]> git.proxmox.com Git - mirror_zfs-debian.git/blob - cmd/ztest/ztest.c
Fix ztest vdev file paths.
[mirror_zfs-debian.git] / cmd / ztest / ztest.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 */
26
27 /*
28 * The objective of this program is to provide a DMU/ZAP/SPA stress test
29 * that runs entirely in userland, is easy to use, and easy to extend.
30 *
31 * The overall design of the ztest program is as follows:
32 *
33 * (1) For each major functional area (e.g. adding vdevs to a pool,
34 * creating and destroying datasets, reading and writing objects, etc)
35 * we have a simple routine to test that functionality. These
36 * individual routines do not have to do anything "stressful".
37 *
38 * (2) We turn these simple functionality tests into a stress test by
39 * running them all in parallel, with as many threads as desired,
40 * and spread across as many datasets, objects, and vdevs as desired.
41 *
42 * (3) While all this is happening, we inject faults into the pool to
43 * verify that self-healing data really works.
44 *
45 * (4) Every time we open a dataset, we change its checksum and compression
46 * functions. Thus even individual objects vary from block to block
47 * in which checksum they use and whether they're compressed.
48 *
49 * (5) To verify that we never lose on-disk consistency after a crash,
50 * we run the entire test in a child of the main process.
51 * At random times, the child self-immolates with a SIGKILL.
52 * This is the software equivalent of pulling the power cord.
53 * The parent then runs the test again, using the existing
54 * storage pool, as many times as desired.
55 *
56 * (6) To verify that we don't have future leaks or temporal incursions,
57 * many of the functional tests record the transaction group number
58 * as part of their data. When reading old data, they verify that
59 * the transaction group number is less than the current, open txg.
60 * If you add a new test, please do this if applicable.
61 *
62 * (7) Threads are created with a reduced stack size, for sanity checking.
63 * Therefore, it's important not to allocate huge buffers on the stack.
64 *
65 * When run with no arguments, ztest runs for about five minutes and
66 * produces no output if successful. To get a little bit of information,
67 * specify -V. To get more information, specify -VV, and so on.
68 *
69 * To turn this into an overnight stress test, use -T to specify run time.
70 *
71 * You can ask more more vdevs [-v], datasets [-d], or threads [-t]
72 * to increase the pool capacity, fanout, and overall stress level.
73 *
74 * The -N(okill) option will suppress kills, so each child runs to completion.
75 * This can be useful when you're trying to distinguish temporal incursions
76 * from plain old race conditions.
77 */
78
79 #include <sys/zfs_context.h>
80 #include <sys/spa.h>
81 #include <sys/dmu.h>
82 #include <sys/txg.h>
83 #include <sys/dbuf.h>
84 #include <sys/zap.h>
85 #include <sys/dmu_objset.h>
86 #include <sys/poll.h>
87 #include <sys/stat.h>
88 #include <sys/time.h>
89 #include <sys/wait.h>
90 #include <sys/mman.h>
91 #include <sys/resource.h>
92 #include <sys/zio.h>
93 #include <sys/zil.h>
94 #include <sys/zil_impl.h>
95 #include <sys/vdev_impl.h>
96 #include <sys/vdev_file.h>
97 #include <sys/spa_impl.h>
98 #include <sys/metaslab_impl.h>
99 #include <sys/dsl_prop.h>
100 #include <sys/dsl_dataset.h>
101 #include <sys/dsl_scan.h>
102 #include <sys/zio_checksum.h>
103 #include <sys/refcount.h>
104 #include <stdio.h>
105 #include <stdio_ext.h>
106 #include <stdlib.h>
107 #include <unistd.h>
108 #include <signal.h>
109 #include <umem.h>
110 #include <dlfcn.h>
111 #include <ctype.h>
112 #include <math.h>
113 #include <sys/fs/zfs.h>
114 #include <libnvpair.h>
115
116 static char cmdname[] = "ztest";
117 static char *zopt_pool = cmdname;
118
119 static uint64_t zopt_vdevs = 5;
120 static uint64_t zopt_vdevtime;
121 static int zopt_ashift = SPA_MINBLOCKSHIFT;
122 static int zopt_mirrors = 2;
123 static int zopt_raidz = 4;
124 static int zopt_raidz_parity = 1;
125 static size_t zopt_vdev_size = SPA_MINDEVSIZE;
126 static int zopt_datasets = 7;
127 static int zopt_threads = 23;
128 static uint64_t zopt_passtime = 60; /* 60 seconds */
129 static uint64_t zopt_killrate = 70; /* 70% kill rate */
130 static int zopt_verbose = 0;
131 static int zopt_init = 1;
132 static char *zopt_dir = "/tmp";
133 static uint64_t zopt_time = 300; /* 5 minutes */
134 static uint64_t zopt_maxloops = 50; /* max loops during spa_freeze() */
135
136 #define BT_MAGIC 0x123456789abcdefULL
137 #define MAXFAULTS() (MAX(zs->zs_mirrors, 1) * (zopt_raidz_parity + 1) - 1)
138
139 enum ztest_io_type {
140 ZTEST_IO_WRITE_TAG,
141 ZTEST_IO_WRITE_PATTERN,
142 ZTEST_IO_WRITE_ZEROES,
143 ZTEST_IO_TRUNCATE,
144 ZTEST_IO_SETATTR,
145 ZTEST_IO_TYPES
146 };
147
148 typedef struct ztest_block_tag {
149 uint64_t bt_magic;
150 uint64_t bt_objset;
151 uint64_t bt_object;
152 uint64_t bt_offset;
153 uint64_t bt_gen;
154 uint64_t bt_txg;
155 uint64_t bt_crtxg;
156 } ztest_block_tag_t;
157
158 typedef struct bufwad {
159 uint64_t bw_index;
160 uint64_t bw_txg;
161 uint64_t bw_data;
162 } bufwad_t;
163
164 /*
165 * XXX -- fix zfs range locks to be generic so we can use them here.
166 */
167 typedef enum {
168 RL_READER,
169 RL_WRITER,
170 RL_APPEND
171 } rl_type_t;
172
173 typedef struct rll {
174 void *rll_writer;
175 int rll_readers;
176 kmutex_t rll_lock;
177 kcondvar_t rll_cv;
178 } rll_t;
179
180 typedef struct rl {
181 uint64_t rl_object;
182 uint64_t rl_offset;
183 uint64_t rl_size;
184 rll_t *rl_lock;
185 } rl_t;
186
187 #define ZTEST_RANGE_LOCKS 64
188 #define ZTEST_OBJECT_LOCKS 64
189
190 /*
191 * Object descriptor. Used as a template for object lookup/create/remove.
192 */
193 typedef struct ztest_od {
194 uint64_t od_dir;
195 uint64_t od_object;
196 dmu_object_type_t od_type;
197 dmu_object_type_t od_crtype;
198 uint64_t od_blocksize;
199 uint64_t od_crblocksize;
200 uint64_t od_gen;
201 uint64_t od_crgen;
202 char od_name[MAXNAMELEN];
203 } ztest_od_t;
204
205 /*
206 * Per-dataset state.
207 */
208 typedef struct ztest_ds {
209 objset_t *zd_os;
210 krwlock_t zd_zilog_lock;
211 zilog_t *zd_zilog;
212 uint64_t zd_seq;
213 ztest_od_t *zd_od; /* debugging aid */
214 char zd_name[MAXNAMELEN];
215 kmutex_t zd_dirobj_lock;
216 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS];
217 rll_t zd_range_lock[ZTEST_RANGE_LOCKS];
218 } ztest_ds_t;
219
220 /*
221 * Per-iteration state.
222 */
223 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
224
225 typedef struct ztest_info {
226 ztest_func_t *zi_func; /* test function */
227 uint64_t zi_iters; /* iterations per execution */
228 uint64_t *zi_interval; /* execute every <interval> seconds */
229 uint64_t zi_call_count; /* per-pass count */
230 uint64_t zi_call_time; /* per-pass time */
231 uint64_t zi_call_next; /* next time to call this function */
232 } ztest_info_t;
233
234 /*
235 * Note: these aren't static because we want dladdr() to work.
236 */
237 ztest_func_t ztest_dmu_read_write;
238 ztest_func_t ztest_dmu_write_parallel;
239 ztest_func_t ztest_dmu_object_alloc_free;
240 ztest_func_t ztest_dmu_commit_callbacks;
241 ztest_func_t ztest_zap;
242 ztest_func_t ztest_zap_parallel;
243 ztest_func_t ztest_zil_commit;
244 ztest_func_t ztest_zil_remount;
245 ztest_func_t ztest_dmu_read_write_zcopy;
246 ztest_func_t ztest_dmu_objset_create_destroy;
247 ztest_func_t ztest_dmu_prealloc;
248 ztest_func_t ztest_fzap;
249 ztest_func_t ztest_dmu_snapshot_create_destroy;
250 ztest_func_t ztest_dsl_prop_get_set;
251 ztest_func_t ztest_spa_prop_get_set;
252 ztest_func_t ztest_spa_create_destroy;
253 ztest_func_t ztest_fault_inject;
254 ztest_func_t ztest_ddt_repair;
255 ztest_func_t ztest_dmu_snapshot_hold;
256 ztest_func_t ztest_spa_rename;
257 ztest_func_t ztest_scrub;
258 ztest_func_t ztest_dsl_dataset_promote_busy;
259 ztest_func_t ztest_vdev_attach_detach;
260 ztest_func_t ztest_vdev_LUN_growth;
261 ztest_func_t ztest_vdev_add_remove;
262 ztest_func_t ztest_vdev_aux_add_remove;
263 ztest_func_t ztest_split_pool;
264 ztest_func_t ztest_reguid;
265
266 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */
267 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */
268 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */
269 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */
270 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */
271
272 ztest_info_t ztest_info[] = {
273 { ztest_dmu_read_write, 1, &zopt_always },
274 { ztest_dmu_write_parallel, 10, &zopt_always },
275 { ztest_dmu_object_alloc_free, 1, &zopt_always },
276 { ztest_dmu_commit_callbacks, 1, &zopt_always },
277 { ztest_zap, 30, &zopt_always },
278 { ztest_zap_parallel, 100, &zopt_always },
279 { ztest_split_pool, 1, &zopt_always },
280 { ztest_zil_commit, 1, &zopt_incessant },
281 { ztest_zil_remount, 1, &zopt_sometimes },
282 { ztest_dmu_read_write_zcopy, 1, &zopt_often },
283 { ztest_dmu_objset_create_destroy, 1, &zopt_often },
284 { ztest_dsl_prop_get_set, 1, &zopt_often },
285 { ztest_spa_prop_get_set, 1, &zopt_sometimes },
286 #if 0
287 { ztest_dmu_prealloc, 1, &zopt_sometimes },
288 #endif
289 { ztest_fzap, 1, &zopt_sometimes },
290 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes },
291 { ztest_spa_create_destroy, 1, &zopt_sometimes },
292 { ztest_fault_inject, 1, &zopt_sometimes },
293 { ztest_ddt_repair, 1, &zopt_sometimes },
294 { ztest_dmu_snapshot_hold, 1, &zopt_sometimes },
295 { ztest_reguid, 1, &zopt_sometimes },
296 { ztest_spa_rename, 1, &zopt_rarely },
297 { ztest_scrub, 1, &zopt_rarely },
298 { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely },
299 { ztest_vdev_attach_detach, 1, &zopt_rarely },
300 { ztest_vdev_LUN_growth, 1, &zopt_rarely },
301 { ztest_vdev_add_remove, 1, &zopt_vdevtime },
302 { ztest_vdev_aux_add_remove, 1, &zopt_vdevtime },
303 };
304
305 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t))
306
307 /*
308 * The following struct is used to hold a list of uncalled commit callbacks.
309 * The callbacks are ordered by txg number.
310 */
311 typedef struct ztest_cb_list {
312 kmutex_t zcl_callbacks_lock;
313 list_t zcl_callbacks;
314 } ztest_cb_list_t;
315
316 /*
317 * Stuff we need to share writably between parent and child.
318 */
319 typedef struct ztest_shared {
320 char *zs_pool;
321 spa_t *zs_spa;
322 hrtime_t zs_proc_start;
323 hrtime_t zs_proc_stop;
324 hrtime_t zs_thread_start;
325 hrtime_t zs_thread_stop;
326 hrtime_t zs_thread_kill;
327 uint64_t zs_enospc_count;
328 uint64_t zs_vdev_next_leaf;
329 uint64_t zs_vdev_aux;
330 uint64_t zs_alloc;
331 uint64_t zs_space;
332 uint64_t zs_guid;
333 kmutex_t zs_vdev_lock;
334 krwlock_t zs_name_lock;
335 ztest_info_t zs_info[ZTEST_FUNCS];
336 uint64_t zs_splits;
337 uint64_t zs_mirrors;
338 ztest_ds_t zs_zd[];
339 } ztest_shared_t;
340
341 #define ID_PARALLEL -1ULL
342
343 static char ztest_dev_template[] = "%s/%s.%llua";
344 static char ztest_aux_template[] = "%s/%s.%s.%llu";
345 ztest_shared_t *ztest_shared;
346 uint64_t *ztest_seq;
347
348 static int ztest_random_fd;
349 static int ztest_dump_core = 1;
350
351 static boolean_t ztest_exiting;
352
353 /* Global commit callback list */
354 static ztest_cb_list_t zcl;
355 /* Commit cb delay */
356 static uint64_t zc_min_txg_delay = UINT64_MAX;
357 static int zc_cb_counter = 0;
358
359 /*
360 * Minimum number of commit callbacks that need to be registered for us to check
361 * whether the minimum txg delay is acceptable.
362 */
363 #define ZTEST_COMMIT_CB_MIN_REG 100
364
365 /*
366 * If a number of txgs equal to this threshold have been created after a commit
367 * callback has been registered but not called, then we assume there is an
368 * implementation bug.
369 */
370 #define ZTEST_COMMIT_CB_THRESH (TXG_CONCURRENT_STATES + 1000)
371
372 extern uint64_t metaslab_gang_bang;
373 extern uint64_t metaslab_df_alloc_threshold;
374 static uint64_t metaslab_sz;
375
376 enum ztest_object {
377 ZTEST_META_DNODE = 0,
378 ZTEST_DIROBJ,
379 ZTEST_OBJECTS
380 };
381
382 static void usage(boolean_t) __NORETURN;
383
384 /*
385 * These libumem hooks provide a reasonable set of defaults for the allocator's
386 * debugging facilities.
387 */
388 const char *
389 _umem_debug_init(void)
390 {
391 return ("default,verbose"); /* $UMEM_DEBUG setting */
392 }
393
394 const char *
395 _umem_logging_init(void)
396 {
397 return ("fail,contents"); /* $UMEM_LOGGING setting */
398 }
399
400 #define FATAL_MSG_SZ 1024
401
402 char *fatal_msg;
403
404 static void
405 fatal(int do_perror, char *message, ...)
406 {
407 va_list args;
408 int save_errno = errno;
409 char *buf;
410
411 (void) fflush(stdout);
412 buf = umem_alloc(FATAL_MSG_SZ, UMEM_NOFAIL);
413
414 va_start(args, message);
415 (void) sprintf(buf, "ztest: ");
416 /* LINTED */
417 (void) vsprintf(buf + strlen(buf), message, args);
418 va_end(args);
419 if (do_perror) {
420 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
421 ": %s", strerror(save_errno));
422 }
423 (void) fprintf(stderr, "%s\n", buf);
424 fatal_msg = buf; /* to ease debugging */
425 if (ztest_dump_core)
426 abort();
427 exit(3);
428 }
429
430 static int
431 str2shift(const char *buf)
432 {
433 const char *ends = "BKMGTPEZ";
434 int i;
435
436 if (buf[0] == '\0')
437 return (0);
438 for (i = 0; i < strlen(ends); i++) {
439 if (toupper(buf[0]) == ends[i])
440 break;
441 }
442 if (i == strlen(ends)) {
443 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
444 buf);
445 usage(B_FALSE);
446 }
447 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
448 return (10*i);
449 }
450 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
451 usage(B_FALSE);
452 /* NOTREACHED */
453 }
454
455 static uint64_t
456 nicenumtoull(const char *buf)
457 {
458 char *end;
459 uint64_t val;
460
461 val = strtoull(buf, &end, 0);
462 if (end == buf) {
463 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
464 usage(B_FALSE);
465 } else if (end[0] == '.') {
466 double fval = strtod(buf, &end);
467 fval *= pow(2, str2shift(end));
468 if (fval > UINT64_MAX) {
469 (void) fprintf(stderr, "ztest: value too large: %s\n",
470 buf);
471 usage(B_FALSE);
472 }
473 val = (uint64_t)fval;
474 } else {
475 int shift = str2shift(end);
476 if (shift >= 64 || (val << shift) >> shift != val) {
477 (void) fprintf(stderr, "ztest: value too large: %s\n",
478 buf);
479 usage(B_FALSE);
480 }
481 val <<= shift;
482 }
483 return (val);
484 }
485
486 static void
487 usage(boolean_t requested)
488 {
489 char nice_vdev_size[10];
490 char nice_gang_bang[10];
491 FILE *fp = requested ? stdout : stderr;
492
493 nicenum(zopt_vdev_size, nice_vdev_size);
494 nicenum(metaslab_gang_bang, nice_gang_bang);
495
496 (void) fprintf(fp, "Usage: %s\n"
497 "\t[-v vdevs (default: %llu)]\n"
498 "\t[-s size_of_each_vdev (default: %s)]\n"
499 "\t[-a alignment_shift (default: %d)] use 0 for random\n"
500 "\t[-m mirror_copies (default: %d)]\n"
501 "\t[-r raidz_disks (default: %d)]\n"
502 "\t[-R raidz_parity (default: %d)]\n"
503 "\t[-d datasets (default: %d)]\n"
504 "\t[-t threads (default: %d)]\n"
505 "\t[-g gang_block_threshold (default: %s)]\n"
506 "\t[-i init_count (default: %d)] initialize pool i times\n"
507 "\t[-k kill_percentage (default: %llu%%)]\n"
508 "\t[-p pool_name (default: %s)]\n"
509 "\t[-f dir (default: %s)] file directory for vdev files\n"
510 "\t[-V] verbose (use multiple times for ever more blather)\n"
511 "\t[-E] use existing pool instead of creating new one\n"
512 "\t[-T time (default: %llu sec)] total run time\n"
513 "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n"
514 "\t[-P passtime (default: %llu sec)] time per pass\n"
515 "\t[-h] (print help)\n"
516 "",
517 cmdname,
518 (u_longlong_t)zopt_vdevs, /* -v */
519 nice_vdev_size, /* -s */
520 zopt_ashift, /* -a */
521 zopt_mirrors, /* -m */
522 zopt_raidz, /* -r */
523 zopt_raidz_parity, /* -R */
524 zopt_datasets, /* -d */
525 zopt_threads, /* -t */
526 nice_gang_bang, /* -g */
527 zopt_init, /* -i */
528 (u_longlong_t)zopt_killrate, /* -k */
529 zopt_pool, /* -p */
530 zopt_dir, /* -f */
531 (u_longlong_t)zopt_time, /* -T */
532 (u_longlong_t)zopt_maxloops, /* -F */
533 (u_longlong_t)zopt_passtime); /* -P */
534 exit(requested ? 0 : 1);
535 }
536
537 static void
538 process_options(int argc, char **argv)
539 {
540 int opt;
541 uint64_t value;
542
543 /* By default, test gang blocks for blocks 32K and greater */
544 metaslab_gang_bang = 32 << 10;
545
546 while ((opt = getopt(argc, argv,
547 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:")) != EOF) {
548 value = 0;
549 switch (opt) {
550 case 'v':
551 case 's':
552 case 'a':
553 case 'm':
554 case 'r':
555 case 'R':
556 case 'd':
557 case 't':
558 case 'g':
559 case 'i':
560 case 'k':
561 case 'T':
562 case 'P':
563 case 'F':
564 value = nicenumtoull(optarg);
565 }
566 switch (opt) {
567 case 'v':
568 zopt_vdevs = value;
569 break;
570 case 's':
571 zopt_vdev_size = MAX(SPA_MINDEVSIZE, value);
572 break;
573 case 'a':
574 zopt_ashift = value;
575 break;
576 case 'm':
577 zopt_mirrors = value;
578 break;
579 case 'r':
580 zopt_raidz = MAX(1, value);
581 break;
582 case 'R':
583 zopt_raidz_parity = MIN(MAX(value, 1), 3);
584 break;
585 case 'd':
586 zopt_datasets = MAX(1, value);
587 break;
588 case 't':
589 zopt_threads = MAX(1, value);
590 break;
591 case 'g':
592 metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, value);
593 break;
594 case 'i':
595 zopt_init = value;
596 break;
597 case 'k':
598 zopt_killrate = value;
599 break;
600 case 'p':
601 zopt_pool = strdup(optarg);
602 break;
603 case 'f':
604 zopt_dir = strdup(optarg);
605 break;
606 case 'V':
607 zopt_verbose++;
608 break;
609 case 'E':
610 zopt_init = 0;
611 break;
612 case 'T':
613 zopt_time = value;
614 break;
615 case 'P':
616 zopt_passtime = MAX(1, value);
617 break;
618 case 'F':
619 zopt_maxloops = MAX(1, value);
620 break;
621 case 'h':
622 usage(B_TRUE);
623 break;
624 case '?':
625 default:
626 usage(B_FALSE);
627 break;
628 }
629 }
630
631 zopt_raidz_parity = MIN(zopt_raidz_parity, zopt_raidz - 1);
632
633 zopt_vdevtime = (zopt_vdevs > 0 ? zopt_time * NANOSEC / zopt_vdevs :
634 UINT64_MAX >> 2);
635 }
636
637 static void
638 ztest_kill(ztest_shared_t *zs)
639 {
640 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(zs->zs_spa));
641 zs->zs_space = metaslab_class_get_space(spa_normal_class(zs->zs_spa));
642 (void) kill(getpid(), SIGKILL);
643 }
644
645 static uint64_t
646 ztest_random(uint64_t range)
647 {
648 uint64_t r;
649
650 if (range == 0)
651 return (0);
652
653 if (read(ztest_random_fd, &r, sizeof (r)) != sizeof (r))
654 fatal(1, "short read from /dev/urandom");
655
656 return (r % range);
657 }
658
659 /* ARGSUSED */
660 static void
661 ztest_record_enospc(const char *s)
662 {
663 ztest_shared->zs_enospc_count++;
664 }
665
666 static uint64_t
667 ztest_get_ashift(void)
668 {
669 if (zopt_ashift == 0)
670 return (SPA_MINBLOCKSHIFT + ztest_random(3));
671 return (zopt_ashift);
672 }
673
674 static nvlist_t *
675 make_vdev_file(char *path, char *aux, size_t size, uint64_t ashift)
676 {
677 char *pathbuf;
678 uint64_t vdev;
679 nvlist_t *file;
680
681 pathbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
682
683 if (ashift == 0)
684 ashift = ztest_get_ashift();
685
686 if (path == NULL) {
687 path = pathbuf;
688
689 if (aux != NULL) {
690 vdev = ztest_shared->zs_vdev_aux;
691 (void) sprintf(path, ztest_aux_template,
692 zopt_dir, zopt_pool, aux, vdev);
693 } else {
694 vdev = ztest_shared->zs_vdev_next_leaf++;
695 (void) sprintf(path, ztest_dev_template,
696 zopt_dir, zopt_pool, vdev);
697 }
698 }
699
700 if (size != 0) {
701 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
702 if (fd == -1)
703 fatal(1, "can't open %s", path);
704 if (ftruncate(fd, size) != 0)
705 fatal(1, "can't ftruncate %s", path);
706 (void) close(fd);
707 }
708
709 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0);
710 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0);
711 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0);
712 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0);
713 umem_free(pathbuf, MAXPATHLEN);
714
715 return (file);
716 }
717
718 static nvlist_t *
719 make_vdev_raidz(char *path, char *aux, size_t size, uint64_t ashift, int r)
720 {
721 nvlist_t *raidz, **child;
722 int c;
723
724 if (r < 2)
725 return (make_vdev_file(path, aux, size, ashift));
726 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
727
728 for (c = 0; c < r; c++)
729 child[c] = make_vdev_file(path, aux, size, ashift);
730
731 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0);
732 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE,
733 VDEV_TYPE_RAIDZ) == 0);
734 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY,
735 zopt_raidz_parity) == 0);
736 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN,
737 child, r) == 0);
738
739 for (c = 0; c < r; c++)
740 nvlist_free(child[c]);
741
742 umem_free(child, r * sizeof (nvlist_t *));
743
744 return (raidz);
745 }
746
747 static nvlist_t *
748 make_vdev_mirror(char *path, char *aux, size_t size, uint64_t ashift,
749 int r, int m)
750 {
751 nvlist_t *mirror, **child;
752 int c;
753
754 if (m < 1)
755 return (make_vdev_raidz(path, aux, size, ashift, r));
756
757 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
758
759 for (c = 0; c < m; c++)
760 child[c] = make_vdev_raidz(path, aux, size, ashift, r);
761
762 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0);
763 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE,
764 VDEV_TYPE_MIRROR) == 0);
765 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
766 child, m) == 0);
767
768 for (c = 0; c < m; c++)
769 nvlist_free(child[c]);
770
771 umem_free(child, m * sizeof (nvlist_t *));
772
773 return (mirror);
774 }
775
776 static nvlist_t *
777 make_vdev_root(char *path, char *aux, size_t size, uint64_t ashift,
778 int log, int r, int m, int t)
779 {
780 nvlist_t *root, **child;
781 int c;
782
783 ASSERT(t > 0);
784
785 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
786
787 for (c = 0; c < t; c++) {
788 child[c] = make_vdev_mirror(path, aux, size, ashift, r, m);
789 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG,
790 log) == 0);
791 }
792
793 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0);
794 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0);
795 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
796 child, t) == 0);
797
798 for (c = 0; c < t; c++)
799 nvlist_free(child[c]);
800
801 umem_free(child, t * sizeof (nvlist_t *));
802
803 return (root);
804 }
805
806 static int
807 ztest_random_blocksize(void)
808 {
809 return (1 << (SPA_MINBLOCKSHIFT +
810 ztest_random(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1)));
811 }
812
813 static int
814 ztest_random_ibshift(void)
815 {
816 return (DN_MIN_INDBLKSHIFT +
817 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
818 }
819
820 static uint64_t
821 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
822 {
823 uint64_t top;
824 vdev_t *rvd = spa->spa_root_vdev;
825 vdev_t *tvd;
826
827 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
828
829 do {
830 top = ztest_random(rvd->vdev_children);
831 tvd = rvd->vdev_child[top];
832 } while (tvd->vdev_ishole || (tvd->vdev_islog && !log_ok) ||
833 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
834
835 return (top);
836 }
837
838 static uint64_t
839 ztest_random_dsl_prop(zfs_prop_t prop)
840 {
841 uint64_t value;
842
843 do {
844 value = zfs_prop_random_value(prop, ztest_random(-1ULL));
845 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
846
847 return (value);
848 }
849
850 static int
851 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
852 boolean_t inherit)
853 {
854 const char *propname = zfs_prop_to_name(prop);
855 const char *valname;
856 char *setpoint;
857 uint64_t curval;
858 int error;
859
860 error = dsl_prop_set(osname, propname,
861 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL),
862 sizeof (value), 1, &value);
863
864 if (error == ENOSPC) {
865 ztest_record_enospc(FTAG);
866 return (error);
867 }
868 ASSERT3U(error, ==, 0);
869
870 setpoint = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
871 VERIFY3U(dsl_prop_get(osname, propname, sizeof (curval),
872 1, &curval, setpoint), ==, 0);
873
874 if (zopt_verbose >= 6) {
875 VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0);
876 (void) printf("%s %s = %s at '%s'\n",
877 osname, propname, valname, setpoint);
878 }
879 umem_free(setpoint, MAXPATHLEN);
880
881 return (error);
882 }
883
884 static int
885 ztest_spa_prop_set_uint64(ztest_shared_t *zs, zpool_prop_t prop, uint64_t value)
886 {
887 spa_t *spa = zs->zs_spa;
888 nvlist_t *props = NULL;
889 int error;
890
891 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
892 VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0);
893
894 error = spa_prop_set(spa, props);
895
896 nvlist_free(props);
897
898 if (error == ENOSPC) {
899 ztest_record_enospc(FTAG);
900 return (error);
901 }
902 ASSERT3U(error, ==, 0);
903
904 return (error);
905 }
906
907 static void
908 ztest_rll_init(rll_t *rll)
909 {
910 rll->rll_writer = NULL;
911 rll->rll_readers = 0;
912 mutex_init(&rll->rll_lock, NULL, MUTEX_DEFAULT, NULL);
913 cv_init(&rll->rll_cv, NULL, CV_DEFAULT, NULL);
914 }
915
916 static void
917 ztest_rll_destroy(rll_t *rll)
918 {
919 ASSERT(rll->rll_writer == NULL);
920 ASSERT(rll->rll_readers == 0);
921 mutex_destroy(&rll->rll_lock);
922 cv_destroy(&rll->rll_cv);
923 }
924
925 static void
926 ztest_rll_lock(rll_t *rll, rl_type_t type)
927 {
928 mutex_enter(&rll->rll_lock);
929
930 if (type == RL_READER) {
931 while (rll->rll_writer != NULL)
932 (void) cv_wait(&rll->rll_cv, &rll->rll_lock);
933 rll->rll_readers++;
934 } else {
935 while (rll->rll_writer != NULL || rll->rll_readers)
936 (void) cv_wait(&rll->rll_cv, &rll->rll_lock);
937 rll->rll_writer = curthread;
938 }
939
940 mutex_exit(&rll->rll_lock);
941 }
942
943 static void
944 ztest_rll_unlock(rll_t *rll)
945 {
946 mutex_enter(&rll->rll_lock);
947
948 if (rll->rll_writer) {
949 ASSERT(rll->rll_readers == 0);
950 rll->rll_writer = NULL;
951 } else {
952 ASSERT(rll->rll_readers != 0);
953 ASSERT(rll->rll_writer == NULL);
954 rll->rll_readers--;
955 }
956
957 if (rll->rll_writer == NULL && rll->rll_readers == 0)
958 cv_broadcast(&rll->rll_cv);
959
960 mutex_exit(&rll->rll_lock);
961 }
962
963 static void
964 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
965 {
966 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
967
968 ztest_rll_lock(rll, type);
969 }
970
971 static void
972 ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
973 {
974 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
975
976 ztest_rll_unlock(rll);
977 }
978
979 static rl_t *
980 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
981 uint64_t size, rl_type_t type)
982 {
983 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1));
984 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)];
985 rl_t *rl;
986
987 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL);
988 rl->rl_object = object;
989 rl->rl_offset = offset;
990 rl->rl_size = size;
991 rl->rl_lock = rll;
992
993 ztest_rll_lock(rll, type);
994
995 return (rl);
996 }
997
998 static void
999 ztest_range_unlock(rl_t *rl)
1000 {
1001 rll_t *rll = rl->rl_lock;
1002
1003 ztest_rll_unlock(rll);
1004
1005 umem_free(rl, sizeof (*rl));
1006 }
1007
1008 static void
1009 ztest_zd_init(ztest_ds_t *zd, objset_t *os)
1010 {
1011 zd->zd_os = os;
1012 zd->zd_zilog = dmu_objset_zil(os);
1013 zd->zd_seq = 0;
1014 dmu_objset_name(os, zd->zd_name);
1015 int l;
1016
1017 rw_init(&zd->zd_zilog_lock, NULL, RW_DEFAULT, NULL);
1018 mutex_init(&zd->zd_dirobj_lock, NULL, MUTEX_DEFAULT, NULL);
1019
1020 for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1021 ztest_rll_init(&zd->zd_object_lock[l]);
1022
1023 for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1024 ztest_rll_init(&zd->zd_range_lock[l]);
1025 }
1026
1027 static void
1028 ztest_zd_fini(ztest_ds_t *zd)
1029 {
1030 int l;
1031
1032 mutex_destroy(&zd->zd_dirobj_lock);
1033 rw_destroy(&zd->zd_zilog_lock);
1034
1035 for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1036 ztest_rll_destroy(&zd->zd_object_lock[l]);
1037
1038 for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1039 ztest_rll_destroy(&zd->zd_range_lock[l]);
1040 }
1041
1042 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
1043
1044 static uint64_t
1045 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag)
1046 {
1047 uint64_t txg;
1048 int error;
1049
1050 /*
1051 * Attempt to assign tx to some transaction group.
1052 */
1053 error = dmu_tx_assign(tx, txg_how);
1054 if (error) {
1055 if (error == ERESTART) {
1056 ASSERT(txg_how == TXG_NOWAIT);
1057 dmu_tx_wait(tx);
1058 } else {
1059 ASSERT3U(error, ==, ENOSPC);
1060 ztest_record_enospc(tag);
1061 }
1062 dmu_tx_abort(tx);
1063 return (0);
1064 }
1065 txg = dmu_tx_get_txg(tx);
1066 ASSERT(txg != 0);
1067 return (txg);
1068 }
1069
1070 static void
1071 ztest_pattern_set(void *buf, uint64_t size, uint64_t value)
1072 {
1073 uint64_t *ip = buf;
1074 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1075
1076 while (ip < ip_end)
1077 *ip++ = value;
1078 }
1079
1080 #ifndef NDEBUG
1081 static boolean_t
1082 ztest_pattern_match(void *buf, uint64_t size, uint64_t value)
1083 {
1084 uint64_t *ip = buf;
1085 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1086 uint64_t diff = 0;
1087
1088 while (ip < ip_end)
1089 diff |= (value - *ip++);
1090
1091 return (diff == 0);
1092 }
1093 #endif
1094
1095 static void
1096 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1097 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg)
1098 {
1099 bt->bt_magic = BT_MAGIC;
1100 bt->bt_objset = dmu_objset_id(os);
1101 bt->bt_object = object;
1102 bt->bt_offset = offset;
1103 bt->bt_gen = gen;
1104 bt->bt_txg = txg;
1105 bt->bt_crtxg = crtxg;
1106 }
1107
1108 static void
1109 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1110 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg)
1111 {
1112 ASSERT(bt->bt_magic == BT_MAGIC);
1113 ASSERT(bt->bt_objset == dmu_objset_id(os));
1114 ASSERT(bt->bt_object == object);
1115 ASSERT(bt->bt_offset == offset);
1116 ASSERT(bt->bt_gen <= gen);
1117 ASSERT(bt->bt_txg <= txg);
1118 ASSERT(bt->bt_crtxg == crtxg);
1119 }
1120
1121 static ztest_block_tag_t *
1122 ztest_bt_bonus(dmu_buf_t *db)
1123 {
1124 dmu_object_info_t doi;
1125 ztest_block_tag_t *bt;
1126
1127 dmu_object_info_from_db(db, &doi);
1128 ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
1129 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
1130 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
1131
1132 return (bt);
1133 }
1134
1135 /*
1136 * ZIL logging ops
1137 */
1138
1139 #define lrz_type lr_mode
1140 #define lrz_blocksize lr_uid
1141 #define lrz_ibshift lr_gid
1142 #define lrz_bonustype lr_rdev
1143 #define lrz_bonuslen lr_crtime[1]
1144
1145 static void
1146 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
1147 {
1148 char *name = (void *)(lr + 1); /* name follows lr */
1149 size_t namesize = strlen(name) + 1;
1150 itx_t *itx;
1151
1152 if (zil_replaying(zd->zd_zilog, tx))
1153 return;
1154
1155 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
1156 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1157 sizeof (*lr) + namesize - sizeof (lr_t));
1158
1159 zil_itx_assign(zd->zd_zilog, itx, tx);
1160 }
1161
1162 static void
1163 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object)
1164 {
1165 char *name = (void *)(lr + 1); /* name follows lr */
1166 size_t namesize = strlen(name) + 1;
1167 itx_t *itx;
1168
1169 if (zil_replaying(zd->zd_zilog, tx))
1170 return;
1171
1172 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
1173 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1174 sizeof (*lr) + namesize - sizeof (lr_t));
1175
1176 itx->itx_oid = object;
1177 zil_itx_assign(zd->zd_zilog, itx, tx);
1178 }
1179
1180 static void
1181 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
1182 {
1183 itx_t *itx;
1184 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
1185
1186 if (zil_replaying(zd->zd_zilog, tx))
1187 return;
1188
1189 if (lr->lr_length > ZIL_MAX_LOG_DATA)
1190 write_state = WR_INDIRECT;
1191
1192 itx = zil_itx_create(TX_WRITE,
1193 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
1194
1195 if (write_state == WR_COPIED &&
1196 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
1197 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) {
1198 zil_itx_destroy(itx);
1199 itx = zil_itx_create(TX_WRITE, sizeof (*lr));
1200 write_state = WR_NEED_COPY;
1201 }
1202 itx->itx_private = zd;
1203 itx->itx_wr_state = write_state;
1204 itx->itx_sync = (ztest_random(8) == 0);
1205 itx->itx_sod += (write_state == WR_NEED_COPY ? lr->lr_length : 0);
1206
1207 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1208 sizeof (*lr) - sizeof (lr_t));
1209
1210 zil_itx_assign(zd->zd_zilog, itx, tx);
1211 }
1212
1213 static void
1214 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
1215 {
1216 itx_t *itx;
1217
1218 if (zil_replaying(zd->zd_zilog, tx))
1219 return;
1220
1221 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
1222 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1223 sizeof (*lr) - sizeof (lr_t));
1224
1225 itx->itx_sync = B_FALSE;
1226 zil_itx_assign(zd->zd_zilog, itx, tx);
1227 }
1228
1229 static void
1230 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
1231 {
1232 itx_t *itx;
1233
1234 if (zil_replaying(zd->zd_zilog, tx))
1235 return;
1236
1237 itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
1238 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1239 sizeof (*lr) - sizeof (lr_t));
1240
1241 itx->itx_sync = B_FALSE;
1242 zil_itx_assign(zd->zd_zilog, itx, tx);
1243 }
1244
1245 /*
1246 * ZIL replay ops
1247 */
1248 static int
1249 ztest_replay_create(ztest_ds_t *zd, lr_create_t *lr, boolean_t byteswap)
1250 {
1251 char *name = (void *)(lr + 1); /* name follows lr */
1252 objset_t *os = zd->zd_os;
1253 ztest_block_tag_t *bbt;
1254 dmu_buf_t *db;
1255 dmu_tx_t *tx;
1256 uint64_t txg;
1257 int error = 0;
1258
1259 if (byteswap)
1260 byteswap_uint64_array(lr, sizeof (*lr));
1261
1262 ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1263 ASSERT(name[0] != '\0');
1264
1265 tx = dmu_tx_create(os);
1266
1267 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
1268
1269 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1270 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1271 } else {
1272 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1273 }
1274
1275 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1276 if (txg == 0)
1277 return (ENOSPC);
1278
1279 ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid);
1280
1281 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1282 if (lr->lr_foid == 0) {
1283 lr->lr_foid = zap_create(os,
1284 lr->lrz_type, lr->lrz_bonustype,
1285 lr->lrz_bonuslen, tx);
1286 } else {
1287 error = zap_create_claim(os, lr->lr_foid,
1288 lr->lrz_type, lr->lrz_bonustype,
1289 lr->lrz_bonuslen, tx);
1290 }
1291 } else {
1292 if (lr->lr_foid == 0) {
1293 lr->lr_foid = dmu_object_alloc(os,
1294 lr->lrz_type, 0, lr->lrz_bonustype,
1295 lr->lrz_bonuslen, tx);
1296 } else {
1297 error = dmu_object_claim(os, lr->lr_foid,
1298 lr->lrz_type, 0, lr->lrz_bonustype,
1299 lr->lrz_bonuslen, tx);
1300 }
1301 }
1302
1303 if (error) {
1304 ASSERT3U(error, ==, EEXIST);
1305 ASSERT(zd->zd_zilog->zl_replay);
1306 dmu_tx_commit(tx);
1307 return (error);
1308 }
1309
1310 ASSERT(lr->lr_foid != 0);
1311
1312 if (lr->lrz_type != DMU_OT_ZAP_OTHER)
1313 VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid,
1314 lr->lrz_blocksize, lr->lrz_ibshift, tx));
1315
1316 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1317 bbt = ztest_bt_bonus(db);
1318 dmu_buf_will_dirty(db, tx);
1319 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg);
1320 dmu_buf_rele(db, FTAG);
1321
1322 VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
1323 &lr->lr_foid, tx));
1324
1325 (void) ztest_log_create(zd, tx, lr);
1326
1327 dmu_tx_commit(tx);
1328
1329 return (0);
1330 }
1331
1332 static int
1333 ztest_replay_remove(ztest_ds_t *zd, lr_remove_t *lr, boolean_t byteswap)
1334 {
1335 char *name = (void *)(lr + 1); /* name follows lr */
1336 objset_t *os = zd->zd_os;
1337 dmu_object_info_t doi;
1338 dmu_tx_t *tx;
1339 uint64_t object, txg;
1340
1341 if (byteswap)
1342 byteswap_uint64_array(lr, sizeof (*lr));
1343
1344 ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1345 ASSERT(name[0] != '\0');
1346
1347 VERIFY3U(0, ==,
1348 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
1349 ASSERT(object != 0);
1350
1351 ztest_object_lock(zd, object, RL_WRITER);
1352
1353 VERIFY3U(0, ==, dmu_object_info(os, object, &doi));
1354
1355 tx = dmu_tx_create(os);
1356
1357 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
1358 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
1359
1360 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1361 if (txg == 0) {
1362 ztest_object_unlock(zd, object);
1363 return (ENOSPC);
1364 }
1365
1366 if (doi.doi_type == DMU_OT_ZAP_OTHER) {
1367 VERIFY3U(0, ==, zap_destroy(os, object, tx));
1368 } else {
1369 VERIFY3U(0, ==, dmu_object_free(os, object, tx));
1370 }
1371
1372 VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx));
1373
1374 (void) ztest_log_remove(zd, tx, lr, object);
1375
1376 dmu_tx_commit(tx);
1377
1378 ztest_object_unlock(zd, object);
1379
1380 return (0);
1381 }
1382
1383 static int
1384 ztest_replay_write(ztest_ds_t *zd, lr_write_t *lr, boolean_t byteswap)
1385 {
1386 objset_t *os = zd->zd_os;
1387 void *data = lr + 1; /* data follows lr */
1388 uint64_t offset, length;
1389 ztest_block_tag_t *bt = data;
1390 ztest_block_tag_t *bbt;
1391 uint64_t gen, txg, lrtxg, crtxg;
1392 dmu_object_info_t doi;
1393 dmu_tx_t *tx;
1394 dmu_buf_t *db;
1395 arc_buf_t *abuf = NULL;
1396 rl_t *rl;
1397
1398 if (byteswap)
1399 byteswap_uint64_array(lr, sizeof (*lr));
1400
1401 offset = lr->lr_offset;
1402 length = lr->lr_length;
1403
1404 /* If it's a dmu_sync() block, write the whole block */
1405 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
1406 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
1407 if (length < blocksize) {
1408 offset -= offset % blocksize;
1409 length = blocksize;
1410 }
1411 }
1412
1413 if (bt->bt_magic == BSWAP_64(BT_MAGIC))
1414 byteswap_uint64_array(bt, sizeof (*bt));
1415
1416 if (bt->bt_magic != BT_MAGIC)
1417 bt = NULL;
1418
1419 ztest_object_lock(zd, lr->lr_foid, RL_READER);
1420 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER);
1421
1422 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1423
1424 dmu_object_info_from_db(db, &doi);
1425
1426 bbt = ztest_bt_bonus(db);
1427 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1428 gen = bbt->bt_gen;
1429 crtxg = bbt->bt_crtxg;
1430 lrtxg = lr->lr_common.lrc_txg;
1431
1432 tx = dmu_tx_create(os);
1433
1434 dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
1435
1436 if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
1437 P2PHASE(offset, length) == 0)
1438 abuf = dmu_request_arcbuf(db, length);
1439
1440 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1441 if (txg == 0) {
1442 if (abuf != NULL)
1443 dmu_return_arcbuf(abuf);
1444 dmu_buf_rele(db, FTAG);
1445 ztest_range_unlock(rl);
1446 ztest_object_unlock(zd, lr->lr_foid);
1447 return (ENOSPC);
1448 }
1449
1450 if (bt != NULL) {
1451 /*
1452 * Usually, verify the old data before writing new data --
1453 * but not always, because we also want to verify correct
1454 * behavior when the data was not recently read into cache.
1455 */
1456 ASSERT(offset % doi.doi_data_block_size == 0);
1457 if (ztest_random(4) != 0) {
1458 int prefetch = ztest_random(2) ?
1459 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
1460 ztest_block_tag_t rbt;
1461
1462 VERIFY(dmu_read(os, lr->lr_foid, offset,
1463 sizeof (rbt), &rbt, prefetch) == 0);
1464 if (rbt.bt_magic == BT_MAGIC) {
1465 ztest_bt_verify(&rbt, os, lr->lr_foid,
1466 offset, gen, txg, crtxg);
1467 }
1468 }
1469
1470 /*
1471 * Writes can appear to be newer than the bonus buffer because
1472 * the ztest_get_data() callback does a dmu_read() of the
1473 * open-context data, which may be different than the data
1474 * as it was when the write was generated.
1475 */
1476 if (zd->zd_zilog->zl_replay) {
1477 ztest_bt_verify(bt, os, lr->lr_foid, offset,
1478 MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
1479 bt->bt_crtxg);
1480 }
1481
1482 /*
1483 * Set the bt's gen/txg to the bonus buffer's gen/txg
1484 * so that all of the usual ASSERTs will work.
1485 */
1486 ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg);
1487 }
1488
1489 if (abuf == NULL) {
1490 dmu_write(os, lr->lr_foid, offset, length, data, tx);
1491 } else {
1492 bcopy(data, abuf->b_data, length);
1493 dmu_assign_arcbuf(db, offset, abuf, tx);
1494 }
1495
1496 (void) ztest_log_write(zd, tx, lr);
1497
1498 dmu_buf_rele(db, FTAG);
1499
1500 dmu_tx_commit(tx);
1501
1502 ztest_range_unlock(rl);
1503 ztest_object_unlock(zd, lr->lr_foid);
1504
1505 return (0);
1506 }
1507
1508 static int
1509 ztest_replay_truncate(ztest_ds_t *zd, lr_truncate_t *lr, boolean_t byteswap)
1510 {
1511 objset_t *os = zd->zd_os;
1512 dmu_tx_t *tx;
1513 uint64_t txg;
1514 rl_t *rl;
1515
1516 if (byteswap)
1517 byteswap_uint64_array(lr, sizeof (*lr));
1518
1519 ztest_object_lock(zd, lr->lr_foid, RL_READER);
1520 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
1521 RL_WRITER);
1522
1523 tx = dmu_tx_create(os);
1524
1525 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
1526
1527 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1528 if (txg == 0) {
1529 ztest_range_unlock(rl);
1530 ztest_object_unlock(zd, lr->lr_foid);
1531 return (ENOSPC);
1532 }
1533
1534 VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
1535 lr->lr_length, tx) == 0);
1536
1537 (void) ztest_log_truncate(zd, tx, lr);
1538
1539 dmu_tx_commit(tx);
1540
1541 ztest_range_unlock(rl);
1542 ztest_object_unlock(zd, lr->lr_foid);
1543
1544 return (0);
1545 }
1546
1547 static int
1548 ztest_replay_setattr(ztest_ds_t *zd, lr_setattr_t *lr, boolean_t byteswap)
1549 {
1550 objset_t *os = zd->zd_os;
1551 dmu_tx_t *tx;
1552 dmu_buf_t *db;
1553 ztest_block_tag_t *bbt;
1554 uint64_t txg, lrtxg, crtxg;
1555
1556 if (byteswap)
1557 byteswap_uint64_array(lr, sizeof (*lr));
1558
1559 ztest_object_lock(zd, lr->lr_foid, RL_WRITER);
1560
1561 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1562
1563 tx = dmu_tx_create(os);
1564 dmu_tx_hold_bonus(tx, lr->lr_foid);
1565
1566 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1567 if (txg == 0) {
1568 dmu_buf_rele(db, FTAG);
1569 ztest_object_unlock(zd, lr->lr_foid);
1570 return (ENOSPC);
1571 }
1572
1573 bbt = ztest_bt_bonus(db);
1574 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1575 crtxg = bbt->bt_crtxg;
1576 lrtxg = lr->lr_common.lrc_txg;
1577
1578 if (zd->zd_zilog->zl_replay) {
1579 ASSERT(lr->lr_size != 0);
1580 ASSERT(lr->lr_mode != 0);
1581 ASSERT(lrtxg != 0);
1582 } else {
1583 /*
1584 * Randomly change the size and increment the generation.
1585 */
1586 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
1587 sizeof (*bbt);
1588 lr->lr_mode = bbt->bt_gen + 1;
1589 ASSERT(lrtxg == 0);
1590 }
1591
1592 /*
1593 * Verify that the current bonus buffer is not newer than our txg.
1594 */
1595 ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode,
1596 MAX(txg, lrtxg), crtxg);
1597
1598 dmu_buf_will_dirty(db, tx);
1599
1600 ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
1601 ASSERT3U(lr->lr_size, <=, db->db_size);
1602 VERIFY3U(dmu_set_bonus(db, lr->lr_size, tx), ==, 0);
1603 bbt = ztest_bt_bonus(db);
1604
1605 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg);
1606
1607 dmu_buf_rele(db, FTAG);
1608
1609 (void) ztest_log_setattr(zd, tx, lr);
1610
1611 dmu_tx_commit(tx);
1612
1613 ztest_object_unlock(zd, lr->lr_foid);
1614
1615 return (0);
1616 }
1617
1618 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
1619 NULL, /* 0 no such transaction type */
1620 (zil_replay_func_t *)ztest_replay_create, /* TX_CREATE */
1621 NULL, /* TX_MKDIR */
1622 NULL, /* TX_MKXATTR */
1623 NULL, /* TX_SYMLINK */
1624 (zil_replay_func_t *)ztest_replay_remove, /* TX_REMOVE */
1625 NULL, /* TX_RMDIR */
1626 NULL, /* TX_LINK */
1627 NULL, /* TX_RENAME */
1628 (zil_replay_func_t *)ztest_replay_write, /* TX_WRITE */
1629 (zil_replay_func_t *)ztest_replay_truncate, /* TX_TRUNCATE */
1630 (zil_replay_func_t *)ztest_replay_setattr, /* TX_SETATTR */
1631 NULL, /* TX_ACL */
1632 NULL, /* TX_CREATE_ACL */
1633 NULL, /* TX_CREATE_ATTR */
1634 NULL, /* TX_CREATE_ACL_ATTR */
1635 NULL, /* TX_MKDIR_ACL */
1636 NULL, /* TX_MKDIR_ATTR */
1637 NULL, /* TX_MKDIR_ACL_ATTR */
1638 NULL, /* TX_WRITE2 */
1639 };
1640
1641 /*
1642 * ZIL get_data callbacks
1643 */
1644
1645 static void
1646 ztest_get_done(zgd_t *zgd, int error)
1647 {
1648 ztest_ds_t *zd = zgd->zgd_private;
1649 uint64_t object = zgd->zgd_rl->rl_object;
1650
1651 if (zgd->zgd_db)
1652 dmu_buf_rele(zgd->zgd_db, zgd);
1653
1654 ztest_range_unlock(zgd->zgd_rl);
1655 ztest_object_unlock(zd, object);
1656
1657 if (error == 0 && zgd->zgd_bp)
1658 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
1659
1660 umem_free(zgd, sizeof (*zgd));
1661 }
1662
1663 static int
1664 ztest_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
1665 {
1666 ztest_ds_t *zd = arg;
1667 objset_t *os = zd->zd_os;
1668 uint64_t object = lr->lr_foid;
1669 uint64_t offset = lr->lr_offset;
1670 uint64_t size = lr->lr_length;
1671 blkptr_t *bp = &lr->lr_blkptr;
1672 uint64_t txg = lr->lr_common.lrc_txg;
1673 uint64_t crtxg;
1674 dmu_object_info_t doi;
1675 dmu_buf_t *db;
1676 zgd_t *zgd;
1677 int error;
1678
1679 ztest_object_lock(zd, object, RL_READER);
1680 error = dmu_bonus_hold(os, object, FTAG, &db);
1681 if (error) {
1682 ztest_object_unlock(zd, object);
1683 return (error);
1684 }
1685
1686 crtxg = ztest_bt_bonus(db)->bt_crtxg;
1687
1688 if (crtxg == 0 || crtxg > txg) {
1689 dmu_buf_rele(db, FTAG);
1690 ztest_object_unlock(zd, object);
1691 return (ENOENT);
1692 }
1693
1694 dmu_object_info_from_db(db, &doi);
1695 dmu_buf_rele(db, FTAG);
1696 db = NULL;
1697
1698 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
1699 zgd->zgd_zilog = zd->zd_zilog;
1700 zgd->zgd_private = zd;
1701
1702 if (buf != NULL) { /* immediate write */
1703 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size,
1704 RL_READER);
1705
1706 error = dmu_read(os, object, offset, size, buf,
1707 DMU_READ_NO_PREFETCH);
1708 ASSERT(error == 0);
1709 } else {
1710 size = doi.doi_data_block_size;
1711 if (ISP2(size)) {
1712 offset = P2ALIGN(offset, size);
1713 } else {
1714 ASSERT(offset < size);
1715 offset = 0;
1716 }
1717
1718 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size,
1719 RL_READER);
1720
1721 error = dmu_buf_hold(os, object, offset, zgd, &db,
1722 DMU_READ_NO_PREFETCH);
1723
1724 if (error == 0) {
1725 zgd->zgd_db = db;
1726 zgd->zgd_bp = bp;
1727
1728 ASSERT(db->db_offset == offset);
1729 ASSERT(db->db_size == size);
1730
1731 error = dmu_sync(zio, lr->lr_common.lrc_txg,
1732 ztest_get_done, zgd);
1733
1734 if (error == 0)
1735 return (0);
1736 }
1737 }
1738
1739 ztest_get_done(zgd, error);
1740
1741 return (error);
1742 }
1743
1744 static void *
1745 ztest_lr_alloc(size_t lrsize, char *name)
1746 {
1747 char *lr;
1748 size_t namesize = name ? strlen(name) + 1 : 0;
1749
1750 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
1751
1752 if (name)
1753 bcopy(name, lr + lrsize, namesize);
1754
1755 return (lr);
1756 }
1757
1758 void
1759 ztest_lr_free(void *lr, size_t lrsize, char *name)
1760 {
1761 size_t namesize = name ? strlen(name) + 1 : 0;
1762
1763 umem_free(lr, lrsize + namesize);
1764 }
1765
1766 /*
1767 * Lookup a bunch of objects. Returns the number of objects not found.
1768 */
1769 static int
1770 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
1771 {
1772 int missing = 0;
1773 int error;
1774 int i;
1775
1776 ASSERT(mutex_held(&zd->zd_dirobj_lock));
1777
1778 for (i = 0; i < count; i++, od++) {
1779 od->od_object = 0;
1780 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
1781 sizeof (uint64_t), 1, &od->od_object);
1782 if (error) {
1783 ASSERT(error == ENOENT);
1784 ASSERT(od->od_object == 0);
1785 missing++;
1786 } else {
1787 dmu_buf_t *db;
1788 ztest_block_tag_t *bbt;
1789 dmu_object_info_t doi;
1790
1791 ASSERT(od->od_object != 0);
1792 ASSERT(missing == 0); /* there should be no gaps */
1793
1794 ztest_object_lock(zd, od->od_object, RL_READER);
1795 VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os,
1796 od->od_object, FTAG, &db));
1797 dmu_object_info_from_db(db, &doi);
1798 bbt = ztest_bt_bonus(db);
1799 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1800 od->od_type = doi.doi_type;
1801 od->od_blocksize = doi.doi_data_block_size;
1802 od->od_gen = bbt->bt_gen;
1803 dmu_buf_rele(db, FTAG);
1804 ztest_object_unlock(zd, od->od_object);
1805 }
1806 }
1807
1808 return (missing);
1809 }
1810
1811 static int
1812 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
1813 {
1814 int missing = 0;
1815 int i;
1816
1817 ASSERT(mutex_held(&zd->zd_dirobj_lock));
1818
1819 for (i = 0; i < count; i++, od++) {
1820 if (missing) {
1821 od->od_object = 0;
1822 missing++;
1823 continue;
1824 }
1825
1826 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
1827
1828 lr->lr_doid = od->od_dir;
1829 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */
1830 lr->lrz_type = od->od_crtype;
1831 lr->lrz_blocksize = od->od_crblocksize;
1832 lr->lrz_ibshift = ztest_random_ibshift();
1833 lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
1834 lr->lrz_bonuslen = dmu_bonus_max();
1835 lr->lr_gen = od->od_crgen;
1836 lr->lr_crtime[0] = time(NULL);
1837
1838 if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
1839 ASSERT(missing == 0);
1840 od->od_object = 0;
1841 missing++;
1842 } else {
1843 od->od_object = lr->lr_foid;
1844 od->od_type = od->od_crtype;
1845 od->od_blocksize = od->od_crblocksize;
1846 od->od_gen = od->od_crgen;
1847 ASSERT(od->od_object != 0);
1848 }
1849
1850 ztest_lr_free(lr, sizeof (*lr), od->od_name);
1851 }
1852
1853 return (missing);
1854 }
1855
1856 static int
1857 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
1858 {
1859 int missing = 0;
1860 int error;
1861 int i;
1862
1863 ASSERT(mutex_held(&zd->zd_dirobj_lock));
1864
1865 od += count - 1;
1866
1867 for (i = count - 1; i >= 0; i--, od--) {
1868 if (missing) {
1869 missing++;
1870 continue;
1871 }
1872
1873 if (od->od_object == 0)
1874 continue;
1875
1876 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
1877
1878 lr->lr_doid = od->od_dir;
1879
1880 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
1881 ASSERT3U(error, ==, ENOSPC);
1882 missing++;
1883 } else {
1884 od->od_object = 0;
1885 }
1886 ztest_lr_free(lr, sizeof (*lr), od->od_name);
1887 }
1888
1889 return (missing);
1890 }
1891
1892 static int
1893 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
1894 void *data)
1895 {
1896 lr_write_t *lr;
1897 int error;
1898
1899 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
1900
1901 lr->lr_foid = object;
1902 lr->lr_offset = offset;
1903 lr->lr_length = size;
1904 lr->lr_blkoff = 0;
1905 BP_ZERO(&lr->lr_blkptr);
1906
1907 bcopy(data, lr + 1, size);
1908
1909 error = ztest_replay_write(zd, lr, B_FALSE);
1910
1911 ztest_lr_free(lr, sizeof (*lr) + size, NULL);
1912
1913 return (error);
1914 }
1915
1916 static int
1917 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
1918 {
1919 lr_truncate_t *lr;
1920 int error;
1921
1922 lr = ztest_lr_alloc(sizeof (*lr), NULL);
1923
1924 lr->lr_foid = object;
1925 lr->lr_offset = offset;
1926 lr->lr_length = size;
1927
1928 error = ztest_replay_truncate(zd, lr, B_FALSE);
1929
1930 ztest_lr_free(lr, sizeof (*lr), NULL);
1931
1932 return (error);
1933 }
1934
1935 static int
1936 ztest_setattr(ztest_ds_t *zd, uint64_t object)
1937 {
1938 lr_setattr_t *lr;
1939 int error;
1940
1941 lr = ztest_lr_alloc(sizeof (*lr), NULL);
1942
1943 lr->lr_foid = object;
1944 lr->lr_size = 0;
1945 lr->lr_mode = 0;
1946
1947 error = ztest_replay_setattr(zd, lr, B_FALSE);
1948
1949 ztest_lr_free(lr, sizeof (*lr), NULL);
1950
1951 return (error);
1952 }
1953
1954 static void
1955 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
1956 {
1957 objset_t *os = zd->zd_os;
1958 dmu_tx_t *tx;
1959 uint64_t txg;
1960 rl_t *rl;
1961
1962 txg_wait_synced(dmu_objset_pool(os), 0);
1963
1964 ztest_object_lock(zd, object, RL_READER);
1965 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER);
1966
1967 tx = dmu_tx_create(os);
1968
1969 dmu_tx_hold_write(tx, object, offset, size);
1970
1971 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1972
1973 if (txg != 0) {
1974 dmu_prealloc(os, object, offset, size, tx);
1975 dmu_tx_commit(tx);
1976 txg_wait_synced(dmu_objset_pool(os), txg);
1977 } else {
1978 (void) dmu_free_long_range(os, object, offset, size);
1979 }
1980
1981 ztest_range_unlock(rl);
1982 ztest_object_unlock(zd, object);
1983 }
1984
1985 static void
1986 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
1987 {
1988 ztest_block_tag_t wbt;
1989 dmu_object_info_t doi;
1990 enum ztest_io_type io_type;
1991 uint64_t blocksize;
1992 void *data;
1993
1994 VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0);
1995 blocksize = doi.doi_data_block_size;
1996 data = umem_alloc(blocksize, UMEM_NOFAIL);
1997
1998 /*
1999 * Pick an i/o type at random, biased toward writing block tags.
2000 */
2001 io_type = ztest_random(ZTEST_IO_TYPES);
2002 if (ztest_random(2) == 0)
2003 io_type = ZTEST_IO_WRITE_TAG;
2004
2005 (void) rw_enter(&zd->zd_zilog_lock, RW_READER);
2006
2007 switch (io_type) {
2008
2009 case ZTEST_IO_WRITE_TAG:
2010 ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0);
2011 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
2012 break;
2013
2014 case ZTEST_IO_WRITE_PATTERN:
2015 (void) memset(data, 'a' + (object + offset) % 5, blocksize);
2016 if (ztest_random(2) == 0) {
2017 /*
2018 * Induce fletcher2 collisions to ensure that
2019 * zio_ddt_collision() detects and resolves them
2020 * when using fletcher2-verify for deduplication.
2021 */
2022 ((uint64_t *)data)[0] ^= 1ULL << 63;
2023 ((uint64_t *)data)[4] ^= 1ULL << 63;
2024 }
2025 (void) ztest_write(zd, object, offset, blocksize, data);
2026 break;
2027
2028 case ZTEST_IO_WRITE_ZEROES:
2029 bzero(data, blocksize);
2030 (void) ztest_write(zd, object, offset, blocksize, data);
2031 break;
2032
2033 case ZTEST_IO_TRUNCATE:
2034 (void) ztest_truncate(zd, object, offset, blocksize);
2035 break;
2036
2037 case ZTEST_IO_SETATTR:
2038 (void) ztest_setattr(zd, object);
2039 break;
2040 default:
2041 break;
2042 }
2043
2044 (void) rw_exit(&zd->zd_zilog_lock);
2045
2046 umem_free(data, blocksize);
2047 }
2048
2049 /*
2050 * Initialize an object description template.
2051 */
2052 static void
2053 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index,
2054 dmu_object_type_t type, uint64_t blocksize, uint64_t gen)
2055 {
2056 od->od_dir = ZTEST_DIROBJ;
2057 od->od_object = 0;
2058
2059 od->od_crtype = type;
2060 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
2061 od->od_crgen = gen;
2062
2063 od->od_type = DMU_OT_NONE;
2064 od->od_blocksize = 0;
2065 od->od_gen = 0;
2066
2067 (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]",
2068 tag, (longlong_t)id, (u_longlong_t)index);
2069 }
2070
2071 /*
2072 * Lookup or create the objects for a test using the od template.
2073 * If the objects do not all exist, or if 'remove' is specified,
2074 * remove any existing objects and create new ones. Otherwise,
2075 * use the existing objects.
2076 */
2077 static int
2078 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
2079 {
2080 int count = size / sizeof (*od);
2081 int rv = 0;
2082
2083 mutex_enter(&zd->zd_dirobj_lock);
2084 if ((ztest_lookup(zd, od, count) != 0 || remove) &&
2085 (ztest_remove(zd, od, count) != 0 ||
2086 ztest_create(zd, od, count) != 0))
2087 rv = -1;
2088 zd->zd_od = od;
2089 mutex_exit(&zd->zd_dirobj_lock);
2090
2091 return (rv);
2092 }
2093
2094 /* ARGSUSED */
2095 void
2096 ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
2097 {
2098 zilog_t *zilog = zd->zd_zilog;
2099
2100 (void) rw_enter(&zd->zd_zilog_lock, RW_READER);
2101
2102 zil_commit(zilog, ztest_random(ZTEST_OBJECTS));
2103
2104 /*
2105 * Remember the committed values in zd, which is in parent/child
2106 * shared memory. If we die, the next iteration of ztest_run()
2107 * will verify that the log really does contain this record.
2108 */
2109 mutex_enter(&zilog->zl_lock);
2110 ASSERT(zd->zd_seq <= zilog->zl_commit_lr_seq);
2111 zd->zd_seq = zilog->zl_commit_lr_seq;
2112 mutex_exit(&zilog->zl_lock);
2113
2114 (void) rw_exit(&zd->zd_zilog_lock);
2115 }
2116
2117 /*
2118 * This function is designed to simulate the operations that occur during a
2119 * mount/unmount operation. We hold the dataset across these operations in an
2120 * attempt to expose any implicit assumptions about ZIL management.
2121 */
2122 /* ARGSUSED */
2123 void
2124 ztest_zil_remount(ztest_ds_t *zd, uint64_t id)
2125 {
2126 objset_t *os = zd->zd_os;
2127
2128 (void) rw_enter(&zd->zd_zilog_lock, RW_WRITER);
2129
2130 /* zfs_sb_teardown() */
2131 zil_close(zd->zd_zilog);
2132
2133 /* zfsvfs_setup() */
2134 VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog);
2135 zil_replay(os, zd, ztest_replay_vector);
2136
2137 (void) rw_exit(&zd->zd_zilog_lock);
2138 }
2139
2140 /*
2141 * Verify that we can't destroy an active pool, create an existing pool,
2142 * or create a pool with a bad vdev spec.
2143 */
2144 /* ARGSUSED */
2145 void
2146 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
2147 {
2148 ztest_shared_t *zs = ztest_shared;
2149 spa_t *spa;
2150 nvlist_t *nvroot;
2151
2152 /*
2153 * Attempt to create using a bad file.
2154 */
2155 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1);
2156 VERIFY3U(ENOENT, ==,
2157 spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL));
2158 nvlist_free(nvroot);
2159
2160 /*
2161 * Attempt to create using a bad mirror.
2162 */
2163 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 2, 1);
2164 VERIFY3U(ENOENT, ==,
2165 spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL));
2166 nvlist_free(nvroot);
2167
2168 /*
2169 * Attempt to create an existing pool. It shouldn't matter
2170 * what's in the nvroot; we should fail with EEXIST.
2171 */
2172 (void) rw_enter(&zs->zs_name_lock, RW_READER);
2173 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1);
2174 VERIFY3U(EEXIST, ==, spa_create(zs->zs_pool, nvroot, NULL, NULL, NULL));
2175 nvlist_free(nvroot);
2176 VERIFY3U(0, ==, spa_open(zs->zs_pool, &spa, FTAG));
2177 VERIFY3U(EBUSY, ==, spa_destroy(zs->zs_pool));
2178 spa_close(spa, FTAG);
2179
2180 (void) rw_exit(&zs->zs_name_lock);
2181 }
2182
2183 static vdev_t *
2184 vdev_lookup_by_path(vdev_t *vd, const char *path)
2185 {
2186 vdev_t *mvd;
2187 int c;
2188
2189 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
2190 return (vd);
2191
2192 for (c = 0; c < vd->vdev_children; c++)
2193 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
2194 NULL)
2195 return (mvd);
2196
2197 return (NULL);
2198 }
2199
2200 /*
2201 * Find the first available hole which can be used as a top-level.
2202 */
2203 int
2204 find_vdev_hole(spa_t *spa)
2205 {
2206 vdev_t *rvd = spa->spa_root_vdev;
2207 int c;
2208
2209 ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV);
2210
2211 for (c = 0; c < rvd->vdev_children; c++) {
2212 vdev_t *cvd = rvd->vdev_child[c];
2213
2214 if (cvd->vdev_ishole)
2215 break;
2216 }
2217 return (c);
2218 }
2219
2220 /*
2221 * Verify that vdev_add() works as expected.
2222 */
2223 /* ARGSUSED */
2224 void
2225 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
2226 {
2227 ztest_shared_t *zs = ztest_shared;
2228 spa_t *spa = zs->zs_spa;
2229 uint64_t leaves;
2230 uint64_t guid;
2231 nvlist_t *nvroot;
2232 int error;
2233
2234 mutex_enter(&zs->zs_vdev_lock);
2235 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * zopt_raidz;
2236
2237 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2238
2239 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves;
2240
2241 /*
2242 * If we have slogs then remove them 1/4 of the time.
2243 */
2244 if (spa_has_slogs(spa) && ztest_random(4) == 0) {
2245 /*
2246 * Grab the guid from the head of the log class rotor.
2247 */
2248 guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid;
2249
2250 spa_config_exit(spa, SCL_VDEV, FTAG);
2251
2252 /*
2253 * We have to grab the zs_name_lock as writer to
2254 * prevent a race between removing a slog (dmu_objset_find)
2255 * and destroying a dataset. Removing the slog will
2256 * grab a reference on the dataset which may cause
2257 * dmu_objset_destroy() to fail with EBUSY thus
2258 * leaving the dataset in an inconsistent state.
2259 */
2260 rw_enter(&ztest_shared->zs_name_lock, RW_WRITER);
2261 error = spa_vdev_remove(spa, guid, B_FALSE);
2262 rw_exit(&ztest_shared->zs_name_lock);
2263
2264 if (error && error != EEXIST)
2265 fatal(0, "spa_vdev_remove() = %d", error);
2266 } else {
2267 spa_config_exit(spa, SCL_VDEV, FTAG);
2268
2269 /*
2270 * Make 1/4 of the devices be log devices.
2271 */
2272 nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0,
2273 ztest_random(4) == 0, zopt_raidz, zs->zs_mirrors, 1);
2274
2275 error = spa_vdev_add(spa, nvroot);
2276 nvlist_free(nvroot);
2277
2278 if (error == ENOSPC)
2279 ztest_record_enospc("spa_vdev_add");
2280 else if (error != 0)
2281 fatal(0, "spa_vdev_add() = %d", error);
2282 }
2283
2284 mutex_exit(&ztest_shared->zs_vdev_lock);
2285 }
2286
2287 /*
2288 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
2289 */
2290 /* ARGSUSED */
2291 void
2292 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
2293 {
2294 ztest_shared_t *zs = ztest_shared;
2295 spa_t *spa = zs->zs_spa;
2296 vdev_t *rvd = spa->spa_root_vdev;
2297 spa_aux_vdev_t *sav;
2298 char *aux;
2299 char *path;
2300 uint64_t guid = 0;
2301 int error;
2302
2303 path = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
2304
2305 if (ztest_random(2) == 0) {
2306 sav = &spa->spa_spares;
2307 aux = ZPOOL_CONFIG_SPARES;
2308 } else {
2309 sav = &spa->spa_l2cache;
2310 aux = ZPOOL_CONFIG_L2CACHE;
2311 }
2312
2313 mutex_enter(&zs->zs_vdev_lock);
2314
2315 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2316
2317 if (sav->sav_count != 0 && ztest_random(4) == 0) {
2318 /*
2319 * Pick a random device to remove.
2320 */
2321 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid;
2322 } else {
2323 /*
2324 * Find an unused device we can add.
2325 */
2326 zs->zs_vdev_aux = 0;
2327 for (;;) {
2328 int c;
2329 (void) sprintf(path, ztest_aux_template, zopt_dir,
2330 zopt_pool, aux, zs->zs_vdev_aux);
2331 for (c = 0; c < sav->sav_count; c++)
2332 if (strcmp(sav->sav_vdevs[c]->vdev_path,
2333 path) == 0)
2334 break;
2335 if (c == sav->sav_count &&
2336 vdev_lookup_by_path(rvd, path) == NULL)
2337 break;
2338 zs->zs_vdev_aux++;
2339 }
2340 }
2341
2342 spa_config_exit(spa, SCL_VDEV, FTAG);
2343
2344 if (guid == 0) {
2345 /*
2346 * Add a new device.
2347 */
2348 nvlist_t *nvroot = make_vdev_root(NULL, aux,
2349 (zopt_vdev_size * 5) / 4, 0, 0, 0, 0, 1);
2350 error = spa_vdev_add(spa, nvroot);
2351 if (error != 0)
2352 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error);
2353 nvlist_free(nvroot);
2354 } else {
2355 /*
2356 * Remove an existing device. Sometimes, dirty its
2357 * vdev state first to make sure we handle removal
2358 * of devices that have pending state changes.
2359 */
2360 if (ztest_random(2) == 0)
2361 (void) vdev_online(spa, guid, 0, NULL);
2362
2363 error = spa_vdev_remove(spa, guid, B_FALSE);
2364 if (error != 0 && error != EBUSY)
2365 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error);
2366 }
2367
2368 mutex_exit(&zs->zs_vdev_lock);
2369
2370 umem_free(path, MAXPATHLEN);
2371 }
2372
2373 /*
2374 * split a pool if it has mirror tlvdevs
2375 */
2376 /* ARGSUSED */
2377 void
2378 ztest_split_pool(ztest_ds_t *zd, uint64_t id)
2379 {
2380 ztest_shared_t *zs = ztest_shared;
2381 spa_t *spa = zs->zs_spa;
2382 vdev_t *rvd = spa->spa_root_vdev;
2383 nvlist_t *tree, **child, *config, *split, **schild;
2384 uint_t c, children, schildren = 0, lastlogid = 0;
2385 int error = 0;
2386
2387 mutex_enter(&zs->zs_vdev_lock);
2388
2389 /* ensure we have a useable config; mirrors of raidz aren't supported */
2390 if (zs->zs_mirrors < 3 || zopt_raidz > 1) {
2391 mutex_exit(&zs->zs_vdev_lock);
2392 return;
2393 }
2394
2395 /* clean up the old pool, if any */
2396 (void) spa_destroy("splitp");
2397
2398 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2399
2400 /* generate a config from the existing config */
2401 mutex_enter(&spa->spa_props_lock);
2402 VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE,
2403 &tree) == 0);
2404 mutex_exit(&spa->spa_props_lock);
2405
2406 VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child,
2407 &children) == 0);
2408
2409 schild = malloc(rvd->vdev_children * sizeof (nvlist_t *));
2410 for (c = 0; c < children; c++) {
2411 vdev_t *tvd = rvd->vdev_child[c];
2412 nvlist_t **mchild;
2413 uint_t mchildren;
2414
2415 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
2416 VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME,
2417 0) == 0);
2418 VERIFY(nvlist_add_string(schild[schildren],
2419 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0);
2420 VERIFY(nvlist_add_uint64(schild[schildren],
2421 ZPOOL_CONFIG_IS_HOLE, 1) == 0);
2422 if (lastlogid == 0)
2423 lastlogid = schildren;
2424 ++schildren;
2425 continue;
2426 }
2427 lastlogid = 0;
2428 VERIFY(nvlist_lookup_nvlist_array(child[c],
2429 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0);
2430 VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0);
2431 }
2432
2433 /* OK, create a config that can be used to split */
2434 VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0);
2435 VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE,
2436 VDEV_TYPE_ROOT) == 0);
2437 VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild,
2438 lastlogid != 0 ? lastlogid : schildren) == 0);
2439
2440 VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0);
2441 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0);
2442
2443 for (c = 0; c < schildren; c++)
2444 nvlist_free(schild[c]);
2445 free(schild);
2446 nvlist_free(split);
2447
2448 spa_config_exit(spa, SCL_VDEV, FTAG);
2449
2450 (void) rw_enter(&zs->zs_name_lock, RW_WRITER);
2451 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
2452 (void) rw_exit(&zs->zs_name_lock);
2453
2454 nvlist_free(config);
2455
2456 if (error == 0) {
2457 (void) printf("successful split - results:\n");
2458 mutex_enter(&spa_namespace_lock);
2459 show_pool_stats(spa);
2460 show_pool_stats(spa_lookup("splitp"));
2461 mutex_exit(&spa_namespace_lock);
2462 ++zs->zs_splits;
2463 --zs->zs_mirrors;
2464 }
2465 mutex_exit(&zs->zs_vdev_lock);
2466
2467 }
2468
2469 /*
2470 * Verify that we can attach and detach devices.
2471 */
2472 /* ARGSUSED */
2473 void
2474 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
2475 {
2476 ztest_shared_t *zs = ztest_shared;
2477 spa_t *spa = zs->zs_spa;
2478 spa_aux_vdev_t *sav = &spa->spa_spares;
2479 vdev_t *rvd = spa->spa_root_vdev;
2480 vdev_t *oldvd, *newvd, *pvd;
2481 nvlist_t *root;
2482 uint64_t leaves;
2483 uint64_t leaf, top;
2484 uint64_t ashift = ztest_get_ashift();
2485 uint64_t oldguid, pguid;
2486 size_t oldsize, newsize;
2487 char *oldpath, *newpath;
2488 int replacing;
2489 int oldvd_has_siblings = B_FALSE;
2490 int newvd_is_spare = B_FALSE;
2491 int oldvd_is_log;
2492 int error, expected_error;
2493
2494 oldpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
2495 newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
2496
2497 mutex_enter(&zs->zs_vdev_lock);
2498 leaves = MAX(zs->zs_mirrors, 1) * zopt_raidz;
2499
2500 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2501
2502 /*
2503 * Decide whether to do an attach or a replace.
2504 */
2505 replacing = ztest_random(2);
2506
2507 /*
2508 * Pick a random top-level vdev.
2509 */
2510 top = ztest_random_vdev_top(spa, B_TRUE);
2511
2512 /*
2513 * Pick a random leaf within it.
2514 */
2515 leaf = ztest_random(leaves);
2516
2517 /*
2518 * Locate this vdev.
2519 */
2520 oldvd = rvd->vdev_child[top];
2521 if (zs->zs_mirrors >= 1) {
2522 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops);
2523 ASSERT(oldvd->vdev_children >= zs->zs_mirrors);
2524 oldvd = oldvd->vdev_child[leaf / zopt_raidz];
2525 }
2526 if (zopt_raidz > 1) {
2527 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops);
2528 ASSERT(oldvd->vdev_children == zopt_raidz);
2529 oldvd = oldvd->vdev_child[leaf % zopt_raidz];
2530 }
2531
2532 /*
2533 * If we're already doing an attach or replace, oldvd may be a
2534 * mirror vdev -- in which case, pick a random child.
2535 */
2536 while (oldvd->vdev_children != 0) {
2537 oldvd_has_siblings = B_TRUE;
2538 ASSERT(oldvd->vdev_children >= 2);
2539 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
2540 }
2541
2542 oldguid = oldvd->vdev_guid;
2543 oldsize = vdev_get_min_asize(oldvd);
2544 oldvd_is_log = oldvd->vdev_top->vdev_islog;
2545 (void) strcpy(oldpath, oldvd->vdev_path);
2546 pvd = oldvd->vdev_parent;
2547 pguid = pvd->vdev_guid;
2548
2549 /*
2550 * If oldvd has siblings, then half of the time, detach it.
2551 */
2552 if (oldvd_has_siblings && ztest_random(2) == 0) {
2553 spa_config_exit(spa, SCL_VDEV, FTAG);
2554 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
2555 if (error != 0 && error != ENODEV && error != EBUSY &&
2556 error != ENOTSUP)
2557 fatal(0, "detach (%s) returned %d", oldpath, error);
2558 goto out;
2559 }
2560
2561 /*
2562 * For the new vdev, choose with equal probability between the two
2563 * standard paths (ending in either 'a' or 'b') or a random hot spare.
2564 */
2565 if (sav->sav_count != 0 && ztest_random(3) == 0) {
2566 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
2567 newvd_is_spare = B_TRUE;
2568 (void) strcpy(newpath, newvd->vdev_path);
2569 } else {
2570 (void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
2571 zopt_dir, zopt_pool, top * leaves + leaf);
2572 if (ztest_random(2) == 0)
2573 newpath[strlen(newpath) - 1] = 'b';
2574 newvd = vdev_lookup_by_path(rvd, newpath);
2575 }
2576
2577 if (newvd) {
2578 newsize = vdev_get_min_asize(newvd);
2579 } else {
2580 /*
2581 * Make newsize a little bigger or smaller than oldsize.
2582 * If it's smaller, the attach should fail.
2583 * If it's larger, and we're doing a replace,
2584 * we should get dynamic LUN growth when we're done.
2585 */
2586 newsize = 10 * oldsize / (9 + ztest_random(3));
2587 }
2588
2589 /*
2590 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
2591 * unless it's a replace; in that case any non-replacing parent is OK.
2592 *
2593 * If newvd is already part of the pool, it should fail with EBUSY.
2594 *
2595 * If newvd is too small, it should fail with EOVERFLOW.
2596 */
2597 if (pvd->vdev_ops != &vdev_mirror_ops &&
2598 pvd->vdev_ops != &vdev_root_ops && (!replacing ||
2599 pvd->vdev_ops == &vdev_replacing_ops ||
2600 pvd->vdev_ops == &vdev_spare_ops))
2601 expected_error = ENOTSUP;
2602 else if (newvd_is_spare && (!replacing || oldvd_is_log))
2603 expected_error = ENOTSUP;
2604 else if (newvd == oldvd)
2605 expected_error = replacing ? 0 : EBUSY;
2606 else if (vdev_lookup_by_path(rvd, newpath) != NULL)
2607 expected_error = EBUSY;
2608 else if (newsize < oldsize)
2609 expected_error = EOVERFLOW;
2610 else if (ashift > oldvd->vdev_top->vdev_ashift)
2611 expected_error = EDOM;
2612 else
2613 expected_error = 0;
2614
2615 spa_config_exit(spa, SCL_VDEV, FTAG);
2616
2617 /*
2618 * Build the nvlist describing newpath.
2619 */
2620 root = make_vdev_root(newpath, NULL, newvd == NULL ? newsize : 0,
2621 ashift, 0, 0, 0, 1);
2622
2623 error = spa_vdev_attach(spa, oldguid, root, replacing);
2624
2625 nvlist_free(root);
2626
2627 /*
2628 * If our parent was the replacing vdev, but the replace completed,
2629 * then instead of failing with ENOTSUP we may either succeed,
2630 * fail with ENODEV, or fail with EOVERFLOW.
2631 */
2632 if (expected_error == ENOTSUP &&
2633 (error == 0 || error == ENODEV || error == EOVERFLOW))
2634 expected_error = error;
2635
2636 /*
2637 * If someone grew the LUN, the replacement may be too small.
2638 */
2639 if (error == EOVERFLOW || error == EBUSY)
2640 expected_error = error;
2641
2642 /* XXX workaround 6690467 */
2643 if (error != expected_error && expected_error != EBUSY) {
2644 fatal(0, "attach (%s %llu, %s %llu, %d) "
2645 "returned %d, expected %d",
2646 oldpath, (longlong_t)oldsize, newpath,
2647 (longlong_t)newsize, replacing, error, expected_error);
2648 }
2649 out:
2650 mutex_exit(&zs->zs_vdev_lock);
2651
2652 umem_free(oldpath, MAXPATHLEN);
2653 umem_free(newpath, MAXPATHLEN);
2654 }
2655
2656 /*
2657 * Callback function which expands the physical size of the vdev.
2658 */
2659 vdev_t *
2660 grow_vdev(vdev_t *vd, void *arg)
2661 {
2662 ASSERTV(spa_t *spa = vd->vdev_spa);
2663 size_t *newsize = arg;
2664 size_t fsize;
2665 int fd;
2666
2667 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
2668 ASSERT(vd->vdev_ops->vdev_op_leaf);
2669
2670 if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
2671 return (vd);
2672
2673 fsize = lseek(fd, 0, SEEK_END);
2674 VERIFY(ftruncate(fd, *newsize) == 0);
2675
2676 if (zopt_verbose >= 6) {
2677 (void) printf("%s grew from %lu to %lu bytes\n",
2678 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
2679 }
2680 (void) close(fd);
2681 return (NULL);
2682 }
2683
2684 /*
2685 * Callback function which expands a given vdev by calling vdev_online().
2686 */
2687 /* ARGSUSED */
2688 vdev_t *
2689 online_vdev(vdev_t *vd, void *arg)
2690 {
2691 spa_t *spa = vd->vdev_spa;
2692 vdev_t *tvd = vd->vdev_top;
2693 uint64_t guid = vd->vdev_guid;
2694 uint64_t generation = spa->spa_config_generation + 1;
2695 vdev_state_t newstate = VDEV_STATE_UNKNOWN;
2696 int error;
2697
2698 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
2699 ASSERT(vd->vdev_ops->vdev_op_leaf);
2700
2701 /* Calling vdev_online will initialize the new metaslabs */
2702 spa_config_exit(spa, SCL_STATE, spa);
2703 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
2704 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
2705
2706 /*
2707 * If vdev_online returned an error or the underlying vdev_open
2708 * failed then we abort the expand. The only way to know that
2709 * vdev_open fails is by checking the returned newstate.
2710 */
2711 if (error || newstate != VDEV_STATE_HEALTHY) {
2712 if (zopt_verbose >= 5) {
2713 (void) printf("Unable to expand vdev, state %llu, "
2714 "error %d\n", (u_longlong_t)newstate, error);
2715 }
2716 return (vd);
2717 }
2718 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
2719
2720 /*
2721 * Since we dropped the lock we need to ensure that we're
2722 * still talking to the original vdev. It's possible this
2723 * vdev may have been detached/replaced while we were
2724 * trying to online it.
2725 */
2726 if (generation != spa->spa_config_generation) {
2727 if (zopt_verbose >= 5) {
2728 (void) printf("vdev configuration has changed, "
2729 "guid %llu, state %llu, expected gen %llu, "
2730 "got gen %llu\n",
2731 (u_longlong_t)guid,
2732 (u_longlong_t)tvd->vdev_state,
2733 (u_longlong_t)generation,
2734 (u_longlong_t)spa->spa_config_generation);
2735 }
2736 return (vd);
2737 }
2738 return (NULL);
2739 }
2740
2741 /*
2742 * Traverse the vdev tree calling the supplied function.
2743 * We continue to walk the tree until we either have walked all
2744 * children or we receive a non-NULL return from the callback.
2745 * If a NULL callback is passed, then we just return back the first
2746 * leaf vdev we encounter.
2747 */
2748 vdev_t *
2749 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
2750 {
2751 uint_t c;
2752
2753 if (vd->vdev_ops->vdev_op_leaf) {
2754 if (func == NULL)
2755 return (vd);
2756 else
2757 return (func(vd, arg));
2758 }
2759
2760 for (c = 0; c < vd->vdev_children; c++) {
2761 vdev_t *cvd = vd->vdev_child[c];
2762 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
2763 return (cvd);
2764 }
2765 return (NULL);
2766 }
2767
2768 /*
2769 * Verify that dynamic LUN growth works as expected.
2770 */
2771 /* ARGSUSED */
2772 void
2773 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
2774 {
2775 ztest_shared_t *zs = ztest_shared;
2776 spa_t *spa = zs->zs_spa;
2777 vdev_t *vd, *tvd;
2778 metaslab_class_t *mc;
2779 metaslab_group_t *mg;
2780 size_t psize, newsize;
2781 uint64_t top;
2782 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
2783
2784 mutex_enter(&zs->zs_vdev_lock);
2785 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
2786
2787 top = ztest_random_vdev_top(spa, B_TRUE);
2788
2789 tvd = spa->spa_root_vdev->vdev_child[top];
2790 mg = tvd->vdev_mg;
2791 mc = mg->mg_class;
2792 old_ms_count = tvd->vdev_ms_count;
2793 old_class_space = metaslab_class_get_space(mc);
2794
2795 /*
2796 * Determine the size of the first leaf vdev associated with
2797 * our top-level device.
2798 */
2799 vd = vdev_walk_tree(tvd, NULL, NULL);
2800 ASSERT3P(vd, !=, NULL);
2801 ASSERT(vd->vdev_ops->vdev_op_leaf);
2802
2803 psize = vd->vdev_psize;
2804
2805 /*
2806 * We only try to expand the vdev if it's healthy, less than 4x its
2807 * original size, and it has a valid psize.
2808 */
2809 if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
2810 psize == 0 || psize >= 4 * zopt_vdev_size) {
2811 spa_config_exit(spa, SCL_STATE, spa);
2812 mutex_exit(&zs->zs_vdev_lock);
2813 return;
2814 }
2815 ASSERT(psize > 0);
2816 newsize = psize + psize / 8;
2817 ASSERT3U(newsize, >, psize);
2818
2819 if (zopt_verbose >= 6) {
2820 (void) printf("Expanding LUN %s from %lu to %lu\n",
2821 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
2822 }
2823
2824 /*
2825 * Growing the vdev is a two step process:
2826 * 1). expand the physical size (i.e. relabel)
2827 * 2). online the vdev to create the new metaslabs
2828 */
2829 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
2830 vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
2831 tvd->vdev_state != VDEV_STATE_HEALTHY) {
2832 if (zopt_verbose >= 5) {
2833 (void) printf("Could not expand LUN because "
2834 "the vdev configuration changed.\n");
2835 }
2836 spa_config_exit(spa, SCL_STATE, spa);
2837 mutex_exit(&zs->zs_vdev_lock);
2838 return;
2839 }
2840
2841 spa_config_exit(spa, SCL_STATE, spa);
2842
2843 /*
2844 * Expanding the LUN will update the config asynchronously,
2845 * thus we must wait for the async thread to complete any
2846 * pending tasks before proceeding.
2847 */
2848 for (;;) {
2849 boolean_t done;
2850 mutex_enter(&spa->spa_async_lock);
2851 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
2852 mutex_exit(&spa->spa_async_lock);
2853 if (done)
2854 break;
2855 txg_wait_synced(spa_get_dsl(spa), 0);
2856 (void) poll(NULL, 0, 100);
2857 }
2858
2859 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
2860
2861 tvd = spa->spa_root_vdev->vdev_child[top];
2862 new_ms_count = tvd->vdev_ms_count;
2863 new_class_space = metaslab_class_get_space(mc);
2864
2865 if (tvd->vdev_mg != mg || mg->mg_class != mc) {
2866 if (zopt_verbose >= 5) {
2867 (void) printf("Could not verify LUN expansion due to "
2868 "intervening vdev offline or remove.\n");
2869 }
2870 spa_config_exit(spa, SCL_STATE, spa);
2871 mutex_exit(&zs->zs_vdev_lock);
2872 return;
2873 }
2874
2875 /*
2876 * Make sure we were able to grow the vdev.
2877 */
2878 if (new_ms_count <= old_ms_count)
2879 fatal(0, "LUN expansion failed: ms_count %llu <= %llu\n",
2880 old_ms_count, new_ms_count);
2881
2882 /*
2883 * Make sure we were able to grow the pool.
2884 */
2885 if (new_class_space <= old_class_space)
2886 fatal(0, "LUN expansion failed: class_space %llu <= %llu\n",
2887 old_class_space, new_class_space);
2888
2889 if (zopt_verbose >= 5) {
2890 char oldnumbuf[6], newnumbuf[6];
2891
2892 nicenum(old_class_space, oldnumbuf);
2893 nicenum(new_class_space, newnumbuf);
2894 (void) printf("%s grew from %s to %s\n",
2895 spa->spa_name, oldnumbuf, newnumbuf);
2896 }
2897
2898 spa_config_exit(spa, SCL_STATE, spa);
2899 mutex_exit(&zs->zs_vdev_lock);
2900 }
2901
2902 /*
2903 * Verify that dmu_objset_{create,destroy,open,close} work as expected.
2904 */
2905 /* ARGSUSED */
2906 static void
2907 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
2908 {
2909 /*
2910 * Create the objects common to all ztest datasets.
2911 */
2912 VERIFY(zap_create_claim(os, ZTEST_DIROBJ,
2913 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0);
2914 }
2915
2916 static int
2917 ztest_dataset_create(char *dsname)
2918 {
2919 uint64_t zilset = ztest_random(100);
2920 int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0,
2921 ztest_objset_create_cb, NULL);
2922
2923 if (err || zilset < 80)
2924 return (err);
2925
2926 if (zopt_verbose >= 5)
2927 (void) printf("Setting dataset %s to sync always\n", dsname);
2928 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
2929 ZFS_SYNC_ALWAYS, B_FALSE));
2930 }
2931
2932 /* ARGSUSED */
2933 static int
2934 ztest_objset_destroy_cb(const char *name, void *arg)
2935 {
2936 objset_t *os;
2937 dmu_object_info_t doi;
2938 int error;
2939
2940 /*
2941 * Verify that the dataset contains a directory object.
2942 */
2943 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os));
2944 error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
2945 if (error != ENOENT) {
2946 /* We could have crashed in the middle of destroying it */
2947 ASSERT3U(error, ==, 0);
2948 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
2949 ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
2950 }
2951 dmu_objset_rele(os, FTAG);
2952
2953 /*
2954 * Destroy the dataset.
2955 */
2956 VERIFY3U(0, ==, dmu_objset_destroy(name, B_FALSE));
2957 return (0);
2958 }
2959
2960 static boolean_t
2961 ztest_snapshot_create(char *osname, uint64_t id)
2962 {
2963 char snapname[MAXNAMELEN];
2964 int error;
2965
2966 (void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname,
2967 (u_longlong_t)id);
2968
2969 error = dmu_objset_snapshot(osname, strchr(snapname, '@') + 1,
2970 NULL, NULL, B_FALSE, B_FALSE, -1);
2971 if (error == ENOSPC) {
2972 ztest_record_enospc(FTAG);
2973 return (B_FALSE);
2974 }
2975 if (error != 0 && error != EEXIST)
2976 fatal(0, "ztest_snapshot_create(%s) = %d", snapname, error);
2977 return (B_TRUE);
2978 }
2979
2980 static boolean_t
2981 ztest_snapshot_destroy(char *osname, uint64_t id)
2982 {
2983 char snapname[MAXNAMELEN];
2984 int error;
2985
2986 (void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname,
2987 (u_longlong_t)id);
2988
2989 error = dmu_objset_destroy(snapname, B_FALSE);
2990 if (error != 0 && error != ENOENT)
2991 fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error);
2992 return (B_TRUE);
2993 }
2994
2995 /* ARGSUSED */
2996 void
2997 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
2998 {
2999 ztest_shared_t *zs = ztest_shared;
3000 ztest_ds_t *zdtmp;
3001 int iters;
3002 int error;
3003 objset_t *os, *os2;
3004 char *name;
3005 zilog_t *zilog;
3006 int i;
3007
3008 zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
3009 name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3010
3011 (void) rw_enter(&zs->zs_name_lock, RW_READER);
3012
3013 (void) snprintf(name, MAXNAMELEN, "%s/temp_%llu",
3014 zs->zs_pool, (u_longlong_t)id);
3015
3016 /*
3017 * If this dataset exists from a previous run, process its replay log
3018 * half of the time. If we don't replay it, then dmu_objset_destroy()
3019 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
3020 */
3021 if (ztest_random(2) == 0 &&
3022 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) {
3023 ztest_zd_init(zdtmp, os);
3024 zil_replay(os, zdtmp, ztest_replay_vector);
3025 ztest_zd_fini(zdtmp);
3026 dmu_objset_disown(os, FTAG);
3027 }
3028
3029 /*
3030 * There may be an old instance of the dataset we're about to
3031 * create lying around from a previous run. If so, destroy it
3032 * and all of its snapshots.
3033 */
3034 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
3035 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
3036
3037 /*
3038 * Verify that the destroyed dataset is no longer in the namespace.
3039 */
3040 VERIFY3U(ENOENT, ==, dmu_objset_hold(name, FTAG, &os));
3041
3042 /*
3043 * Verify that we can create a new dataset.
3044 */
3045 error = ztest_dataset_create(name);
3046 if (error) {
3047 if (error == ENOSPC) {
3048 ztest_record_enospc(FTAG);
3049 goto out;
3050 }
3051 fatal(0, "dmu_objset_create(%s) = %d", name, error);
3052 }
3053
3054 VERIFY3U(0, ==,
3055 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os));
3056
3057 ztest_zd_init(zdtmp, os);
3058
3059 /*
3060 * Open the intent log for it.
3061 */
3062 zilog = zil_open(os, ztest_get_data);
3063
3064 /*
3065 * Put some objects in there, do a little I/O to them,
3066 * and randomly take a couple of snapshots along the way.
3067 */
3068 iters = ztest_random(5);
3069 for (i = 0; i < iters; i++) {
3070 ztest_dmu_object_alloc_free(zdtmp, id);
3071 if (ztest_random(iters) == 0)
3072 (void) ztest_snapshot_create(name, i);
3073 }
3074
3075 /*
3076 * Verify that we cannot create an existing dataset.
3077 */
3078 VERIFY3U(EEXIST, ==,
3079 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL));
3080
3081 /*
3082 * Verify that we can hold an objset that is also owned.
3083 */
3084 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2));
3085 dmu_objset_rele(os2, FTAG);
3086
3087 /*
3088 * Verify that we cannot own an objset that is already owned.
3089 */
3090 VERIFY3U(EBUSY, ==,
3091 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2));
3092
3093 zil_close(zilog);
3094 dmu_objset_disown(os, FTAG);
3095 ztest_zd_fini(zdtmp);
3096 out:
3097 (void) rw_exit(&zs->zs_name_lock);
3098
3099 umem_free(name, MAXNAMELEN);
3100 umem_free(zdtmp, sizeof (ztest_ds_t));
3101 }
3102
3103 /*
3104 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
3105 */
3106 void
3107 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
3108 {
3109 ztest_shared_t *zs = ztest_shared;
3110
3111 (void) rw_enter(&zs->zs_name_lock, RW_READER);
3112 (void) ztest_snapshot_destroy(zd->zd_name, id);
3113 (void) ztest_snapshot_create(zd->zd_name, id);
3114 (void) rw_exit(&zs->zs_name_lock);
3115 }
3116
3117 /*
3118 * Cleanup non-standard snapshots and clones.
3119 */
3120 void
3121 ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
3122 {
3123 char *snap1name;
3124 char *clone1name;
3125 char *snap2name;
3126 char *clone2name;
3127 char *snap3name;
3128 int error;
3129
3130 snap1name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3131 clone1name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3132 snap2name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3133 clone2name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3134 snap3name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3135
3136 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu",
3137 osname, (u_longlong_t)id);
3138 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu",
3139 osname, (u_longlong_t)id);
3140 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu",
3141 clone1name, (u_longlong_t)id);
3142 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu",
3143 osname, (u_longlong_t)id);
3144 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu",
3145 clone1name, (u_longlong_t)id);
3146
3147 error = dmu_objset_destroy(clone2name, B_FALSE);
3148 if (error && error != ENOENT)
3149 fatal(0, "dmu_objset_destroy(%s) = %d", clone2name, error);
3150 error = dmu_objset_destroy(snap3name, B_FALSE);
3151 if (error && error != ENOENT)
3152 fatal(0, "dmu_objset_destroy(%s) = %d", snap3name, error);
3153 error = dmu_objset_destroy(snap2name, B_FALSE);
3154 if (error && error != ENOENT)
3155 fatal(0, "dmu_objset_destroy(%s) = %d", snap2name, error);
3156 error = dmu_objset_destroy(clone1name, B_FALSE);
3157 if (error && error != ENOENT)
3158 fatal(0, "dmu_objset_destroy(%s) = %d", clone1name, error);
3159 error = dmu_objset_destroy(snap1name, B_FALSE);
3160 if (error && error != ENOENT)
3161 fatal(0, "dmu_objset_destroy(%s) = %d", snap1name, error);
3162
3163 umem_free(snap1name, MAXNAMELEN);
3164 umem_free(clone1name, MAXNAMELEN);
3165 umem_free(snap2name, MAXNAMELEN);
3166 umem_free(clone2name, MAXNAMELEN);
3167 umem_free(snap3name, MAXNAMELEN);
3168 }
3169
3170 /*
3171 * Verify dsl_dataset_promote handles EBUSY
3172 */
3173 void
3174 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
3175 {
3176 ztest_shared_t *zs = ztest_shared;
3177 objset_t *clone;
3178 dsl_dataset_t *ds;
3179 char *snap1name;
3180 char *clone1name;
3181 char *snap2name;
3182 char *clone2name;
3183 char *snap3name;
3184 char *osname = zd->zd_name;
3185 int error;
3186
3187 snap1name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3188 clone1name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3189 snap2name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3190 clone2name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3191 snap3name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3192
3193 (void) rw_enter(&zs->zs_name_lock, RW_READER);
3194
3195 ztest_dsl_dataset_cleanup(osname, id);
3196
3197 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu",
3198 osname, (u_longlong_t)id);
3199 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu",
3200 osname, (u_longlong_t)id);
3201 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu",
3202 clone1name, (u_longlong_t)id);
3203 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu",
3204 osname, (u_longlong_t)id);
3205 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu",
3206 clone1name, (u_longlong_t)id);
3207
3208 error = dmu_objset_snapshot(osname, strchr(snap1name, '@')+1,
3209 NULL, NULL, B_FALSE, B_FALSE, -1);
3210 if (error && error != EEXIST) {
3211 if (error == ENOSPC) {
3212 ztest_record_enospc(FTAG);
3213 goto out;
3214 }
3215 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error);
3216 }
3217
3218 error = dmu_objset_hold(snap1name, FTAG, &clone);
3219 if (error)
3220 fatal(0, "dmu_open_snapshot(%s) = %d", snap1name, error);
3221
3222 error = dmu_objset_clone(clone1name, dmu_objset_ds(clone), 0);
3223 dmu_objset_rele(clone, FTAG);
3224 if (error) {
3225 if (error == ENOSPC) {
3226 ztest_record_enospc(FTAG);
3227 goto out;
3228 }
3229 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error);
3230 }
3231
3232 error = dmu_objset_snapshot(clone1name, strchr(snap2name, '@')+1,
3233 NULL, NULL, B_FALSE, B_FALSE, -1);
3234 if (error && error != EEXIST) {
3235 if (error == ENOSPC) {
3236 ztest_record_enospc(FTAG);
3237 goto out;
3238 }
3239 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error);
3240 }
3241
3242 error = dmu_objset_snapshot(clone1name, strchr(snap3name, '@')+1,
3243 NULL, NULL, B_FALSE, B_FALSE, -1);
3244 if (error && error != EEXIST) {
3245 if (error == ENOSPC) {
3246 ztest_record_enospc(FTAG);
3247 goto out;
3248 }
3249 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error);
3250 }
3251
3252 error = dmu_objset_hold(snap3name, FTAG, &clone);
3253 if (error)
3254 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error);
3255
3256 error = dmu_objset_clone(clone2name, dmu_objset_ds(clone), 0);
3257 dmu_objset_rele(clone, FTAG);
3258 if (error) {
3259 if (error == ENOSPC) {
3260 ztest_record_enospc(FTAG);
3261 goto out;
3262 }
3263 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error);
3264 }
3265
3266 error = dsl_dataset_own(snap2name, B_FALSE, FTAG, &ds);
3267 if (error)
3268 fatal(0, "dsl_dataset_own(%s) = %d", snap2name, error);
3269 error = dsl_dataset_promote(clone2name, NULL);
3270 if (error != EBUSY)
3271 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name,
3272 error);
3273 dsl_dataset_disown(ds, FTAG);
3274
3275 out:
3276 ztest_dsl_dataset_cleanup(osname, id);
3277
3278 (void) rw_exit(&zs->zs_name_lock);
3279
3280 umem_free(snap1name, MAXNAMELEN);
3281 umem_free(clone1name, MAXNAMELEN);
3282 umem_free(snap2name, MAXNAMELEN);
3283 umem_free(clone2name, MAXNAMELEN);
3284 umem_free(snap3name, MAXNAMELEN);
3285 }
3286
3287 #undef OD_ARRAY_SIZE
3288 #define OD_ARRAY_SIZE 4
3289
3290 /*
3291 * Verify that dmu_object_{alloc,free} work as expected.
3292 */
3293 void
3294 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
3295 {
3296 ztest_od_t *od;
3297 int batchsize;
3298 int size;
3299 int b;
3300
3301 size = sizeof(ztest_od_t) * OD_ARRAY_SIZE;
3302 od = umem_alloc(size, UMEM_NOFAIL);
3303 batchsize = OD_ARRAY_SIZE;
3304
3305 for (b = 0; b < batchsize; b++)
3306 ztest_od_init(od + b, id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0);
3307
3308 /*
3309 * Destroy the previous batch of objects, create a new batch,
3310 * and do some I/O on the new objects.
3311 */
3312 if (ztest_object_init(zd, od, size, B_TRUE) != 0)
3313 return;
3314
3315 while (ztest_random(4 * batchsize) != 0)
3316 ztest_io(zd, od[ztest_random(batchsize)].od_object,
3317 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
3318
3319 umem_free(od, size);
3320 }
3321
3322 #undef OD_ARRAY_SIZE
3323 #define OD_ARRAY_SIZE 2
3324
3325 /*
3326 * Verify that dmu_{read,write} work as expected.
3327 */
3328 void
3329 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
3330 {
3331 int size;
3332 ztest_od_t *od;
3333
3334 objset_t *os = zd->zd_os;
3335 size = sizeof(ztest_od_t) * OD_ARRAY_SIZE;
3336 od = umem_alloc(size, UMEM_NOFAIL);
3337 dmu_tx_t *tx;
3338 int i, freeit, error;
3339 uint64_t n, s, txg;
3340 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
3341 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
3342 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
3343 uint64_t regions = 997;
3344 uint64_t stride = 123456789ULL;
3345 uint64_t width = 40;
3346 int free_percent = 5;
3347
3348 /*
3349 * This test uses two objects, packobj and bigobj, that are always
3350 * updated together (i.e. in the same tx) so that their contents are
3351 * in sync and can be compared. Their contents relate to each other
3352 * in a simple way: packobj is a dense array of 'bufwad' structures,
3353 * while bigobj is a sparse array of the same bufwads. Specifically,
3354 * for any index n, there are three bufwads that should be identical:
3355 *
3356 * packobj, at offset n * sizeof (bufwad_t)
3357 * bigobj, at the head of the nth chunk
3358 * bigobj, at the tail of the nth chunk
3359 *
3360 * The chunk size is arbitrary. It doesn't have to be a power of two,
3361 * and it doesn't have any relation to the object blocksize.
3362 * The only requirement is that it can hold at least two bufwads.
3363 *
3364 * Normally, we write the bufwad to each of these locations.
3365 * However, free_percent of the time we instead write zeroes to
3366 * packobj and perform a dmu_free_range() on bigobj. By comparing
3367 * bigobj to packobj, we can verify that the DMU is correctly
3368 * tracking which parts of an object are allocated and free,
3369 * and that the contents of the allocated blocks are correct.
3370 */
3371
3372 /*
3373 * Read the directory info. If it's the first time, set things up.
3374 */
3375 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize);
3376 ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize);
3377
3378 if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
3379 umem_free(od, size);
3380 return;
3381 }
3382
3383 bigobj = od[0].od_object;
3384 packobj = od[1].od_object;
3385 chunksize = od[0].od_gen;
3386 ASSERT(chunksize == od[1].od_gen);
3387
3388 /*
3389 * Prefetch a random chunk of the big object.
3390 * Our aim here is to get some async reads in flight
3391 * for blocks that we may free below; the DMU should
3392 * handle this race correctly.
3393 */
3394 n = ztest_random(regions) * stride + ztest_random(width);
3395 s = 1 + ztest_random(2 * width - 1);
3396 dmu_prefetch(os, bigobj, n * chunksize, s * chunksize);
3397
3398 /*
3399 * Pick a random index and compute the offsets into packobj and bigobj.
3400 */
3401 n = ztest_random(regions) * stride + ztest_random(width);
3402 s = 1 + ztest_random(width - 1);
3403
3404 packoff = n * sizeof (bufwad_t);
3405 packsize = s * sizeof (bufwad_t);
3406
3407 bigoff = n * chunksize;
3408 bigsize = s * chunksize;
3409
3410 packbuf = umem_alloc(packsize, UMEM_NOFAIL);
3411 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
3412
3413 /*
3414 * free_percent of the time, free a range of bigobj rather than
3415 * overwriting it.
3416 */
3417 freeit = (ztest_random(100) < free_percent);
3418
3419 /*
3420 * Read the current contents of our objects.
3421 */
3422 error = dmu_read(os, packobj, packoff, packsize, packbuf,
3423 DMU_READ_PREFETCH);
3424 ASSERT3U(error, ==, 0);
3425 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
3426 DMU_READ_PREFETCH);
3427 ASSERT3U(error, ==, 0);
3428
3429 /*
3430 * Get a tx for the mods to both packobj and bigobj.
3431 */
3432 tx = dmu_tx_create(os);
3433
3434 dmu_tx_hold_write(tx, packobj, packoff, packsize);
3435
3436 if (freeit)
3437 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
3438 else
3439 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
3440
3441 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3442 if (txg == 0) {
3443 umem_free(packbuf, packsize);
3444 umem_free(bigbuf, bigsize);
3445 umem_free(od, size);
3446 return;
3447 }
3448
3449 dmu_object_set_checksum(os, bigobj,
3450 (enum zio_checksum)ztest_random_dsl_prop(ZFS_PROP_CHECKSUM), tx);
3451
3452 dmu_object_set_compress(os, bigobj,
3453 (enum zio_compress)ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), tx);
3454
3455 /*
3456 * For each index from n to n + s, verify that the existing bufwad
3457 * in packobj matches the bufwads at the head and tail of the
3458 * corresponding chunk in bigobj. Then update all three bufwads
3459 * with the new values we want to write out.
3460 */
3461 for (i = 0; i < s; i++) {
3462 /* LINTED */
3463 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
3464 /* LINTED */
3465 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
3466 /* LINTED */
3467 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
3468
3469 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
3470 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
3471
3472 if (pack->bw_txg > txg)
3473 fatal(0, "future leak: got %llx, open txg is %llx",
3474 pack->bw_txg, txg);
3475
3476 if (pack->bw_data != 0 && pack->bw_index != n + i)
3477 fatal(0, "wrong index: got %llx, wanted %llx+%llx",
3478 pack->bw_index, n, i);
3479
3480 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
3481 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
3482
3483 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
3484 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
3485
3486 if (freeit) {
3487 bzero(pack, sizeof (bufwad_t));
3488 } else {
3489 pack->bw_index = n + i;
3490 pack->bw_txg = txg;
3491 pack->bw_data = 1 + ztest_random(-2ULL);
3492 }
3493 *bigH = *pack;
3494 *bigT = *pack;
3495 }
3496
3497 /*
3498 * We've verified all the old bufwads, and made new ones.
3499 * Now write them out.
3500 */
3501 dmu_write(os, packobj, packoff, packsize, packbuf, tx);
3502
3503 if (freeit) {
3504 if (zopt_verbose >= 7) {
3505 (void) printf("freeing offset %llx size %llx"
3506 " txg %llx\n",
3507 (u_longlong_t)bigoff,
3508 (u_longlong_t)bigsize,
3509 (u_longlong_t)txg);
3510 }
3511 VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx));
3512 } else {
3513 if (zopt_verbose >= 7) {
3514 (void) printf("writing offset %llx size %llx"
3515 " txg %llx\n",
3516 (u_longlong_t)bigoff,
3517 (u_longlong_t)bigsize,
3518 (u_longlong_t)txg);
3519 }
3520 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);
3521 }
3522
3523 dmu_tx_commit(tx);
3524
3525 /*
3526 * Sanity check the stuff we just wrote.
3527 */
3528 {
3529 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
3530 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
3531
3532 VERIFY(0 == dmu_read(os, packobj, packoff,
3533 packsize, packcheck, DMU_READ_PREFETCH));
3534 VERIFY(0 == dmu_read(os, bigobj, bigoff,
3535 bigsize, bigcheck, DMU_READ_PREFETCH));
3536
3537 ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
3538 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
3539
3540 umem_free(packcheck, packsize);
3541 umem_free(bigcheck, bigsize);
3542 }
3543
3544 umem_free(packbuf, packsize);
3545 umem_free(bigbuf, bigsize);
3546 umem_free(od, size);
3547 }
3548
3549 void
3550 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
3551 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
3552 {
3553 uint64_t i;
3554 bufwad_t *pack;
3555 bufwad_t *bigH;
3556 bufwad_t *bigT;
3557
3558 /*
3559 * For each index from n to n + s, verify that the existing bufwad
3560 * in packobj matches the bufwads at the head and tail of the
3561 * corresponding chunk in bigobj. Then update all three bufwads
3562 * with the new values we want to write out.
3563 */
3564 for (i = 0; i < s; i++) {
3565 /* LINTED */
3566 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
3567 /* LINTED */
3568 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
3569 /* LINTED */
3570 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
3571
3572 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
3573 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
3574
3575 if (pack->bw_txg > txg)
3576 fatal(0, "future leak: got %llx, open txg is %llx",
3577 pack->bw_txg, txg);
3578
3579 if (pack->bw_data != 0 && pack->bw_index != n + i)
3580 fatal(0, "wrong index: got %llx, wanted %llx+%llx",
3581 pack->bw_index, n, i);
3582
3583 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
3584 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
3585
3586 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
3587 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
3588
3589 pack->bw_index = n + i;
3590 pack->bw_txg = txg;
3591 pack->bw_data = 1 + ztest_random(-2ULL);
3592
3593 *bigH = *pack;
3594 *bigT = *pack;
3595 }
3596 }
3597
3598 #undef OD_ARRAY_SIZE
3599 #define OD_ARRAY_SIZE 2
3600
3601 void
3602 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
3603 {
3604 objset_t *os = zd->zd_os;
3605 ztest_od_t *od;
3606 dmu_tx_t *tx;
3607 uint64_t i;
3608 int error;
3609 int size;
3610 uint64_t n, s, txg;
3611 bufwad_t *packbuf, *bigbuf;
3612 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
3613 uint64_t blocksize = ztest_random_blocksize();
3614 uint64_t chunksize = blocksize;
3615 uint64_t regions = 997;
3616 uint64_t stride = 123456789ULL;
3617 uint64_t width = 9;
3618 dmu_buf_t *bonus_db;
3619 arc_buf_t **bigbuf_arcbufs;
3620 dmu_object_info_t doi;
3621
3622 size = sizeof(ztest_od_t) * OD_ARRAY_SIZE;
3623 od = umem_alloc(size, UMEM_NOFAIL);
3624
3625 /*
3626 * This test uses two objects, packobj and bigobj, that are always
3627 * updated together (i.e. in the same tx) so that their contents are
3628 * in sync and can be compared. Their contents relate to each other
3629 * in a simple way: packobj is a dense array of 'bufwad' structures,
3630 * while bigobj is a sparse array of the same bufwads. Specifically,
3631 * for any index n, there are three bufwads that should be identical:
3632 *
3633 * packobj, at offset n * sizeof (bufwad_t)
3634 * bigobj, at the head of the nth chunk
3635 * bigobj, at the tail of the nth chunk
3636 *
3637 * The chunk size is set equal to bigobj block size so that
3638 * dmu_assign_arcbuf() can be tested for object updates.
3639 */
3640
3641 /*
3642 * Read the directory info. If it's the first time, set things up.
3643 */
3644 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
3645 ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize);
3646
3647
3648 if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
3649 umem_free(od, size);
3650 return;
3651 }
3652
3653 bigobj = od[0].od_object;
3654 packobj = od[1].od_object;
3655 blocksize = od[0].od_blocksize;
3656 chunksize = blocksize;
3657 ASSERT(chunksize == od[1].od_gen);
3658
3659 VERIFY(dmu_object_info(os, bigobj, &doi) == 0);
3660 VERIFY(ISP2(doi.doi_data_block_size));
3661 VERIFY(chunksize == doi.doi_data_block_size);
3662 VERIFY(chunksize >= 2 * sizeof (bufwad_t));
3663
3664 /*
3665 * Pick a random index and compute the offsets into packobj and bigobj.
3666 */
3667 n = ztest_random(regions) * stride + ztest_random(width);
3668 s = 1 + ztest_random(width - 1);
3669
3670 packoff = n * sizeof (bufwad_t);
3671 packsize = s * sizeof (bufwad_t);
3672
3673 bigoff = n * chunksize;
3674 bigsize = s * chunksize;
3675
3676 packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
3677 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
3678
3679 VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
3680
3681 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
3682
3683 /*
3684 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
3685 * Iteration 1 test zcopy to already referenced dbufs.
3686 * Iteration 2 test zcopy to dirty dbuf in the same txg.
3687 * Iteration 3 test zcopy to dbuf dirty in previous txg.
3688 * Iteration 4 test zcopy when dbuf is no longer dirty.
3689 * Iteration 5 test zcopy when it can't be done.
3690 * Iteration 6 one more zcopy write.
3691 */
3692 for (i = 0; i < 7; i++) {
3693 uint64_t j;
3694 uint64_t off;
3695
3696 /*
3697 * In iteration 5 (i == 5) use arcbufs
3698 * that don't match bigobj blksz to test
3699 * dmu_assign_arcbuf() when it can't directly
3700 * assign an arcbuf to a dbuf.
3701 */
3702 for (j = 0; j < s; j++) {
3703 if (i != 5) {
3704 bigbuf_arcbufs[j] =
3705 dmu_request_arcbuf(bonus_db, chunksize);
3706 } else {
3707 bigbuf_arcbufs[2 * j] =
3708 dmu_request_arcbuf(bonus_db, chunksize / 2);
3709 bigbuf_arcbufs[2 * j + 1] =
3710 dmu_request_arcbuf(bonus_db, chunksize / 2);
3711 }
3712 }
3713
3714 /*
3715 * Get a tx for the mods to both packobj and bigobj.
3716 */
3717 tx = dmu_tx_create(os);
3718
3719 dmu_tx_hold_write(tx, packobj, packoff, packsize);
3720 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
3721
3722 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3723 if (txg == 0) {
3724 umem_free(packbuf, packsize);
3725 umem_free(bigbuf, bigsize);
3726 for (j = 0; j < s; j++) {
3727 if (i != 5) {
3728 dmu_return_arcbuf(bigbuf_arcbufs[j]);
3729 } else {
3730 dmu_return_arcbuf(
3731 bigbuf_arcbufs[2 * j]);
3732 dmu_return_arcbuf(
3733 bigbuf_arcbufs[2 * j + 1]);
3734 }
3735 }
3736 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
3737 umem_free(od, size);
3738 dmu_buf_rele(bonus_db, FTAG);
3739 return;
3740 }
3741
3742 /*
3743 * 50% of the time don't read objects in the 1st iteration to
3744 * test dmu_assign_arcbuf() for the case when there're no
3745 * existing dbufs for the specified offsets.
3746 */
3747 if (i != 0 || ztest_random(2) != 0) {
3748 error = dmu_read(os, packobj, packoff,
3749 packsize, packbuf, DMU_READ_PREFETCH);
3750 ASSERT3U(error, ==, 0);
3751 error = dmu_read(os, bigobj, bigoff, bigsize,
3752 bigbuf, DMU_READ_PREFETCH);
3753 ASSERT3U(error, ==, 0);
3754 }
3755 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
3756 n, chunksize, txg);
3757
3758 /*
3759 * We've verified all the old bufwads, and made new ones.
3760 * Now write them out.
3761 */
3762 dmu_write(os, packobj, packoff, packsize, packbuf, tx);
3763 if (zopt_verbose >= 7) {
3764 (void) printf("writing offset %llx size %llx"
3765 " txg %llx\n",
3766 (u_longlong_t)bigoff,
3767 (u_longlong_t)bigsize,
3768 (u_longlong_t)txg);
3769 }
3770 for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
3771 dmu_buf_t *dbt;
3772 if (i != 5) {
3773 bcopy((caddr_t)bigbuf + (off - bigoff),
3774 bigbuf_arcbufs[j]->b_data, chunksize);
3775 } else {
3776 bcopy((caddr_t)bigbuf + (off - bigoff),
3777 bigbuf_arcbufs[2 * j]->b_data,
3778 chunksize / 2);
3779 bcopy((caddr_t)bigbuf + (off - bigoff) +
3780 chunksize / 2,
3781 bigbuf_arcbufs[2 * j + 1]->b_data,
3782 chunksize / 2);
3783 }
3784
3785 if (i == 1) {
3786 VERIFY(dmu_buf_hold(os, bigobj, off,
3787 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0);
3788 }
3789 if (i != 5) {
3790 dmu_assign_arcbuf(bonus_db, off,
3791 bigbuf_arcbufs[j], tx);
3792 } else {
3793 dmu_assign_arcbuf(bonus_db, off,
3794 bigbuf_arcbufs[2 * j], tx);
3795 dmu_assign_arcbuf(bonus_db,
3796 off + chunksize / 2,
3797 bigbuf_arcbufs[2 * j + 1], tx);
3798 }
3799 if (i == 1) {
3800 dmu_buf_rele(dbt, FTAG);
3801 }
3802 }
3803 dmu_tx_commit(tx);
3804
3805 /*
3806 * Sanity check the stuff we just wrote.
3807 */
3808 {
3809 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
3810 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
3811
3812 VERIFY(0 == dmu_read(os, packobj, packoff,
3813 packsize, packcheck, DMU_READ_PREFETCH));
3814 VERIFY(0 == dmu_read(os, bigobj, bigoff,
3815 bigsize, bigcheck, DMU_READ_PREFETCH));
3816
3817 ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
3818 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
3819
3820 umem_free(packcheck, packsize);
3821 umem_free(bigcheck, bigsize);
3822 }
3823 if (i == 2) {
3824 txg_wait_open(dmu_objset_pool(os), 0);
3825 } else if (i == 3) {
3826 txg_wait_synced(dmu_objset_pool(os), 0);
3827 }
3828 }
3829
3830 dmu_buf_rele(bonus_db, FTAG);
3831 umem_free(packbuf, packsize);
3832 umem_free(bigbuf, bigsize);
3833 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
3834 umem_free(od, size);
3835 }
3836
3837 /* ARGSUSED */
3838 void
3839 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
3840 {
3841 ztest_od_t *od;
3842
3843 od = umem_alloc(sizeof(ztest_od_t), UMEM_NOFAIL);
3844 uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
3845 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
3846
3847 /*
3848 * Have multiple threads write to large offsets in an object
3849 * to verify that parallel writes to an object -- even to the
3850 * same blocks within the object -- doesn't cause any trouble.
3851 */
3852 ztest_od_init(od, ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
3853
3854 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0)
3855 return;
3856
3857 while (ztest_random(10) != 0)
3858 ztest_io(zd, od->od_object, offset);
3859
3860 umem_free(od, sizeof(ztest_od_t));
3861 }
3862
3863 void
3864 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
3865 {
3866 ztest_od_t *od;
3867 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
3868 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
3869 uint64_t count = ztest_random(20) + 1;
3870 uint64_t blocksize = ztest_random_blocksize();
3871 void *data;
3872
3873 od = umem_alloc(sizeof(ztest_od_t), UMEM_NOFAIL);
3874
3875 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
3876
3877 if (ztest_object_init(zd, od, sizeof (ztest_od_t), !ztest_random(2)) != 0) {
3878 umem_free(od, sizeof(ztest_od_t));
3879 return;
3880 }
3881
3882 if (ztest_truncate(zd, od->od_object, offset, count * blocksize) != 0) {
3883 umem_free(od, sizeof(ztest_od_t));
3884 return;
3885 }
3886
3887 ztest_prealloc(zd, od->od_object, offset, count * blocksize);
3888
3889 data = umem_zalloc(blocksize, UMEM_NOFAIL);
3890
3891 while (ztest_random(count) != 0) {
3892 uint64_t randoff = offset + (ztest_random(count) * blocksize);
3893 if (ztest_write(zd, od->od_object, randoff, blocksize,
3894 data) != 0)
3895 break;
3896 while (ztest_random(4) != 0)
3897 ztest_io(zd, od->od_object, randoff);
3898 }
3899
3900 umem_free(data, blocksize);
3901 umem_free(od, sizeof(ztest_od_t));
3902 }
3903
3904 /*
3905 * Verify that zap_{create,destroy,add,remove,update} work as expected.
3906 */
3907 #define ZTEST_ZAP_MIN_INTS 1
3908 #define ZTEST_ZAP_MAX_INTS 4
3909 #define ZTEST_ZAP_MAX_PROPS 1000
3910
3911 void
3912 ztest_zap(ztest_ds_t *zd, uint64_t id)
3913 {
3914 objset_t *os = zd->zd_os;
3915 ztest_od_t *od;
3916 uint64_t object;
3917 uint64_t txg, last_txg;
3918 uint64_t value[ZTEST_ZAP_MAX_INTS];
3919 uint64_t zl_ints, zl_intsize, prop;
3920 int i, ints;
3921 dmu_tx_t *tx;
3922 char propname[100], txgname[100];
3923 int error;
3924 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
3925
3926 od = umem_alloc(sizeof(ztest_od_t), UMEM_NOFAIL);
3927 ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0);
3928
3929 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
3930 !ztest_random(2)) != 0)
3931 goto out;
3932
3933 object = od->od_object;
3934
3935 /*
3936 * Generate a known hash collision, and verify that
3937 * we can lookup and remove both entries.
3938 */
3939 tx = dmu_tx_create(os);
3940 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
3941 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3942 if (txg == 0)
3943 goto out;
3944 for (i = 0; i < 2; i++) {
3945 value[i] = i;
3946 VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t),
3947 1, &value[i], tx));
3948 }
3949 for (i = 0; i < 2; i++) {
3950 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
3951 sizeof (uint64_t), 1, &value[i], tx));
3952 VERIFY3U(0, ==,
3953 zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
3954 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
3955 ASSERT3U(zl_ints, ==, 1);
3956 }
3957 for (i = 0; i < 2; i++) {
3958 VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx));
3959 }
3960 dmu_tx_commit(tx);
3961
3962 /*
3963 * Generate a buch of random entries.
3964 */
3965 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
3966
3967 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
3968 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
3969 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
3970 bzero(value, sizeof (value));
3971 last_txg = 0;
3972
3973 /*
3974 * If these zap entries already exist, validate their contents.
3975 */
3976 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
3977 if (error == 0) {
3978 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
3979 ASSERT3U(zl_ints, ==, 1);
3980
3981 VERIFY(zap_lookup(os, object, txgname, zl_intsize,
3982 zl_ints, &last_txg) == 0);
3983
3984 VERIFY(zap_length(os, object, propname, &zl_intsize,
3985 &zl_ints) == 0);
3986
3987 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
3988 ASSERT3U(zl_ints, ==, ints);
3989
3990 VERIFY(zap_lookup(os, object, propname, zl_intsize,
3991 zl_ints, value) == 0);
3992
3993 for (i = 0; i < ints; i++) {
3994 ASSERT3U(value[i], ==, last_txg + object + i);
3995 }
3996 } else {
3997 ASSERT3U(error, ==, ENOENT);
3998 }
3999
4000 /*
4001 * Atomically update two entries in our zap object.
4002 * The first is named txg_%llu, and contains the txg
4003 * in which the property was last updated. The second
4004 * is named prop_%llu, and the nth element of its value
4005 * should be txg + object + n.
4006 */
4007 tx = dmu_tx_create(os);
4008 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4009 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4010 if (txg == 0)
4011 goto out;
4012
4013 if (last_txg > txg)
4014 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg);
4015
4016 for (i = 0; i < ints; i++)
4017 value[i] = txg + object + i;
4018
4019 VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t),
4020 1, &txg, tx));
4021 VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t),
4022 ints, value, tx));
4023
4024 dmu_tx_commit(tx);
4025
4026 /*
4027 * Remove a random pair of entries.
4028 */
4029 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
4030 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
4031 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
4032
4033 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
4034
4035 if (error == ENOENT)
4036 goto out;
4037
4038 ASSERT3U(error, ==, 0);
4039
4040 tx = dmu_tx_create(os);
4041 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4042 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4043 if (txg == 0)
4044 goto out;
4045 VERIFY3U(0, ==, zap_remove(os, object, txgname, tx));
4046 VERIFY3U(0, ==, zap_remove(os, object, propname, tx));
4047 dmu_tx_commit(tx);
4048 out:
4049 umem_free(od, sizeof(ztest_od_t));
4050 }
4051
4052 /*
4053 * Testcase to test the upgrading of a microzap to fatzap.
4054 */
4055 void
4056 ztest_fzap(ztest_ds_t *zd, uint64_t id)
4057 {
4058 objset_t *os = zd->zd_os;
4059 ztest_od_t *od;
4060 uint64_t object, txg;
4061 int i;
4062
4063 od = umem_alloc(sizeof(ztest_od_t), UMEM_NOFAIL);
4064 ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0);
4065
4066 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
4067 !ztest_random(2)) != 0)
4068 goto out;
4069 object = od->od_object;
4070
4071 /*
4072 * Add entries to this ZAP and make sure it spills over
4073 * and gets upgraded to a fatzap. Also, since we are adding
4074 * 2050 entries we should see ptrtbl growth and leaf-block split.
4075 */
4076 for (i = 0; i < 2050; i++) {
4077 char name[MAXNAMELEN];
4078 uint64_t value = i;
4079 dmu_tx_t *tx;
4080 int error;
4081
4082 (void) snprintf(name, sizeof (name), "fzap-%llu-%llu",
4083 (u_longlong_t)id, (u_longlong_t)value);
4084
4085 tx = dmu_tx_create(os);
4086 dmu_tx_hold_zap(tx, object, B_TRUE, name);
4087 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4088 if (txg == 0)
4089 goto out;
4090 error = zap_add(os, object, name, sizeof (uint64_t), 1,
4091 &value, tx);
4092 ASSERT(error == 0 || error == EEXIST);
4093 dmu_tx_commit(tx);
4094 }
4095 out:
4096 umem_free(od, sizeof(ztest_od_t));
4097 }
4098
4099 /* ARGSUSED */
4100 void
4101 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
4102 {
4103 objset_t *os = zd->zd_os;
4104 ztest_od_t *od;
4105 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
4106 dmu_tx_t *tx;
4107 int i, namelen, error;
4108 int micro = ztest_random(2);
4109 char name[20], string_value[20];
4110 void *data;
4111
4112 od = umem_alloc(sizeof(ztest_od_t), UMEM_NOFAIL);
4113 ztest_od_init(od, ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0);
4114
4115 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
4116 umem_free(od, sizeof(ztest_od_t));
4117 return;
4118 }
4119
4120 object = od->od_object;
4121
4122 /*
4123 * Generate a random name of the form 'xxx.....' where each
4124 * x is a random printable character and the dots are dots.
4125 * There are 94 such characters, and the name length goes from
4126 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
4127 */
4128 namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
4129
4130 for (i = 0; i < 3; i++)
4131 name[i] = '!' + ztest_random('~' - '!' + 1);
4132 for (; i < namelen - 1; i++)
4133 name[i] = '.';
4134 name[i] = '\0';
4135
4136 if ((namelen & 1) || micro) {
4137 wsize = sizeof (txg);
4138 wc = 1;
4139 data = &txg;
4140 } else {
4141 wsize = 1;
4142 wc = namelen;
4143 data = string_value;
4144 }
4145
4146 count = -1ULL;
4147 VERIFY(zap_count(os, object, &count) == 0);
4148 ASSERT(count != -1ULL);
4149
4150 /*
4151 * Select an operation: length, lookup, add, update, remove.
4152 */
4153 i = ztest_random(5);
4154
4155 if (i >= 2) {
4156 tx = dmu_tx_create(os);
4157 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4158 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4159 if (txg == 0)
4160 return;
4161 bcopy(name, string_value, namelen);
4162 } else {
4163 tx = NULL;
4164 txg = 0;
4165 bzero(string_value, namelen);
4166 }
4167
4168 switch (i) {
4169
4170 case 0:
4171 error = zap_length(os, object, name, &zl_wsize, &zl_wc);
4172 if (error == 0) {
4173 ASSERT3U(wsize, ==, zl_wsize);
4174 ASSERT3U(wc, ==, zl_wc);
4175 } else {
4176 ASSERT3U(error, ==, ENOENT);
4177 }
4178 break;
4179
4180 case 1:
4181 error = zap_lookup(os, object, name, wsize, wc, data);
4182 if (error == 0) {
4183 if (data == string_value &&
4184 bcmp(name, data, namelen) != 0)
4185 fatal(0, "name '%s' != val '%s' len %d",
4186 name, data, namelen);
4187 } else {
4188 ASSERT3U(error, ==, ENOENT);
4189 }
4190 break;
4191
4192 case 2:
4193 error = zap_add(os, object, name, wsize, wc, data, tx);
4194 ASSERT(error == 0 || error == EEXIST);
4195 break;
4196
4197 case 3:
4198 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0);
4199 break;
4200
4201 case 4:
4202 error = zap_remove(os, object, name, tx);
4203 ASSERT(error == 0 || error == ENOENT);
4204 break;
4205 }
4206
4207 if (tx != NULL)
4208 dmu_tx_commit(tx);
4209
4210 umem_free(od, sizeof(ztest_od_t));
4211 }
4212
4213 /*
4214 * Commit callback data.
4215 */
4216 typedef struct ztest_cb_data {
4217 list_node_t zcd_node;
4218 uint64_t zcd_txg;
4219 int zcd_expected_err;
4220 boolean_t zcd_added;
4221 boolean_t zcd_called;
4222 spa_t *zcd_spa;
4223 } ztest_cb_data_t;
4224
4225 /* This is the actual commit callback function */
4226 static void
4227 ztest_commit_callback(void *arg, int error)
4228 {
4229 ztest_cb_data_t *data = arg;
4230 uint64_t synced_txg;
4231
4232 VERIFY(data != NULL);
4233 VERIFY3S(data->zcd_expected_err, ==, error);
4234 VERIFY(!data->zcd_called);
4235
4236 synced_txg = spa_last_synced_txg(data->zcd_spa);
4237 if (data->zcd_txg > synced_txg)
4238 fatal(0, "commit callback of txg %" PRIu64 " called prematurely"
4239 ", last synced txg = %" PRIu64 "\n", data->zcd_txg,
4240 synced_txg);
4241
4242 data->zcd_called = B_TRUE;
4243
4244 if (error == ECANCELED) {
4245 ASSERT3U(data->zcd_txg, ==, 0);
4246 ASSERT(!data->zcd_added);
4247
4248 /*
4249 * The private callback data should be destroyed here, but
4250 * since we are going to check the zcd_called field after
4251 * dmu_tx_abort(), we will destroy it there.
4252 */
4253 return;
4254 }
4255
4256 ASSERT(data->zcd_added);
4257 ASSERT3U(data->zcd_txg, !=, 0);
4258
4259 (void) mutex_enter(&zcl.zcl_callbacks_lock);
4260
4261 /* See if this cb was called more quickly */
4262 if ((synced_txg - data->zcd_txg) < zc_min_txg_delay)
4263 zc_min_txg_delay = synced_txg - data->zcd_txg;
4264
4265 /* Remove our callback from the list */
4266 list_remove(&zcl.zcl_callbacks, data);
4267
4268 (void) mutex_exit(&zcl.zcl_callbacks_lock);
4269
4270 umem_free(data, sizeof (ztest_cb_data_t));
4271 }
4272
4273 /* Allocate and initialize callback data structure */
4274 static ztest_cb_data_t *
4275 ztest_create_cb_data(objset_t *os, uint64_t txg)
4276 {
4277 ztest_cb_data_t *cb_data;
4278
4279 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
4280
4281 cb_data->zcd_txg = txg;
4282 cb_data->zcd_spa = dmu_objset_spa(os);
4283 list_link_init(&cb_data->zcd_node);
4284
4285 return (cb_data);
4286 }
4287
4288 /*
4289 * Commit callback test.
4290 */
4291 void
4292 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
4293 {
4294 objset_t *os = zd->zd_os;
4295 ztest_od_t *od;
4296 dmu_tx_t *tx;
4297 ztest_cb_data_t *cb_data[3], *tmp_cb;
4298 uint64_t old_txg, txg;
4299 int i, error = 0;
4300
4301 od = umem_alloc(sizeof(ztest_od_t), UMEM_NOFAIL);
4302 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
4303
4304 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
4305 umem_free(od, sizeof(ztest_od_t));
4306 return;
4307 }
4308
4309 tx = dmu_tx_create(os);
4310
4311 cb_data[0] = ztest_create_cb_data(os, 0);
4312 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
4313
4314 dmu_tx_hold_write(tx, od->od_object, 0, sizeof (uint64_t));
4315
4316 /* Every once in a while, abort the transaction on purpose */
4317 if (ztest_random(100) == 0)
4318 error = -1;
4319
4320 if (!error)
4321 error = dmu_tx_assign(tx, TXG_NOWAIT);
4322
4323 txg = error ? 0 : dmu_tx_get_txg(tx);
4324
4325 cb_data[0]->zcd_txg = txg;
4326 cb_data[1] = ztest_create_cb_data(os, txg);
4327 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
4328
4329 if (error) {
4330 /*
4331 * It's not a strict requirement to call the registered
4332 * callbacks from inside dmu_tx_abort(), but that's what
4333 * it's supposed to happen in the current implementation
4334 * so we will check for that.
4335 */
4336 for (i = 0; i < 2; i++) {
4337 cb_data[i]->zcd_expected_err = ECANCELED;
4338 VERIFY(!cb_data[i]->zcd_called);
4339 }
4340
4341 dmu_tx_abort(tx);
4342
4343 for (i = 0; i < 2; i++) {
4344 VERIFY(cb_data[i]->zcd_called);
4345 umem_free(cb_data[i], sizeof (ztest_cb_data_t));
4346 }
4347
4348 umem_free(od, sizeof(ztest_od_t));
4349 return;
4350 }
4351
4352 cb_data[2] = ztest_create_cb_data(os, txg);
4353 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
4354
4355 /*
4356 * Read existing data to make sure there isn't a future leak.
4357 */
4358 VERIFY(0 == dmu_read(os, od->od_object, 0, sizeof (uint64_t),
4359 &old_txg, DMU_READ_PREFETCH));
4360
4361 if (old_txg > txg)
4362 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64,
4363 old_txg, txg);
4364
4365 dmu_write(os, od->od_object, 0, sizeof (uint64_t), &txg, tx);
4366
4367 (void) mutex_enter(&zcl.zcl_callbacks_lock);
4368
4369 /*
4370 * Since commit callbacks don't have any ordering requirement and since
4371 * it is theoretically possible for a commit callback to be called
4372 * after an arbitrary amount of time has elapsed since its txg has been
4373 * synced, it is difficult to reliably determine whether a commit
4374 * callback hasn't been called due to high load or due to a flawed
4375 * implementation.
4376 *
4377 * In practice, we will assume that if after a certain number of txgs a
4378 * commit callback hasn't been called, then most likely there's an
4379 * implementation bug..
4380 */
4381 tmp_cb = list_head(&zcl.zcl_callbacks);
4382 if (tmp_cb != NULL &&
4383 tmp_cb->zcd_txg + ZTEST_COMMIT_CB_THRESH < txg) {
4384 fatal(0, "Commit callback threshold exceeded, oldest txg: %"
4385 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg);
4386 }
4387
4388 /*
4389 * Let's find the place to insert our callbacks.
4390 *
4391 * Even though the list is ordered by txg, it is possible for the
4392 * insertion point to not be the end because our txg may already be
4393 * quiescing at this point and other callbacks in the open txg
4394 * (from other objsets) may have sneaked in.
4395 */
4396 tmp_cb = list_tail(&zcl.zcl_callbacks);
4397 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
4398 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
4399
4400 /* Add the 3 callbacks to the list */
4401 for (i = 0; i < 3; i++) {
4402 if (tmp_cb == NULL)
4403 list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
4404 else
4405 list_insert_after(&zcl.zcl_callbacks, tmp_cb,
4406 cb_data[i]);
4407
4408 cb_data[i]->zcd_added = B_TRUE;
4409 VERIFY(!cb_data[i]->zcd_called);
4410
4411 tmp_cb = cb_data[i];
4412 }
4413
4414 zc_cb_counter += 3;
4415
4416 (void) mutex_exit(&zcl.zcl_callbacks_lock);
4417
4418 dmu_tx_commit(tx);
4419
4420 umem_free(od, sizeof(ztest_od_t));
4421 }
4422
4423 /* ARGSUSED */
4424 void
4425 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
4426 {
4427 zfs_prop_t proplist[] = {
4428 ZFS_PROP_CHECKSUM,
4429 ZFS_PROP_COMPRESSION,
4430 ZFS_PROP_COPIES,
4431 ZFS_PROP_DEDUP
4432 };
4433 ztest_shared_t *zs = ztest_shared;
4434 int p;
4435
4436 (void) rw_enter(&zs->zs_name_lock, RW_READER);
4437
4438 for (p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++)
4439 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
4440 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
4441
4442 (void) rw_exit(&zs->zs_name_lock);
4443 }
4444
4445 /* ARGSUSED */
4446 void
4447 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
4448 {
4449 ztest_shared_t *zs = ztest_shared;
4450 nvlist_t *props = NULL;
4451
4452 (void) rw_enter(&zs->zs_name_lock, RW_READER);
4453
4454 (void) ztest_spa_prop_set_uint64(zs, ZPOOL_PROP_DEDUPDITTO,
4455 ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN));
4456
4457 VERIFY3U(spa_prop_get(zs->zs_spa, &props), ==, 0);
4458
4459 if (zopt_verbose >= 6)
4460 dump_nvlist(props, 4);
4461
4462 nvlist_free(props);
4463
4464 (void) rw_exit(&zs->zs_name_lock);
4465 }
4466
4467 /*
4468 * Test snapshot hold/release and deferred destroy.
4469 */
4470 void
4471 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
4472 {
4473 int error;
4474 objset_t *os = zd->zd_os;
4475 objset_t *origin;
4476 char snapname[100];
4477 char fullname[100];
4478 char clonename[100];
4479 char tag[100];
4480 char osname[MAXNAMELEN];
4481
4482 (void) rw_enter(&ztest_shared->zs_name_lock, RW_READER);
4483
4484 dmu_objset_name(os, osname);
4485
4486 (void) snprintf(snapname, 100, "sh1_%llu", (u_longlong_t)id);
4487 (void) snprintf(fullname, 100, "%s@%s", osname, snapname);
4488 (void) snprintf(clonename, 100, "%s/ch1_%llu",osname,(u_longlong_t)id);
4489 (void) snprintf(tag, 100, "tag_%llu", (u_longlong_t)id);
4490
4491 /*
4492 * Clean up from any previous run.
4493 */
4494 (void) dmu_objset_destroy(clonename, B_FALSE);
4495 (void) dsl_dataset_user_release(osname, snapname, tag, B_FALSE);
4496 (void) dmu_objset_destroy(fullname, B_FALSE);
4497
4498 /*
4499 * Create snapshot, clone it, mark snap for deferred destroy,
4500 * destroy clone, verify snap was also destroyed.
4501 */
4502 error = dmu_objset_snapshot(osname, snapname, NULL, NULL, FALSE,
4503 FALSE, -1);
4504 if (error) {
4505 if (error == ENOSPC) {
4506 ztest_record_enospc("dmu_objset_snapshot");
4507 goto out;
4508 }
4509 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
4510 }
4511
4512 error = dmu_objset_hold(fullname, FTAG, &origin);
4513 if (error)
4514 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error);
4515
4516 error = dmu_objset_clone(clonename, dmu_objset_ds(origin), 0);
4517 dmu_objset_rele(origin, FTAG);
4518 if (error) {
4519 if (error == ENOSPC) {
4520 ztest_record_enospc("dmu_objset_clone");
4521 goto out;
4522 }
4523 fatal(0, "dmu_objset_clone(%s) = %d", clonename, error);
4524 }
4525
4526 error = dmu_objset_destroy(fullname, B_TRUE);
4527 if (error) {
4528 fatal(0, "dmu_objset_destroy(%s, B_TRUE) = %d",
4529 fullname, error);
4530 }
4531
4532 error = dmu_objset_destroy(clonename, B_FALSE);
4533 if (error)
4534 fatal(0, "dmu_objset_destroy(%s) = %d", clonename, error);
4535
4536 error = dmu_objset_hold(fullname, FTAG, &origin);
4537 if (error != ENOENT)
4538 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error);
4539
4540 /*
4541 * Create snapshot, add temporary hold, verify that we can't
4542 * destroy a held snapshot, mark for deferred destroy,
4543 * release hold, verify snapshot was destroyed.
4544 */
4545 error = dmu_objset_snapshot(osname, snapname, NULL, NULL, FALSE,
4546 FALSE, -1);
4547 if (error) {
4548 if (error == ENOSPC) {
4549 ztest_record_enospc("dmu_objset_snapshot");
4550 goto out;
4551 }
4552 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
4553 }
4554
4555 error = dsl_dataset_user_hold(osname, snapname, tag, B_FALSE,
4556 B_TRUE, -1);
4557 if (error)
4558 fatal(0, "dsl_dataset_user_hold(%s)", fullname, tag);
4559
4560 error = dmu_objset_destroy(fullname, B_FALSE);
4561 if (error != EBUSY) {
4562 fatal(0, "dmu_objset_destroy(%s, B_FALSE) = %d",
4563 fullname, error);
4564 }
4565
4566 error = dmu_objset_destroy(fullname, B_TRUE);
4567 if (error) {
4568 fatal(0, "dmu_objset_destroy(%s, B_TRUE) = %d",
4569 fullname, error);
4570 }
4571
4572 error = dsl_dataset_user_release(osname, snapname, tag, B_FALSE);
4573 if (error)
4574 fatal(0, "dsl_dataset_user_release(%s)", fullname, tag);
4575
4576 VERIFY(dmu_objset_hold(fullname, FTAG, &origin) == ENOENT);
4577
4578 out:
4579 (void) rw_exit(&ztest_shared->zs_name_lock);
4580 }
4581
4582 /*
4583 * Inject random faults into the on-disk data.
4584 */
4585 /* ARGSUSED */
4586 void
4587 ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
4588 {
4589 ztest_shared_t *zs = ztest_shared;
4590 spa_t *spa = zs->zs_spa;
4591 int fd;
4592 uint64_t offset;
4593 uint64_t leaves;
4594 uint64_t bad = 0x1990c0ffeedecadeull;
4595 uint64_t top, leaf;
4596 char *path0;
4597 char *pathrand;
4598 size_t fsize;
4599 int bshift = SPA_MAXBLOCKSHIFT + 2; /* don't scrog all labels */
4600 int iters = 1000;
4601 int maxfaults;
4602 int mirror_save;
4603 vdev_t *vd0 = NULL;
4604 uint64_t guid0 = 0;
4605 boolean_t islog = B_FALSE;
4606
4607 path0 = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
4608 pathrand = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
4609
4610 mutex_enter(&zs->zs_vdev_lock);
4611 maxfaults = MAXFAULTS();
4612 leaves = MAX(zs->zs_mirrors, 1) * zopt_raidz;
4613 mirror_save = zs->zs_mirrors;
4614 mutex_exit(&zs->zs_vdev_lock);
4615
4616 ASSERT(leaves >= 1);
4617
4618 /*
4619 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
4620 */
4621 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4622
4623 if (ztest_random(2) == 0) {
4624 /*
4625 * Inject errors on a normal data device or slog device.
4626 */
4627 top = ztest_random_vdev_top(spa, B_TRUE);
4628 leaf = ztest_random(leaves) + zs->zs_splits;
4629
4630 /*
4631 * Generate paths to the first leaf in this top-level vdev,
4632 * and to the random leaf we selected. We'll induce transient
4633 * write failures and random online/offline activity on leaf 0,
4634 * and we'll write random garbage to the randomly chosen leaf.
4635 */
4636 (void) snprintf(path0, MAXPATHLEN, ztest_dev_template,
4637 zopt_dir, zopt_pool, top * leaves + zs->zs_splits);
4638 (void) snprintf(pathrand, MAXPATHLEN, ztest_dev_template,
4639 zopt_dir, zopt_pool, top * leaves + leaf);
4640
4641 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
4642 if (vd0 != NULL && vd0->vdev_top->vdev_islog)
4643 islog = B_TRUE;
4644
4645 if (vd0 != NULL && maxfaults != 1) {
4646 /*
4647 * Make vd0 explicitly claim to be unreadable,
4648 * or unwriteable, or reach behind its back
4649 * and close the underlying fd. We can do this if
4650 * maxfaults == 0 because we'll fail and reexecute,
4651 * and we can do it if maxfaults >= 2 because we'll
4652 * have enough redundancy. If maxfaults == 1, the
4653 * combination of this with injection of random data
4654 * corruption below exceeds the pool's fault tolerance.
4655 */
4656 vdev_file_t *vf = vd0->vdev_tsd;
4657
4658 if (vf != NULL && ztest_random(3) == 0) {
4659 (void) close(vf->vf_vnode->v_fd);
4660 vf->vf_vnode->v_fd = -1;
4661 } else if (ztest_random(2) == 0) {
4662 vd0->vdev_cant_read = B_TRUE;
4663 } else {
4664 vd0->vdev_cant_write = B_TRUE;
4665 }
4666 guid0 = vd0->vdev_guid;
4667 }
4668 } else {
4669 /*
4670 * Inject errors on an l2cache device.
4671 */
4672 spa_aux_vdev_t *sav = &spa->spa_l2cache;
4673
4674 if (sav->sav_count == 0) {
4675 spa_config_exit(spa, SCL_STATE, FTAG);
4676 goto out;
4677 }
4678 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
4679 guid0 = vd0->vdev_guid;
4680 (void) strcpy(path0, vd0->vdev_path);
4681 (void) strcpy(pathrand, vd0->vdev_path);
4682
4683 leaf = 0;
4684 leaves = 1;
4685 maxfaults = INT_MAX; /* no limit on cache devices */
4686 }
4687
4688 spa_config_exit(spa, SCL_STATE, FTAG);
4689
4690 /*
4691 * If we can tolerate two or more faults, or we're dealing
4692 * with a slog, randomly online/offline vd0.
4693 */
4694 if ((maxfaults >= 2 || islog) && guid0 != 0) {
4695 if (ztest_random(10) < 6) {
4696 int flags = (ztest_random(2) == 0 ?
4697 ZFS_OFFLINE_TEMPORARY : 0);
4698
4699 /*
4700 * We have to grab the zs_name_lock as writer to
4701 * prevent a race between offlining a slog and
4702 * destroying a dataset. Offlining the slog will
4703 * grab a reference on the dataset which may cause
4704 * dmu_objset_destroy() to fail with EBUSY thus
4705 * leaving the dataset in an inconsistent state.
4706 */
4707 if (islog)
4708 (void) rw_enter(&ztest_shared->zs_name_lock,
4709 RW_WRITER);
4710
4711 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY);
4712
4713 if (islog)
4714 (void) rw_exit(&ztest_shared->zs_name_lock);
4715 } else {
4716 (void) vdev_online(spa, guid0, 0, NULL);
4717 }
4718 }
4719
4720 if (maxfaults == 0)
4721 goto out;
4722
4723 /*
4724 * We have at least single-fault tolerance, so inject data corruption.
4725 */
4726 fd = open(pathrand, O_RDWR);
4727
4728 if (fd == -1) /* we hit a gap in the device namespace */
4729 goto out;
4730
4731 fsize = lseek(fd, 0, SEEK_END);
4732
4733 while (--iters != 0) {
4734 offset = ztest_random(fsize / (leaves << bshift)) *
4735 (leaves << bshift) + (leaf << bshift) +
4736 (ztest_random(1ULL << (bshift - 1)) & -8ULL);
4737
4738 if (offset >= fsize)
4739 continue;
4740
4741 mutex_enter(&zs->zs_vdev_lock);
4742 if (mirror_save != zs->zs_mirrors) {
4743 mutex_exit(&zs->zs_vdev_lock);
4744 (void) close(fd);
4745 goto out;
4746 }
4747
4748 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
4749 fatal(1, "can't inject bad word at 0x%llx in %s",
4750 offset, pathrand);
4751
4752 mutex_exit(&zs->zs_vdev_lock);
4753
4754 if (zopt_verbose >= 7)
4755 (void) printf("injected bad word into %s,"
4756 " offset 0x%llx\n", pathrand, (u_longlong_t)offset);
4757 }
4758
4759 (void) close(fd);
4760 out:
4761 umem_free(path0, MAXPATHLEN);
4762 umem_free(pathrand, MAXPATHLEN);
4763 }
4764
4765 /*
4766 * Verify that DDT repair works as expected.
4767 */
4768 void
4769 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id)
4770 {
4771 ztest_shared_t *zs = ztest_shared;
4772 spa_t *spa = zs->zs_spa;
4773 objset_t *os = zd->zd_os;
4774 ztest_od_t *od;
4775 uint64_t object, blocksize, txg, pattern, psize;
4776 enum zio_checksum checksum = spa_dedup_checksum(spa);
4777 dmu_buf_t *db;
4778 dmu_tx_t *tx;
4779 void *buf;
4780 blkptr_t blk;
4781 int copies = 2 * ZIO_DEDUPDITTO_MIN;
4782 int i;
4783
4784 blocksize = ztest_random_blocksize();
4785 blocksize = MIN(blocksize, 2048); /* because we write so many */
4786
4787 od = umem_alloc(sizeof(ztest_od_t), UMEM_NOFAIL);
4788 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
4789
4790 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
4791 umem_free(od, sizeof(ztest_od_t));
4792 return;
4793 }
4794
4795 /*
4796 * Take the name lock as writer to prevent anyone else from changing
4797 * the pool and dataset properies we need to maintain during this test.
4798 */
4799 (void) rw_enter(&zs->zs_name_lock, RW_WRITER);
4800
4801 if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum,
4802 B_FALSE) != 0 ||
4803 ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1,
4804 B_FALSE) != 0) {
4805 (void) rw_exit(&zs->zs_name_lock);
4806 umem_free(od, sizeof(ztest_od_t));
4807 return;
4808 }
4809
4810 object = od[0].od_object;
4811 blocksize = od[0].od_blocksize;
4812 pattern = zs->zs_guid ^ dmu_objset_fsid_guid(os);
4813
4814 ASSERT(object != 0);
4815
4816 tx = dmu_tx_create(os);
4817 dmu_tx_hold_write(tx, object, 0, copies * blocksize);
4818 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
4819 if (txg == 0) {
4820 (void) rw_exit(&zs->zs_name_lock);
4821 umem_free(od, sizeof(ztest_od_t));
4822 return;
4823 }
4824
4825 /*
4826 * Write all the copies of our block.
4827 */
4828 for (i = 0; i < copies; i++) {
4829 uint64_t offset = i * blocksize;
4830 VERIFY(dmu_buf_hold(os, object, offset, FTAG, &db,
4831 DMU_READ_NO_PREFETCH) == 0);
4832 ASSERT(db->db_offset == offset);
4833 ASSERT(db->db_size == blocksize);
4834 ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) ||
4835 ztest_pattern_match(db->db_data, db->db_size, 0ULL));
4836 dmu_buf_will_fill(db, tx);
4837 ztest_pattern_set(db->db_data, db->db_size, pattern);
4838 dmu_buf_rele(db, FTAG);
4839 }
4840
4841 dmu_tx_commit(tx);
4842 txg_wait_synced(spa_get_dsl(spa), txg);
4843
4844 /*
4845 * Find out what block we got.
4846 */
4847 VERIFY(dmu_buf_hold(os, object, 0, FTAG, &db,
4848 DMU_READ_NO_PREFETCH) == 0);
4849 blk = *((dmu_buf_impl_t *)db)->db_blkptr;
4850 dmu_buf_rele(db, FTAG);
4851
4852 /*
4853 * Damage the block. Dedup-ditto will save us when we read it later.
4854 */
4855 psize = BP_GET_PSIZE(&blk);
4856 buf = zio_buf_alloc(psize);
4857 ztest_pattern_set(buf, psize, ~pattern);
4858
4859 (void) zio_wait(zio_rewrite(NULL, spa, 0, &blk,
4860 buf, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE,
4861 ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL));
4862
4863 zio_buf_free(buf, psize);
4864
4865 (void) rw_exit(&zs->zs_name_lock);
4866 umem_free(od, sizeof(ztest_od_t));
4867 }
4868
4869 /*
4870 * Scrub the pool.
4871 */
4872 /* ARGSUSED */
4873 void
4874 ztest_scrub(ztest_ds_t *zd, uint64_t id)
4875 {
4876 ztest_shared_t *zs = ztest_shared;
4877 spa_t *spa = zs->zs_spa;
4878
4879 (void) spa_scan(spa, POOL_SCAN_SCRUB);
4880 (void) poll(NULL, 0, 100); /* wait a moment, then force a restart */
4881 (void) spa_scan(spa, POOL_SCAN_SCRUB);
4882 }
4883
4884 /*
4885 * Change the guid for the pool.
4886 */
4887 /* ARGSUSED */
4888 void
4889 ztest_reguid(ztest_ds_t *zd, uint64_t id)
4890 {
4891 ztest_shared_t *zs = ztest_shared;
4892 spa_t *spa = zs->zs_spa;
4893 uint64_t orig, load;
4894
4895 orig = spa_guid(spa);
4896 load = spa_load_guid(spa);
4897 if (spa_change_guid(spa) != 0)
4898 return;
4899
4900 if (zopt_verbose >= 3) {
4901 (void) printf("Changed guid old %llu -> %llu\n",
4902 (u_longlong_t)orig, (u_longlong_t)spa_guid(spa));
4903 }
4904
4905 VERIFY3U(orig, !=, spa_guid(spa));
4906 VERIFY3U(load, ==, spa_load_guid(spa));
4907 }
4908
4909 /*
4910 * Rename the pool to a different name and then rename it back.
4911 */
4912 /* ARGSUSED */
4913 void
4914 ztest_spa_rename(ztest_ds_t *zd, uint64_t id)
4915 {
4916 ztest_shared_t *zs = ztest_shared;
4917 char *oldname, *newname;
4918 spa_t *spa;
4919
4920 (void) rw_enter(&zs->zs_name_lock, RW_WRITER);
4921
4922 oldname = zs->zs_pool;
4923 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL);
4924 (void) strcpy(newname, oldname);
4925 (void) strcat(newname, "_tmp");
4926
4927 /*
4928 * Do the rename
4929 */
4930 VERIFY3U(0, ==, spa_rename(oldname, newname));
4931
4932 /*
4933 * Try to open it under the old name, which shouldn't exist
4934 */
4935 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
4936
4937 /*
4938 * Open it under the new name and make sure it's still the same spa_t.
4939 */
4940 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
4941
4942 ASSERT(spa == zs->zs_spa);
4943 spa_close(spa, FTAG);
4944
4945 /*
4946 * Rename it back to the original
4947 */
4948 VERIFY3U(0, ==, spa_rename(newname, oldname));
4949
4950 /*
4951 * Make sure it can still be opened
4952 */
4953 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
4954
4955 ASSERT(spa == zs->zs_spa);
4956 spa_close(spa, FTAG);
4957
4958 umem_free(newname, strlen(newname) + 1);
4959
4960 (void) rw_exit(&zs->zs_name_lock);
4961 }
4962
4963 /*
4964 * Verify pool integrity by running zdb.
4965 */
4966 static void
4967 ztest_run_zdb(char *pool)
4968 {
4969 int status;
4970 char *bin;
4971 char *zdb;
4972 char *zbuf;
4973 FILE *fp;
4974
4975 bin = umem_alloc(MAXPATHLEN + MAXNAMELEN + 20, UMEM_NOFAIL);
4976 zdb = umem_alloc(MAXPATHLEN + MAXNAMELEN + 20, UMEM_NOFAIL);
4977 zbuf = umem_alloc(1024, UMEM_NOFAIL);
4978
4979 VERIFY(realpath(getexecname(), bin) != NULL);
4980 if (strncmp(bin, "/usr/sbin/ztest", 15) == 0) {
4981 strcpy(bin, "/usr/sbin/zdb"); /* Installed */
4982 } else if (strncmp(bin, "/sbin/ztest", 11) == 0) {
4983 strcpy(bin, "/sbin/zdb"); /* Installed */
4984 } else {
4985 strstr(bin, "/ztest/")[0] = '\0'; /* In-tree */
4986 strcat(bin, "/zdb/zdb");
4987 }
4988
4989 (void) sprintf(zdb,
4990 "%s -bcc%s%s -U %s %s",
4991 bin,
4992 zopt_verbose >= 3 ? "s" : "",
4993 zopt_verbose >= 4 ? "v" : "",
4994 spa_config_path,
4995 pool);
4996
4997 if (zopt_verbose >= 5)
4998 (void) printf("Executing %s\n", strstr(zdb, "zdb "));
4999
5000 fp = popen(zdb, "r");
5001
5002 while (fgets(zbuf, 1024, fp) != NULL)
5003 if (zopt_verbose >= 3)
5004 (void) printf("%s", zbuf);
5005
5006 status = pclose(fp);
5007
5008 if (status == 0)
5009 goto out;
5010
5011 ztest_dump_core = 0;
5012 if (WIFEXITED(status))
5013 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status));
5014 else
5015 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status));
5016 out:
5017 umem_free(bin, MAXPATHLEN + MAXNAMELEN + 20);
5018 umem_free(zdb, MAXPATHLEN + MAXNAMELEN + 20);
5019 umem_free(zbuf, 1024);
5020 }
5021
5022 static void
5023 ztest_walk_pool_directory(char *header)
5024 {
5025 spa_t *spa = NULL;
5026
5027 if (zopt_verbose >= 6)
5028 (void) printf("%s\n", header);
5029
5030 mutex_enter(&spa_namespace_lock);
5031 while ((spa = spa_next(spa)) != NULL)
5032 if (zopt_verbose >= 6)
5033 (void) printf("\t%s\n", spa_name(spa));
5034 mutex_exit(&spa_namespace_lock);
5035 }
5036
5037 static void
5038 ztest_spa_import_export(char *oldname, char *newname)
5039 {
5040 nvlist_t *config, *newconfig;
5041 uint64_t pool_guid;
5042 spa_t *spa;
5043
5044 if (zopt_verbose >= 4) {
5045 (void) printf("import/export: old = %s, new = %s\n",
5046 oldname, newname);
5047 }
5048
5049 /*
5050 * Clean up from previous runs.
5051 */
5052 (void) spa_destroy(newname);
5053
5054 /*
5055 * Get the pool's configuration and guid.
5056 */
5057 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
5058
5059 /*
5060 * Kick off a scrub to tickle scrub/export races.
5061 */
5062 if (ztest_random(2) == 0)
5063 (void) spa_scan(spa, POOL_SCAN_SCRUB);
5064
5065 pool_guid = spa_guid(spa);
5066 spa_close(spa, FTAG);
5067
5068 ztest_walk_pool_directory("pools before export");
5069
5070 /*
5071 * Export it.
5072 */
5073 VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE));
5074
5075 ztest_walk_pool_directory("pools after export");
5076
5077 /*
5078 * Try to import it.
5079 */
5080 newconfig = spa_tryimport(config);
5081 ASSERT(newconfig != NULL);
5082 nvlist_free(newconfig);
5083
5084 /*
5085 * Import it under the new name.
5086 */
5087 VERIFY3U(0, ==, spa_import(newname, config, NULL, 0));
5088
5089 ztest_walk_pool_directory("pools after import");
5090
5091 /*
5092 * Try to import it again -- should fail with EEXIST.
5093 */
5094 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0));
5095
5096 /*
5097 * Try to import it under a different name -- should fail with EEXIST.
5098 */
5099 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0));
5100
5101 /*
5102 * Verify that the pool is no longer visible under the old name.
5103 */
5104 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
5105
5106 /*
5107 * Verify that we can open and close the pool using the new name.
5108 */
5109 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
5110 ASSERT(pool_guid == spa_guid(spa));
5111 spa_close(spa, FTAG);
5112
5113 nvlist_free(config);
5114 }
5115
5116 static void
5117 ztest_resume(spa_t *spa)
5118 {
5119 if (spa_suspended(spa) && zopt_verbose >= 6)
5120 (void) printf("resuming from suspended state\n");
5121 spa_vdev_state_enter(spa, SCL_NONE);
5122 vdev_clear(spa, NULL);
5123 (void) spa_vdev_state_exit(spa, NULL, 0);
5124 (void) zio_resume(spa);
5125 }
5126
5127 static void *
5128 ztest_resume_thread(void *arg)
5129 {
5130 spa_t *spa = arg;
5131
5132 while (!ztest_exiting) {
5133 if (spa_suspended(spa))
5134 ztest_resume(spa);
5135 (void) poll(NULL, 0, 100);
5136 }
5137
5138 thread_exit();
5139
5140 return (NULL);
5141 }
5142
5143 #define GRACE 300
5144
5145 static void
5146 ztest_deadman_alarm(int sig)
5147 {
5148 fatal(0, "failed to complete within %d seconds of deadline", GRACE);
5149 }
5150
5151 static void
5152 ztest_execute(ztest_info_t *zi, uint64_t id)
5153 {
5154 ztest_shared_t *zs = ztest_shared;
5155 ztest_ds_t *zd = &zs->zs_zd[id % zopt_datasets];
5156 hrtime_t functime = gethrtime();
5157 int i;
5158
5159 for (i = 0; i < zi->zi_iters; i++)
5160 zi->zi_func(zd, id);
5161
5162 functime = gethrtime() - functime;
5163
5164 atomic_add_64(&zi->zi_call_count, 1);
5165 atomic_add_64(&zi->zi_call_time, functime);
5166
5167 if (zopt_verbose >= 4) {
5168 Dl_info dli;
5169 (void) dladdr((void *)zi->zi_func, &dli);
5170 (void) printf("%6.2f sec in %s\n",
5171 (double)functime / NANOSEC, dli.dli_sname);
5172 }
5173 }
5174
5175 static void *
5176 ztest_thread(void *arg)
5177 {
5178 uint64_t id = (uintptr_t)arg;
5179 ztest_shared_t *zs = ztest_shared;
5180 uint64_t call_next;
5181 hrtime_t now;
5182 ztest_info_t *zi;
5183
5184 while ((now = gethrtime()) < zs->zs_thread_stop) {
5185 /*
5186 * See if it's time to force a crash.
5187 */
5188 if (now > zs->zs_thread_kill)
5189 ztest_kill(zs);
5190
5191 /*
5192 * If we're getting ENOSPC with some regularity, stop.
5193 */
5194 if (zs->zs_enospc_count > 10)
5195 break;
5196
5197 /*
5198 * Pick a random function to execute.
5199 */
5200 zi = &zs->zs_info[ztest_random(ZTEST_FUNCS)];
5201 call_next = zi->zi_call_next;
5202
5203 if (now >= call_next &&
5204 atomic_cas_64(&zi->zi_call_next, call_next, call_next +
5205 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next)
5206 ztest_execute(zi, id);
5207 }
5208
5209 thread_exit();
5210
5211 return (NULL);
5212 }
5213
5214 static void
5215 ztest_dataset_name(char *dsname, char *pool, int d)
5216 {
5217 (void) snprintf(dsname, MAXNAMELEN, "%s/ds_%d", pool, d);
5218 }
5219
5220 static void
5221 ztest_dataset_destroy(ztest_shared_t *zs, int d)
5222 {
5223 char name[MAXNAMELEN];
5224 int t;
5225
5226 ztest_dataset_name(name, zs->zs_pool, d);
5227
5228 if (zopt_verbose >= 3)
5229 (void) printf("Destroying %s to free up space\n", name);
5230
5231 /*
5232 * Cleanup any non-standard clones and snapshots. In general,
5233 * ztest thread t operates on dataset (t % zopt_datasets),
5234 * so there may be more than one thing to clean up.
5235 */
5236 for (t = d; t < zopt_threads; t += zopt_datasets)
5237 ztest_dsl_dataset_cleanup(name, t);
5238
5239 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
5240 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
5241 }
5242
5243 static void
5244 ztest_dataset_dirobj_verify(ztest_ds_t *zd)
5245 {
5246 uint64_t usedobjs, dirobjs, scratch;
5247
5248 /*
5249 * ZTEST_DIROBJ is the object directory for the entire dataset.
5250 * Therefore, the number of objects in use should equal the
5251 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
5252 * If not, we have an object leak.
5253 *
5254 * Note that we can only check this in ztest_dataset_open(),
5255 * when the open-context and syncing-context values agree.
5256 * That's because zap_count() returns the open-context value,
5257 * while dmu_objset_space() returns the rootbp fill count.
5258 */
5259 VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
5260 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
5261 ASSERT3U(dirobjs + 1, ==, usedobjs);
5262 }
5263
5264 static int
5265 ztest_dataset_open(ztest_shared_t *zs, int d)
5266 {
5267 ztest_ds_t *zd = &zs->zs_zd[d];
5268 uint64_t committed_seq = zd->zd_seq;
5269 objset_t *os;
5270 zilog_t *zilog;
5271 char name[MAXNAMELEN];
5272 int error;
5273
5274 ztest_dataset_name(name, zs->zs_pool, d);
5275
5276 (void) rw_enter(&zs->zs_name_lock, RW_READER);
5277
5278 error = ztest_dataset_create(name);
5279 if (error == ENOSPC) {
5280 (void) rw_exit(&zs->zs_name_lock);
5281 ztest_record_enospc(FTAG);
5282 return (error);
5283 }
5284 ASSERT(error == 0 || error == EEXIST);
5285
5286 VERIFY3U(dmu_objset_hold(name, zd, &os), ==, 0);
5287 (void) rw_exit(&zs->zs_name_lock);
5288
5289 ztest_zd_init(zd, os);
5290
5291 zilog = zd->zd_zilog;
5292
5293 if (zilog->zl_header->zh_claim_lr_seq != 0 &&
5294 zilog->zl_header->zh_claim_lr_seq < committed_seq)
5295 fatal(0, "missing log records: claimed %llu < committed %llu",
5296 zilog->zl_header->zh_claim_lr_seq, committed_seq);
5297
5298 ztest_dataset_dirobj_verify(zd);
5299
5300 zil_replay(os, zd, ztest_replay_vector);
5301
5302 ztest_dataset_dirobj_verify(zd);
5303
5304 if (zopt_verbose >= 6)
5305 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n",
5306 zd->zd_name,
5307 (u_longlong_t)zilog->zl_parse_blk_count,
5308 (u_longlong_t)zilog->zl_parse_lr_count,
5309 (u_longlong_t)zilog->zl_replaying_seq);
5310
5311 zilog = zil_open(os, ztest_get_data);
5312
5313 if (zilog->zl_replaying_seq != 0 &&
5314 zilog->zl_replaying_seq < committed_seq)
5315 fatal(0, "missing log records: replayed %llu < committed %llu",
5316 zilog->zl_replaying_seq, committed_seq);
5317
5318 return (0);
5319 }
5320
5321 static void
5322 ztest_dataset_close(ztest_shared_t *zs, int d)
5323 {
5324 ztest_ds_t *zd = &zs->zs_zd[d];
5325
5326 zil_close(zd->zd_zilog);
5327 dmu_objset_rele(zd->zd_os, zd);
5328
5329 ztest_zd_fini(zd);
5330 }
5331
5332 /*
5333 * Kick off threads to run tests on all datasets in parallel.
5334 */
5335 static void
5336 ztest_run(ztest_shared_t *zs)
5337 {
5338 kt_did_t *tid;
5339 spa_t *spa;
5340 objset_t *os;
5341 kthread_t *resume_thread;
5342 uint64_t object;
5343 int error;
5344 int t, d;
5345
5346 ztest_exiting = B_FALSE;
5347
5348 /*
5349 * Initialize parent/child shared state.
5350 */
5351 mutex_init(&zs->zs_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
5352 rw_init(&zs->zs_name_lock, NULL, RW_DEFAULT, NULL);
5353
5354 zs->zs_thread_start = gethrtime();
5355 zs->zs_thread_stop = zs->zs_thread_start + zopt_passtime * NANOSEC;
5356 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
5357 zs->zs_thread_kill = zs->zs_thread_stop;
5358 if (ztest_random(100) < zopt_killrate)
5359 zs->zs_thread_kill -= ztest_random(zopt_passtime * NANOSEC);
5360
5361 mutex_init(&zcl.zcl_callbacks_lock, NULL, MUTEX_DEFAULT, NULL);
5362
5363 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
5364 offsetof(ztest_cb_data_t, zcd_node));
5365
5366 /*
5367 * Open our pool.
5368 */
5369 kernel_init(FREAD | FWRITE);
5370 VERIFY(spa_open(zs->zs_pool, &spa, FTAG) == 0);
5371 spa->spa_debug = B_TRUE;
5372 zs->zs_spa = spa;
5373
5374 VERIFY3U(0, ==, dmu_objset_hold(zs->zs_pool, FTAG, &os));
5375 zs->zs_guid = dmu_objset_fsid_guid(os);
5376 dmu_objset_rele(os, FTAG);
5377
5378 spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN;
5379
5380 /*
5381 * We don't expect the pool to suspend unless maxfaults == 0,
5382 * in which case ztest_fault_inject() temporarily takes away
5383 * the only valid replica.
5384 */
5385 if (MAXFAULTS() == 0)
5386 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT;
5387 else
5388 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC;
5389
5390 /*
5391 * Create a thread to periodically resume suspended I/O.
5392 */
5393 VERIFY3P((resume_thread = zk_thread_create(NULL, 0,
5394 (thread_func_t)ztest_resume_thread, spa, TS_RUN, NULL, 0, 0,
5395 PTHREAD_CREATE_JOINABLE)), !=, NULL);
5396
5397 /*
5398 * Set a deadman alarm to abort() if we hang.
5399 */
5400 signal(SIGALRM, ztest_deadman_alarm);
5401 alarm((zs->zs_thread_stop - zs->zs_thread_start) / NANOSEC + GRACE);
5402
5403 /*
5404 * Verify that we can safely inquire about about any object,
5405 * whether it's allocated or not. To make it interesting,
5406 * we probe a 5-wide window around each power of two.
5407 * This hits all edge cases, including zero and the max.
5408 */
5409 for (t = 0; t < 64; t++) {
5410 for (d = -5; d <= 5; d++) {
5411 error = dmu_object_info(spa->spa_meta_objset,
5412 (1ULL << t) + d, NULL);
5413 ASSERT(error == 0 || error == ENOENT ||
5414 error == EINVAL);
5415 }
5416 }
5417
5418 /*
5419 * If we got any ENOSPC errors on the previous run, destroy something.
5420 */
5421 if (zs->zs_enospc_count != 0) {
5422 int d = ztest_random(zopt_datasets);
5423 ztest_dataset_destroy(zs, d);
5424 }
5425 zs->zs_enospc_count = 0;
5426
5427 tid = umem_zalloc(zopt_threads * sizeof (kt_did_t), UMEM_NOFAIL);
5428
5429 if (zopt_verbose >= 4)
5430 (void) printf("starting main threads...\n");
5431
5432 /*
5433 * Kick off all the tests that run in parallel.
5434 */
5435 for (t = 0; t < zopt_threads; t++) {
5436 kthread_t *thread;
5437
5438 if (t < zopt_datasets && ztest_dataset_open(zs, t) != 0)
5439 return;
5440
5441 VERIFY3P(thread = zk_thread_create(NULL, 0,
5442 (thread_func_t)ztest_thread,
5443 (void *)(uintptr_t)t, TS_RUN, NULL, 0, 0,
5444 PTHREAD_CREATE_JOINABLE), !=, NULL);
5445 tid[t] = thread->t_tid;
5446 }
5447
5448 /*
5449 * Wait for all of the tests to complete. We go in reverse order
5450 * so we don't close datasets while threads are still using them.
5451 */
5452 for (t = zopt_threads - 1; t >= 0; t--) {
5453 thread_join(tid[t]);
5454 if (t < zopt_datasets)
5455 ztest_dataset_close(zs, t);
5456 }
5457
5458 txg_wait_synced(spa_get_dsl(spa), 0);
5459
5460 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
5461 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
5462
5463 umem_free(tid, zopt_threads * sizeof (kt_did_t));
5464
5465 /* Kill the resume thread */
5466 ztest_exiting = B_TRUE;
5467 thread_join(resume_thread->t_tid);
5468 ztest_resume(spa);
5469
5470 /*
5471 * Right before closing the pool, kick off a bunch of async I/O;
5472 * spa_close() should wait for it to complete.
5473 */
5474 for (object = 1; object < 50; object++)
5475 dmu_prefetch(spa->spa_meta_objset, object, 0, 1ULL << 20);
5476
5477 /* Verify that at least one commit cb was called in a timely fashion */
5478 if (zc_cb_counter >= ZTEST_COMMIT_CB_MIN_REG)
5479 VERIFY3U(zc_min_txg_delay, ==, 0);
5480
5481 spa_close(spa, FTAG);
5482
5483 /*
5484 * Verify that we can loop over all pools.
5485 */
5486 mutex_enter(&spa_namespace_lock);
5487 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
5488 if (zopt_verbose > 3)
5489 (void) printf("spa_next: found %s\n", spa_name(spa));
5490 mutex_exit(&spa_namespace_lock);
5491
5492 /*
5493 * Verify that we can export the pool and reimport it under a
5494 * different name.
5495 */
5496 if (ztest_random(2) == 0) {
5497 char name[MAXNAMELEN];
5498 (void) snprintf(name, MAXNAMELEN, "%s_import", zs->zs_pool);
5499 ztest_spa_import_export(zs->zs_pool, name);
5500 ztest_spa_import_export(name, zs->zs_pool);
5501 }
5502
5503 kernel_fini();
5504
5505 list_destroy(&zcl.zcl_callbacks);
5506 mutex_destroy(&zcl.zcl_callbacks_lock);
5507 rw_destroy(&zs->zs_name_lock);
5508 mutex_destroy(&zs->zs_vdev_lock);
5509 }
5510
5511 static void
5512 ztest_freeze(ztest_shared_t *zs)
5513 {
5514 ztest_ds_t *zd = &zs->zs_zd[0];
5515 spa_t *spa;
5516 int numloops = 0;
5517
5518 if (zopt_verbose >= 3)
5519 (void) printf("testing spa_freeze()...\n");
5520
5521 kernel_init(FREAD | FWRITE);
5522 VERIFY3U(0, ==, spa_open(zs->zs_pool, &spa, FTAG));
5523 VERIFY3U(0, ==, ztest_dataset_open(zs, 0));
5524
5525 /*
5526 * Force the first log block to be transactionally allocated.
5527 * We have to do this before we freeze the pool -- otherwise
5528 * the log chain won't be anchored.
5529 */
5530 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
5531 ztest_dmu_object_alloc_free(zd, 0);
5532 zil_commit(zd->zd_zilog, 0);
5533 }
5534
5535 txg_wait_synced(spa_get_dsl(spa), 0);
5536
5537 /*
5538 * Freeze the pool. This stops spa_sync() from doing anything,
5539 * so that the only way to record changes from now on is the ZIL.
5540 */
5541 spa_freeze(spa);
5542
5543 /*
5544 * Run tests that generate log records but don't alter the pool config
5545 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
5546 * We do a txg_wait_synced() after each iteration to force the txg
5547 * to increase well beyond the last synced value in the uberblock.
5548 * The ZIL should be OK with that.
5549 */
5550 while (ztest_random(10) != 0 && numloops++ < zopt_maxloops) {
5551 ztest_dmu_write_parallel(zd, 0);
5552 ztest_dmu_object_alloc_free(zd, 0);
5553 txg_wait_synced(spa_get_dsl(spa), 0);
5554 }
5555
5556 /*
5557 * Commit all of the changes we just generated.
5558 */
5559 zil_commit(zd->zd_zilog, 0);
5560 txg_wait_synced(spa_get_dsl(spa), 0);
5561
5562 /*
5563 * Close our dataset and close the pool.
5564 */
5565 ztest_dataset_close(zs, 0);
5566 spa_close(spa, FTAG);
5567 kernel_fini();
5568
5569 /*
5570 * Open and close the pool and dataset to induce log replay.
5571 */
5572 kernel_init(FREAD | FWRITE);
5573 VERIFY3U(0, ==, spa_open(zs->zs_pool, &spa, FTAG));
5574 VERIFY3U(0, ==, ztest_dataset_open(zs, 0));
5575 ztest_dataset_close(zs, 0);
5576 spa_close(spa, FTAG);
5577 kernel_fini();
5578 }
5579
5580 void
5581 print_time(hrtime_t t, char *timebuf)
5582 {
5583 hrtime_t s = t / NANOSEC;
5584 hrtime_t m = s / 60;
5585 hrtime_t h = m / 60;
5586 hrtime_t d = h / 24;
5587
5588 s -= m * 60;
5589 m -= h * 60;
5590 h -= d * 24;
5591
5592 timebuf[0] = '\0';
5593
5594 if (d)
5595 (void) sprintf(timebuf,
5596 "%llud%02lluh%02llum%02llus", d, h, m, s);
5597 else if (h)
5598 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
5599 else if (m)
5600 (void) sprintf(timebuf, "%llum%02llus", m, s);
5601 else
5602 (void) sprintf(timebuf, "%llus", s);
5603 }
5604
5605 static nvlist_t *
5606 make_random_props(void)
5607 {
5608 nvlist_t *props;
5609
5610 if (ztest_random(2) == 0)
5611 return (NULL);
5612
5613 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
5614 VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0);
5615
5616 (void) printf("props:\n");
5617 dump_nvlist(props, 4);
5618
5619 return (props);
5620 }
5621
5622 /*
5623 * Create a storage pool with the given name and initial vdev size.
5624 * Then test spa_freeze() functionality.
5625 */
5626 static void
5627 ztest_init(ztest_shared_t *zs)
5628 {
5629 spa_t *spa;
5630 nvlist_t *nvroot, *props;
5631
5632 mutex_init(&zs->zs_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
5633 rw_init(&zs->zs_name_lock, NULL, RW_DEFAULT, NULL);
5634
5635 kernel_init(FREAD | FWRITE);
5636
5637 /*
5638 * Create the storage pool.
5639 */
5640 (void) spa_destroy(zs->zs_pool);
5641 ztest_shared->zs_vdev_next_leaf = 0;
5642 zs->zs_splits = 0;
5643 zs->zs_mirrors = zopt_mirrors;
5644 nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0,
5645 0, zopt_raidz, zs->zs_mirrors, 1);
5646 props = make_random_props();
5647 VERIFY3U(0, ==, spa_create(zs->zs_pool, nvroot, props, NULL, NULL));
5648 nvlist_free(nvroot);
5649
5650 VERIFY3U(0, ==, spa_open(zs->zs_pool, &spa, FTAG));
5651 metaslab_sz = 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
5652 spa_close(spa, FTAG);
5653
5654 kernel_fini();
5655
5656 ztest_run_zdb(zs->zs_pool);
5657
5658 ztest_freeze(zs);
5659
5660 ztest_run_zdb(zs->zs_pool);
5661
5662 (void) rw_destroy(&zs->zs_name_lock);
5663 (void) mutex_destroy(&zs->zs_vdev_lock);
5664 }
5665
5666 int
5667 main(int argc, char **argv)
5668 {
5669 int kills = 0;
5670 int iters = 0;
5671 ztest_shared_t *zs;
5672 size_t shared_size;
5673 ztest_info_t *zi;
5674 char timebuf[100];
5675 char numbuf[6];
5676 spa_t *spa;
5677 int i, f;
5678
5679 (void) setvbuf(stdout, NULL, _IOLBF, 0);
5680
5681 ztest_random_fd = open("/dev/urandom", O_RDONLY);
5682
5683 dprintf_setup(&argc, argv);
5684 process_options(argc, argv);
5685
5686 /* Override location of zpool.cache */
5687 VERIFY(asprintf((char **)&spa_config_path, "%s/zpool.cache",
5688 zopt_dir) != -1);
5689
5690 /*
5691 * Blow away any existing copy of zpool.cache
5692 */
5693 if (zopt_init != 0)
5694 (void) remove(spa_config_path);
5695
5696 shared_size = sizeof (*zs) + zopt_datasets * sizeof (ztest_ds_t);
5697
5698 zs = ztest_shared = (void *)mmap(0,
5699 P2ROUNDUP(shared_size, getpagesize()),
5700 PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0);
5701
5702 if (zopt_verbose >= 1) {
5703 (void) printf("%llu vdevs, %d datasets, %d threads,"
5704 " %llu seconds...\n",
5705 (u_longlong_t)zopt_vdevs, zopt_datasets, zopt_threads,
5706 (u_longlong_t)zopt_time);
5707 }
5708
5709 /*
5710 * Create and initialize our storage pool.
5711 */
5712 for (i = 1; i <= zopt_init; i++) {
5713 bzero(zs, sizeof (ztest_shared_t));
5714 if (zopt_verbose >= 3 && zopt_init != 1)
5715 (void) printf("ztest_init(), pass %d\n", i);
5716 zs->zs_pool = zopt_pool;
5717 ztest_init(zs);
5718 }
5719
5720 zs->zs_pool = zopt_pool;
5721 zs->zs_proc_start = gethrtime();
5722 zs->zs_proc_stop = zs->zs_proc_start + zopt_time * NANOSEC;
5723
5724 for (f = 0; f < ZTEST_FUNCS; f++) {
5725 zi = &zs->zs_info[f];
5726 *zi = ztest_info[f];
5727 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
5728 zi->zi_call_next = UINT64_MAX;
5729 else
5730 zi->zi_call_next = zs->zs_proc_start +
5731 ztest_random(2 * zi->zi_interval[0] + 1);
5732 }
5733
5734 /*
5735 * Run the tests in a loop. These tests include fault injection
5736 * to verify that self-healing data works, and forced crashes
5737 * to verify that we never lose on-disk consistency.
5738 */
5739 while (gethrtime() < zs->zs_proc_stop) {
5740 int status;
5741 pid_t pid;
5742
5743 /*
5744 * Initialize the workload counters for each function.
5745 */
5746 for (f = 0; f < ZTEST_FUNCS; f++) {
5747 zi = &zs->zs_info[f];
5748 zi->zi_call_count = 0;
5749 zi->zi_call_time = 0;
5750 }
5751
5752 /* Set the allocation switch size */
5753 metaslab_df_alloc_threshold = ztest_random(metaslab_sz / 4) + 1;
5754
5755 pid = fork();
5756
5757 if (pid == -1)
5758 fatal(1, "fork failed");
5759
5760 if (pid == 0) { /* child */
5761 struct rlimit rl = { 1024, 1024 };
5762 (void) setrlimit(RLIMIT_NOFILE, &rl);
5763 (void) enable_extended_FILE_stdio(-1, -1);
5764 ztest_run(zs);
5765 exit(0);
5766 }
5767
5768 while (waitpid(pid, &status, 0) != pid)
5769 continue;
5770
5771 if (WIFEXITED(status)) {
5772 if (WEXITSTATUS(status) != 0) {
5773 (void) fprintf(stderr,
5774 "child exited with code %d\n",
5775 WEXITSTATUS(status));
5776 exit(2);
5777 }
5778 } else if (WIFSIGNALED(status)) {
5779 if (WTERMSIG(status) != SIGKILL) {
5780 (void) fprintf(stderr,
5781 "child died with signal %d\n",
5782 WTERMSIG(status));
5783 exit(3);
5784 }
5785 kills++;
5786 } else {
5787 (void) fprintf(stderr, "something strange happened "
5788 "to child\n");
5789 exit(4);
5790 }
5791
5792 iters++;
5793
5794 if (zopt_verbose >= 1) {
5795 hrtime_t now = gethrtime();
5796
5797 now = MIN(now, zs->zs_proc_stop);
5798 print_time(zs->zs_proc_stop - now, timebuf);
5799 nicenum(zs->zs_space, numbuf);
5800
5801 (void) printf("Pass %3d, %8s, %3llu ENOSPC, "
5802 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
5803 iters,
5804 WIFEXITED(status) ? "Complete" : "SIGKILL",
5805 (u_longlong_t)zs->zs_enospc_count,
5806 100.0 * zs->zs_alloc / zs->zs_space,
5807 numbuf,
5808 100.0 * (now - zs->zs_proc_start) /
5809 (zopt_time * NANOSEC), timebuf);
5810 }
5811
5812 if (zopt_verbose >= 2) {
5813 (void) printf("\nWorkload summary:\n\n");
5814 (void) printf("%7s %9s %s\n",
5815 "Calls", "Time", "Function");
5816 (void) printf("%7s %9s %s\n",
5817 "-----", "----", "--------");
5818 for (f = 0; f < ZTEST_FUNCS; f++) {
5819 Dl_info dli;
5820
5821 zi = &zs->zs_info[f];
5822 print_time(zi->zi_call_time, timebuf);
5823 (void) dladdr((void *)zi->zi_func, &dli);
5824 (void) printf("%7llu %9s %s\n",
5825 (u_longlong_t)zi->zi_call_count, timebuf,
5826 dli.dli_sname);
5827 }
5828 (void) printf("\n");
5829 }
5830
5831 /*
5832 * It's possible that we killed a child during a rename test,
5833 * in which case we'll have a 'ztest_tmp' pool lying around
5834 * instead of 'ztest'. Do a blind rename in case this happened.
5835 */
5836 kernel_init(FREAD);
5837 if (spa_open(zopt_pool, &spa, FTAG) == 0) {
5838 spa_close(spa, FTAG);
5839 } else {
5840 char tmpname[MAXNAMELEN];
5841 kernel_fini();
5842 kernel_init(FREAD | FWRITE);
5843 (void) snprintf(tmpname, sizeof (tmpname), "%s_tmp",
5844 zopt_pool);
5845 (void) spa_rename(tmpname, zopt_pool);
5846 }
5847 kernel_fini();
5848
5849 ztest_run_zdb(zopt_pool);
5850 }
5851
5852 if (zopt_verbose >= 1) {
5853 (void) printf("%d killed, %d completed, %.0f%% kill rate\n",
5854 kills, iters - kills, (100.0 * kills) / MAX(1, iters));
5855 }
5856
5857 return (0);
5858 }