]> git.proxmox.com Git - mirror_zfs.git/blob - cmd/ztest/ztest.c
Remove bcopy(), bzero(), bcmp()
[mirror_zfs.git] / cmd / ztest / ztest.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2013 Steven Hartland. All rights reserved.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2017 Joyent, Inc.
28 * Copyright (c) 2017, Intel Corporation.
29 */
30
31 /*
32 * The objective of this program is to provide a DMU/ZAP/SPA stress test
33 * that runs entirely in userland, is easy to use, and easy to extend.
34 *
35 * The overall design of the ztest program is as follows:
36 *
37 * (1) For each major functional area (e.g. adding vdevs to a pool,
38 * creating and destroying datasets, reading and writing objects, etc)
39 * we have a simple routine to test that functionality. These
40 * individual routines do not have to do anything "stressful".
41 *
42 * (2) We turn these simple functionality tests into a stress test by
43 * running them all in parallel, with as many threads as desired,
44 * and spread across as many datasets, objects, and vdevs as desired.
45 *
46 * (3) While all this is happening, we inject faults into the pool to
47 * verify that self-healing data really works.
48 *
49 * (4) Every time we open a dataset, we change its checksum and compression
50 * functions. Thus even individual objects vary from block to block
51 * in which checksum they use and whether they're compressed.
52 *
53 * (5) To verify that we never lose on-disk consistency after a crash,
54 * we run the entire test in a child of the main process.
55 * At random times, the child self-immolates with a SIGKILL.
56 * This is the software equivalent of pulling the power cord.
57 * The parent then runs the test again, using the existing
58 * storage pool, as many times as desired. If backwards compatibility
59 * testing is enabled ztest will sometimes run the "older" version
60 * of ztest after a SIGKILL.
61 *
62 * (6) To verify that we don't have future leaks or temporal incursions,
63 * many of the functional tests record the transaction group number
64 * as part of their data. When reading old data, they verify that
65 * the transaction group number is less than the current, open txg.
66 * If you add a new test, please do this if applicable.
67 *
68 * (7) Threads are created with a reduced stack size, for sanity checking.
69 * Therefore, it's important not to allocate huge buffers on the stack.
70 *
71 * When run with no arguments, ztest runs for about five minutes and
72 * produces no output if successful. To get a little bit of information,
73 * specify -V. To get more information, specify -VV, and so on.
74 *
75 * To turn this into an overnight stress test, use -T to specify run time.
76 *
77 * You can ask more vdevs [-v], datasets [-d], or threads [-t]
78 * to increase the pool capacity, fanout, and overall stress level.
79 *
80 * Use the -k option to set the desired frequency of kills.
81 *
82 * When ztest invokes itself it passes all relevant information through a
83 * temporary file which is mmap-ed in the child process. This allows shared
84 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
85 * stored at offset 0 of this file and contains information on the size and
86 * number of shared structures in the file. The information stored in this file
87 * must remain backwards compatible with older versions of ztest so that
88 * ztest can invoke them during backwards compatibility testing (-B).
89 */
90
91 #include <sys/zfs_context.h>
92 #include <sys/spa.h>
93 #include <sys/dmu.h>
94 #include <sys/txg.h>
95 #include <sys/dbuf.h>
96 #include <sys/zap.h>
97 #include <sys/dmu_objset.h>
98 #include <sys/poll.h>
99 #include <sys/stat.h>
100 #include <sys/time.h>
101 #include <sys/wait.h>
102 #include <sys/mman.h>
103 #include <sys/resource.h>
104 #include <sys/zio.h>
105 #include <sys/zil.h>
106 #include <sys/zil_impl.h>
107 #include <sys/vdev_draid.h>
108 #include <sys/vdev_impl.h>
109 #include <sys/vdev_file.h>
110 #include <sys/vdev_initialize.h>
111 #include <sys/vdev_raidz.h>
112 #include <sys/vdev_trim.h>
113 #include <sys/spa_impl.h>
114 #include <sys/metaslab_impl.h>
115 #include <sys/dsl_prop.h>
116 #include <sys/dsl_dataset.h>
117 #include <sys/dsl_destroy.h>
118 #include <sys/dsl_scan.h>
119 #include <sys/zio_checksum.h>
120 #include <sys/zfs_refcount.h>
121 #include <sys/zfeature.h>
122 #include <sys/dsl_userhold.h>
123 #include <sys/abd.h>
124 #include <stdio.h>
125 #include <stdlib.h>
126 #include <unistd.h>
127 #include <getopt.h>
128 #include <signal.h>
129 #include <umem.h>
130 #include <ctype.h>
131 #include <math.h>
132 #include <sys/fs/zfs.h>
133 #include <zfs_fletcher.h>
134 #include <libnvpair.h>
135 #include <libzutil.h>
136 #include <sys/crypto/icp.h>
137 #if (__GLIBC__ && !__UCLIBC__)
138 #include <execinfo.h> /* for backtrace() */
139 #endif
140
141 static int ztest_fd_data = -1;
142 static int ztest_fd_rand = -1;
143
144 typedef struct ztest_shared_hdr {
145 uint64_t zh_hdr_size;
146 uint64_t zh_opts_size;
147 uint64_t zh_size;
148 uint64_t zh_stats_size;
149 uint64_t zh_stats_count;
150 uint64_t zh_ds_size;
151 uint64_t zh_ds_count;
152 } ztest_shared_hdr_t;
153
154 static ztest_shared_hdr_t *ztest_shared_hdr;
155
156 enum ztest_class_state {
157 ZTEST_VDEV_CLASS_OFF,
158 ZTEST_VDEV_CLASS_ON,
159 ZTEST_VDEV_CLASS_RND
160 };
161
162 #define ZO_GVARS_MAX_ARGLEN ((size_t)64)
163 #define ZO_GVARS_MAX_COUNT ((size_t)10)
164
165 typedef struct ztest_shared_opts {
166 char zo_pool[ZFS_MAX_DATASET_NAME_LEN];
167 char zo_dir[ZFS_MAX_DATASET_NAME_LEN];
168 char zo_alt_ztest[MAXNAMELEN];
169 char zo_alt_libpath[MAXNAMELEN];
170 uint64_t zo_vdevs;
171 uint64_t zo_vdevtime;
172 size_t zo_vdev_size;
173 int zo_ashift;
174 int zo_mirrors;
175 int zo_raid_children;
176 int zo_raid_parity;
177 char zo_raid_type[8];
178 int zo_draid_data;
179 int zo_draid_spares;
180 int zo_datasets;
181 int zo_threads;
182 uint64_t zo_passtime;
183 uint64_t zo_killrate;
184 int zo_verbose;
185 int zo_init;
186 uint64_t zo_time;
187 uint64_t zo_maxloops;
188 uint64_t zo_metaslab_force_ganging;
189 int zo_mmp_test;
190 int zo_special_vdevs;
191 int zo_dump_dbgmsg;
192 int zo_gvars_count;
193 char zo_gvars[ZO_GVARS_MAX_COUNT][ZO_GVARS_MAX_ARGLEN];
194 } ztest_shared_opts_t;
195
196 /* Default values for command line options. */
197 #define DEFAULT_POOL "ztest"
198 #define DEFAULT_VDEV_DIR "/tmp"
199 #define DEFAULT_VDEV_COUNT 5
200 #define DEFAULT_VDEV_SIZE (SPA_MINDEVSIZE * 4) /* 256m default size */
201 #define DEFAULT_VDEV_SIZE_STR "256M"
202 #define DEFAULT_ASHIFT SPA_MINBLOCKSHIFT
203 #define DEFAULT_MIRRORS 2
204 #define DEFAULT_RAID_CHILDREN 4
205 #define DEFAULT_RAID_PARITY 1
206 #define DEFAULT_DRAID_DATA 4
207 #define DEFAULT_DRAID_SPARES 1
208 #define DEFAULT_DATASETS_COUNT 7
209 #define DEFAULT_THREADS 23
210 #define DEFAULT_RUN_TIME 300 /* 300 seconds */
211 #define DEFAULT_RUN_TIME_STR "300 sec"
212 #define DEFAULT_PASS_TIME 60 /* 60 seconds */
213 #define DEFAULT_PASS_TIME_STR "60 sec"
214 #define DEFAULT_KILL_RATE 70 /* 70% kill rate */
215 #define DEFAULT_KILLRATE_STR "70%"
216 #define DEFAULT_INITS 1
217 #define DEFAULT_MAX_LOOPS 50 /* 5 minutes */
218 #define DEFAULT_FORCE_GANGING (64 << 10)
219 #define DEFAULT_FORCE_GANGING_STR "64K"
220
221 /* Simplifying assumption: -1 is not a valid default. */
222 #define NO_DEFAULT -1
223
224 static const ztest_shared_opts_t ztest_opts_defaults = {
225 .zo_pool = DEFAULT_POOL,
226 .zo_dir = DEFAULT_VDEV_DIR,
227 .zo_alt_ztest = { '\0' },
228 .zo_alt_libpath = { '\0' },
229 .zo_vdevs = DEFAULT_VDEV_COUNT,
230 .zo_ashift = DEFAULT_ASHIFT,
231 .zo_mirrors = DEFAULT_MIRRORS,
232 .zo_raid_children = DEFAULT_RAID_CHILDREN,
233 .zo_raid_parity = DEFAULT_RAID_PARITY,
234 .zo_raid_type = VDEV_TYPE_RAIDZ,
235 .zo_vdev_size = DEFAULT_VDEV_SIZE,
236 .zo_draid_data = DEFAULT_DRAID_DATA, /* data drives */
237 .zo_draid_spares = DEFAULT_DRAID_SPARES, /* distributed spares */
238 .zo_datasets = DEFAULT_DATASETS_COUNT,
239 .zo_threads = DEFAULT_THREADS,
240 .zo_passtime = DEFAULT_PASS_TIME,
241 .zo_killrate = DEFAULT_KILL_RATE,
242 .zo_verbose = 0,
243 .zo_mmp_test = 0,
244 .zo_init = DEFAULT_INITS,
245 .zo_time = DEFAULT_RUN_TIME,
246 .zo_maxloops = DEFAULT_MAX_LOOPS, /* max loops during spa_freeze() */
247 .zo_metaslab_force_ganging = DEFAULT_FORCE_GANGING,
248 .zo_special_vdevs = ZTEST_VDEV_CLASS_RND,
249 .zo_gvars_count = 0,
250 };
251
252 extern uint64_t metaslab_force_ganging;
253 extern uint64_t metaslab_df_alloc_threshold;
254 extern unsigned long zfs_deadman_synctime_ms;
255 extern int metaslab_preload_limit;
256 extern int zfs_compressed_arc_enabled;
257 extern int zfs_abd_scatter_enabled;
258 extern int dmu_object_alloc_chunk_shift;
259 extern boolean_t zfs_force_some_double_word_sm_entries;
260 extern unsigned long zio_decompress_fail_fraction;
261 extern unsigned long zfs_reconstruct_indirect_damage_fraction;
262
263
264 static ztest_shared_opts_t *ztest_shared_opts;
265 static ztest_shared_opts_t ztest_opts;
266 static char *ztest_wkeydata = "abcdefghijklmnopqrstuvwxyz012345";
267
268 typedef struct ztest_shared_ds {
269 uint64_t zd_seq;
270 } ztest_shared_ds_t;
271
272 static ztest_shared_ds_t *ztest_shared_ds;
273 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
274
275 #define BT_MAGIC 0x123456789abcdefULL
276 #define MAXFAULTS(zs) \
277 (MAX((zs)->zs_mirrors, 1) * (ztest_opts.zo_raid_parity + 1) - 1)
278
279 enum ztest_io_type {
280 ZTEST_IO_WRITE_TAG,
281 ZTEST_IO_WRITE_PATTERN,
282 ZTEST_IO_WRITE_ZEROES,
283 ZTEST_IO_TRUNCATE,
284 ZTEST_IO_SETATTR,
285 ZTEST_IO_REWRITE,
286 ZTEST_IO_TYPES
287 };
288
289 typedef struct ztest_block_tag {
290 uint64_t bt_magic;
291 uint64_t bt_objset;
292 uint64_t bt_object;
293 uint64_t bt_dnodesize;
294 uint64_t bt_offset;
295 uint64_t bt_gen;
296 uint64_t bt_txg;
297 uint64_t bt_crtxg;
298 } ztest_block_tag_t;
299
300 typedef struct bufwad {
301 uint64_t bw_index;
302 uint64_t bw_txg;
303 uint64_t bw_data;
304 } bufwad_t;
305
306 /*
307 * It would be better to use a rangelock_t per object. Unfortunately
308 * the rangelock_t is not a drop-in replacement for rl_t, because we
309 * still need to map from object ID to rangelock_t.
310 */
311 typedef enum {
312 RL_READER,
313 RL_WRITER,
314 RL_APPEND
315 } rl_type_t;
316
317 typedef struct rll {
318 void *rll_writer;
319 int rll_readers;
320 kmutex_t rll_lock;
321 kcondvar_t rll_cv;
322 } rll_t;
323
324 typedef struct rl {
325 uint64_t rl_object;
326 uint64_t rl_offset;
327 uint64_t rl_size;
328 rll_t *rl_lock;
329 } rl_t;
330
331 #define ZTEST_RANGE_LOCKS 64
332 #define ZTEST_OBJECT_LOCKS 64
333
334 /*
335 * Object descriptor. Used as a template for object lookup/create/remove.
336 */
337 typedef struct ztest_od {
338 uint64_t od_dir;
339 uint64_t od_object;
340 dmu_object_type_t od_type;
341 dmu_object_type_t od_crtype;
342 uint64_t od_blocksize;
343 uint64_t od_crblocksize;
344 uint64_t od_crdnodesize;
345 uint64_t od_gen;
346 uint64_t od_crgen;
347 char od_name[ZFS_MAX_DATASET_NAME_LEN];
348 } ztest_od_t;
349
350 /*
351 * Per-dataset state.
352 */
353 typedef struct ztest_ds {
354 ztest_shared_ds_t *zd_shared;
355 objset_t *zd_os;
356 pthread_rwlock_t zd_zilog_lock;
357 zilog_t *zd_zilog;
358 ztest_od_t *zd_od; /* debugging aid */
359 char zd_name[ZFS_MAX_DATASET_NAME_LEN];
360 kmutex_t zd_dirobj_lock;
361 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS];
362 rll_t zd_range_lock[ZTEST_RANGE_LOCKS];
363 } ztest_ds_t;
364
365 /*
366 * Per-iteration state.
367 */
368 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
369
370 typedef struct ztest_info {
371 ztest_func_t *zi_func; /* test function */
372 uint64_t zi_iters; /* iterations per execution */
373 uint64_t *zi_interval; /* execute every <interval> seconds */
374 const char *zi_funcname; /* name of test function */
375 } ztest_info_t;
376
377 typedef struct ztest_shared_callstate {
378 uint64_t zc_count; /* per-pass count */
379 uint64_t zc_time; /* per-pass time */
380 uint64_t zc_next; /* next time to call this function */
381 } ztest_shared_callstate_t;
382
383 static ztest_shared_callstate_t *ztest_shared_callstate;
384 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
385
386 ztest_func_t ztest_dmu_read_write;
387 ztest_func_t ztest_dmu_write_parallel;
388 ztest_func_t ztest_dmu_object_alloc_free;
389 ztest_func_t ztest_dmu_object_next_chunk;
390 ztest_func_t ztest_dmu_commit_callbacks;
391 ztest_func_t ztest_zap;
392 ztest_func_t ztest_zap_parallel;
393 ztest_func_t ztest_zil_commit;
394 ztest_func_t ztest_zil_remount;
395 ztest_func_t ztest_dmu_read_write_zcopy;
396 ztest_func_t ztest_dmu_objset_create_destroy;
397 ztest_func_t ztest_dmu_prealloc;
398 ztest_func_t ztest_fzap;
399 ztest_func_t ztest_dmu_snapshot_create_destroy;
400 ztest_func_t ztest_dsl_prop_get_set;
401 ztest_func_t ztest_spa_prop_get_set;
402 ztest_func_t ztest_spa_create_destroy;
403 ztest_func_t ztest_fault_inject;
404 ztest_func_t ztest_dmu_snapshot_hold;
405 ztest_func_t ztest_mmp_enable_disable;
406 ztest_func_t ztest_scrub;
407 ztest_func_t ztest_dsl_dataset_promote_busy;
408 ztest_func_t ztest_vdev_attach_detach;
409 ztest_func_t ztest_vdev_LUN_growth;
410 ztest_func_t ztest_vdev_add_remove;
411 ztest_func_t ztest_vdev_class_add;
412 ztest_func_t ztest_vdev_aux_add_remove;
413 ztest_func_t ztest_split_pool;
414 ztest_func_t ztest_reguid;
415 ztest_func_t ztest_spa_upgrade;
416 ztest_func_t ztest_device_removal;
417 ztest_func_t ztest_spa_checkpoint_create_discard;
418 ztest_func_t ztest_initialize;
419 ztest_func_t ztest_trim;
420 ztest_func_t ztest_fletcher;
421 ztest_func_t ztest_fletcher_incr;
422 ztest_func_t ztest_verify_dnode_bt;
423
424 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */
425 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */
426 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */
427 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */
428 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */
429
430 #define ZTI_INIT(func, iters, interval) \
431 { .zi_func = (func), \
432 .zi_iters = (iters), \
433 .zi_interval = (interval), \
434 .zi_funcname = # func }
435
436 ztest_info_t ztest_info[] = {
437 ZTI_INIT(ztest_dmu_read_write, 1, &zopt_always),
438 ZTI_INIT(ztest_dmu_write_parallel, 10, &zopt_always),
439 ZTI_INIT(ztest_dmu_object_alloc_free, 1, &zopt_always),
440 ZTI_INIT(ztest_dmu_object_next_chunk, 1, &zopt_sometimes),
441 ZTI_INIT(ztest_dmu_commit_callbacks, 1, &zopt_always),
442 ZTI_INIT(ztest_zap, 30, &zopt_always),
443 ZTI_INIT(ztest_zap_parallel, 100, &zopt_always),
444 ZTI_INIT(ztest_split_pool, 1, &zopt_always),
445 ZTI_INIT(ztest_zil_commit, 1, &zopt_incessant),
446 ZTI_INIT(ztest_zil_remount, 1, &zopt_sometimes),
447 ZTI_INIT(ztest_dmu_read_write_zcopy, 1, &zopt_often),
448 ZTI_INIT(ztest_dmu_objset_create_destroy, 1, &zopt_often),
449 ZTI_INIT(ztest_dsl_prop_get_set, 1, &zopt_often),
450 ZTI_INIT(ztest_spa_prop_get_set, 1, &zopt_sometimes),
451 #if 0
452 ZTI_INIT(ztest_dmu_prealloc, 1, &zopt_sometimes),
453 #endif
454 ZTI_INIT(ztest_fzap, 1, &zopt_sometimes),
455 ZTI_INIT(ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes),
456 ZTI_INIT(ztest_spa_create_destroy, 1, &zopt_sometimes),
457 ZTI_INIT(ztest_fault_inject, 1, &zopt_sometimes),
458 ZTI_INIT(ztest_dmu_snapshot_hold, 1, &zopt_sometimes),
459 ZTI_INIT(ztest_mmp_enable_disable, 1, &zopt_sometimes),
460 ZTI_INIT(ztest_reguid, 1, &zopt_rarely),
461 ZTI_INIT(ztest_scrub, 1, &zopt_rarely),
462 ZTI_INIT(ztest_spa_upgrade, 1, &zopt_rarely),
463 ZTI_INIT(ztest_dsl_dataset_promote_busy, 1, &zopt_rarely),
464 ZTI_INIT(ztest_vdev_attach_detach, 1, &zopt_sometimes),
465 ZTI_INIT(ztest_vdev_LUN_growth, 1, &zopt_rarely),
466 ZTI_INIT(ztest_vdev_add_remove, 1, &ztest_opts.zo_vdevtime),
467 ZTI_INIT(ztest_vdev_class_add, 1, &ztest_opts.zo_vdevtime),
468 ZTI_INIT(ztest_vdev_aux_add_remove, 1, &ztest_opts.zo_vdevtime),
469 ZTI_INIT(ztest_device_removal, 1, &zopt_sometimes),
470 ZTI_INIT(ztest_spa_checkpoint_create_discard, 1, &zopt_rarely),
471 ZTI_INIT(ztest_initialize, 1, &zopt_sometimes),
472 ZTI_INIT(ztest_trim, 1, &zopt_sometimes),
473 ZTI_INIT(ztest_fletcher, 1, &zopt_rarely),
474 ZTI_INIT(ztest_fletcher_incr, 1, &zopt_rarely),
475 ZTI_INIT(ztest_verify_dnode_bt, 1, &zopt_sometimes),
476 };
477
478 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t))
479
480 /*
481 * The following struct is used to hold a list of uncalled commit callbacks.
482 * The callbacks are ordered by txg number.
483 */
484 typedef struct ztest_cb_list {
485 kmutex_t zcl_callbacks_lock;
486 list_t zcl_callbacks;
487 } ztest_cb_list_t;
488
489 /*
490 * Stuff we need to share writably between parent and child.
491 */
492 typedef struct ztest_shared {
493 boolean_t zs_do_init;
494 hrtime_t zs_proc_start;
495 hrtime_t zs_proc_stop;
496 hrtime_t zs_thread_start;
497 hrtime_t zs_thread_stop;
498 hrtime_t zs_thread_kill;
499 uint64_t zs_enospc_count;
500 uint64_t zs_vdev_next_leaf;
501 uint64_t zs_vdev_aux;
502 uint64_t zs_alloc;
503 uint64_t zs_space;
504 uint64_t zs_splits;
505 uint64_t zs_mirrors;
506 uint64_t zs_metaslab_sz;
507 uint64_t zs_metaslab_df_alloc_threshold;
508 uint64_t zs_guid;
509 } ztest_shared_t;
510
511 #define ID_PARALLEL -1ULL
512
513 static char ztest_dev_template[] = "%s/%s.%llua";
514 static char ztest_aux_template[] = "%s/%s.%s.%llu";
515 ztest_shared_t *ztest_shared;
516
517 static spa_t *ztest_spa = NULL;
518 static ztest_ds_t *ztest_ds;
519
520 static kmutex_t ztest_vdev_lock;
521 static boolean_t ztest_device_removal_active = B_FALSE;
522 static boolean_t ztest_pool_scrubbed = B_FALSE;
523 static kmutex_t ztest_checkpoint_lock;
524
525 /*
526 * The ztest_name_lock protects the pool and dataset namespace used by
527 * the individual tests. To modify the namespace, consumers must grab
528 * this lock as writer. Grabbing the lock as reader will ensure that the
529 * namespace does not change while the lock is held.
530 */
531 static pthread_rwlock_t ztest_name_lock;
532
533 static boolean_t ztest_dump_core = B_TRUE;
534 static boolean_t ztest_exiting;
535
536 /* Global commit callback list */
537 static ztest_cb_list_t zcl;
538 /* Commit cb delay */
539 static uint64_t zc_min_txg_delay = UINT64_MAX;
540 static int zc_cb_counter = 0;
541
542 /*
543 * Minimum number of commit callbacks that need to be registered for us to check
544 * whether the minimum txg delay is acceptable.
545 */
546 #define ZTEST_COMMIT_CB_MIN_REG 100
547
548 /*
549 * If a number of txgs equal to this threshold have been created after a commit
550 * callback has been registered but not called, then we assume there is an
551 * implementation bug.
552 */
553 #define ZTEST_COMMIT_CB_THRESH (TXG_CONCURRENT_STATES + 1000)
554
555 enum ztest_object {
556 ZTEST_META_DNODE = 0,
557 ZTEST_DIROBJ,
558 ZTEST_OBJECTS
559 };
560
561 static _Noreturn void usage(boolean_t);
562 static int ztest_scrub_impl(spa_t *spa);
563
564 /*
565 * These libumem hooks provide a reasonable set of defaults for the allocator's
566 * debugging facilities.
567 */
568 const char *
569 _umem_debug_init(void)
570 {
571 return ("default,verbose"); /* $UMEM_DEBUG setting */
572 }
573
574 const char *
575 _umem_logging_init(void)
576 {
577 return ("fail,contents"); /* $UMEM_LOGGING setting */
578 }
579
580 static void
581 dump_debug_buffer(void)
582 {
583 ssize_t ret __attribute__((unused));
584
585 if (!ztest_opts.zo_dump_dbgmsg)
586 return;
587
588 /*
589 * We use write() instead of printf() so that this function
590 * is safe to call from a signal handler.
591 */
592 ret = write(STDOUT_FILENO, "\n", 1);
593 zfs_dbgmsg_print("ztest");
594 }
595
596 #define BACKTRACE_SZ 100
597
598 static void sig_handler(int signo)
599 {
600 struct sigaction action;
601 #if (__GLIBC__ && !__UCLIBC__) /* backtrace() is a GNU extension */
602 int nptrs;
603 void *buffer[BACKTRACE_SZ];
604
605 nptrs = backtrace(buffer, BACKTRACE_SZ);
606 backtrace_symbols_fd(buffer, nptrs, STDERR_FILENO);
607 #endif
608 dump_debug_buffer();
609
610 /*
611 * Restore default action and re-raise signal so SIGSEGV and
612 * SIGABRT can trigger a core dump.
613 */
614 action.sa_handler = SIG_DFL;
615 sigemptyset(&action.sa_mask);
616 action.sa_flags = 0;
617 (void) sigaction(signo, &action, NULL);
618 raise(signo);
619 }
620
621 #define FATAL_MSG_SZ 1024
622
623 char *fatal_msg;
624
625 static __attribute__((format(printf, 2, 3))) _Noreturn void
626 fatal(int do_perror, char *message, ...)
627 {
628 va_list args;
629 int save_errno = errno;
630 char *buf;
631
632 (void) fflush(stdout);
633 buf = umem_alloc(FATAL_MSG_SZ, UMEM_NOFAIL);
634 if (buf == NULL)
635 goto out;
636
637 va_start(args, message);
638 (void) sprintf(buf, "ztest: ");
639 /* LINTED */
640 (void) vsprintf(buf + strlen(buf), message, args);
641 va_end(args);
642 if (do_perror) {
643 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
644 ": %s", strerror(save_errno));
645 }
646 (void) fprintf(stderr, "%s\n", buf);
647 fatal_msg = buf; /* to ease debugging */
648
649 out:
650 if (ztest_dump_core)
651 abort();
652 else
653 dump_debug_buffer();
654
655 exit(3);
656 }
657
658 static int
659 str2shift(const char *buf)
660 {
661 const char *ends = "BKMGTPEZ";
662 int i;
663
664 if (buf[0] == '\0')
665 return (0);
666 for (i = 0; i < strlen(ends); i++) {
667 if (toupper(buf[0]) == ends[i])
668 break;
669 }
670 if (i == strlen(ends)) {
671 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
672 buf);
673 usage(B_FALSE);
674 }
675 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
676 return (10*i);
677 }
678 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
679 usage(B_FALSE);
680 }
681
682 static uint64_t
683 nicenumtoull(const char *buf)
684 {
685 char *end;
686 uint64_t val;
687
688 val = strtoull(buf, &end, 0);
689 if (end == buf) {
690 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
691 usage(B_FALSE);
692 } else if (end[0] == '.') {
693 double fval = strtod(buf, &end);
694 fval *= pow(2, str2shift(end));
695 /*
696 * UINT64_MAX is not exactly representable as a double.
697 * The closest representation is UINT64_MAX + 1, so we
698 * use a >= comparison instead of > for the bounds check.
699 */
700 if (fval >= (double)UINT64_MAX) {
701 (void) fprintf(stderr, "ztest: value too large: %s\n",
702 buf);
703 usage(B_FALSE);
704 }
705 val = (uint64_t)fval;
706 } else {
707 int shift = str2shift(end);
708 if (shift >= 64 || (val << shift) >> shift != val) {
709 (void) fprintf(stderr, "ztest: value too large: %s\n",
710 buf);
711 usage(B_FALSE);
712 }
713 val <<= shift;
714 }
715 return (val);
716 }
717
718 typedef struct ztest_option {
719 const char short_opt;
720 const char *long_opt;
721 const char *long_opt_param;
722 const char *comment;
723 unsigned int default_int;
724 char *default_str;
725 } ztest_option_t;
726
727 /*
728 * The following option_table is used for generating the usage info as well as
729 * the long and short option information for calling getopt_long().
730 */
731 static ztest_option_t option_table[] = {
732 { 'v', "vdevs", "INTEGER", "Number of vdevs", DEFAULT_VDEV_COUNT,
733 NULL},
734 { 's', "vdev-size", "INTEGER", "Size of each vdev",
735 NO_DEFAULT, DEFAULT_VDEV_SIZE_STR},
736 { 'a', "alignment-shift", "INTEGER",
737 "Alignment shift; use 0 for random", DEFAULT_ASHIFT, NULL},
738 { 'm', "mirror-copies", "INTEGER", "Number of mirror copies",
739 DEFAULT_MIRRORS, NULL},
740 { 'r', "raid-disks", "INTEGER", "Number of raidz/draid disks",
741 DEFAULT_RAID_CHILDREN, NULL},
742 { 'R', "raid-parity", "INTEGER", "Raid parity",
743 DEFAULT_RAID_PARITY, NULL},
744 { 'K', "raid-kind", "raidz|draid|random", "Raid kind",
745 NO_DEFAULT, "random"},
746 { 'D', "draid-data", "INTEGER", "Number of draid data drives",
747 DEFAULT_DRAID_DATA, NULL},
748 { 'S', "draid-spares", "INTEGER", "Number of draid spares",
749 DEFAULT_DRAID_SPARES, NULL},
750 { 'd', "datasets", "INTEGER", "Number of datasets",
751 DEFAULT_DATASETS_COUNT, NULL},
752 { 't', "threads", "INTEGER", "Number of ztest threads",
753 DEFAULT_THREADS, NULL},
754 { 'g', "gang-block-threshold", "INTEGER",
755 "Metaslab gang block threshold",
756 NO_DEFAULT, DEFAULT_FORCE_GANGING_STR},
757 { 'i', "init-count", "INTEGER", "Number of times to initialize pool",
758 DEFAULT_INITS, NULL},
759 { 'k', "kill-percentage", "INTEGER", "Kill percentage",
760 NO_DEFAULT, DEFAULT_KILLRATE_STR},
761 { 'p', "pool-name", "STRING", "Pool name",
762 NO_DEFAULT, DEFAULT_POOL},
763 { 'f', "vdev-file-directory", "PATH", "File directory for vdev files",
764 NO_DEFAULT, DEFAULT_VDEV_DIR},
765 { 'M', "multi-host", NULL,
766 "Multi-host; simulate pool imported on remote host",
767 NO_DEFAULT, NULL},
768 { 'E', "use-existing-pool", NULL,
769 "Use existing pool instead of creating new one", NO_DEFAULT, NULL},
770 { 'T', "run-time", "INTEGER", "Total run time",
771 NO_DEFAULT, DEFAULT_RUN_TIME_STR},
772 { 'P', "pass-time", "INTEGER", "Time per pass",
773 NO_DEFAULT, DEFAULT_PASS_TIME_STR},
774 { 'F', "freeze-loops", "INTEGER", "Max loops in spa_freeze()",
775 DEFAULT_MAX_LOOPS, NULL},
776 { 'B', "alt-ztest", "PATH", "Alternate ztest path",
777 NO_DEFAULT, NULL},
778 { 'C', "vdev-class-state", "on|off|random", "vdev class state",
779 NO_DEFAULT, "random"},
780 { 'o', "option", "\"OPTION=INTEGER\"",
781 "Set global variable to an unsigned 32-bit integer value",
782 NO_DEFAULT, NULL},
783 { 'G', "dump-debug-msg", NULL,
784 "Dump zfs_dbgmsg buffer before exiting due to an error",
785 NO_DEFAULT, NULL},
786 { 'V', "verbose", NULL,
787 "Verbose (use multiple times for ever more verbosity)",
788 NO_DEFAULT, NULL},
789 { 'h', "help", NULL, "Show this help",
790 NO_DEFAULT, NULL},
791 {0, 0, 0, 0, 0, 0}
792 };
793
794 static struct option *long_opts = NULL;
795 static char *short_opts = NULL;
796
797 static void
798 init_options(void)
799 {
800 ASSERT3P(long_opts, ==, NULL);
801 ASSERT3P(short_opts, ==, NULL);
802
803 int count = sizeof (option_table) / sizeof (option_table[0]);
804 long_opts = umem_alloc(sizeof (struct option) * count, UMEM_NOFAIL);
805
806 short_opts = umem_alloc(sizeof (char) * 2 * count, UMEM_NOFAIL);
807 int short_opt_index = 0;
808
809 for (int i = 0; i < count; i++) {
810 long_opts[i].val = option_table[i].short_opt;
811 long_opts[i].name = option_table[i].long_opt;
812 long_opts[i].has_arg = option_table[i].long_opt_param != NULL
813 ? required_argument : no_argument;
814 long_opts[i].flag = NULL;
815 short_opts[short_opt_index++] = option_table[i].short_opt;
816 if (option_table[i].long_opt_param != NULL) {
817 short_opts[short_opt_index++] = ':';
818 }
819 }
820 }
821
822 static void
823 fini_options(void)
824 {
825 int count = sizeof (option_table) / sizeof (option_table[0]);
826
827 umem_free(long_opts, sizeof (struct option) * count);
828 umem_free(short_opts, sizeof (char) * 2 * count);
829
830 long_opts = NULL;
831 short_opts = NULL;
832 }
833
834 static void
835 usage(boolean_t requested)
836 {
837 char option[80];
838 FILE *fp = requested ? stdout : stderr;
839
840 (void) fprintf(fp, "Usage: %s [OPTIONS...]\n", DEFAULT_POOL);
841 for (int i = 0; option_table[i].short_opt != 0; i++) {
842 if (option_table[i].long_opt_param != NULL) {
843 (void) sprintf(option, " -%c --%s=%s",
844 option_table[i].short_opt,
845 option_table[i].long_opt,
846 option_table[i].long_opt_param);
847 } else {
848 (void) sprintf(option, " -%c --%s",
849 option_table[i].short_opt,
850 option_table[i].long_opt);
851 }
852 (void) fprintf(fp, " %-40s%s", option,
853 option_table[i].comment);
854
855 if (option_table[i].long_opt_param != NULL) {
856 if (option_table[i].default_str != NULL) {
857 (void) fprintf(fp, " (default: %s)",
858 option_table[i].default_str);
859 } else if (option_table[i].default_int != NO_DEFAULT) {
860 (void) fprintf(fp, " (default: %u)",
861 option_table[i].default_int);
862 }
863 }
864 (void) fprintf(fp, "\n");
865 }
866 exit(requested ? 0 : 1);
867 }
868
869 static uint64_t
870 ztest_random(uint64_t range)
871 {
872 uint64_t r;
873
874 ASSERT3S(ztest_fd_rand, >=, 0);
875
876 if (range == 0)
877 return (0);
878
879 if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r))
880 fatal(B_TRUE, "short read from /dev/urandom");
881
882 return (r % range);
883 }
884
885 static void
886 ztest_parse_name_value(const char *input, ztest_shared_opts_t *zo)
887 {
888 char name[32];
889 char *value;
890 int state = ZTEST_VDEV_CLASS_RND;
891
892 (void) strlcpy(name, input, sizeof (name));
893
894 value = strchr(name, '=');
895 if (value == NULL) {
896 (void) fprintf(stderr, "missing value in property=value "
897 "'-C' argument (%s)\n", input);
898 usage(B_FALSE);
899 }
900 *(value) = '\0';
901 value++;
902
903 if (strcmp(value, "on") == 0) {
904 state = ZTEST_VDEV_CLASS_ON;
905 } else if (strcmp(value, "off") == 0) {
906 state = ZTEST_VDEV_CLASS_OFF;
907 } else if (strcmp(value, "random") == 0) {
908 state = ZTEST_VDEV_CLASS_RND;
909 } else {
910 (void) fprintf(stderr, "invalid property value '%s'\n", value);
911 usage(B_FALSE);
912 }
913
914 if (strcmp(name, "special") == 0) {
915 zo->zo_special_vdevs = state;
916 } else {
917 (void) fprintf(stderr, "invalid property name '%s'\n", name);
918 usage(B_FALSE);
919 }
920 if (zo->zo_verbose >= 3)
921 (void) printf("%s vdev state is '%s'\n", name, value);
922 }
923
924 static void
925 process_options(int argc, char **argv)
926 {
927 char *path;
928 ztest_shared_opts_t *zo = &ztest_opts;
929
930 int opt;
931 uint64_t value;
932 char altdir[MAXNAMELEN] = { 0 };
933 char raid_kind[8] = "random";
934
935 memcpy(zo, &ztest_opts_defaults, sizeof (*zo));
936
937 init_options();
938
939 while ((opt = getopt_long(argc, argv, short_opts, long_opts,
940 NULL)) != EOF) {
941 value = 0;
942 switch (opt) {
943 case 'v':
944 case 's':
945 case 'a':
946 case 'm':
947 case 'r':
948 case 'R':
949 case 'D':
950 case 'S':
951 case 'd':
952 case 't':
953 case 'g':
954 case 'i':
955 case 'k':
956 case 'T':
957 case 'P':
958 case 'F':
959 value = nicenumtoull(optarg);
960 }
961 switch (opt) {
962 case 'v':
963 zo->zo_vdevs = value;
964 break;
965 case 's':
966 zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value);
967 break;
968 case 'a':
969 zo->zo_ashift = value;
970 break;
971 case 'm':
972 zo->zo_mirrors = value;
973 break;
974 case 'r':
975 zo->zo_raid_children = MAX(1, value);
976 break;
977 case 'R':
978 zo->zo_raid_parity = MIN(MAX(value, 1), 3);
979 break;
980 case 'K':
981 (void) strlcpy(raid_kind, optarg, sizeof (raid_kind));
982 break;
983 case 'D':
984 zo->zo_draid_data = MAX(1, value);
985 break;
986 case 'S':
987 zo->zo_draid_spares = MAX(1, value);
988 break;
989 case 'd':
990 zo->zo_datasets = MAX(1, value);
991 break;
992 case 't':
993 zo->zo_threads = MAX(1, value);
994 break;
995 case 'g':
996 zo->zo_metaslab_force_ganging =
997 MAX(SPA_MINBLOCKSIZE << 1, value);
998 break;
999 case 'i':
1000 zo->zo_init = value;
1001 break;
1002 case 'k':
1003 zo->zo_killrate = value;
1004 break;
1005 case 'p':
1006 (void) strlcpy(zo->zo_pool, optarg,
1007 sizeof (zo->zo_pool));
1008 break;
1009 case 'f':
1010 path = realpath(optarg, NULL);
1011 if (path == NULL) {
1012 (void) fprintf(stderr, "error: %s: %s\n",
1013 optarg, strerror(errno));
1014 usage(B_FALSE);
1015 } else {
1016 (void) strlcpy(zo->zo_dir, path,
1017 sizeof (zo->zo_dir));
1018 free(path);
1019 }
1020 break;
1021 case 'M':
1022 zo->zo_mmp_test = 1;
1023 break;
1024 case 'V':
1025 zo->zo_verbose++;
1026 break;
1027 case 'E':
1028 zo->zo_init = 0;
1029 break;
1030 case 'T':
1031 zo->zo_time = value;
1032 break;
1033 case 'P':
1034 zo->zo_passtime = MAX(1, value);
1035 break;
1036 case 'F':
1037 zo->zo_maxloops = MAX(1, value);
1038 break;
1039 case 'B':
1040 (void) strlcpy(altdir, optarg, sizeof (altdir));
1041 break;
1042 case 'C':
1043 ztest_parse_name_value(optarg, zo);
1044 break;
1045 case 'o':
1046 if (zo->zo_gvars_count >= ZO_GVARS_MAX_COUNT) {
1047 (void) fprintf(stderr,
1048 "max global var count (%zu) exceeded\n",
1049 ZO_GVARS_MAX_COUNT);
1050 usage(B_FALSE);
1051 }
1052 char *v = zo->zo_gvars[zo->zo_gvars_count];
1053 if (strlcpy(v, optarg, ZO_GVARS_MAX_ARGLEN) >=
1054 ZO_GVARS_MAX_ARGLEN) {
1055 (void) fprintf(stderr,
1056 "global var option '%s' is too long\n",
1057 optarg);
1058 usage(B_FALSE);
1059 }
1060 zo->zo_gvars_count++;
1061 break;
1062 case 'G':
1063 zo->zo_dump_dbgmsg = 1;
1064 break;
1065 case 'h':
1066 usage(B_TRUE);
1067 break;
1068 case '?':
1069 default:
1070 usage(B_FALSE);
1071 break;
1072 }
1073 }
1074
1075 fini_options();
1076
1077 /* When raid choice is 'random' add a draid pool 50% of the time */
1078 if (strcmp(raid_kind, "random") == 0) {
1079 (void) strlcpy(raid_kind, (ztest_random(2) == 0) ?
1080 "draid" : "raidz", sizeof (raid_kind));
1081
1082 if (ztest_opts.zo_verbose >= 3)
1083 (void) printf("choosing RAID type '%s'\n", raid_kind);
1084 }
1085
1086 if (strcmp(raid_kind, "draid") == 0) {
1087 uint64_t min_devsize;
1088
1089 /* With fewer disk use 256M, otherwise 128M is OK */
1090 min_devsize = (ztest_opts.zo_raid_children < 16) ?
1091 (256ULL << 20) : (128ULL << 20);
1092
1093 /* No top-level mirrors with dRAID for now */
1094 zo->zo_mirrors = 0;
1095
1096 /* Use more appropriate defaults for dRAID */
1097 if (zo->zo_vdevs == ztest_opts_defaults.zo_vdevs)
1098 zo->zo_vdevs = 1;
1099 if (zo->zo_raid_children ==
1100 ztest_opts_defaults.zo_raid_children)
1101 zo->zo_raid_children = 16;
1102 if (zo->zo_ashift < 12)
1103 zo->zo_ashift = 12;
1104 if (zo->zo_vdev_size < min_devsize)
1105 zo->zo_vdev_size = min_devsize;
1106
1107 if (zo->zo_draid_data + zo->zo_raid_parity >
1108 zo->zo_raid_children - zo->zo_draid_spares) {
1109 (void) fprintf(stderr, "error: too few draid "
1110 "children (%d) for stripe width (%d)\n",
1111 zo->zo_raid_children,
1112 zo->zo_draid_data + zo->zo_raid_parity);
1113 usage(B_FALSE);
1114 }
1115
1116 (void) strlcpy(zo->zo_raid_type, VDEV_TYPE_DRAID,
1117 sizeof (zo->zo_raid_type));
1118
1119 } else /* using raidz */ {
1120 ASSERT0(strcmp(raid_kind, "raidz"));
1121
1122 zo->zo_raid_parity = MIN(zo->zo_raid_parity,
1123 zo->zo_raid_children - 1);
1124 }
1125
1126 zo->zo_vdevtime =
1127 (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs :
1128 UINT64_MAX >> 2);
1129
1130 if (strlen(altdir) > 0) {
1131 char *cmd;
1132 char *realaltdir;
1133 char *bin;
1134 char *ztest;
1135 char *isa;
1136 int isalen;
1137
1138 cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1139 realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1140
1141 VERIFY3P(NULL, !=, realpath(getexecname(), cmd));
1142 if (0 != access(altdir, F_OK)) {
1143 ztest_dump_core = B_FALSE;
1144 fatal(B_TRUE, "invalid alternate ztest path: %s",
1145 altdir);
1146 }
1147 VERIFY3P(NULL, !=, realpath(altdir, realaltdir));
1148
1149 /*
1150 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest".
1151 * We want to extract <isa> to determine if we should use
1152 * 32 or 64 bit binaries.
1153 */
1154 bin = strstr(cmd, "/usr/bin/");
1155 ztest = strstr(bin, "/ztest");
1156 isa = bin + 9;
1157 isalen = ztest - isa;
1158 (void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest),
1159 "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa);
1160 (void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath),
1161 "%s/usr/lib/%.*s", realaltdir, isalen, isa);
1162
1163 if (0 != access(zo->zo_alt_ztest, X_OK)) {
1164 ztest_dump_core = B_FALSE;
1165 fatal(B_TRUE, "invalid alternate ztest: %s",
1166 zo->zo_alt_ztest);
1167 } else if (0 != access(zo->zo_alt_libpath, X_OK)) {
1168 ztest_dump_core = B_FALSE;
1169 fatal(B_TRUE, "invalid alternate lib directory %s",
1170 zo->zo_alt_libpath);
1171 }
1172
1173 umem_free(cmd, MAXPATHLEN);
1174 umem_free(realaltdir, MAXPATHLEN);
1175 }
1176 }
1177
1178 static void
1179 ztest_kill(ztest_shared_t *zs)
1180 {
1181 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa));
1182 zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa));
1183
1184 /*
1185 * Before we kill off ztest, make sure that the config is updated.
1186 * See comment above spa_write_cachefile().
1187 */
1188 mutex_enter(&spa_namespace_lock);
1189 spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE);
1190 mutex_exit(&spa_namespace_lock);
1191
1192 (void) kill(getpid(), SIGKILL);
1193 }
1194
1195 static void
1196 ztest_record_enospc(const char *s)
1197 {
1198 (void) s;
1199 ztest_shared->zs_enospc_count++;
1200 }
1201
1202 static uint64_t
1203 ztest_get_ashift(void)
1204 {
1205 if (ztest_opts.zo_ashift == 0)
1206 return (SPA_MINBLOCKSHIFT + ztest_random(5));
1207 return (ztest_opts.zo_ashift);
1208 }
1209
1210 static boolean_t
1211 ztest_is_draid_spare(const char *name)
1212 {
1213 uint64_t spare_id = 0, parity = 0, vdev_id = 0;
1214
1215 if (sscanf(name, VDEV_TYPE_DRAID "%"PRIu64"-%"PRIu64"-%"PRIu64"",
1216 &parity, &vdev_id, &spare_id) == 3) {
1217 return (B_TRUE);
1218 }
1219
1220 return (B_FALSE);
1221 }
1222
1223 static nvlist_t *
1224 make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift)
1225 {
1226 char *pathbuf;
1227 uint64_t vdev;
1228 nvlist_t *file;
1229 boolean_t draid_spare = B_FALSE;
1230
1231 pathbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1232
1233 if (ashift == 0)
1234 ashift = ztest_get_ashift();
1235
1236 if (path == NULL) {
1237 path = pathbuf;
1238
1239 if (aux != NULL) {
1240 vdev = ztest_shared->zs_vdev_aux;
1241 (void) snprintf(path, MAXPATHLEN,
1242 ztest_aux_template, ztest_opts.zo_dir,
1243 pool == NULL ? ztest_opts.zo_pool : pool,
1244 aux, vdev);
1245 } else {
1246 vdev = ztest_shared->zs_vdev_next_leaf++;
1247 (void) snprintf(path, MAXPATHLEN,
1248 ztest_dev_template, ztest_opts.zo_dir,
1249 pool == NULL ? ztest_opts.zo_pool : pool, vdev);
1250 }
1251 } else {
1252 draid_spare = ztest_is_draid_spare(path);
1253 }
1254
1255 if (size != 0 && !draid_spare) {
1256 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
1257 if (fd == -1)
1258 fatal(B_TRUE, "can't open %s", path);
1259 if (ftruncate(fd, size) != 0)
1260 fatal(B_TRUE, "can't ftruncate %s", path);
1261 (void) close(fd);
1262 }
1263
1264 file = fnvlist_alloc();
1265 fnvlist_add_string(file, ZPOOL_CONFIG_TYPE,
1266 draid_spare ? VDEV_TYPE_DRAID_SPARE : VDEV_TYPE_FILE);
1267 fnvlist_add_string(file, ZPOOL_CONFIG_PATH, path);
1268 fnvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift);
1269 umem_free(pathbuf, MAXPATHLEN);
1270
1271 return (file);
1272 }
1273
1274 static nvlist_t *
1275 make_vdev_raid(char *path, char *aux, char *pool, size_t size,
1276 uint64_t ashift, int r)
1277 {
1278 nvlist_t *raid, **child;
1279 int c;
1280
1281 if (r < 2)
1282 return (make_vdev_file(path, aux, pool, size, ashift));
1283 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
1284
1285 for (c = 0; c < r; c++)
1286 child[c] = make_vdev_file(path, aux, pool, size, ashift);
1287
1288 raid = fnvlist_alloc();
1289 fnvlist_add_string(raid, ZPOOL_CONFIG_TYPE,
1290 ztest_opts.zo_raid_type);
1291 fnvlist_add_uint64(raid, ZPOOL_CONFIG_NPARITY,
1292 ztest_opts.zo_raid_parity);
1293 fnvlist_add_nvlist_array(raid, ZPOOL_CONFIG_CHILDREN,
1294 (const nvlist_t **)child, r);
1295
1296 if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0) {
1297 uint64_t ndata = ztest_opts.zo_draid_data;
1298 uint64_t nparity = ztest_opts.zo_raid_parity;
1299 uint64_t nspares = ztest_opts.zo_draid_spares;
1300 uint64_t children = ztest_opts.zo_raid_children;
1301 uint64_t ngroups = 1;
1302
1303 /*
1304 * Calculate the minimum number of groups required to fill a
1305 * slice. This is the LCM of the stripe width (data + parity)
1306 * and the number of data drives (children - spares).
1307 */
1308 while (ngroups * (ndata + nparity) % (children - nspares) != 0)
1309 ngroups++;
1310
1311 /* Store the basic dRAID configuration. */
1312 fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NDATA, ndata);
1313 fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NSPARES, nspares);
1314 fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NGROUPS, ngroups);
1315 }
1316
1317 for (c = 0; c < r; c++)
1318 fnvlist_free(child[c]);
1319
1320 umem_free(child, r * sizeof (nvlist_t *));
1321
1322 return (raid);
1323 }
1324
1325 static nvlist_t *
1326 make_vdev_mirror(char *path, char *aux, char *pool, size_t size,
1327 uint64_t ashift, int r, int m)
1328 {
1329 nvlist_t *mirror, **child;
1330 int c;
1331
1332 if (m < 1)
1333 return (make_vdev_raid(path, aux, pool, size, ashift, r));
1334
1335 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
1336
1337 for (c = 0; c < m; c++)
1338 child[c] = make_vdev_raid(path, aux, pool, size, ashift, r);
1339
1340 mirror = fnvlist_alloc();
1341 fnvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, VDEV_TYPE_MIRROR);
1342 fnvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
1343 (const nvlist_t **)child, m);
1344
1345 for (c = 0; c < m; c++)
1346 fnvlist_free(child[c]);
1347
1348 umem_free(child, m * sizeof (nvlist_t *));
1349
1350 return (mirror);
1351 }
1352
1353 static nvlist_t *
1354 make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift,
1355 const char *class, int r, int m, int t)
1356 {
1357 nvlist_t *root, **child;
1358 int c;
1359 boolean_t log;
1360
1361 ASSERT3S(t, >, 0);
1362
1363 log = (class != NULL && strcmp(class, "log") == 0);
1364
1365 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
1366
1367 for (c = 0; c < t; c++) {
1368 child[c] = make_vdev_mirror(path, aux, pool, size, ashift,
1369 r, m);
1370 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, log);
1371
1372 if (class != NULL && class[0] != '\0') {
1373 ASSERT(m > 1 || log); /* expecting a mirror */
1374 fnvlist_add_string(child[c],
1375 ZPOOL_CONFIG_ALLOCATION_BIAS, class);
1376 }
1377 }
1378
1379 root = fnvlist_alloc();
1380 fnvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT);
1381 fnvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
1382 (const nvlist_t **)child, t);
1383
1384 for (c = 0; c < t; c++)
1385 fnvlist_free(child[c]);
1386
1387 umem_free(child, t * sizeof (nvlist_t *));
1388
1389 return (root);
1390 }
1391
1392 /*
1393 * Find a random spa version. Returns back a random spa version in the
1394 * range [initial_version, SPA_VERSION_FEATURES].
1395 */
1396 static uint64_t
1397 ztest_random_spa_version(uint64_t initial_version)
1398 {
1399 uint64_t version = initial_version;
1400
1401 if (version <= SPA_VERSION_BEFORE_FEATURES) {
1402 version = version +
1403 ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1);
1404 }
1405
1406 if (version > SPA_VERSION_BEFORE_FEATURES)
1407 version = SPA_VERSION_FEATURES;
1408
1409 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
1410 return (version);
1411 }
1412
1413 static int
1414 ztest_random_blocksize(void)
1415 {
1416 ASSERT3U(ztest_spa->spa_max_ashift, !=, 0);
1417
1418 /*
1419 * Choose a block size >= the ashift.
1420 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks.
1421 */
1422 int maxbs = SPA_OLD_MAXBLOCKSHIFT;
1423 if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE)
1424 maxbs = 20;
1425 uint64_t block_shift =
1426 ztest_random(maxbs - ztest_spa->spa_max_ashift + 1);
1427 return (1 << (SPA_MINBLOCKSHIFT + block_shift));
1428 }
1429
1430 static int
1431 ztest_random_dnodesize(void)
1432 {
1433 int slots;
1434 int max_slots = spa_maxdnodesize(ztest_spa) >> DNODE_SHIFT;
1435
1436 if (max_slots == DNODE_MIN_SLOTS)
1437 return (DNODE_MIN_SIZE);
1438
1439 /*
1440 * Weight the random distribution more heavily toward smaller
1441 * dnode sizes since that is more likely to reflect real-world
1442 * usage.
1443 */
1444 ASSERT3U(max_slots, >, 4);
1445 switch (ztest_random(10)) {
1446 case 0:
1447 slots = 5 + ztest_random(max_slots - 4);
1448 break;
1449 case 1 ... 4:
1450 slots = 2 + ztest_random(3);
1451 break;
1452 default:
1453 slots = 1;
1454 break;
1455 }
1456
1457 return (slots << DNODE_SHIFT);
1458 }
1459
1460 static int
1461 ztest_random_ibshift(void)
1462 {
1463 return (DN_MIN_INDBLKSHIFT +
1464 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
1465 }
1466
1467 static uint64_t
1468 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
1469 {
1470 uint64_t top;
1471 vdev_t *rvd = spa->spa_root_vdev;
1472 vdev_t *tvd;
1473
1474 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
1475
1476 do {
1477 top = ztest_random(rvd->vdev_children);
1478 tvd = rvd->vdev_child[top];
1479 } while (!vdev_is_concrete(tvd) || (tvd->vdev_islog && !log_ok) ||
1480 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
1481
1482 return (top);
1483 }
1484
1485 static uint64_t
1486 ztest_random_dsl_prop(zfs_prop_t prop)
1487 {
1488 uint64_t value;
1489
1490 do {
1491 value = zfs_prop_random_value(prop, ztest_random(-1ULL));
1492 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
1493
1494 return (value);
1495 }
1496
1497 static int
1498 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
1499 boolean_t inherit)
1500 {
1501 const char *propname = zfs_prop_to_name(prop);
1502 const char *valname;
1503 char *setpoint;
1504 uint64_t curval;
1505 int error;
1506
1507 error = dsl_prop_set_int(osname, propname,
1508 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value);
1509
1510 if (error == ENOSPC) {
1511 ztest_record_enospc(FTAG);
1512 return (error);
1513 }
1514 ASSERT0(error);
1515
1516 setpoint = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1517 VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint));
1518
1519 if (ztest_opts.zo_verbose >= 6) {
1520 int err;
1521
1522 err = zfs_prop_index_to_string(prop, curval, &valname);
1523 if (err)
1524 (void) printf("%s %s = %llu at '%s'\n", osname,
1525 propname, (unsigned long long)curval, setpoint);
1526 else
1527 (void) printf("%s %s = %s at '%s'\n",
1528 osname, propname, valname, setpoint);
1529 }
1530 umem_free(setpoint, MAXPATHLEN);
1531
1532 return (error);
1533 }
1534
1535 static int
1536 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value)
1537 {
1538 spa_t *spa = ztest_spa;
1539 nvlist_t *props = NULL;
1540 int error;
1541
1542 props = fnvlist_alloc();
1543 fnvlist_add_uint64(props, zpool_prop_to_name(prop), value);
1544
1545 error = spa_prop_set(spa, props);
1546
1547 fnvlist_free(props);
1548
1549 if (error == ENOSPC) {
1550 ztest_record_enospc(FTAG);
1551 return (error);
1552 }
1553 ASSERT0(error);
1554
1555 return (error);
1556 }
1557
1558 static int
1559 ztest_dmu_objset_own(const char *name, dmu_objset_type_t type,
1560 boolean_t readonly, boolean_t decrypt, void *tag, objset_t **osp)
1561 {
1562 int err;
1563 char *cp = NULL;
1564 char ddname[ZFS_MAX_DATASET_NAME_LEN];
1565
1566 strcpy(ddname, name);
1567 cp = strchr(ddname, '@');
1568 if (cp != NULL)
1569 *cp = '\0';
1570
1571 err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
1572 while (decrypt && err == EACCES) {
1573 dsl_crypto_params_t *dcp;
1574 nvlist_t *crypto_args = fnvlist_alloc();
1575
1576 fnvlist_add_uint8_array(crypto_args, "wkeydata",
1577 (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
1578 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, NULL,
1579 crypto_args, &dcp));
1580 err = spa_keystore_load_wkey(ddname, dcp, B_FALSE);
1581 /*
1582 * Note: if there was an error loading, the wkey was not
1583 * consumed, and needs to be freed.
1584 */
1585 dsl_crypto_params_free(dcp, (err != 0));
1586 fnvlist_free(crypto_args);
1587
1588 if (err == EINVAL) {
1589 /*
1590 * We couldn't load a key for this dataset so try
1591 * the parent. This loop will eventually hit the
1592 * encryption root since ztest only makes clones
1593 * as children of their origin datasets.
1594 */
1595 cp = strrchr(ddname, '/');
1596 if (cp == NULL)
1597 return (err);
1598
1599 *cp = '\0';
1600 err = EACCES;
1601 continue;
1602 } else if (err != 0) {
1603 break;
1604 }
1605
1606 err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
1607 break;
1608 }
1609
1610 return (err);
1611 }
1612
1613 static void
1614 ztest_rll_init(rll_t *rll)
1615 {
1616 rll->rll_writer = NULL;
1617 rll->rll_readers = 0;
1618 mutex_init(&rll->rll_lock, NULL, MUTEX_DEFAULT, NULL);
1619 cv_init(&rll->rll_cv, NULL, CV_DEFAULT, NULL);
1620 }
1621
1622 static void
1623 ztest_rll_destroy(rll_t *rll)
1624 {
1625 ASSERT3P(rll->rll_writer, ==, NULL);
1626 ASSERT0(rll->rll_readers);
1627 mutex_destroy(&rll->rll_lock);
1628 cv_destroy(&rll->rll_cv);
1629 }
1630
1631 static void
1632 ztest_rll_lock(rll_t *rll, rl_type_t type)
1633 {
1634 mutex_enter(&rll->rll_lock);
1635
1636 if (type == RL_READER) {
1637 while (rll->rll_writer != NULL)
1638 (void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1639 rll->rll_readers++;
1640 } else {
1641 while (rll->rll_writer != NULL || rll->rll_readers)
1642 (void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1643 rll->rll_writer = curthread;
1644 }
1645
1646 mutex_exit(&rll->rll_lock);
1647 }
1648
1649 static void
1650 ztest_rll_unlock(rll_t *rll)
1651 {
1652 mutex_enter(&rll->rll_lock);
1653
1654 if (rll->rll_writer) {
1655 ASSERT0(rll->rll_readers);
1656 rll->rll_writer = NULL;
1657 } else {
1658 ASSERT3S(rll->rll_readers, >, 0);
1659 ASSERT3P(rll->rll_writer, ==, NULL);
1660 rll->rll_readers--;
1661 }
1662
1663 if (rll->rll_writer == NULL && rll->rll_readers == 0)
1664 cv_broadcast(&rll->rll_cv);
1665
1666 mutex_exit(&rll->rll_lock);
1667 }
1668
1669 static void
1670 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
1671 {
1672 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1673
1674 ztest_rll_lock(rll, type);
1675 }
1676
1677 static void
1678 ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
1679 {
1680 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1681
1682 ztest_rll_unlock(rll);
1683 }
1684
1685 static rl_t *
1686 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
1687 uint64_t size, rl_type_t type)
1688 {
1689 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1));
1690 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)];
1691 rl_t *rl;
1692
1693 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL);
1694 rl->rl_object = object;
1695 rl->rl_offset = offset;
1696 rl->rl_size = size;
1697 rl->rl_lock = rll;
1698
1699 ztest_rll_lock(rll, type);
1700
1701 return (rl);
1702 }
1703
1704 static void
1705 ztest_range_unlock(rl_t *rl)
1706 {
1707 rll_t *rll = rl->rl_lock;
1708
1709 ztest_rll_unlock(rll);
1710
1711 umem_free(rl, sizeof (*rl));
1712 }
1713
1714 static void
1715 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os)
1716 {
1717 zd->zd_os = os;
1718 zd->zd_zilog = dmu_objset_zil(os);
1719 zd->zd_shared = szd;
1720 dmu_objset_name(os, zd->zd_name);
1721 int l;
1722
1723 if (zd->zd_shared != NULL)
1724 zd->zd_shared->zd_seq = 0;
1725
1726 VERIFY0(pthread_rwlock_init(&zd->zd_zilog_lock, NULL));
1727 mutex_init(&zd->zd_dirobj_lock, NULL, MUTEX_DEFAULT, NULL);
1728
1729 for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1730 ztest_rll_init(&zd->zd_object_lock[l]);
1731
1732 for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1733 ztest_rll_init(&zd->zd_range_lock[l]);
1734 }
1735
1736 static void
1737 ztest_zd_fini(ztest_ds_t *zd)
1738 {
1739 int l;
1740
1741 mutex_destroy(&zd->zd_dirobj_lock);
1742 (void) pthread_rwlock_destroy(&zd->zd_zilog_lock);
1743
1744 for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1745 ztest_rll_destroy(&zd->zd_object_lock[l]);
1746
1747 for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1748 ztest_rll_destroy(&zd->zd_range_lock[l]);
1749 }
1750
1751 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
1752
1753 static uint64_t
1754 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag)
1755 {
1756 uint64_t txg;
1757 int error;
1758
1759 /*
1760 * Attempt to assign tx to some transaction group.
1761 */
1762 error = dmu_tx_assign(tx, txg_how);
1763 if (error) {
1764 if (error == ERESTART) {
1765 ASSERT3U(txg_how, ==, TXG_NOWAIT);
1766 dmu_tx_wait(tx);
1767 } else {
1768 ASSERT3U(error, ==, ENOSPC);
1769 ztest_record_enospc(tag);
1770 }
1771 dmu_tx_abort(tx);
1772 return (0);
1773 }
1774 txg = dmu_tx_get_txg(tx);
1775 ASSERT3U(txg, !=, 0);
1776 return (txg);
1777 }
1778
1779 static void
1780 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1781 uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1782 uint64_t crtxg)
1783 {
1784 bt->bt_magic = BT_MAGIC;
1785 bt->bt_objset = dmu_objset_id(os);
1786 bt->bt_object = object;
1787 bt->bt_dnodesize = dnodesize;
1788 bt->bt_offset = offset;
1789 bt->bt_gen = gen;
1790 bt->bt_txg = txg;
1791 bt->bt_crtxg = crtxg;
1792 }
1793
1794 static void
1795 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1796 uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1797 uint64_t crtxg)
1798 {
1799 ASSERT3U(bt->bt_magic, ==, BT_MAGIC);
1800 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os));
1801 ASSERT3U(bt->bt_object, ==, object);
1802 ASSERT3U(bt->bt_dnodesize, ==, dnodesize);
1803 ASSERT3U(bt->bt_offset, ==, offset);
1804 ASSERT3U(bt->bt_gen, <=, gen);
1805 ASSERT3U(bt->bt_txg, <=, txg);
1806 ASSERT3U(bt->bt_crtxg, ==, crtxg);
1807 }
1808
1809 static ztest_block_tag_t *
1810 ztest_bt_bonus(dmu_buf_t *db)
1811 {
1812 dmu_object_info_t doi;
1813 ztest_block_tag_t *bt;
1814
1815 dmu_object_info_from_db(db, &doi);
1816 ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
1817 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
1818 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
1819
1820 return (bt);
1821 }
1822
1823 /*
1824 * Generate a token to fill up unused bonus buffer space. Try to make
1825 * it unique to the object, generation, and offset to verify that data
1826 * is not getting overwritten by data from other dnodes.
1827 */
1828 #define ZTEST_BONUS_FILL_TOKEN(obj, ds, gen, offset) \
1829 (((ds) << 48) | ((gen) << 32) | ((obj) << 8) | (offset))
1830
1831 /*
1832 * Fill up the unused bonus buffer region before the block tag with a
1833 * verifiable pattern. Filling the whole bonus area with non-zero data
1834 * helps ensure that all dnode traversal code properly skips the
1835 * interior regions of large dnodes.
1836 */
1837 static void
1838 ztest_fill_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1839 objset_t *os, uint64_t gen)
1840 {
1841 uint64_t *bonusp;
1842
1843 ASSERT(IS_P2ALIGNED((char *)end - (char *)db->db_data, 8));
1844
1845 for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1846 uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1847 gen, bonusp - (uint64_t *)db->db_data);
1848 *bonusp = token;
1849 }
1850 }
1851
1852 /*
1853 * Verify that the unused area of a bonus buffer is filled with the
1854 * expected tokens.
1855 */
1856 static void
1857 ztest_verify_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1858 objset_t *os, uint64_t gen)
1859 {
1860 uint64_t *bonusp;
1861
1862 for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1863 uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1864 gen, bonusp - (uint64_t *)db->db_data);
1865 VERIFY3U(*bonusp, ==, token);
1866 }
1867 }
1868
1869 /*
1870 * ZIL logging ops
1871 */
1872
1873 #define lrz_type lr_mode
1874 #define lrz_blocksize lr_uid
1875 #define lrz_ibshift lr_gid
1876 #define lrz_bonustype lr_rdev
1877 #define lrz_dnodesize lr_crtime[1]
1878
1879 static void
1880 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
1881 {
1882 char *name = (void *)(lr + 1); /* name follows lr */
1883 size_t namesize = strlen(name) + 1;
1884 itx_t *itx;
1885
1886 if (zil_replaying(zd->zd_zilog, tx))
1887 return;
1888
1889 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
1890 memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
1891 sizeof (*lr) + namesize - sizeof (lr_t));
1892
1893 zil_itx_assign(zd->zd_zilog, itx, tx);
1894 }
1895
1896 static void
1897 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object)
1898 {
1899 char *name = (void *)(lr + 1); /* name follows lr */
1900 size_t namesize = strlen(name) + 1;
1901 itx_t *itx;
1902
1903 if (zil_replaying(zd->zd_zilog, tx))
1904 return;
1905
1906 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
1907 memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
1908 sizeof (*lr) + namesize - sizeof (lr_t));
1909
1910 itx->itx_oid = object;
1911 zil_itx_assign(zd->zd_zilog, itx, tx);
1912 }
1913
1914 static void
1915 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
1916 {
1917 itx_t *itx;
1918 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
1919
1920 if (zil_replaying(zd->zd_zilog, tx))
1921 return;
1922
1923 if (lr->lr_length > zil_max_log_data(zd->zd_zilog))
1924 write_state = WR_INDIRECT;
1925
1926 itx = zil_itx_create(TX_WRITE,
1927 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
1928
1929 if (write_state == WR_COPIED &&
1930 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
1931 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) {
1932 zil_itx_destroy(itx);
1933 itx = zil_itx_create(TX_WRITE, sizeof (*lr));
1934 write_state = WR_NEED_COPY;
1935 }
1936 itx->itx_private = zd;
1937 itx->itx_wr_state = write_state;
1938 itx->itx_sync = (ztest_random(8) == 0);
1939
1940 memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
1941 sizeof (*lr) - sizeof (lr_t));
1942
1943 zil_itx_assign(zd->zd_zilog, itx, tx);
1944 }
1945
1946 static void
1947 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
1948 {
1949 itx_t *itx;
1950
1951 if (zil_replaying(zd->zd_zilog, tx))
1952 return;
1953
1954 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
1955 memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
1956 sizeof (*lr) - sizeof (lr_t));
1957
1958 itx->itx_sync = B_FALSE;
1959 zil_itx_assign(zd->zd_zilog, itx, tx);
1960 }
1961
1962 static void
1963 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
1964 {
1965 itx_t *itx;
1966
1967 if (zil_replaying(zd->zd_zilog, tx))
1968 return;
1969
1970 itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
1971 memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
1972 sizeof (*lr) - sizeof (lr_t));
1973
1974 itx->itx_sync = B_FALSE;
1975 zil_itx_assign(zd->zd_zilog, itx, tx);
1976 }
1977
1978 /*
1979 * ZIL replay ops
1980 */
1981 static int
1982 ztest_replay_create(void *arg1, void *arg2, boolean_t byteswap)
1983 {
1984 ztest_ds_t *zd = arg1;
1985 lr_create_t *lr = arg2;
1986 char *name = (void *)(lr + 1); /* name follows lr */
1987 objset_t *os = zd->zd_os;
1988 ztest_block_tag_t *bbt;
1989 dmu_buf_t *db;
1990 dmu_tx_t *tx;
1991 uint64_t txg;
1992 int error = 0;
1993 int bonuslen;
1994
1995 if (byteswap)
1996 byteswap_uint64_array(lr, sizeof (*lr));
1997
1998 ASSERT3U(lr->lr_doid, ==, ZTEST_DIROBJ);
1999 ASSERT3S(name[0], !=, '\0');
2000
2001 tx = dmu_tx_create(os);
2002
2003 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
2004
2005 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
2006 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
2007 } else {
2008 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
2009 }
2010
2011 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2012 if (txg == 0)
2013 return (ENOSPC);
2014
2015 ASSERT3U(dmu_objset_zil(os)->zl_replay, ==, !!lr->lr_foid);
2016 bonuslen = DN_BONUS_SIZE(lr->lrz_dnodesize);
2017
2018 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
2019 if (lr->lr_foid == 0) {
2020 lr->lr_foid = zap_create_dnsize(os,
2021 lr->lrz_type, lr->lrz_bonustype,
2022 bonuslen, lr->lrz_dnodesize, tx);
2023 } else {
2024 error = zap_create_claim_dnsize(os, lr->lr_foid,
2025 lr->lrz_type, lr->lrz_bonustype,
2026 bonuslen, lr->lrz_dnodesize, tx);
2027 }
2028 } else {
2029 if (lr->lr_foid == 0) {
2030 lr->lr_foid = dmu_object_alloc_dnsize(os,
2031 lr->lrz_type, 0, lr->lrz_bonustype,
2032 bonuslen, lr->lrz_dnodesize, tx);
2033 } else {
2034 error = dmu_object_claim_dnsize(os, lr->lr_foid,
2035 lr->lrz_type, 0, lr->lrz_bonustype,
2036 bonuslen, lr->lrz_dnodesize, tx);
2037 }
2038 }
2039
2040 if (error) {
2041 ASSERT3U(error, ==, EEXIST);
2042 ASSERT(zd->zd_zilog->zl_replay);
2043 dmu_tx_commit(tx);
2044 return (error);
2045 }
2046
2047 ASSERT3U(lr->lr_foid, !=, 0);
2048
2049 if (lr->lrz_type != DMU_OT_ZAP_OTHER)
2050 VERIFY0(dmu_object_set_blocksize(os, lr->lr_foid,
2051 lr->lrz_blocksize, lr->lrz_ibshift, tx));
2052
2053 VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2054 bbt = ztest_bt_bonus(db);
2055 dmu_buf_will_dirty(db, tx);
2056 ztest_bt_generate(bbt, os, lr->lr_foid, lr->lrz_dnodesize, -1ULL,
2057 lr->lr_gen, txg, txg);
2058 ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, lr->lr_gen);
2059 dmu_buf_rele(db, FTAG);
2060
2061 VERIFY0(zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
2062 &lr->lr_foid, tx));
2063
2064 (void) ztest_log_create(zd, tx, lr);
2065
2066 dmu_tx_commit(tx);
2067
2068 return (0);
2069 }
2070
2071 static int
2072 ztest_replay_remove(void *arg1, void *arg2, boolean_t byteswap)
2073 {
2074 ztest_ds_t *zd = arg1;
2075 lr_remove_t *lr = arg2;
2076 char *name = (void *)(lr + 1); /* name follows lr */
2077 objset_t *os = zd->zd_os;
2078 dmu_object_info_t doi;
2079 dmu_tx_t *tx;
2080 uint64_t object, txg;
2081
2082 if (byteswap)
2083 byteswap_uint64_array(lr, sizeof (*lr));
2084
2085 ASSERT3U(lr->lr_doid, ==, ZTEST_DIROBJ);
2086 ASSERT3S(name[0], !=, '\0');
2087
2088 VERIFY0(
2089 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
2090 ASSERT3U(object, !=, 0);
2091
2092 ztest_object_lock(zd, object, RL_WRITER);
2093
2094 VERIFY0(dmu_object_info(os, object, &doi));
2095
2096 tx = dmu_tx_create(os);
2097
2098 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
2099 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
2100
2101 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2102 if (txg == 0) {
2103 ztest_object_unlock(zd, object);
2104 return (ENOSPC);
2105 }
2106
2107 if (doi.doi_type == DMU_OT_ZAP_OTHER) {
2108 VERIFY0(zap_destroy(os, object, tx));
2109 } else {
2110 VERIFY0(dmu_object_free(os, object, tx));
2111 }
2112
2113 VERIFY0(zap_remove(os, lr->lr_doid, name, tx));
2114
2115 (void) ztest_log_remove(zd, tx, lr, object);
2116
2117 dmu_tx_commit(tx);
2118
2119 ztest_object_unlock(zd, object);
2120
2121 return (0);
2122 }
2123
2124 static int
2125 ztest_replay_write(void *arg1, void *arg2, boolean_t byteswap)
2126 {
2127 ztest_ds_t *zd = arg1;
2128 lr_write_t *lr = arg2;
2129 objset_t *os = zd->zd_os;
2130 void *data = lr + 1; /* data follows lr */
2131 uint64_t offset, length;
2132 ztest_block_tag_t *bt = data;
2133 ztest_block_tag_t *bbt;
2134 uint64_t gen, txg, lrtxg, crtxg;
2135 dmu_object_info_t doi;
2136 dmu_tx_t *tx;
2137 dmu_buf_t *db;
2138 arc_buf_t *abuf = NULL;
2139 rl_t *rl;
2140
2141 if (byteswap)
2142 byteswap_uint64_array(lr, sizeof (*lr));
2143
2144 offset = lr->lr_offset;
2145 length = lr->lr_length;
2146
2147 /* If it's a dmu_sync() block, write the whole block */
2148 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
2149 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
2150 if (length < blocksize) {
2151 offset -= offset % blocksize;
2152 length = blocksize;
2153 }
2154 }
2155
2156 if (bt->bt_magic == BSWAP_64(BT_MAGIC))
2157 byteswap_uint64_array(bt, sizeof (*bt));
2158
2159 if (bt->bt_magic != BT_MAGIC)
2160 bt = NULL;
2161
2162 ztest_object_lock(zd, lr->lr_foid, RL_READER);
2163 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER);
2164
2165 VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2166
2167 dmu_object_info_from_db(db, &doi);
2168
2169 bbt = ztest_bt_bonus(db);
2170 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2171 gen = bbt->bt_gen;
2172 crtxg = bbt->bt_crtxg;
2173 lrtxg = lr->lr_common.lrc_txg;
2174
2175 tx = dmu_tx_create(os);
2176
2177 dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
2178
2179 if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
2180 P2PHASE(offset, length) == 0)
2181 abuf = dmu_request_arcbuf(db, length);
2182
2183 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2184 if (txg == 0) {
2185 if (abuf != NULL)
2186 dmu_return_arcbuf(abuf);
2187 dmu_buf_rele(db, FTAG);
2188 ztest_range_unlock(rl);
2189 ztest_object_unlock(zd, lr->lr_foid);
2190 return (ENOSPC);
2191 }
2192
2193 if (bt != NULL) {
2194 /*
2195 * Usually, verify the old data before writing new data --
2196 * but not always, because we also want to verify correct
2197 * behavior when the data was not recently read into cache.
2198 */
2199 ASSERT0(offset % doi.doi_data_block_size);
2200 if (ztest_random(4) != 0) {
2201 int prefetch = ztest_random(2) ?
2202 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
2203 ztest_block_tag_t rbt;
2204
2205 VERIFY(dmu_read(os, lr->lr_foid, offset,
2206 sizeof (rbt), &rbt, prefetch) == 0);
2207 if (rbt.bt_magic == BT_MAGIC) {
2208 ztest_bt_verify(&rbt, os, lr->lr_foid, 0,
2209 offset, gen, txg, crtxg);
2210 }
2211 }
2212
2213 /*
2214 * Writes can appear to be newer than the bonus buffer because
2215 * the ztest_get_data() callback does a dmu_read() of the
2216 * open-context data, which may be different than the data
2217 * as it was when the write was generated.
2218 */
2219 if (zd->zd_zilog->zl_replay) {
2220 ztest_bt_verify(bt, os, lr->lr_foid, 0, offset,
2221 MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
2222 bt->bt_crtxg);
2223 }
2224
2225 /*
2226 * Set the bt's gen/txg to the bonus buffer's gen/txg
2227 * so that all of the usual ASSERTs will work.
2228 */
2229 ztest_bt_generate(bt, os, lr->lr_foid, 0, offset, gen, txg,
2230 crtxg);
2231 }
2232
2233 if (abuf == NULL) {
2234 dmu_write(os, lr->lr_foid, offset, length, data, tx);
2235 } else {
2236 memcpy(abuf->b_data, data, length);
2237 dmu_assign_arcbuf_by_dbuf(db, offset, abuf, tx);
2238 }
2239
2240 (void) ztest_log_write(zd, tx, lr);
2241
2242 dmu_buf_rele(db, FTAG);
2243
2244 dmu_tx_commit(tx);
2245
2246 ztest_range_unlock(rl);
2247 ztest_object_unlock(zd, lr->lr_foid);
2248
2249 return (0);
2250 }
2251
2252 static int
2253 ztest_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
2254 {
2255 ztest_ds_t *zd = arg1;
2256 lr_truncate_t *lr = arg2;
2257 objset_t *os = zd->zd_os;
2258 dmu_tx_t *tx;
2259 uint64_t txg;
2260 rl_t *rl;
2261
2262 if (byteswap)
2263 byteswap_uint64_array(lr, sizeof (*lr));
2264
2265 ztest_object_lock(zd, lr->lr_foid, RL_READER);
2266 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
2267 RL_WRITER);
2268
2269 tx = dmu_tx_create(os);
2270
2271 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
2272
2273 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2274 if (txg == 0) {
2275 ztest_range_unlock(rl);
2276 ztest_object_unlock(zd, lr->lr_foid);
2277 return (ENOSPC);
2278 }
2279
2280 VERIFY0(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
2281 lr->lr_length, tx));
2282
2283 (void) ztest_log_truncate(zd, tx, lr);
2284
2285 dmu_tx_commit(tx);
2286
2287 ztest_range_unlock(rl);
2288 ztest_object_unlock(zd, lr->lr_foid);
2289
2290 return (0);
2291 }
2292
2293 static int
2294 ztest_replay_setattr(void *arg1, void *arg2, boolean_t byteswap)
2295 {
2296 ztest_ds_t *zd = arg1;
2297 lr_setattr_t *lr = arg2;
2298 objset_t *os = zd->zd_os;
2299 dmu_tx_t *tx;
2300 dmu_buf_t *db;
2301 ztest_block_tag_t *bbt;
2302 uint64_t txg, lrtxg, crtxg, dnodesize;
2303
2304 if (byteswap)
2305 byteswap_uint64_array(lr, sizeof (*lr));
2306
2307 ztest_object_lock(zd, lr->lr_foid, RL_WRITER);
2308
2309 VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2310
2311 tx = dmu_tx_create(os);
2312 dmu_tx_hold_bonus(tx, lr->lr_foid);
2313
2314 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2315 if (txg == 0) {
2316 dmu_buf_rele(db, FTAG);
2317 ztest_object_unlock(zd, lr->lr_foid);
2318 return (ENOSPC);
2319 }
2320
2321 bbt = ztest_bt_bonus(db);
2322 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2323 crtxg = bbt->bt_crtxg;
2324 lrtxg = lr->lr_common.lrc_txg;
2325 dnodesize = bbt->bt_dnodesize;
2326
2327 if (zd->zd_zilog->zl_replay) {
2328 ASSERT3U(lr->lr_size, !=, 0);
2329 ASSERT3U(lr->lr_mode, !=, 0);
2330 ASSERT3U(lrtxg, !=, 0);
2331 } else {
2332 /*
2333 * Randomly change the size and increment the generation.
2334 */
2335 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
2336 sizeof (*bbt);
2337 lr->lr_mode = bbt->bt_gen + 1;
2338 ASSERT0(lrtxg);
2339 }
2340
2341 /*
2342 * Verify that the current bonus buffer is not newer than our txg.
2343 */
2344 ztest_bt_verify(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
2345 MAX(txg, lrtxg), crtxg);
2346
2347 dmu_buf_will_dirty(db, tx);
2348
2349 ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
2350 ASSERT3U(lr->lr_size, <=, db->db_size);
2351 VERIFY0(dmu_set_bonus(db, lr->lr_size, tx));
2352 bbt = ztest_bt_bonus(db);
2353
2354 ztest_bt_generate(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
2355 txg, crtxg);
2356 ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, bbt->bt_gen);
2357 dmu_buf_rele(db, FTAG);
2358
2359 (void) ztest_log_setattr(zd, tx, lr);
2360
2361 dmu_tx_commit(tx);
2362
2363 ztest_object_unlock(zd, lr->lr_foid);
2364
2365 return (0);
2366 }
2367
2368 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
2369 NULL, /* 0 no such transaction type */
2370 ztest_replay_create, /* TX_CREATE */
2371 NULL, /* TX_MKDIR */
2372 NULL, /* TX_MKXATTR */
2373 NULL, /* TX_SYMLINK */
2374 ztest_replay_remove, /* TX_REMOVE */
2375 NULL, /* TX_RMDIR */
2376 NULL, /* TX_LINK */
2377 NULL, /* TX_RENAME */
2378 ztest_replay_write, /* TX_WRITE */
2379 ztest_replay_truncate, /* TX_TRUNCATE */
2380 ztest_replay_setattr, /* TX_SETATTR */
2381 NULL, /* TX_ACL */
2382 NULL, /* TX_CREATE_ACL */
2383 NULL, /* TX_CREATE_ATTR */
2384 NULL, /* TX_CREATE_ACL_ATTR */
2385 NULL, /* TX_MKDIR_ACL */
2386 NULL, /* TX_MKDIR_ATTR */
2387 NULL, /* TX_MKDIR_ACL_ATTR */
2388 NULL, /* TX_WRITE2 */
2389 NULL, /* TX_SETSAXATTR */
2390 };
2391
2392 /*
2393 * ZIL get_data callbacks
2394 */
2395
2396 static void
2397 ztest_get_done(zgd_t *zgd, int error)
2398 {
2399 (void) error;
2400 ztest_ds_t *zd = zgd->zgd_private;
2401 uint64_t object = ((rl_t *)zgd->zgd_lr)->rl_object;
2402
2403 if (zgd->zgd_db)
2404 dmu_buf_rele(zgd->zgd_db, zgd);
2405
2406 ztest_range_unlock((rl_t *)zgd->zgd_lr);
2407 ztest_object_unlock(zd, object);
2408
2409 umem_free(zgd, sizeof (*zgd));
2410 }
2411
2412 static int
2413 ztest_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf,
2414 struct lwb *lwb, zio_t *zio)
2415 {
2416 (void) arg2;
2417 ztest_ds_t *zd = arg;
2418 objset_t *os = zd->zd_os;
2419 uint64_t object = lr->lr_foid;
2420 uint64_t offset = lr->lr_offset;
2421 uint64_t size = lr->lr_length;
2422 uint64_t txg = lr->lr_common.lrc_txg;
2423 uint64_t crtxg;
2424 dmu_object_info_t doi;
2425 dmu_buf_t *db;
2426 zgd_t *zgd;
2427 int error;
2428
2429 ASSERT3P(lwb, !=, NULL);
2430 ASSERT3P(zio, !=, NULL);
2431 ASSERT3U(size, !=, 0);
2432
2433 ztest_object_lock(zd, object, RL_READER);
2434 error = dmu_bonus_hold(os, object, FTAG, &db);
2435 if (error) {
2436 ztest_object_unlock(zd, object);
2437 return (error);
2438 }
2439
2440 crtxg = ztest_bt_bonus(db)->bt_crtxg;
2441
2442 if (crtxg == 0 || crtxg > txg) {
2443 dmu_buf_rele(db, FTAG);
2444 ztest_object_unlock(zd, object);
2445 return (ENOENT);
2446 }
2447
2448 dmu_object_info_from_db(db, &doi);
2449 dmu_buf_rele(db, FTAG);
2450 db = NULL;
2451
2452 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
2453 zgd->zgd_lwb = lwb;
2454 zgd->zgd_private = zd;
2455
2456 if (buf != NULL) { /* immediate write */
2457 zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd,
2458 object, offset, size, RL_READER);
2459
2460 error = dmu_read(os, object, offset, size, buf,
2461 DMU_READ_NO_PREFETCH);
2462 ASSERT0(error);
2463 } else {
2464 size = doi.doi_data_block_size;
2465 if (ISP2(size)) {
2466 offset = P2ALIGN(offset, size);
2467 } else {
2468 ASSERT3U(offset, <, size);
2469 offset = 0;
2470 }
2471
2472 zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd,
2473 object, offset, size, RL_READER);
2474
2475 error = dmu_buf_hold(os, object, offset, zgd, &db,
2476 DMU_READ_NO_PREFETCH);
2477
2478 if (error == 0) {
2479 blkptr_t *bp = &lr->lr_blkptr;
2480
2481 zgd->zgd_db = db;
2482 zgd->zgd_bp = bp;
2483
2484 ASSERT3U(db->db_offset, ==, offset);
2485 ASSERT3U(db->db_size, ==, size);
2486
2487 error = dmu_sync(zio, lr->lr_common.lrc_txg,
2488 ztest_get_done, zgd);
2489
2490 if (error == 0)
2491 return (0);
2492 }
2493 }
2494
2495 ztest_get_done(zgd, error);
2496
2497 return (error);
2498 }
2499
2500 static void *
2501 ztest_lr_alloc(size_t lrsize, char *name)
2502 {
2503 char *lr;
2504 size_t namesize = name ? strlen(name) + 1 : 0;
2505
2506 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
2507
2508 if (name)
2509 memcpy(lr + lrsize, name, namesize);
2510
2511 return (lr);
2512 }
2513
2514 static void
2515 ztest_lr_free(void *lr, size_t lrsize, char *name)
2516 {
2517 size_t namesize = name ? strlen(name) + 1 : 0;
2518
2519 umem_free(lr, lrsize + namesize);
2520 }
2521
2522 /*
2523 * Lookup a bunch of objects. Returns the number of objects not found.
2524 */
2525 static int
2526 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
2527 {
2528 int missing = 0;
2529 int error;
2530 int i;
2531
2532 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2533
2534 for (i = 0; i < count; i++, od++) {
2535 od->od_object = 0;
2536 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
2537 sizeof (uint64_t), 1, &od->od_object);
2538 if (error) {
2539 ASSERT3S(error, ==, ENOENT);
2540 ASSERT0(od->od_object);
2541 missing++;
2542 } else {
2543 dmu_buf_t *db;
2544 ztest_block_tag_t *bbt;
2545 dmu_object_info_t doi;
2546
2547 ASSERT3U(od->od_object, !=, 0);
2548 ASSERT0(missing); /* there should be no gaps */
2549
2550 ztest_object_lock(zd, od->od_object, RL_READER);
2551 VERIFY0(dmu_bonus_hold(zd->zd_os, od->od_object,
2552 FTAG, &db));
2553 dmu_object_info_from_db(db, &doi);
2554 bbt = ztest_bt_bonus(db);
2555 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2556 od->od_type = doi.doi_type;
2557 od->od_blocksize = doi.doi_data_block_size;
2558 od->od_gen = bbt->bt_gen;
2559 dmu_buf_rele(db, FTAG);
2560 ztest_object_unlock(zd, od->od_object);
2561 }
2562 }
2563
2564 return (missing);
2565 }
2566
2567 static int
2568 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
2569 {
2570 int missing = 0;
2571 int i;
2572
2573 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2574
2575 for (i = 0; i < count; i++, od++) {
2576 if (missing) {
2577 od->od_object = 0;
2578 missing++;
2579 continue;
2580 }
2581
2582 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2583
2584 lr->lr_doid = od->od_dir;
2585 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */
2586 lr->lrz_type = od->od_crtype;
2587 lr->lrz_blocksize = od->od_crblocksize;
2588 lr->lrz_ibshift = ztest_random_ibshift();
2589 lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
2590 lr->lrz_dnodesize = od->od_crdnodesize;
2591 lr->lr_gen = od->od_crgen;
2592 lr->lr_crtime[0] = time(NULL);
2593
2594 if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
2595 ASSERT0(missing);
2596 od->od_object = 0;
2597 missing++;
2598 } else {
2599 od->od_object = lr->lr_foid;
2600 od->od_type = od->od_crtype;
2601 od->od_blocksize = od->od_crblocksize;
2602 od->od_gen = od->od_crgen;
2603 ASSERT3U(od->od_object, !=, 0);
2604 }
2605
2606 ztest_lr_free(lr, sizeof (*lr), od->od_name);
2607 }
2608
2609 return (missing);
2610 }
2611
2612 static int
2613 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
2614 {
2615 int missing = 0;
2616 int error;
2617 int i;
2618
2619 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2620
2621 od += count - 1;
2622
2623 for (i = count - 1; i >= 0; i--, od--) {
2624 if (missing) {
2625 missing++;
2626 continue;
2627 }
2628
2629 /*
2630 * No object was found.
2631 */
2632 if (od->od_object == 0)
2633 continue;
2634
2635 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2636
2637 lr->lr_doid = od->od_dir;
2638
2639 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
2640 ASSERT3U(error, ==, ENOSPC);
2641 missing++;
2642 } else {
2643 od->od_object = 0;
2644 }
2645 ztest_lr_free(lr, sizeof (*lr), od->od_name);
2646 }
2647
2648 return (missing);
2649 }
2650
2651 static int
2652 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
2653 void *data)
2654 {
2655 lr_write_t *lr;
2656 int error;
2657
2658 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
2659
2660 lr->lr_foid = object;
2661 lr->lr_offset = offset;
2662 lr->lr_length = size;
2663 lr->lr_blkoff = 0;
2664 BP_ZERO(&lr->lr_blkptr);
2665
2666 memcpy(lr + 1, data, size);
2667
2668 error = ztest_replay_write(zd, lr, B_FALSE);
2669
2670 ztest_lr_free(lr, sizeof (*lr) + size, NULL);
2671
2672 return (error);
2673 }
2674
2675 static int
2676 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2677 {
2678 lr_truncate_t *lr;
2679 int error;
2680
2681 lr = ztest_lr_alloc(sizeof (*lr), NULL);
2682
2683 lr->lr_foid = object;
2684 lr->lr_offset = offset;
2685 lr->lr_length = size;
2686
2687 error = ztest_replay_truncate(zd, lr, B_FALSE);
2688
2689 ztest_lr_free(lr, sizeof (*lr), NULL);
2690
2691 return (error);
2692 }
2693
2694 static int
2695 ztest_setattr(ztest_ds_t *zd, uint64_t object)
2696 {
2697 lr_setattr_t *lr;
2698 int error;
2699
2700 lr = ztest_lr_alloc(sizeof (*lr), NULL);
2701
2702 lr->lr_foid = object;
2703 lr->lr_size = 0;
2704 lr->lr_mode = 0;
2705
2706 error = ztest_replay_setattr(zd, lr, B_FALSE);
2707
2708 ztest_lr_free(lr, sizeof (*lr), NULL);
2709
2710 return (error);
2711 }
2712
2713 static void
2714 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2715 {
2716 objset_t *os = zd->zd_os;
2717 dmu_tx_t *tx;
2718 uint64_t txg;
2719 rl_t *rl;
2720
2721 txg_wait_synced(dmu_objset_pool(os), 0);
2722
2723 ztest_object_lock(zd, object, RL_READER);
2724 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER);
2725
2726 tx = dmu_tx_create(os);
2727
2728 dmu_tx_hold_write(tx, object, offset, size);
2729
2730 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2731
2732 if (txg != 0) {
2733 dmu_prealloc(os, object, offset, size, tx);
2734 dmu_tx_commit(tx);
2735 txg_wait_synced(dmu_objset_pool(os), txg);
2736 } else {
2737 (void) dmu_free_long_range(os, object, offset, size);
2738 }
2739
2740 ztest_range_unlock(rl);
2741 ztest_object_unlock(zd, object);
2742 }
2743
2744 static void
2745 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
2746 {
2747 int err;
2748 ztest_block_tag_t wbt;
2749 dmu_object_info_t doi;
2750 enum ztest_io_type io_type;
2751 uint64_t blocksize;
2752 void *data;
2753
2754 VERIFY0(dmu_object_info(zd->zd_os, object, &doi));
2755 blocksize = doi.doi_data_block_size;
2756 data = umem_alloc(blocksize, UMEM_NOFAIL);
2757
2758 /*
2759 * Pick an i/o type at random, biased toward writing block tags.
2760 */
2761 io_type = ztest_random(ZTEST_IO_TYPES);
2762 if (ztest_random(2) == 0)
2763 io_type = ZTEST_IO_WRITE_TAG;
2764
2765 (void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
2766
2767 switch (io_type) {
2768
2769 case ZTEST_IO_WRITE_TAG:
2770 ztest_bt_generate(&wbt, zd->zd_os, object, doi.doi_dnodesize,
2771 offset, 0, 0, 0);
2772 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
2773 break;
2774
2775 case ZTEST_IO_WRITE_PATTERN:
2776 (void) memset(data, 'a' + (object + offset) % 5, blocksize);
2777 if (ztest_random(2) == 0) {
2778 /*
2779 * Induce fletcher2 collisions to ensure that
2780 * zio_ddt_collision() detects and resolves them
2781 * when using fletcher2-verify for deduplication.
2782 */
2783 ((uint64_t *)data)[0] ^= 1ULL << 63;
2784 ((uint64_t *)data)[4] ^= 1ULL << 63;
2785 }
2786 (void) ztest_write(zd, object, offset, blocksize, data);
2787 break;
2788
2789 case ZTEST_IO_WRITE_ZEROES:
2790 memset(data, 0, blocksize);
2791 (void) ztest_write(zd, object, offset, blocksize, data);
2792 break;
2793
2794 case ZTEST_IO_TRUNCATE:
2795 (void) ztest_truncate(zd, object, offset, blocksize);
2796 break;
2797
2798 case ZTEST_IO_SETATTR:
2799 (void) ztest_setattr(zd, object);
2800 break;
2801 default:
2802 break;
2803
2804 case ZTEST_IO_REWRITE:
2805 (void) pthread_rwlock_rdlock(&ztest_name_lock);
2806 err = ztest_dsl_prop_set_uint64(zd->zd_name,
2807 ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa),
2808 B_FALSE);
2809 VERIFY(err == 0 || err == ENOSPC);
2810 err = ztest_dsl_prop_set_uint64(zd->zd_name,
2811 ZFS_PROP_COMPRESSION,
2812 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION),
2813 B_FALSE);
2814 VERIFY(err == 0 || err == ENOSPC);
2815 (void) pthread_rwlock_unlock(&ztest_name_lock);
2816
2817 VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data,
2818 DMU_READ_NO_PREFETCH));
2819
2820 (void) ztest_write(zd, object, offset, blocksize, data);
2821 break;
2822 }
2823
2824 (void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2825
2826 umem_free(data, blocksize);
2827 }
2828
2829 /*
2830 * Initialize an object description template.
2831 */
2832 static void
2833 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index,
2834 dmu_object_type_t type, uint64_t blocksize, uint64_t dnodesize,
2835 uint64_t gen)
2836 {
2837 od->od_dir = ZTEST_DIROBJ;
2838 od->od_object = 0;
2839
2840 od->od_crtype = type;
2841 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
2842 od->od_crdnodesize = dnodesize ? dnodesize : ztest_random_dnodesize();
2843 od->od_crgen = gen;
2844
2845 od->od_type = DMU_OT_NONE;
2846 od->od_blocksize = 0;
2847 od->od_gen = 0;
2848
2849 (void) snprintf(od->od_name, sizeof (od->od_name),
2850 "%s(%"PRId64")[%"PRIu64"]",
2851 tag, id, index);
2852 }
2853
2854 /*
2855 * Lookup or create the objects for a test using the od template.
2856 * If the objects do not all exist, or if 'remove' is specified,
2857 * remove any existing objects and create new ones. Otherwise,
2858 * use the existing objects.
2859 */
2860 static int
2861 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
2862 {
2863 int count = size / sizeof (*od);
2864 int rv = 0;
2865
2866 mutex_enter(&zd->zd_dirobj_lock);
2867 if ((ztest_lookup(zd, od, count) != 0 || remove) &&
2868 (ztest_remove(zd, od, count) != 0 ||
2869 ztest_create(zd, od, count) != 0))
2870 rv = -1;
2871 zd->zd_od = od;
2872 mutex_exit(&zd->zd_dirobj_lock);
2873
2874 return (rv);
2875 }
2876
2877 void
2878 ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
2879 {
2880 (void) id;
2881 zilog_t *zilog = zd->zd_zilog;
2882
2883 (void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
2884
2885 zil_commit(zilog, ztest_random(ZTEST_OBJECTS));
2886
2887 /*
2888 * Remember the committed values in zd, which is in parent/child
2889 * shared memory. If we die, the next iteration of ztest_run()
2890 * will verify that the log really does contain this record.
2891 */
2892 mutex_enter(&zilog->zl_lock);
2893 ASSERT3P(zd->zd_shared, !=, NULL);
2894 ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq);
2895 zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq;
2896 mutex_exit(&zilog->zl_lock);
2897
2898 (void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2899 }
2900
2901 /*
2902 * This function is designed to simulate the operations that occur during a
2903 * mount/unmount operation. We hold the dataset across these operations in an
2904 * attempt to expose any implicit assumptions about ZIL management.
2905 */
2906 void
2907 ztest_zil_remount(ztest_ds_t *zd, uint64_t id)
2908 {
2909 (void) id;
2910 objset_t *os = zd->zd_os;
2911
2912 /*
2913 * We hold the ztest_vdev_lock so we don't cause problems with
2914 * other threads that wish to remove a log device, such as
2915 * ztest_device_removal().
2916 */
2917 mutex_enter(&ztest_vdev_lock);
2918
2919 /*
2920 * We grab the zd_dirobj_lock to ensure that no other thread is
2921 * updating the zil (i.e. adding in-memory log records) and the
2922 * zd_zilog_lock to block any I/O.
2923 */
2924 mutex_enter(&zd->zd_dirobj_lock);
2925 (void) pthread_rwlock_wrlock(&zd->zd_zilog_lock);
2926
2927 /* zfsvfs_teardown() */
2928 zil_close(zd->zd_zilog);
2929
2930 /* zfsvfs_setup() */
2931 VERIFY3P(zil_open(os, ztest_get_data), ==, zd->zd_zilog);
2932 zil_replay(os, zd, ztest_replay_vector);
2933
2934 (void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2935 mutex_exit(&zd->zd_dirobj_lock);
2936 mutex_exit(&ztest_vdev_lock);
2937 }
2938
2939 /*
2940 * Verify that we can't destroy an active pool, create an existing pool,
2941 * or create a pool with a bad vdev spec.
2942 */
2943 void
2944 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
2945 {
2946 (void) zd, (void) id;
2947 ztest_shared_opts_t *zo = &ztest_opts;
2948 spa_t *spa;
2949 nvlist_t *nvroot;
2950
2951 if (zo->zo_mmp_test)
2952 return;
2953
2954 /*
2955 * Attempt to create using a bad file.
2956 */
2957 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
2958 VERIFY3U(ENOENT, ==,
2959 spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL));
2960 fnvlist_free(nvroot);
2961
2962 /*
2963 * Attempt to create using a bad mirror.
2964 */
2965 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 2, 1);
2966 VERIFY3U(ENOENT, ==,
2967 spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL));
2968 fnvlist_free(nvroot);
2969
2970 /*
2971 * Attempt to create an existing pool. It shouldn't matter
2972 * what's in the nvroot; we should fail with EEXIST.
2973 */
2974 (void) pthread_rwlock_rdlock(&ztest_name_lock);
2975 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
2976 VERIFY3U(EEXIST, ==,
2977 spa_create(zo->zo_pool, nvroot, NULL, NULL, NULL));
2978 fnvlist_free(nvroot);
2979
2980 /*
2981 * We open a reference to the spa and then we try to export it
2982 * expecting one of the following errors:
2983 *
2984 * EBUSY
2985 * Because of the reference we just opened.
2986 *
2987 * ZFS_ERR_EXPORT_IN_PROGRESS
2988 * For the case that there is another ztest thread doing
2989 * an export concurrently.
2990 */
2991 VERIFY0(spa_open(zo->zo_pool, &spa, FTAG));
2992 int error = spa_destroy(zo->zo_pool);
2993 if (error != EBUSY && error != ZFS_ERR_EXPORT_IN_PROGRESS) {
2994 fatal(B_FALSE, "spa_destroy(%s) returned unexpected value %d",
2995 spa->spa_name, error);
2996 }
2997 spa_close(spa, FTAG);
2998
2999 (void) pthread_rwlock_unlock(&ztest_name_lock);
3000 }
3001
3002 /*
3003 * Start and then stop the MMP threads to ensure the startup and shutdown code
3004 * works properly. Actual protection and property-related code tested via ZTS.
3005 */
3006 void
3007 ztest_mmp_enable_disable(ztest_ds_t *zd, uint64_t id)
3008 {
3009 (void) zd, (void) id;
3010 ztest_shared_opts_t *zo = &ztest_opts;
3011 spa_t *spa = ztest_spa;
3012
3013 if (zo->zo_mmp_test)
3014 return;
3015
3016 /*
3017 * Since enabling MMP involves setting a property, it could not be done
3018 * while the pool is suspended.
3019 */
3020 if (spa_suspended(spa))
3021 return;
3022
3023 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3024 mutex_enter(&spa->spa_props_lock);
3025
3026 zfs_multihost_fail_intervals = 0;
3027
3028 if (!spa_multihost(spa)) {
3029 spa->spa_multihost = B_TRUE;
3030 mmp_thread_start(spa);
3031 }
3032
3033 mutex_exit(&spa->spa_props_lock);
3034 spa_config_exit(spa, SCL_CONFIG, FTAG);
3035
3036 txg_wait_synced(spa_get_dsl(spa), 0);
3037 mmp_signal_all_threads();
3038 txg_wait_synced(spa_get_dsl(spa), 0);
3039
3040 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3041 mutex_enter(&spa->spa_props_lock);
3042
3043 if (spa_multihost(spa)) {
3044 mmp_thread_stop(spa);
3045 spa->spa_multihost = B_FALSE;
3046 }
3047
3048 mutex_exit(&spa->spa_props_lock);
3049 spa_config_exit(spa, SCL_CONFIG, FTAG);
3050 }
3051
3052 void
3053 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id)
3054 {
3055 (void) zd, (void) id;
3056 spa_t *spa;
3057 uint64_t initial_version = SPA_VERSION_INITIAL;
3058 uint64_t version, newversion;
3059 nvlist_t *nvroot, *props;
3060 char *name;
3061
3062 if (ztest_opts.zo_mmp_test)
3063 return;
3064
3065 /* dRAID added after feature flags, skip upgrade test. */
3066 if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0)
3067 return;
3068
3069 mutex_enter(&ztest_vdev_lock);
3070 name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool);
3071
3072 /*
3073 * Clean up from previous runs.
3074 */
3075 (void) spa_destroy(name);
3076
3077 nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0,
3078 NULL, ztest_opts.zo_raid_children, ztest_opts.zo_mirrors, 1);
3079
3080 /*
3081 * If we're configuring a RAIDZ device then make sure that the
3082 * initial version is capable of supporting that feature.
3083 */
3084 switch (ztest_opts.zo_raid_parity) {
3085 case 0:
3086 case 1:
3087 initial_version = SPA_VERSION_INITIAL;
3088 break;
3089 case 2:
3090 initial_version = SPA_VERSION_RAIDZ2;
3091 break;
3092 case 3:
3093 initial_version = SPA_VERSION_RAIDZ3;
3094 break;
3095 }
3096
3097 /*
3098 * Create a pool with a spa version that can be upgraded. Pick
3099 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
3100 */
3101 do {
3102 version = ztest_random_spa_version(initial_version);
3103 } while (version > SPA_VERSION_BEFORE_FEATURES);
3104
3105 props = fnvlist_alloc();
3106 fnvlist_add_uint64(props,
3107 zpool_prop_to_name(ZPOOL_PROP_VERSION), version);
3108 VERIFY0(spa_create(name, nvroot, props, NULL, NULL));
3109 fnvlist_free(nvroot);
3110 fnvlist_free(props);
3111
3112 VERIFY0(spa_open(name, &spa, FTAG));
3113 VERIFY3U(spa_version(spa), ==, version);
3114 newversion = ztest_random_spa_version(version + 1);
3115
3116 if (ztest_opts.zo_verbose >= 4) {
3117 (void) printf("upgrading spa version from "
3118 "%"PRIu64" to %"PRIu64"\n",
3119 version, newversion);
3120 }
3121
3122 spa_upgrade(spa, newversion);
3123 VERIFY3U(spa_version(spa), >, version);
3124 VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config,
3125 zpool_prop_to_name(ZPOOL_PROP_VERSION)));
3126 spa_close(spa, FTAG);
3127
3128 kmem_strfree(name);
3129 mutex_exit(&ztest_vdev_lock);
3130 }
3131
3132 static void
3133 ztest_spa_checkpoint(spa_t *spa)
3134 {
3135 ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
3136
3137 int error = spa_checkpoint(spa->spa_name);
3138
3139 switch (error) {
3140 case 0:
3141 case ZFS_ERR_DEVRM_IN_PROGRESS:
3142 case ZFS_ERR_DISCARDING_CHECKPOINT:
3143 case ZFS_ERR_CHECKPOINT_EXISTS:
3144 break;
3145 case ENOSPC:
3146 ztest_record_enospc(FTAG);
3147 break;
3148 default:
3149 fatal(B_FALSE, "spa_checkpoint(%s) = %d", spa->spa_name, error);
3150 }
3151 }
3152
3153 static void
3154 ztest_spa_discard_checkpoint(spa_t *spa)
3155 {
3156 ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
3157
3158 int error = spa_checkpoint_discard(spa->spa_name);
3159
3160 switch (error) {
3161 case 0:
3162 case ZFS_ERR_DISCARDING_CHECKPOINT:
3163 case ZFS_ERR_NO_CHECKPOINT:
3164 break;
3165 default:
3166 fatal(B_FALSE, "spa_discard_checkpoint(%s) = %d",
3167 spa->spa_name, error);
3168 }
3169
3170 }
3171
3172 void
3173 ztest_spa_checkpoint_create_discard(ztest_ds_t *zd, uint64_t id)
3174 {
3175 (void) zd, (void) id;
3176 spa_t *spa = ztest_spa;
3177
3178 mutex_enter(&ztest_checkpoint_lock);
3179 if (ztest_random(2) == 0) {
3180 ztest_spa_checkpoint(spa);
3181 } else {
3182 ztest_spa_discard_checkpoint(spa);
3183 }
3184 mutex_exit(&ztest_checkpoint_lock);
3185 }
3186
3187
3188 static vdev_t *
3189 vdev_lookup_by_path(vdev_t *vd, const char *path)
3190 {
3191 vdev_t *mvd;
3192 int c;
3193
3194 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
3195 return (vd);
3196
3197 for (c = 0; c < vd->vdev_children; c++)
3198 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
3199 NULL)
3200 return (mvd);
3201
3202 return (NULL);
3203 }
3204
3205 static int
3206 spa_num_top_vdevs(spa_t *spa)
3207 {
3208 vdev_t *rvd = spa->spa_root_vdev;
3209 ASSERT3U(spa_config_held(spa, SCL_VDEV, RW_READER), ==, SCL_VDEV);
3210 return (rvd->vdev_children);
3211 }
3212
3213 /*
3214 * Verify that vdev_add() works as expected.
3215 */
3216 void
3217 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
3218 {
3219 (void) zd, (void) id;
3220 ztest_shared_t *zs = ztest_shared;
3221 spa_t *spa = ztest_spa;
3222 uint64_t leaves;
3223 uint64_t guid;
3224 nvlist_t *nvroot;
3225 int error;
3226
3227 if (ztest_opts.zo_mmp_test)
3228 return;
3229
3230 mutex_enter(&ztest_vdev_lock);
3231 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) *
3232 ztest_opts.zo_raid_children;
3233
3234 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3235
3236 ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
3237
3238 /*
3239 * If we have slogs then remove them 1/4 of the time.
3240 */
3241 if (spa_has_slogs(spa) && ztest_random(4) == 0) {
3242 metaslab_group_t *mg;
3243
3244 /*
3245 * find the first real slog in log allocation class
3246 */
3247 mg = spa_log_class(spa)->mc_allocator[0].mca_rotor;
3248 while (!mg->mg_vd->vdev_islog)
3249 mg = mg->mg_next;
3250
3251 guid = mg->mg_vd->vdev_guid;
3252
3253 spa_config_exit(spa, SCL_VDEV, FTAG);
3254
3255 /*
3256 * We have to grab the zs_name_lock as writer to
3257 * prevent a race between removing a slog (dmu_objset_find)
3258 * and destroying a dataset. Removing the slog will
3259 * grab a reference on the dataset which may cause
3260 * dsl_destroy_head() to fail with EBUSY thus
3261 * leaving the dataset in an inconsistent state.
3262 */
3263 pthread_rwlock_wrlock(&ztest_name_lock);
3264 error = spa_vdev_remove(spa, guid, B_FALSE);
3265 pthread_rwlock_unlock(&ztest_name_lock);
3266
3267 switch (error) {
3268 case 0:
3269 case EEXIST: /* Generic zil_reset() error */
3270 case EBUSY: /* Replay required */
3271 case EACCES: /* Crypto key not loaded */
3272 case ZFS_ERR_CHECKPOINT_EXISTS:
3273 case ZFS_ERR_DISCARDING_CHECKPOINT:
3274 break;
3275 default:
3276 fatal(B_FALSE, "spa_vdev_remove() = %d", error);
3277 }
3278 } else {
3279 spa_config_exit(spa, SCL_VDEV, FTAG);
3280
3281 /*
3282 * Make 1/4 of the devices be log devices
3283 */
3284 nvroot = make_vdev_root(NULL, NULL, NULL,
3285 ztest_opts.zo_vdev_size, 0, (ztest_random(4) == 0) ?
3286 "log" : NULL, ztest_opts.zo_raid_children, zs->zs_mirrors,
3287 1);
3288
3289 error = spa_vdev_add(spa, nvroot);
3290 fnvlist_free(nvroot);
3291
3292 switch (error) {
3293 case 0:
3294 break;
3295 case ENOSPC:
3296 ztest_record_enospc("spa_vdev_add");
3297 break;
3298 default:
3299 fatal(B_FALSE, "spa_vdev_add() = %d", error);
3300 }
3301 }
3302
3303 mutex_exit(&ztest_vdev_lock);
3304 }
3305
3306 void
3307 ztest_vdev_class_add(ztest_ds_t *zd, uint64_t id)
3308 {
3309 (void) zd, (void) id;
3310 ztest_shared_t *zs = ztest_shared;
3311 spa_t *spa = ztest_spa;
3312 uint64_t leaves;
3313 nvlist_t *nvroot;
3314 const char *class = (ztest_random(2) == 0) ?
3315 VDEV_ALLOC_BIAS_SPECIAL : VDEV_ALLOC_BIAS_DEDUP;
3316 int error;
3317
3318 /*
3319 * By default add a special vdev 50% of the time
3320 */
3321 if ((ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_OFF) ||
3322 (ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_RND &&
3323 ztest_random(2) == 0)) {
3324 return;
3325 }
3326
3327 mutex_enter(&ztest_vdev_lock);
3328
3329 /* Only test with mirrors */
3330 if (zs->zs_mirrors < 2) {
3331 mutex_exit(&ztest_vdev_lock);
3332 return;
3333 }
3334
3335 /* requires feature@allocation_classes */
3336 if (!spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)) {
3337 mutex_exit(&ztest_vdev_lock);
3338 return;
3339 }
3340
3341 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) *
3342 ztest_opts.zo_raid_children;
3343
3344 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3345 ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
3346 spa_config_exit(spa, SCL_VDEV, FTAG);
3347
3348 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
3349 class, ztest_opts.zo_raid_children, zs->zs_mirrors, 1);
3350
3351 error = spa_vdev_add(spa, nvroot);
3352 fnvlist_free(nvroot);
3353
3354 if (error == ENOSPC)
3355 ztest_record_enospc("spa_vdev_add");
3356 else if (error != 0)
3357 fatal(B_FALSE, "spa_vdev_add() = %d", error);
3358
3359 /*
3360 * 50% of the time allow small blocks in the special class
3361 */
3362 if (error == 0 &&
3363 spa_special_class(spa)->mc_groups == 1 && ztest_random(2) == 0) {
3364 if (ztest_opts.zo_verbose >= 3)
3365 (void) printf("Enabling special VDEV small blocks\n");
3366 (void) ztest_dsl_prop_set_uint64(zd->zd_name,
3367 ZFS_PROP_SPECIAL_SMALL_BLOCKS, 32768, B_FALSE);
3368 }
3369
3370 mutex_exit(&ztest_vdev_lock);
3371
3372 if (ztest_opts.zo_verbose >= 3) {
3373 metaslab_class_t *mc;
3374
3375 if (strcmp(class, VDEV_ALLOC_BIAS_SPECIAL) == 0)
3376 mc = spa_special_class(spa);
3377 else
3378 mc = spa_dedup_class(spa);
3379 (void) printf("Added a %s mirrored vdev (of %d)\n",
3380 class, (int)mc->mc_groups);
3381 }
3382 }
3383
3384 /*
3385 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
3386 */
3387 void
3388 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
3389 {
3390 (void) zd, (void) id;
3391 ztest_shared_t *zs = ztest_shared;
3392 spa_t *spa = ztest_spa;
3393 vdev_t *rvd = spa->spa_root_vdev;
3394 spa_aux_vdev_t *sav;
3395 char *aux;
3396 char *path;
3397 uint64_t guid = 0;
3398 int error, ignore_err = 0;
3399
3400 if (ztest_opts.zo_mmp_test)
3401 return;
3402
3403 path = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3404
3405 if (ztest_random(2) == 0) {
3406 sav = &spa->spa_spares;
3407 aux = ZPOOL_CONFIG_SPARES;
3408 } else {
3409 sav = &spa->spa_l2cache;
3410 aux = ZPOOL_CONFIG_L2CACHE;
3411 }
3412
3413 mutex_enter(&ztest_vdev_lock);
3414
3415 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3416
3417 if (sav->sav_count != 0 && ztest_random(4) == 0) {
3418 /*
3419 * Pick a random device to remove.
3420 */
3421 vdev_t *svd = sav->sav_vdevs[ztest_random(sav->sav_count)];
3422
3423 /* dRAID spares cannot be removed; try anyways to see ENOTSUP */
3424 if (strstr(svd->vdev_path, VDEV_TYPE_DRAID) != NULL)
3425 ignore_err = ENOTSUP;
3426
3427 guid = svd->vdev_guid;
3428 } else {
3429 /*
3430 * Find an unused device we can add.
3431 */
3432 zs->zs_vdev_aux = 0;
3433 for (;;) {
3434 int c;
3435 (void) snprintf(path, MAXPATHLEN, ztest_aux_template,
3436 ztest_opts.zo_dir, ztest_opts.zo_pool, aux,
3437 zs->zs_vdev_aux);
3438 for (c = 0; c < sav->sav_count; c++)
3439 if (strcmp(sav->sav_vdevs[c]->vdev_path,
3440 path) == 0)
3441 break;
3442 if (c == sav->sav_count &&
3443 vdev_lookup_by_path(rvd, path) == NULL)
3444 break;
3445 zs->zs_vdev_aux++;
3446 }
3447 }
3448
3449 spa_config_exit(spa, SCL_VDEV, FTAG);
3450
3451 if (guid == 0) {
3452 /*
3453 * Add a new device.
3454 */
3455 nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL,
3456 (ztest_opts.zo_vdev_size * 5) / 4, 0, NULL, 0, 0, 1);
3457 error = spa_vdev_add(spa, nvroot);
3458
3459 switch (error) {
3460 case 0:
3461 break;
3462 default:
3463 fatal(B_FALSE, "spa_vdev_add(%p) = %d", nvroot, error);
3464 }
3465 fnvlist_free(nvroot);
3466 } else {
3467 /*
3468 * Remove an existing device. Sometimes, dirty its
3469 * vdev state first to make sure we handle removal
3470 * of devices that have pending state changes.
3471 */
3472 if (ztest_random(2) == 0)
3473 (void) vdev_online(spa, guid, 0, NULL);
3474
3475 error = spa_vdev_remove(spa, guid, B_FALSE);
3476
3477 switch (error) {
3478 case 0:
3479 case EBUSY:
3480 case ZFS_ERR_CHECKPOINT_EXISTS:
3481 case ZFS_ERR_DISCARDING_CHECKPOINT:
3482 break;
3483 default:
3484 if (error != ignore_err)
3485 fatal(B_FALSE,
3486 "spa_vdev_remove(%"PRIu64") = %d",
3487 guid, error);
3488 }
3489 }
3490
3491 mutex_exit(&ztest_vdev_lock);
3492
3493 umem_free(path, MAXPATHLEN);
3494 }
3495
3496 /*
3497 * split a pool if it has mirror tlvdevs
3498 */
3499 void
3500 ztest_split_pool(ztest_ds_t *zd, uint64_t id)
3501 {
3502 (void) zd, (void) id;
3503 ztest_shared_t *zs = ztest_shared;
3504 spa_t *spa = ztest_spa;
3505 vdev_t *rvd = spa->spa_root_vdev;
3506 nvlist_t *tree, **child, *config, *split, **schild;
3507 uint_t c, children, schildren = 0, lastlogid = 0;
3508 int error = 0;
3509
3510 if (ztest_opts.zo_mmp_test)
3511 return;
3512
3513 mutex_enter(&ztest_vdev_lock);
3514
3515 /* ensure we have a usable config; mirrors of raidz aren't supported */
3516 if (zs->zs_mirrors < 3 || ztest_opts.zo_raid_children > 1) {
3517 mutex_exit(&ztest_vdev_lock);
3518 return;
3519 }
3520
3521 /* clean up the old pool, if any */
3522 (void) spa_destroy("splitp");
3523
3524 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3525
3526 /* generate a config from the existing config */
3527 mutex_enter(&spa->spa_props_lock);
3528 tree = fnvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE);
3529 mutex_exit(&spa->spa_props_lock);
3530
3531 VERIFY0(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN,
3532 &child, &children));
3533
3534 schild = malloc(rvd->vdev_children * sizeof (nvlist_t *));
3535 for (c = 0; c < children; c++) {
3536 vdev_t *tvd = rvd->vdev_child[c];
3537 nvlist_t **mchild;
3538 uint_t mchildren;
3539
3540 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
3541 schild[schildren] = fnvlist_alloc();
3542 fnvlist_add_string(schild[schildren],
3543 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE);
3544 fnvlist_add_uint64(schild[schildren],
3545 ZPOOL_CONFIG_IS_HOLE, 1);
3546 if (lastlogid == 0)
3547 lastlogid = schildren;
3548 ++schildren;
3549 continue;
3550 }
3551 lastlogid = 0;
3552 VERIFY0(nvlist_lookup_nvlist_array(child[c],
3553 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren));
3554 schild[schildren++] = fnvlist_dup(mchild[0]);
3555 }
3556
3557 /* OK, create a config that can be used to split */
3558 split = fnvlist_alloc();
3559 fnvlist_add_string(split, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT);
3560 fnvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN,
3561 (const nvlist_t **)schild, lastlogid != 0 ? lastlogid : schildren);
3562
3563 config = fnvlist_alloc();
3564 fnvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split);
3565
3566 for (c = 0; c < schildren; c++)
3567 fnvlist_free(schild[c]);
3568 free(schild);
3569 fnvlist_free(split);
3570
3571 spa_config_exit(spa, SCL_VDEV, FTAG);
3572
3573 (void) pthread_rwlock_wrlock(&ztest_name_lock);
3574 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
3575 (void) pthread_rwlock_unlock(&ztest_name_lock);
3576
3577 fnvlist_free(config);
3578
3579 if (error == 0) {
3580 (void) printf("successful split - results:\n");
3581 mutex_enter(&spa_namespace_lock);
3582 show_pool_stats(spa);
3583 show_pool_stats(spa_lookup("splitp"));
3584 mutex_exit(&spa_namespace_lock);
3585 ++zs->zs_splits;
3586 --zs->zs_mirrors;
3587 }
3588 mutex_exit(&ztest_vdev_lock);
3589 }
3590
3591 /*
3592 * Verify that we can attach and detach devices.
3593 */
3594 void
3595 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
3596 {
3597 (void) zd, (void) id;
3598 ztest_shared_t *zs = ztest_shared;
3599 spa_t *spa = ztest_spa;
3600 spa_aux_vdev_t *sav = &spa->spa_spares;
3601 vdev_t *rvd = spa->spa_root_vdev;
3602 vdev_t *oldvd, *newvd, *pvd;
3603 nvlist_t *root;
3604 uint64_t leaves;
3605 uint64_t leaf, top;
3606 uint64_t ashift = ztest_get_ashift();
3607 uint64_t oldguid, pguid;
3608 uint64_t oldsize, newsize;
3609 char *oldpath, *newpath;
3610 int replacing;
3611 int oldvd_has_siblings = B_FALSE;
3612 int newvd_is_spare = B_FALSE;
3613 int newvd_is_dspare = B_FALSE;
3614 int oldvd_is_log;
3615 int error, expected_error;
3616
3617 if (ztest_opts.zo_mmp_test)
3618 return;
3619
3620 oldpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3621 newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3622
3623 mutex_enter(&ztest_vdev_lock);
3624 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raid_children;
3625
3626 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3627
3628 /*
3629 * If a vdev is in the process of being removed, its removal may
3630 * finish while we are in progress, leading to an unexpected error
3631 * value. Don't bother trying to attach while we are in the middle
3632 * of removal.
3633 */
3634 if (ztest_device_removal_active) {
3635 spa_config_exit(spa, SCL_ALL, FTAG);
3636 goto out;
3637 }
3638
3639 /*
3640 * Decide whether to do an attach or a replace.
3641 */
3642 replacing = ztest_random(2);
3643
3644 /*
3645 * Pick a random top-level vdev.
3646 */
3647 top = ztest_random_vdev_top(spa, B_TRUE);
3648
3649 /*
3650 * Pick a random leaf within it.
3651 */
3652 leaf = ztest_random(leaves);
3653
3654 /*
3655 * Locate this vdev.
3656 */
3657 oldvd = rvd->vdev_child[top];
3658
3659 /* pick a child from the mirror */
3660 if (zs->zs_mirrors >= 1) {
3661 ASSERT3P(oldvd->vdev_ops, ==, &vdev_mirror_ops);
3662 ASSERT3U(oldvd->vdev_children, >=, zs->zs_mirrors);
3663 oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raid_children];
3664 }
3665
3666 /* pick a child out of the raidz group */
3667 if (ztest_opts.zo_raid_children > 1) {
3668 if (strcmp(oldvd->vdev_ops->vdev_op_type, "raidz") == 0)
3669 ASSERT3P(oldvd->vdev_ops, ==, &vdev_raidz_ops);
3670 else
3671 ASSERT3P(oldvd->vdev_ops, ==, &vdev_draid_ops);
3672 ASSERT3U(oldvd->vdev_children, ==, ztest_opts.zo_raid_children);
3673 oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raid_children];
3674 }
3675
3676 /*
3677 * If we're already doing an attach or replace, oldvd may be a
3678 * mirror vdev -- in which case, pick a random child.
3679 */
3680 while (oldvd->vdev_children != 0) {
3681 oldvd_has_siblings = B_TRUE;
3682 ASSERT3U(oldvd->vdev_children, >=, 2);
3683 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
3684 }
3685
3686 oldguid = oldvd->vdev_guid;
3687 oldsize = vdev_get_min_asize(oldvd);
3688 oldvd_is_log = oldvd->vdev_top->vdev_islog;
3689 (void) strcpy(oldpath, oldvd->vdev_path);
3690 pvd = oldvd->vdev_parent;
3691 pguid = pvd->vdev_guid;
3692
3693 /*
3694 * If oldvd has siblings, then half of the time, detach it. Prior
3695 * to the detach the pool is scrubbed in order to prevent creating
3696 * unrepairable blocks as a result of the data corruption injection.
3697 */
3698 if (oldvd_has_siblings && ztest_random(2) == 0) {
3699 spa_config_exit(spa, SCL_ALL, FTAG);
3700
3701 error = ztest_scrub_impl(spa);
3702 if (error)
3703 goto out;
3704
3705 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
3706 if (error != 0 && error != ENODEV && error != EBUSY &&
3707 error != ENOTSUP && error != ZFS_ERR_CHECKPOINT_EXISTS &&
3708 error != ZFS_ERR_DISCARDING_CHECKPOINT)
3709 fatal(B_FALSE, "detach (%s) returned %d",
3710 oldpath, error);
3711 goto out;
3712 }
3713
3714 /*
3715 * For the new vdev, choose with equal probability between the two
3716 * standard paths (ending in either 'a' or 'b') or a random hot spare.
3717 */
3718 if (sav->sav_count != 0 && ztest_random(3) == 0) {
3719 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
3720 newvd_is_spare = B_TRUE;
3721
3722 if (newvd->vdev_ops == &vdev_draid_spare_ops)
3723 newvd_is_dspare = B_TRUE;
3724
3725 (void) strcpy(newpath, newvd->vdev_path);
3726 } else {
3727 (void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
3728 ztest_opts.zo_dir, ztest_opts.zo_pool,
3729 top * leaves + leaf);
3730 if (ztest_random(2) == 0)
3731 newpath[strlen(newpath) - 1] = 'b';
3732 newvd = vdev_lookup_by_path(rvd, newpath);
3733 }
3734
3735 if (newvd) {
3736 /*
3737 * Reopen to ensure the vdev's asize field isn't stale.
3738 */
3739 vdev_reopen(newvd);
3740 newsize = vdev_get_min_asize(newvd);
3741 } else {
3742 /*
3743 * Make newsize a little bigger or smaller than oldsize.
3744 * If it's smaller, the attach should fail.
3745 * If it's larger, and we're doing a replace,
3746 * we should get dynamic LUN growth when we're done.
3747 */
3748 newsize = 10 * oldsize / (9 + ztest_random(3));
3749 }
3750
3751 /*
3752 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
3753 * unless it's a replace; in that case any non-replacing parent is OK.
3754 *
3755 * If newvd is already part of the pool, it should fail with EBUSY.
3756 *
3757 * If newvd is too small, it should fail with EOVERFLOW.
3758 *
3759 * If newvd is a distributed spare and it's being attached to a
3760 * dRAID which is not its parent it should fail with EINVAL.
3761 */
3762 if (pvd->vdev_ops != &vdev_mirror_ops &&
3763 pvd->vdev_ops != &vdev_root_ops && (!replacing ||
3764 pvd->vdev_ops == &vdev_replacing_ops ||
3765 pvd->vdev_ops == &vdev_spare_ops))
3766 expected_error = ENOTSUP;
3767 else if (newvd_is_spare && (!replacing || oldvd_is_log))
3768 expected_error = ENOTSUP;
3769 else if (newvd == oldvd)
3770 expected_error = replacing ? 0 : EBUSY;
3771 else if (vdev_lookup_by_path(rvd, newpath) != NULL)
3772 expected_error = EBUSY;
3773 else if (!newvd_is_dspare && newsize < oldsize)
3774 expected_error = EOVERFLOW;
3775 else if (ashift > oldvd->vdev_top->vdev_ashift)
3776 expected_error = EDOM;
3777 else if (newvd_is_dspare && pvd != vdev_draid_spare_get_parent(newvd))
3778 expected_error = ENOTSUP;
3779 else
3780 expected_error = 0;
3781
3782 spa_config_exit(spa, SCL_ALL, FTAG);
3783
3784 /*
3785 * Build the nvlist describing newpath.
3786 */
3787 root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0,
3788 ashift, NULL, 0, 0, 1);
3789
3790 /*
3791 * When supported select either a healing or sequential resilver.
3792 */
3793 boolean_t rebuilding = B_FALSE;
3794 if (pvd->vdev_ops == &vdev_mirror_ops ||
3795 pvd->vdev_ops == &vdev_root_ops) {
3796 rebuilding = !!ztest_random(2);
3797 }
3798
3799 error = spa_vdev_attach(spa, oldguid, root, replacing, rebuilding);
3800
3801 fnvlist_free(root);
3802
3803 /*
3804 * If our parent was the replacing vdev, but the replace completed,
3805 * then instead of failing with ENOTSUP we may either succeed,
3806 * fail with ENODEV, or fail with EOVERFLOW.
3807 */
3808 if (expected_error == ENOTSUP &&
3809 (error == 0 || error == ENODEV || error == EOVERFLOW))
3810 expected_error = error;
3811
3812 /*
3813 * If someone grew the LUN, the replacement may be too small.
3814 */
3815 if (error == EOVERFLOW || error == EBUSY)
3816 expected_error = error;
3817
3818 if (error == ZFS_ERR_CHECKPOINT_EXISTS ||
3819 error == ZFS_ERR_DISCARDING_CHECKPOINT ||
3820 error == ZFS_ERR_RESILVER_IN_PROGRESS ||
3821 error == ZFS_ERR_REBUILD_IN_PROGRESS)
3822 expected_error = error;
3823
3824 if (error != expected_error && expected_error != EBUSY) {
3825 fatal(B_FALSE, "attach (%s %"PRIu64", %s %"PRIu64", %d) "
3826 "returned %d, expected %d",
3827 oldpath, oldsize, newpath,
3828 newsize, replacing, error, expected_error);
3829 }
3830 out:
3831 mutex_exit(&ztest_vdev_lock);
3832
3833 umem_free(oldpath, MAXPATHLEN);
3834 umem_free(newpath, MAXPATHLEN);
3835 }
3836
3837 void
3838 ztest_device_removal(ztest_ds_t *zd, uint64_t id)
3839 {
3840 (void) zd, (void) id;
3841 spa_t *spa = ztest_spa;
3842 vdev_t *vd;
3843 uint64_t guid;
3844 int error;
3845
3846 mutex_enter(&ztest_vdev_lock);
3847
3848 if (ztest_device_removal_active) {
3849 mutex_exit(&ztest_vdev_lock);
3850 return;
3851 }
3852
3853 /*
3854 * Remove a random top-level vdev and wait for removal to finish.
3855 */
3856 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3857 vd = vdev_lookup_top(spa, ztest_random_vdev_top(spa, B_FALSE));
3858 guid = vd->vdev_guid;
3859 spa_config_exit(spa, SCL_VDEV, FTAG);
3860
3861 error = spa_vdev_remove(spa, guid, B_FALSE);
3862 if (error == 0) {
3863 ztest_device_removal_active = B_TRUE;
3864 mutex_exit(&ztest_vdev_lock);
3865
3866 /*
3867 * spa->spa_vdev_removal is created in a sync task that
3868 * is initiated via dsl_sync_task_nowait(). Since the
3869 * task may not run before spa_vdev_remove() returns, we
3870 * must wait at least 1 txg to ensure that the removal
3871 * struct has been created.
3872 */
3873 txg_wait_synced(spa_get_dsl(spa), 0);
3874
3875 while (spa->spa_removing_phys.sr_state == DSS_SCANNING)
3876 txg_wait_synced(spa_get_dsl(spa), 0);
3877 } else {
3878 mutex_exit(&ztest_vdev_lock);
3879 return;
3880 }
3881
3882 /*
3883 * The pool needs to be scrubbed after completing device removal.
3884 * Failure to do so may result in checksum errors due to the
3885 * strategy employed by ztest_fault_inject() when selecting which
3886 * offset are redundant and can be damaged.
3887 */
3888 error = spa_scan(spa, POOL_SCAN_SCRUB);
3889 if (error == 0) {
3890 while (dsl_scan_scrubbing(spa_get_dsl(spa)))
3891 txg_wait_synced(spa_get_dsl(spa), 0);
3892 }
3893
3894 mutex_enter(&ztest_vdev_lock);
3895 ztest_device_removal_active = B_FALSE;
3896 mutex_exit(&ztest_vdev_lock);
3897 }
3898
3899 /*
3900 * Callback function which expands the physical size of the vdev.
3901 */
3902 static vdev_t *
3903 grow_vdev(vdev_t *vd, void *arg)
3904 {
3905 spa_t *spa __maybe_unused = vd->vdev_spa;
3906 size_t *newsize = arg;
3907 size_t fsize;
3908 int fd;
3909
3910 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), ==, SCL_STATE);
3911 ASSERT(vd->vdev_ops->vdev_op_leaf);
3912
3913 if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
3914 return (vd);
3915
3916 fsize = lseek(fd, 0, SEEK_END);
3917 VERIFY0(ftruncate(fd, *newsize));
3918
3919 if (ztest_opts.zo_verbose >= 6) {
3920 (void) printf("%s grew from %lu to %lu bytes\n",
3921 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
3922 }
3923 (void) close(fd);
3924 return (NULL);
3925 }
3926
3927 /*
3928 * Callback function which expands a given vdev by calling vdev_online().
3929 */
3930 static vdev_t *
3931 online_vdev(vdev_t *vd, void *arg)
3932 {
3933 (void) arg;
3934 spa_t *spa = vd->vdev_spa;
3935 vdev_t *tvd = vd->vdev_top;
3936 uint64_t guid = vd->vdev_guid;
3937 uint64_t generation = spa->spa_config_generation + 1;
3938 vdev_state_t newstate = VDEV_STATE_UNKNOWN;
3939 int error;
3940
3941 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), ==, SCL_STATE);
3942 ASSERT(vd->vdev_ops->vdev_op_leaf);
3943
3944 /* Calling vdev_online will initialize the new metaslabs */
3945 spa_config_exit(spa, SCL_STATE, spa);
3946 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
3947 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3948
3949 /*
3950 * If vdev_online returned an error or the underlying vdev_open
3951 * failed then we abort the expand. The only way to know that
3952 * vdev_open fails is by checking the returned newstate.
3953 */
3954 if (error || newstate != VDEV_STATE_HEALTHY) {
3955 if (ztest_opts.zo_verbose >= 5) {
3956 (void) printf("Unable to expand vdev, state %u, "
3957 "error %d\n", newstate, error);
3958 }
3959 return (vd);
3960 }
3961 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
3962
3963 /*
3964 * Since we dropped the lock we need to ensure that we're
3965 * still talking to the original vdev. It's possible this
3966 * vdev may have been detached/replaced while we were
3967 * trying to online it.
3968 */
3969 if (generation != spa->spa_config_generation) {
3970 if (ztest_opts.zo_verbose >= 5) {
3971 (void) printf("vdev configuration has changed, "
3972 "guid %"PRIu64", state %"PRIu64", "
3973 "expected gen %"PRIu64", got gen %"PRIu64"\n",
3974 guid,
3975 tvd->vdev_state,
3976 generation,
3977 spa->spa_config_generation);
3978 }
3979 return (vd);
3980 }
3981 return (NULL);
3982 }
3983
3984 /*
3985 * Traverse the vdev tree calling the supplied function.
3986 * We continue to walk the tree until we either have walked all
3987 * children or we receive a non-NULL return from the callback.
3988 * If a NULL callback is passed, then we just return back the first
3989 * leaf vdev we encounter.
3990 */
3991 static vdev_t *
3992 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
3993 {
3994 uint_t c;
3995
3996 if (vd->vdev_ops->vdev_op_leaf) {
3997 if (func == NULL)
3998 return (vd);
3999 else
4000 return (func(vd, arg));
4001 }
4002
4003 for (c = 0; c < vd->vdev_children; c++) {
4004 vdev_t *cvd = vd->vdev_child[c];
4005 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
4006 return (cvd);
4007 }
4008 return (NULL);
4009 }
4010
4011 /*
4012 * Verify that dynamic LUN growth works as expected.
4013 */
4014 void
4015 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
4016 {
4017 (void) zd, (void) id;
4018 spa_t *spa = ztest_spa;
4019 vdev_t *vd, *tvd;
4020 metaslab_class_t *mc;
4021 metaslab_group_t *mg;
4022 size_t psize, newsize;
4023 uint64_t top;
4024 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
4025
4026 mutex_enter(&ztest_checkpoint_lock);
4027 mutex_enter(&ztest_vdev_lock);
4028 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
4029
4030 /*
4031 * If there is a vdev removal in progress, it could complete while
4032 * we are running, in which case we would not be able to verify
4033 * that the metaslab_class space increased (because it decreases
4034 * when the device removal completes).
4035 */
4036 if (ztest_device_removal_active) {
4037 spa_config_exit(spa, SCL_STATE, spa);
4038 mutex_exit(&ztest_vdev_lock);
4039 mutex_exit(&ztest_checkpoint_lock);
4040 return;
4041 }
4042
4043 top = ztest_random_vdev_top(spa, B_TRUE);
4044
4045 tvd = spa->spa_root_vdev->vdev_child[top];
4046 mg = tvd->vdev_mg;
4047 mc = mg->mg_class;
4048 old_ms_count = tvd->vdev_ms_count;
4049 old_class_space = metaslab_class_get_space(mc);
4050
4051 /*
4052 * Determine the size of the first leaf vdev associated with
4053 * our top-level device.
4054 */
4055 vd = vdev_walk_tree(tvd, NULL, NULL);
4056 ASSERT3P(vd, !=, NULL);
4057 ASSERT(vd->vdev_ops->vdev_op_leaf);
4058
4059 psize = vd->vdev_psize;
4060
4061 /*
4062 * We only try to expand the vdev if it's healthy, less than 4x its
4063 * original size, and it has a valid psize.
4064 */
4065 if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
4066 psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) {
4067 spa_config_exit(spa, SCL_STATE, spa);
4068 mutex_exit(&ztest_vdev_lock);
4069 mutex_exit(&ztest_checkpoint_lock);
4070 return;
4071 }
4072 ASSERT3U(psize, >, 0);
4073 newsize = psize + MAX(psize / 8, SPA_MAXBLOCKSIZE);
4074 ASSERT3U(newsize, >, psize);
4075
4076 if (ztest_opts.zo_verbose >= 6) {
4077 (void) printf("Expanding LUN %s from %lu to %lu\n",
4078 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
4079 }
4080
4081 /*
4082 * Growing the vdev is a two step process:
4083 * 1). expand the physical size (i.e. relabel)
4084 * 2). online the vdev to create the new metaslabs
4085 */
4086 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
4087 vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
4088 tvd->vdev_state != VDEV_STATE_HEALTHY) {
4089 if (ztest_opts.zo_verbose >= 5) {
4090 (void) printf("Could not expand LUN because "
4091 "the vdev configuration changed.\n");
4092 }
4093 spa_config_exit(spa, SCL_STATE, spa);
4094 mutex_exit(&ztest_vdev_lock);
4095 mutex_exit(&ztest_checkpoint_lock);
4096 return;
4097 }
4098
4099 spa_config_exit(spa, SCL_STATE, spa);
4100
4101 /*
4102 * Expanding the LUN will update the config asynchronously,
4103 * thus we must wait for the async thread to complete any
4104 * pending tasks before proceeding.
4105 */
4106 for (;;) {
4107 boolean_t done;
4108 mutex_enter(&spa->spa_async_lock);
4109 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
4110 mutex_exit(&spa->spa_async_lock);
4111 if (done)
4112 break;
4113 txg_wait_synced(spa_get_dsl(spa), 0);
4114 (void) poll(NULL, 0, 100);
4115 }
4116
4117 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
4118
4119 tvd = spa->spa_root_vdev->vdev_child[top];
4120 new_ms_count = tvd->vdev_ms_count;
4121 new_class_space = metaslab_class_get_space(mc);
4122
4123 if (tvd->vdev_mg != mg || mg->mg_class != mc) {
4124 if (ztest_opts.zo_verbose >= 5) {
4125 (void) printf("Could not verify LUN expansion due to "
4126 "intervening vdev offline or remove.\n");
4127 }
4128 spa_config_exit(spa, SCL_STATE, spa);
4129 mutex_exit(&ztest_vdev_lock);
4130 mutex_exit(&ztest_checkpoint_lock);
4131 return;
4132 }
4133
4134 /*
4135 * Make sure we were able to grow the vdev.
4136 */
4137 if (new_ms_count <= old_ms_count) {
4138 fatal(B_FALSE,
4139 "LUN expansion failed: ms_count %"PRIu64" < %"PRIu64"\n",
4140 old_ms_count, new_ms_count);
4141 }
4142
4143 /*
4144 * Make sure we were able to grow the pool.
4145 */
4146 if (new_class_space <= old_class_space) {
4147 fatal(B_FALSE,
4148 "LUN expansion failed: class_space %"PRIu64" < %"PRIu64"\n",
4149 old_class_space, new_class_space);
4150 }
4151
4152 if (ztest_opts.zo_verbose >= 5) {
4153 char oldnumbuf[NN_NUMBUF_SZ], newnumbuf[NN_NUMBUF_SZ];
4154
4155 nicenum(old_class_space, oldnumbuf, sizeof (oldnumbuf));
4156 nicenum(new_class_space, newnumbuf, sizeof (newnumbuf));
4157 (void) printf("%s grew from %s to %s\n",
4158 spa->spa_name, oldnumbuf, newnumbuf);
4159 }
4160
4161 spa_config_exit(spa, SCL_STATE, spa);
4162 mutex_exit(&ztest_vdev_lock);
4163 mutex_exit(&ztest_checkpoint_lock);
4164 }
4165
4166 /*
4167 * Verify that dmu_objset_{create,destroy,open,close} work as expected.
4168 */
4169 static void
4170 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
4171 {
4172 (void) arg, (void) cr;
4173
4174 /*
4175 * Create the objects common to all ztest datasets.
4176 */
4177 VERIFY0(zap_create_claim(os, ZTEST_DIROBJ,
4178 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx));
4179 }
4180
4181 static int
4182 ztest_dataset_create(char *dsname)
4183 {
4184 int err;
4185 uint64_t rand;
4186 dsl_crypto_params_t *dcp = NULL;
4187
4188 /*
4189 * 50% of the time, we create encrypted datasets
4190 * using a random cipher suite and a hard-coded
4191 * wrapping key.
4192 */
4193 rand = ztest_random(2);
4194 if (rand != 0) {
4195 nvlist_t *crypto_args = fnvlist_alloc();
4196 nvlist_t *props = fnvlist_alloc();
4197
4198 /* slight bias towards the default cipher suite */
4199 rand = ztest_random(ZIO_CRYPT_FUNCTIONS);
4200 if (rand < ZIO_CRYPT_AES_128_CCM)
4201 rand = ZIO_CRYPT_ON;
4202
4203 fnvlist_add_uint64(props,
4204 zfs_prop_to_name(ZFS_PROP_ENCRYPTION), rand);
4205 fnvlist_add_uint8_array(crypto_args, "wkeydata",
4206 (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
4207
4208 /*
4209 * These parameters aren't really used by the kernel. They
4210 * are simply stored so that userspace knows how to load
4211 * the wrapping key.
4212 */
4213 fnvlist_add_uint64(props,
4214 zfs_prop_to_name(ZFS_PROP_KEYFORMAT), ZFS_KEYFORMAT_RAW);
4215 fnvlist_add_string(props,
4216 zfs_prop_to_name(ZFS_PROP_KEYLOCATION), "prompt");
4217 fnvlist_add_uint64(props,
4218 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 0ULL);
4219 fnvlist_add_uint64(props,
4220 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 0ULL);
4221
4222 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, props,
4223 crypto_args, &dcp));
4224
4225 /*
4226 * Cycle through all available encryption implementations
4227 * to verify interoperability.
4228 */
4229 VERIFY0(gcm_impl_set("cycle"));
4230 VERIFY0(aes_impl_set("cycle"));
4231
4232 fnvlist_free(crypto_args);
4233 fnvlist_free(props);
4234 }
4235
4236 err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, dcp,
4237 ztest_objset_create_cb, NULL);
4238 dsl_crypto_params_free(dcp, !!err);
4239
4240 rand = ztest_random(100);
4241 if (err || rand < 80)
4242 return (err);
4243
4244 if (ztest_opts.zo_verbose >= 5)
4245 (void) printf("Setting dataset %s to sync always\n", dsname);
4246 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
4247 ZFS_SYNC_ALWAYS, B_FALSE));
4248 }
4249
4250 static int
4251 ztest_objset_destroy_cb(const char *name, void *arg)
4252 {
4253 (void) arg;
4254 objset_t *os;
4255 dmu_object_info_t doi;
4256 int error;
4257
4258 /*
4259 * Verify that the dataset contains a directory object.
4260 */
4261 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
4262 B_TRUE, FTAG, &os));
4263 error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
4264 if (error != ENOENT) {
4265 /* We could have crashed in the middle of destroying it */
4266 ASSERT0(error);
4267 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
4268 ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
4269 }
4270 dmu_objset_disown(os, B_TRUE, FTAG);
4271
4272 /*
4273 * Destroy the dataset.
4274 */
4275 if (strchr(name, '@') != NULL) {
4276 error = dsl_destroy_snapshot(name, B_TRUE);
4277 if (error != ECHRNG) {
4278 /*
4279 * The program was executed, but encountered a runtime
4280 * error, such as insufficient slop, or a hold on the
4281 * dataset.
4282 */
4283 ASSERT0(error);
4284 }
4285 } else {
4286 error = dsl_destroy_head(name);
4287 if (error == ENOSPC) {
4288 /* There could be checkpoint or insufficient slop */
4289 ztest_record_enospc(FTAG);
4290 } else if (error != EBUSY) {
4291 /* There could be a hold on this dataset */
4292 ASSERT0(error);
4293 }
4294 }
4295 return (0);
4296 }
4297
4298 static boolean_t
4299 ztest_snapshot_create(char *osname, uint64_t id)
4300 {
4301 char snapname[ZFS_MAX_DATASET_NAME_LEN];
4302 int error;
4303
4304 (void) snprintf(snapname, sizeof (snapname), "%"PRIu64"", id);
4305
4306 error = dmu_objset_snapshot_one(osname, snapname);
4307 if (error == ENOSPC) {
4308 ztest_record_enospc(FTAG);
4309 return (B_FALSE);
4310 }
4311 if (error != 0 && error != EEXIST) {
4312 fatal(B_FALSE, "ztest_snapshot_create(%s@%s) = %d", osname,
4313 snapname, error);
4314 }
4315 return (B_TRUE);
4316 }
4317
4318 static boolean_t
4319 ztest_snapshot_destroy(char *osname, uint64_t id)
4320 {
4321 char snapname[ZFS_MAX_DATASET_NAME_LEN];
4322 int error;
4323
4324 (void) snprintf(snapname, sizeof (snapname), "%s@%"PRIu64"",
4325 osname, id);
4326
4327 error = dsl_destroy_snapshot(snapname, B_FALSE);
4328 if (error != 0 && error != ENOENT)
4329 fatal(B_FALSE, "ztest_snapshot_destroy(%s) = %d",
4330 snapname, error);
4331 return (B_TRUE);
4332 }
4333
4334 void
4335 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
4336 {
4337 (void) zd;
4338 ztest_ds_t *zdtmp;
4339 int iters;
4340 int error;
4341 objset_t *os, *os2;
4342 char name[ZFS_MAX_DATASET_NAME_LEN];
4343 zilog_t *zilog;
4344 int i;
4345
4346 zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
4347
4348 (void) pthread_rwlock_rdlock(&ztest_name_lock);
4349
4350 (void) snprintf(name, sizeof (name), "%s/temp_%"PRIu64"",
4351 ztest_opts.zo_pool, id);
4352
4353 /*
4354 * If this dataset exists from a previous run, process its replay log
4355 * half of the time. If we don't replay it, then dsl_destroy_head()
4356 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
4357 */
4358 if (ztest_random(2) == 0 &&
4359 ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
4360 B_TRUE, FTAG, &os) == 0) {
4361 ztest_zd_init(zdtmp, NULL, os);
4362 zil_replay(os, zdtmp, ztest_replay_vector);
4363 ztest_zd_fini(zdtmp);
4364 dmu_objset_disown(os, B_TRUE, FTAG);
4365 }
4366
4367 /*
4368 * There may be an old instance of the dataset we're about to
4369 * create lying around from a previous run. If so, destroy it
4370 * and all of its snapshots.
4371 */
4372 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
4373 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
4374
4375 /*
4376 * Verify that the destroyed dataset is no longer in the namespace.
4377 */
4378 VERIFY3U(ENOENT, ==, ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
4379 B_TRUE, FTAG, &os));
4380
4381 /*
4382 * Verify that we can create a new dataset.
4383 */
4384 error = ztest_dataset_create(name);
4385 if (error) {
4386 if (error == ENOSPC) {
4387 ztest_record_enospc(FTAG);
4388 goto out;
4389 }
4390 fatal(B_FALSE, "dmu_objset_create(%s) = %d", name, error);
4391 }
4392
4393 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, B_TRUE,
4394 FTAG, &os));
4395
4396 ztest_zd_init(zdtmp, NULL, os);
4397
4398 /*
4399 * Open the intent log for it.
4400 */
4401 zilog = zil_open(os, ztest_get_data);
4402
4403 /*
4404 * Put some objects in there, do a little I/O to them,
4405 * and randomly take a couple of snapshots along the way.
4406 */
4407 iters = ztest_random(5);
4408 for (i = 0; i < iters; i++) {
4409 ztest_dmu_object_alloc_free(zdtmp, id);
4410 if (ztest_random(iters) == 0)
4411 (void) ztest_snapshot_create(name, i);
4412 }
4413
4414 /*
4415 * Verify that we cannot create an existing dataset.
4416 */
4417 VERIFY3U(EEXIST, ==,
4418 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL, NULL));
4419
4420 /*
4421 * Verify that we can hold an objset that is also owned.
4422 */
4423 VERIFY0(dmu_objset_hold(name, FTAG, &os2));
4424 dmu_objset_rele(os2, FTAG);
4425
4426 /*
4427 * Verify that we cannot own an objset that is already owned.
4428 */
4429 VERIFY3U(EBUSY, ==, ztest_dmu_objset_own(name, DMU_OST_OTHER,
4430 B_FALSE, B_TRUE, FTAG, &os2));
4431
4432 zil_close(zilog);
4433 dmu_objset_disown(os, B_TRUE, FTAG);
4434 ztest_zd_fini(zdtmp);
4435 out:
4436 (void) pthread_rwlock_unlock(&ztest_name_lock);
4437
4438 umem_free(zdtmp, sizeof (ztest_ds_t));
4439 }
4440
4441 /*
4442 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
4443 */
4444 void
4445 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
4446 {
4447 (void) pthread_rwlock_rdlock(&ztest_name_lock);
4448 (void) ztest_snapshot_destroy(zd->zd_name, id);
4449 (void) ztest_snapshot_create(zd->zd_name, id);
4450 (void) pthread_rwlock_unlock(&ztest_name_lock);
4451 }
4452
4453 /*
4454 * Cleanup non-standard snapshots and clones.
4455 */
4456 static void
4457 ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
4458 {
4459 char *snap1name;
4460 char *clone1name;
4461 char *snap2name;
4462 char *clone2name;
4463 char *snap3name;
4464 int error;
4465
4466 snap1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4467 clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4468 snap2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4469 clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4470 snap3name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4471
4472 (void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN, "%s@s1_%"PRIu64"",
4473 osname, id);
4474 (void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN, "%s/c1_%"PRIu64"",
4475 osname, id);
4476 (void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN, "%s@s2_%"PRIu64"",
4477 clone1name, id);
4478 (void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN, "%s/c2_%"PRIu64"",
4479 osname, id);
4480 (void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN, "%s@s3_%"PRIu64"",
4481 clone1name, id);
4482
4483 error = dsl_destroy_head(clone2name);
4484 if (error && error != ENOENT)
4485 fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clone2name, error);
4486 error = dsl_destroy_snapshot(snap3name, B_FALSE);
4487 if (error && error != ENOENT)
4488 fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
4489 snap3name, error);
4490 error = dsl_destroy_snapshot(snap2name, B_FALSE);
4491 if (error && error != ENOENT)
4492 fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
4493 snap2name, error);
4494 error = dsl_destroy_head(clone1name);
4495 if (error && error != ENOENT)
4496 fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clone1name, error);
4497 error = dsl_destroy_snapshot(snap1name, B_FALSE);
4498 if (error && error != ENOENT)
4499 fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
4500 snap1name, error);
4501
4502 umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
4503 umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
4504 umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
4505 umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
4506 umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
4507 }
4508
4509 /*
4510 * Verify dsl_dataset_promote handles EBUSY
4511 */
4512 void
4513 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
4514 {
4515 objset_t *os;
4516 char *snap1name;
4517 char *clone1name;
4518 char *snap2name;
4519 char *clone2name;
4520 char *snap3name;
4521 char *osname = zd->zd_name;
4522 int error;
4523
4524 snap1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4525 clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4526 snap2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4527 clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4528 snap3name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4529
4530 (void) pthread_rwlock_rdlock(&ztest_name_lock);
4531
4532 ztest_dsl_dataset_cleanup(osname, id);
4533
4534 (void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN, "%s@s1_%"PRIu64"",
4535 osname, id);
4536 (void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN, "%s/c1_%"PRIu64"",
4537 osname, id);
4538 (void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN, "%s@s2_%"PRIu64"",
4539 clone1name, id);
4540 (void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN, "%s/c2_%"PRIu64"",
4541 osname, id);
4542 (void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN, "%s@s3_%"PRIu64"",
4543 clone1name, id);
4544
4545 error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1);
4546 if (error && error != EEXIST) {
4547 if (error == ENOSPC) {
4548 ztest_record_enospc(FTAG);
4549 goto out;
4550 }
4551 fatal(B_FALSE, "dmu_take_snapshot(%s) = %d", snap1name, error);
4552 }
4553
4554 error = dmu_objset_clone(clone1name, snap1name);
4555 if (error) {
4556 if (error == ENOSPC) {
4557 ztest_record_enospc(FTAG);
4558 goto out;
4559 }
4560 fatal(B_FALSE, "dmu_objset_create(%s) = %d", clone1name, error);
4561 }
4562
4563 error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1);
4564 if (error && error != EEXIST) {
4565 if (error == ENOSPC) {
4566 ztest_record_enospc(FTAG);
4567 goto out;
4568 }
4569 fatal(B_FALSE, "dmu_open_snapshot(%s) = %d", snap2name, error);
4570 }
4571
4572 error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1);
4573 if (error && error != EEXIST) {
4574 if (error == ENOSPC) {
4575 ztest_record_enospc(FTAG);
4576 goto out;
4577 }
4578 fatal(B_FALSE, "dmu_open_snapshot(%s) = %d", snap3name, error);
4579 }
4580
4581 error = dmu_objset_clone(clone2name, snap3name);
4582 if (error) {
4583 if (error == ENOSPC) {
4584 ztest_record_enospc(FTAG);
4585 goto out;
4586 }
4587 fatal(B_FALSE, "dmu_objset_create(%s) = %d", clone2name, error);
4588 }
4589
4590 error = ztest_dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, B_TRUE,
4591 FTAG, &os);
4592 if (error)
4593 fatal(B_FALSE, "dmu_objset_own(%s) = %d", snap2name, error);
4594 error = dsl_dataset_promote(clone2name, NULL);
4595 if (error == ENOSPC) {
4596 dmu_objset_disown(os, B_TRUE, FTAG);
4597 ztest_record_enospc(FTAG);
4598 goto out;
4599 }
4600 if (error != EBUSY)
4601 fatal(B_FALSE, "dsl_dataset_promote(%s), %d, not EBUSY",
4602 clone2name, error);
4603 dmu_objset_disown(os, B_TRUE, FTAG);
4604
4605 out:
4606 ztest_dsl_dataset_cleanup(osname, id);
4607
4608 (void) pthread_rwlock_unlock(&ztest_name_lock);
4609
4610 umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
4611 umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
4612 umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
4613 umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
4614 umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
4615 }
4616
4617 #undef OD_ARRAY_SIZE
4618 #define OD_ARRAY_SIZE 4
4619
4620 /*
4621 * Verify that dmu_object_{alloc,free} work as expected.
4622 */
4623 void
4624 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
4625 {
4626 ztest_od_t *od;
4627 int batchsize;
4628 int size;
4629 int b;
4630
4631 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
4632 od = umem_alloc(size, UMEM_NOFAIL);
4633 batchsize = OD_ARRAY_SIZE;
4634
4635 for (b = 0; b < batchsize; b++)
4636 ztest_od_init(od + b, id, FTAG, b, DMU_OT_UINT64_OTHER,
4637 0, 0, 0);
4638
4639 /*
4640 * Destroy the previous batch of objects, create a new batch,
4641 * and do some I/O on the new objects.
4642 */
4643 if (ztest_object_init(zd, od, size, B_TRUE) != 0)
4644 return;
4645
4646 while (ztest_random(4 * batchsize) != 0)
4647 ztest_io(zd, od[ztest_random(batchsize)].od_object,
4648 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4649
4650 umem_free(od, size);
4651 }
4652
4653 /*
4654 * Rewind the global allocator to verify object allocation backfilling.
4655 */
4656 void
4657 ztest_dmu_object_next_chunk(ztest_ds_t *zd, uint64_t id)
4658 {
4659 (void) id;
4660 objset_t *os = zd->zd_os;
4661 int dnodes_per_chunk = 1 << dmu_object_alloc_chunk_shift;
4662 uint64_t object;
4663
4664 /*
4665 * Rewind the global allocator randomly back to a lower object number
4666 * to force backfilling and reclamation of recently freed dnodes.
4667 */
4668 mutex_enter(&os->os_obj_lock);
4669 object = ztest_random(os->os_obj_next_chunk);
4670 os->os_obj_next_chunk = P2ALIGN(object, dnodes_per_chunk);
4671 mutex_exit(&os->os_obj_lock);
4672 }
4673
4674 #undef OD_ARRAY_SIZE
4675 #define OD_ARRAY_SIZE 2
4676
4677 /*
4678 * Verify that dmu_{read,write} work as expected.
4679 */
4680 void
4681 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
4682 {
4683 int size;
4684 ztest_od_t *od;
4685
4686 objset_t *os = zd->zd_os;
4687 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
4688 od = umem_alloc(size, UMEM_NOFAIL);
4689 dmu_tx_t *tx;
4690 int freeit, error;
4691 uint64_t i, n, s, txg;
4692 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
4693 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
4694 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
4695 uint64_t regions = 997;
4696 uint64_t stride = 123456789ULL;
4697 uint64_t width = 40;
4698 int free_percent = 5;
4699
4700 /*
4701 * This test uses two objects, packobj and bigobj, that are always
4702 * updated together (i.e. in the same tx) so that their contents are
4703 * in sync and can be compared. Their contents relate to each other
4704 * in a simple way: packobj is a dense array of 'bufwad' structures,
4705 * while bigobj is a sparse array of the same bufwads. Specifically,
4706 * for any index n, there are three bufwads that should be identical:
4707 *
4708 * packobj, at offset n * sizeof (bufwad_t)
4709 * bigobj, at the head of the nth chunk
4710 * bigobj, at the tail of the nth chunk
4711 *
4712 * The chunk size is arbitrary. It doesn't have to be a power of two,
4713 * and it doesn't have any relation to the object blocksize.
4714 * The only requirement is that it can hold at least two bufwads.
4715 *
4716 * Normally, we write the bufwad to each of these locations.
4717 * However, free_percent of the time we instead write zeroes to
4718 * packobj and perform a dmu_free_range() on bigobj. By comparing
4719 * bigobj to packobj, we can verify that the DMU is correctly
4720 * tracking which parts of an object are allocated and free,
4721 * and that the contents of the allocated blocks are correct.
4722 */
4723
4724 /*
4725 * Read the directory info. If it's the first time, set things up.
4726 */
4727 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, chunksize);
4728 ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
4729 chunksize);
4730
4731 if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
4732 umem_free(od, size);
4733 return;
4734 }
4735
4736 bigobj = od[0].od_object;
4737 packobj = od[1].od_object;
4738 chunksize = od[0].od_gen;
4739 ASSERT3U(chunksize, ==, od[1].od_gen);
4740
4741 /*
4742 * Prefetch a random chunk of the big object.
4743 * Our aim here is to get some async reads in flight
4744 * for blocks that we may free below; the DMU should
4745 * handle this race correctly.
4746 */
4747 n = ztest_random(regions) * stride + ztest_random(width);
4748 s = 1 + ztest_random(2 * width - 1);
4749 dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize,
4750 ZIO_PRIORITY_SYNC_READ);
4751
4752 /*
4753 * Pick a random index and compute the offsets into packobj and bigobj.
4754 */
4755 n = ztest_random(regions) * stride + ztest_random(width);
4756 s = 1 + ztest_random(width - 1);
4757
4758 packoff = n * sizeof (bufwad_t);
4759 packsize = s * sizeof (bufwad_t);
4760
4761 bigoff = n * chunksize;
4762 bigsize = s * chunksize;
4763
4764 packbuf = umem_alloc(packsize, UMEM_NOFAIL);
4765 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
4766
4767 /*
4768 * free_percent of the time, free a range of bigobj rather than
4769 * overwriting it.
4770 */
4771 freeit = (ztest_random(100) < free_percent);
4772
4773 /*
4774 * Read the current contents of our objects.
4775 */
4776 error = dmu_read(os, packobj, packoff, packsize, packbuf,
4777 DMU_READ_PREFETCH);
4778 ASSERT0(error);
4779 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
4780 DMU_READ_PREFETCH);
4781 ASSERT0(error);
4782
4783 /*
4784 * Get a tx for the mods to both packobj and bigobj.
4785 */
4786 tx = dmu_tx_create(os);
4787
4788 dmu_tx_hold_write(tx, packobj, packoff, packsize);
4789
4790 if (freeit)
4791 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
4792 else
4793 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
4794
4795 /* This accounts for setting the checksum/compression. */
4796 dmu_tx_hold_bonus(tx, bigobj);
4797
4798 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4799 if (txg == 0) {
4800 umem_free(packbuf, packsize);
4801 umem_free(bigbuf, bigsize);
4802 umem_free(od, size);
4803 return;
4804 }
4805
4806 enum zio_checksum cksum;
4807 do {
4808 cksum = (enum zio_checksum)
4809 ztest_random_dsl_prop(ZFS_PROP_CHECKSUM);
4810 } while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS);
4811 dmu_object_set_checksum(os, bigobj, cksum, tx);
4812
4813 enum zio_compress comp;
4814 do {
4815 comp = (enum zio_compress)
4816 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION);
4817 } while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS);
4818 dmu_object_set_compress(os, bigobj, comp, tx);
4819
4820 /*
4821 * For each index from n to n + s, verify that the existing bufwad
4822 * in packobj matches the bufwads at the head and tail of the
4823 * corresponding chunk in bigobj. Then update all three bufwads
4824 * with the new values we want to write out.
4825 */
4826 for (i = 0; i < s; i++) {
4827 /* LINTED */
4828 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
4829 /* LINTED */
4830 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
4831 /* LINTED */
4832 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
4833
4834 ASSERT3U((uintptr_t)bigH - (uintptr_t)bigbuf, <, bigsize);
4835 ASSERT3U((uintptr_t)bigT - (uintptr_t)bigbuf, <, bigsize);
4836
4837 if (pack->bw_txg > txg)
4838 fatal(B_FALSE,
4839 "future leak: got %"PRIx64", open txg is %"PRIx64"",
4840 pack->bw_txg, txg);
4841
4842 if (pack->bw_data != 0 && pack->bw_index != n + i)
4843 fatal(B_FALSE, "wrong index: "
4844 "got %"PRIx64", wanted %"PRIx64"+%"PRIx64"",
4845 pack->bw_index, n, i);
4846
4847 if (memcmp(pack, bigH, sizeof (bufwad_t)) != 0)
4848 fatal(B_FALSE, "pack/bigH mismatch in %p/%p",
4849 pack, bigH);
4850
4851 if (memcmp(pack, bigT, sizeof (bufwad_t)) != 0)
4852 fatal(B_FALSE, "pack/bigT mismatch in %p/%p",
4853 pack, bigT);
4854
4855 if (freeit) {
4856 memset(pack, 0, sizeof (bufwad_t));
4857 } else {
4858 pack->bw_index = n + i;
4859 pack->bw_txg = txg;
4860 pack->bw_data = 1 + ztest_random(-2ULL);
4861 }
4862 *bigH = *pack;
4863 *bigT = *pack;
4864 }
4865
4866 /*
4867 * We've verified all the old bufwads, and made new ones.
4868 * Now write them out.
4869 */
4870 dmu_write(os, packobj, packoff, packsize, packbuf, tx);
4871
4872 if (freeit) {
4873 if (ztest_opts.zo_verbose >= 7) {
4874 (void) printf("freeing offset %"PRIx64" size %"PRIx64""
4875 " txg %"PRIx64"\n",
4876 bigoff, bigsize, txg);
4877 }
4878 VERIFY0(dmu_free_range(os, bigobj, bigoff, bigsize, tx));
4879 } else {
4880 if (ztest_opts.zo_verbose >= 7) {
4881 (void) printf("writing offset %"PRIx64" size %"PRIx64""
4882 " txg %"PRIx64"\n",
4883 bigoff, bigsize, txg);
4884 }
4885 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);
4886 }
4887
4888 dmu_tx_commit(tx);
4889
4890 /*
4891 * Sanity check the stuff we just wrote.
4892 */
4893 {
4894 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
4895 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
4896
4897 VERIFY0(dmu_read(os, packobj, packoff,
4898 packsize, packcheck, DMU_READ_PREFETCH));
4899 VERIFY0(dmu_read(os, bigobj, bigoff,
4900 bigsize, bigcheck, DMU_READ_PREFETCH));
4901
4902 ASSERT0(memcmp(packbuf, packcheck, packsize));
4903 ASSERT0(memcmp(bigbuf, bigcheck, bigsize));
4904
4905 umem_free(packcheck, packsize);
4906 umem_free(bigcheck, bigsize);
4907 }
4908
4909 umem_free(packbuf, packsize);
4910 umem_free(bigbuf, bigsize);
4911 umem_free(od, size);
4912 }
4913
4914 static void
4915 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
4916 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
4917 {
4918 uint64_t i;
4919 bufwad_t *pack;
4920 bufwad_t *bigH;
4921 bufwad_t *bigT;
4922
4923 /*
4924 * For each index from n to n + s, verify that the existing bufwad
4925 * in packobj matches the bufwads at the head and tail of the
4926 * corresponding chunk in bigobj. Then update all three bufwads
4927 * with the new values we want to write out.
4928 */
4929 for (i = 0; i < s; i++) {
4930 /* LINTED */
4931 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
4932 /* LINTED */
4933 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
4934 /* LINTED */
4935 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
4936
4937 ASSERT3U((uintptr_t)bigH - (uintptr_t)bigbuf, <, bigsize);
4938 ASSERT3U((uintptr_t)bigT - (uintptr_t)bigbuf, <, bigsize);
4939
4940 if (pack->bw_txg > txg)
4941 fatal(B_FALSE,
4942 "future leak: got %"PRIx64", open txg is %"PRIx64"",
4943 pack->bw_txg, txg);
4944
4945 if (pack->bw_data != 0 && pack->bw_index != n + i)
4946 fatal(B_FALSE, "wrong index: "
4947 "got %"PRIx64", wanted %"PRIx64"+%"PRIx64"",
4948 pack->bw_index, n, i);
4949
4950 if (memcmp(pack, bigH, sizeof (bufwad_t)) != 0)
4951 fatal(B_FALSE, "pack/bigH mismatch in %p/%p",
4952 pack, bigH);
4953
4954 if (memcmp(pack, bigT, sizeof (bufwad_t)) != 0)
4955 fatal(B_FALSE, "pack/bigT mismatch in %p/%p",
4956 pack, bigT);
4957
4958 pack->bw_index = n + i;
4959 pack->bw_txg = txg;
4960 pack->bw_data = 1 + ztest_random(-2ULL);
4961
4962 *bigH = *pack;
4963 *bigT = *pack;
4964 }
4965 }
4966
4967 #undef OD_ARRAY_SIZE
4968 #define OD_ARRAY_SIZE 2
4969
4970 void
4971 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
4972 {
4973 objset_t *os = zd->zd_os;
4974 ztest_od_t *od;
4975 dmu_tx_t *tx;
4976 uint64_t i;
4977 int error;
4978 int size;
4979 uint64_t n, s, txg;
4980 bufwad_t *packbuf, *bigbuf;
4981 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
4982 uint64_t blocksize = ztest_random_blocksize();
4983 uint64_t chunksize = blocksize;
4984 uint64_t regions = 997;
4985 uint64_t stride = 123456789ULL;
4986 uint64_t width = 9;
4987 dmu_buf_t *bonus_db;
4988 arc_buf_t **bigbuf_arcbufs;
4989 dmu_object_info_t doi;
4990
4991 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
4992 od = umem_alloc(size, UMEM_NOFAIL);
4993
4994 /*
4995 * This test uses two objects, packobj and bigobj, that are always
4996 * updated together (i.e. in the same tx) so that their contents are
4997 * in sync and can be compared. Their contents relate to each other
4998 * in a simple way: packobj is a dense array of 'bufwad' structures,
4999 * while bigobj is a sparse array of the same bufwads. Specifically,
5000 * for any index n, there are three bufwads that should be identical:
5001 *
5002 * packobj, at offset n * sizeof (bufwad_t)
5003 * bigobj, at the head of the nth chunk
5004 * bigobj, at the tail of the nth chunk
5005 *
5006 * The chunk size is set equal to bigobj block size so that
5007 * dmu_assign_arcbuf_by_dbuf() can be tested for object updates.
5008 */
5009
5010 /*
5011 * Read the directory info. If it's the first time, set things up.
5012 */
5013 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
5014 ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
5015 chunksize);
5016
5017
5018 if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
5019 umem_free(od, size);
5020 return;
5021 }
5022
5023 bigobj = od[0].od_object;
5024 packobj = od[1].od_object;
5025 blocksize = od[0].od_blocksize;
5026 chunksize = blocksize;
5027 ASSERT3U(chunksize, ==, od[1].od_gen);
5028
5029 VERIFY0(dmu_object_info(os, bigobj, &doi));
5030 VERIFY(ISP2(doi.doi_data_block_size));
5031 VERIFY3U(chunksize, ==, doi.doi_data_block_size);
5032 VERIFY3U(chunksize, >=, 2 * sizeof (bufwad_t));
5033
5034 /*
5035 * Pick a random index and compute the offsets into packobj and bigobj.
5036 */
5037 n = ztest_random(regions) * stride + ztest_random(width);
5038 s = 1 + ztest_random(width - 1);
5039
5040 packoff = n * sizeof (bufwad_t);
5041 packsize = s * sizeof (bufwad_t);
5042
5043 bigoff = n * chunksize;
5044 bigsize = s * chunksize;
5045
5046 packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
5047 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
5048
5049 VERIFY0(dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
5050
5051 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
5052
5053 /*
5054 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
5055 * Iteration 1 test zcopy to already referenced dbufs.
5056 * Iteration 2 test zcopy to dirty dbuf in the same txg.
5057 * Iteration 3 test zcopy to dbuf dirty in previous txg.
5058 * Iteration 4 test zcopy when dbuf is no longer dirty.
5059 * Iteration 5 test zcopy when it can't be done.
5060 * Iteration 6 one more zcopy write.
5061 */
5062 for (i = 0; i < 7; i++) {
5063 uint64_t j;
5064 uint64_t off;
5065
5066 /*
5067 * In iteration 5 (i == 5) use arcbufs
5068 * that don't match bigobj blksz to test
5069 * dmu_assign_arcbuf_by_dbuf() when it can't directly
5070 * assign an arcbuf to a dbuf.
5071 */
5072 for (j = 0; j < s; j++) {
5073 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5074 bigbuf_arcbufs[j] =
5075 dmu_request_arcbuf(bonus_db, chunksize);
5076 } else {
5077 bigbuf_arcbufs[2 * j] =
5078 dmu_request_arcbuf(bonus_db, chunksize / 2);
5079 bigbuf_arcbufs[2 * j + 1] =
5080 dmu_request_arcbuf(bonus_db, chunksize / 2);
5081 }
5082 }
5083
5084 /*
5085 * Get a tx for the mods to both packobj and bigobj.
5086 */
5087 tx = dmu_tx_create(os);
5088
5089 dmu_tx_hold_write(tx, packobj, packoff, packsize);
5090 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
5091
5092 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5093 if (txg == 0) {
5094 umem_free(packbuf, packsize);
5095 umem_free(bigbuf, bigsize);
5096 for (j = 0; j < s; j++) {
5097 if (i != 5 ||
5098 chunksize < (SPA_MINBLOCKSIZE * 2)) {
5099 dmu_return_arcbuf(bigbuf_arcbufs[j]);
5100 } else {
5101 dmu_return_arcbuf(
5102 bigbuf_arcbufs[2 * j]);
5103 dmu_return_arcbuf(
5104 bigbuf_arcbufs[2 * j + 1]);
5105 }
5106 }
5107 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
5108 umem_free(od, size);
5109 dmu_buf_rele(bonus_db, FTAG);
5110 return;
5111 }
5112
5113 /*
5114 * 50% of the time don't read objects in the 1st iteration to
5115 * test dmu_assign_arcbuf_by_dbuf() for the case when there are
5116 * no existing dbufs for the specified offsets.
5117 */
5118 if (i != 0 || ztest_random(2) != 0) {
5119 error = dmu_read(os, packobj, packoff,
5120 packsize, packbuf, DMU_READ_PREFETCH);
5121 ASSERT0(error);
5122 error = dmu_read(os, bigobj, bigoff, bigsize,
5123 bigbuf, DMU_READ_PREFETCH);
5124 ASSERT0(error);
5125 }
5126 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
5127 n, chunksize, txg);
5128
5129 /*
5130 * We've verified all the old bufwads, and made new ones.
5131 * Now write them out.
5132 */
5133 dmu_write(os, packobj, packoff, packsize, packbuf, tx);
5134 if (ztest_opts.zo_verbose >= 7) {
5135 (void) printf("writing offset %"PRIx64" size %"PRIx64""
5136 " txg %"PRIx64"\n",
5137 bigoff, bigsize, txg);
5138 }
5139 for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
5140 dmu_buf_t *dbt;
5141 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5142 memcpy(bigbuf_arcbufs[j]->b_data,
5143 (caddr_t)bigbuf + (off - bigoff),
5144 chunksize);
5145 } else {
5146 memcpy(bigbuf_arcbufs[2 * j]->b_data,
5147 (caddr_t)bigbuf + (off - bigoff),
5148 chunksize / 2);
5149 memcpy(bigbuf_arcbufs[2 * j + 1]->b_data,
5150 (caddr_t)bigbuf + (off - bigoff) +
5151 chunksize / 2,
5152 chunksize / 2);
5153 }
5154
5155 if (i == 1) {
5156 VERIFY(dmu_buf_hold(os, bigobj, off,
5157 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0);
5158 }
5159 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5160 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5161 off, bigbuf_arcbufs[j], tx));
5162 } else {
5163 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5164 off, bigbuf_arcbufs[2 * j], tx));
5165 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5166 off + chunksize / 2,
5167 bigbuf_arcbufs[2 * j + 1], tx));
5168 }
5169 if (i == 1) {
5170 dmu_buf_rele(dbt, FTAG);
5171 }
5172 }
5173 dmu_tx_commit(tx);
5174
5175 /*
5176 * Sanity check the stuff we just wrote.
5177 */
5178 {
5179 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
5180 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
5181
5182 VERIFY0(dmu_read(os, packobj, packoff,
5183 packsize, packcheck, DMU_READ_PREFETCH));
5184 VERIFY0(dmu_read(os, bigobj, bigoff,
5185 bigsize, bigcheck, DMU_READ_PREFETCH));
5186
5187 ASSERT0(memcmp(packbuf, packcheck, packsize));
5188 ASSERT0(memcmp(bigbuf, bigcheck, bigsize));
5189
5190 umem_free(packcheck, packsize);
5191 umem_free(bigcheck, bigsize);
5192 }
5193 if (i == 2) {
5194 txg_wait_open(dmu_objset_pool(os), 0, B_TRUE);
5195 } else if (i == 3) {
5196 txg_wait_synced(dmu_objset_pool(os), 0);
5197 }
5198 }
5199
5200 dmu_buf_rele(bonus_db, FTAG);
5201 umem_free(packbuf, packsize);
5202 umem_free(bigbuf, bigsize);
5203 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
5204 umem_free(od, size);
5205 }
5206
5207 void
5208 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
5209 {
5210 (void) id;
5211 ztest_od_t *od;
5212
5213 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5214 uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
5215 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5216
5217 /*
5218 * Have multiple threads write to large offsets in an object
5219 * to verify that parallel writes to an object -- even to the
5220 * same blocks within the object -- doesn't cause any trouble.
5221 */
5222 ztest_od_init(od, ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
5223
5224 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0)
5225 return;
5226
5227 while (ztest_random(10) != 0)
5228 ztest_io(zd, od->od_object, offset);
5229
5230 umem_free(od, sizeof (ztest_od_t));
5231 }
5232
5233 void
5234 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
5235 {
5236 ztest_od_t *od;
5237 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
5238 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5239 uint64_t count = ztest_random(20) + 1;
5240 uint64_t blocksize = ztest_random_blocksize();
5241 void *data;
5242
5243 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5244
5245 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
5246
5247 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5248 !ztest_random(2)) != 0) {
5249 umem_free(od, sizeof (ztest_od_t));
5250 return;
5251 }
5252
5253 if (ztest_truncate(zd, od->od_object, offset, count * blocksize) != 0) {
5254 umem_free(od, sizeof (ztest_od_t));
5255 return;
5256 }
5257
5258 ztest_prealloc(zd, od->od_object, offset, count * blocksize);
5259
5260 data = umem_zalloc(blocksize, UMEM_NOFAIL);
5261
5262 while (ztest_random(count) != 0) {
5263 uint64_t randoff = offset + (ztest_random(count) * blocksize);
5264 if (ztest_write(zd, od->od_object, randoff, blocksize,
5265 data) != 0)
5266 break;
5267 while (ztest_random(4) != 0)
5268 ztest_io(zd, od->od_object, randoff);
5269 }
5270
5271 umem_free(data, blocksize);
5272 umem_free(od, sizeof (ztest_od_t));
5273 }
5274
5275 /*
5276 * Verify that zap_{create,destroy,add,remove,update} work as expected.
5277 */
5278 #define ZTEST_ZAP_MIN_INTS 1
5279 #define ZTEST_ZAP_MAX_INTS 4
5280 #define ZTEST_ZAP_MAX_PROPS 1000
5281
5282 void
5283 ztest_zap(ztest_ds_t *zd, uint64_t id)
5284 {
5285 objset_t *os = zd->zd_os;
5286 ztest_od_t *od;
5287 uint64_t object;
5288 uint64_t txg, last_txg;
5289 uint64_t value[ZTEST_ZAP_MAX_INTS];
5290 uint64_t zl_ints, zl_intsize, prop;
5291 int i, ints;
5292 dmu_tx_t *tx;
5293 char propname[100], txgname[100];
5294 int error;
5295 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
5296
5297 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5298 ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
5299
5300 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5301 !ztest_random(2)) != 0)
5302 goto out;
5303
5304 object = od->od_object;
5305
5306 /*
5307 * Generate a known hash collision, and verify that
5308 * we can lookup and remove both entries.
5309 */
5310 tx = dmu_tx_create(os);
5311 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5312 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5313 if (txg == 0)
5314 goto out;
5315 for (i = 0; i < 2; i++) {
5316 value[i] = i;
5317 VERIFY0(zap_add(os, object, hc[i], sizeof (uint64_t),
5318 1, &value[i], tx));
5319 }
5320 for (i = 0; i < 2; i++) {
5321 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
5322 sizeof (uint64_t), 1, &value[i], tx));
5323 VERIFY0(
5324 zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
5325 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5326 ASSERT3U(zl_ints, ==, 1);
5327 }
5328 for (i = 0; i < 2; i++) {
5329 VERIFY0(zap_remove(os, object, hc[i], tx));
5330 }
5331 dmu_tx_commit(tx);
5332
5333 /*
5334 * Generate a bunch of random entries.
5335 */
5336 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
5337
5338 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
5339 (void) sprintf(propname, "prop_%"PRIu64"", prop);
5340 (void) sprintf(txgname, "txg_%"PRIu64"", prop);
5341 memset(value, 0, sizeof (value));
5342 last_txg = 0;
5343
5344 /*
5345 * If these zap entries already exist, validate their contents.
5346 */
5347 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
5348 if (error == 0) {
5349 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5350 ASSERT3U(zl_ints, ==, 1);
5351
5352 VERIFY0(zap_lookup(os, object, txgname, zl_intsize,
5353 zl_ints, &last_txg));
5354
5355 VERIFY0(zap_length(os, object, propname, &zl_intsize,
5356 &zl_ints));
5357
5358 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5359 ASSERT3U(zl_ints, ==, ints);
5360
5361 VERIFY0(zap_lookup(os, object, propname, zl_intsize,
5362 zl_ints, value));
5363
5364 for (i = 0; i < ints; i++) {
5365 ASSERT3U(value[i], ==, last_txg + object + i);
5366 }
5367 } else {
5368 ASSERT3U(error, ==, ENOENT);
5369 }
5370
5371 /*
5372 * Atomically update two entries in our zap object.
5373 * The first is named txg_%llu, and contains the txg
5374 * in which the property was last updated. The second
5375 * is named prop_%llu, and the nth element of its value
5376 * should be txg + object + n.
5377 */
5378 tx = dmu_tx_create(os);
5379 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5380 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5381 if (txg == 0)
5382 goto out;
5383
5384 if (last_txg > txg)
5385 fatal(B_FALSE, "zap future leak: old %"PRIu64" new %"PRIu64"",
5386 last_txg, txg);
5387
5388 for (i = 0; i < ints; i++)
5389 value[i] = txg + object + i;
5390
5391 VERIFY0(zap_update(os, object, txgname, sizeof (uint64_t),
5392 1, &txg, tx));
5393 VERIFY0(zap_update(os, object, propname, sizeof (uint64_t),
5394 ints, value, tx));
5395
5396 dmu_tx_commit(tx);
5397
5398 /*
5399 * Remove a random pair of entries.
5400 */
5401 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
5402 (void) sprintf(propname, "prop_%"PRIu64"", prop);
5403 (void) sprintf(txgname, "txg_%"PRIu64"", prop);
5404
5405 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
5406
5407 if (error == ENOENT)
5408 goto out;
5409
5410 ASSERT0(error);
5411
5412 tx = dmu_tx_create(os);
5413 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5414 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5415 if (txg == 0)
5416 goto out;
5417 VERIFY0(zap_remove(os, object, txgname, tx));
5418 VERIFY0(zap_remove(os, object, propname, tx));
5419 dmu_tx_commit(tx);
5420 out:
5421 umem_free(od, sizeof (ztest_od_t));
5422 }
5423
5424 /*
5425 * Test case to test the upgrading of a microzap to fatzap.
5426 */
5427 void
5428 ztest_fzap(ztest_ds_t *zd, uint64_t id)
5429 {
5430 objset_t *os = zd->zd_os;
5431 ztest_od_t *od;
5432 uint64_t object, txg, value;
5433
5434 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5435 ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
5436
5437 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5438 !ztest_random(2)) != 0)
5439 goto out;
5440 object = od->od_object;
5441
5442 /*
5443 * Add entries to this ZAP and make sure it spills over
5444 * and gets upgraded to a fatzap. Also, since we are adding
5445 * 2050 entries we should see ptrtbl growth and leaf-block split.
5446 */
5447 for (value = 0; value < 2050; value++) {
5448 char name[ZFS_MAX_DATASET_NAME_LEN];
5449 dmu_tx_t *tx;
5450 int error;
5451
5452 (void) snprintf(name, sizeof (name), "fzap-%"PRIu64"-%"PRIu64"",
5453 id, value);
5454
5455 tx = dmu_tx_create(os);
5456 dmu_tx_hold_zap(tx, object, B_TRUE, name);
5457 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5458 if (txg == 0)
5459 goto out;
5460 error = zap_add(os, object, name, sizeof (uint64_t), 1,
5461 &value, tx);
5462 ASSERT(error == 0 || error == EEXIST);
5463 dmu_tx_commit(tx);
5464 }
5465 out:
5466 umem_free(od, sizeof (ztest_od_t));
5467 }
5468
5469 void
5470 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
5471 {
5472 (void) id;
5473 objset_t *os = zd->zd_os;
5474 ztest_od_t *od;
5475 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
5476 dmu_tx_t *tx;
5477 int i, namelen, error;
5478 int micro = ztest_random(2);
5479 char name[20], string_value[20];
5480 void *data;
5481
5482 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5483 ztest_od_init(od, ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0, 0);
5484
5485 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
5486 umem_free(od, sizeof (ztest_od_t));
5487 return;
5488 }
5489
5490 object = od->od_object;
5491
5492 /*
5493 * Generate a random name of the form 'xxx.....' where each
5494 * x is a random printable character and the dots are dots.
5495 * There are 94 such characters, and the name length goes from
5496 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
5497 */
5498 namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
5499
5500 for (i = 0; i < 3; i++)
5501 name[i] = '!' + ztest_random('~' - '!' + 1);
5502 for (; i < namelen - 1; i++)
5503 name[i] = '.';
5504 name[i] = '\0';
5505
5506 if ((namelen & 1) || micro) {
5507 wsize = sizeof (txg);
5508 wc = 1;
5509 data = &txg;
5510 } else {
5511 wsize = 1;
5512 wc = namelen;
5513 data = string_value;
5514 }
5515
5516 count = -1ULL;
5517 VERIFY0(zap_count(os, object, &count));
5518 ASSERT3S(count, !=, -1ULL);
5519
5520 /*
5521 * Select an operation: length, lookup, add, update, remove.
5522 */
5523 i = ztest_random(5);
5524
5525 if (i >= 2) {
5526 tx = dmu_tx_create(os);
5527 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5528 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5529 if (txg == 0) {
5530 umem_free(od, sizeof (ztest_od_t));
5531 return;
5532 }
5533 memcpy(string_value, name, namelen);
5534 } else {
5535 tx = NULL;
5536 txg = 0;
5537 memset(string_value, 0, namelen);
5538 }
5539
5540 switch (i) {
5541
5542 case 0:
5543 error = zap_length(os, object, name, &zl_wsize, &zl_wc);
5544 if (error == 0) {
5545 ASSERT3U(wsize, ==, zl_wsize);
5546 ASSERT3U(wc, ==, zl_wc);
5547 } else {
5548 ASSERT3U(error, ==, ENOENT);
5549 }
5550 break;
5551
5552 case 1:
5553 error = zap_lookup(os, object, name, wsize, wc, data);
5554 if (error == 0) {
5555 if (data == string_value &&
5556 memcmp(name, data, namelen) != 0)
5557 fatal(B_FALSE, "name '%s' != val '%s' len %d",
5558 name, (char *)data, namelen);
5559 } else {
5560 ASSERT3U(error, ==, ENOENT);
5561 }
5562 break;
5563
5564 case 2:
5565 error = zap_add(os, object, name, wsize, wc, data, tx);
5566 ASSERT(error == 0 || error == EEXIST);
5567 break;
5568
5569 case 3:
5570 VERIFY0(zap_update(os, object, name, wsize, wc, data, tx));
5571 break;
5572
5573 case 4:
5574 error = zap_remove(os, object, name, tx);
5575 ASSERT(error == 0 || error == ENOENT);
5576 break;
5577 }
5578
5579 if (tx != NULL)
5580 dmu_tx_commit(tx);
5581
5582 umem_free(od, sizeof (ztest_od_t));
5583 }
5584
5585 /*
5586 * Commit callback data.
5587 */
5588 typedef struct ztest_cb_data {
5589 list_node_t zcd_node;
5590 uint64_t zcd_txg;
5591 int zcd_expected_err;
5592 boolean_t zcd_added;
5593 boolean_t zcd_called;
5594 spa_t *zcd_spa;
5595 } ztest_cb_data_t;
5596
5597 /* This is the actual commit callback function */
5598 static void
5599 ztest_commit_callback(void *arg, int error)
5600 {
5601 ztest_cb_data_t *data = arg;
5602 uint64_t synced_txg;
5603
5604 VERIFY3P(data, !=, NULL);
5605 VERIFY3S(data->zcd_expected_err, ==, error);
5606 VERIFY(!data->zcd_called);
5607
5608 synced_txg = spa_last_synced_txg(data->zcd_spa);
5609 if (data->zcd_txg > synced_txg)
5610 fatal(B_FALSE,
5611 "commit callback of txg %"PRIu64" called prematurely, "
5612 "last synced txg = %"PRIu64"\n",
5613 data->zcd_txg, synced_txg);
5614
5615 data->zcd_called = B_TRUE;
5616
5617 if (error == ECANCELED) {
5618 ASSERT0(data->zcd_txg);
5619 ASSERT(!data->zcd_added);
5620
5621 /*
5622 * The private callback data should be destroyed here, but
5623 * since we are going to check the zcd_called field after
5624 * dmu_tx_abort(), we will destroy it there.
5625 */
5626 return;
5627 }
5628
5629 ASSERT(data->zcd_added);
5630 ASSERT3U(data->zcd_txg, !=, 0);
5631
5632 (void) mutex_enter(&zcl.zcl_callbacks_lock);
5633
5634 /* See if this cb was called more quickly */
5635 if ((synced_txg - data->zcd_txg) < zc_min_txg_delay)
5636 zc_min_txg_delay = synced_txg - data->zcd_txg;
5637
5638 /* Remove our callback from the list */
5639 list_remove(&zcl.zcl_callbacks, data);
5640
5641 (void) mutex_exit(&zcl.zcl_callbacks_lock);
5642
5643 umem_free(data, sizeof (ztest_cb_data_t));
5644 }
5645
5646 /* Allocate and initialize callback data structure */
5647 static ztest_cb_data_t *
5648 ztest_create_cb_data(objset_t *os, uint64_t txg)
5649 {
5650 ztest_cb_data_t *cb_data;
5651
5652 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
5653
5654 cb_data->zcd_txg = txg;
5655 cb_data->zcd_spa = dmu_objset_spa(os);
5656 list_link_init(&cb_data->zcd_node);
5657
5658 return (cb_data);
5659 }
5660
5661 /*
5662 * Commit callback test.
5663 */
5664 void
5665 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
5666 {
5667 objset_t *os = zd->zd_os;
5668 ztest_od_t *od;
5669 dmu_tx_t *tx;
5670 ztest_cb_data_t *cb_data[3], *tmp_cb;
5671 uint64_t old_txg, txg;
5672 int i, error = 0;
5673
5674 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5675 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
5676
5677 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
5678 umem_free(od, sizeof (ztest_od_t));
5679 return;
5680 }
5681
5682 tx = dmu_tx_create(os);
5683
5684 cb_data[0] = ztest_create_cb_data(os, 0);
5685 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
5686
5687 dmu_tx_hold_write(tx, od->od_object, 0, sizeof (uint64_t));
5688
5689 /* Every once in a while, abort the transaction on purpose */
5690 if (ztest_random(100) == 0)
5691 error = -1;
5692
5693 if (!error)
5694 error = dmu_tx_assign(tx, TXG_NOWAIT);
5695
5696 txg = error ? 0 : dmu_tx_get_txg(tx);
5697
5698 cb_data[0]->zcd_txg = txg;
5699 cb_data[1] = ztest_create_cb_data(os, txg);
5700 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
5701
5702 if (error) {
5703 /*
5704 * It's not a strict requirement to call the registered
5705 * callbacks from inside dmu_tx_abort(), but that's what
5706 * it's supposed to happen in the current implementation
5707 * so we will check for that.
5708 */
5709 for (i = 0; i < 2; i++) {
5710 cb_data[i]->zcd_expected_err = ECANCELED;
5711 VERIFY(!cb_data[i]->zcd_called);
5712 }
5713
5714 dmu_tx_abort(tx);
5715
5716 for (i = 0; i < 2; i++) {
5717 VERIFY(cb_data[i]->zcd_called);
5718 umem_free(cb_data[i], sizeof (ztest_cb_data_t));
5719 }
5720
5721 umem_free(od, sizeof (ztest_od_t));
5722 return;
5723 }
5724
5725 cb_data[2] = ztest_create_cb_data(os, txg);
5726 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
5727
5728 /*
5729 * Read existing data to make sure there isn't a future leak.
5730 */
5731 VERIFY0(dmu_read(os, od->od_object, 0, sizeof (uint64_t),
5732 &old_txg, DMU_READ_PREFETCH));
5733
5734 if (old_txg > txg)
5735 fatal(B_FALSE,
5736 "future leak: got %"PRIu64", open txg is %"PRIu64"",
5737 old_txg, txg);
5738
5739 dmu_write(os, od->od_object, 0, sizeof (uint64_t), &txg, tx);
5740
5741 (void) mutex_enter(&zcl.zcl_callbacks_lock);
5742
5743 /*
5744 * Since commit callbacks don't have any ordering requirement and since
5745 * it is theoretically possible for a commit callback to be called
5746 * after an arbitrary amount of time has elapsed since its txg has been
5747 * synced, it is difficult to reliably determine whether a commit
5748 * callback hasn't been called due to high load or due to a flawed
5749 * implementation.
5750 *
5751 * In practice, we will assume that if after a certain number of txgs a
5752 * commit callback hasn't been called, then most likely there's an
5753 * implementation bug..
5754 */
5755 tmp_cb = list_head(&zcl.zcl_callbacks);
5756 if (tmp_cb != NULL &&
5757 tmp_cb->zcd_txg + ZTEST_COMMIT_CB_THRESH < txg) {
5758 fatal(B_FALSE,
5759 "Commit callback threshold exceeded, "
5760 "oldest txg: %"PRIu64", open txg: %"PRIu64"\n",
5761 tmp_cb->zcd_txg, txg);
5762 }
5763
5764 /*
5765 * Let's find the place to insert our callbacks.
5766 *
5767 * Even though the list is ordered by txg, it is possible for the
5768 * insertion point to not be the end because our txg may already be
5769 * quiescing at this point and other callbacks in the open txg
5770 * (from other objsets) may have sneaked in.
5771 */
5772 tmp_cb = list_tail(&zcl.zcl_callbacks);
5773 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
5774 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
5775
5776 /* Add the 3 callbacks to the list */
5777 for (i = 0; i < 3; i++) {
5778 if (tmp_cb == NULL)
5779 list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
5780 else
5781 list_insert_after(&zcl.zcl_callbacks, tmp_cb,
5782 cb_data[i]);
5783
5784 cb_data[i]->zcd_added = B_TRUE;
5785 VERIFY(!cb_data[i]->zcd_called);
5786
5787 tmp_cb = cb_data[i];
5788 }
5789
5790 zc_cb_counter += 3;
5791
5792 (void) mutex_exit(&zcl.zcl_callbacks_lock);
5793
5794 dmu_tx_commit(tx);
5795
5796 umem_free(od, sizeof (ztest_od_t));
5797 }
5798
5799 /*
5800 * Visit each object in the dataset. Verify that its properties
5801 * are consistent what was stored in the block tag when it was created,
5802 * and that its unused bonus buffer space has not been overwritten.
5803 */
5804 void
5805 ztest_verify_dnode_bt(ztest_ds_t *zd, uint64_t id)
5806 {
5807 (void) id;
5808 objset_t *os = zd->zd_os;
5809 uint64_t obj;
5810 int err = 0;
5811
5812 for (obj = 0; err == 0; err = dmu_object_next(os, &obj, FALSE, 0)) {
5813 ztest_block_tag_t *bt = NULL;
5814 dmu_object_info_t doi;
5815 dmu_buf_t *db;
5816
5817 ztest_object_lock(zd, obj, RL_READER);
5818 if (dmu_bonus_hold(os, obj, FTAG, &db) != 0) {
5819 ztest_object_unlock(zd, obj);
5820 continue;
5821 }
5822
5823 dmu_object_info_from_db(db, &doi);
5824 if (doi.doi_bonus_size >= sizeof (*bt))
5825 bt = ztest_bt_bonus(db);
5826
5827 if (bt && bt->bt_magic == BT_MAGIC) {
5828 ztest_bt_verify(bt, os, obj, doi.doi_dnodesize,
5829 bt->bt_offset, bt->bt_gen, bt->bt_txg,
5830 bt->bt_crtxg);
5831 ztest_verify_unused_bonus(db, bt, obj, os, bt->bt_gen);
5832 }
5833
5834 dmu_buf_rele(db, FTAG);
5835 ztest_object_unlock(zd, obj);
5836 }
5837 }
5838
5839 void
5840 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
5841 {
5842 (void) id;
5843 zfs_prop_t proplist[] = {
5844 ZFS_PROP_CHECKSUM,
5845 ZFS_PROP_COMPRESSION,
5846 ZFS_PROP_COPIES,
5847 ZFS_PROP_DEDUP
5848 };
5849
5850 (void) pthread_rwlock_rdlock(&ztest_name_lock);
5851
5852 for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++)
5853 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
5854 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
5855
5856 VERIFY0(ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_RECORDSIZE,
5857 ztest_random_blocksize(), (int)ztest_random(2)));
5858
5859 (void) pthread_rwlock_unlock(&ztest_name_lock);
5860 }
5861
5862 void
5863 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
5864 {
5865 (void) zd, (void) id;
5866 nvlist_t *props = NULL;
5867
5868 (void) pthread_rwlock_rdlock(&ztest_name_lock);
5869
5870 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_AUTOTRIM, ztest_random(2));
5871
5872 VERIFY0(spa_prop_get(ztest_spa, &props));
5873
5874 if (ztest_opts.zo_verbose >= 6)
5875 dump_nvlist(props, 4);
5876
5877 fnvlist_free(props);
5878
5879 (void) pthread_rwlock_unlock(&ztest_name_lock);
5880 }
5881
5882 static int
5883 user_release_one(const char *snapname, const char *holdname)
5884 {
5885 nvlist_t *snaps, *holds;
5886 int error;
5887
5888 snaps = fnvlist_alloc();
5889 holds = fnvlist_alloc();
5890 fnvlist_add_boolean(holds, holdname);
5891 fnvlist_add_nvlist(snaps, snapname, holds);
5892 fnvlist_free(holds);
5893 error = dsl_dataset_user_release(snaps, NULL);
5894 fnvlist_free(snaps);
5895 return (error);
5896 }
5897
5898 /*
5899 * Test snapshot hold/release and deferred destroy.
5900 */
5901 void
5902 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
5903 {
5904 int error;
5905 objset_t *os = zd->zd_os;
5906 objset_t *origin;
5907 char snapname[100];
5908 char fullname[100];
5909 char clonename[100];
5910 char tag[100];
5911 char osname[ZFS_MAX_DATASET_NAME_LEN];
5912 nvlist_t *holds;
5913
5914 (void) pthread_rwlock_rdlock(&ztest_name_lock);
5915
5916 dmu_objset_name(os, osname);
5917
5918 (void) snprintf(snapname, sizeof (snapname), "sh1_%"PRIu64"", id);
5919 (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname);
5920 (void) snprintf(clonename, sizeof (clonename), "%s/ch1_%"PRIu64"",
5921 osname, id);
5922 (void) snprintf(tag, sizeof (tag), "tag_%"PRIu64"", id);
5923
5924 /*
5925 * Clean up from any previous run.
5926 */
5927 error = dsl_destroy_head(clonename);
5928 if (error != ENOENT)
5929 ASSERT0(error);
5930 error = user_release_one(fullname, tag);
5931 if (error != ESRCH && error != ENOENT)
5932 ASSERT0(error);
5933 error = dsl_destroy_snapshot(fullname, B_FALSE);
5934 if (error != ENOENT)
5935 ASSERT0(error);
5936
5937 /*
5938 * Create snapshot, clone it, mark snap for deferred destroy,
5939 * destroy clone, verify snap was also destroyed.
5940 */
5941 error = dmu_objset_snapshot_one(osname, snapname);
5942 if (error) {
5943 if (error == ENOSPC) {
5944 ztest_record_enospc("dmu_objset_snapshot");
5945 goto out;
5946 }
5947 fatal(B_FALSE, "dmu_objset_snapshot(%s) = %d", fullname, error);
5948 }
5949
5950 error = dmu_objset_clone(clonename, fullname);
5951 if (error) {
5952 if (error == ENOSPC) {
5953 ztest_record_enospc("dmu_objset_clone");
5954 goto out;
5955 }
5956 fatal(B_FALSE, "dmu_objset_clone(%s) = %d", clonename, error);
5957 }
5958
5959 error = dsl_destroy_snapshot(fullname, B_TRUE);
5960 if (error) {
5961 fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
5962 fullname, error);
5963 }
5964
5965 error = dsl_destroy_head(clonename);
5966 if (error)
5967 fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clonename, error);
5968
5969 error = dmu_objset_hold(fullname, FTAG, &origin);
5970 if (error != ENOENT)
5971 fatal(B_FALSE, "dmu_objset_hold(%s) = %d", fullname, error);
5972
5973 /*
5974 * Create snapshot, add temporary hold, verify that we can't
5975 * destroy a held snapshot, mark for deferred destroy,
5976 * release hold, verify snapshot was destroyed.
5977 */
5978 error = dmu_objset_snapshot_one(osname, snapname);
5979 if (error) {
5980 if (error == ENOSPC) {
5981 ztest_record_enospc("dmu_objset_snapshot");
5982 goto out;
5983 }
5984 fatal(B_FALSE, "dmu_objset_snapshot(%s) = %d", fullname, error);
5985 }
5986
5987 holds = fnvlist_alloc();
5988 fnvlist_add_string(holds, fullname, tag);
5989 error = dsl_dataset_user_hold(holds, 0, NULL);
5990 fnvlist_free(holds);
5991
5992 if (error == ENOSPC) {
5993 ztest_record_enospc("dsl_dataset_user_hold");
5994 goto out;
5995 } else if (error) {
5996 fatal(B_FALSE, "dsl_dataset_user_hold(%s, %s) = %u",
5997 fullname, tag, error);
5998 }
5999
6000 error = dsl_destroy_snapshot(fullname, B_FALSE);
6001 if (error != EBUSY) {
6002 fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
6003 fullname, error);
6004 }
6005
6006 error = dsl_destroy_snapshot(fullname, B_TRUE);
6007 if (error) {
6008 fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
6009 fullname, error);
6010 }
6011
6012 error = user_release_one(fullname, tag);
6013 if (error)
6014 fatal(B_FALSE, "user_release_one(%s, %s) = %d",
6015 fullname, tag, error);
6016
6017 VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT);
6018
6019 out:
6020 (void) pthread_rwlock_unlock(&ztest_name_lock);
6021 }
6022
6023 /*
6024 * Inject random faults into the on-disk data.
6025 */
6026 void
6027 ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
6028 {
6029 (void) zd, (void) id;
6030 ztest_shared_t *zs = ztest_shared;
6031 spa_t *spa = ztest_spa;
6032 int fd;
6033 uint64_t offset;
6034 uint64_t leaves;
6035 uint64_t bad = 0x1990c0ffeedecadeull;
6036 uint64_t top, leaf;
6037 char *path0;
6038 char *pathrand;
6039 size_t fsize;
6040 int bshift = SPA_MAXBLOCKSHIFT + 2;
6041 int iters = 1000;
6042 int maxfaults;
6043 int mirror_save;
6044 vdev_t *vd0 = NULL;
6045 uint64_t guid0 = 0;
6046 boolean_t islog = B_FALSE;
6047
6048 path0 = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6049 pathrand = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6050
6051 mutex_enter(&ztest_vdev_lock);
6052
6053 /*
6054 * Device removal is in progress, fault injection must be disabled
6055 * until it completes and the pool is scrubbed. The fault injection
6056 * strategy for damaging blocks does not take in to account evacuated
6057 * blocks which may have already been damaged.
6058 */
6059 if (ztest_device_removal_active) {
6060 mutex_exit(&ztest_vdev_lock);
6061 goto out;
6062 }
6063
6064 maxfaults = MAXFAULTS(zs);
6065 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raid_children;
6066 mirror_save = zs->zs_mirrors;
6067 mutex_exit(&ztest_vdev_lock);
6068
6069 ASSERT3U(leaves, >=, 1);
6070
6071 /*
6072 * While ztest is running the number of leaves will not change. This
6073 * is critical for the fault injection logic as it determines where
6074 * errors can be safely injected such that they are always repairable.
6075 *
6076 * When restarting ztest a different number of leaves may be requested
6077 * which will shift the regions to be damaged. This is fine as long
6078 * as the pool has been scrubbed prior to using the new mapping.
6079 * Failure to do can result in non-repairable damage being injected.
6080 */
6081 if (ztest_pool_scrubbed == B_FALSE)
6082 goto out;
6083
6084 /*
6085 * Grab the name lock as reader. There are some operations
6086 * which don't like to have their vdevs changed while
6087 * they are in progress (i.e. spa_change_guid). Those
6088 * operations will have grabbed the name lock as writer.
6089 */
6090 (void) pthread_rwlock_rdlock(&ztest_name_lock);
6091
6092 /*
6093 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
6094 */
6095 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6096
6097 if (ztest_random(2) == 0) {
6098 /*
6099 * Inject errors on a normal data device or slog device.
6100 */
6101 top = ztest_random_vdev_top(spa, B_TRUE);
6102 leaf = ztest_random(leaves) + zs->zs_splits;
6103
6104 /*
6105 * Generate paths to the first leaf in this top-level vdev,
6106 * and to the random leaf we selected. We'll induce transient
6107 * write failures and random online/offline activity on leaf 0,
6108 * and we'll write random garbage to the randomly chosen leaf.
6109 */
6110 (void) snprintf(path0, MAXPATHLEN, ztest_dev_template,
6111 ztest_opts.zo_dir, ztest_opts.zo_pool,
6112 top * leaves + zs->zs_splits);
6113 (void) snprintf(pathrand, MAXPATHLEN, ztest_dev_template,
6114 ztest_opts.zo_dir, ztest_opts.zo_pool,
6115 top * leaves + leaf);
6116
6117 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
6118 if (vd0 != NULL && vd0->vdev_top->vdev_islog)
6119 islog = B_TRUE;
6120
6121 /*
6122 * If the top-level vdev needs to be resilvered
6123 * then we only allow faults on the device that is
6124 * resilvering.
6125 */
6126 if (vd0 != NULL && maxfaults != 1 &&
6127 (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) ||
6128 vd0->vdev_resilver_txg != 0)) {
6129 /*
6130 * Make vd0 explicitly claim to be unreadable,
6131 * or unwritable, or reach behind its back
6132 * and close the underlying fd. We can do this if
6133 * maxfaults == 0 because we'll fail and reexecute,
6134 * and we can do it if maxfaults >= 2 because we'll
6135 * have enough redundancy. If maxfaults == 1, the
6136 * combination of this with injection of random data
6137 * corruption below exceeds the pool's fault tolerance.
6138 */
6139 vdev_file_t *vf = vd0->vdev_tsd;
6140
6141 zfs_dbgmsg("injecting fault to vdev %llu; maxfaults=%d",
6142 (long long)vd0->vdev_id, (int)maxfaults);
6143
6144 if (vf != NULL && ztest_random(3) == 0) {
6145 (void) close(vf->vf_file->f_fd);
6146 vf->vf_file->f_fd = -1;
6147 } else if (ztest_random(2) == 0) {
6148 vd0->vdev_cant_read = B_TRUE;
6149 } else {
6150 vd0->vdev_cant_write = B_TRUE;
6151 }
6152 guid0 = vd0->vdev_guid;
6153 }
6154 } else {
6155 /*
6156 * Inject errors on an l2cache device.
6157 */
6158 spa_aux_vdev_t *sav = &spa->spa_l2cache;
6159
6160 if (sav->sav_count == 0) {
6161 spa_config_exit(spa, SCL_STATE, FTAG);
6162 (void) pthread_rwlock_unlock(&ztest_name_lock);
6163 goto out;
6164 }
6165 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
6166 guid0 = vd0->vdev_guid;
6167 (void) strcpy(path0, vd0->vdev_path);
6168 (void) strcpy(pathrand, vd0->vdev_path);
6169
6170 leaf = 0;
6171 leaves = 1;
6172 maxfaults = INT_MAX; /* no limit on cache devices */
6173 }
6174
6175 spa_config_exit(spa, SCL_STATE, FTAG);
6176 (void) pthread_rwlock_unlock(&ztest_name_lock);
6177
6178 /*
6179 * If we can tolerate two or more faults, or we're dealing
6180 * with a slog, randomly online/offline vd0.
6181 */
6182 if ((maxfaults >= 2 || islog) && guid0 != 0) {
6183 if (ztest_random(10) < 6) {
6184 int flags = (ztest_random(2) == 0 ?
6185 ZFS_OFFLINE_TEMPORARY : 0);
6186
6187 /*
6188 * We have to grab the zs_name_lock as writer to
6189 * prevent a race between offlining a slog and
6190 * destroying a dataset. Offlining the slog will
6191 * grab a reference on the dataset which may cause
6192 * dsl_destroy_head() to fail with EBUSY thus
6193 * leaving the dataset in an inconsistent state.
6194 */
6195 if (islog)
6196 (void) pthread_rwlock_wrlock(&ztest_name_lock);
6197
6198 VERIFY3U(vdev_offline(spa, guid0, flags), !=, EBUSY);
6199
6200 if (islog)
6201 (void) pthread_rwlock_unlock(&ztest_name_lock);
6202 } else {
6203 /*
6204 * Ideally we would like to be able to randomly
6205 * call vdev_[on|off]line without holding locks
6206 * to force unpredictable failures but the side
6207 * effects of vdev_[on|off]line prevent us from
6208 * doing so. We grab the ztest_vdev_lock here to
6209 * prevent a race between injection testing and
6210 * aux_vdev removal.
6211 */
6212 mutex_enter(&ztest_vdev_lock);
6213 (void) vdev_online(spa, guid0, 0, NULL);
6214 mutex_exit(&ztest_vdev_lock);
6215 }
6216 }
6217
6218 if (maxfaults == 0)
6219 goto out;
6220
6221 /*
6222 * We have at least single-fault tolerance, so inject data corruption.
6223 */
6224 fd = open(pathrand, O_RDWR);
6225
6226 if (fd == -1) /* we hit a gap in the device namespace */
6227 goto out;
6228
6229 fsize = lseek(fd, 0, SEEK_END);
6230
6231 while (--iters != 0) {
6232 /*
6233 * The offset must be chosen carefully to ensure that
6234 * we do not inject a given logical block with errors
6235 * on two different leaf devices, because ZFS can not
6236 * tolerate that (if maxfaults==1).
6237 *
6238 * To achieve this we divide each leaf device into
6239 * chunks of size (# leaves * SPA_MAXBLOCKSIZE * 4).
6240 * Each chunk is further divided into error-injection
6241 * ranges (can accept errors) and clear ranges (we do
6242 * not inject errors in those). Each error-injection
6243 * range can accept errors only for a single leaf vdev.
6244 * Error-injection ranges are separated by clear ranges.
6245 *
6246 * For example, with 3 leaves, each chunk looks like:
6247 * 0 to 32M: injection range for leaf 0
6248 * 32M to 64M: clear range - no injection allowed
6249 * 64M to 96M: injection range for leaf 1
6250 * 96M to 128M: clear range - no injection allowed
6251 * 128M to 160M: injection range for leaf 2
6252 * 160M to 192M: clear range - no injection allowed
6253 *
6254 * Each clear range must be large enough such that a
6255 * single block cannot straddle it. This way a block
6256 * can't be a target in two different injection ranges
6257 * (on different leaf vdevs).
6258 */
6259 offset = ztest_random(fsize / (leaves << bshift)) *
6260 (leaves << bshift) + (leaf << bshift) +
6261 (ztest_random(1ULL << (bshift - 1)) & -8ULL);
6262
6263 /*
6264 * Only allow damage to the labels at one end of the vdev.
6265 *
6266 * If all labels are damaged, the device will be totally
6267 * inaccessible, which will result in loss of data,
6268 * because we also damage (parts of) the other side of
6269 * the mirror/raidz.
6270 *
6271 * Additionally, we will always have both an even and an
6272 * odd label, so that we can handle crashes in the
6273 * middle of vdev_config_sync().
6274 */
6275 if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE)
6276 continue;
6277
6278 /*
6279 * The two end labels are stored at the "end" of the disk, but
6280 * the end of the disk (vdev_psize) is aligned to
6281 * sizeof (vdev_label_t).
6282 */
6283 uint64_t psize = P2ALIGN(fsize, sizeof (vdev_label_t));
6284 if ((leaf & 1) == 1 &&
6285 offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE)
6286 continue;
6287
6288 mutex_enter(&ztest_vdev_lock);
6289 if (mirror_save != zs->zs_mirrors) {
6290 mutex_exit(&ztest_vdev_lock);
6291 (void) close(fd);
6292 goto out;
6293 }
6294
6295 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
6296 fatal(B_TRUE,
6297 "can't inject bad word at 0x%"PRIx64" in %s",
6298 offset, pathrand);
6299
6300 mutex_exit(&ztest_vdev_lock);
6301
6302 if (ztest_opts.zo_verbose >= 7)
6303 (void) printf("injected bad word into %s,"
6304 " offset 0x%"PRIx64"\n", pathrand, offset);
6305 }
6306
6307 (void) close(fd);
6308 out:
6309 umem_free(path0, MAXPATHLEN);
6310 umem_free(pathrand, MAXPATHLEN);
6311 }
6312
6313 /*
6314 * By design ztest will never inject uncorrectable damage in to the pool.
6315 * Issue a scrub, wait for it to complete, and verify there is never any
6316 * persistent damage.
6317 *
6318 * Only after a full scrub has been completed is it safe to start injecting
6319 * data corruption. See the comment in zfs_fault_inject().
6320 */
6321 static int
6322 ztest_scrub_impl(spa_t *spa)
6323 {
6324 int error = spa_scan(spa, POOL_SCAN_SCRUB);
6325 if (error)
6326 return (error);
6327
6328 while (dsl_scan_scrubbing(spa_get_dsl(spa)))
6329 txg_wait_synced(spa_get_dsl(spa), 0);
6330
6331 if (spa_get_errlog_size(spa) > 0)
6332 return (ECKSUM);
6333
6334 ztest_pool_scrubbed = B_TRUE;
6335
6336 return (0);
6337 }
6338
6339 /*
6340 * Scrub the pool.
6341 */
6342 void
6343 ztest_scrub(ztest_ds_t *zd, uint64_t id)
6344 {
6345 (void) zd, (void) id;
6346 spa_t *spa = ztest_spa;
6347 int error;
6348
6349 /*
6350 * Scrub in progress by device removal.
6351 */
6352 if (ztest_device_removal_active)
6353 return;
6354
6355 /*
6356 * Start a scrub, wait a moment, then force a restart.
6357 */
6358 (void) spa_scan(spa, POOL_SCAN_SCRUB);
6359 (void) poll(NULL, 0, 100);
6360
6361 error = ztest_scrub_impl(spa);
6362 if (error == EBUSY)
6363 error = 0;
6364 ASSERT0(error);
6365 }
6366
6367 /*
6368 * Change the guid for the pool.
6369 */
6370 void
6371 ztest_reguid(ztest_ds_t *zd, uint64_t id)
6372 {
6373 (void) zd, (void) id;
6374 spa_t *spa = ztest_spa;
6375 uint64_t orig, load;
6376 int error;
6377
6378 if (ztest_opts.zo_mmp_test)
6379 return;
6380
6381 orig = spa_guid(spa);
6382 load = spa_load_guid(spa);
6383
6384 (void) pthread_rwlock_wrlock(&ztest_name_lock);
6385 error = spa_change_guid(spa);
6386 (void) pthread_rwlock_unlock(&ztest_name_lock);
6387
6388 if (error != 0)
6389 return;
6390
6391 if (ztest_opts.zo_verbose >= 4) {
6392 (void) printf("Changed guid old %"PRIu64" -> %"PRIu64"\n",
6393 orig, spa_guid(spa));
6394 }
6395
6396 VERIFY3U(orig, !=, spa_guid(spa));
6397 VERIFY3U(load, ==, spa_load_guid(spa));
6398 }
6399
6400 void
6401 ztest_fletcher(ztest_ds_t *zd, uint64_t id)
6402 {
6403 (void) zd, (void) id;
6404 hrtime_t end = gethrtime() + NANOSEC;
6405
6406 while (gethrtime() <= end) {
6407 int run_count = 100;
6408 void *buf;
6409 struct abd *abd_data, *abd_meta;
6410 uint32_t size;
6411 int *ptr;
6412 int i;
6413 zio_cksum_t zc_ref;
6414 zio_cksum_t zc_ref_byteswap;
6415
6416 size = ztest_random_blocksize();
6417
6418 buf = umem_alloc(size, UMEM_NOFAIL);
6419 abd_data = abd_alloc(size, B_FALSE);
6420 abd_meta = abd_alloc(size, B_TRUE);
6421
6422 for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6423 *ptr = ztest_random(UINT_MAX);
6424
6425 abd_copy_from_buf_off(abd_data, buf, 0, size);
6426 abd_copy_from_buf_off(abd_meta, buf, 0, size);
6427
6428 VERIFY0(fletcher_4_impl_set("scalar"));
6429 fletcher_4_native(buf, size, NULL, &zc_ref);
6430 fletcher_4_byteswap(buf, size, NULL, &zc_ref_byteswap);
6431
6432 VERIFY0(fletcher_4_impl_set("cycle"));
6433 while (run_count-- > 0) {
6434 zio_cksum_t zc;
6435 zio_cksum_t zc_byteswap;
6436
6437 fletcher_4_byteswap(buf, size, NULL, &zc_byteswap);
6438 fletcher_4_native(buf, size, NULL, &zc);
6439
6440 VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
6441 VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
6442 sizeof (zc_byteswap)));
6443
6444 /* Test ABD - data */
6445 abd_fletcher_4_byteswap(abd_data, size, NULL,
6446 &zc_byteswap);
6447 abd_fletcher_4_native(abd_data, size, NULL, &zc);
6448
6449 VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
6450 VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
6451 sizeof (zc_byteswap)));
6452
6453 /* Test ABD - metadata */
6454 abd_fletcher_4_byteswap(abd_meta, size, NULL,
6455 &zc_byteswap);
6456 abd_fletcher_4_native(abd_meta, size, NULL, &zc);
6457
6458 VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
6459 VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
6460 sizeof (zc_byteswap)));
6461
6462 }
6463
6464 umem_free(buf, size);
6465 abd_free(abd_data);
6466 abd_free(abd_meta);
6467 }
6468 }
6469
6470 void
6471 ztest_fletcher_incr(ztest_ds_t *zd, uint64_t id)
6472 {
6473 (void) zd, (void) id;
6474 void *buf;
6475 size_t size;
6476 int *ptr;
6477 int i;
6478 zio_cksum_t zc_ref;
6479 zio_cksum_t zc_ref_bswap;
6480
6481 hrtime_t end = gethrtime() + NANOSEC;
6482
6483 while (gethrtime() <= end) {
6484 int run_count = 100;
6485
6486 size = ztest_random_blocksize();
6487 buf = umem_alloc(size, UMEM_NOFAIL);
6488
6489 for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6490 *ptr = ztest_random(UINT_MAX);
6491
6492 VERIFY0(fletcher_4_impl_set("scalar"));
6493 fletcher_4_native(buf, size, NULL, &zc_ref);
6494 fletcher_4_byteswap(buf, size, NULL, &zc_ref_bswap);
6495
6496 VERIFY0(fletcher_4_impl_set("cycle"));
6497
6498 while (run_count-- > 0) {
6499 zio_cksum_t zc;
6500 zio_cksum_t zc_bswap;
6501 size_t pos = 0;
6502
6503 ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
6504 ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
6505
6506 while (pos < size) {
6507 size_t inc = 64 * ztest_random(size / 67);
6508 /* sometimes add few bytes to test non-simd */
6509 if (ztest_random(100) < 10)
6510 inc += P2ALIGN(ztest_random(64),
6511 sizeof (uint32_t));
6512
6513 if (inc > (size - pos))
6514 inc = size - pos;
6515
6516 fletcher_4_incremental_native(buf + pos, inc,
6517 &zc);
6518 fletcher_4_incremental_byteswap(buf + pos, inc,
6519 &zc_bswap);
6520
6521 pos += inc;
6522 }
6523
6524 VERIFY3U(pos, ==, size);
6525
6526 VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
6527 VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
6528
6529 /*
6530 * verify if incremental on the whole buffer is
6531 * equivalent to non-incremental version
6532 */
6533 ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
6534 ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
6535
6536 fletcher_4_incremental_native(buf, size, &zc);
6537 fletcher_4_incremental_byteswap(buf, size, &zc_bswap);
6538
6539 VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
6540 VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
6541 }
6542
6543 umem_free(buf, size);
6544 }
6545 }
6546
6547 static int
6548 ztest_set_global_vars(void)
6549 {
6550 for (size_t i = 0; i < ztest_opts.zo_gvars_count; i++) {
6551 char *kv = ztest_opts.zo_gvars[i];
6552 VERIFY3U(strlen(kv), <=, ZO_GVARS_MAX_ARGLEN);
6553 VERIFY3U(strlen(kv), >, 0);
6554 int err = set_global_var(kv);
6555 if (ztest_opts.zo_verbose > 0) {
6556 (void) printf("setting global var %s ... %s\n", kv,
6557 err ? "failed" : "ok");
6558 }
6559 if (err != 0) {
6560 (void) fprintf(stderr,
6561 "failed to set global var '%s'\n", kv);
6562 return (err);
6563 }
6564 }
6565 return (0);
6566 }
6567
6568 static char **
6569 ztest_global_vars_to_zdb_args(void)
6570 {
6571 char **args = calloc(2*ztest_opts.zo_gvars_count + 1, sizeof (char *));
6572 char **cur = args;
6573 for (size_t i = 0; i < ztest_opts.zo_gvars_count; i++) {
6574 char *kv = ztest_opts.zo_gvars[i];
6575 *cur = "-o";
6576 cur++;
6577 *cur = strdup(kv);
6578 cur++;
6579 }
6580 ASSERT3P(cur, ==, &args[2*ztest_opts.zo_gvars_count]);
6581 *cur = NULL;
6582 return (args);
6583 }
6584
6585 /* The end of strings is indicated by a NULL element */
6586 static char *
6587 join_strings(char **strings, const char *sep)
6588 {
6589 size_t totallen = 0;
6590 for (char **sp = strings; *sp != NULL; sp++) {
6591 totallen += strlen(*sp);
6592 totallen += strlen(sep);
6593 }
6594 if (totallen > 0) {
6595 ASSERT(totallen >= strlen(sep));
6596 totallen -= strlen(sep);
6597 }
6598
6599 size_t buflen = totallen + 1;
6600 char *o = malloc(buflen); /* trailing 0 byte */
6601 o[0] = '\0';
6602 for (char **sp = strings; *sp != NULL; sp++) {
6603 size_t would;
6604 would = strlcat(o, *sp, buflen);
6605 VERIFY3U(would, <, buflen);
6606 if (*(sp+1) == NULL) {
6607 break;
6608 }
6609 would = strlcat(o, sep, buflen);
6610 VERIFY3U(would, <, buflen);
6611 }
6612 ASSERT3S(strlen(o), ==, totallen);
6613 return (o);
6614 }
6615
6616 static int
6617 ztest_check_path(char *path)
6618 {
6619 struct stat s;
6620 /* return true on success */
6621 return (!stat(path, &s));
6622 }
6623
6624 static void
6625 ztest_get_zdb_bin(char *bin, int len)
6626 {
6627 char *zdb_path;
6628 /*
6629 * Try to use ZDB_PATH and in-tree zdb path. If not successful, just
6630 * let popen to search through PATH.
6631 */
6632 if ((zdb_path = getenv("ZDB_PATH"))) {
6633 strlcpy(bin, zdb_path, len); /* In env */
6634 if (!ztest_check_path(bin)) {
6635 ztest_dump_core = 0;
6636 fatal(B_TRUE, "invalid ZDB_PATH '%s'", bin);
6637 }
6638 return;
6639 }
6640
6641 VERIFY3P(realpath(getexecname(), bin), !=, NULL);
6642 if (strstr(bin, "/ztest/")) {
6643 strstr(bin, "/ztest/")[0] = '\0'; /* In-tree */
6644 strcat(bin, "/zdb/zdb");
6645 if (ztest_check_path(bin))
6646 return;
6647 }
6648 strcpy(bin, "zdb");
6649 }
6650
6651 static vdev_t *
6652 ztest_random_concrete_vdev_leaf(vdev_t *vd)
6653 {
6654 if (vd == NULL)
6655 return (NULL);
6656
6657 if (vd->vdev_children == 0)
6658 return (vd);
6659
6660 vdev_t *eligible[vd->vdev_children];
6661 int eligible_idx = 0, i;
6662 for (i = 0; i < vd->vdev_children; i++) {
6663 vdev_t *cvd = vd->vdev_child[i];
6664 if (cvd->vdev_top->vdev_removing)
6665 continue;
6666 if (cvd->vdev_children > 0 ||
6667 (vdev_is_concrete(cvd) && !cvd->vdev_detached)) {
6668 eligible[eligible_idx++] = cvd;
6669 }
6670 }
6671 VERIFY3S(eligible_idx, >, 0);
6672
6673 uint64_t child_no = ztest_random(eligible_idx);
6674 return (ztest_random_concrete_vdev_leaf(eligible[child_no]));
6675 }
6676
6677 void
6678 ztest_initialize(ztest_ds_t *zd, uint64_t id)
6679 {
6680 (void) zd, (void) id;
6681 spa_t *spa = ztest_spa;
6682 int error = 0;
6683
6684 mutex_enter(&ztest_vdev_lock);
6685
6686 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
6687
6688 /* Random leaf vdev */
6689 vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev);
6690 if (rand_vd == NULL) {
6691 spa_config_exit(spa, SCL_VDEV, FTAG);
6692 mutex_exit(&ztest_vdev_lock);
6693 return;
6694 }
6695
6696 /*
6697 * The random vdev we've selected may change as soon as we
6698 * drop the spa_config_lock. We create local copies of things
6699 * we're interested in.
6700 */
6701 uint64_t guid = rand_vd->vdev_guid;
6702 char *path = strdup(rand_vd->vdev_path);
6703 boolean_t active = rand_vd->vdev_initialize_thread != NULL;
6704
6705 zfs_dbgmsg("vd %px, guid %llu", rand_vd, (u_longlong_t)guid);
6706 spa_config_exit(spa, SCL_VDEV, FTAG);
6707
6708 uint64_t cmd = ztest_random(POOL_INITIALIZE_FUNCS);
6709
6710 nvlist_t *vdev_guids = fnvlist_alloc();
6711 nvlist_t *vdev_errlist = fnvlist_alloc();
6712 fnvlist_add_uint64(vdev_guids, path, guid);
6713 error = spa_vdev_initialize(spa, vdev_guids, cmd, vdev_errlist);
6714 fnvlist_free(vdev_guids);
6715 fnvlist_free(vdev_errlist);
6716
6717 switch (cmd) {
6718 case POOL_INITIALIZE_CANCEL:
6719 if (ztest_opts.zo_verbose >= 4) {
6720 (void) printf("Cancel initialize %s", path);
6721 if (!active)
6722 (void) printf(" failed (no initialize active)");
6723 (void) printf("\n");
6724 }
6725 break;
6726 case POOL_INITIALIZE_START:
6727 if (ztest_opts.zo_verbose >= 4) {
6728 (void) printf("Start initialize %s", path);
6729 if (active && error == 0)
6730 (void) printf(" failed (already active)");
6731 else if (error != 0)
6732 (void) printf(" failed (error %d)", error);
6733 (void) printf("\n");
6734 }
6735 break;
6736 case POOL_INITIALIZE_SUSPEND:
6737 if (ztest_opts.zo_verbose >= 4) {
6738 (void) printf("Suspend initialize %s", path);
6739 if (!active)
6740 (void) printf(" failed (no initialize active)");
6741 (void) printf("\n");
6742 }
6743 break;
6744 }
6745 free(path);
6746 mutex_exit(&ztest_vdev_lock);
6747 }
6748
6749 void
6750 ztest_trim(ztest_ds_t *zd, uint64_t id)
6751 {
6752 (void) zd, (void) id;
6753 spa_t *spa = ztest_spa;
6754 int error = 0;
6755
6756 mutex_enter(&ztest_vdev_lock);
6757
6758 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
6759
6760 /* Random leaf vdev */
6761 vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev);
6762 if (rand_vd == NULL) {
6763 spa_config_exit(spa, SCL_VDEV, FTAG);
6764 mutex_exit(&ztest_vdev_lock);
6765 return;
6766 }
6767
6768 /*
6769 * The random vdev we've selected may change as soon as we
6770 * drop the spa_config_lock. We create local copies of things
6771 * we're interested in.
6772 */
6773 uint64_t guid = rand_vd->vdev_guid;
6774 char *path = strdup(rand_vd->vdev_path);
6775 boolean_t active = rand_vd->vdev_trim_thread != NULL;
6776
6777 zfs_dbgmsg("vd %p, guid %llu", rand_vd, (u_longlong_t)guid);
6778 spa_config_exit(spa, SCL_VDEV, FTAG);
6779
6780 uint64_t cmd = ztest_random(POOL_TRIM_FUNCS);
6781 uint64_t rate = 1 << ztest_random(30);
6782 boolean_t partial = (ztest_random(5) > 0);
6783 boolean_t secure = (ztest_random(5) > 0);
6784
6785 nvlist_t *vdev_guids = fnvlist_alloc();
6786 nvlist_t *vdev_errlist = fnvlist_alloc();
6787 fnvlist_add_uint64(vdev_guids, path, guid);
6788 error = spa_vdev_trim(spa, vdev_guids, cmd, rate, partial,
6789 secure, vdev_errlist);
6790 fnvlist_free(vdev_guids);
6791 fnvlist_free(vdev_errlist);
6792
6793 switch (cmd) {
6794 case POOL_TRIM_CANCEL:
6795 if (ztest_opts.zo_verbose >= 4) {
6796 (void) printf("Cancel TRIM %s", path);
6797 if (!active)
6798 (void) printf(" failed (no TRIM active)");
6799 (void) printf("\n");
6800 }
6801 break;
6802 case POOL_TRIM_START:
6803 if (ztest_opts.zo_verbose >= 4) {
6804 (void) printf("Start TRIM %s", path);
6805 if (active && error == 0)
6806 (void) printf(" failed (already active)");
6807 else if (error != 0)
6808 (void) printf(" failed (error %d)", error);
6809 (void) printf("\n");
6810 }
6811 break;
6812 case POOL_TRIM_SUSPEND:
6813 if (ztest_opts.zo_verbose >= 4) {
6814 (void) printf("Suspend TRIM %s", path);
6815 if (!active)
6816 (void) printf(" failed (no TRIM active)");
6817 (void) printf("\n");
6818 }
6819 break;
6820 }
6821 free(path);
6822 mutex_exit(&ztest_vdev_lock);
6823 }
6824
6825 /*
6826 * Verify pool integrity by running zdb.
6827 */
6828 static void
6829 ztest_run_zdb(char *pool)
6830 {
6831 int status;
6832 char *bin;
6833 char *zdb;
6834 char *zbuf;
6835 const int len = MAXPATHLEN + MAXNAMELEN + 20;
6836 FILE *fp;
6837
6838 bin = umem_alloc(len, UMEM_NOFAIL);
6839 zdb = umem_alloc(len, UMEM_NOFAIL);
6840 zbuf = umem_alloc(1024, UMEM_NOFAIL);
6841
6842 ztest_get_zdb_bin(bin, len);
6843
6844 char **set_gvars_args = ztest_global_vars_to_zdb_args();
6845 char *set_gvars_args_joined = join_strings(set_gvars_args, " ");
6846 free(set_gvars_args);
6847
6848 size_t would = snprintf(zdb, len,
6849 "%s -bcc%s%s -G -d -Y -e -y %s -p %s %s",
6850 bin,
6851 ztest_opts.zo_verbose >= 3 ? "s" : "",
6852 ztest_opts.zo_verbose >= 4 ? "v" : "",
6853 set_gvars_args_joined,
6854 ztest_opts.zo_dir,
6855 pool);
6856 ASSERT3U(would, <, len);
6857
6858 free(set_gvars_args_joined);
6859
6860 if (ztest_opts.zo_verbose >= 5)
6861 (void) printf("Executing %s\n", strstr(zdb, "zdb "));
6862
6863 fp = popen(zdb, "r");
6864
6865 while (fgets(zbuf, 1024, fp) != NULL)
6866 if (ztest_opts.zo_verbose >= 3)
6867 (void) printf("%s", zbuf);
6868
6869 status = pclose(fp);
6870
6871 if (status == 0)
6872 goto out;
6873
6874 ztest_dump_core = 0;
6875 if (WIFEXITED(status))
6876 fatal(B_FALSE, "'%s' exit code %d", zdb, WEXITSTATUS(status));
6877 else
6878 fatal(B_FALSE, "'%s' died with signal %d",
6879 zdb, WTERMSIG(status));
6880 out:
6881 umem_free(bin, len);
6882 umem_free(zdb, len);
6883 umem_free(zbuf, 1024);
6884 }
6885
6886 static void
6887 ztest_walk_pool_directory(char *header)
6888 {
6889 spa_t *spa = NULL;
6890
6891 if (ztest_opts.zo_verbose >= 6)
6892 (void) printf("%s\n", header);
6893
6894 mutex_enter(&spa_namespace_lock);
6895 while ((spa = spa_next(spa)) != NULL)
6896 if (ztest_opts.zo_verbose >= 6)
6897 (void) printf("\t%s\n", spa_name(spa));
6898 mutex_exit(&spa_namespace_lock);
6899 }
6900
6901 static void
6902 ztest_spa_import_export(char *oldname, char *newname)
6903 {
6904 nvlist_t *config, *newconfig;
6905 uint64_t pool_guid;
6906 spa_t *spa;
6907 int error;
6908
6909 if (ztest_opts.zo_verbose >= 4) {
6910 (void) printf("import/export: old = %s, new = %s\n",
6911 oldname, newname);
6912 }
6913
6914 /*
6915 * Clean up from previous runs.
6916 */
6917 (void) spa_destroy(newname);
6918
6919 /*
6920 * Get the pool's configuration and guid.
6921 */
6922 VERIFY0(spa_open(oldname, &spa, FTAG));
6923
6924 /*
6925 * Kick off a scrub to tickle scrub/export races.
6926 */
6927 if (ztest_random(2) == 0)
6928 (void) spa_scan(spa, POOL_SCAN_SCRUB);
6929
6930 pool_guid = spa_guid(spa);
6931 spa_close(spa, FTAG);
6932
6933 ztest_walk_pool_directory("pools before export");
6934
6935 /*
6936 * Export it.
6937 */
6938 VERIFY0(spa_export(oldname, &config, B_FALSE, B_FALSE));
6939
6940 ztest_walk_pool_directory("pools after export");
6941
6942 /*
6943 * Try to import it.
6944 */
6945 newconfig = spa_tryimport(config);
6946 ASSERT3P(newconfig, !=, NULL);
6947 fnvlist_free(newconfig);
6948
6949 /*
6950 * Import it under the new name.
6951 */
6952 error = spa_import(newname, config, NULL, 0);
6953 if (error != 0) {
6954 dump_nvlist(config, 0);
6955 fatal(B_FALSE, "couldn't import pool %s as %s: error %u",
6956 oldname, newname, error);
6957 }
6958
6959 ztest_walk_pool_directory("pools after import");
6960
6961 /*
6962 * Try to import it again -- should fail with EEXIST.
6963 */
6964 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0));
6965
6966 /*
6967 * Try to import it under a different name -- should fail with EEXIST.
6968 */
6969 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0));
6970
6971 /*
6972 * Verify that the pool is no longer visible under the old name.
6973 */
6974 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
6975
6976 /*
6977 * Verify that we can open and close the pool using the new name.
6978 */
6979 VERIFY0(spa_open(newname, &spa, FTAG));
6980 ASSERT3U(pool_guid, ==, spa_guid(spa));
6981 spa_close(spa, FTAG);
6982
6983 fnvlist_free(config);
6984 }
6985
6986 static void
6987 ztest_resume(spa_t *spa)
6988 {
6989 if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6)
6990 (void) printf("resuming from suspended state\n");
6991 spa_vdev_state_enter(spa, SCL_NONE);
6992 vdev_clear(spa, NULL);
6993 (void) spa_vdev_state_exit(spa, NULL, 0);
6994 (void) zio_resume(spa);
6995 }
6996
6997 static _Noreturn void
6998 ztest_resume_thread(void *arg)
6999 {
7000 spa_t *spa = arg;
7001
7002 while (!ztest_exiting) {
7003 if (spa_suspended(spa))
7004 ztest_resume(spa);
7005 (void) poll(NULL, 0, 100);
7006
7007 /*
7008 * Periodically change the zfs_compressed_arc_enabled setting.
7009 */
7010 if (ztest_random(10) == 0)
7011 zfs_compressed_arc_enabled = ztest_random(2);
7012
7013 /*
7014 * Periodically change the zfs_abd_scatter_enabled setting.
7015 */
7016 if (ztest_random(10) == 0)
7017 zfs_abd_scatter_enabled = ztest_random(2);
7018 }
7019
7020 thread_exit();
7021 }
7022
7023 static _Noreturn void
7024 ztest_deadman_thread(void *arg)
7025 {
7026 ztest_shared_t *zs = arg;
7027 spa_t *spa = ztest_spa;
7028 hrtime_t delay, overdue, last_run = gethrtime();
7029
7030 delay = (zs->zs_thread_stop - zs->zs_thread_start) +
7031 MSEC2NSEC(zfs_deadman_synctime_ms);
7032
7033 while (!ztest_exiting) {
7034 /*
7035 * Wait for the delay timer while checking occasionally
7036 * if we should stop.
7037 */
7038 if (gethrtime() < last_run + delay) {
7039 (void) poll(NULL, 0, 1000);
7040 continue;
7041 }
7042
7043 /*
7044 * If the pool is suspended then fail immediately. Otherwise,
7045 * check to see if the pool is making any progress. If
7046 * vdev_deadman() discovers that there hasn't been any recent
7047 * I/Os then it will end up aborting the tests.
7048 */
7049 if (spa_suspended(spa) || spa->spa_root_vdev == NULL) {
7050 fatal(B_FALSE,
7051 "aborting test after %lu seconds because "
7052 "pool has transitioned to a suspended state.",
7053 zfs_deadman_synctime_ms / 1000);
7054 }
7055 vdev_deadman(spa->spa_root_vdev, FTAG);
7056
7057 /*
7058 * If the process doesn't complete within a grace period of
7059 * zfs_deadman_synctime_ms over the expected finish time,
7060 * then it may be hung and is terminated.
7061 */
7062 overdue = zs->zs_proc_stop + MSEC2NSEC(zfs_deadman_synctime_ms);
7063 if (gethrtime() > overdue) {
7064 fatal(B_FALSE,
7065 "aborting test after %llu seconds because "
7066 "the process is overdue for termination.",
7067 (gethrtime() - zs->zs_proc_start) / NANOSEC);
7068 }
7069
7070 (void) printf("ztest has been running for %lld seconds\n",
7071 (gethrtime() - zs->zs_proc_start) / NANOSEC);
7072
7073 last_run = gethrtime();
7074 delay = MSEC2NSEC(zfs_deadman_checktime_ms);
7075 }
7076
7077 thread_exit();
7078 }
7079
7080 static void
7081 ztest_execute(int test, ztest_info_t *zi, uint64_t id)
7082 {
7083 ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets];
7084 ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test);
7085 hrtime_t functime = gethrtime();
7086 int i;
7087
7088 for (i = 0; i < zi->zi_iters; i++)
7089 zi->zi_func(zd, id);
7090
7091 functime = gethrtime() - functime;
7092
7093 atomic_add_64(&zc->zc_count, 1);
7094 atomic_add_64(&zc->zc_time, functime);
7095
7096 if (ztest_opts.zo_verbose >= 4)
7097 (void) printf("%6.2f sec in %s\n",
7098 (double)functime / NANOSEC, zi->zi_funcname);
7099 }
7100
7101 static _Noreturn void
7102 ztest_thread(void *arg)
7103 {
7104 int rand;
7105 uint64_t id = (uintptr_t)arg;
7106 ztest_shared_t *zs = ztest_shared;
7107 uint64_t call_next;
7108 hrtime_t now;
7109 ztest_info_t *zi;
7110 ztest_shared_callstate_t *zc;
7111
7112 while ((now = gethrtime()) < zs->zs_thread_stop) {
7113 /*
7114 * See if it's time to force a crash.
7115 */
7116 if (now > zs->zs_thread_kill)
7117 ztest_kill(zs);
7118
7119 /*
7120 * If we're getting ENOSPC with some regularity, stop.
7121 */
7122 if (zs->zs_enospc_count > 10)
7123 break;
7124
7125 /*
7126 * Pick a random function to execute.
7127 */
7128 rand = ztest_random(ZTEST_FUNCS);
7129 zi = &ztest_info[rand];
7130 zc = ZTEST_GET_SHARED_CALLSTATE(rand);
7131 call_next = zc->zc_next;
7132
7133 if (now >= call_next &&
7134 atomic_cas_64(&zc->zc_next, call_next, call_next +
7135 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) {
7136 ztest_execute(rand, zi, id);
7137 }
7138 }
7139
7140 thread_exit();
7141 }
7142
7143 static void
7144 ztest_dataset_name(char *dsname, char *pool, int d)
7145 {
7146 (void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d);
7147 }
7148
7149 static void
7150 ztest_dataset_destroy(int d)
7151 {
7152 char name[ZFS_MAX_DATASET_NAME_LEN];
7153 int t;
7154
7155 ztest_dataset_name(name, ztest_opts.zo_pool, d);
7156
7157 if (ztest_opts.zo_verbose >= 3)
7158 (void) printf("Destroying %s to free up space\n", name);
7159
7160 /*
7161 * Cleanup any non-standard clones and snapshots. In general,
7162 * ztest thread t operates on dataset (t % zopt_datasets),
7163 * so there may be more than one thing to clean up.
7164 */
7165 for (t = d; t < ztest_opts.zo_threads;
7166 t += ztest_opts.zo_datasets)
7167 ztest_dsl_dataset_cleanup(name, t);
7168
7169 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
7170 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
7171 }
7172
7173 static void
7174 ztest_dataset_dirobj_verify(ztest_ds_t *zd)
7175 {
7176 uint64_t usedobjs, dirobjs, scratch;
7177
7178 /*
7179 * ZTEST_DIROBJ is the object directory for the entire dataset.
7180 * Therefore, the number of objects in use should equal the
7181 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
7182 * If not, we have an object leak.
7183 *
7184 * Note that we can only check this in ztest_dataset_open(),
7185 * when the open-context and syncing-context values agree.
7186 * That's because zap_count() returns the open-context value,
7187 * while dmu_objset_space() returns the rootbp fill count.
7188 */
7189 VERIFY0(zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
7190 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
7191 ASSERT3U(dirobjs + 1, ==, usedobjs);
7192 }
7193
7194 static int
7195 ztest_dataset_open(int d)
7196 {
7197 ztest_ds_t *zd = &ztest_ds[d];
7198 uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq;
7199 objset_t *os;
7200 zilog_t *zilog;
7201 char name[ZFS_MAX_DATASET_NAME_LEN];
7202 int error;
7203
7204 ztest_dataset_name(name, ztest_opts.zo_pool, d);
7205
7206 (void) pthread_rwlock_rdlock(&ztest_name_lock);
7207
7208 error = ztest_dataset_create(name);
7209 if (error == ENOSPC) {
7210 (void) pthread_rwlock_unlock(&ztest_name_lock);
7211 ztest_record_enospc(FTAG);
7212 return (error);
7213 }
7214 ASSERT(error == 0 || error == EEXIST);
7215
7216 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
7217 B_TRUE, zd, &os));
7218 (void) pthread_rwlock_unlock(&ztest_name_lock);
7219
7220 ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os);
7221
7222 zilog = zd->zd_zilog;
7223
7224 if (zilog->zl_header->zh_claim_lr_seq != 0 &&
7225 zilog->zl_header->zh_claim_lr_seq < committed_seq)
7226 fatal(B_FALSE, "missing log records: "
7227 "claimed %"PRIu64" < committed %"PRIu64"",
7228 zilog->zl_header->zh_claim_lr_seq, committed_seq);
7229
7230 ztest_dataset_dirobj_verify(zd);
7231
7232 zil_replay(os, zd, ztest_replay_vector);
7233
7234 ztest_dataset_dirobj_verify(zd);
7235
7236 if (ztest_opts.zo_verbose >= 6)
7237 (void) printf("%s replay %"PRIu64" blocks, "
7238 "%"PRIu64" records, seq %"PRIu64"\n",
7239 zd->zd_name,
7240 zilog->zl_parse_blk_count,
7241 zilog->zl_parse_lr_count,
7242 zilog->zl_replaying_seq);
7243
7244 zilog = zil_open(os, ztest_get_data);
7245
7246 if (zilog->zl_replaying_seq != 0 &&
7247 zilog->zl_replaying_seq < committed_seq)
7248 fatal(B_FALSE, "missing log records: "
7249 "replayed %"PRIu64" < committed %"PRIu64"",
7250 zilog->zl_replaying_seq, committed_seq);
7251
7252 return (0);
7253 }
7254
7255 static void
7256 ztest_dataset_close(int d)
7257 {
7258 ztest_ds_t *zd = &ztest_ds[d];
7259
7260 zil_close(zd->zd_zilog);
7261 dmu_objset_disown(zd->zd_os, B_TRUE, zd);
7262
7263 ztest_zd_fini(zd);
7264 }
7265
7266 static int
7267 ztest_replay_zil_cb(const char *name, void *arg)
7268 {
7269 (void) arg;
7270 objset_t *os;
7271 ztest_ds_t *zdtmp;
7272
7273 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_ANY, B_TRUE,
7274 B_TRUE, FTAG, &os));
7275
7276 zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
7277
7278 ztest_zd_init(zdtmp, NULL, os);
7279 zil_replay(os, zdtmp, ztest_replay_vector);
7280 ztest_zd_fini(zdtmp);
7281
7282 if (dmu_objset_zil(os)->zl_parse_lr_count != 0 &&
7283 ztest_opts.zo_verbose >= 6) {
7284 zilog_t *zilog = dmu_objset_zil(os);
7285
7286 (void) printf("%s replay %"PRIu64" blocks, "
7287 "%"PRIu64" records, seq %"PRIu64"\n",
7288 name,
7289 zilog->zl_parse_blk_count,
7290 zilog->zl_parse_lr_count,
7291 zilog->zl_replaying_seq);
7292 }
7293
7294 umem_free(zdtmp, sizeof (ztest_ds_t));
7295
7296 dmu_objset_disown(os, B_TRUE, FTAG);
7297 return (0);
7298 }
7299
7300 static void
7301 ztest_freeze(void)
7302 {
7303 ztest_ds_t *zd = &ztest_ds[0];
7304 spa_t *spa;
7305 int numloops = 0;
7306
7307 if (ztest_opts.zo_verbose >= 3)
7308 (void) printf("testing spa_freeze()...\n");
7309
7310 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7311 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7312 VERIFY0(ztest_dataset_open(0));
7313 ztest_spa = spa;
7314
7315 /*
7316 * Force the first log block to be transactionally allocated.
7317 * We have to do this before we freeze the pool -- otherwise
7318 * the log chain won't be anchored.
7319 */
7320 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
7321 ztest_dmu_object_alloc_free(zd, 0);
7322 zil_commit(zd->zd_zilog, 0);
7323 }
7324
7325 txg_wait_synced(spa_get_dsl(spa), 0);
7326
7327 /*
7328 * Freeze the pool. This stops spa_sync() from doing anything,
7329 * so that the only way to record changes from now on is the ZIL.
7330 */
7331 spa_freeze(spa);
7332
7333 /*
7334 * Because it is hard to predict how much space a write will actually
7335 * require beforehand, we leave ourselves some fudge space to write over
7336 * capacity.
7337 */
7338 uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2;
7339
7340 /*
7341 * Run tests that generate log records but don't alter the pool config
7342 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
7343 * We do a txg_wait_synced() after each iteration to force the txg
7344 * to increase well beyond the last synced value in the uberblock.
7345 * The ZIL should be OK with that.
7346 *
7347 * Run a random number of times less than zo_maxloops and ensure we do
7348 * not run out of space on the pool.
7349 */
7350 while (ztest_random(10) != 0 &&
7351 numloops++ < ztest_opts.zo_maxloops &&
7352 metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) {
7353 ztest_od_t od;
7354 ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
7355 VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE));
7356 ztest_io(zd, od.od_object,
7357 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
7358 txg_wait_synced(spa_get_dsl(spa), 0);
7359 }
7360
7361 /*
7362 * Commit all of the changes we just generated.
7363 */
7364 zil_commit(zd->zd_zilog, 0);
7365 txg_wait_synced(spa_get_dsl(spa), 0);
7366
7367 /*
7368 * Close our dataset and close the pool.
7369 */
7370 ztest_dataset_close(0);
7371 spa_close(spa, FTAG);
7372 kernel_fini();
7373
7374 /*
7375 * Open and close the pool and dataset to induce log replay.
7376 */
7377 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7378 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7379 ASSERT3U(spa_freeze_txg(spa), ==, UINT64_MAX);
7380 VERIFY0(ztest_dataset_open(0));
7381 ztest_spa = spa;
7382 txg_wait_synced(spa_get_dsl(spa), 0);
7383 ztest_dataset_close(0);
7384 ztest_reguid(NULL, 0);
7385
7386 spa_close(spa, FTAG);
7387 kernel_fini();
7388 }
7389
7390 static void
7391 ztest_import_impl(void)
7392 {
7393 importargs_t args = { 0 };
7394 nvlist_t *cfg = NULL;
7395 int nsearch = 1;
7396 char *searchdirs[nsearch];
7397 int flags = ZFS_IMPORT_MISSING_LOG;
7398
7399 searchdirs[0] = ztest_opts.zo_dir;
7400 args.paths = nsearch;
7401 args.path = searchdirs;
7402 args.can_be_active = B_FALSE;
7403
7404 VERIFY0(zpool_find_config(NULL, ztest_opts.zo_pool, &cfg, &args,
7405 &libzpool_config_ops));
7406 VERIFY0(spa_import(ztest_opts.zo_pool, cfg, NULL, flags));
7407 fnvlist_free(cfg);
7408 }
7409
7410 /*
7411 * Import a storage pool with the given name.
7412 */
7413 static void
7414 ztest_import(ztest_shared_t *zs)
7415 {
7416 spa_t *spa;
7417
7418 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
7419 mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
7420 VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
7421
7422 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7423
7424 ztest_import_impl();
7425
7426 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7427 zs->zs_metaslab_sz =
7428 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
7429 spa_close(spa, FTAG);
7430
7431 kernel_fini();
7432
7433 if (!ztest_opts.zo_mmp_test) {
7434 ztest_run_zdb(ztest_opts.zo_pool);
7435 ztest_freeze();
7436 ztest_run_zdb(ztest_opts.zo_pool);
7437 }
7438
7439 (void) pthread_rwlock_destroy(&ztest_name_lock);
7440 mutex_destroy(&ztest_vdev_lock);
7441 mutex_destroy(&ztest_checkpoint_lock);
7442 }
7443
7444 /*
7445 * Kick off threads to run tests on all datasets in parallel.
7446 */
7447 static void
7448 ztest_run(ztest_shared_t *zs)
7449 {
7450 spa_t *spa;
7451 objset_t *os;
7452 kthread_t *resume_thread, *deadman_thread;
7453 kthread_t **run_threads;
7454 uint64_t object;
7455 int error;
7456 int t, d;
7457
7458 ztest_exiting = B_FALSE;
7459
7460 /*
7461 * Initialize parent/child shared state.
7462 */
7463 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
7464 mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
7465 VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
7466
7467 zs->zs_thread_start = gethrtime();
7468 zs->zs_thread_stop =
7469 zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC;
7470 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
7471 zs->zs_thread_kill = zs->zs_thread_stop;
7472 if (ztest_random(100) < ztest_opts.zo_killrate) {
7473 zs->zs_thread_kill -=
7474 ztest_random(ztest_opts.zo_passtime * NANOSEC);
7475 }
7476
7477 mutex_init(&zcl.zcl_callbacks_lock, NULL, MUTEX_DEFAULT, NULL);
7478
7479 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
7480 offsetof(ztest_cb_data_t, zcd_node));
7481
7482 /*
7483 * Open our pool. It may need to be imported first depending on
7484 * what tests were running when the previous pass was terminated.
7485 */
7486 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7487 error = spa_open(ztest_opts.zo_pool, &spa, FTAG);
7488 if (error) {
7489 VERIFY3S(error, ==, ENOENT);
7490 ztest_import_impl();
7491 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7492 zs->zs_metaslab_sz =
7493 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
7494 }
7495
7496 metaslab_preload_limit = ztest_random(20) + 1;
7497 ztest_spa = spa;
7498
7499 VERIFY0(vdev_raidz_impl_set("cycle"));
7500
7501 dmu_objset_stats_t dds;
7502 VERIFY0(ztest_dmu_objset_own(ztest_opts.zo_pool,
7503 DMU_OST_ANY, B_TRUE, B_TRUE, FTAG, &os));
7504 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
7505 dmu_objset_fast_stat(os, &dds);
7506 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
7507 zs->zs_guid = dds.dds_guid;
7508 dmu_objset_disown(os, B_TRUE, FTAG);
7509
7510 /*
7511 * Create a thread to periodically resume suspended I/O.
7512 */
7513 resume_thread = thread_create(NULL, 0, ztest_resume_thread,
7514 spa, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
7515
7516 /*
7517 * Create a deadman thread and set to panic if we hang.
7518 */
7519 deadman_thread = thread_create(NULL, 0, ztest_deadman_thread,
7520 zs, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
7521
7522 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
7523
7524 /*
7525 * Verify that we can safely inquire about any object,
7526 * whether it's allocated or not. To make it interesting,
7527 * we probe a 5-wide window around each power of two.
7528 * This hits all edge cases, including zero and the max.
7529 */
7530 for (t = 0; t < 64; t++) {
7531 for (d = -5; d <= 5; d++) {
7532 error = dmu_object_info(spa->spa_meta_objset,
7533 (1ULL << t) + d, NULL);
7534 ASSERT(error == 0 || error == ENOENT ||
7535 error == EINVAL);
7536 }
7537 }
7538
7539 /*
7540 * If we got any ENOSPC errors on the previous run, destroy something.
7541 */
7542 if (zs->zs_enospc_count != 0) {
7543 int d = ztest_random(ztest_opts.zo_datasets);
7544 ztest_dataset_destroy(d);
7545 }
7546 zs->zs_enospc_count = 0;
7547
7548 /*
7549 * If we were in the middle of ztest_device_removal() and were killed
7550 * we need to ensure the removal and scrub complete before running
7551 * any tests that check ztest_device_removal_active. The removal will
7552 * be restarted automatically when the spa is opened, but we need to
7553 * initiate the scrub manually if it is not already in progress. Note
7554 * that we always run the scrub whenever an indirect vdev exists
7555 * because we have no way of knowing for sure if ztest_device_removal()
7556 * fully completed its scrub before the pool was reimported.
7557 */
7558 if (spa->spa_removing_phys.sr_state == DSS_SCANNING ||
7559 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
7560 while (spa->spa_removing_phys.sr_state == DSS_SCANNING)
7561 txg_wait_synced(spa_get_dsl(spa), 0);
7562
7563 error = ztest_scrub_impl(spa);
7564 if (error == EBUSY)
7565 error = 0;
7566 ASSERT0(error);
7567 }
7568
7569 run_threads = umem_zalloc(ztest_opts.zo_threads * sizeof (kthread_t *),
7570 UMEM_NOFAIL);
7571
7572 if (ztest_opts.zo_verbose >= 4)
7573 (void) printf("starting main threads...\n");
7574
7575 /*
7576 * Replay all logs of all datasets in the pool. This is primarily for
7577 * temporary datasets which wouldn't otherwise get replayed, which
7578 * can trigger failures when attempting to offline a SLOG in
7579 * ztest_fault_inject().
7580 */
7581 (void) dmu_objset_find(ztest_opts.zo_pool, ztest_replay_zil_cb,
7582 NULL, DS_FIND_CHILDREN);
7583
7584 /*
7585 * Kick off all the tests that run in parallel.
7586 */
7587 for (t = 0; t < ztest_opts.zo_threads; t++) {
7588 if (t < ztest_opts.zo_datasets && ztest_dataset_open(t) != 0) {
7589 umem_free(run_threads, ztest_opts.zo_threads *
7590 sizeof (kthread_t *));
7591 return;
7592 }
7593
7594 run_threads[t] = thread_create(NULL, 0, ztest_thread,
7595 (void *)(uintptr_t)t, 0, NULL, TS_RUN | TS_JOINABLE,
7596 defclsyspri);
7597 }
7598
7599 /*
7600 * Wait for all of the tests to complete.
7601 */
7602 for (t = 0; t < ztest_opts.zo_threads; t++)
7603 VERIFY0(thread_join(run_threads[t]));
7604
7605 /*
7606 * Close all datasets. This must be done after all the threads
7607 * are joined so we can be sure none of the datasets are in-use
7608 * by any of the threads.
7609 */
7610 for (t = 0; t < ztest_opts.zo_threads; t++) {
7611 if (t < ztest_opts.zo_datasets)
7612 ztest_dataset_close(t);
7613 }
7614
7615 txg_wait_synced(spa_get_dsl(spa), 0);
7616
7617 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
7618 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
7619
7620 umem_free(run_threads, ztest_opts.zo_threads * sizeof (kthread_t *));
7621
7622 /* Kill the resume and deadman threads */
7623 ztest_exiting = B_TRUE;
7624 VERIFY0(thread_join(resume_thread));
7625 VERIFY0(thread_join(deadman_thread));
7626 ztest_resume(spa);
7627
7628 /*
7629 * Right before closing the pool, kick off a bunch of async I/O;
7630 * spa_close() should wait for it to complete.
7631 */
7632 for (object = 1; object < 50; object++) {
7633 dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20,
7634 ZIO_PRIORITY_SYNC_READ);
7635 }
7636
7637 /* Verify that at least one commit cb was called in a timely fashion */
7638 if (zc_cb_counter >= ZTEST_COMMIT_CB_MIN_REG)
7639 VERIFY0(zc_min_txg_delay);
7640
7641 spa_close(spa, FTAG);
7642
7643 /*
7644 * Verify that we can loop over all pools.
7645 */
7646 mutex_enter(&spa_namespace_lock);
7647 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
7648 if (ztest_opts.zo_verbose > 3)
7649 (void) printf("spa_next: found %s\n", spa_name(spa));
7650 mutex_exit(&spa_namespace_lock);
7651
7652 /*
7653 * Verify that we can export the pool and reimport it under a
7654 * different name.
7655 */
7656 if ((ztest_random(2) == 0) && !ztest_opts.zo_mmp_test) {
7657 char name[ZFS_MAX_DATASET_NAME_LEN];
7658 (void) snprintf(name, sizeof (name), "%s_import",
7659 ztest_opts.zo_pool);
7660 ztest_spa_import_export(ztest_opts.zo_pool, name);
7661 ztest_spa_import_export(name, ztest_opts.zo_pool);
7662 }
7663
7664 kernel_fini();
7665
7666 list_destroy(&zcl.zcl_callbacks);
7667 mutex_destroy(&zcl.zcl_callbacks_lock);
7668 (void) pthread_rwlock_destroy(&ztest_name_lock);
7669 mutex_destroy(&ztest_vdev_lock);
7670 mutex_destroy(&ztest_checkpoint_lock);
7671 }
7672
7673 static void
7674 print_time(hrtime_t t, char *timebuf)
7675 {
7676 hrtime_t s = t / NANOSEC;
7677 hrtime_t m = s / 60;
7678 hrtime_t h = m / 60;
7679 hrtime_t d = h / 24;
7680
7681 s -= m * 60;
7682 m -= h * 60;
7683 h -= d * 24;
7684
7685 timebuf[0] = '\0';
7686
7687 if (d)
7688 (void) sprintf(timebuf,
7689 "%llud%02lluh%02llum%02llus", d, h, m, s);
7690 else if (h)
7691 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
7692 else if (m)
7693 (void) sprintf(timebuf, "%llum%02llus", m, s);
7694 else
7695 (void) sprintf(timebuf, "%llus", s);
7696 }
7697
7698 static nvlist_t *
7699 make_random_props(void)
7700 {
7701 nvlist_t *props;
7702
7703 props = fnvlist_alloc();
7704
7705 if (ztest_random(2) == 0)
7706 return (props);
7707
7708 fnvlist_add_uint64(props,
7709 zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE), 1);
7710
7711 return (props);
7712 }
7713
7714 /*
7715 * Create a storage pool with the given name and initial vdev size.
7716 * Then test spa_freeze() functionality.
7717 */
7718 static void
7719 ztest_init(ztest_shared_t *zs)
7720 {
7721 spa_t *spa;
7722 nvlist_t *nvroot, *props;
7723 int i;
7724
7725 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
7726 mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
7727 VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
7728
7729 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7730
7731 /*
7732 * Create the storage pool.
7733 */
7734 (void) spa_destroy(ztest_opts.zo_pool);
7735 ztest_shared->zs_vdev_next_leaf = 0;
7736 zs->zs_splits = 0;
7737 zs->zs_mirrors = ztest_opts.zo_mirrors;
7738 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
7739 NULL, ztest_opts.zo_raid_children, zs->zs_mirrors, 1);
7740 props = make_random_props();
7741
7742 /*
7743 * We don't expect the pool to suspend unless maxfaults == 0,
7744 * in which case ztest_fault_inject() temporarily takes away
7745 * the only valid replica.
7746 */
7747 fnvlist_add_uint64(props,
7748 zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
7749 MAXFAULTS(zs) ? ZIO_FAILURE_MODE_PANIC : ZIO_FAILURE_MODE_WAIT);
7750
7751 for (i = 0; i < SPA_FEATURES; i++) {
7752 char *buf;
7753
7754 if (!spa_feature_table[i].fi_zfs_mod_supported)
7755 continue;
7756
7757 /*
7758 * 75% chance of using the log space map feature. We want ztest
7759 * to exercise both the code paths that use the log space map
7760 * feature and the ones that don't.
7761 */
7762 if (i == SPA_FEATURE_LOG_SPACEMAP && ztest_random(4) == 0)
7763 continue;
7764
7765 VERIFY3S(-1, !=, asprintf(&buf, "feature@%s",
7766 spa_feature_table[i].fi_uname));
7767 fnvlist_add_uint64(props, buf, 0);
7768 free(buf);
7769 }
7770
7771 VERIFY0(spa_create(ztest_opts.zo_pool, nvroot, props, NULL, NULL));
7772 fnvlist_free(nvroot);
7773 fnvlist_free(props);
7774
7775 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7776 zs->zs_metaslab_sz =
7777 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
7778 spa_close(spa, FTAG);
7779
7780 kernel_fini();
7781
7782 if (!ztest_opts.zo_mmp_test) {
7783 ztest_run_zdb(ztest_opts.zo_pool);
7784 ztest_freeze();
7785 ztest_run_zdb(ztest_opts.zo_pool);
7786 }
7787
7788 (void) pthread_rwlock_destroy(&ztest_name_lock);
7789 mutex_destroy(&ztest_vdev_lock);
7790 mutex_destroy(&ztest_checkpoint_lock);
7791 }
7792
7793 static void
7794 setup_data_fd(void)
7795 {
7796 static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX";
7797
7798 ztest_fd_data = mkstemp(ztest_name_data);
7799 ASSERT3S(ztest_fd_data, >=, 0);
7800 (void) unlink(ztest_name_data);
7801 }
7802
7803 static int
7804 shared_data_size(ztest_shared_hdr_t *hdr)
7805 {
7806 int size;
7807
7808 size = hdr->zh_hdr_size;
7809 size += hdr->zh_opts_size;
7810 size += hdr->zh_size;
7811 size += hdr->zh_stats_size * hdr->zh_stats_count;
7812 size += hdr->zh_ds_size * hdr->zh_ds_count;
7813
7814 return (size);
7815 }
7816
7817 static void
7818 setup_hdr(void)
7819 {
7820 int size;
7821 ztest_shared_hdr_t *hdr;
7822
7823 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
7824 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
7825 ASSERT3P(hdr, !=, MAP_FAILED);
7826
7827 VERIFY0(ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t)));
7828
7829 hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t);
7830 hdr->zh_opts_size = sizeof (ztest_shared_opts_t);
7831 hdr->zh_size = sizeof (ztest_shared_t);
7832 hdr->zh_stats_size = sizeof (ztest_shared_callstate_t);
7833 hdr->zh_stats_count = ZTEST_FUNCS;
7834 hdr->zh_ds_size = sizeof (ztest_shared_ds_t);
7835 hdr->zh_ds_count = ztest_opts.zo_datasets;
7836
7837 size = shared_data_size(hdr);
7838 VERIFY0(ftruncate(ztest_fd_data, size));
7839
7840 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
7841 }
7842
7843 static void
7844 setup_data(void)
7845 {
7846 int size, offset;
7847 ztest_shared_hdr_t *hdr;
7848 uint8_t *buf;
7849
7850 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
7851 PROT_READ, MAP_SHARED, ztest_fd_data, 0);
7852 ASSERT3P(hdr, !=, MAP_FAILED);
7853
7854 size = shared_data_size(hdr);
7855
7856 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
7857 hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()),
7858 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
7859 ASSERT3P(hdr, !=, MAP_FAILED);
7860 buf = (uint8_t *)hdr;
7861
7862 offset = hdr->zh_hdr_size;
7863 ztest_shared_opts = (void *)&buf[offset];
7864 offset += hdr->zh_opts_size;
7865 ztest_shared = (void *)&buf[offset];
7866 offset += hdr->zh_size;
7867 ztest_shared_callstate = (void *)&buf[offset];
7868 offset += hdr->zh_stats_size * hdr->zh_stats_count;
7869 ztest_shared_ds = (void *)&buf[offset];
7870 }
7871
7872 static boolean_t
7873 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp)
7874 {
7875 pid_t pid;
7876 int status;
7877 char *cmdbuf = NULL;
7878
7879 pid = fork();
7880
7881 if (cmd == NULL) {
7882 cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
7883 (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN);
7884 cmd = cmdbuf;
7885 }
7886
7887 if (pid == -1)
7888 fatal(B_TRUE, "fork failed");
7889
7890 if (pid == 0) { /* child */
7891 char *emptyargv[2] = { cmd, NULL };
7892 char fd_data_str[12];
7893
7894 struct rlimit rl = { 1024, 1024 };
7895 (void) setrlimit(RLIMIT_NOFILE, &rl);
7896
7897 (void) close(ztest_fd_rand);
7898 VERIFY3S(11, >=,
7899 snprintf(fd_data_str, 12, "%d", ztest_fd_data));
7900 VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1));
7901
7902 (void) enable_extended_FILE_stdio(-1, -1);
7903 if (libpath != NULL)
7904 VERIFY0(setenv("LD_LIBRARY_PATH", libpath, 1));
7905 (void) execv(cmd, emptyargv);
7906 ztest_dump_core = B_FALSE;
7907 fatal(B_TRUE, "exec failed: %s", cmd);
7908 }
7909
7910 if (cmdbuf != NULL) {
7911 umem_free(cmdbuf, MAXPATHLEN);
7912 cmd = NULL;
7913 }
7914
7915 while (waitpid(pid, &status, 0) != pid)
7916 continue;
7917 if (statusp != NULL)
7918 *statusp = status;
7919
7920 if (WIFEXITED(status)) {
7921 if (WEXITSTATUS(status) != 0) {
7922 (void) fprintf(stderr, "child exited with code %d\n",
7923 WEXITSTATUS(status));
7924 exit(2);
7925 }
7926 return (B_FALSE);
7927 } else if (WIFSIGNALED(status)) {
7928 if (!ignorekill || WTERMSIG(status) != SIGKILL) {
7929 (void) fprintf(stderr, "child died with signal %d\n",
7930 WTERMSIG(status));
7931 exit(3);
7932 }
7933 return (B_TRUE);
7934 } else {
7935 (void) fprintf(stderr, "something strange happened to child\n");
7936 exit(4);
7937 }
7938 }
7939
7940 static void
7941 ztest_run_init(void)
7942 {
7943 int i;
7944
7945 ztest_shared_t *zs = ztest_shared;
7946
7947 /*
7948 * Blow away any existing copy of zpool.cache
7949 */
7950 (void) remove(spa_config_path);
7951
7952 if (ztest_opts.zo_init == 0) {
7953 if (ztest_opts.zo_verbose >= 1)
7954 (void) printf("Importing pool %s\n",
7955 ztest_opts.zo_pool);
7956 ztest_import(zs);
7957 return;
7958 }
7959
7960 /*
7961 * Create and initialize our storage pool.
7962 */
7963 for (i = 1; i <= ztest_opts.zo_init; i++) {
7964 memset(zs, 0, sizeof (*zs));
7965 if (ztest_opts.zo_verbose >= 3 &&
7966 ztest_opts.zo_init != 1) {
7967 (void) printf("ztest_init(), pass %d\n", i);
7968 }
7969 ztest_init(zs);
7970 }
7971 }
7972
7973 int
7974 main(int argc, char **argv)
7975 {
7976 int kills = 0;
7977 int iters = 0;
7978 int older = 0;
7979 int newer = 0;
7980 ztest_shared_t *zs;
7981 ztest_info_t *zi;
7982 ztest_shared_callstate_t *zc;
7983 char timebuf[100];
7984 char numbuf[NN_NUMBUF_SZ];
7985 char *cmd;
7986 boolean_t hasalt;
7987 int f, err;
7988 char *fd_data_str = getenv("ZTEST_FD_DATA");
7989 struct sigaction action;
7990
7991 (void) setvbuf(stdout, NULL, _IOLBF, 0);
7992
7993 dprintf_setup(&argc, argv);
7994 zfs_deadman_synctime_ms = 300000;
7995 zfs_deadman_checktime_ms = 30000;
7996 /*
7997 * As two-word space map entries may not come up often (especially
7998 * if pool and vdev sizes are small) we want to force at least some
7999 * of them so the feature get tested.
8000 */
8001 zfs_force_some_double_word_sm_entries = B_TRUE;
8002
8003 /*
8004 * Verify that even extensively damaged split blocks with many
8005 * segments can be reconstructed in a reasonable amount of time
8006 * when reconstruction is known to be possible.
8007 *
8008 * Note: the lower this value is, the more damage we inflict, and
8009 * the more time ztest spends in recovering that damage. We chose
8010 * to induce damage 1/100th of the time so recovery is tested but
8011 * not so frequently that ztest doesn't get to test other code paths.
8012 */
8013 zfs_reconstruct_indirect_damage_fraction = 100;
8014
8015 action.sa_handler = sig_handler;
8016 sigemptyset(&action.sa_mask);
8017 action.sa_flags = 0;
8018
8019 if (sigaction(SIGSEGV, &action, NULL) < 0) {
8020 (void) fprintf(stderr, "ztest: cannot catch SIGSEGV: %s.\n",
8021 strerror(errno));
8022 exit(EXIT_FAILURE);
8023 }
8024
8025 if (sigaction(SIGABRT, &action, NULL) < 0) {
8026 (void) fprintf(stderr, "ztest: cannot catch SIGABRT: %s.\n",
8027 strerror(errno));
8028 exit(EXIT_FAILURE);
8029 }
8030
8031 /*
8032 * Force random_get_bytes() to use /dev/urandom in order to prevent
8033 * ztest from needlessly depleting the system entropy pool.
8034 */
8035 random_path = "/dev/urandom";
8036 ztest_fd_rand = open(random_path, O_RDONLY);
8037 ASSERT3S(ztest_fd_rand, >=, 0);
8038
8039 if (!fd_data_str) {
8040 process_options(argc, argv);
8041
8042 setup_data_fd();
8043 setup_hdr();
8044 setup_data();
8045 memcpy(ztest_shared_opts, &ztest_opts,
8046 sizeof (*ztest_shared_opts));
8047 } else {
8048 ztest_fd_data = atoi(fd_data_str);
8049 setup_data();
8050 memcpy(&ztest_opts, ztest_shared_opts, sizeof (ztest_opts));
8051 }
8052 ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count);
8053
8054 err = ztest_set_global_vars();
8055 if (err != 0 && !fd_data_str) {
8056 /* error message done by ztest_set_global_vars */
8057 exit(EXIT_FAILURE);
8058 } else {
8059 /* children should not be spawned if setting gvars fails */
8060 VERIFY3S(err, ==, 0);
8061 }
8062
8063 /* Override location of zpool.cache */
8064 VERIFY3S(asprintf((char **)&spa_config_path, "%s/zpool.cache",
8065 ztest_opts.zo_dir), !=, -1);
8066
8067 ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t),
8068 UMEM_NOFAIL);
8069 zs = ztest_shared;
8070
8071 if (fd_data_str) {
8072 metaslab_force_ganging = ztest_opts.zo_metaslab_force_ganging;
8073 metaslab_df_alloc_threshold =
8074 zs->zs_metaslab_df_alloc_threshold;
8075
8076 if (zs->zs_do_init)
8077 ztest_run_init();
8078 else
8079 ztest_run(zs);
8080 exit(0);
8081 }
8082
8083 hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0);
8084
8085 if (ztest_opts.zo_verbose >= 1) {
8086 (void) printf("%"PRIu64" vdevs, %d datasets, %d threads,"
8087 "%d %s disks, %"PRIu64" seconds...\n\n",
8088 ztest_opts.zo_vdevs,
8089 ztest_opts.zo_datasets,
8090 ztest_opts.zo_threads,
8091 ztest_opts.zo_raid_children,
8092 ztest_opts.zo_raid_type,
8093 ztest_opts.zo_time);
8094 }
8095
8096 cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
8097 (void) strlcpy(cmd, getexecname(), MAXNAMELEN);
8098
8099 zs->zs_do_init = B_TRUE;
8100 if (strlen(ztest_opts.zo_alt_ztest) != 0) {
8101 if (ztest_opts.zo_verbose >= 1) {
8102 (void) printf("Executing older ztest for "
8103 "initialization: %s\n", ztest_opts.zo_alt_ztest);
8104 }
8105 VERIFY(!exec_child(ztest_opts.zo_alt_ztest,
8106 ztest_opts.zo_alt_libpath, B_FALSE, NULL));
8107 } else {
8108 VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL));
8109 }
8110 zs->zs_do_init = B_FALSE;
8111
8112 zs->zs_proc_start = gethrtime();
8113 zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC;
8114
8115 for (f = 0; f < ZTEST_FUNCS; f++) {
8116 zi = &ztest_info[f];
8117 zc = ZTEST_GET_SHARED_CALLSTATE(f);
8118 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
8119 zc->zc_next = UINT64_MAX;
8120 else
8121 zc->zc_next = zs->zs_proc_start +
8122 ztest_random(2 * zi->zi_interval[0] + 1);
8123 }
8124
8125 /*
8126 * Run the tests in a loop. These tests include fault injection
8127 * to verify that self-healing data works, and forced crashes
8128 * to verify that we never lose on-disk consistency.
8129 */
8130 while (gethrtime() < zs->zs_proc_stop) {
8131 int status;
8132 boolean_t killed;
8133
8134 /*
8135 * Initialize the workload counters for each function.
8136 */
8137 for (f = 0; f < ZTEST_FUNCS; f++) {
8138 zc = ZTEST_GET_SHARED_CALLSTATE(f);
8139 zc->zc_count = 0;
8140 zc->zc_time = 0;
8141 }
8142
8143 /* Set the allocation switch size */
8144 zs->zs_metaslab_df_alloc_threshold =
8145 ztest_random(zs->zs_metaslab_sz / 4) + 1;
8146
8147 if (!hasalt || ztest_random(2) == 0) {
8148 if (hasalt && ztest_opts.zo_verbose >= 1) {
8149 (void) printf("Executing newer ztest: %s\n",
8150 cmd);
8151 }
8152 newer++;
8153 killed = exec_child(cmd, NULL, B_TRUE, &status);
8154 } else {
8155 if (hasalt && ztest_opts.zo_verbose >= 1) {
8156 (void) printf("Executing older ztest: %s\n",
8157 ztest_opts.zo_alt_ztest);
8158 }
8159 older++;
8160 killed = exec_child(ztest_opts.zo_alt_ztest,
8161 ztest_opts.zo_alt_libpath, B_TRUE, &status);
8162 }
8163
8164 if (killed)
8165 kills++;
8166 iters++;
8167
8168 if (ztest_opts.zo_verbose >= 1) {
8169 hrtime_t now = gethrtime();
8170
8171 now = MIN(now, zs->zs_proc_stop);
8172 print_time(zs->zs_proc_stop - now, timebuf);
8173 nicenum(zs->zs_space, numbuf, sizeof (numbuf));
8174
8175 (void) printf("Pass %3d, %8s, %3"PRIu64" ENOSPC, "
8176 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
8177 iters,
8178 WIFEXITED(status) ? "Complete" : "SIGKILL",
8179 zs->zs_enospc_count,
8180 100.0 * zs->zs_alloc / zs->zs_space,
8181 numbuf,
8182 100.0 * (now - zs->zs_proc_start) /
8183 (ztest_opts.zo_time * NANOSEC), timebuf);
8184 }
8185
8186 if (ztest_opts.zo_verbose >= 2) {
8187 (void) printf("\nWorkload summary:\n\n");
8188 (void) printf("%7s %9s %s\n",
8189 "Calls", "Time", "Function");
8190 (void) printf("%7s %9s %s\n",
8191 "-----", "----", "--------");
8192 for (f = 0; f < ZTEST_FUNCS; f++) {
8193 zi = &ztest_info[f];
8194 zc = ZTEST_GET_SHARED_CALLSTATE(f);
8195 print_time(zc->zc_time, timebuf);
8196 (void) printf("%7"PRIu64" %9s %s\n",
8197 zc->zc_count, timebuf,
8198 zi->zi_funcname);
8199 }
8200 (void) printf("\n");
8201 }
8202
8203 if (!ztest_opts.zo_mmp_test)
8204 ztest_run_zdb(ztest_opts.zo_pool);
8205 }
8206
8207 if (ztest_opts.zo_verbose >= 1) {
8208 if (hasalt) {
8209 (void) printf("%d runs of older ztest: %s\n", older,
8210 ztest_opts.zo_alt_ztest);
8211 (void) printf("%d runs of newer ztest: %s\n", newer,
8212 cmd);
8213 }
8214 (void) printf("%d killed, %d completed, %.0f%% kill rate\n",
8215 kills, iters - kills, (100.0 * kills) / MAX(1, iters));
8216 }
8217
8218 umem_free(cmd, MAXNAMELEN);
8219
8220 return (0);
8221 }