]> git.proxmox.com Git - mirror_zfs-debian.git/blob - cmd/zpool/zpool_vdev.c
Fix intermittent 'zpool add' failures
[mirror_zfs-debian.git] / cmd / zpool / zpool_vdev.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25
26 /*
27 * Functions to convert between a list of vdevs and an nvlist representing the
28 * configuration. Each entry in the list can be one of:
29 *
30 * Device vdevs
31 * disk=(path=..., devid=...)
32 * file=(path=...)
33 *
34 * Group vdevs
35 * raidz[1|2]=(...)
36 * mirror=(...)
37 *
38 * Hot spares
39 *
40 * While the underlying implementation supports it, group vdevs cannot contain
41 * other group vdevs. All userland verification of devices is contained within
42 * this file. If successful, the nvlist returned can be passed directly to the
43 * kernel; we've done as much verification as possible in userland.
44 *
45 * Hot spares are a special case, and passed down as an array of disk vdevs, at
46 * the same level as the root of the vdev tree.
47 *
48 * The only function exported by this file is 'make_root_vdev'. The
49 * function performs several passes:
50 *
51 * 1. Construct the vdev specification. Performs syntax validation and
52 * makes sure each device is valid.
53 * 2. Check for devices in use. Using libblkid to make sure that no
54 * devices are also in use. Some can be overridden using the 'force'
55 * flag, others cannot.
56 * 3. Check for replication errors if the 'force' flag is not specified.
57 * validates that the replication level is consistent across the
58 * entire pool.
59 * 4. Call libzfs to label any whole disks with an EFI label.
60 */
61
62 #include <assert.h>
63 #include <ctype.h>
64 #include <devid.h>
65 #include <errno.h>
66 #include <fcntl.h>
67 #include <libintl.h>
68 #include <libnvpair.h>
69 #include <limits.h>
70 #include <stdio.h>
71 #include <string.h>
72 #include <unistd.h>
73 #include <sys/efi_partition.h>
74 #include <sys/stat.h>
75 #include <sys/vtoc.h>
76 #include <sys/mntent.h>
77 #include <uuid/uuid.h>
78 #ifdef HAVE_LIBBLKID
79 #include <blkid/blkid.h>
80 #else
81 #define blkid_cache void *
82 #endif /* HAVE_LIBBLKID */
83
84 #include "zpool_util.h"
85
86 /*
87 * For any given vdev specification, we can have multiple errors. The
88 * vdev_error() function keeps track of whether we have seen an error yet, and
89 * prints out a header if its the first error we've seen.
90 */
91 boolean_t error_seen;
92 boolean_t is_force;
93
94 /*PRINTFLIKE1*/
95 static void
96 vdev_error(const char *fmt, ...)
97 {
98 va_list ap;
99
100 if (!error_seen) {
101 (void) fprintf(stderr, gettext("invalid vdev specification\n"));
102 if (!is_force)
103 (void) fprintf(stderr, gettext("use '-f' to override "
104 "the following errors:\n"));
105 else
106 (void) fprintf(stderr, gettext("the following errors "
107 "must be manually repaired:\n"));
108 error_seen = B_TRUE;
109 }
110
111 va_start(ap, fmt);
112 (void) vfprintf(stderr, fmt, ap);
113 va_end(ap);
114 }
115
116 /*
117 * Check that a file is valid. All we can do in this case is check that it's
118 * not in use by another pool, and not in use by swap.
119 */
120 static int
121 check_file(const char *file, boolean_t force, boolean_t isspare)
122 {
123 char *name;
124 int fd;
125 int ret = 0;
126 pool_state_t state;
127 boolean_t inuse;
128
129 if ((fd = open(file, O_RDONLY)) < 0)
130 return (0);
131
132 if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) == 0 && inuse) {
133 const char *desc;
134
135 switch (state) {
136 case POOL_STATE_ACTIVE:
137 desc = gettext("active");
138 break;
139
140 case POOL_STATE_EXPORTED:
141 desc = gettext("exported");
142 break;
143
144 case POOL_STATE_POTENTIALLY_ACTIVE:
145 desc = gettext("potentially active");
146 break;
147
148 default:
149 desc = gettext("unknown");
150 break;
151 }
152
153 /*
154 * Allow hot spares to be shared between pools.
155 */
156 if (state == POOL_STATE_SPARE && isspare)
157 return (0);
158
159 if (state == POOL_STATE_ACTIVE ||
160 state == POOL_STATE_SPARE || !force) {
161 switch (state) {
162 case POOL_STATE_SPARE:
163 vdev_error(gettext("%s is reserved as a hot "
164 "spare for pool %s\n"), file, name);
165 break;
166 default:
167 vdev_error(gettext("%s is part of %s pool "
168 "'%s'\n"), file, desc, name);
169 break;
170 }
171 ret = -1;
172 }
173
174 free(name);
175 }
176
177 (void) close(fd);
178 return (ret);
179 }
180
181 static void
182 check_error(int err)
183 {
184 (void) fprintf(stderr, gettext("warning: device in use checking "
185 "failed: %s\n"), strerror(err));
186 }
187
188 static int
189 check_slice(const char *path, blkid_cache cache, int force, boolean_t isspare)
190 {
191 struct stat64 statbuf;
192 int err;
193 #ifdef HAVE_LIBBLKID
194 char *value;
195 #endif /* HAVE_LIBBLKID */
196
197 if (stat64(path, &statbuf) != 0) {
198 vdev_error(gettext("cannot stat %s: %s\n"),
199 path, strerror(errno));
200 return (-1);
201 }
202
203 #ifdef HAVE_LIBBLKID
204 /* No valid type detected device is safe to use */
205 value = blkid_get_tag_value(cache, "TYPE", path);
206 if (value == NULL)
207 return (0);
208
209 /*
210 * If libblkid detects a ZFS device, we check the device
211 * using check_file() to see if it's safe. The one safe
212 * case is a spare device shared between multiple pools.
213 */
214 if (strcmp(value, "zfs") == 0) {
215 err = check_file(path, force, isspare);
216 } else {
217 if (force) {
218 err = 0;
219 } else {
220 err = -1;
221 vdev_error(gettext("%s contains a filesystem of "
222 "type '%s'\n"), path, value);
223 }
224 }
225
226 free(value);
227 #else
228 err = check_file(path, force, isspare);
229 #endif /* HAVE_LIBBLKID */
230
231 return (err);
232 }
233
234 /*
235 * Validate a whole disk. Iterate over all slices on the disk and make sure
236 * that none is in use by calling check_slice().
237 */
238 static int
239 check_disk(const char *path, blkid_cache cache, int force,
240 boolean_t isspare, boolean_t iswholedisk)
241 {
242 struct dk_gpt *vtoc;
243 char slice_path[MAXPATHLEN];
244 int err = 0;
245 int fd, i;
246
247 /* This is not a wholedisk we only check the given partition */
248 if (!iswholedisk)
249 return check_slice(path, cache, force, isspare);
250
251 /*
252 * When the device is a whole disk try to read the efi partition
253 * label. If this is successful we safely check the all of the
254 * partitions. However, when it fails it may simply be because
255 * the disk is partitioned via the MBR. Since we currently can
256 * not easily decode the MBR return a failure and prompt to the
257 * user to use force option since we cannot check the partitions.
258 */
259 if ((fd = open(path, O_RDWR|O_DIRECT|O_EXCL)) < 0) {
260 check_error(errno);
261 return -1;
262 }
263
264 if ((err = efi_alloc_and_read(fd, &vtoc)) != 0) {
265 (void) close(fd);
266
267 if (force) {
268 return 0;
269 } else {
270 vdev_error(gettext("%s does not contain an EFI "
271 "label but it may contain partition\n"
272 "information in the MBR.\n"), path);
273 return -1;
274 }
275 }
276
277 /*
278 * The primary efi partition label is damaged however the secondary
279 * label at the end of the device is intact. Rather than use this
280 * label we should play it safe and treat this as a non efi device.
281 */
282 if (vtoc->efi_flags & EFI_GPT_PRIMARY_CORRUPT) {
283 efi_free(vtoc);
284 (void) close(fd);
285
286 if (force) {
287 /* Partitions will no be created using the backup */
288 return 0;
289 } else {
290 vdev_error(gettext("%s contains a corrupt primary "
291 "EFI label.\n"), path);
292 return -1;
293 }
294 }
295
296 for (i = 0; i < vtoc->efi_nparts; i++) {
297
298 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED ||
299 uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid))
300 continue;
301
302 if (strncmp(path, UDISK_ROOT, strlen(UDISK_ROOT)) == 0)
303 (void) snprintf(slice_path, sizeof (slice_path),
304 "%s%s%d", path, "-part", i+1);
305 else
306 (void) snprintf(slice_path, sizeof (slice_path),
307 "%s%s%d", path, isdigit(path[strlen(path)-1]) ?
308 "p" : "", i+1);
309
310 err = check_slice(slice_path, cache, force, isspare);
311 if (err)
312 break;
313 }
314
315 efi_free(vtoc);
316 (void) close(fd);
317
318 return (err);
319 }
320
321 static int
322 check_device(const char *path, boolean_t force,
323 boolean_t isspare, boolean_t iswholedisk)
324 {
325 static blkid_cache cache = NULL;
326
327 #ifdef HAVE_LIBBLKID
328 /*
329 * There is no easy way to add a correct blkid_put_cache() call,
330 * memory will be reclaimed when the command exits.
331 */
332 if (cache == NULL) {
333 int err;
334
335 if ((err = blkid_get_cache(&cache, NULL)) != 0) {
336 check_error(err);
337 return -1;
338 }
339
340 if ((err = blkid_probe_all(cache)) != 0) {
341 blkid_put_cache(cache);
342 check_error(err);
343 return -1;
344 }
345 }
346 #endif /* HAVE_LIBBLKID */
347
348 return check_disk(path, cache, force, isspare, iswholedisk);
349 }
350
351 /*
352 * By "whole disk" we mean an entire physical disk (something we can
353 * label, toggle the write cache on, etc.) as opposed to the full
354 * capacity of a pseudo-device such as lofi or did. We act as if we
355 * are labeling the disk, which should be a pretty good test of whether
356 * it's a viable device or not. Returns B_TRUE if it is and B_FALSE if
357 * it isn't.
358 */
359 static boolean_t
360 is_whole_disk(const char *path)
361 {
362 struct dk_gpt *label;
363 int fd;
364
365 if ((fd = open(path, O_RDWR|O_DIRECT|O_EXCL)) < 0)
366 return (B_FALSE);
367 if (efi_alloc_and_init(fd, EFI_NUMPAR, &label) != 0) {
368 (void) close(fd);
369 return (B_FALSE);
370 }
371 efi_free(label);
372 (void) close(fd);
373 return (B_TRUE);
374 }
375
376 /*
377 * This may be a shorthand device path or it could be total gibberish.
378 * Check to see if it's a known device in /dev/, /dev/disk/by-id,
379 * /dev/disk/by-label, /dev/disk/by-path, /dev/disk/by-uuid, or
380 * /dev/disk/zpool/. As part of this check, see if we've been given
381 * an entire disk (minus the slice number).
382 */
383 static int
384 is_shorthand_path(const char *arg, char *path,
385 struct stat64 *statbuf, boolean_t *wholedisk)
386 {
387 if (zfs_resolve_shortname(arg, path, MAXPATHLEN) == 0) {
388 *wholedisk = is_whole_disk(path);
389 if (*wholedisk || (stat64(path, statbuf) == 0))
390 return (0);
391 }
392
393 strlcpy(path, arg, sizeof(path));
394 memset(statbuf, 0, sizeof(*statbuf));
395 *wholedisk = B_FALSE;
396
397 return (ENOENT);
398 }
399
400 /*
401 * Create a leaf vdev. Determine if this is a file or a device. If it's a
402 * device, fill in the device id to make a complete nvlist. Valid forms for a
403 * leaf vdev are:
404 *
405 * /dev/xxx Complete disk path
406 * /xxx Full path to file
407 * xxx Shorthand for /dev/disk/yyy/xxx
408 */
409 static nvlist_t *
410 make_leaf_vdev(const char *arg, uint64_t is_log)
411 {
412 char path[MAXPATHLEN];
413 struct stat64 statbuf;
414 nvlist_t *vdev = NULL;
415 char *type = NULL;
416 boolean_t wholedisk = B_FALSE;
417 int err;
418
419 /*
420 * Determine what type of vdev this is, and put the full path into
421 * 'path'. We detect whether this is a device of file afterwards by
422 * checking the st_mode of the file.
423 */
424 if (arg[0] == '/') {
425 /*
426 * Complete device or file path. Exact type is determined by
427 * examining the file descriptor afterwards. Symbolic links
428 * are resolved to their real paths for the is_whole_disk()
429 * and S_ISBLK/S_ISREG type checks. However, we are careful
430 * to store the given path as ZPOOL_CONFIG_PATH to ensure we
431 * can leverage udev's persistent device labels.
432 */
433 if (realpath(arg, path) == NULL) {
434 (void) fprintf(stderr,
435 gettext("cannot resolve path '%s'\n"), arg);
436 return (NULL);
437 }
438
439 wholedisk = is_whole_disk(path);
440 if (!wholedisk && (stat64(path, &statbuf) != 0)) {
441 (void) fprintf(stderr,
442 gettext("cannot open '%s': %s\n"),
443 path, strerror(errno));
444 return (NULL);
445 }
446
447 /* After is_whole_disk() check restore original passed path */
448 strlcpy(path, arg, MAXPATHLEN);
449 } else {
450 err = is_shorthand_path(arg, path, &statbuf, &wholedisk);
451 if (err != 0) {
452 /*
453 * If we got ENOENT, then the user gave us
454 * gibberish, so try to direct them with a
455 * reasonable error message. Otherwise,
456 * regurgitate strerror() since it's the best we
457 * can do.
458 */
459 if (err == ENOENT) {
460 (void) fprintf(stderr,
461 gettext("cannot open '%s': no such "
462 "device in %s\n"), arg, DISK_ROOT);
463 (void) fprintf(stderr,
464 gettext("must be a full path or "
465 "shorthand device name\n"));
466 return (NULL);
467 } else {
468 (void) fprintf(stderr,
469 gettext("cannot open '%s': %s\n"),
470 path, strerror(errno));
471 return (NULL);
472 }
473 }
474 }
475
476 /*
477 * Determine whether this is a device or a file.
478 */
479 if (wholedisk || S_ISBLK(statbuf.st_mode)) {
480 type = VDEV_TYPE_DISK;
481 } else if (S_ISREG(statbuf.st_mode)) {
482 type = VDEV_TYPE_FILE;
483 } else {
484 (void) fprintf(stderr, gettext("cannot use '%s': must be a "
485 "block device or regular file\n"), path);
486 return (NULL);
487 }
488
489 /*
490 * Finally, we have the complete device or file, and we know that it is
491 * acceptable to use. Construct the nvlist to describe this vdev. All
492 * vdevs have a 'path' element, and devices also have a 'devid' element.
493 */
494 verify(nvlist_alloc(&vdev, NV_UNIQUE_NAME, 0) == 0);
495 verify(nvlist_add_string(vdev, ZPOOL_CONFIG_PATH, path) == 0);
496 verify(nvlist_add_string(vdev, ZPOOL_CONFIG_TYPE, type) == 0);
497 verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_IS_LOG, is_log) == 0);
498 if (strcmp(type, VDEV_TYPE_DISK) == 0)
499 verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK,
500 (uint64_t)wholedisk) == 0);
501
502 return (vdev);
503 }
504
505 /*
506 * Go through and verify the replication level of the pool is consistent.
507 * Performs the following checks:
508 *
509 * For the new spec, verifies that devices in mirrors and raidz are the
510 * same size.
511 *
512 * If the current configuration already has inconsistent replication
513 * levels, ignore any other potential problems in the new spec.
514 *
515 * Otherwise, make sure that the current spec (if there is one) and the new
516 * spec have consistent replication levels.
517 */
518 typedef struct replication_level {
519 char *zprl_type;
520 uint64_t zprl_children;
521 uint64_t zprl_parity;
522 } replication_level_t;
523
524 #define ZPOOL_FUZZ (16 * 1024 * 1024)
525
526 /*
527 * Given a list of toplevel vdevs, return the current replication level. If
528 * the config is inconsistent, then NULL is returned. If 'fatal' is set, then
529 * an error message will be displayed for each self-inconsistent vdev.
530 */
531 static replication_level_t *
532 get_replication(nvlist_t *nvroot, boolean_t fatal)
533 {
534 nvlist_t **top;
535 uint_t t, toplevels;
536 nvlist_t **child;
537 uint_t c, children;
538 nvlist_t *nv;
539 char *type;
540 replication_level_t lastrep = { 0 }, rep, *ret;
541 boolean_t dontreport;
542
543 ret = safe_malloc(sizeof (replication_level_t));
544
545 verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
546 &top, &toplevels) == 0);
547
548 lastrep.zprl_type = NULL;
549 for (t = 0; t < toplevels; t++) {
550 uint64_t is_log = B_FALSE;
551
552 nv = top[t];
553
554 /*
555 * For separate logs we ignore the top level vdev replication
556 * constraints.
557 */
558 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &is_log);
559 if (is_log)
560 continue;
561
562 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE,
563 &type) == 0);
564 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
565 &child, &children) != 0) {
566 /*
567 * This is a 'file' or 'disk' vdev.
568 */
569 rep.zprl_type = type;
570 rep.zprl_children = 1;
571 rep.zprl_parity = 0;
572 } else {
573 uint64_t vdev_size;
574
575 /*
576 * This is a mirror or RAID-Z vdev. Go through and make
577 * sure the contents are all the same (files vs. disks),
578 * keeping track of the number of elements in the
579 * process.
580 *
581 * We also check that the size of each vdev (if it can
582 * be determined) is the same.
583 */
584 rep.zprl_type = type;
585 rep.zprl_children = 0;
586
587 if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
588 verify(nvlist_lookup_uint64(nv,
589 ZPOOL_CONFIG_NPARITY,
590 &rep.zprl_parity) == 0);
591 assert(rep.zprl_parity != 0);
592 } else {
593 rep.zprl_parity = 0;
594 }
595
596 /*
597 * The 'dontreport' variable indicates that we've
598 * already reported an error for this spec, so don't
599 * bother doing it again.
600 */
601 type = NULL;
602 dontreport = 0;
603 vdev_size = -1ULL;
604 for (c = 0; c < children; c++) {
605 nvlist_t *cnv = child[c];
606 char *path;
607 struct stat64 statbuf;
608 uint64_t size = -1ULL;
609 char *childtype;
610 int fd, err;
611
612 rep.zprl_children++;
613
614 verify(nvlist_lookup_string(cnv,
615 ZPOOL_CONFIG_TYPE, &childtype) == 0);
616
617 /*
618 * If this is a replacing or spare vdev, then
619 * get the real first child of the vdev.
620 */
621 if (strcmp(childtype,
622 VDEV_TYPE_REPLACING) == 0 ||
623 strcmp(childtype, VDEV_TYPE_SPARE) == 0) {
624 nvlist_t **rchild;
625 uint_t rchildren;
626
627 verify(nvlist_lookup_nvlist_array(cnv,
628 ZPOOL_CONFIG_CHILDREN, &rchild,
629 &rchildren) == 0);
630 assert(rchildren == 2);
631 cnv = rchild[0];
632
633 verify(nvlist_lookup_string(cnv,
634 ZPOOL_CONFIG_TYPE,
635 &childtype) == 0);
636 }
637
638 verify(nvlist_lookup_string(cnv,
639 ZPOOL_CONFIG_PATH, &path) == 0);
640
641 /*
642 * If we have a raidz/mirror that combines disks
643 * with files, report it as an error.
644 */
645 if (!dontreport && type != NULL &&
646 strcmp(type, childtype) != 0) {
647 if (ret != NULL)
648 free(ret);
649 ret = NULL;
650 if (fatal)
651 vdev_error(gettext(
652 "mismatched replication "
653 "level: %s contains both "
654 "files and devices\n"),
655 rep.zprl_type);
656 else
657 return (NULL);
658 dontreport = B_TRUE;
659 }
660
661 /*
662 * According to stat(2), the value of 'st_size'
663 * is undefined for block devices and character
664 * devices. But there is no effective way to
665 * determine the real size in userland.
666 *
667 * Instead, we'll take advantage of an
668 * implementation detail of spec_size(). If the
669 * device is currently open, then we (should)
670 * return a valid size.
671 *
672 * If we still don't get a valid size (indicated
673 * by a size of 0 or MAXOFFSET_T), then ignore
674 * this device altogether.
675 */
676 if ((fd = open(path, O_RDONLY)) >= 0) {
677 err = fstat64(fd, &statbuf);
678 (void) close(fd);
679 } else {
680 err = stat64(path, &statbuf);
681 }
682
683 if (err != 0 ||
684 statbuf.st_size == 0 ||
685 statbuf.st_size == MAXOFFSET_T)
686 continue;
687
688 size = statbuf.st_size;
689
690 /*
691 * Also make sure that devices and
692 * slices have a consistent size. If
693 * they differ by a significant amount
694 * (~16MB) then report an error.
695 */
696 if (!dontreport &&
697 (vdev_size != -1ULL &&
698 (labs(size - vdev_size) >
699 ZPOOL_FUZZ))) {
700 if (ret != NULL)
701 free(ret);
702 ret = NULL;
703 if (fatal)
704 vdev_error(gettext(
705 "%s contains devices of "
706 "different sizes\n"),
707 rep.zprl_type);
708 else
709 return (NULL);
710 dontreport = B_TRUE;
711 }
712
713 type = childtype;
714 vdev_size = size;
715 }
716 }
717
718 /*
719 * At this point, we have the replication of the last toplevel
720 * vdev in 'rep'. Compare it to 'lastrep' to see if its
721 * different.
722 */
723 if (lastrep.zprl_type != NULL) {
724 if (strcmp(lastrep.zprl_type, rep.zprl_type) != 0) {
725 if (ret != NULL)
726 free(ret);
727 ret = NULL;
728 if (fatal)
729 vdev_error(gettext(
730 "mismatched replication level: "
731 "both %s and %s vdevs are "
732 "present\n"),
733 lastrep.zprl_type, rep.zprl_type);
734 else
735 return (NULL);
736 } else if (lastrep.zprl_parity != rep.zprl_parity) {
737 if (ret)
738 free(ret);
739 ret = NULL;
740 if (fatal)
741 vdev_error(gettext(
742 "mismatched replication level: "
743 "both %llu and %llu device parity "
744 "%s vdevs are present\n"),
745 lastrep.zprl_parity,
746 rep.zprl_parity,
747 rep.zprl_type);
748 else
749 return (NULL);
750 } else if (lastrep.zprl_children != rep.zprl_children) {
751 if (ret)
752 free(ret);
753 ret = NULL;
754 if (fatal)
755 vdev_error(gettext(
756 "mismatched replication level: "
757 "both %llu-way and %llu-way %s "
758 "vdevs are present\n"),
759 lastrep.zprl_children,
760 rep.zprl_children,
761 rep.zprl_type);
762 else
763 return (NULL);
764 }
765 }
766 lastrep = rep;
767 }
768
769 if (ret != NULL)
770 *ret = rep;
771
772 return (ret);
773 }
774
775 /*
776 * Check the replication level of the vdev spec against the current pool. Calls
777 * get_replication() to make sure the new spec is self-consistent. If the pool
778 * has a consistent replication level, then we ignore any errors. Otherwise,
779 * report any difference between the two.
780 */
781 static int
782 check_replication(nvlist_t *config, nvlist_t *newroot)
783 {
784 nvlist_t **child;
785 uint_t children;
786 replication_level_t *current = NULL, *new;
787 int ret;
788
789 /*
790 * If we have a current pool configuration, check to see if it's
791 * self-consistent. If not, simply return success.
792 */
793 if (config != NULL) {
794 nvlist_t *nvroot;
795
796 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
797 &nvroot) == 0);
798 if ((current = get_replication(nvroot, B_FALSE)) == NULL)
799 return (0);
800 }
801 /*
802 * for spares there may be no children, and therefore no
803 * replication level to check
804 */
805 if ((nvlist_lookup_nvlist_array(newroot, ZPOOL_CONFIG_CHILDREN,
806 &child, &children) != 0) || (children == 0)) {
807 free(current);
808 return (0);
809 }
810
811 /*
812 * If all we have is logs then there's no replication level to check.
813 */
814 if (num_logs(newroot) == children) {
815 free(current);
816 return (0);
817 }
818
819 /*
820 * Get the replication level of the new vdev spec, reporting any
821 * inconsistencies found.
822 */
823 if ((new = get_replication(newroot, B_TRUE)) == NULL) {
824 free(current);
825 return (-1);
826 }
827
828 /*
829 * Check to see if the new vdev spec matches the replication level of
830 * the current pool.
831 */
832 ret = 0;
833 if (current != NULL) {
834 if (strcmp(current->zprl_type, new->zprl_type) != 0) {
835 vdev_error(gettext(
836 "mismatched replication level: pool uses %s "
837 "and new vdev is %s\n"),
838 current->zprl_type, new->zprl_type);
839 ret = -1;
840 } else if (current->zprl_parity != new->zprl_parity) {
841 vdev_error(gettext(
842 "mismatched replication level: pool uses %llu "
843 "device parity and new vdev uses %llu\n"),
844 current->zprl_parity, new->zprl_parity);
845 ret = -1;
846 } else if (current->zprl_children != new->zprl_children) {
847 vdev_error(gettext(
848 "mismatched replication level: pool uses %llu-way "
849 "%s and new vdev uses %llu-way %s\n"),
850 current->zprl_children, current->zprl_type,
851 new->zprl_children, new->zprl_type);
852 ret = -1;
853 }
854 }
855
856 free(new);
857 if (current != NULL)
858 free(current);
859
860 return (ret);
861 }
862
863 static int
864 zero_label(char *path)
865 {
866 const int size = 4096;
867 char buf[size];
868 int err, fd;
869
870 if ((fd = open(path, O_WRONLY|O_EXCL)) < 0) {
871 (void) fprintf(stderr, gettext("cannot open '%s': %s\n"),
872 path, strerror(errno));
873 return (-1);
874 }
875
876 memset(buf, 0, size);
877 err = write(fd, buf, size);
878 (void) fdatasync(fd);
879 (void) close(fd);
880
881 if (err == -1) {
882 (void) fprintf(stderr, gettext("cannot zero first %d bytes "
883 "of '%s': %s\n"), size, path, strerror(errno));
884 return (-1);
885 }
886
887 if (err != size) {
888 (void) fprintf(stderr, gettext("could only zero %d/%d bytes "
889 "of '%s'\n"), err, size, path);
890 return (-1);
891 }
892
893 return 0;
894 }
895
896 /*
897 * Go through and find any whole disks in the vdev specification, labelling them
898 * as appropriate. When constructing the vdev spec, we were unable to open this
899 * device in order to provide a devid. Now that we have labelled the disk and
900 * know that slice 0 is valid, we can construct the devid now.
901 *
902 * If the disk was already labeled with an EFI label, we will have gotten the
903 * devid already (because we were able to open the whole disk). Otherwise, we
904 * need to get the devid after we label the disk.
905 */
906 static int
907 make_disks(zpool_handle_t *zhp, nvlist_t *nv)
908 {
909 nvlist_t **child;
910 uint_t c, children;
911 char *type, *path, *diskname;
912 char devpath[MAXPATHLEN];
913 char udevpath[MAXPATHLEN];
914 uint64_t wholedisk;
915 struct stat64 statbuf;
916 int ret;
917
918 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
919
920 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
921 &child, &children) != 0) {
922
923 if (strcmp(type, VDEV_TYPE_DISK) != 0)
924 return (0);
925
926 /*
927 * We have a disk device. If this is a whole disk write
928 * out the efi partition table, otherwise write zero's to
929 * the first 4k of the partition. This is to ensure that
930 * libblkid will not misidentify the partition due to a
931 * magic value left by the previous filesystem.
932 */
933 verify(!nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path));
934 verify(!nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
935 &wholedisk));
936
937 if (!wholedisk) {
938 ret = zero_label(path);
939 return (ret);
940 }
941
942 if (realpath(path, devpath) == NULL) {
943 ret = errno;
944 (void) fprintf(stderr,
945 gettext("cannot resolve path '%s'\n"), path);
946 return (ret);
947 }
948
949 /*
950 * Remove any previously existing symlink from a udev path to
951 * the device before labeling the disk. This makes
952 * zpool_label_disk_wait() truly wait for the new link to show
953 * up instead of returning if it finds an old link still in
954 * place. Otherwise there is a window between when udev
955 * deletes and recreates the link during which access attempts
956 * will fail with ENOENT.
957 */
958 zfs_append_partition(path, udevpath, sizeof (udevpath));
959 if ((strncmp(udevpath, UDISK_ROOT, strlen(UDISK_ROOT)) == 0) &&
960 (lstat64(udevpath, &statbuf) == 0) &&
961 S_ISLNK(statbuf.st_mode))
962 (void) unlink(udevpath);
963
964 diskname = strrchr(devpath, '/');
965 assert(diskname != NULL);
966 diskname++;
967 if (zpool_label_disk(g_zfs, zhp, diskname) == -1)
968 return (-1);
969
970 /*
971 * Now we've labeled the disk and the partitions have been
972 * created. We still need to wait for udev to create the
973 * symlinks to those partitions.
974 */
975 if ((ret = zpool_label_disk_wait(udevpath, 1000)) != 0) {
976 (void) fprintf(stderr,
977 gettext( "cannot resolve path '%s'\n"), udevpath);
978 return (-1);
979 }
980
981 /*
982 * Update the path to refer to FIRST_SLICE. The presence of
983 * the 'whole_disk' field indicates to the CLI that we should
984 * chop off the slice number when displaying the device in
985 * future output.
986 */
987 verify(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, udevpath) == 0);
988
989 /* Just in case this partition already existed. */
990 (void) zero_label(udevpath);
991
992 return (0);
993 }
994
995 for (c = 0; c < children; c++)
996 if ((ret = make_disks(zhp, child[c])) != 0)
997 return (ret);
998
999 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
1000 &child, &children) == 0)
1001 for (c = 0; c < children; c++)
1002 if ((ret = make_disks(zhp, child[c])) != 0)
1003 return (ret);
1004
1005 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
1006 &child, &children) == 0)
1007 for (c = 0; c < children; c++)
1008 if ((ret = make_disks(zhp, child[c])) != 0)
1009 return (ret);
1010
1011 return (0);
1012 }
1013
1014 /*
1015 * Determine if the given path is a hot spare within the given configuration.
1016 */
1017 static boolean_t
1018 is_spare(nvlist_t *config, const char *path)
1019 {
1020 int fd;
1021 pool_state_t state;
1022 char *name = NULL;
1023 nvlist_t *label;
1024 uint64_t guid, spareguid;
1025 nvlist_t *nvroot;
1026 nvlist_t **spares;
1027 uint_t i, nspares;
1028 boolean_t inuse;
1029
1030 if ((fd = open(path, O_RDONLY|O_EXCL)) < 0)
1031 return (B_FALSE);
1032
1033 if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) != 0 ||
1034 !inuse ||
1035 state != POOL_STATE_SPARE ||
1036 zpool_read_label(fd, &label) != 0) {
1037 free(name);
1038 (void) close(fd);
1039 return (B_FALSE);
1040 }
1041 free(name);
1042 (void) close(fd);
1043
1044 verify(nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) == 0);
1045 nvlist_free(label);
1046
1047 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
1048 &nvroot) == 0);
1049 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1050 &spares, &nspares) == 0) {
1051 for (i = 0; i < nspares; i++) {
1052 verify(nvlist_lookup_uint64(spares[i],
1053 ZPOOL_CONFIG_GUID, &spareguid) == 0);
1054 if (spareguid == guid)
1055 return (B_TRUE);
1056 }
1057 }
1058
1059 return (B_FALSE);
1060 }
1061
1062 /*
1063 * Go through and find any devices that are in use. We rely on libdiskmgt for
1064 * the majority of this task.
1065 */
1066 static int
1067 check_in_use(nvlist_t *config, nvlist_t *nv, boolean_t force,
1068 boolean_t replacing, boolean_t isspare)
1069 {
1070 nvlist_t **child;
1071 uint_t c, children;
1072 char *type, *path;
1073 int ret = 0;
1074 char buf[MAXPATHLEN];
1075 uint64_t wholedisk = B_FALSE;
1076
1077 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
1078
1079 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1080 &child, &children) != 0) {
1081
1082 verify(!nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path));
1083 if (strcmp(type, VDEV_TYPE_DISK) == 0)
1084 verify(!nvlist_lookup_uint64(nv,
1085 ZPOOL_CONFIG_WHOLE_DISK, &wholedisk));
1086
1087 /*
1088 * As a generic check, we look to see if this is a replace of a
1089 * hot spare within the same pool. If so, we allow it
1090 * regardless of what libblkid or zpool_in_use() says.
1091 */
1092 if (replacing) {
1093 if (wholedisk)
1094 (void) snprintf(buf, sizeof (buf), "%ss0",
1095 path);
1096 else
1097 (void) strlcpy(buf, path, sizeof (buf));
1098
1099 if (is_spare(config, buf))
1100 return (0);
1101 }
1102
1103 if (strcmp(type, VDEV_TYPE_DISK) == 0)
1104 ret = check_device(path, force, isspare, wholedisk);
1105
1106 if (strcmp(type, VDEV_TYPE_FILE) == 0)
1107 ret = check_file(path, force, isspare);
1108
1109 return (ret);
1110 }
1111
1112 for (c = 0; c < children; c++)
1113 if ((ret = check_in_use(config, child[c], force,
1114 replacing, B_FALSE)) != 0)
1115 return (ret);
1116
1117 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
1118 &child, &children) == 0)
1119 for (c = 0; c < children; c++)
1120 if ((ret = check_in_use(config, child[c], force,
1121 replacing, B_TRUE)) != 0)
1122 return (ret);
1123
1124 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
1125 &child, &children) == 0)
1126 for (c = 0; c < children; c++)
1127 if ((ret = check_in_use(config, child[c], force,
1128 replacing, B_FALSE)) != 0)
1129 return (ret);
1130
1131 return (0);
1132 }
1133
1134 static const char *
1135 is_grouping(const char *type, int *mindev, int *maxdev)
1136 {
1137 if (strncmp(type, "raidz", 5) == 0) {
1138 const char *p = type + 5;
1139 char *end;
1140 long nparity;
1141
1142 if (*p == '\0') {
1143 nparity = 1;
1144 } else if (*p == '0') {
1145 return (NULL); /* no zero prefixes allowed */
1146 } else {
1147 errno = 0;
1148 nparity = strtol(p, &end, 10);
1149 if (errno != 0 || nparity < 1 || nparity >= 255 ||
1150 *end != '\0')
1151 return (NULL);
1152 }
1153
1154 if (mindev != NULL)
1155 *mindev = nparity + 1;
1156 if (maxdev != NULL)
1157 *maxdev = 255;
1158 return (VDEV_TYPE_RAIDZ);
1159 }
1160
1161 if (maxdev != NULL)
1162 *maxdev = INT_MAX;
1163
1164 if (strcmp(type, "mirror") == 0) {
1165 if (mindev != NULL)
1166 *mindev = 2;
1167 return (VDEV_TYPE_MIRROR);
1168 }
1169
1170 if (strcmp(type, "spare") == 0) {
1171 if (mindev != NULL)
1172 *mindev = 1;
1173 return (VDEV_TYPE_SPARE);
1174 }
1175
1176 if (strcmp(type, "log") == 0) {
1177 if (mindev != NULL)
1178 *mindev = 1;
1179 return (VDEV_TYPE_LOG);
1180 }
1181
1182 if (strcmp(type, "cache") == 0) {
1183 if (mindev != NULL)
1184 *mindev = 1;
1185 return (VDEV_TYPE_L2CACHE);
1186 }
1187
1188 return (NULL);
1189 }
1190
1191 /*
1192 * Construct a syntactically valid vdev specification,
1193 * and ensure that all devices and files exist and can be opened.
1194 * Note: we don't bother freeing anything in the error paths
1195 * because the program is just going to exit anyway.
1196 */
1197 nvlist_t *
1198 construct_spec(int argc, char **argv)
1199 {
1200 nvlist_t *nvroot, *nv, **top, **spares, **l2cache;
1201 int t, toplevels, mindev, maxdev, nspares, nlogs, nl2cache;
1202 const char *type;
1203 uint64_t is_log;
1204 boolean_t seen_logs;
1205
1206 top = NULL;
1207 toplevels = 0;
1208 spares = NULL;
1209 l2cache = NULL;
1210 nspares = 0;
1211 nlogs = 0;
1212 nl2cache = 0;
1213 is_log = B_FALSE;
1214 seen_logs = B_FALSE;
1215
1216 while (argc > 0) {
1217 nv = NULL;
1218
1219 /*
1220 * If it's a mirror or raidz, the subsequent arguments are
1221 * its leaves -- until we encounter the next mirror or raidz.
1222 */
1223 if ((type = is_grouping(argv[0], &mindev, &maxdev)) != NULL) {
1224 nvlist_t **child = NULL;
1225 int c, children = 0;
1226
1227 if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1228 if (spares != NULL) {
1229 (void) fprintf(stderr,
1230 gettext("invalid vdev "
1231 "specification: 'spare' can be "
1232 "specified only once\n"));
1233 return (NULL);
1234 }
1235 is_log = B_FALSE;
1236 }
1237
1238 if (strcmp(type, VDEV_TYPE_LOG) == 0) {
1239 if (seen_logs) {
1240 (void) fprintf(stderr,
1241 gettext("invalid vdev "
1242 "specification: 'log' can be "
1243 "specified only once\n"));
1244 return (NULL);
1245 }
1246 seen_logs = B_TRUE;
1247 is_log = B_TRUE;
1248 argc--;
1249 argv++;
1250 /*
1251 * A log is not a real grouping device.
1252 * We just set is_log and continue.
1253 */
1254 continue;
1255 }
1256
1257 if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1258 if (l2cache != NULL) {
1259 (void) fprintf(stderr,
1260 gettext("invalid vdev "
1261 "specification: 'cache' can be "
1262 "specified only once\n"));
1263 return (NULL);
1264 }
1265 is_log = B_FALSE;
1266 }
1267
1268 if (is_log) {
1269 if (strcmp(type, VDEV_TYPE_MIRROR) != 0) {
1270 (void) fprintf(stderr,
1271 gettext("invalid vdev "
1272 "specification: unsupported 'log' "
1273 "device: %s\n"), type);
1274 return (NULL);
1275 }
1276 nlogs++;
1277 }
1278
1279 for (c = 1; c < argc; c++) {
1280 if (is_grouping(argv[c], NULL, NULL) != NULL)
1281 break;
1282 children++;
1283 child = realloc(child,
1284 children * sizeof (nvlist_t *));
1285 if (child == NULL)
1286 zpool_no_memory();
1287 if ((nv = make_leaf_vdev(argv[c], B_FALSE))
1288 == NULL)
1289 return (NULL);
1290 child[children - 1] = nv;
1291 }
1292
1293 if (children < mindev) {
1294 (void) fprintf(stderr, gettext("invalid vdev "
1295 "specification: %s requires at least %d "
1296 "devices\n"), argv[0], mindev);
1297 return (NULL);
1298 }
1299
1300 if (children > maxdev) {
1301 (void) fprintf(stderr, gettext("invalid vdev "
1302 "specification: %s supports no more than "
1303 "%d devices\n"), argv[0], maxdev);
1304 return (NULL);
1305 }
1306
1307 argc -= c;
1308 argv += c;
1309
1310 if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1311 spares = child;
1312 nspares = children;
1313 continue;
1314 } else if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1315 l2cache = child;
1316 nl2cache = children;
1317 continue;
1318 } else {
1319 verify(nvlist_alloc(&nv, NV_UNIQUE_NAME,
1320 0) == 0);
1321 verify(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
1322 type) == 0);
1323 verify(nvlist_add_uint64(nv,
1324 ZPOOL_CONFIG_IS_LOG, is_log) == 0);
1325 if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
1326 verify(nvlist_add_uint64(nv,
1327 ZPOOL_CONFIG_NPARITY,
1328 mindev - 1) == 0);
1329 }
1330 verify(nvlist_add_nvlist_array(nv,
1331 ZPOOL_CONFIG_CHILDREN, child,
1332 children) == 0);
1333
1334 for (c = 0; c < children; c++)
1335 nvlist_free(child[c]);
1336 free(child);
1337 }
1338 } else {
1339 /*
1340 * We have a device. Pass off to make_leaf_vdev() to
1341 * construct the appropriate nvlist describing the vdev.
1342 */
1343 if ((nv = make_leaf_vdev(argv[0], is_log)) == NULL)
1344 return (NULL);
1345 if (is_log)
1346 nlogs++;
1347 argc--;
1348 argv++;
1349 }
1350
1351 toplevels++;
1352 top = realloc(top, toplevels * sizeof (nvlist_t *));
1353 if (top == NULL)
1354 zpool_no_memory();
1355 top[toplevels - 1] = nv;
1356 }
1357
1358 if (toplevels == 0 && nspares == 0 && nl2cache == 0) {
1359 (void) fprintf(stderr, gettext("invalid vdev "
1360 "specification: at least one toplevel vdev must be "
1361 "specified\n"));
1362 return (NULL);
1363 }
1364
1365 if (seen_logs && nlogs == 0) {
1366 (void) fprintf(stderr, gettext("invalid vdev specification: "
1367 "log requires at least 1 device\n"));
1368 return (NULL);
1369 }
1370
1371 /*
1372 * Finally, create nvroot and add all top-level vdevs to it.
1373 */
1374 verify(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) == 0);
1375 verify(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
1376 VDEV_TYPE_ROOT) == 0);
1377 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1378 top, toplevels) == 0);
1379 if (nspares != 0)
1380 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1381 spares, nspares) == 0);
1382 if (nl2cache != 0)
1383 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
1384 l2cache, nl2cache) == 0);
1385
1386 for (t = 0; t < toplevels; t++)
1387 nvlist_free(top[t]);
1388 for (t = 0; t < nspares; t++)
1389 nvlist_free(spares[t]);
1390 for (t = 0; t < nl2cache; t++)
1391 nvlist_free(l2cache[t]);
1392 if (spares)
1393 free(spares);
1394 if (l2cache)
1395 free(l2cache);
1396 free(top);
1397
1398 return (nvroot);
1399 }
1400
1401 nvlist_t *
1402 split_mirror_vdev(zpool_handle_t *zhp, char *newname, nvlist_t *props,
1403 splitflags_t flags, int argc, char **argv)
1404 {
1405 nvlist_t *newroot = NULL, **child;
1406 uint_t c, children;
1407
1408 if (argc > 0) {
1409 if ((newroot = construct_spec(argc, argv)) == NULL) {
1410 (void) fprintf(stderr, gettext("Unable to build a "
1411 "pool from the specified devices\n"));
1412 return (NULL);
1413 }
1414
1415 if (!flags.dryrun && make_disks(zhp, newroot) != 0) {
1416 nvlist_free(newroot);
1417 return (NULL);
1418 }
1419
1420 /* avoid any tricks in the spec */
1421 verify(nvlist_lookup_nvlist_array(newroot,
1422 ZPOOL_CONFIG_CHILDREN, &child, &children) == 0);
1423 for (c = 0; c < children; c++) {
1424 char *path;
1425 const char *type;
1426 int min, max;
1427
1428 verify(nvlist_lookup_string(child[c],
1429 ZPOOL_CONFIG_PATH, &path) == 0);
1430 if ((type = is_grouping(path, &min, &max)) != NULL) {
1431 (void) fprintf(stderr, gettext("Cannot use "
1432 "'%s' as a device for splitting\n"), type);
1433 nvlist_free(newroot);
1434 return (NULL);
1435 }
1436 }
1437 }
1438
1439 if (zpool_vdev_split(zhp, newname, &newroot, props, flags) != 0) {
1440 if (newroot != NULL)
1441 nvlist_free(newroot);
1442 return (NULL);
1443 }
1444
1445 return (newroot);
1446 }
1447
1448 /*
1449 * Get and validate the contents of the given vdev specification. This ensures
1450 * that the nvlist returned is well-formed, that all the devices exist, and that
1451 * they are not currently in use by any other known consumer. The 'poolconfig'
1452 * parameter is the current configuration of the pool when adding devices
1453 * existing pool, and is used to perform additional checks, such as changing the
1454 * replication level of the pool. It can be 'NULL' to indicate that this is a
1455 * new pool. The 'force' flag controls whether devices should be forcefully
1456 * added, even if they appear in use.
1457 */
1458 nvlist_t *
1459 make_root_vdev(zpool_handle_t *zhp, int force, int check_rep,
1460 boolean_t replacing, boolean_t dryrun, int argc, char **argv)
1461 {
1462 nvlist_t *newroot;
1463 nvlist_t *poolconfig = NULL;
1464 is_force = force;
1465
1466 /*
1467 * Construct the vdev specification. If this is successful, we know
1468 * that we have a valid specification, and that all devices can be
1469 * opened.
1470 */
1471 if ((newroot = construct_spec(argc, argv)) == NULL)
1472 return (NULL);
1473
1474 if (zhp && ((poolconfig = zpool_get_config(zhp, NULL)) == NULL))
1475 return (NULL);
1476
1477 /*
1478 * Validate each device to make sure that its not shared with another
1479 * subsystem. We do this even if 'force' is set, because there are some
1480 * uses (such as a dedicated dump device) that even '-f' cannot
1481 * override.
1482 */
1483 if (check_in_use(poolconfig, newroot, force, replacing, B_FALSE) != 0) {
1484 nvlist_free(newroot);
1485 return (NULL);
1486 }
1487
1488 /*
1489 * Check the replication level of the given vdevs and report any errors
1490 * found. We include the existing pool spec, if any, as we need to
1491 * catch changes against the existing replication level.
1492 */
1493 if (check_rep && check_replication(poolconfig, newroot) != 0) {
1494 nvlist_free(newroot);
1495 return (NULL);
1496 }
1497
1498 /*
1499 * Run through the vdev specification and label any whole disks found.
1500 */
1501 if (!dryrun && make_disks(zhp, newroot) != 0) {
1502 nvlist_free(newroot);
1503 return (NULL);
1504 }
1505
1506 return (newroot);
1507 }