_PATH, &path) == 0);
1668 if ((type = is_grouping(path, &min, &max)) != NULL) {
1669 (void) fprintf(stderr, gettext("Cannot use "
1670 "'%s' as a device for splitting\n"), type);
1671 nvlist_free(newroot);
1672 return (NULL);
1673 }
1674 }
1675 }
1676
1677 if (zpool_vdev_split(zhp, newname, &newroot, props, flags) != 0) {
1678 nvlist_free(newroot);
1679 return (NULL);
1680 }
1681
1682 return (newroot);
1683 }
1684
1685 /*
1686 * Get and validate the contents of the given vdev specification. This ensures
1687 * that the nvlist returned is well-formed, that all the devices exist, and that
1688 * they are not currently in use by any other known consumer. The 'poolconfig'
1689 * parameter is the current configuration of the pool when adding devices
1690 * existing pool, and is used to perform additional checks, such as changing the
1691 * replication level of the pool. It can be 'NULL' to indicate that this is a
1692 * new pool. The 'force' flag controls whether devices should be forcefully
1693 * added, even if they appear in use.
1694 */
1695 nvlist_t *
1696 make_root_vdev(zpool_handle_t *zhp, nvlist_t *props, int force, int check_rep,
1697 boolean_t replacing, boolean_t dryrun, int argc, char **argv)
1698 {
1699 nvlist_t *newroot;
1700 nvlist_t *poolconfig = NULL;
1701 is_force = force;
1702
1703 /*
1704 * Construct the vdev specification. If this is successful, we know
1705 * that we have a valid specification, and that all devices can be
1706 * opened.
1707 */
1708 if ((newroot = construct_spec(props, argc, argv)) == NULL)
1709 return (NULL);
1710
1711 if (zhp && ((poolconfig = zpool_get_config(zhp, NULL)) == NULL)) {
1712 nvlist_free(newroot);
1713 return (NULL);
1714 }
1715
1716 /*
1717 * Validate each device to make sure that its not shared with another
1718 * subsystem. We do this even if 'force' is set, because there are some
1719 * uses (such as a dedicated dump device) that even '-f' cannot
1720 * override.
1721 */
1722 if (is_device_in_use(poolconfig, newroot, force, replacing, B_FALSE)) {
1723 nvlist_free(newroot);
1724 return (NULL);
1725 }
1726
1727 /*
1728 * Check the replication level of the given vdevs and report any errors
1729 * found. We include the existing pool spec, if any, as we need to
1730 * catch changes against the existing replication level.
1731 */
1732 if (check_rep && check_replication(poolconfig, newroot) != 0) {
1733 nvlist_free(newroot);
1734 return (NULL);
1735 }
1736
1737 /*
1738 * Run through the vdev specification and label any whole disks found.
1739 */
1740 if (!dryrun && make_disks(zhp, newroot) != 0) {
1741 nvlist_free(newroot);
1742 return (NULL);
1743 }
1744
1745 return (newroot);
1746 }