]> git.proxmox.com Git - mirror_zfs-debian.git/blob - cmd/zpool/zpool_vdev.c
Add "ashift" property to zpool create
[mirror_zfs-debian.git] / cmd / zpool / zpool_vdev.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25
26 /*
27 * Functions to convert between a list of vdevs and an nvlist representing the
28 * configuration. Each entry in the list can be one of:
29 *
30 * Device vdevs
31 * disk=(path=..., devid=...)
32 * file=(path=...)
33 *
34 * Group vdevs
35 * raidz[1|2]=(...)
36 * mirror=(...)
37 *
38 * Hot spares
39 *
40 * While the underlying implementation supports it, group vdevs cannot contain
41 * other group vdevs. All userland verification of devices is contained within
42 * this file. If successful, the nvlist returned can be passed directly to the
43 * kernel; we've done as much verification as possible in userland.
44 *
45 * Hot spares are a special case, and passed down as an array of disk vdevs, at
46 * the same level as the root of the vdev tree.
47 *
48 * The only function exported by this file is 'make_root_vdev'. The
49 * function performs several passes:
50 *
51 * 1. Construct the vdev specification. Performs syntax validation and
52 * makes sure each device is valid.
53 * 2. Check for devices in use. Using libblkid to make sure that no
54 * devices are also in use. Some can be overridden using the 'force'
55 * flag, others cannot.
56 * 3. Check for replication errors if the 'force' flag is not specified.
57 * validates that the replication level is consistent across the
58 * entire pool.
59 * 4. Call libzfs to label any whole disks with an EFI label.
60 */
61
62 #include <assert.h>
63 #include <ctype.h>
64 #include <devid.h>
65 #include <errno.h>
66 #include <fcntl.h>
67 #include <libintl.h>
68 #include <libnvpair.h>
69 #include <limits.h>
70 #include <stdio.h>
71 #include <string.h>
72 #include <unistd.h>
73 #include <sys/efi_partition.h>
74 #include <sys/stat.h>
75 #include <sys/vtoc.h>
76 #include <sys/mntent.h>
77 #include <uuid/uuid.h>
78 #ifdef HAVE_LIBBLKID
79 #include <blkid/blkid.h>
80 #else
81 #define blkid_cache void *
82 #endif /* HAVE_LIBBLKID */
83
84 #include "zpool_util.h"
85
86 /*
87 * For any given vdev specification, we can have multiple errors. The
88 * vdev_error() function keeps track of whether we have seen an error yet, and
89 * prints out a header if its the first error we've seen.
90 */
91 boolean_t error_seen;
92 boolean_t is_force;
93
94 /*PRINTFLIKE1*/
95 static void
96 vdev_error(const char *fmt, ...)
97 {
98 va_list ap;
99
100 if (!error_seen) {
101 (void) fprintf(stderr, gettext("invalid vdev specification\n"));
102 if (!is_force)
103 (void) fprintf(stderr, gettext("use '-f' to override "
104 "the following errors:\n"));
105 else
106 (void) fprintf(stderr, gettext("the following errors "
107 "must be manually repaired:\n"));
108 error_seen = B_TRUE;
109 }
110
111 va_start(ap, fmt);
112 (void) vfprintf(stderr, fmt, ap);
113 va_end(ap);
114 }
115
116 /*
117 * Check that a file is valid. All we can do in this case is check that it's
118 * not in use by another pool, and not in use by swap.
119 */
120 static int
121 check_file(const char *file, boolean_t force, boolean_t isspare)
122 {
123 char *name;
124 int fd;
125 int ret = 0;
126 pool_state_t state;
127 boolean_t inuse;
128
129 if ((fd = open(file, O_RDONLY)) < 0)
130 return (0);
131
132 if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) == 0 && inuse) {
133 const char *desc;
134
135 switch (state) {
136 case POOL_STATE_ACTIVE:
137 desc = gettext("active");
138 break;
139
140 case POOL_STATE_EXPORTED:
141 desc = gettext("exported");
142 break;
143
144 case POOL_STATE_POTENTIALLY_ACTIVE:
145 desc = gettext("potentially active");
146 break;
147
148 default:
149 desc = gettext("unknown");
150 break;
151 }
152
153 /*
154 * Allow hot spares to be shared between pools.
155 */
156 if (state == POOL_STATE_SPARE && isspare)
157 return (0);
158
159 if (state == POOL_STATE_ACTIVE ||
160 state == POOL_STATE_SPARE || !force) {
161 switch (state) {
162 case POOL_STATE_SPARE:
163 vdev_error(gettext("%s is reserved as a hot "
164 "spare for pool %s\n"), file, name);
165 break;
166 default:
167 vdev_error(gettext("%s is part of %s pool "
168 "'%s'\n"), file, desc, name);
169 break;
170 }
171 ret = -1;
172 }
173
174 free(name);
175 }
176
177 (void) close(fd);
178 return (ret);
179 }
180
181 static void
182 check_error(int err)
183 {
184 (void) fprintf(stderr, gettext("warning: device in use checking "
185 "failed: %s\n"), strerror(err));
186 }
187
188 static int
189 check_slice(const char *path, blkid_cache cache, int force, boolean_t isspare)
190 {
191 struct stat64 statbuf;
192 int err;
193 #ifdef HAVE_LIBBLKID
194 char *value;
195 #endif /* HAVE_LIBBLKID */
196
197 if (stat64(path, &statbuf) != 0) {
198 vdev_error(gettext("cannot stat %s: %s\n"),
199 path, strerror(errno));
200 return (-1);
201 }
202
203 #ifdef HAVE_LIBBLKID
204 /* No valid type detected device is safe to use */
205 value = blkid_get_tag_value(cache, "TYPE", path);
206 if (value == NULL)
207 return (0);
208
209 /*
210 * If libblkid detects a ZFS device, we check the device
211 * using check_file() to see if it's safe. The one safe
212 * case is a spare device shared between multiple pools.
213 */
214 if (strcmp(value, "zfs") == 0) {
215 err = check_file(path, force, isspare);
216 } else {
217 if (force) {
218 err = 0;
219 } else {
220 err = -1;
221 vdev_error(gettext("%s contains a filesystem of "
222 "type '%s'\n"), path, value);
223 }
224 }
225
226 free(value);
227 #else
228 err = check_file(path, force, isspare);
229 #endif /* HAVE_LIBBLKID */
230
231 return (err);
232 }
233
234 /*
235 * Validate a whole disk. Iterate over all slices on the disk and make sure
236 * that none is in use by calling check_slice().
237 */
238 static int
239 check_disk(const char *path, blkid_cache cache, int force,
240 boolean_t isspare, boolean_t iswholedisk)
241 {
242 struct dk_gpt *vtoc;
243 char slice_path[MAXPATHLEN];
244 int err = 0;
245 int fd, i;
246
247 /* This is not a wholedisk we only check the given partition */
248 if (!iswholedisk)
249 return check_slice(path, cache, force, isspare);
250
251 /*
252 * When the device is a whole disk try to read the efi partition
253 * label. If this is successful we safely check the all of the
254 * partitions. However, when it fails it may simply be because
255 * the disk is partitioned via the MBR. Since we currently can
256 * not easily decode the MBR return a failure and prompt to the
257 * user to use force option since we cannot check the partitions.
258 */
259 if ((fd = open(path, O_RDWR|O_DIRECT|O_EXCL)) < 0) {
260 check_error(errno);
261 return -1;
262 }
263
264 if ((err = efi_alloc_and_read(fd, &vtoc)) != 0) {
265 (void) close(fd);
266
267 if (force) {
268 return 0;
269 } else {
270 vdev_error(gettext("%s does not contain an EFI "
271 "label but it may contain partition\n"
272 "information in the MBR.\n"), path);
273 return -1;
274 }
275 }
276
277 /*
278 * The primary efi partition label is damaged however the secondary
279 * label at the end of the device is intact. Rather than use this
280 * label we should play it safe and treat this as a non efi device.
281 */
282 if (vtoc->efi_flags & EFI_GPT_PRIMARY_CORRUPT) {
283 efi_free(vtoc);
284 (void) close(fd);
285
286 if (force) {
287 /* Partitions will no be created using the backup */
288 return 0;
289 } else {
290 vdev_error(gettext("%s contains a corrupt primary "
291 "EFI label.\n"), path);
292 return -1;
293 }
294 }
295
296 for (i = 0; i < vtoc->efi_nparts; i++) {
297
298 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED ||
299 uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid))
300 continue;
301
302 if (strncmp(path, UDISK_ROOT, strlen(UDISK_ROOT)) == 0)
303 (void) snprintf(slice_path, sizeof (slice_path),
304 "%s%s%d", path, "-part", i+1);
305 else
306 (void) snprintf(slice_path, sizeof (slice_path),
307 "%s%s%d", path, isdigit(path[strlen(path)-1]) ?
308 "p" : "", i+1);
309
310 err = check_slice(slice_path, cache, force, isspare);
311 if (err)
312 break;
313 }
314
315 efi_free(vtoc);
316 (void) close(fd);
317
318 return (err);
319 }
320
321 static int
322 check_device(const char *path, boolean_t force,
323 boolean_t isspare, boolean_t iswholedisk)
324 {
325 static blkid_cache cache = NULL;
326
327 #ifdef HAVE_LIBBLKID
328 /*
329 * There is no easy way to add a correct blkid_put_cache() call,
330 * memory will be reclaimed when the command exits.
331 */
332 if (cache == NULL) {
333 int err;
334
335 if ((err = blkid_get_cache(&cache, NULL)) != 0) {
336 check_error(err);
337 return -1;
338 }
339
340 if ((err = blkid_probe_all(cache)) != 0) {
341 blkid_put_cache(cache);
342 check_error(err);
343 return -1;
344 }
345 }
346 #endif /* HAVE_LIBBLKID */
347
348 return check_disk(path, cache, force, isspare, iswholedisk);
349 }
350
351 /*
352 * By "whole disk" we mean an entire physical disk (something we can
353 * label, toggle the write cache on, etc.) as opposed to the full
354 * capacity of a pseudo-device such as lofi or did. We act as if we
355 * are labeling the disk, which should be a pretty good test of whether
356 * it's a viable device or not. Returns B_TRUE if it is and B_FALSE if
357 * it isn't.
358 */
359 static boolean_t
360 is_whole_disk(const char *path)
361 {
362 struct dk_gpt *label;
363 int fd;
364
365 if ((fd = open(path, O_RDWR|O_DIRECT|O_EXCL)) < 0)
366 return (B_FALSE);
367 if (efi_alloc_and_init(fd, EFI_NUMPAR, &label) != 0) {
368 (void) close(fd);
369 return (B_FALSE);
370 }
371 efi_free(label);
372 (void) close(fd);
373 return (B_TRUE);
374 }
375
376 /*
377 * This may be a shorthand device path or it could be total gibberish.
378 * Check to see if it's a known device in /dev/, /dev/disk/by-id,
379 * /dev/disk/by-label, /dev/disk/by-path, /dev/disk/by-uuid, or
380 * /dev/disk/zpool/. As part of this check, see if we've been given
381 * an entire disk (minus the slice number).
382 */
383 static int
384 is_shorthand_path(const char *arg, char *path,
385 struct stat64 *statbuf, boolean_t *wholedisk)
386 {
387 if (zfs_resolve_shortname(arg, path, MAXPATHLEN) == 0) {
388 *wholedisk = is_whole_disk(path);
389 if (*wholedisk || (stat64(path, statbuf) == 0))
390 return (0);
391 }
392
393 strlcpy(path, arg, sizeof(path));
394 memset(statbuf, 0, sizeof(*statbuf));
395 *wholedisk = B_FALSE;
396
397 return (ENOENT);
398 }
399
400 /*
401 * Create a leaf vdev. Determine if this is a file or a device. If it's a
402 * device, fill in the device id to make a complete nvlist. Valid forms for a
403 * leaf vdev are:
404 *
405 * /dev/xxx Complete disk path
406 * /xxx Full path to file
407 * xxx Shorthand for /dev/disk/yyy/xxx
408 */
409 static nvlist_t *
410 make_leaf_vdev(nvlist_t *props, const char *arg, uint64_t is_log)
411 {
412 char path[MAXPATHLEN];
413 struct stat64 statbuf;
414 nvlist_t *vdev = NULL;
415 char *type = NULL;
416 boolean_t wholedisk = B_FALSE;
417 int err;
418
419 /*
420 * Determine what type of vdev this is, and put the full path into
421 * 'path'. We detect whether this is a device of file afterwards by
422 * checking the st_mode of the file.
423 */
424 if (arg[0] == '/') {
425 /*
426 * Complete device or file path. Exact type is determined by
427 * examining the file descriptor afterwards. Symbolic links
428 * are resolved to their real paths for the is_whole_disk()
429 * and S_ISBLK/S_ISREG type checks. However, we are careful
430 * to store the given path as ZPOOL_CONFIG_PATH to ensure we
431 * can leverage udev's persistent device labels.
432 */
433 if (realpath(arg, path) == NULL) {
434 (void) fprintf(stderr,
435 gettext("cannot resolve path '%s'\n"), arg);
436 return (NULL);
437 }
438
439 wholedisk = is_whole_disk(path);
440 if (!wholedisk && (stat64(path, &statbuf) != 0)) {
441 (void) fprintf(stderr,
442 gettext("cannot open '%s': %s\n"),
443 path, strerror(errno));
444 return (NULL);
445 }
446
447 /* After is_whole_disk() check restore original passed path */
448 strlcpy(path, arg, MAXPATHLEN);
449 } else {
450 err = is_shorthand_path(arg, path, &statbuf, &wholedisk);
451 if (err != 0) {
452 /*
453 * If we got ENOENT, then the user gave us
454 * gibberish, so try to direct them with a
455 * reasonable error message. Otherwise,
456 * regurgitate strerror() since it's the best we
457 * can do.
458 */
459 if (err == ENOENT) {
460 (void) fprintf(stderr,
461 gettext("cannot open '%s': no such "
462 "device in %s\n"), arg, DISK_ROOT);
463 (void) fprintf(stderr,
464 gettext("must be a full path or "
465 "shorthand device name\n"));
466 return (NULL);
467 } else {
468 (void) fprintf(stderr,
469 gettext("cannot open '%s': %s\n"),
470 path, strerror(errno));
471 return (NULL);
472 }
473 }
474 }
475
476 /*
477 * Determine whether this is a device or a file.
478 */
479 if (wholedisk || S_ISBLK(statbuf.st_mode)) {
480 type = VDEV_TYPE_DISK;
481 } else if (S_ISREG(statbuf.st_mode)) {
482 type = VDEV_TYPE_FILE;
483 } else {
484 (void) fprintf(stderr, gettext("cannot use '%s': must be a "
485 "block device or regular file\n"), path);
486 return (NULL);
487 }
488
489 /*
490 * Finally, we have the complete device or file, and we know that it is
491 * acceptable to use. Construct the nvlist to describe this vdev. All
492 * vdevs have a 'path' element, and devices also have a 'devid' element.
493 */
494 verify(nvlist_alloc(&vdev, NV_UNIQUE_NAME, 0) == 0);
495 verify(nvlist_add_string(vdev, ZPOOL_CONFIG_PATH, path) == 0);
496 verify(nvlist_add_string(vdev, ZPOOL_CONFIG_TYPE, type) == 0);
497 verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_IS_LOG, is_log) == 0);
498 if (strcmp(type, VDEV_TYPE_DISK) == 0)
499 verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK,
500 (uint64_t)wholedisk) == 0);
501
502 if (props != NULL) {
503 uint64_t ashift = 0;
504 char *value = NULL;
505
506 if (nvlist_lookup_string(props,
507 zpool_prop_to_name(ZPOOL_PROP_ASHIFT), &value) == 0)
508 zfs_nicestrtonum(NULL, value, &ashift);
509
510 if (ashift > 0)
511 verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_ASHIFT,
512 ashift) == 0);
513 }
514
515 return (vdev);
516 }
517
518 /*
519 * Go through and verify the replication level of the pool is consistent.
520 * Performs the following checks:
521 *
522 * For the new spec, verifies that devices in mirrors and raidz are the
523 * same size.
524 *
525 * If the current configuration already has inconsistent replication
526 * levels, ignore any other potential problems in the new spec.
527 *
528 * Otherwise, make sure that the current spec (if there is one) and the new
529 * spec have consistent replication levels.
530 */
531 typedef struct replication_level {
532 char *zprl_type;
533 uint64_t zprl_children;
534 uint64_t zprl_parity;
535 } replication_level_t;
536
537 #define ZPOOL_FUZZ (16 * 1024 * 1024)
538
539 /*
540 * Given a list of toplevel vdevs, return the current replication level. If
541 * the config is inconsistent, then NULL is returned. If 'fatal' is set, then
542 * an error message will be displayed for each self-inconsistent vdev.
543 */
544 static replication_level_t *
545 get_replication(nvlist_t *nvroot, boolean_t fatal)
546 {
547 nvlist_t **top;
548 uint_t t, toplevels;
549 nvlist_t **child;
550 uint_t c, children;
551 nvlist_t *nv;
552 char *type;
553 replication_level_t lastrep = { 0 }, rep, *ret;
554 boolean_t dontreport;
555
556 ret = safe_malloc(sizeof (replication_level_t));
557
558 verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
559 &top, &toplevels) == 0);
560
561 lastrep.zprl_type = NULL;
562 for (t = 0; t < toplevels; t++) {
563 uint64_t is_log = B_FALSE;
564
565 nv = top[t];
566
567 /*
568 * For separate logs we ignore the top level vdev replication
569 * constraints.
570 */
571 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &is_log);
572 if (is_log)
573 continue;
574
575 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE,
576 &type) == 0);
577 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
578 &child, &children) != 0) {
579 /*
580 * This is a 'file' or 'disk' vdev.
581 */
582 rep.zprl_type = type;
583 rep.zprl_children = 1;
584 rep.zprl_parity = 0;
585 } else {
586 uint64_t vdev_size;
587
588 /*
589 * This is a mirror or RAID-Z vdev. Go through and make
590 * sure the contents are all the same (files vs. disks),
591 * keeping track of the number of elements in the
592 * process.
593 *
594 * We also check that the size of each vdev (if it can
595 * be determined) is the same.
596 */
597 rep.zprl_type = type;
598 rep.zprl_children = 0;
599
600 if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
601 verify(nvlist_lookup_uint64(nv,
602 ZPOOL_CONFIG_NPARITY,
603 &rep.zprl_parity) == 0);
604 assert(rep.zprl_parity != 0);
605 } else {
606 rep.zprl_parity = 0;
607 }
608
609 /*
610 * The 'dontreport' variable indicates that we've
611 * already reported an error for this spec, so don't
612 * bother doing it again.
613 */
614 type = NULL;
615 dontreport = 0;
616 vdev_size = -1ULL;
617 for (c = 0; c < children; c++) {
618 nvlist_t *cnv = child[c];
619 char *path;
620 struct stat64 statbuf;
621 uint64_t size = -1ULL;
622 char *childtype;
623 int fd, err;
624
625 rep.zprl_children++;
626
627 verify(nvlist_lookup_string(cnv,
628 ZPOOL_CONFIG_TYPE, &childtype) == 0);
629
630 /*
631 * If this is a replacing or spare vdev, then
632 * get the real first child of the vdev.
633 */
634 if (strcmp(childtype,
635 VDEV_TYPE_REPLACING) == 0 ||
636 strcmp(childtype, VDEV_TYPE_SPARE) == 0) {
637 nvlist_t **rchild;
638 uint_t rchildren;
639
640 verify(nvlist_lookup_nvlist_array(cnv,
641 ZPOOL_CONFIG_CHILDREN, &rchild,
642 &rchildren) == 0);
643 assert(rchildren == 2);
644 cnv = rchild[0];
645
646 verify(nvlist_lookup_string(cnv,
647 ZPOOL_CONFIG_TYPE,
648 &childtype) == 0);
649 }
650
651 verify(nvlist_lookup_string(cnv,
652 ZPOOL_CONFIG_PATH, &path) == 0);
653
654 /*
655 * If we have a raidz/mirror that combines disks
656 * with files, report it as an error.
657 */
658 if (!dontreport && type != NULL &&
659 strcmp(type, childtype) != 0) {
660 if (ret != NULL)
661 free(ret);
662 ret = NULL;
663 if (fatal)
664 vdev_error(gettext(
665 "mismatched replication "
666 "level: %s contains both "
667 "files and devices\n"),
668 rep.zprl_type);
669 else
670 return (NULL);
671 dontreport = B_TRUE;
672 }
673
674 /*
675 * According to stat(2), the value of 'st_size'
676 * is undefined for block devices and character
677 * devices. But there is no effective way to
678 * determine the real size in userland.
679 *
680 * Instead, we'll take advantage of an
681 * implementation detail of spec_size(). If the
682 * device is currently open, then we (should)
683 * return a valid size.
684 *
685 * If we still don't get a valid size (indicated
686 * by a size of 0 or MAXOFFSET_T), then ignore
687 * this device altogether.
688 */
689 if ((fd = open(path, O_RDONLY)) >= 0) {
690 err = fstat64(fd, &statbuf);
691 (void) close(fd);
692 } else {
693 err = stat64(path, &statbuf);
694 }
695
696 if (err != 0 ||
697 statbuf.st_size == 0 ||
698 statbuf.st_size == MAXOFFSET_T)
699 continue;
700
701 size = statbuf.st_size;
702
703 /*
704 * Also make sure that devices and
705 * slices have a consistent size. If
706 * they differ by a significant amount
707 * (~16MB) then report an error.
708 */
709 if (!dontreport &&
710 (vdev_size != -1ULL &&
711 (labs(size - vdev_size) >
712 ZPOOL_FUZZ))) {
713 if (ret != NULL)
714 free(ret);
715 ret = NULL;
716 if (fatal)
717 vdev_error(gettext(
718 "%s contains devices of "
719 "different sizes\n"),
720 rep.zprl_type);
721 else
722 return (NULL);
723 dontreport = B_TRUE;
724 }
725
726 type = childtype;
727 vdev_size = size;
728 }
729 }
730
731 /*
732 * At this point, we have the replication of the last toplevel
733 * vdev in 'rep'. Compare it to 'lastrep' to see if its
734 * different.
735 */
736 if (lastrep.zprl_type != NULL) {
737 if (strcmp(lastrep.zprl_type, rep.zprl_type) != 0) {
738 if (ret != NULL)
739 free(ret);
740 ret = NULL;
741 if (fatal)
742 vdev_error(gettext(
743 "mismatched replication level: "
744 "both %s and %s vdevs are "
745 "present\n"),
746 lastrep.zprl_type, rep.zprl_type);
747 else
748 return (NULL);
749 } else if (lastrep.zprl_parity != rep.zprl_parity) {
750 if (ret)
751 free(ret);
752 ret = NULL;
753 if (fatal)
754 vdev_error(gettext(
755 "mismatched replication level: "
756 "both %llu and %llu device parity "
757 "%s vdevs are present\n"),
758 lastrep.zprl_parity,
759 rep.zprl_parity,
760 rep.zprl_type);
761 else
762 return (NULL);
763 } else if (lastrep.zprl_children != rep.zprl_children) {
764 if (ret)
765 free(ret);
766 ret = NULL;
767 if (fatal)
768 vdev_error(gettext(
769 "mismatched replication level: "
770 "both %llu-way and %llu-way %s "
771 "vdevs are present\n"),
772 lastrep.zprl_children,
773 rep.zprl_children,
774 rep.zprl_type);
775 else
776 return (NULL);
777 }
778 }
779 lastrep = rep;
780 }
781
782 if (ret != NULL)
783 *ret = rep;
784
785 return (ret);
786 }
787
788 /*
789 * Check the replication level of the vdev spec against the current pool. Calls
790 * get_replication() to make sure the new spec is self-consistent. If the pool
791 * has a consistent replication level, then we ignore any errors. Otherwise,
792 * report any difference between the two.
793 */
794 static int
795 check_replication(nvlist_t *config, nvlist_t *newroot)
796 {
797 nvlist_t **child;
798 uint_t children;
799 replication_level_t *current = NULL, *new;
800 int ret;
801
802 /*
803 * If we have a current pool configuration, check to see if it's
804 * self-consistent. If not, simply return success.
805 */
806 if (config != NULL) {
807 nvlist_t *nvroot;
808
809 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
810 &nvroot) == 0);
811 if ((current = get_replication(nvroot, B_FALSE)) == NULL)
812 return (0);
813 }
814 /*
815 * for spares there may be no children, and therefore no
816 * replication level to check
817 */
818 if ((nvlist_lookup_nvlist_array(newroot, ZPOOL_CONFIG_CHILDREN,
819 &child, &children) != 0) || (children == 0)) {
820 free(current);
821 return (0);
822 }
823
824 /*
825 * If all we have is logs then there's no replication level to check.
826 */
827 if (num_logs(newroot) == children) {
828 free(current);
829 return (0);
830 }
831
832 /*
833 * Get the replication level of the new vdev spec, reporting any
834 * inconsistencies found.
835 */
836 if ((new = get_replication(newroot, B_TRUE)) == NULL) {
837 free(current);
838 return (-1);
839 }
840
841 /*
842 * Check to see if the new vdev spec matches the replication level of
843 * the current pool.
844 */
845 ret = 0;
846 if (current != NULL) {
847 if (strcmp(current->zprl_type, new->zprl_type) != 0) {
848 vdev_error(gettext(
849 "mismatched replication level: pool uses %s "
850 "and new vdev is %s\n"),
851 current->zprl_type, new->zprl_type);
852 ret = -1;
853 } else if (current->zprl_parity != new->zprl_parity) {
854 vdev_error(gettext(
855 "mismatched replication level: pool uses %llu "
856 "device parity and new vdev uses %llu\n"),
857 current->zprl_parity, new->zprl_parity);
858 ret = -1;
859 } else if (current->zprl_children != new->zprl_children) {
860 vdev_error(gettext(
861 "mismatched replication level: pool uses %llu-way "
862 "%s and new vdev uses %llu-way %s\n"),
863 current->zprl_children, current->zprl_type,
864 new->zprl_children, new->zprl_type);
865 ret = -1;
866 }
867 }
868
869 free(new);
870 if (current != NULL)
871 free(current);
872
873 return (ret);
874 }
875
876 static int
877 zero_label(char *path)
878 {
879 const int size = 4096;
880 char buf[size];
881 int err, fd;
882
883 if ((fd = open(path, O_WRONLY|O_EXCL)) < 0) {
884 (void) fprintf(stderr, gettext("cannot open '%s': %s\n"),
885 path, strerror(errno));
886 return (-1);
887 }
888
889 memset(buf, 0, size);
890 err = write(fd, buf, size);
891 (void) fdatasync(fd);
892 (void) close(fd);
893
894 if (err == -1) {
895 (void) fprintf(stderr, gettext("cannot zero first %d bytes "
896 "of '%s': %s\n"), size, path, strerror(errno));
897 return (-1);
898 }
899
900 if (err != size) {
901 (void) fprintf(stderr, gettext("could only zero %d/%d bytes "
902 "of '%s'\n"), err, size, path);
903 return (-1);
904 }
905
906 return 0;
907 }
908
909 /*
910 * Go through and find any whole disks in the vdev specification, labelling them
911 * as appropriate. When constructing the vdev spec, we were unable to open this
912 * device in order to provide a devid. Now that we have labelled the disk and
913 * know that slice 0 is valid, we can construct the devid now.
914 *
915 * If the disk was already labeled with an EFI label, we will have gotten the
916 * devid already (because we were able to open the whole disk). Otherwise, we
917 * need to get the devid after we label the disk.
918 */
919 static int
920 make_disks(zpool_handle_t *zhp, nvlist_t *nv)
921 {
922 nvlist_t **child;
923 uint_t c, children;
924 char *type, *path, *diskname;
925 char devpath[MAXPATHLEN];
926 char udevpath[MAXPATHLEN];
927 uint64_t wholedisk;
928 struct stat64 statbuf;
929 int ret;
930
931 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
932
933 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
934 &child, &children) != 0) {
935
936 if (strcmp(type, VDEV_TYPE_DISK) != 0)
937 return (0);
938
939 /*
940 * We have a disk device. If this is a whole disk write
941 * out the efi partition table, otherwise write zero's to
942 * the first 4k of the partition. This is to ensure that
943 * libblkid will not misidentify the partition due to a
944 * magic value left by the previous filesystem.
945 */
946 verify(!nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path));
947 verify(!nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
948 &wholedisk));
949
950 if (!wholedisk) {
951 ret = zero_label(path);
952 return (ret);
953 }
954
955 if (realpath(path, devpath) == NULL) {
956 ret = errno;
957 (void) fprintf(stderr,
958 gettext("cannot resolve path '%s'\n"), path);
959 return (ret);
960 }
961
962 /*
963 * Remove any previously existing symlink from a udev path to
964 * the device before labeling the disk. This makes
965 * zpool_label_disk_wait() truly wait for the new link to show
966 * up instead of returning if it finds an old link still in
967 * place. Otherwise there is a window between when udev
968 * deletes and recreates the link during which access attempts
969 * will fail with ENOENT.
970 */
971 zfs_append_partition(path, udevpath, sizeof (udevpath));
972 if ((strncmp(udevpath, UDISK_ROOT, strlen(UDISK_ROOT)) == 0) &&
973 (lstat64(udevpath, &statbuf) == 0) &&
974 S_ISLNK(statbuf.st_mode))
975 (void) unlink(udevpath);
976
977 diskname = strrchr(devpath, '/');
978 assert(diskname != NULL);
979 diskname++;
980 if (zpool_label_disk(g_zfs, zhp, diskname) == -1)
981 return (-1);
982
983 /*
984 * Now we've labeled the disk and the partitions have been
985 * created. We still need to wait for udev to create the
986 * symlinks to those partitions.
987 */
988 if ((ret = zpool_label_disk_wait(udevpath, 1000)) != 0) {
989 (void) fprintf(stderr,
990 gettext( "cannot resolve path '%s'\n"), udevpath);
991 return (-1);
992 }
993
994 /*
995 * Update the path to refer to FIRST_SLICE. The presence of
996 * the 'whole_disk' field indicates to the CLI that we should
997 * chop off the slice number when displaying the device in
998 * future output.
999 */
1000 verify(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, udevpath) == 0);
1001
1002 /* Just in case this partition already existed. */
1003 (void) zero_label(udevpath);
1004
1005 return (0);
1006 }
1007
1008 for (c = 0; c < children; c++)
1009 if ((ret = make_disks(zhp, child[c])) != 0)
1010 return (ret);
1011
1012 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
1013 &child, &children) == 0)
1014 for (c = 0; c < children; c++)
1015 if ((ret = make_disks(zhp, child[c])) != 0)
1016 return (ret);
1017
1018 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
1019 &child, &children) == 0)
1020 for (c = 0; c < children; c++)
1021 if ((ret = make_disks(zhp, child[c])) != 0)
1022 return (ret);
1023
1024 return (0);
1025 }
1026
1027 /*
1028 * Determine if the given path is a hot spare within the given configuration.
1029 */
1030 static boolean_t
1031 is_spare(nvlist_t *config, const char *path)
1032 {
1033 int fd;
1034 pool_state_t state;
1035 char *name = NULL;
1036 nvlist_t *label;
1037 uint64_t guid, spareguid;
1038 nvlist_t *nvroot;
1039 nvlist_t **spares;
1040 uint_t i, nspares;
1041 boolean_t inuse;
1042
1043 if ((fd = open(path, O_RDONLY|O_EXCL)) < 0)
1044 return (B_FALSE);
1045
1046 if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) != 0 ||
1047 !inuse ||
1048 state != POOL_STATE_SPARE ||
1049 zpool_read_label(fd, &label) != 0) {
1050 free(name);
1051 (void) close(fd);
1052 return (B_FALSE);
1053 }
1054 free(name);
1055 (void) close(fd);
1056
1057 verify(nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) == 0);
1058 nvlist_free(label);
1059
1060 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
1061 &nvroot) == 0);
1062 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1063 &spares, &nspares) == 0) {
1064 for (i = 0; i < nspares; i++) {
1065 verify(nvlist_lookup_uint64(spares[i],
1066 ZPOOL_CONFIG_GUID, &spareguid) == 0);
1067 if (spareguid == guid)
1068 return (B_TRUE);
1069 }
1070 }
1071
1072 return (B_FALSE);
1073 }
1074
1075 /*
1076 * Go through and find any devices that are in use. We rely on libdiskmgt for
1077 * the majority of this task.
1078 */
1079 static int
1080 check_in_use(nvlist_t *config, nvlist_t *nv, boolean_t force,
1081 boolean_t replacing, boolean_t isspare)
1082 {
1083 nvlist_t **child;
1084 uint_t c, children;
1085 char *type, *path;
1086 int ret = 0;
1087 char buf[MAXPATHLEN];
1088 uint64_t wholedisk = B_FALSE;
1089
1090 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
1091
1092 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1093 &child, &children) != 0) {
1094
1095 verify(!nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path));
1096 if (strcmp(type, VDEV_TYPE_DISK) == 0)
1097 verify(!nvlist_lookup_uint64(nv,
1098 ZPOOL_CONFIG_WHOLE_DISK, &wholedisk));
1099
1100 /*
1101 * As a generic check, we look to see if this is a replace of a
1102 * hot spare within the same pool. If so, we allow it
1103 * regardless of what libblkid or zpool_in_use() says.
1104 */
1105 if (replacing) {
1106 if (wholedisk)
1107 (void) snprintf(buf, sizeof (buf), "%ss0",
1108 path);
1109 else
1110 (void) strlcpy(buf, path, sizeof (buf));
1111
1112 if (is_spare(config, buf))
1113 return (0);
1114 }
1115
1116 if (strcmp(type, VDEV_TYPE_DISK) == 0)
1117 ret = check_device(path, force, isspare, wholedisk);
1118
1119 if (strcmp(type, VDEV_TYPE_FILE) == 0)
1120 ret = check_file(path, force, isspare);
1121
1122 return (ret);
1123 }
1124
1125 for (c = 0; c < children; c++)
1126 if ((ret = check_in_use(config, child[c], force,
1127 replacing, B_FALSE)) != 0)
1128 return (ret);
1129
1130 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
1131 &child, &children) == 0)
1132 for (c = 0; c < children; c++)
1133 if ((ret = check_in_use(config, child[c], force,
1134 replacing, B_TRUE)) != 0)
1135 return (ret);
1136
1137 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
1138 &child, &children) == 0)
1139 for (c = 0; c < children; c++)
1140 if ((ret = check_in_use(config, child[c], force,
1141 replacing, B_FALSE)) != 0)
1142 return (ret);
1143
1144 return (0);
1145 }
1146
1147 static const char *
1148 is_grouping(const char *type, int *mindev, int *maxdev)
1149 {
1150 if (strncmp(type, "raidz", 5) == 0) {
1151 const char *p = type + 5;
1152 char *end;
1153 long nparity;
1154
1155 if (*p == '\0') {
1156 nparity = 1;
1157 } else if (*p == '0') {
1158 return (NULL); /* no zero prefixes allowed */
1159 } else {
1160 errno = 0;
1161 nparity = strtol(p, &end, 10);
1162 if (errno != 0 || nparity < 1 || nparity >= 255 ||
1163 *end != '\0')
1164 return (NULL);
1165 }
1166
1167 if (mindev != NULL)
1168 *mindev = nparity + 1;
1169 if (maxdev != NULL)
1170 *maxdev = 255;
1171 return (VDEV_TYPE_RAIDZ);
1172 }
1173
1174 if (maxdev != NULL)
1175 *maxdev = INT_MAX;
1176
1177 if (strcmp(type, "mirror") == 0) {
1178 if (mindev != NULL)
1179 *mindev = 2;
1180 return (VDEV_TYPE_MIRROR);
1181 }
1182
1183 if (strcmp(type, "spare") == 0) {
1184 if (mindev != NULL)
1185 *mindev = 1;
1186 return (VDEV_TYPE_SPARE);
1187 }
1188
1189 if (strcmp(type, "log") == 0) {
1190 if (mindev != NULL)
1191 *mindev = 1;
1192 return (VDEV_TYPE_LOG);
1193 }
1194
1195 if (strcmp(type, "cache") == 0) {
1196 if (mindev != NULL)
1197 *mindev = 1;
1198 return (VDEV_TYPE_L2CACHE);
1199 }
1200
1201 return (NULL);
1202 }
1203
1204 /*
1205 * Construct a syntactically valid vdev specification,
1206 * and ensure that all devices and files exist and can be opened.
1207 * Note: we don't bother freeing anything in the error paths
1208 * because the program is just going to exit anyway.
1209 */
1210 nvlist_t *
1211 construct_spec(nvlist_t *props, int argc, char **argv)
1212 {
1213 nvlist_t *nvroot, *nv, **top, **spares, **l2cache;
1214 int t, toplevels, mindev, maxdev, nspares, nlogs, nl2cache;
1215 const char *type;
1216 uint64_t is_log;
1217 boolean_t seen_logs;
1218
1219 top = NULL;
1220 toplevels = 0;
1221 spares = NULL;
1222 l2cache = NULL;
1223 nspares = 0;
1224 nlogs = 0;
1225 nl2cache = 0;
1226 is_log = B_FALSE;
1227 seen_logs = B_FALSE;
1228
1229 while (argc > 0) {
1230 nv = NULL;
1231
1232 /*
1233 * If it's a mirror or raidz, the subsequent arguments are
1234 * its leaves -- until we encounter the next mirror or raidz.
1235 */
1236 if ((type = is_grouping(argv[0], &mindev, &maxdev)) != NULL) {
1237 nvlist_t **child = NULL;
1238 int c, children = 0;
1239
1240 if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1241 if (spares != NULL) {
1242 (void) fprintf(stderr,
1243 gettext("invalid vdev "
1244 "specification: 'spare' can be "
1245 "specified only once\n"));
1246 return (NULL);
1247 }
1248 is_log = B_FALSE;
1249 }
1250
1251 if (strcmp(type, VDEV_TYPE_LOG) == 0) {
1252 if (seen_logs) {
1253 (void) fprintf(stderr,
1254 gettext("invalid vdev "
1255 "specification: 'log' can be "
1256 "specified only once\n"));
1257 return (NULL);
1258 }
1259 seen_logs = B_TRUE;
1260 is_log = B_TRUE;
1261 argc--;
1262 argv++;
1263 /*
1264 * A log is not a real grouping device.
1265 * We just set is_log and continue.
1266 */
1267 continue;
1268 }
1269
1270 if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1271 if (l2cache != NULL) {
1272 (void) fprintf(stderr,
1273 gettext("invalid vdev "
1274 "specification: 'cache' can be "
1275 "specified only once\n"));
1276 return (NULL);
1277 }
1278 is_log = B_FALSE;
1279 }
1280
1281 if (is_log) {
1282 if (strcmp(type, VDEV_TYPE_MIRROR) != 0) {
1283 (void) fprintf(stderr,
1284 gettext("invalid vdev "
1285 "specification: unsupported 'log' "
1286 "device: %s\n"), type);
1287 return (NULL);
1288 }
1289 nlogs++;
1290 }
1291
1292 for (c = 1; c < argc; c++) {
1293 if (is_grouping(argv[c], NULL, NULL) != NULL)
1294 break;
1295 children++;
1296 child = realloc(child,
1297 children * sizeof (nvlist_t *));
1298 if (child == NULL)
1299 zpool_no_memory();
1300 if ((nv = make_leaf_vdev(props, argv[c], B_FALSE))
1301 == NULL)
1302 return (NULL);
1303 child[children - 1] = nv;
1304 }
1305
1306 if (children < mindev) {
1307 (void) fprintf(stderr, gettext("invalid vdev "
1308 "specification: %s requires at least %d "
1309 "devices\n"), argv[0], mindev);
1310 return (NULL);
1311 }
1312
1313 if (children > maxdev) {
1314 (void) fprintf(stderr, gettext("invalid vdev "
1315 "specification: %s supports no more than "
1316 "%d devices\n"), argv[0], maxdev);
1317 return (NULL);
1318 }
1319
1320 argc -= c;
1321 argv += c;
1322
1323 if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1324 spares = child;
1325 nspares = children;
1326 continue;
1327 } else if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1328 l2cache = child;
1329 nl2cache = children;
1330 continue;
1331 } else {
1332 verify(nvlist_alloc(&nv, NV_UNIQUE_NAME,
1333 0) == 0);
1334 verify(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
1335 type) == 0);
1336 verify(nvlist_add_uint64(nv,
1337 ZPOOL_CONFIG_IS_LOG, is_log) == 0);
1338 if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
1339 verify(nvlist_add_uint64(nv,
1340 ZPOOL_CONFIG_NPARITY,
1341 mindev - 1) == 0);
1342 }
1343 verify(nvlist_add_nvlist_array(nv,
1344 ZPOOL_CONFIG_CHILDREN, child,
1345 children) == 0);
1346
1347 for (c = 0; c < children; c++)
1348 nvlist_free(child[c]);
1349 free(child);
1350 }
1351 } else {
1352 /*
1353 * We have a device. Pass off to make_leaf_vdev() to
1354 * construct the appropriate nvlist describing the vdev.
1355 */
1356 if ((nv = make_leaf_vdev(props, argv[0], is_log)) == NULL)
1357 return (NULL);
1358 if (is_log)
1359 nlogs++;
1360 argc--;
1361 argv++;
1362 }
1363
1364 toplevels++;
1365 top = realloc(top, toplevels * sizeof (nvlist_t *));
1366 if (top == NULL)
1367 zpool_no_memory();
1368 top[toplevels - 1] = nv;
1369 }
1370
1371 if (toplevels == 0 && nspares == 0 && nl2cache == 0) {
1372 (void) fprintf(stderr, gettext("invalid vdev "
1373 "specification: at least one toplevel vdev must be "
1374 "specified\n"));
1375 return (NULL);
1376 }
1377
1378 if (seen_logs && nlogs == 0) {
1379 (void) fprintf(stderr, gettext("invalid vdev specification: "
1380 "log requires at least 1 device\n"));
1381 return (NULL);
1382 }
1383
1384 /*
1385 * Finally, create nvroot and add all top-level vdevs to it.
1386 */
1387 verify(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) == 0);
1388 verify(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
1389 VDEV_TYPE_ROOT) == 0);
1390 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1391 top, toplevels) == 0);
1392 if (nspares != 0)
1393 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1394 spares, nspares) == 0);
1395 if (nl2cache != 0)
1396 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
1397 l2cache, nl2cache) == 0);
1398
1399 for (t = 0; t < toplevels; t++)
1400 nvlist_free(top[t]);
1401 for (t = 0; t < nspares; t++)
1402 nvlist_free(spares[t]);
1403 for (t = 0; t < nl2cache; t++)
1404 nvlist_free(l2cache[t]);
1405 if (spares)
1406 free(spares);
1407 if (l2cache)
1408 free(l2cache);
1409 free(top);
1410
1411 return (nvroot);
1412 }
1413
1414 nvlist_t *
1415 split_mirror_vdev(zpool_handle_t *zhp, char *newname, nvlist_t *props,
1416 splitflags_t flags, int argc, char **argv)
1417 {
1418 nvlist_t *newroot = NULL, **child;
1419 uint_t c, children;
1420
1421 if (argc > 0) {
1422 if ((newroot = construct_spec(props, argc, argv)) == NULL) {
1423 (void) fprintf(stderr, gettext("Unable to build a "
1424 "pool from the specified devices\n"));
1425 return (NULL);
1426 }
1427
1428 if (!flags.dryrun && make_disks(zhp, newroot) != 0) {
1429 nvlist_free(newroot);
1430 return (NULL);
1431 }
1432
1433 /* avoid any tricks in the spec */
1434 verify(nvlist_lookup_nvlist_array(newroot,
1435 ZPOOL_CONFIG_CHILDREN, &child, &children) == 0);
1436 for (c = 0; c < children; c++) {
1437 char *path;
1438 const char *type;
1439 int min, max;
1440
1441 verify(nvlist_lookup_string(child[c],
1442 ZPOOL_CONFIG_PATH, &path) == 0);
1443 if ((type = is_grouping(path, &min, &max)) != NULL) {
1444 (void) fprintf(stderr, gettext("Cannot use "
1445 "'%s' as a device for splitting\n"), type);
1446 nvlist_free(newroot);
1447 return (NULL);
1448 }
1449 }
1450 }
1451
1452 if (zpool_vdev_split(zhp, newname, &newroot, props, flags) != 0) {
1453 if (newroot != NULL)
1454 nvlist_free(newroot);
1455 return (NULL);
1456 }
1457
1458 return (newroot);
1459 }
1460
1461 /*
1462 * Get and validate the contents of the given vdev specification. This ensures
1463 * that the nvlist returned is well-formed, that all the devices exist, and that
1464 * they are not currently in use by any other known consumer. The 'poolconfig'
1465 * parameter is the current configuration of the pool when adding devices
1466 * existing pool, and is used to perform additional checks, such as changing the
1467 * replication level of the pool. It can be 'NULL' to indicate that this is a
1468 * new pool. The 'force' flag controls whether devices should be forcefully
1469 * added, even if they appear in use.
1470 */
1471 nvlist_t *
1472 make_root_vdev(zpool_handle_t *zhp, nvlist_t *props, int force, int check_rep,
1473 boolean_t replacing, boolean_t dryrun, int argc, char **argv)
1474 {
1475 nvlist_t *newroot;
1476 nvlist_t *poolconfig = NULL;
1477 is_force = force;
1478
1479 /*
1480 * Construct the vdev specification. If this is successful, we know
1481 * that we have a valid specification, and that all devices can be
1482 * opened.
1483 */
1484 if ((newroot = construct_spec(props, argc, argv)) == NULL)
1485 return (NULL);
1486
1487 if (zhp && ((poolconfig = zpool_get_config(zhp, NULL)) == NULL))
1488 return (NULL);
1489
1490 /*
1491 * Validate each device to make sure that its not shared with another
1492 * subsystem. We do this even if 'force' is set, because there are some
1493 * uses (such as a dedicated dump device) that even '-f' cannot
1494 * override.
1495 */
1496 if (check_in_use(poolconfig, newroot, force, replacing, B_FALSE) != 0) {
1497 nvlist_free(newroot);
1498 return (NULL);
1499 }
1500
1501 /*
1502 * Check the replication level of the given vdevs and report any errors
1503 * found. We include the existing pool spec, if any, as we need to
1504 * catch changes against the existing replication level.
1505 */
1506 if (check_rep && check_replication(poolconfig, newroot) != 0) {
1507 nvlist_free(newroot);
1508 return (NULL);
1509 }
1510
1511 /*
1512 * Run through the vdev specification and label any whole disks found.
1513 */
1514 if (!dryrun && make_disks(zhp, newroot) != 0) {
1515 nvlist_free(newroot);
1516 return (NULL);
1517 }
1518
1519 return (newroot);
1520 }