]> git.proxmox.com Git - mirror_zfs.git/blob - cmd/ztest/ztest.c
Fix ztest_verify_dnode_bt() test case
[mirror_zfs.git] / cmd / ztest / ztest.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2013 Steven Hartland. All rights reserved.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2017 Joyent, Inc.
28 */
29
30 /*
31 * The objective of this program is to provide a DMU/ZAP/SPA stress test
32 * that runs entirely in userland, is easy to use, and easy to extend.
33 *
34 * The overall design of the ztest program is as follows:
35 *
36 * (1) For each major functional area (e.g. adding vdevs to a pool,
37 * creating and destroying datasets, reading and writing objects, etc)
38 * we have a simple routine to test that functionality. These
39 * individual routines do not have to do anything "stressful".
40 *
41 * (2) We turn these simple functionality tests into a stress test by
42 * running them all in parallel, with as many threads as desired,
43 * and spread across as many datasets, objects, and vdevs as desired.
44 *
45 * (3) While all this is happening, we inject faults into the pool to
46 * verify that self-healing data really works.
47 *
48 * (4) Every time we open a dataset, we change its checksum and compression
49 * functions. Thus even individual objects vary from block to block
50 * in which checksum they use and whether they're compressed.
51 *
52 * (5) To verify that we never lose on-disk consistency after a crash,
53 * we run the entire test in a child of the main process.
54 * At random times, the child self-immolates with a SIGKILL.
55 * This is the software equivalent of pulling the power cord.
56 * The parent then runs the test again, using the existing
57 * storage pool, as many times as desired. If backwards compatibility
58 * testing is enabled ztest will sometimes run the "older" version
59 * of ztest after a SIGKILL.
60 *
61 * (6) To verify that we don't have future leaks or temporal incursions,
62 * many of the functional tests record the transaction group number
63 * as part of their data. When reading old data, they verify that
64 * the transaction group number is less than the current, open txg.
65 * If you add a new test, please do this if applicable.
66 *
67 * (7) Threads are created with a reduced stack size, for sanity checking.
68 * Therefore, it's important not to allocate huge buffers on the stack.
69 *
70 * When run with no arguments, ztest runs for about five minutes and
71 * produces no output if successful. To get a little bit of information,
72 * specify -V. To get more information, specify -VV, and so on.
73 *
74 * To turn this into an overnight stress test, use -T to specify run time.
75 *
76 * You can ask more more vdevs [-v], datasets [-d], or threads [-t]
77 * to increase the pool capacity, fanout, and overall stress level.
78 *
79 * Use the -k option to set the desired frequency of kills.
80 *
81 * When ztest invokes itself it passes all relevant information through a
82 * temporary file which is mmap-ed in the child process. This allows shared
83 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
84 * stored at offset 0 of this file and contains information on the size and
85 * number of shared structures in the file. The information stored in this file
86 * must remain backwards compatible with older versions of ztest so that
87 * ztest can invoke them during backwards compatibility testing (-B).
88 */
89
90 #include <sys/zfs_context.h>
91 #include <sys/spa.h>
92 #include <sys/dmu.h>
93 #include <sys/txg.h>
94 #include <sys/dbuf.h>
95 #include <sys/zap.h>
96 #include <sys/dmu_objset.h>
97 #include <sys/poll.h>
98 #include <sys/stat.h>
99 #include <sys/time.h>
100 #include <sys/wait.h>
101 #include <sys/mman.h>
102 #include <sys/resource.h>
103 #include <sys/zio.h>
104 #include <sys/zil.h>
105 #include <sys/zil_impl.h>
106 #include <sys/zfs_rlock.h>
107 #include <sys/vdev_impl.h>
108 #include <sys/vdev_file.h>
109 #include <sys/spa_impl.h>
110 #include <sys/metaslab_impl.h>
111 #include <sys/dsl_prop.h>
112 #include <sys/dsl_dataset.h>
113 #include <sys/dsl_destroy.h>
114 #include <sys/dsl_scan.h>
115 #include <sys/zio_checksum.h>
116 #include <sys/refcount.h>
117 #include <sys/zfeature.h>
118 #include <sys/dsl_userhold.h>
119 #include <sys/abd.h>
120 #include <stdio.h>
121 #include <stdio_ext.h>
122 #include <stdlib.h>
123 #include <unistd.h>
124 #include <signal.h>
125 #include <umem.h>
126 #include <ctype.h>
127 #include <math.h>
128 #include <sys/fs/zfs.h>
129 #include <zfs_fletcher.h>
130 #include <libnvpair.h>
131 #include <libzfs.h>
132 #ifdef __GLIBC__
133 #include <execinfo.h> /* for backtrace() */
134 #endif
135
136 static int ztest_fd_data = -1;
137 static int ztest_fd_rand = -1;
138
139 typedef struct ztest_shared_hdr {
140 uint64_t zh_hdr_size;
141 uint64_t zh_opts_size;
142 uint64_t zh_size;
143 uint64_t zh_stats_size;
144 uint64_t zh_stats_count;
145 uint64_t zh_ds_size;
146 uint64_t zh_ds_count;
147 } ztest_shared_hdr_t;
148
149 static ztest_shared_hdr_t *ztest_shared_hdr;
150
151 typedef struct ztest_shared_opts {
152 char zo_pool[ZFS_MAX_DATASET_NAME_LEN];
153 char zo_dir[ZFS_MAX_DATASET_NAME_LEN];
154 char zo_alt_ztest[MAXNAMELEN];
155 char zo_alt_libpath[MAXNAMELEN];
156 uint64_t zo_vdevs;
157 uint64_t zo_vdevtime;
158 size_t zo_vdev_size;
159 int zo_ashift;
160 int zo_mirrors;
161 int zo_raidz;
162 int zo_raidz_parity;
163 int zo_datasets;
164 int zo_threads;
165 uint64_t zo_passtime;
166 uint64_t zo_killrate;
167 int zo_verbose;
168 int zo_init;
169 uint64_t zo_time;
170 uint64_t zo_maxloops;
171 uint64_t zo_metaslab_gang_bang;
172 int zo_mmp_test;
173 } ztest_shared_opts_t;
174
175 static const ztest_shared_opts_t ztest_opts_defaults = {
176 .zo_pool = { 'z', 't', 'e', 's', 't', '\0' },
177 .zo_dir = { '/', 't', 'm', 'p', '\0' },
178 .zo_alt_ztest = { '\0' },
179 .zo_alt_libpath = { '\0' },
180 .zo_vdevs = 5,
181 .zo_ashift = SPA_MINBLOCKSHIFT,
182 .zo_mirrors = 2,
183 .zo_raidz = 4,
184 .zo_raidz_parity = 1,
185 .zo_vdev_size = SPA_MINDEVSIZE * 4, /* 256m default size */
186 .zo_datasets = 7,
187 .zo_threads = 23,
188 .zo_passtime = 60, /* 60 seconds */
189 .zo_killrate = 70, /* 70% kill rate */
190 .zo_verbose = 0,
191 .zo_mmp_test = 0,
192 .zo_init = 1,
193 .zo_time = 300, /* 5 minutes */
194 .zo_maxloops = 50, /* max loops during spa_freeze() */
195 .zo_metaslab_gang_bang = 32 << 10
196 };
197
198 extern uint64_t metaslab_gang_bang;
199 extern uint64_t metaslab_df_alloc_threshold;
200 extern int metaslab_preload_limit;
201 extern boolean_t zfs_compressed_arc_enabled;
202 extern int zfs_abd_scatter_enabled;
203
204 static ztest_shared_opts_t *ztest_shared_opts;
205 static ztest_shared_opts_t ztest_opts;
206 static char *ztest_wkeydata = "abcdefghijklmnopqrstuvwxyz012345";
207
208 typedef struct ztest_shared_ds {
209 uint64_t zd_seq;
210 } ztest_shared_ds_t;
211
212 static ztest_shared_ds_t *ztest_shared_ds;
213 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
214
215 #define BT_MAGIC 0x123456789abcdefULL
216 #define MAXFAULTS() \
217 (MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1)
218
219 enum ztest_io_type {
220 ZTEST_IO_WRITE_TAG,
221 ZTEST_IO_WRITE_PATTERN,
222 ZTEST_IO_WRITE_ZEROES,
223 ZTEST_IO_TRUNCATE,
224 ZTEST_IO_SETATTR,
225 ZTEST_IO_REWRITE,
226 ZTEST_IO_TYPES
227 };
228
229 typedef struct ztest_block_tag {
230 uint64_t bt_magic;
231 uint64_t bt_objset;
232 uint64_t bt_object;
233 uint64_t bt_dnodesize;
234 uint64_t bt_offset;
235 uint64_t bt_gen;
236 uint64_t bt_txg;
237 uint64_t bt_crtxg;
238 } ztest_block_tag_t;
239
240 typedef struct bufwad {
241 uint64_t bw_index;
242 uint64_t bw_txg;
243 uint64_t bw_data;
244 } bufwad_t;
245
246 typedef struct rll {
247 void *rll_writer;
248 int rll_readers;
249 kmutex_t rll_lock;
250 kcondvar_t rll_cv;
251 } rll_t;
252
253 typedef struct zll {
254 list_t z_list;
255 kmutex_t z_lock;
256 } zll_t;
257
258 #define ZTEST_RANGE_LOCKS 64
259 #define ZTEST_OBJECT_LOCKS 64
260
261 /*
262 * Object descriptor. Used as a template for object lookup/create/remove.
263 */
264 typedef struct ztest_od {
265 uint64_t od_dir;
266 uint64_t od_object;
267 dmu_object_type_t od_type;
268 dmu_object_type_t od_crtype;
269 uint64_t od_blocksize;
270 uint64_t od_crblocksize;
271 uint64_t od_crdnodesize;
272 uint64_t od_gen;
273 uint64_t od_crgen;
274 char od_name[ZFS_MAX_DATASET_NAME_LEN];
275 } ztest_od_t;
276
277 /*
278 * Per-dataset state.
279 */
280 typedef struct ztest_ds {
281 ztest_shared_ds_t *zd_shared;
282 objset_t *zd_os;
283 rwlock_t zd_zilog_lock;
284 zilog_t *zd_zilog;
285 ztest_od_t *zd_od; /* debugging aid */
286 char zd_name[ZFS_MAX_DATASET_NAME_LEN];
287 kmutex_t zd_dirobj_lock;
288 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS];
289 zll_t zd_range_lock[ZTEST_RANGE_LOCKS];
290 } ztest_ds_t;
291
292 /*
293 * Per-iteration state.
294 */
295 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
296
297 typedef struct ztest_info {
298 ztest_func_t *zi_func; /* test function */
299 uint64_t zi_iters; /* iterations per execution */
300 uint64_t *zi_interval; /* execute every <interval> seconds */
301 const char *zi_funcname; /* name of test function */
302 } ztest_info_t;
303
304 typedef struct ztest_shared_callstate {
305 uint64_t zc_count; /* per-pass count */
306 uint64_t zc_time; /* per-pass time */
307 uint64_t zc_next; /* next time to call this function */
308 } ztest_shared_callstate_t;
309
310 static ztest_shared_callstate_t *ztest_shared_callstate;
311 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
312
313 ztest_func_t ztest_dmu_read_write;
314 ztest_func_t ztest_dmu_write_parallel;
315 ztest_func_t ztest_dmu_object_alloc_free;
316 ztest_func_t ztest_dmu_commit_callbacks;
317 ztest_func_t ztest_zap;
318 ztest_func_t ztest_zap_parallel;
319 ztest_func_t ztest_zil_commit;
320 ztest_func_t ztest_zil_remount;
321 ztest_func_t ztest_dmu_read_write_zcopy;
322 ztest_func_t ztest_dmu_objset_create_destroy;
323 ztest_func_t ztest_dmu_prealloc;
324 ztest_func_t ztest_fzap;
325 ztest_func_t ztest_dmu_snapshot_create_destroy;
326 ztest_func_t ztest_dsl_prop_get_set;
327 ztest_func_t ztest_spa_prop_get_set;
328 ztest_func_t ztest_spa_create_destroy;
329 ztest_func_t ztest_fault_inject;
330 ztest_func_t ztest_ddt_repair;
331 ztest_func_t ztest_dmu_snapshot_hold;
332 ztest_func_t ztest_mmp_enable_disable;
333 ztest_func_t ztest_spa_rename;
334 ztest_func_t ztest_scrub;
335 ztest_func_t ztest_dsl_dataset_promote_busy;
336 ztest_func_t ztest_vdev_attach_detach;
337 ztest_func_t ztest_vdev_LUN_growth;
338 ztest_func_t ztest_vdev_add_remove;
339 ztest_func_t ztest_vdev_aux_add_remove;
340 ztest_func_t ztest_split_pool;
341 ztest_func_t ztest_reguid;
342 ztest_func_t ztest_spa_upgrade;
343 ztest_func_t ztest_fletcher;
344 ztest_func_t ztest_fletcher_incr;
345 ztest_func_t ztest_verify_dnode_bt;
346
347 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */
348 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */
349 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */
350 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */
351 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */
352
353 #define ZTI_INIT(func, iters, interval) \
354 { .zi_func = (func), \
355 .zi_iters = (iters), \
356 .zi_interval = (interval), \
357 .zi_funcname = # func }
358
359 ztest_info_t ztest_info[] = {
360 ZTI_INIT(ztest_dmu_read_write, 1, &zopt_always),
361 ZTI_INIT(ztest_dmu_write_parallel, 10, &zopt_always),
362 ZTI_INIT(ztest_dmu_object_alloc_free, 1, &zopt_always),
363 ZTI_INIT(ztest_dmu_commit_callbacks, 1, &zopt_always),
364 ZTI_INIT(ztest_zap, 30, &zopt_always),
365 ZTI_INIT(ztest_zap_parallel, 100, &zopt_always),
366 ZTI_INIT(ztest_split_pool, 1, &zopt_always),
367 ZTI_INIT(ztest_zil_commit, 1, &zopt_incessant),
368 ZTI_INIT(ztest_zil_remount, 1, &zopt_sometimes),
369 ZTI_INIT(ztest_dmu_read_write_zcopy, 1, &zopt_often),
370 ZTI_INIT(ztest_dmu_objset_create_destroy, 1, &zopt_often),
371 ZTI_INIT(ztest_dsl_prop_get_set, 1, &zopt_often),
372 ZTI_INIT(ztest_spa_prop_get_set, 1, &zopt_sometimes),
373 #if 0
374 ZTI_INIT(ztest_dmu_prealloc, 1, &zopt_sometimes),
375 #endif
376 ZTI_INIT(ztest_fzap, 1, &zopt_sometimes),
377 ZTI_INIT(ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes),
378 ZTI_INIT(ztest_spa_create_destroy, 1, &zopt_sometimes),
379 ZTI_INIT(ztest_fault_inject, 1, &zopt_sometimes),
380 ZTI_INIT(ztest_ddt_repair, 1, &zopt_sometimes),
381 ZTI_INIT(ztest_dmu_snapshot_hold, 1, &zopt_sometimes),
382 ZTI_INIT(ztest_mmp_enable_disable, 1, &zopt_sometimes),
383 ZTI_INIT(ztest_reguid, 1, &zopt_rarely),
384 ZTI_INIT(ztest_spa_rename, 1, &zopt_rarely),
385 ZTI_INIT(ztest_scrub, 1, &zopt_rarely),
386 ZTI_INIT(ztest_spa_upgrade, 1, &zopt_rarely),
387 ZTI_INIT(ztest_dsl_dataset_promote_busy, 1, &zopt_rarely),
388 ZTI_INIT(ztest_vdev_attach_detach, 1, &zopt_sometimes),
389 ZTI_INIT(ztest_vdev_LUN_growth, 1, &zopt_rarely),
390 ZTI_INIT(ztest_vdev_add_remove, 1, &ztest_opts.zo_vdevtime),
391 ZTI_INIT(ztest_vdev_aux_add_remove, 1, &ztest_opts.zo_vdevtime),
392 ZTI_INIT(ztest_fletcher, 1, &zopt_rarely),
393 ZTI_INIT(ztest_fletcher_incr, 1, &zopt_rarely),
394 ZTI_INIT(ztest_verify_dnode_bt, 1, &zopt_sometimes),
395 };
396
397 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t))
398
399 /*
400 * The following struct is used to hold a list of uncalled commit callbacks.
401 * The callbacks are ordered by txg number.
402 */
403 typedef struct ztest_cb_list {
404 kmutex_t zcl_callbacks_lock;
405 list_t zcl_callbacks;
406 } ztest_cb_list_t;
407
408 /*
409 * Stuff we need to share writably between parent and child.
410 */
411 typedef struct ztest_shared {
412 boolean_t zs_do_init;
413 hrtime_t zs_proc_start;
414 hrtime_t zs_proc_stop;
415 hrtime_t zs_thread_start;
416 hrtime_t zs_thread_stop;
417 hrtime_t zs_thread_kill;
418 uint64_t zs_enospc_count;
419 uint64_t zs_vdev_next_leaf;
420 uint64_t zs_vdev_aux;
421 uint64_t zs_alloc;
422 uint64_t zs_space;
423 uint64_t zs_splits;
424 uint64_t zs_mirrors;
425 uint64_t zs_metaslab_sz;
426 uint64_t zs_metaslab_df_alloc_threshold;
427 uint64_t zs_guid;
428 } ztest_shared_t;
429
430 #define ID_PARALLEL -1ULL
431
432 static char ztest_dev_template[] = "%s/%s.%llua";
433 static char ztest_aux_template[] = "%s/%s.%s.%llu";
434 ztest_shared_t *ztest_shared;
435
436 static spa_t *ztest_spa = NULL;
437 static ztest_ds_t *ztest_ds;
438
439 static kmutex_t ztest_vdev_lock;
440
441 /*
442 * The ztest_name_lock protects the pool and dataset namespace used by
443 * the individual tests. To modify the namespace, consumers must grab
444 * this lock as writer. Grabbing the lock as reader will ensure that the
445 * namespace does not change while the lock is held.
446 */
447 static rwlock_t ztest_name_lock;
448
449 static boolean_t ztest_dump_core = B_TRUE;
450 static boolean_t ztest_exiting;
451
452 /* Global commit callback list */
453 static ztest_cb_list_t zcl;
454 /* Commit cb delay */
455 static uint64_t zc_min_txg_delay = UINT64_MAX;
456 static int zc_cb_counter = 0;
457
458 /*
459 * Minimum number of commit callbacks that need to be registered for us to check
460 * whether the minimum txg delay is acceptable.
461 */
462 #define ZTEST_COMMIT_CB_MIN_REG 100
463
464 /*
465 * If a number of txgs equal to this threshold have been created after a commit
466 * callback has been registered but not called, then we assume there is an
467 * implementation bug.
468 */
469 #define ZTEST_COMMIT_CB_THRESH (TXG_CONCURRENT_STATES + 1000)
470
471 extern uint64_t metaslab_gang_bang;
472 extern uint64_t metaslab_df_alloc_threshold;
473
474 enum ztest_object {
475 ZTEST_META_DNODE = 0,
476 ZTEST_DIROBJ,
477 ZTEST_OBJECTS
478 };
479
480 static void usage(boolean_t) __NORETURN;
481
482 /*
483 * These libumem hooks provide a reasonable set of defaults for the allocator's
484 * debugging facilities.
485 */
486 const char *
487 _umem_debug_init(void)
488 {
489 return ("default,verbose"); /* $UMEM_DEBUG setting */
490 }
491
492 const char *
493 _umem_logging_init(void)
494 {
495 return ("fail,contents"); /* $UMEM_LOGGING setting */
496 }
497
498 #define BACKTRACE_SZ 100
499
500 static void sig_handler(int signo)
501 {
502 struct sigaction action;
503 #ifdef __GLIBC__ /* backtrace() is a GNU extension */
504 int nptrs;
505 void *buffer[BACKTRACE_SZ];
506
507 nptrs = backtrace(buffer, BACKTRACE_SZ);
508 backtrace_symbols_fd(buffer, nptrs, STDERR_FILENO);
509 #endif
510
511 /*
512 * Restore default action and re-raise signal so SIGSEGV and
513 * SIGABRT can trigger a core dump.
514 */
515 action.sa_handler = SIG_DFL;
516 sigemptyset(&action.sa_mask);
517 action.sa_flags = 0;
518 (void) sigaction(signo, &action, NULL);
519 raise(signo);
520 }
521
522 #define FATAL_MSG_SZ 1024
523
524 char *fatal_msg;
525
526 static void
527 fatal(int do_perror, char *message, ...)
528 {
529 va_list args;
530 int save_errno = errno;
531 char *buf;
532
533 (void) fflush(stdout);
534 buf = umem_alloc(FATAL_MSG_SZ, UMEM_NOFAIL);
535
536 va_start(args, message);
537 (void) sprintf(buf, "ztest: ");
538 /* LINTED */
539 (void) vsprintf(buf + strlen(buf), message, args);
540 va_end(args);
541 if (do_perror) {
542 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
543 ": %s", strerror(save_errno));
544 }
545 (void) fprintf(stderr, "%s\n", buf);
546 fatal_msg = buf; /* to ease debugging */
547 if (ztest_dump_core)
548 abort();
549 exit(3);
550 }
551
552 static int
553 str2shift(const char *buf)
554 {
555 const char *ends = "BKMGTPEZ";
556 int i;
557
558 if (buf[0] == '\0')
559 return (0);
560 for (i = 0; i < strlen(ends); i++) {
561 if (toupper(buf[0]) == ends[i])
562 break;
563 }
564 if (i == strlen(ends)) {
565 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
566 buf);
567 usage(B_FALSE);
568 }
569 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
570 return (10*i);
571 }
572 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
573 usage(B_FALSE);
574 /* NOTREACHED */
575 }
576
577 static uint64_t
578 nicenumtoull(const char *buf)
579 {
580 char *end;
581 uint64_t val;
582
583 val = strtoull(buf, &end, 0);
584 if (end == buf) {
585 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
586 usage(B_FALSE);
587 } else if (end[0] == '.') {
588 double fval = strtod(buf, &end);
589 fval *= pow(2, str2shift(end));
590 if (fval > UINT64_MAX) {
591 (void) fprintf(stderr, "ztest: value too large: %s\n",
592 buf);
593 usage(B_FALSE);
594 }
595 val = (uint64_t)fval;
596 } else {
597 int shift = str2shift(end);
598 if (shift >= 64 || (val << shift) >> shift != val) {
599 (void) fprintf(stderr, "ztest: value too large: %s\n",
600 buf);
601 usage(B_FALSE);
602 }
603 val <<= shift;
604 }
605 return (val);
606 }
607
608 static void
609 usage(boolean_t requested)
610 {
611 const ztest_shared_opts_t *zo = &ztest_opts_defaults;
612
613 char nice_vdev_size[NN_NUMBUF_SZ];
614 char nice_gang_bang[NN_NUMBUF_SZ];
615 FILE *fp = requested ? stdout : stderr;
616
617 nicenum(zo->zo_vdev_size, nice_vdev_size, sizeof (nice_vdev_size));
618 nicenum(zo->zo_metaslab_gang_bang, nice_gang_bang,
619 sizeof (nice_gang_bang));
620
621 (void) fprintf(fp, "Usage: %s\n"
622 "\t[-v vdevs (default: %llu)]\n"
623 "\t[-s size_of_each_vdev (default: %s)]\n"
624 "\t[-a alignment_shift (default: %d)] use 0 for random\n"
625 "\t[-m mirror_copies (default: %d)]\n"
626 "\t[-r raidz_disks (default: %d)]\n"
627 "\t[-R raidz_parity (default: %d)]\n"
628 "\t[-d datasets (default: %d)]\n"
629 "\t[-t threads (default: %d)]\n"
630 "\t[-g gang_block_threshold (default: %s)]\n"
631 "\t[-i init_count (default: %d)] initialize pool i times\n"
632 "\t[-k kill_percentage (default: %llu%%)]\n"
633 "\t[-p pool_name (default: %s)]\n"
634 "\t[-f dir (default: %s)] file directory for vdev files\n"
635 "\t[-M] Multi-host simulate pool imported on remote host\n"
636 "\t[-V] verbose (use multiple times for ever more blather)\n"
637 "\t[-E] use existing pool instead of creating new one\n"
638 "\t[-T time (default: %llu sec)] total run time\n"
639 "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n"
640 "\t[-P passtime (default: %llu sec)] time per pass\n"
641 "\t[-B alt_ztest (default: <none>)] alternate ztest path\n"
642 "\t[-o variable=value] ... set global variable to an unsigned\n"
643 "\t 32-bit integer value\n"
644 "\t[-h] (print help)\n"
645 "",
646 zo->zo_pool,
647 (u_longlong_t)zo->zo_vdevs, /* -v */
648 nice_vdev_size, /* -s */
649 zo->zo_ashift, /* -a */
650 zo->zo_mirrors, /* -m */
651 zo->zo_raidz, /* -r */
652 zo->zo_raidz_parity, /* -R */
653 zo->zo_datasets, /* -d */
654 zo->zo_threads, /* -t */
655 nice_gang_bang, /* -g */
656 zo->zo_init, /* -i */
657 (u_longlong_t)zo->zo_killrate, /* -k */
658 zo->zo_pool, /* -p */
659 zo->zo_dir, /* -f */
660 (u_longlong_t)zo->zo_time, /* -T */
661 (u_longlong_t)zo->zo_maxloops, /* -F */
662 (u_longlong_t)zo->zo_passtime);
663 exit(requested ? 0 : 1);
664 }
665
666 static void
667 process_options(int argc, char **argv)
668 {
669 char *path;
670 ztest_shared_opts_t *zo = &ztest_opts;
671
672 int opt;
673 uint64_t value;
674 char altdir[MAXNAMELEN] = { 0 };
675
676 bcopy(&ztest_opts_defaults, zo, sizeof (*zo));
677
678 while ((opt = getopt(argc, argv,
679 "v:s:a:m:r:R:d:t:g:i:k:p:f:MVET:P:hF:B:o:")) != EOF) {
680 value = 0;
681 switch (opt) {
682 case 'v':
683 case 's':
684 case 'a':
685 case 'm':
686 case 'r':
687 case 'R':
688 case 'd':
689 case 't':
690 case 'g':
691 case 'i':
692 case 'k':
693 case 'T':
694 case 'P':
695 case 'F':
696 value = nicenumtoull(optarg);
697 }
698 switch (opt) {
699 case 'v':
700 zo->zo_vdevs = value;
701 break;
702 case 's':
703 zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value);
704 break;
705 case 'a':
706 zo->zo_ashift = value;
707 break;
708 case 'm':
709 zo->zo_mirrors = value;
710 break;
711 case 'r':
712 zo->zo_raidz = MAX(1, value);
713 break;
714 case 'R':
715 zo->zo_raidz_parity = MIN(MAX(value, 1), 3);
716 break;
717 case 'd':
718 zo->zo_datasets = MAX(1, value);
719 break;
720 case 't':
721 zo->zo_threads = MAX(1, value);
722 break;
723 case 'g':
724 zo->zo_metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1,
725 value);
726 break;
727 case 'i':
728 zo->zo_init = value;
729 break;
730 case 'k':
731 zo->zo_killrate = value;
732 break;
733 case 'p':
734 (void) strlcpy(zo->zo_pool, optarg,
735 sizeof (zo->zo_pool));
736 break;
737 case 'f':
738 path = realpath(optarg, NULL);
739 if (path == NULL) {
740 (void) fprintf(stderr, "error: %s: %s\n",
741 optarg, strerror(errno));
742 usage(B_FALSE);
743 } else {
744 (void) strlcpy(zo->zo_dir, path,
745 sizeof (zo->zo_dir));
746 free(path);
747 }
748 break;
749 case 'M':
750 zo->zo_mmp_test = 1;
751 break;
752 case 'V':
753 zo->zo_verbose++;
754 break;
755 case 'E':
756 zo->zo_init = 0;
757 break;
758 case 'T':
759 zo->zo_time = value;
760 break;
761 case 'P':
762 zo->zo_passtime = MAX(1, value);
763 break;
764 case 'F':
765 zo->zo_maxloops = MAX(1, value);
766 break;
767 case 'B':
768 (void) strlcpy(altdir, optarg, sizeof (altdir));
769 break;
770 case 'o':
771 if (set_global_var(optarg) != 0)
772 usage(B_FALSE);
773 break;
774 case 'h':
775 usage(B_TRUE);
776 break;
777 case '?':
778 default:
779 usage(B_FALSE);
780 break;
781 }
782 }
783
784 zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1);
785
786 zo->zo_vdevtime =
787 (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs :
788 UINT64_MAX >> 2);
789
790 if (strlen(altdir) > 0) {
791 char *cmd;
792 char *realaltdir;
793 char *bin;
794 char *ztest;
795 char *isa;
796 int isalen;
797
798 cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
799 realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
800
801 VERIFY(NULL != realpath(getexecname(), cmd));
802 if (0 != access(altdir, F_OK)) {
803 ztest_dump_core = B_FALSE;
804 fatal(B_TRUE, "invalid alternate ztest path: %s",
805 altdir);
806 }
807 VERIFY(NULL != realpath(altdir, realaltdir));
808
809 /*
810 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest".
811 * We want to extract <isa> to determine if we should use
812 * 32 or 64 bit binaries.
813 */
814 bin = strstr(cmd, "/usr/bin/");
815 ztest = strstr(bin, "/ztest");
816 isa = bin + 9;
817 isalen = ztest - isa;
818 (void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest),
819 "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa);
820 (void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath),
821 "%s/usr/lib/%.*s", realaltdir, isalen, isa);
822
823 if (0 != access(zo->zo_alt_ztest, X_OK)) {
824 ztest_dump_core = B_FALSE;
825 fatal(B_TRUE, "invalid alternate ztest: %s",
826 zo->zo_alt_ztest);
827 } else if (0 != access(zo->zo_alt_libpath, X_OK)) {
828 ztest_dump_core = B_FALSE;
829 fatal(B_TRUE, "invalid alternate lib directory %s",
830 zo->zo_alt_libpath);
831 }
832
833 umem_free(cmd, MAXPATHLEN);
834 umem_free(realaltdir, MAXPATHLEN);
835 }
836 }
837
838 static void
839 ztest_kill(ztest_shared_t *zs)
840 {
841 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa));
842 zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa));
843
844 /*
845 * Before we kill off ztest, make sure that the config is updated.
846 * See comment above spa_config_sync().
847 */
848 mutex_enter(&spa_namespace_lock);
849 spa_config_sync(ztest_spa, B_FALSE, B_FALSE);
850 mutex_exit(&spa_namespace_lock);
851
852 (void) kill(getpid(), SIGKILL);
853 }
854
855 static uint64_t
856 ztest_random(uint64_t range)
857 {
858 uint64_t r;
859
860 ASSERT3S(ztest_fd_rand, >=, 0);
861
862 if (range == 0)
863 return (0);
864
865 if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r))
866 fatal(1, "short read from /dev/urandom");
867
868 return (r % range);
869 }
870
871 /* ARGSUSED */
872 static void
873 ztest_record_enospc(const char *s)
874 {
875 ztest_shared->zs_enospc_count++;
876 }
877
878 static uint64_t
879 ztest_get_ashift(void)
880 {
881 if (ztest_opts.zo_ashift == 0)
882 return (SPA_MINBLOCKSHIFT + ztest_random(5));
883 return (ztest_opts.zo_ashift);
884 }
885
886 static nvlist_t *
887 make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift)
888 {
889 char *pathbuf;
890 uint64_t vdev;
891 nvlist_t *file;
892
893 pathbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
894
895 if (ashift == 0)
896 ashift = ztest_get_ashift();
897
898 if (path == NULL) {
899 path = pathbuf;
900
901 if (aux != NULL) {
902 vdev = ztest_shared->zs_vdev_aux;
903 (void) snprintf(path, MAXPATHLEN,
904 ztest_aux_template, ztest_opts.zo_dir,
905 pool == NULL ? ztest_opts.zo_pool : pool,
906 aux, vdev);
907 } else {
908 vdev = ztest_shared->zs_vdev_next_leaf++;
909 (void) snprintf(path, MAXPATHLEN,
910 ztest_dev_template, ztest_opts.zo_dir,
911 pool == NULL ? ztest_opts.zo_pool : pool, vdev);
912 }
913 }
914
915 if (size != 0) {
916 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
917 if (fd == -1)
918 fatal(1, "can't open %s", path);
919 if (ftruncate(fd, size) != 0)
920 fatal(1, "can't ftruncate %s", path);
921 (void) close(fd);
922 }
923
924 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0);
925 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0);
926 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0);
927 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0);
928 umem_free(pathbuf, MAXPATHLEN);
929
930 return (file);
931 }
932
933 static nvlist_t *
934 make_vdev_raidz(char *path, char *aux, char *pool, size_t size,
935 uint64_t ashift, int r)
936 {
937 nvlist_t *raidz, **child;
938 int c;
939
940 if (r < 2)
941 return (make_vdev_file(path, aux, pool, size, ashift));
942 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
943
944 for (c = 0; c < r; c++)
945 child[c] = make_vdev_file(path, aux, pool, size, ashift);
946
947 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0);
948 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE,
949 VDEV_TYPE_RAIDZ) == 0);
950 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY,
951 ztest_opts.zo_raidz_parity) == 0);
952 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN,
953 child, r) == 0);
954
955 for (c = 0; c < r; c++)
956 nvlist_free(child[c]);
957
958 umem_free(child, r * sizeof (nvlist_t *));
959
960 return (raidz);
961 }
962
963 static nvlist_t *
964 make_vdev_mirror(char *path, char *aux, char *pool, size_t size,
965 uint64_t ashift, int r, int m)
966 {
967 nvlist_t *mirror, **child;
968 int c;
969
970 if (m < 1)
971 return (make_vdev_raidz(path, aux, pool, size, ashift, r));
972
973 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
974
975 for (c = 0; c < m; c++)
976 child[c] = make_vdev_raidz(path, aux, pool, size, ashift, r);
977
978 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0);
979 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE,
980 VDEV_TYPE_MIRROR) == 0);
981 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
982 child, m) == 0);
983
984 for (c = 0; c < m; c++)
985 nvlist_free(child[c]);
986
987 umem_free(child, m * sizeof (nvlist_t *));
988
989 return (mirror);
990 }
991
992 static nvlist_t *
993 make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift,
994 int log, int r, int m, int t)
995 {
996 nvlist_t *root, **child;
997 int c;
998
999 ASSERT(t > 0);
1000
1001 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
1002
1003 for (c = 0; c < t; c++) {
1004 child[c] = make_vdev_mirror(path, aux, pool, size, ashift,
1005 r, m);
1006 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG,
1007 log) == 0);
1008 }
1009
1010 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0);
1011 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0);
1012 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
1013 child, t) == 0);
1014
1015 for (c = 0; c < t; c++)
1016 nvlist_free(child[c]);
1017
1018 umem_free(child, t * sizeof (nvlist_t *));
1019
1020 return (root);
1021 }
1022
1023 /*
1024 * Find a random spa version. Returns back a random spa version in the
1025 * range [initial_version, SPA_VERSION_FEATURES].
1026 */
1027 static uint64_t
1028 ztest_random_spa_version(uint64_t initial_version)
1029 {
1030 uint64_t version = initial_version;
1031
1032 if (version <= SPA_VERSION_BEFORE_FEATURES) {
1033 version = version +
1034 ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1);
1035 }
1036
1037 if (version > SPA_VERSION_BEFORE_FEATURES)
1038 version = SPA_VERSION_FEATURES;
1039
1040 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
1041 return (version);
1042 }
1043
1044 static int
1045 ztest_random_blocksize(void)
1046 {
1047 /*
1048 * Choose a block size >= the ashift.
1049 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks.
1050 */
1051 int maxbs = SPA_OLD_MAXBLOCKSHIFT;
1052 if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE)
1053 maxbs = 20;
1054 uint64_t block_shift =
1055 ztest_random(maxbs - ztest_spa->spa_max_ashift + 1);
1056 return (1 << (SPA_MINBLOCKSHIFT + block_shift));
1057 }
1058
1059 static int
1060 ztest_random_dnodesize(void)
1061 {
1062 int slots;
1063 int max_slots = spa_maxdnodesize(ztest_spa) >> DNODE_SHIFT;
1064
1065 if (max_slots == DNODE_MIN_SLOTS)
1066 return (DNODE_MIN_SIZE);
1067
1068 /*
1069 * Weight the random distribution more heavily toward smaller
1070 * dnode sizes since that is more likely to reflect real-world
1071 * usage.
1072 */
1073 ASSERT3U(max_slots, >, 4);
1074 switch (ztest_random(10)) {
1075 case 0:
1076 slots = 5 + ztest_random(max_slots - 4);
1077 break;
1078 case 1 ... 4:
1079 slots = 2 + ztest_random(3);
1080 break;
1081 default:
1082 slots = 1;
1083 break;
1084 }
1085
1086 return (slots << DNODE_SHIFT);
1087 }
1088
1089 static int
1090 ztest_random_ibshift(void)
1091 {
1092 return (DN_MIN_INDBLKSHIFT +
1093 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
1094 }
1095
1096 static uint64_t
1097 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
1098 {
1099 uint64_t top;
1100 vdev_t *rvd = spa->spa_root_vdev;
1101 vdev_t *tvd;
1102
1103 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1104
1105 do {
1106 top = ztest_random(rvd->vdev_children);
1107 tvd = rvd->vdev_child[top];
1108 } while (tvd->vdev_ishole || (tvd->vdev_islog && !log_ok) ||
1109 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
1110
1111 return (top);
1112 }
1113
1114 static uint64_t
1115 ztest_random_dsl_prop(zfs_prop_t prop)
1116 {
1117 uint64_t value;
1118
1119 do {
1120 value = zfs_prop_random_value(prop, ztest_random(-1ULL));
1121 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
1122
1123 return (value);
1124 }
1125
1126 static int
1127 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
1128 boolean_t inherit)
1129 {
1130 const char *propname = zfs_prop_to_name(prop);
1131 const char *valname;
1132 char *setpoint;
1133 uint64_t curval;
1134 int error;
1135
1136 error = dsl_prop_set_int(osname, propname,
1137 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value);
1138
1139 if (error == ENOSPC) {
1140 ztest_record_enospc(FTAG);
1141 return (error);
1142 }
1143 ASSERT0(error);
1144
1145 setpoint = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1146 VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint));
1147
1148 if (ztest_opts.zo_verbose >= 6) {
1149 int err;
1150
1151 err = zfs_prop_index_to_string(prop, curval, &valname);
1152 if (err)
1153 (void) printf("%s %s = %llu at '%s'\n", osname,
1154 propname, (unsigned long long)curval, setpoint);
1155 else
1156 (void) printf("%s %s = %s at '%s'\n",
1157 osname, propname, valname, setpoint);
1158 }
1159 umem_free(setpoint, MAXPATHLEN);
1160
1161 return (error);
1162 }
1163
1164 static int
1165 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value)
1166 {
1167 spa_t *spa = ztest_spa;
1168 nvlist_t *props = NULL;
1169 int error;
1170
1171 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
1172 VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0);
1173
1174 error = spa_prop_set(spa, props);
1175
1176 nvlist_free(props);
1177
1178 if (error == ENOSPC) {
1179 ztest_record_enospc(FTAG);
1180 return (error);
1181 }
1182 ASSERT0(error);
1183
1184 return (error);
1185 }
1186
1187 static int
1188 ztest_dmu_objset_own(const char *name, dmu_objset_type_t type,
1189 boolean_t readonly, boolean_t decrypt, void *tag, objset_t **osp)
1190 {
1191 int err;
1192
1193 err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
1194 if (decrypt && err == EACCES) {
1195 char ddname[ZFS_MAX_DATASET_NAME_LEN];
1196 dsl_crypto_params_t *dcp;
1197 nvlist_t *crypto_args = fnvlist_alloc();
1198 char *cp = NULL;
1199
1200 /* spa_keystore_load_wkey() expects a dsl dir name */
1201 strcpy(ddname, name);
1202 cp = strchr(ddname, '@');
1203 if (cp != NULL)
1204 *cp = '\0';
1205
1206 fnvlist_add_uint8_array(crypto_args, "wkeydata",
1207 (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
1208 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, NULL,
1209 crypto_args, &dcp));
1210 err = spa_keystore_load_wkey(ddname, dcp, B_FALSE);
1211 dsl_crypto_params_free(dcp, B_FALSE);
1212 fnvlist_free(crypto_args);
1213
1214 if (err != 0)
1215 return (err);
1216
1217 err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
1218 }
1219
1220 return (err);
1221 }
1222
1223
1224 /*
1225 * Object and range lock mechanics
1226 */
1227 typedef struct {
1228 list_node_t z_lnode;
1229 refcount_t z_refcnt;
1230 uint64_t z_object;
1231 zfs_rlock_t z_range_lock;
1232 } ztest_znode_t;
1233
1234 typedef struct {
1235 rl_t *z_rl;
1236 ztest_znode_t *z_ztznode;
1237 } ztest_zrl_t;
1238
1239 static ztest_znode_t *
1240 ztest_znode_init(uint64_t object)
1241 {
1242 ztest_znode_t *zp = umem_alloc(sizeof (*zp), UMEM_NOFAIL);
1243
1244 list_link_init(&zp->z_lnode);
1245 refcount_create(&zp->z_refcnt);
1246 zp->z_object = object;
1247 zfs_rlock_init(&zp->z_range_lock);
1248
1249 return (zp);
1250 }
1251
1252 static void
1253 ztest_znode_fini(ztest_znode_t *zp)
1254 {
1255 ASSERT(refcount_is_zero(&zp->z_refcnt));
1256 zfs_rlock_destroy(&zp->z_range_lock);
1257 zp->z_object = 0;
1258 refcount_destroy(&zp->z_refcnt);
1259 list_link_init(&zp->z_lnode);
1260 umem_free(zp, sizeof (*zp));
1261 }
1262
1263 static void
1264 ztest_zll_init(zll_t *zll)
1265 {
1266 mutex_init(&zll->z_lock, NULL, MUTEX_DEFAULT, NULL);
1267 list_create(&zll->z_list, sizeof (ztest_znode_t),
1268 offsetof(ztest_znode_t, z_lnode));
1269 }
1270
1271 static void
1272 ztest_zll_destroy(zll_t *zll)
1273 {
1274 list_destroy(&zll->z_list);
1275 mutex_destroy(&zll->z_lock);
1276 }
1277
1278 #define RL_TAG "range_lock"
1279 static ztest_znode_t *
1280 ztest_znode_get(ztest_ds_t *zd, uint64_t object)
1281 {
1282 zll_t *zll = &zd->zd_range_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1283 ztest_znode_t *zp = NULL;
1284 mutex_enter(&zll->z_lock);
1285 for (zp = list_head(&zll->z_list); (zp);
1286 zp = list_next(&zll->z_list, zp)) {
1287 if (zp->z_object == object) {
1288 refcount_add(&zp->z_refcnt, RL_TAG);
1289 break;
1290 }
1291 }
1292 if (zp == NULL) {
1293 zp = ztest_znode_init(object);
1294 refcount_add(&zp->z_refcnt, RL_TAG);
1295 list_insert_head(&zll->z_list, zp);
1296 }
1297 mutex_exit(&zll->z_lock);
1298 return (zp);
1299 }
1300
1301 static void
1302 ztest_znode_put(ztest_ds_t *zd, ztest_znode_t *zp)
1303 {
1304 zll_t *zll = NULL;
1305 ASSERT3U(zp->z_object, !=, 0);
1306 zll = &zd->zd_range_lock[zp->z_object & (ZTEST_OBJECT_LOCKS - 1)];
1307 mutex_enter(&zll->z_lock);
1308 refcount_remove(&zp->z_refcnt, RL_TAG);
1309 if (refcount_is_zero(&zp->z_refcnt)) {
1310 list_remove(&zll->z_list, zp);
1311 ztest_znode_fini(zp);
1312 }
1313 mutex_exit(&zll->z_lock);
1314 }
1315
1316
1317 static void
1318 ztest_rll_init(rll_t *rll)
1319 {
1320 rll->rll_writer = NULL;
1321 rll->rll_readers = 0;
1322 mutex_init(&rll->rll_lock, NULL, MUTEX_DEFAULT, NULL);
1323 cv_init(&rll->rll_cv, NULL, CV_DEFAULT, NULL);
1324 }
1325
1326 static void
1327 ztest_rll_destroy(rll_t *rll)
1328 {
1329 ASSERT(rll->rll_writer == NULL);
1330 ASSERT(rll->rll_readers == 0);
1331 mutex_destroy(&rll->rll_lock);
1332 cv_destroy(&rll->rll_cv);
1333 }
1334
1335 static void
1336 ztest_rll_lock(rll_t *rll, rl_type_t type)
1337 {
1338 mutex_enter(&rll->rll_lock);
1339
1340 if (type == RL_READER) {
1341 while (rll->rll_writer != NULL)
1342 (void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1343 rll->rll_readers++;
1344 } else {
1345 while (rll->rll_writer != NULL || rll->rll_readers)
1346 (void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1347 rll->rll_writer = curthread;
1348 }
1349
1350 mutex_exit(&rll->rll_lock);
1351 }
1352
1353 static void
1354 ztest_rll_unlock(rll_t *rll)
1355 {
1356 mutex_enter(&rll->rll_lock);
1357
1358 if (rll->rll_writer) {
1359 ASSERT(rll->rll_readers == 0);
1360 rll->rll_writer = NULL;
1361 } else {
1362 ASSERT(rll->rll_readers != 0);
1363 ASSERT(rll->rll_writer == NULL);
1364 rll->rll_readers--;
1365 }
1366
1367 if (rll->rll_writer == NULL && rll->rll_readers == 0)
1368 cv_broadcast(&rll->rll_cv);
1369
1370 mutex_exit(&rll->rll_lock);
1371 }
1372
1373 static void
1374 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
1375 {
1376 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1377
1378 ztest_rll_lock(rll, type);
1379 }
1380
1381 static void
1382 ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
1383 {
1384 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1385
1386 ztest_rll_unlock(rll);
1387 }
1388
1389 static ztest_zrl_t *
1390 ztest_zrl_init(rl_t *rl, ztest_znode_t *zp)
1391 {
1392 ztest_zrl_t *zrl = umem_alloc(sizeof (*zrl), UMEM_NOFAIL);
1393 zrl->z_rl = rl;
1394 zrl->z_ztznode = zp;
1395 return (zrl);
1396 }
1397
1398 static void
1399 ztest_zrl_fini(ztest_zrl_t *zrl)
1400 {
1401 umem_free(zrl, sizeof (*zrl));
1402 }
1403
1404 static ztest_zrl_t *
1405 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
1406 uint64_t size, rl_type_t type)
1407 {
1408 ztest_znode_t *zp = ztest_znode_get(zd, object);
1409 rl_t *rl = zfs_range_lock(&zp->z_range_lock, offset,
1410 size, type);
1411 return (ztest_zrl_init(rl, zp));
1412 }
1413
1414 static void
1415 ztest_range_unlock(ztest_ds_t *zd, ztest_zrl_t *zrl)
1416 {
1417 zfs_range_unlock(zrl->z_rl);
1418 ztest_znode_put(zd, zrl->z_ztznode);
1419 ztest_zrl_fini(zrl);
1420 }
1421
1422 static void
1423 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os)
1424 {
1425 zd->zd_os = os;
1426 zd->zd_zilog = dmu_objset_zil(os);
1427 zd->zd_shared = szd;
1428 dmu_objset_name(os, zd->zd_name);
1429 int l;
1430
1431 if (zd->zd_shared != NULL)
1432 zd->zd_shared->zd_seq = 0;
1433
1434 VERIFY(rwlock_init(&zd->zd_zilog_lock, USYNC_THREAD, NULL) == 0);
1435 mutex_init(&zd->zd_dirobj_lock, NULL, MUTEX_DEFAULT, NULL);
1436
1437 for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1438 ztest_rll_init(&zd->zd_object_lock[l]);
1439
1440 for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1441 ztest_zll_init(&zd->zd_range_lock[l]);
1442 }
1443
1444 static void
1445 ztest_zd_fini(ztest_ds_t *zd)
1446 {
1447 int l;
1448
1449 mutex_destroy(&zd->zd_dirobj_lock);
1450 (void) rwlock_destroy(&zd->zd_zilog_lock);
1451
1452 for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1453 ztest_rll_destroy(&zd->zd_object_lock[l]);
1454
1455 for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1456 ztest_zll_destroy(&zd->zd_range_lock[l]);
1457 }
1458
1459 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
1460
1461 static uint64_t
1462 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag)
1463 {
1464 uint64_t txg;
1465 int error;
1466
1467 /*
1468 * Attempt to assign tx to some transaction group.
1469 */
1470 error = dmu_tx_assign(tx, txg_how);
1471 if (error) {
1472 if (error == ERESTART) {
1473 ASSERT(txg_how == TXG_NOWAIT);
1474 dmu_tx_wait(tx);
1475 } else {
1476 ASSERT3U(error, ==, ENOSPC);
1477 ztest_record_enospc(tag);
1478 }
1479 dmu_tx_abort(tx);
1480 return (0);
1481 }
1482 txg = dmu_tx_get_txg(tx);
1483 ASSERT(txg != 0);
1484 return (txg);
1485 }
1486
1487 static void
1488 ztest_pattern_set(void *buf, uint64_t size, uint64_t value)
1489 {
1490 uint64_t *ip = buf;
1491 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1492
1493 while (ip < ip_end)
1494 *ip++ = value;
1495 }
1496
1497 #ifndef NDEBUG
1498 static boolean_t
1499 ztest_pattern_match(void *buf, uint64_t size, uint64_t value)
1500 {
1501 uint64_t *ip = buf;
1502 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1503 uint64_t diff = 0;
1504
1505 while (ip < ip_end)
1506 diff |= (value - *ip++);
1507
1508 return (diff == 0);
1509 }
1510 #endif
1511
1512 static void
1513 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1514 uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1515 uint64_t crtxg)
1516 {
1517 bt->bt_magic = BT_MAGIC;
1518 bt->bt_objset = dmu_objset_id(os);
1519 bt->bt_object = object;
1520 bt->bt_dnodesize = dnodesize;
1521 bt->bt_offset = offset;
1522 bt->bt_gen = gen;
1523 bt->bt_txg = txg;
1524 bt->bt_crtxg = crtxg;
1525 }
1526
1527 static void
1528 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1529 uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1530 uint64_t crtxg)
1531 {
1532 ASSERT3U(bt->bt_magic, ==, BT_MAGIC);
1533 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os));
1534 ASSERT3U(bt->bt_object, ==, object);
1535 ASSERT3U(bt->bt_dnodesize, ==, dnodesize);
1536 ASSERT3U(bt->bt_offset, ==, offset);
1537 ASSERT3U(bt->bt_gen, <=, gen);
1538 ASSERT3U(bt->bt_txg, <=, txg);
1539 ASSERT3U(bt->bt_crtxg, ==, crtxg);
1540 }
1541
1542 static ztest_block_tag_t *
1543 ztest_bt_bonus(dmu_buf_t *db)
1544 {
1545 dmu_object_info_t doi;
1546 ztest_block_tag_t *bt;
1547
1548 dmu_object_info_from_db(db, &doi);
1549 ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
1550 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
1551 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
1552
1553 return (bt);
1554 }
1555
1556 /*
1557 * Generate a token to fill up unused bonus buffer space. Try to make
1558 * it unique to the object, generation, and offset to verify that data
1559 * is not getting overwritten by data from other dnodes.
1560 */
1561 #define ZTEST_BONUS_FILL_TOKEN(obj, ds, gen, offset) \
1562 (((ds) << 48) | ((gen) << 32) | ((obj) << 8) | (offset))
1563
1564 /*
1565 * Fill up the unused bonus buffer region before the block tag with a
1566 * verifiable pattern. Filling the whole bonus area with non-zero data
1567 * helps ensure that all dnode traversal code properly skips the
1568 * interior regions of large dnodes.
1569 */
1570 void
1571 ztest_fill_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1572 objset_t *os, uint64_t gen)
1573 {
1574 uint64_t *bonusp;
1575
1576 ASSERT(IS_P2ALIGNED((char *)end - (char *)db->db_data, 8));
1577
1578 for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1579 uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1580 gen, bonusp - (uint64_t *)db->db_data);
1581 *bonusp = token;
1582 }
1583 }
1584
1585 /*
1586 * Verify that the unused area of a bonus buffer is filled with the
1587 * expected tokens.
1588 */
1589 void
1590 ztest_verify_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1591 objset_t *os, uint64_t gen)
1592 {
1593 uint64_t *bonusp;
1594
1595 for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1596 uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1597 gen, bonusp - (uint64_t *)db->db_data);
1598 VERIFY3U(*bonusp, ==, token);
1599 }
1600 }
1601
1602 /*
1603 * ZIL logging ops
1604 */
1605
1606 #define lrz_type lr_mode
1607 #define lrz_blocksize lr_uid
1608 #define lrz_ibshift lr_gid
1609 #define lrz_bonustype lr_rdev
1610 #define lrz_dnodesize lr_crtime[1]
1611
1612 static void
1613 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
1614 {
1615 char *name = (void *)(lr + 1); /* name follows lr */
1616 size_t namesize = strlen(name) + 1;
1617 itx_t *itx;
1618
1619 if (zil_replaying(zd->zd_zilog, tx))
1620 return;
1621
1622 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
1623 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1624 sizeof (*lr) + namesize - sizeof (lr_t));
1625
1626 zil_itx_assign(zd->zd_zilog, itx, tx);
1627 }
1628
1629 static void
1630 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object)
1631 {
1632 char *name = (void *)(lr + 1); /* name follows lr */
1633 size_t namesize = strlen(name) + 1;
1634 itx_t *itx;
1635
1636 if (zil_replaying(zd->zd_zilog, tx))
1637 return;
1638
1639 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
1640 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1641 sizeof (*lr) + namesize - sizeof (lr_t));
1642
1643 itx->itx_oid = object;
1644 zil_itx_assign(zd->zd_zilog, itx, tx);
1645 }
1646
1647 static void
1648 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
1649 {
1650 itx_t *itx;
1651 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
1652
1653 if (zil_replaying(zd->zd_zilog, tx))
1654 return;
1655
1656 if (lr->lr_length > ZIL_MAX_LOG_DATA)
1657 write_state = WR_INDIRECT;
1658
1659 itx = zil_itx_create(TX_WRITE,
1660 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
1661
1662 if (write_state == WR_COPIED &&
1663 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
1664 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) {
1665 zil_itx_destroy(itx);
1666 itx = zil_itx_create(TX_WRITE, sizeof (*lr));
1667 write_state = WR_NEED_COPY;
1668 }
1669 itx->itx_private = zd;
1670 itx->itx_wr_state = write_state;
1671 itx->itx_sync = (ztest_random(8) == 0);
1672
1673 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1674 sizeof (*lr) - sizeof (lr_t));
1675
1676 zil_itx_assign(zd->zd_zilog, itx, tx);
1677 }
1678
1679 static void
1680 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
1681 {
1682 itx_t *itx;
1683
1684 if (zil_replaying(zd->zd_zilog, tx))
1685 return;
1686
1687 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
1688 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1689 sizeof (*lr) - sizeof (lr_t));
1690
1691 itx->itx_sync = B_FALSE;
1692 zil_itx_assign(zd->zd_zilog, itx, tx);
1693 }
1694
1695 static void
1696 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
1697 {
1698 itx_t *itx;
1699
1700 if (zil_replaying(zd->zd_zilog, tx))
1701 return;
1702
1703 itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
1704 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1705 sizeof (*lr) - sizeof (lr_t));
1706
1707 itx->itx_sync = B_FALSE;
1708 zil_itx_assign(zd->zd_zilog, itx, tx);
1709 }
1710
1711 /*
1712 * ZIL replay ops
1713 */
1714 static int
1715 ztest_replay_create(void *arg1, void *arg2, boolean_t byteswap)
1716 {
1717 ztest_ds_t *zd = arg1;
1718 lr_create_t *lr = arg2;
1719 char *name = (void *)(lr + 1); /* name follows lr */
1720 objset_t *os = zd->zd_os;
1721 ztest_block_tag_t *bbt;
1722 dmu_buf_t *db;
1723 dmu_tx_t *tx;
1724 uint64_t txg;
1725 int error = 0;
1726 int bonuslen;
1727
1728 if (byteswap)
1729 byteswap_uint64_array(lr, sizeof (*lr));
1730
1731 ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1732 ASSERT(name[0] != '\0');
1733
1734 tx = dmu_tx_create(os);
1735
1736 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
1737
1738 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1739 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1740 } else {
1741 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1742 }
1743
1744 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1745 if (txg == 0)
1746 return (ENOSPC);
1747
1748 ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid);
1749 bonuslen = DN_BONUS_SIZE(lr->lrz_dnodesize);
1750
1751 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1752 if (lr->lr_foid == 0) {
1753 lr->lr_foid = zap_create_dnsize(os,
1754 lr->lrz_type, lr->lrz_bonustype,
1755 bonuslen, lr->lrz_dnodesize, tx);
1756 } else {
1757 error = zap_create_claim_dnsize(os, lr->lr_foid,
1758 lr->lrz_type, lr->lrz_bonustype,
1759 bonuslen, lr->lrz_dnodesize, tx);
1760 }
1761 } else {
1762 if (lr->lr_foid == 0) {
1763 lr->lr_foid = dmu_object_alloc_dnsize(os,
1764 lr->lrz_type, 0, lr->lrz_bonustype,
1765 bonuslen, lr->lrz_dnodesize, tx);
1766 } else {
1767 error = dmu_object_claim_dnsize(os, lr->lr_foid,
1768 lr->lrz_type, 0, lr->lrz_bonustype,
1769 bonuslen, lr->lrz_dnodesize, tx);
1770 }
1771 }
1772
1773 if (error) {
1774 ASSERT3U(error, ==, EEXIST);
1775 ASSERT(zd->zd_zilog->zl_replay);
1776 dmu_tx_commit(tx);
1777 return (error);
1778 }
1779
1780 ASSERT(lr->lr_foid != 0);
1781
1782 if (lr->lrz_type != DMU_OT_ZAP_OTHER)
1783 VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid,
1784 lr->lrz_blocksize, lr->lrz_ibshift, tx));
1785
1786 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1787 bbt = ztest_bt_bonus(db);
1788 dmu_buf_will_dirty(db, tx);
1789 ztest_bt_generate(bbt, os, lr->lr_foid, lr->lrz_dnodesize, -1ULL,
1790 lr->lr_gen, txg, txg);
1791 ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, lr->lr_gen);
1792 dmu_buf_rele(db, FTAG);
1793
1794 VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
1795 &lr->lr_foid, tx));
1796
1797 (void) ztest_log_create(zd, tx, lr);
1798
1799 dmu_tx_commit(tx);
1800
1801 return (0);
1802 }
1803
1804 static int
1805 ztest_replay_remove(void *arg1, void *arg2, boolean_t byteswap)
1806 {
1807 ztest_ds_t *zd = arg1;
1808 lr_remove_t *lr = arg2;
1809 char *name = (void *)(lr + 1); /* name follows lr */
1810 objset_t *os = zd->zd_os;
1811 dmu_object_info_t doi;
1812 dmu_tx_t *tx;
1813 uint64_t object, txg;
1814
1815 if (byteswap)
1816 byteswap_uint64_array(lr, sizeof (*lr));
1817
1818 ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1819 ASSERT(name[0] != '\0');
1820
1821 VERIFY3U(0, ==,
1822 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
1823 ASSERT(object != 0);
1824
1825 ztest_object_lock(zd, object, RL_WRITER);
1826
1827 VERIFY3U(0, ==, dmu_object_info(os, object, &doi));
1828
1829 tx = dmu_tx_create(os);
1830
1831 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
1832 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
1833
1834 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1835 if (txg == 0) {
1836 ztest_object_unlock(zd, object);
1837 return (ENOSPC);
1838 }
1839
1840 if (doi.doi_type == DMU_OT_ZAP_OTHER) {
1841 VERIFY3U(0, ==, zap_destroy(os, object, tx));
1842 } else {
1843 VERIFY3U(0, ==, dmu_object_free(os, object, tx));
1844 }
1845
1846 VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx));
1847
1848 (void) ztest_log_remove(zd, tx, lr, object);
1849
1850 dmu_tx_commit(tx);
1851
1852 ztest_object_unlock(zd, object);
1853
1854 return (0);
1855 }
1856
1857 static int
1858 ztest_replay_write(void *arg1, void *arg2, boolean_t byteswap)
1859 {
1860 ztest_ds_t *zd = arg1;
1861 lr_write_t *lr = arg2;
1862 objset_t *os = zd->zd_os;
1863 void *data = lr + 1; /* data follows lr */
1864 uint64_t offset, length;
1865 ztest_block_tag_t *bt = data;
1866 ztest_block_tag_t *bbt;
1867 uint64_t gen, txg, lrtxg, crtxg;
1868 dmu_object_info_t doi;
1869 dmu_tx_t *tx;
1870 dmu_buf_t *db;
1871 arc_buf_t *abuf = NULL;
1872 ztest_zrl_t *rl;
1873
1874 if (byteswap)
1875 byteswap_uint64_array(lr, sizeof (*lr));
1876
1877 offset = lr->lr_offset;
1878 length = lr->lr_length;
1879
1880 /* If it's a dmu_sync() block, write the whole block */
1881 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
1882 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
1883 if (length < blocksize) {
1884 offset -= offset % blocksize;
1885 length = blocksize;
1886 }
1887 }
1888
1889 if (bt->bt_magic == BSWAP_64(BT_MAGIC))
1890 byteswap_uint64_array(bt, sizeof (*bt));
1891
1892 if (bt->bt_magic != BT_MAGIC)
1893 bt = NULL;
1894
1895 ztest_object_lock(zd, lr->lr_foid, RL_READER);
1896 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER);
1897
1898 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1899
1900 dmu_object_info_from_db(db, &doi);
1901
1902 bbt = ztest_bt_bonus(db);
1903 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1904 gen = bbt->bt_gen;
1905 crtxg = bbt->bt_crtxg;
1906 lrtxg = lr->lr_common.lrc_txg;
1907
1908 tx = dmu_tx_create(os);
1909
1910 dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
1911
1912 if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
1913 P2PHASE(offset, length) == 0)
1914 abuf = dmu_request_arcbuf(db, length);
1915
1916 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1917 if (txg == 0) {
1918 if (abuf != NULL)
1919 dmu_return_arcbuf(abuf);
1920 dmu_buf_rele(db, FTAG);
1921 ztest_range_unlock(zd, rl);
1922 ztest_object_unlock(zd, lr->lr_foid);
1923 return (ENOSPC);
1924 }
1925
1926 if (bt != NULL) {
1927 /*
1928 * Usually, verify the old data before writing new data --
1929 * but not always, because we also want to verify correct
1930 * behavior when the data was not recently read into cache.
1931 */
1932 ASSERT(offset % doi.doi_data_block_size == 0);
1933 if (ztest_random(4) != 0) {
1934 int prefetch = ztest_random(2) ?
1935 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
1936 ztest_block_tag_t rbt;
1937
1938 VERIFY(dmu_read(os, lr->lr_foid, offset,
1939 sizeof (rbt), &rbt, prefetch) == 0);
1940 if (rbt.bt_magic == BT_MAGIC) {
1941 ztest_bt_verify(&rbt, os, lr->lr_foid, 0,
1942 offset, gen, txg, crtxg);
1943 }
1944 }
1945
1946 /*
1947 * Writes can appear to be newer than the bonus buffer because
1948 * the ztest_get_data() callback does a dmu_read() of the
1949 * open-context data, which may be different than the data
1950 * as it was when the write was generated.
1951 */
1952 if (zd->zd_zilog->zl_replay) {
1953 ztest_bt_verify(bt, os, lr->lr_foid, 0, offset,
1954 MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
1955 bt->bt_crtxg);
1956 }
1957
1958 /*
1959 * Set the bt's gen/txg to the bonus buffer's gen/txg
1960 * so that all of the usual ASSERTs will work.
1961 */
1962 ztest_bt_generate(bt, os, lr->lr_foid, 0, offset, gen, txg,
1963 crtxg);
1964 }
1965
1966 if (abuf == NULL) {
1967 dmu_write(os, lr->lr_foid, offset, length, data, tx);
1968 } else {
1969 bcopy(data, abuf->b_data, length);
1970 dmu_assign_arcbuf_by_dbuf(db, offset, abuf, tx);
1971 }
1972
1973 (void) ztest_log_write(zd, tx, lr);
1974
1975 dmu_buf_rele(db, FTAG);
1976
1977 dmu_tx_commit(tx);
1978
1979 ztest_range_unlock(zd, rl);
1980 ztest_object_unlock(zd, lr->lr_foid);
1981
1982 return (0);
1983 }
1984
1985 static int
1986 ztest_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
1987 {
1988 ztest_ds_t *zd = arg1;
1989 lr_truncate_t *lr = arg2;
1990 objset_t *os = zd->zd_os;
1991 dmu_tx_t *tx;
1992 uint64_t txg;
1993 ztest_zrl_t *rl;
1994
1995 if (byteswap)
1996 byteswap_uint64_array(lr, sizeof (*lr));
1997
1998 ztest_object_lock(zd, lr->lr_foid, RL_READER);
1999 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
2000 RL_WRITER);
2001
2002 tx = dmu_tx_create(os);
2003
2004 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
2005
2006 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2007 if (txg == 0) {
2008 ztest_range_unlock(zd, rl);
2009 ztest_object_unlock(zd, lr->lr_foid);
2010 return (ENOSPC);
2011 }
2012
2013 VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
2014 lr->lr_length, tx) == 0);
2015
2016 (void) ztest_log_truncate(zd, tx, lr);
2017
2018 dmu_tx_commit(tx);
2019
2020 ztest_range_unlock(zd, rl);
2021 ztest_object_unlock(zd, lr->lr_foid);
2022
2023 return (0);
2024 }
2025
2026 static int
2027 ztest_replay_setattr(void *arg1, void *arg2, boolean_t byteswap)
2028 {
2029 ztest_ds_t *zd = arg1;
2030 lr_setattr_t *lr = arg2;
2031 objset_t *os = zd->zd_os;
2032 dmu_tx_t *tx;
2033 dmu_buf_t *db;
2034 ztest_block_tag_t *bbt;
2035 uint64_t txg, lrtxg, crtxg, dnodesize;
2036
2037 if (byteswap)
2038 byteswap_uint64_array(lr, sizeof (*lr));
2039
2040 ztest_object_lock(zd, lr->lr_foid, RL_WRITER);
2041
2042 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2043
2044 tx = dmu_tx_create(os);
2045 dmu_tx_hold_bonus(tx, lr->lr_foid);
2046
2047 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2048 if (txg == 0) {
2049 dmu_buf_rele(db, FTAG);
2050 ztest_object_unlock(zd, lr->lr_foid);
2051 return (ENOSPC);
2052 }
2053
2054 bbt = ztest_bt_bonus(db);
2055 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2056 crtxg = bbt->bt_crtxg;
2057 lrtxg = lr->lr_common.lrc_txg;
2058 dnodesize = bbt->bt_dnodesize;
2059
2060 if (zd->zd_zilog->zl_replay) {
2061 ASSERT(lr->lr_size != 0);
2062 ASSERT(lr->lr_mode != 0);
2063 ASSERT(lrtxg != 0);
2064 } else {
2065 /*
2066 * Randomly change the size and increment the generation.
2067 */
2068 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
2069 sizeof (*bbt);
2070 lr->lr_mode = bbt->bt_gen + 1;
2071 ASSERT(lrtxg == 0);
2072 }
2073
2074 /*
2075 * Verify that the current bonus buffer is not newer than our txg.
2076 */
2077 ztest_bt_verify(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
2078 MAX(txg, lrtxg), crtxg);
2079
2080 dmu_buf_will_dirty(db, tx);
2081
2082 ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
2083 ASSERT3U(lr->lr_size, <=, db->db_size);
2084 VERIFY0(dmu_set_bonus(db, lr->lr_size, tx));
2085 bbt = ztest_bt_bonus(db);
2086
2087 ztest_bt_generate(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
2088 txg, crtxg);
2089 ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, bbt->bt_gen);
2090 dmu_buf_rele(db, FTAG);
2091
2092 (void) ztest_log_setattr(zd, tx, lr);
2093
2094 dmu_tx_commit(tx);
2095
2096 ztest_object_unlock(zd, lr->lr_foid);
2097
2098 return (0);
2099 }
2100
2101 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
2102 NULL, /* 0 no such transaction type */
2103 ztest_replay_create, /* TX_CREATE */
2104 NULL, /* TX_MKDIR */
2105 NULL, /* TX_MKXATTR */
2106 NULL, /* TX_SYMLINK */
2107 ztest_replay_remove, /* TX_REMOVE */
2108 NULL, /* TX_RMDIR */
2109 NULL, /* TX_LINK */
2110 NULL, /* TX_RENAME */
2111 ztest_replay_write, /* TX_WRITE */
2112 ztest_replay_truncate, /* TX_TRUNCATE */
2113 ztest_replay_setattr, /* TX_SETATTR */
2114 NULL, /* TX_ACL */
2115 NULL, /* TX_CREATE_ACL */
2116 NULL, /* TX_CREATE_ATTR */
2117 NULL, /* TX_CREATE_ACL_ATTR */
2118 NULL, /* TX_MKDIR_ACL */
2119 NULL, /* TX_MKDIR_ATTR */
2120 NULL, /* TX_MKDIR_ACL_ATTR */
2121 NULL, /* TX_WRITE2 */
2122 };
2123
2124 /*
2125 * ZIL get_data callbacks
2126 */
2127 typedef struct ztest_zgd_private {
2128 ztest_ds_t *z_zd;
2129 ztest_zrl_t *z_rl;
2130 uint64_t z_object;
2131 } ztest_zgd_private_t;
2132
2133 static void
2134 ztest_get_done(zgd_t *zgd, int error)
2135 {
2136 ztest_zgd_private_t *zzp = zgd->zgd_private;
2137 ztest_ds_t *zd = zzp->z_zd;
2138 uint64_t object = zzp->z_object;
2139
2140 if (zgd->zgd_db)
2141 dmu_buf_rele(zgd->zgd_db, zgd);
2142
2143 ztest_range_unlock(zd, zzp->z_rl);
2144 ztest_object_unlock(zd, object);
2145
2146 if (error == 0 && zgd->zgd_bp)
2147 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
2148
2149 umem_free(zgd, sizeof (*zgd));
2150 umem_free(zzp, sizeof (*zzp));
2151 }
2152
2153 static int
2154 ztest_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb,
2155 zio_t *zio)
2156 {
2157 ztest_ds_t *zd = arg;
2158 objset_t *os = zd->zd_os;
2159 uint64_t object = lr->lr_foid;
2160 uint64_t offset = lr->lr_offset;
2161 uint64_t size = lr->lr_length;
2162 uint64_t txg = lr->lr_common.lrc_txg;
2163 uint64_t crtxg;
2164 dmu_object_info_t doi;
2165 dmu_buf_t *db;
2166 zgd_t *zgd;
2167 int error;
2168 ztest_zgd_private_t *zgd_private;
2169
2170 ASSERT3P(lwb, !=, NULL);
2171 ASSERT3P(zio, !=, NULL);
2172 ASSERT3U(size, !=, 0);
2173
2174 ztest_object_lock(zd, object, RL_READER);
2175 error = dmu_bonus_hold(os, object, FTAG, &db);
2176 if (error) {
2177 ztest_object_unlock(zd, object);
2178 return (error);
2179 }
2180
2181 crtxg = ztest_bt_bonus(db)->bt_crtxg;
2182
2183 if (crtxg == 0 || crtxg > txg) {
2184 dmu_buf_rele(db, FTAG);
2185 ztest_object_unlock(zd, object);
2186 return (ENOENT);
2187 }
2188
2189 dmu_object_info_from_db(db, &doi);
2190 dmu_buf_rele(db, FTAG);
2191 db = NULL;
2192
2193 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
2194 zgd->zgd_lwb = lwb;
2195 zgd_private = umem_zalloc(sizeof (ztest_zgd_private_t), UMEM_NOFAIL);
2196 zgd_private->z_zd = zd;
2197 zgd_private->z_object = object;
2198 zgd->zgd_private = zgd_private;
2199
2200 if (buf != NULL) { /* immediate write */
2201 zgd_private->z_rl = ztest_range_lock(zd, object, offset, size,
2202 RL_READER);
2203 zgd->zgd_rl = zgd_private->z_rl->z_rl;
2204
2205 error = dmu_read(os, object, offset, size, buf,
2206 DMU_READ_NO_PREFETCH);
2207 ASSERT(error == 0);
2208 } else {
2209 size = doi.doi_data_block_size;
2210 if (ISP2(size)) {
2211 offset = P2ALIGN(offset, size);
2212 } else {
2213 ASSERT(offset < size);
2214 offset = 0;
2215 }
2216
2217 zgd_private->z_rl = ztest_range_lock(zd, object, offset, size,
2218 RL_READER);
2219 zgd->zgd_rl = zgd_private->z_rl->z_rl;
2220
2221 error = dmu_buf_hold(os, object, offset, zgd, &db,
2222 DMU_READ_NO_PREFETCH);
2223
2224 if (error == 0) {
2225 blkptr_t *bp = &lr->lr_blkptr;
2226
2227 zgd->zgd_db = db;
2228 zgd->zgd_bp = bp;
2229
2230 ASSERT(db->db_offset == offset);
2231 ASSERT(db->db_size == size);
2232
2233 error = dmu_sync(zio, lr->lr_common.lrc_txg,
2234 ztest_get_done, zgd);
2235
2236 if (error == 0)
2237 return (0);
2238 }
2239 }
2240
2241 ztest_get_done(zgd, error);
2242
2243 return (error);
2244 }
2245
2246 static void *
2247 ztest_lr_alloc(size_t lrsize, char *name)
2248 {
2249 char *lr;
2250 size_t namesize = name ? strlen(name) + 1 : 0;
2251
2252 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
2253
2254 if (name)
2255 bcopy(name, lr + lrsize, namesize);
2256
2257 return (lr);
2258 }
2259
2260 void
2261 ztest_lr_free(void *lr, size_t lrsize, char *name)
2262 {
2263 size_t namesize = name ? strlen(name) + 1 : 0;
2264
2265 umem_free(lr, lrsize + namesize);
2266 }
2267
2268 /*
2269 * Lookup a bunch of objects. Returns the number of objects not found.
2270 */
2271 static int
2272 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
2273 {
2274 int missing = 0;
2275 int error;
2276 int i;
2277
2278 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2279
2280 for (i = 0; i < count; i++, od++) {
2281 od->od_object = 0;
2282 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
2283 sizeof (uint64_t), 1, &od->od_object);
2284 if (error) {
2285 ASSERT(error == ENOENT);
2286 ASSERT(od->od_object == 0);
2287 missing++;
2288 } else {
2289 dmu_buf_t *db;
2290 ztest_block_tag_t *bbt;
2291 dmu_object_info_t doi;
2292
2293 ASSERT(od->od_object != 0);
2294 ASSERT(missing == 0); /* there should be no gaps */
2295
2296 ztest_object_lock(zd, od->od_object, RL_READER);
2297 VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os,
2298 od->od_object, FTAG, &db));
2299 dmu_object_info_from_db(db, &doi);
2300 bbt = ztest_bt_bonus(db);
2301 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2302 od->od_type = doi.doi_type;
2303 od->od_blocksize = doi.doi_data_block_size;
2304 od->od_gen = bbt->bt_gen;
2305 dmu_buf_rele(db, FTAG);
2306 ztest_object_unlock(zd, od->od_object);
2307 }
2308 }
2309
2310 return (missing);
2311 }
2312
2313 static int
2314 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
2315 {
2316 int missing = 0;
2317 int i;
2318
2319 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2320
2321 for (i = 0; i < count; i++, od++) {
2322 if (missing) {
2323 od->od_object = 0;
2324 missing++;
2325 continue;
2326 }
2327
2328 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2329
2330 lr->lr_doid = od->od_dir;
2331 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */
2332 lr->lrz_type = od->od_crtype;
2333 lr->lrz_blocksize = od->od_crblocksize;
2334 lr->lrz_ibshift = ztest_random_ibshift();
2335 lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
2336 lr->lrz_dnodesize = od->od_crdnodesize;
2337 lr->lr_gen = od->od_crgen;
2338 lr->lr_crtime[0] = time(NULL);
2339
2340 if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
2341 ASSERT(missing == 0);
2342 od->od_object = 0;
2343 missing++;
2344 } else {
2345 od->od_object = lr->lr_foid;
2346 od->od_type = od->od_crtype;
2347 od->od_blocksize = od->od_crblocksize;
2348 od->od_gen = od->od_crgen;
2349 ASSERT(od->od_object != 0);
2350 }
2351
2352 ztest_lr_free(lr, sizeof (*lr), od->od_name);
2353 }
2354
2355 return (missing);
2356 }
2357
2358 static int
2359 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
2360 {
2361 int missing = 0;
2362 int error;
2363 int i;
2364
2365 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2366
2367 od += count - 1;
2368
2369 for (i = count - 1; i >= 0; i--, od--) {
2370 if (missing) {
2371 missing++;
2372 continue;
2373 }
2374
2375 /*
2376 * No object was found.
2377 */
2378 if (od->od_object == 0)
2379 continue;
2380
2381 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2382
2383 lr->lr_doid = od->od_dir;
2384
2385 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
2386 ASSERT3U(error, ==, ENOSPC);
2387 missing++;
2388 } else {
2389 od->od_object = 0;
2390 }
2391 ztest_lr_free(lr, sizeof (*lr), od->od_name);
2392 }
2393
2394 return (missing);
2395 }
2396
2397 static int
2398 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
2399 void *data)
2400 {
2401 lr_write_t *lr;
2402 int error;
2403
2404 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
2405
2406 lr->lr_foid = object;
2407 lr->lr_offset = offset;
2408 lr->lr_length = size;
2409 lr->lr_blkoff = 0;
2410 BP_ZERO(&lr->lr_blkptr);
2411
2412 bcopy(data, lr + 1, size);
2413
2414 error = ztest_replay_write(zd, lr, B_FALSE);
2415
2416 ztest_lr_free(lr, sizeof (*lr) + size, NULL);
2417
2418 return (error);
2419 }
2420
2421 static int
2422 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2423 {
2424 lr_truncate_t *lr;
2425 int error;
2426
2427 lr = ztest_lr_alloc(sizeof (*lr), NULL);
2428
2429 lr->lr_foid = object;
2430 lr->lr_offset = offset;
2431 lr->lr_length = size;
2432
2433 error = ztest_replay_truncate(zd, lr, B_FALSE);
2434
2435 ztest_lr_free(lr, sizeof (*lr), NULL);
2436
2437 return (error);
2438 }
2439
2440 static int
2441 ztest_setattr(ztest_ds_t *zd, uint64_t object)
2442 {
2443 lr_setattr_t *lr;
2444 int error;
2445
2446 lr = ztest_lr_alloc(sizeof (*lr), NULL);
2447
2448 lr->lr_foid = object;
2449 lr->lr_size = 0;
2450 lr->lr_mode = 0;
2451
2452 error = ztest_replay_setattr(zd, lr, B_FALSE);
2453
2454 ztest_lr_free(lr, sizeof (*lr), NULL);
2455
2456 return (error);
2457 }
2458
2459 static void
2460 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2461 {
2462 objset_t *os = zd->zd_os;
2463 dmu_tx_t *tx;
2464 uint64_t txg;
2465 ztest_zrl_t *rl;
2466
2467 txg_wait_synced(dmu_objset_pool(os), 0);
2468
2469 ztest_object_lock(zd, object, RL_READER);
2470 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER);
2471
2472 tx = dmu_tx_create(os);
2473
2474 dmu_tx_hold_write(tx, object, offset, size);
2475
2476 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2477
2478 if (txg != 0) {
2479 dmu_prealloc(os, object, offset, size, tx);
2480 dmu_tx_commit(tx);
2481 txg_wait_synced(dmu_objset_pool(os), txg);
2482 } else {
2483 (void) dmu_free_long_range(os, object, offset, size);
2484 }
2485
2486 ztest_range_unlock(zd, rl);
2487 ztest_object_unlock(zd, object);
2488 }
2489
2490 static void
2491 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
2492 {
2493 int err;
2494 ztest_block_tag_t wbt;
2495 dmu_object_info_t doi;
2496 enum ztest_io_type io_type;
2497 uint64_t blocksize;
2498 void *data;
2499
2500 VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0);
2501 blocksize = doi.doi_data_block_size;
2502 data = umem_alloc(blocksize, UMEM_NOFAIL);
2503
2504 /*
2505 * Pick an i/o type at random, biased toward writing block tags.
2506 */
2507 io_type = ztest_random(ZTEST_IO_TYPES);
2508 if (ztest_random(2) == 0)
2509 io_type = ZTEST_IO_WRITE_TAG;
2510
2511 (void) rw_rdlock(&zd->zd_zilog_lock);
2512
2513 switch (io_type) {
2514
2515 case ZTEST_IO_WRITE_TAG:
2516 ztest_bt_generate(&wbt, zd->zd_os, object, doi.doi_dnodesize,
2517 offset, 0, 0, 0);
2518 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
2519 break;
2520
2521 case ZTEST_IO_WRITE_PATTERN:
2522 (void) memset(data, 'a' + (object + offset) % 5, blocksize);
2523 if (ztest_random(2) == 0) {
2524 /*
2525 * Induce fletcher2 collisions to ensure that
2526 * zio_ddt_collision() detects and resolves them
2527 * when using fletcher2-verify for deduplication.
2528 */
2529 ((uint64_t *)data)[0] ^= 1ULL << 63;
2530 ((uint64_t *)data)[4] ^= 1ULL << 63;
2531 }
2532 (void) ztest_write(zd, object, offset, blocksize, data);
2533 break;
2534
2535 case ZTEST_IO_WRITE_ZEROES:
2536 bzero(data, blocksize);
2537 (void) ztest_write(zd, object, offset, blocksize, data);
2538 break;
2539
2540 case ZTEST_IO_TRUNCATE:
2541 (void) ztest_truncate(zd, object, offset, blocksize);
2542 break;
2543
2544 case ZTEST_IO_SETATTR:
2545 (void) ztest_setattr(zd, object);
2546 break;
2547 default:
2548 break;
2549
2550 case ZTEST_IO_REWRITE:
2551 (void) rw_rdlock(&ztest_name_lock);
2552 err = ztest_dsl_prop_set_uint64(zd->zd_name,
2553 ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa),
2554 B_FALSE);
2555 VERIFY(err == 0 || err == ENOSPC);
2556 err = ztest_dsl_prop_set_uint64(zd->zd_name,
2557 ZFS_PROP_COMPRESSION,
2558 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION),
2559 B_FALSE);
2560 VERIFY(err == 0 || err == ENOSPC);
2561 (void) rw_unlock(&ztest_name_lock);
2562
2563 VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data,
2564 DMU_READ_NO_PREFETCH));
2565
2566 (void) ztest_write(zd, object, offset, blocksize, data);
2567 break;
2568 }
2569
2570 (void) rw_unlock(&zd->zd_zilog_lock);
2571
2572 umem_free(data, blocksize);
2573 }
2574
2575 /*
2576 * Initialize an object description template.
2577 */
2578 static void
2579 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index,
2580 dmu_object_type_t type, uint64_t blocksize, uint64_t dnodesize,
2581 uint64_t gen)
2582 {
2583 od->od_dir = ZTEST_DIROBJ;
2584 od->od_object = 0;
2585
2586 od->od_crtype = type;
2587 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
2588 od->od_crdnodesize = dnodesize ? dnodesize : ztest_random_dnodesize();
2589 od->od_crgen = gen;
2590
2591 od->od_type = DMU_OT_NONE;
2592 od->od_blocksize = 0;
2593 od->od_gen = 0;
2594
2595 (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]",
2596 tag, (longlong_t)id, (u_longlong_t)index);
2597 }
2598
2599 /*
2600 * Lookup or create the objects for a test using the od template.
2601 * If the objects do not all exist, or if 'remove' is specified,
2602 * remove any existing objects and create new ones. Otherwise,
2603 * use the existing objects.
2604 */
2605 static int
2606 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
2607 {
2608 int count = size / sizeof (*od);
2609 int rv = 0;
2610
2611 mutex_enter(&zd->zd_dirobj_lock);
2612 if ((ztest_lookup(zd, od, count) != 0 || remove) &&
2613 (ztest_remove(zd, od, count) != 0 ||
2614 ztest_create(zd, od, count) != 0))
2615 rv = -1;
2616 zd->zd_od = od;
2617 mutex_exit(&zd->zd_dirobj_lock);
2618
2619 return (rv);
2620 }
2621
2622 /* ARGSUSED */
2623 void
2624 ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
2625 {
2626 zilog_t *zilog = zd->zd_zilog;
2627
2628 (void) rw_rdlock(&zd->zd_zilog_lock);
2629
2630 zil_commit(zilog, ztest_random(ZTEST_OBJECTS));
2631
2632 /*
2633 * Remember the committed values in zd, which is in parent/child
2634 * shared memory. If we die, the next iteration of ztest_run()
2635 * will verify that the log really does contain this record.
2636 */
2637 mutex_enter(&zilog->zl_lock);
2638 ASSERT(zd->zd_shared != NULL);
2639 ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq);
2640 zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq;
2641 mutex_exit(&zilog->zl_lock);
2642
2643 (void) rw_unlock(&zd->zd_zilog_lock);
2644 }
2645
2646 /*
2647 * This function is designed to simulate the operations that occur during a
2648 * mount/unmount operation. We hold the dataset across these operations in an
2649 * attempt to expose any implicit assumptions about ZIL management.
2650 */
2651 /* ARGSUSED */
2652 void
2653 ztest_zil_remount(ztest_ds_t *zd, uint64_t id)
2654 {
2655 objset_t *os = zd->zd_os;
2656
2657 /*
2658 * We grab the zd_dirobj_lock to ensure that no other thread is
2659 * updating the zil (i.e. adding in-memory log records) and the
2660 * zd_zilog_lock to block any I/O.
2661 */
2662 mutex_enter(&zd->zd_dirobj_lock);
2663 (void) rw_wrlock(&zd->zd_zilog_lock);
2664
2665 /* zfsvfs_teardown() */
2666 zil_close(zd->zd_zilog);
2667
2668 /* zfsvfs_setup() */
2669 VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog);
2670 zil_replay(os, zd, ztest_replay_vector);
2671
2672 (void) rw_unlock(&zd->zd_zilog_lock);
2673 mutex_exit(&zd->zd_dirobj_lock);
2674 }
2675
2676 /*
2677 * Verify that we can't destroy an active pool, create an existing pool,
2678 * or create a pool with a bad vdev spec.
2679 */
2680 /* ARGSUSED */
2681 void
2682 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
2683 {
2684 ztest_shared_opts_t *zo = &ztest_opts;
2685 spa_t *spa;
2686 nvlist_t *nvroot;
2687
2688 if (zo->zo_mmp_test)
2689 return;
2690
2691 /*
2692 * Attempt to create using a bad file.
2693 */
2694 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1);
2695 VERIFY3U(ENOENT, ==,
2696 spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL));
2697 nvlist_free(nvroot);
2698
2699 /*
2700 * Attempt to create using a bad mirror.
2701 */
2702 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 2, 1);
2703 VERIFY3U(ENOENT, ==,
2704 spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL));
2705 nvlist_free(nvroot);
2706
2707 /*
2708 * Attempt to create an existing pool. It shouldn't matter
2709 * what's in the nvroot; we should fail with EEXIST.
2710 */
2711 (void) rw_rdlock(&ztest_name_lock);
2712 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1);
2713 VERIFY3U(EEXIST, ==,
2714 spa_create(zo->zo_pool, nvroot, NULL, NULL, NULL));
2715 nvlist_free(nvroot);
2716 VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG));
2717 VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool));
2718 spa_close(spa, FTAG);
2719
2720 (void) rw_unlock(&ztest_name_lock);
2721 }
2722
2723 /*
2724 * Start and then stop the MMP threads to ensure the startup and shutdown code
2725 * works properly. Actual protection and property-related code tested via ZTS.
2726 */
2727 /* ARGSUSED */
2728 void
2729 ztest_mmp_enable_disable(ztest_ds_t *zd, uint64_t id)
2730 {
2731 ztest_shared_opts_t *zo = &ztest_opts;
2732 spa_t *spa = ztest_spa;
2733
2734 if (zo->zo_mmp_test)
2735 return;
2736
2737 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
2738 mutex_enter(&spa->spa_props_lock);
2739
2740 if (!spa_multihost(spa)) {
2741 spa->spa_multihost = B_TRUE;
2742 mmp_thread_start(spa);
2743 }
2744
2745 mutex_exit(&spa->spa_props_lock);
2746 spa_config_exit(spa, SCL_CONFIG, FTAG);
2747
2748 txg_wait_synced(spa_get_dsl(spa), 0);
2749 mmp_signal_all_threads();
2750 txg_wait_synced(spa_get_dsl(spa), 0);
2751
2752 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
2753 mutex_enter(&spa->spa_props_lock);
2754
2755 if (spa_multihost(spa)) {
2756 mmp_thread_stop(spa);
2757 spa->spa_multihost = B_FALSE;
2758 }
2759
2760 mutex_exit(&spa->spa_props_lock);
2761 spa_config_exit(spa, SCL_CONFIG, FTAG);
2762 }
2763
2764 /* ARGSUSED */
2765 void
2766 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id)
2767 {
2768 spa_t *spa;
2769 uint64_t initial_version = SPA_VERSION_INITIAL;
2770 uint64_t version, newversion;
2771 nvlist_t *nvroot, *props;
2772 char *name;
2773
2774 if (ztest_opts.zo_mmp_test)
2775 return;
2776
2777 mutex_enter(&ztest_vdev_lock);
2778 name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool);
2779
2780 /*
2781 * Clean up from previous runs.
2782 */
2783 (void) spa_destroy(name);
2784
2785 nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0,
2786 0, ztest_opts.zo_raidz, ztest_opts.zo_mirrors, 1);
2787
2788 /*
2789 * If we're configuring a RAIDZ device then make sure that the
2790 * the initial version is capable of supporting that feature.
2791 */
2792 switch (ztest_opts.zo_raidz_parity) {
2793 case 0:
2794 case 1:
2795 initial_version = SPA_VERSION_INITIAL;
2796 break;
2797 case 2:
2798 initial_version = SPA_VERSION_RAIDZ2;
2799 break;
2800 case 3:
2801 initial_version = SPA_VERSION_RAIDZ3;
2802 break;
2803 }
2804
2805 /*
2806 * Create a pool with a spa version that can be upgraded. Pick
2807 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
2808 */
2809 do {
2810 version = ztest_random_spa_version(initial_version);
2811 } while (version > SPA_VERSION_BEFORE_FEATURES);
2812
2813 props = fnvlist_alloc();
2814 fnvlist_add_uint64(props,
2815 zpool_prop_to_name(ZPOOL_PROP_VERSION), version);
2816 VERIFY3S(spa_create(name, nvroot, props, NULL, NULL), ==, 0);
2817 fnvlist_free(nvroot);
2818 fnvlist_free(props);
2819
2820 VERIFY3S(spa_open(name, &spa, FTAG), ==, 0);
2821 VERIFY3U(spa_version(spa), ==, version);
2822 newversion = ztest_random_spa_version(version + 1);
2823
2824 if (ztest_opts.zo_verbose >= 4) {
2825 (void) printf("upgrading spa version from %llu to %llu\n",
2826 (u_longlong_t)version, (u_longlong_t)newversion);
2827 }
2828
2829 spa_upgrade(spa, newversion);
2830 VERIFY3U(spa_version(spa), >, version);
2831 VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config,
2832 zpool_prop_to_name(ZPOOL_PROP_VERSION)));
2833 spa_close(spa, FTAG);
2834
2835 strfree(name);
2836 mutex_exit(&ztest_vdev_lock);
2837 }
2838
2839 static vdev_t *
2840 vdev_lookup_by_path(vdev_t *vd, const char *path)
2841 {
2842 vdev_t *mvd;
2843 int c;
2844
2845 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
2846 return (vd);
2847
2848 for (c = 0; c < vd->vdev_children; c++)
2849 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
2850 NULL)
2851 return (mvd);
2852
2853 return (NULL);
2854 }
2855
2856 /*
2857 * Find the first available hole which can be used as a top-level.
2858 */
2859 int
2860 find_vdev_hole(spa_t *spa)
2861 {
2862 vdev_t *rvd = spa->spa_root_vdev;
2863 int c;
2864
2865 ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV);
2866
2867 for (c = 0; c < rvd->vdev_children; c++) {
2868 vdev_t *cvd = rvd->vdev_child[c];
2869
2870 if (cvd->vdev_ishole)
2871 break;
2872 }
2873 return (c);
2874 }
2875
2876 /*
2877 * Verify that vdev_add() works as expected.
2878 */
2879 /* ARGSUSED */
2880 void
2881 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
2882 {
2883 ztest_shared_t *zs = ztest_shared;
2884 spa_t *spa = ztest_spa;
2885 uint64_t leaves;
2886 uint64_t guid;
2887 nvlist_t *nvroot;
2888 int error;
2889
2890 if (ztest_opts.zo_mmp_test)
2891 return;
2892
2893 mutex_enter(&ztest_vdev_lock);
2894 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz;
2895
2896 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2897
2898 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves;
2899
2900 /*
2901 * If we have slogs then remove them 1/4 of the time.
2902 */
2903 if (spa_has_slogs(spa) && ztest_random(4) == 0) {
2904 /*
2905 * Grab the guid from the head of the log class rotor.
2906 */
2907 guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid;
2908
2909 spa_config_exit(spa, SCL_VDEV, FTAG);
2910
2911 /*
2912 * We have to grab the zs_name_lock as writer to
2913 * prevent a race between removing a slog (dmu_objset_find)
2914 * and destroying a dataset. Removing the slog will
2915 * grab a reference on the dataset which may cause
2916 * dsl_destroy_head() to fail with EBUSY thus
2917 * leaving the dataset in an inconsistent state.
2918 */
2919 rw_wrlock(&ztest_name_lock);
2920 error = spa_vdev_remove(spa, guid, B_FALSE);
2921 rw_unlock(&ztest_name_lock);
2922
2923 if (error && error != EEXIST)
2924 fatal(0, "spa_vdev_remove() = %d", error);
2925 } else {
2926 spa_config_exit(spa, SCL_VDEV, FTAG);
2927
2928 /*
2929 * Make 1/4 of the devices be log devices.
2930 */
2931 nvroot = make_vdev_root(NULL, NULL, NULL,
2932 ztest_opts.zo_vdev_size, 0,
2933 ztest_random(4) == 0, ztest_opts.zo_raidz,
2934 zs->zs_mirrors, 1);
2935
2936 error = spa_vdev_add(spa, nvroot);
2937 nvlist_free(nvroot);
2938
2939 if (error == ENOSPC)
2940 ztest_record_enospc("spa_vdev_add");
2941 else if (error != 0)
2942 fatal(0, "spa_vdev_add() = %d", error);
2943 }
2944
2945 mutex_exit(&ztest_vdev_lock);
2946 }
2947
2948 /*
2949 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
2950 */
2951 /* ARGSUSED */
2952 void
2953 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
2954 {
2955 ztest_shared_t *zs = ztest_shared;
2956 spa_t *spa = ztest_spa;
2957 vdev_t *rvd = spa->spa_root_vdev;
2958 spa_aux_vdev_t *sav;
2959 char *aux;
2960 char *path;
2961 uint64_t guid = 0;
2962 int error;
2963
2964 if (ztest_opts.zo_mmp_test)
2965 return;
2966
2967 path = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
2968
2969 if (ztest_random(2) == 0) {
2970 sav = &spa->spa_spares;
2971 aux = ZPOOL_CONFIG_SPARES;
2972 } else {
2973 sav = &spa->spa_l2cache;
2974 aux = ZPOOL_CONFIG_L2CACHE;
2975 }
2976
2977 mutex_enter(&ztest_vdev_lock);
2978
2979 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2980
2981 if (sav->sav_count != 0 && ztest_random(4) == 0) {
2982 /*
2983 * Pick a random device to remove.
2984 */
2985 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid;
2986 } else {
2987 /*
2988 * Find an unused device we can add.
2989 */
2990 zs->zs_vdev_aux = 0;
2991 for (;;) {
2992 int c;
2993 (void) snprintf(path, MAXPATHLEN, ztest_aux_template,
2994 ztest_opts.zo_dir, ztest_opts.zo_pool, aux,
2995 zs->zs_vdev_aux);
2996 for (c = 0; c < sav->sav_count; c++)
2997 if (strcmp(sav->sav_vdevs[c]->vdev_path,
2998 path) == 0)
2999 break;
3000 if (c == sav->sav_count &&
3001 vdev_lookup_by_path(rvd, path) == NULL)
3002 break;
3003 zs->zs_vdev_aux++;
3004 }
3005 }
3006
3007 spa_config_exit(spa, SCL_VDEV, FTAG);
3008
3009 if (guid == 0) {
3010 /*
3011 * Add a new device.
3012 */
3013 nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL,
3014 (ztest_opts.zo_vdev_size * 5) / 4, 0, 0, 0, 0, 1);
3015 error = spa_vdev_add(spa, nvroot);
3016 if (error != 0)
3017 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error);
3018 nvlist_free(nvroot);
3019 } else {
3020 /*
3021 * Remove an existing device. Sometimes, dirty its
3022 * vdev state first to make sure we handle removal
3023 * of devices that have pending state changes.
3024 */
3025 if (ztest_random(2) == 0)
3026 (void) vdev_online(spa, guid, 0, NULL);
3027
3028 error = spa_vdev_remove(spa, guid, B_FALSE);
3029 if (error != 0 && error != EBUSY)
3030 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error);
3031 }
3032
3033 mutex_exit(&ztest_vdev_lock);
3034
3035 umem_free(path, MAXPATHLEN);
3036 }
3037
3038 /*
3039 * split a pool if it has mirror tlvdevs
3040 */
3041 /* ARGSUSED */
3042 void
3043 ztest_split_pool(ztest_ds_t *zd, uint64_t id)
3044 {
3045 ztest_shared_t *zs = ztest_shared;
3046 spa_t *spa = ztest_spa;
3047 vdev_t *rvd = spa->spa_root_vdev;
3048 nvlist_t *tree, **child, *config, *split, **schild;
3049 uint_t c, children, schildren = 0, lastlogid = 0;
3050 int error = 0;
3051
3052 if (ztest_opts.zo_mmp_test)
3053 return;
3054
3055 mutex_enter(&ztest_vdev_lock);
3056
3057 /* ensure we have a useable config; mirrors of raidz aren't supported */
3058 if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) {
3059 mutex_exit(&ztest_vdev_lock);
3060 return;
3061 }
3062
3063 /* clean up the old pool, if any */
3064 (void) spa_destroy("splitp");
3065
3066 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3067
3068 /* generate a config from the existing config */
3069 mutex_enter(&spa->spa_props_lock);
3070 VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE,
3071 &tree) == 0);
3072 mutex_exit(&spa->spa_props_lock);
3073
3074 VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child,
3075 &children) == 0);
3076
3077 schild = malloc(rvd->vdev_children * sizeof (nvlist_t *));
3078 for (c = 0; c < children; c++) {
3079 vdev_t *tvd = rvd->vdev_child[c];
3080 nvlist_t **mchild;
3081 uint_t mchildren;
3082
3083 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
3084 VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME,
3085 0) == 0);
3086 VERIFY(nvlist_add_string(schild[schildren],
3087 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0);
3088 VERIFY(nvlist_add_uint64(schild[schildren],
3089 ZPOOL_CONFIG_IS_HOLE, 1) == 0);
3090 if (lastlogid == 0)
3091 lastlogid = schildren;
3092 ++schildren;
3093 continue;
3094 }
3095 lastlogid = 0;
3096 VERIFY(nvlist_lookup_nvlist_array(child[c],
3097 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0);
3098 VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0);
3099 }
3100
3101 /* OK, create a config that can be used to split */
3102 VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0);
3103 VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE,
3104 VDEV_TYPE_ROOT) == 0);
3105 VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild,
3106 lastlogid != 0 ? lastlogid : schildren) == 0);
3107
3108 VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0);
3109 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0);
3110
3111 for (c = 0; c < schildren; c++)
3112 nvlist_free(schild[c]);
3113 free(schild);
3114 nvlist_free(split);
3115
3116 spa_config_exit(spa, SCL_VDEV, FTAG);
3117
3118 (void) rw_wrlock(&ztest_name_lock);
3119 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
3120 (void) rw_unlock(&ztest_name_lock);
3121
3122 nvlist_free(config);
3123
3124 if (error == 0) {
3125 (void) printf("successful split - results:\n");
3126 mutex_enter(&spa_namespace_lock);
3127 show_pool_stats(spa);
3128 show_pool_stats(spa_lookup("splitp"));
3129 mutex_exit(&spa_namespace_lock);
3130 ++zs->zs_splits;
3131 --zs->zs_mirrors;
3132 }
3133 mutex_exit(&ztest_vdev_lock);
3134
3135 }
3136
3137 /*
3138 * Verify that we can attach and detach devices.
3139 */
3140 /* ARGSUSED */
3141 void
3142 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
3143 {
3144 ztest_shared_t *zs = ztest_shared;
3145 spa_t *spa = ztest_spa;
3146 spa_aux_vdev_t *sav = &spa->spa_spares;
3147 vdev_t *rvd = spa->spa_root_vdev;
3148 vdev_t *oldvd, *newvd, *pvd;
3149 nvlist_t *root;
3150 uint64_t leaves;
3151 uint64_t leaf, top;
3152 uint64_t ashift = ztest_get_ashift();
3153 uint64_t oldguid, pguid;
3154 uint64_t oldsize, newsize;
3155 char *oldpath, *newpath;
3156 int replacing;
3157 int oldvd_has_siblings = B_FALSE;
3158 int newvd_is_spare = B_FALSE;
3159 int oldvd_is_log;
3160 int error, expected_error;
3161
3162 if (ztest_opts.zo_mmp_test)
3163 return;
3164
3165 oldpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3166 newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3167
3168 mutex_enter(&ztest_vdev_lock);
3169 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
3170
3171 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3172
3173 /*
3174 * Decide whether to do an attach or a replace.
3175 */
3176 replacing = ztest_random(2);
3177
3178 /*
3179 * Pick a random top-level vdev.
3180 */
3181 top = ztest_random_vdev_top(spa, B_TRUE);
3182
3183 /*
3184 * Pick a random leaf within it.
3185 */
3186 leaf = ztest_random(leaves);
3187
3188 /*
3189 * Locate this vdev.
3190 */
3191 oldvd = rvd->vdev_child[top];
3192 if (zs->zs_mirrors >= 1) {
3193 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops);
3194 ASSERT(oldvd->vdev_children >= zs->zs_mirrors);
3195 oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz];
3196 }
3197 if (ztest_opts.zo_raidz > 1) {
3198 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops);
3199 ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz);
3200 oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz];
3201 }
3202
3203 /*
3204 * If we're already doing an attach or replace, oldvd may be a
3205 * mirror vdev -- in which case, pick a random child.
3206 */
3207 while (oldvd->vdev_children != 0) {
3208 oldvd_has_siblings = B_TRUE;
3209 ASSERT(oldvd->vdev_children >= 2);
3210 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
3211 }
3212
3213 oldguid = oldvd->vdev_guid;
3214 oldsize = vdev_get_min_asize(oldvd);
3215 oldvd_is_log = oldvd->vdev_top->vdev_islog;
3216 (void) strcpy(oldpath, oldvd->vdev_path);
3217 pvd = oldvd->vdev_parent;
3218 pguid = pvd->vdev_guid;
3219
3220 /*
3221 * If oldvd has siblings, then half of the time, detach it.
3222 */
3223 if (oldvd_has_siblings && ztest_random(2) == 0) {
3224 spa_config_exit(spa, SCL_VDEV, FTAG);
3225 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
3226 if (error != 0 && error != ENODEV && error != EBUSY &&
3227 error != ENOTSUP)
3228 fatal(0, "detach (%s) returned %d", oldpath, error);
3229 goto out;
3230 }
3231
3232 /*
3233 * For the new vdev, choose with equal probability between the two
3234 * standard paths (ending in either 'a' or 'b') or a random hot spare.
3235 */
3236 if (sav->sav_count != 0 && ztest_random(3) == 0) {
3237 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
3238 newvd_is_spare = B_TRUE;
3239 (void) strcpy(newpath, newvd->vdev_path);
3240 } else {
3241 (void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
3242 ztest_opts.zo_dir, ztest_opts.zo_pool,
3243 top * leaves + leaf);
3244 if (ztest_random(2) == 0)
3245 newpath[strlen(newpath) - 1] = 'b';
3246 newvd = vdev_lookup_by_path(rvd, newpath);
3247 }
3248
3249 if (newvd) {
3250 newsize = vdev_get_min_asize(newvd);
3251 } else {
3252 /*
3253 * Make newsize a little bigger or smaller than oldsize.
3254 * If it's smaller, the attach should fail.
3255 * If it's larger, and we're doing a replace,
3256 * we should get dynamic LUN growth when we're done.
3257 */
3258 newsize = 10 * oldsize / (9 + ztest_random(3));
3259 }
3260
3261 /*
3262 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
3263 * unless it's a replace; in that case any non-replacing parent is OK.
3264 *
3265 * If newvd is already part of the pool, it should fail with EBUSY.
3266 *
3267 * If newvd is too small, it should fail with EOVERFLOW.
3268 */
3269 if (pvd->vdev_ops != &vdev_mirror_ops &&
3270 pvd->vdev_ops != &vdev_root_ops && (!replacing ||
3271 pvd->vdev_ops == &vdev_replacing_ops ||
3272 pvd->vdev_ops == &vdev_spare_ops))
3273 expected_error = ENOTSUP;
3274 else if (newvd_is_spare && (!replacing || oldvd_is_log))
3275 expected_error = ENOTSUP;
3276 else if (newvd == oldvd)
3277 expected_error = replacing ? 0 : EBUSY;
3278 else if (vdev_lookup_by_path(rvd, newpath) != NULL)
3279 expected_error = EBUSY;
3280 else if (newsize < oldsize)
3281 expected_error = EOVERFLOW;
3282 else if (ashift > oldvd->vdev_top->vdev_ashift)
3283 expected_error = EDOM;
3284 else
3285 expected_error = 0;
3286
3287 spa_config_exit(spa, SCL_VDEV, FTAG);
3288
3289 /*
3290 * Build the nvlist describing newpath.
3291 */
3292 root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0,
3293 ashift, 0, 0, 0, 1);
3294
3295 error = spa_vdev_attach(spa, oldguid, root, replacing);
3296
3297 nvlist_free(root);
3298
3299 /*
3300 * If our parent was the replacing vdev, but the replace completed,
3301 * then instead of failing with ENOTSUP we may either succeed,
3302 * fail with ENODEV, or fail with EOVERFLOW.
3303 */
3304 if (expected_error == ENOTSUP &&
3305 (error == 0 || error == ENODEV || error == EOVERFLOW))
3306 expected_error = error;
3307
3308 /*
3309 * If someone grew the LUN, the replacement may be too small.
3310 */
3311 if (error == EOVERFLOW || error == EBUSY)
3312 expected_error = error;
3313
3314 /* XXX workaround 6690467 */
3315 if (error != expected_error && expected_error != EBUSY) {
3316 fatal(0, "attach (%s %llu, %s %llu, %d) "
3317 "returned %d, expected %d",
3318 oldpath, oldsize, newpath,
3319 newsize, replacing, error, expected_error);
3320 }
3321 out:
3322 mutex_exit(&ztest_vdev_lock);
3323
3324 umem_free(oldpath, MAXPATHLEN);
3325 umem_free(newpath, MAXPATHLEN);
3326 }
3327
3328 /*
3329 * Callback function which expands the physical size of the vdev.
3330 */
3331 vdev_t *
3332 grow_vdev(vdev_t *vd, void *arg)
3333 {
3334 ASSERTV(spa_t *spa = vd->vdev_spa);
3335 size_t *newsize = arg;
3336 size_t fsize;
3337 int fd;
3338
3339 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
3340 ASSERT(vd->vdev_ops->vdev_op_leaf);
3341
3342 if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
3343 return (vd);
3344
3345 fsize = lseek(fd, 0, SEEK_END);
3346 VERIFY(ftruncate(fd, *newsize) == 0);
3347
3348 if (ztest_opts.zo_verbose >= 6) {
3349 (void) printf("%s grew from %lu to %lu bytes\n",
3350 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
3351 }
3352 (void) close(fd);
3353 return (NULL);
3354 }
3355
3356 /*
3357 * Callback function which expands a given vdev by calling vdev_online().
3358 */
3359 /* ARGSUSED */
3360 vdev_t *
3361 online_vdev(vdev_t *vd, void *arg)
3362 {
3363 spa_t *spa = vd->vdev_spa;
3364 vdev_t *tvd = vd->vdev_top;
3365 uint64_t guid = vd->vdev_guid;
3366 uint64_t generation = spa->spa_config_generation + 1;
3367 vdev_state_t newstate = VDEV_STATE_UNKNOWN;
3368 int error;
3369
3370 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
3371 ASSERT(vd->vdev_ops->vdev_op_leaf);
3372
3373 /* Calling vdev_online will initialize the new metaslabs */
3374 spa_config_exit(spa, SCL_STATE, spa);
3375 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
3376 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3377
3378 /*
3379 * If vdev_online returned an error or the underlying vdev_open
3380 * failed then we abort the expand. The only way to know that
3381 * vdev_open fails is by checking the returned newstate.
3382 */
3383 if (error || newstate != VDEV_STATE_HEALTHY) {
3384 if (ztest_opts.zo_verbose >= 5) {
3385 (void) printf("Unable to expand vdev, state %llu, "
3386 "error %d\n", (u_longlong_t)newstate, error);
3387 }
3388 return (vd);
3389 }
3390 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
3391
3392 /*
3393 * Since we dropped the lock we need to ensure that we're
3394 * still talking to the original vdev. It's possible this
3395 * vdev may have been detached/replaced while we were
3396 * trying to online it.
3397 */
3398 if (generation != spa->spa_config_generation) {
3399 if (ztest_opts.zo_verbose >= 5) {
3400 (void) printf("vdev configuration has changed, "
3401 "guid %llu, state %llu, expected gen %llu, "
3402 "got gen %llu\n",
3403 (u_longlong_t)guid,
3404 (u_longlong_t)tvd->vdev_state,
3405 (u_longlong_t)generation,
3406 (u_longlong_t)spa->spa_config_generation);
3407 }
3408 return (vd);
3409 }
3410 return (NULL);
3411 }
3412
3413 /*
3414 * Traverse the vdev tree calling the supplied function.
3415 * We continue to walk the tree until we either have walked all
3416 * children or we receive a non-NULL return from the callback.
3417 * If a NULL callback is passed, then we just return back the first
3418 * leaf vdev we encounter.
3419 */
3420 vdev_t *
3421 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
3422 {
3423 uint_t c;
3424
3425 if (vd->vdev_ops->vdev_op_leaf) {
3426 if (func == NULL)
3427 return (vd);
3428 else
3429 return (func(vd, arg));
3430 }
3431
3432 for (c = 0; c < vd->vdev_children; c++) {
3433 vdev_t *cvd = vd->vdev_child[c];
3434 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
3435 return (cvd);
3436 }
3437 return (NULL);
3438 }
3439
3440 /*
3441 * Verify that dynamic LUN growth works as expected.
3442 */
3443 /* ARGSUSED */
3444 void
3445 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
3446 {
3447 spa_t *spa = ztest_spa;
3448 vdev_t *vd, *tvd;
3449 metaslab_class_t *mc;
3450 metaslab_group_t *mg;
3451 size_t psize, newsize;
3452 uint64_t top;
3453 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
3454
3455 mutex_enter(&ztest_vdev_lock);
3456 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3457
3458 top = ztest_random_vdev_top(spa, B_TRUE);
3459
3460 tvd = spa->spa_root_vdev->vdev_child[top];
3461 mg = tvd->vdev_mg;
3462 mc = mg->mg_class;
3463 old_ms_count = tvd->vdev_ms_count;
3464 old_class_space = metaslab_class_get_space(mc);
3465
3466 /*
3467 * Determine the size of the first leaf vdev associated with
3468 * our top-level device.
3469 */
3470 vd = vdev_walk_tree(tvd, NULL, NULL);
3471 ASSERT3P(vd, !=, NULL);
3472 ASSERT(vd->vdev_ops->vdev_op_leaf);
3473
3474 psize = vd->vdev_psize;
3475
3476 /*
3477 * We only try to expand the vdev if it's healthy, less than 4x its
3478 * original size, and it has a valid psize.
3479 */
3480 if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
3481 psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) {
3482 spa_config_exit(spa, SCL_STATE, spa);
3483 mutex_exit(&ztest_vdev_lock);
3484 return;
3485 }
3486 ASSERT(psize > 0);
3487 newsize = psize + psize / 8;
3488 ASSERT3U(newsize, >, psize);
3489
3490 if (ztest_opts.zo_verbose >= 6) {
3491 (void) printf("Expanding LUN %s from %lu to %lu\n",
3492 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
3493 }
3494
3495 /*
3496 * Growing the vdev is a two step process:
3497 * 1). expand the physical size (i.e. relabel)
3498 * 2). online the vdev to create the new metaslabs
3499 */
3500 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
3501 vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
3502 tvd->vdev_state != VDEV_STATE_HEALTHY) {
3503 if (ztest_opts.zo_verbose >= 5) {
3504 (void) printf("Could not expand LUN because "
3505 "the vdev configuration changed.\n");
3506 }
3507 spa_config_exit(spa, SCL_STATE, spa);
3508 mutex_exit(&ztest_vdev_lock);
3509 return;
3510 }
3511
3512 spa_config_exit(spa, SCL_STATE, spa);
3513
3514 /*
3515 * Expanding the LUN will update the config asynchronously,
3516 * thus we must wait for the async thread to complete any
3517 * pending tasks before proceeding.
3518 */
3519 for (;;) {
3520 boolean_t done;
3521 mutex_enter(&spa->spa_async_lock);
3522 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
3523 mutex_exit(&spa->spa_async_lock);
3524 if (done)
3525 break;
3526 txg_wait_synced(spa_get_dsl(spa), 0);
3527 (void) poll(NULL, 0, 100);
3528 }
3529
3530 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3531
3532 tvd = spa->spa_root_vdev->vdev_child[top];
3533 new_ms_count = tvd->vdev_ms_count;
3534 new_class_space = metaslab_class_get_space(mc);
3535
3536 if (tvd->vdev_mg != mg || mg->mg_class != mc) {
3537 if (ztest_opts.zo_verbose >= 5) {
3538 (void) printf("Could not verify LUN expansion due to "
3539 "intervening vdev offline or remove.\n");
3540 }
3541 spa_config_exit(spa, SCL_STATE, spa);
3542 mutex_exit(&ztest_vdev_lock);
3543 return;
3544 }
3545
3546 /*
3547 * Make sure we were able to grow the vdev.
3548 */
3549 if (new_ms_count <= old_ms_count)
3550 fatal(0, "LUN expansion failed: ms_count %llu <= %llu\n",
3551 old_ms_count, new_ms_count);
3552
3553 /*
3554 * Make sure we were able to grow the pool.
3555 */
3556 if (new_class_space <= old_class_space)
3557 fatal(0, "LUN expansion failed: class_space %llu <= %llu\n",
3558 old_class_space, new_class_space);
3559
3560 if (ztest_opts.zo_verbose >= 5) {
3561 char oldnumbuf[NN_NUMBUF_SZ], newnumbuf[NN_NUMBUF_SZ];
3562
3563 nicenum(old_class_space, oldnumbuf, sizeof (oldnumbuf));
3564 nicenum(new_class_space, newnumbuf, sizeof (newnumbuf));
3565 (void) printf("%s grew from %s to %s\n",
3566 spa->spa_name, oldnumbuf, newnumbuf);
3567 }
3568
3569 spa_config_exit(spa, SCL_STATE, spa);
3570 mutex_exit(&ztest_vdev_lock);
3571 }
3572
3573 /*
3574 * Verify that dmu_objset_{create,destroy,open,close} work as expected.
3575 */
3576 /* ARGSUSED */
3577 static void
3578 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
3579 {
3580 /*
3581 * Create the objects common to all ztest datasets.
3582 */
3583 VERIFY(zap_create_claim(os, ZTEST_DIROBJ,
3584 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0);
3585 }
3586
3587 static int
3588 ztest_dataset_create(char *dsname)
3589 {
3590 int err;
3591 uint64_t rand;
3592 dsl_crypto_params_t *dcp = NULL;
3593
3594 /*
3595 * 50% of the time, we create encrypted datasets
3596 * using a random cipher suite and a hard-coded
3597 * wrapping key.
3598 */
3599 rand = ztest_random(2);
3600 if (rand != 0) {
3601 nvlist_t *crypto_args = fnvlist_alloc();
3602 nvlist_t *props = fnvlist_alloc();
3603
3604 /* slight bias towards the default cipher suite */
3605 rand = ztest_random(ZIO_CRYPT_FUNCTIONS);
3606 if (rand < ZIO_CRYPT_AES_128_CCM)
3607 rand = ZIO_CRYPT_ON;
3608
3609 fnvlist_add_uint64(props,
3610 zfs_prop_to_name(ZFS_PROP_ENCRYPTION), rand);
3611 fnvlist_add_uint8_array(crypto_args, "wkeydata",
3612 (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
3613
3614 /*
3615 * These parameters aren't really used by the kernel. They
3616 * are simply stored so that userspace knows how to load
3617 * the wrapping key.
3618 */
3619 fnvlist_add_uint64(props,
3620 zfs_prop_to_name(ZFS_PROP_KEYFORMAT), ZFS_KEYFORMAT_RAW);
3621 fnvlist_add_string(props,
3622 zfs_prop_to_name(ZFS_PROP_KEYLOCATION), "prompt");
3623 fnvlist_add_uint64(props,
3624 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 0ULL);
3625 fnvlist_add_uint64(props,
3626 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 0ULL);
3627
3628 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, props,
3629 crypto_args, &dcp));
3630
3631 fnvlist_free(crypto_args);
3632 fnvlist_free(props);
3633 }
3634
3635 err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, dcp,
3636 ztest_objset_create_cb, NULL);
3637 dsl_crypto_params_free(dcp, !!err);
3638
3639 rand = ztest_random(100);
3640 if (err || rand < 80)
3641 return (err);
3642
3643 if (ztest_opts.zo_verbose >= 5)
3644 (void) printf("Setting dataset %s to sync always\n", dsname);
3645 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
3646 ZFS_SYNC_ALWAYS, B_FALSE));
3647 }
3648
3649 /* ARGSUSED */
3650 static int
3651 ztest_objset_destroy_cb(const char *name, void *arg)
3652 {
3653 objset_t *os;
3654 dmu_object_info_t doi;
3655 int error;
3656
3657 /*
3658 * Verify that the dataset contains a directory object.
3659 */
3660 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
3661 B_TRUE, FTAG, &os));
3662 error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
3663 if (error != ENOENT) {
3664 /* We could have crashed in the middle of destroying it */
3665 ASSERT0(error);
3666 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
3667 ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
3668 }
3669 dmu_objset_disown(os, B_TRUE, FTAG);
3670
3671 /*
3672 * Destroy the dataset.
3673 */
3674 if (strchr(name, '@') != NULL) {
3675 VERIFY0(dsl_destroy_snapshot(name, B_TRUE));
3676 } else {
3677 error = dsl_destroy_head(name);
3678 /* There could be a hold on this dataset */
3679 if (error != EBUSY)
3680 ASSERT0(error);
3681 }
3682 return (0);
3683 }
3684
3685 static boolean_t
3686 ztest_snapshot_create(char *osname, uint64_t id)
3687 {
3688 char snapname[ZFS_MAX_DATASET_NAME_LEN];
3689 int error;
3690
3691 (void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id);
3692
3693 error = dmu_objset_snapshot_one(osname, snapname);
3694 if (error == ENOSPC) {
3695 ztest_record_enospc(FTAG);
3696 return (B_FALSE);
3697 }
3698 if (error != 0 && error != EEXIST) {
3699 fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname,
3700 snapname, error);
3701 }
3702 return (B_TRUE);
3703 }
3704
3705 static boolean_t
3706 ztest_snapshot_destroy(char *osname, uint64_t id)
3707 {
3708 char snapname[ZFS_MAX_DATASET_NAME_LEN];
3709 int error;
3710
3711 (void) snprintf(snapname, sizeof (snapname), "%s@%llu", osname,
3712 (u_longlong_t)id);
3713
3714 error = dsl_destroy_snapshot(snapname, B_FALSE);
3715 if (error != 0 && error != ENOENT)
3716 fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error);
3717 return (B_TRUE);
3718 }
3719
3720 /* ARGSUSED */
3721 void
3722 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
3723 {
3724 ztest_ds_t *zdtmp;
3725 int iters;
3726 int error;
3727 objset_t *os, *os2;
3728 char name[ZFS_MAX_DATASET_NAME_LEN];
3729 zilog_t *zilog;
3730 int i;
3731
3732 zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
3733
3734 (void) rw_rdlock(&ztest_name_lock);
3735
3736 (void) snprintf(name, sizeof (name), "%s/temp_%llu",
3737 ztest_opts.zo_pool, (u_longlong_t)id);
3738
3739 /*
3740 * If this dataset exists from a previous run, process its replay log
3741 * half of the time. If we don't replay it, then dsl_destroy_head()
3742 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
3743 */
3744 if (ztest_random(2) == 0 &&
3745 ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
3746 B_TRUE, FTAG, &os) == 0) {
3747 ztest_zd_init(zdtmp, NULL, os);
3748 zil_replay(os, zdtmp, ztest_replay_vector);
3749 ztest_zd_fini(zdtmp);
3750 txg_wait_synced(dmu_objset_pool(os), 0);
3751 dmu_objset_disown(os, B_TRUE, FTAG);
3752 }
3753
3754 /*
3755 * There may be an old instance of the dataset we're about to
3756 * create lying around from a previous run. If so, destroy it
3757 * and all of its snapshots.
3758 */
3759 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
3760 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
3761
3762 /*
3763 * Verify that the destroyed dataset is no longer in the namespace.
3764 */
3765 VERIFY3U(ENOENT, ==, ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
3766 B_TRUE, FTAG, &os));
3767
3768 /*
3769 * Verify that we can create a new dataset.
3770 */
3771 error = ztest_dataset_create(name);
3772 if (error) {
3773 if (error == ENOSPC) {
3774 ztest_record_enospc(FTAG);
3775 goto out;
3776 }
3777 fatal(0, "dmu_objset_create(%s) = %d", name, error);
3778 }
3779
3780 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, B_TRUE,
3781 FTAG, &os));
3782
3783 ztest_zd_init(zdtmp, NULL, os);
3784
3785 /*
3786 * Open the intent log for it.
3787 */
3788 zilog = zil_open(os, ztest_get_data);
3789
3790 /*
3791 * Put some objects in there, do a little I/O to them,
3792 * and randomly take a couple of snapshots along the way.
3793 */
3794 iters = ztest_random(5);
3795 for (i = 0; i < iters; i++) {
3796 ztest_dmu_object_alloc_free(zdtmp, id);
3797 if (ztest_random(iters) == 0)
3798 (void) ztest_snapshot_create(name, i);
3799 }
3800
3801 /*
3802 * Verify that we cannot create an existing dataset.
3803 */
3804 VERIFY3U(EEXIST, ==,
3805 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL, NULL));
3806
3807 /*
3808 * Verify that we can hold an objset that is also owned.
3809 */
3810 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2));
3811 dmu_objset_rele(os2, FTAG);
3812
3813 /*
3814 * Verify that we cannot own an objset that is already owned.
3815 */
3816 VERIFY3U(EBUSY, ==, ztest_dmu_objset_own(name, DMU_OST_OTHER,
3817 B_FALSE, B_TRUE, FTAG, &os2));
3818
3819 zil_close(zilog);
3820 txg_wait_synced(spa_get_dsl(os->os_spa), 0);
3821 dmu_objset_disown(os, B_TRUE, FTAG);
3822 ztest_zd_fini(zdtmp);
3823 out:
3824 (void) rw_unlock(&ztest_name_lock);
3825
3826 umem_free(zdtmp, sizeof (ztest_ds_t));
3827 }
3828
3829 /*
3830 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
3831 */
3832 void
3833 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
3834 {
3835 (void) rw_rdlock(&ztest_name_lock);
3836 (void) ztest_snapshot_destroy(zd->zd_name, id);
3837 (void) ztest_snapshot_create(zd->zd_name, id);
3838 (void) rw_unlock(&ztest_name_lock);
3839 }
3840
3841 /*
3842 * Cleanup non-standard snapshots and clones.
3843 */
3844 void
3845 ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
3846 {
3847 char *snap1name;
3848 char *clone1name;
3849 char *snap2name;
3850 char *clone2name;
3851 char *snap3name;
3852 int error;
3853
3854 snap1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
3855 clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
3856 snap2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
3857 clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
3858 snap3name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
3859
3860 (void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN,
3861 "%s@s1_%llu", osname, (u_longlong_t)id);
3862 (void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN,
3863 "%s/c1_%llu", osname, (u_longlong_t)id);
3864 (void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN,
3865 "%s@s2_%llu", clone1name, (u_longlong_t)id);
3866 (void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN,
3867 "%s/c2_%llu", osname, (u_longlong_t)id);
3868 (void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN,
3869 "%s@s3_%llu", clone1name, (u_longlong_t)id);
3870
3871 error = dsl_destroy_head(clone2name);
3872 if (error && error != ENOENT)
3873 fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error);
3874 error = dsl_destroy_snapshot(snap3name, B_FALSE);
3875 if (error && error != ENOENT)
3876 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error);
3877 error = dsl_destroy_snapshot(snap2name, B_FALSE);
3878 if (error && error != ENOENT)
3879 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error);
3880 error = dsl_destroy_head(clone1name);
3881 if (error && error != ENOENT)
3882 fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error);
3883 error = dsl_destroy_snapshot(snap1name, B_FALSE);
3884 if (error && error != ENOENT)
3885 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error);
3886
3887 umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
3888 umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
3889 umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
3890 umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
3891 umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
3892 }
3893
3894 /*
3895 * Verify dsl_dataset_promote handles EBUSY
3896 */
3897 void
3898 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
3899 {
3900 objset_t *os;
3901 char *snap1name;
3902 char *clone1name;
3903 char *snap2name;
3904 char *clone2name;
3905 char *snap3name;
3906 char *osname = zd->zd_name;
3907 int error;
3908
3909 snap1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
3910 clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
3911 snap2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
3912 clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
3913 snap3name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
3914
3915 (void) rw_rdlock(&ztest_name_lock);
3916
3917 ztest_dsl_dataset_cleanup(osname, id);
3918
3919 (void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN,
3920 "%s@s1_%llu", osname, (u_longlong_t)id);
3921 (void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN,
3922 "%s/c1_%llu", osname, (u_longlong_t)id);
3923 (void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN,
3924 "%s@s2_%llu", clone1name, (u_longlong_t)id);
3925 (void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN,
3926 "%s/c2_%llu", osname, (u_longlong_t)id);
3927 (void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN,
3928 "%s@s3_%llu", clone1name, (u_longlong_t)id);
3929
3930 error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1);
3931 if (error && error != EEXIST) {
3932 if (error == ENOSPC) {
3933 ztest_record_enospc(FTAG);
3934 goto out;
3935 }
3936 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error);
3937 }
3938
3939 error = dmu_objset_clone(clone1name, snap1name);
3940 if (error) {
3941 if (error == ENOSPC) {
3942 ztest_record_enospc(FTAG);
3943 goto out;
3944 }
3945 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error);
3946 }
3947
3948 error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1);
3949 if (error && error != EEXIST) {
3950 if (error == ENOSPC) {
3951 ztest_record_enospc(FTAG);
3952 goto out;
3953 }
3954 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error);
3955 }
3956
3957 error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1);
3958 if (error && error != EEXIST) {
3959 if (error == ENOSPC) {
3960 ztest_record_enospc(FTAG);
3961 goto out;
3962 }
3963 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error);
3964 }
3965
3966 error = dmu_objset_clone(clone2name, snap3name);
3967 if (error) {
3968 if (error == ENOSPC) {
3969 ztest_record_enospc(FTAG);
3970 goto out;
3971 }
3972 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error);
3973 }
3974
3975 error = ztest_dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, B_TRUE,
3976 FTAG, &os);
3977 if (error)
3978 fatal(0, "dmu_objset_own(%s) = %d", snap2name, error);
3979 error = dsl_dataset_promote(clone2name, NULL);
3980 if (error == ENOSPC) {
3981 dmu_objset_disown(os, B_TRUE, FTAG);
3982 ztest_record_enospc(FTAG);
3983 goto out;
3984 }
3985 if (error != EBUSY)
3986 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name,
3987 error);
3988 dmu_objset_disown(os, B_TRUE, FTAG);
3989
3990 out:
3991 ztest_dsl_dataset_cleanup(osname, id);
3992
3993 (void) rw_unlock(&ztest_name_lock);
3994
3995 umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
3996 umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
3997 umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
3998 umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
3999 umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
4000 }
4001
4002 #undef OD_ARRAY_SIZE
4003 #define OD_ARRAY_SIZE 4
4004
4005 /*
4006 * Verify that dmu_object_{alloc,free} work as expected.
4007 */
4008 void
4009 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
4010 {
4011 ztest_od_t *od;
4012 int batchsize;
4013 int size;
4014 int b;
4015
4016 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
4017 od = umem_alloc(size, UMEM_NOFAIL);
4018 batchsize = OD_ARRAY_SIZE;
4019
4020 for (b = 0; b < batchsize; b++)
4021 ztest_od_init(od + b, id, FTAG, b, DMU_OT_UINT64_OTHER,
4022 0, 0, 0);
4023
4024 /*
4025 * Destroy the previous batch of objects, create a new batch,
4026 * and do some I/O on the new objects.
4027 */
4028 if (ztest_object_init(zd, od, size, B_TRUE) != 0)
4029 return;
4030
4031 while (ztest_random(4 * batchsize) != 0)
4032 ztest_io(zd, od[ztest_random(batchsize)].od_object,
4033 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4034
4035 umem_free(od, size);
4036 }
4037
4038 #undef OD_ARRAY_SIZE
4039 #define OD_ARRAY_SIZE 2
4040
4041 /*
4042 * Verify that dmu_{read,write} work as expected.
4043 */
4044 void
4045 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
4046 {
4047 int size;
4048 ztest_od_t *od;
4049
4050 objset_t *os = zd->zd_os;
4051 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
4052 od = umem_alloc(size, UMEM_NOFAIL);
4053 dmu_tx_t *tx;
4054 int i, freeit, error;
4055 uint64_t n, s, txg;
4056 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
4057 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
4058 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
4059 uint64_t regions = 997;
4060 uint64_t stride = 123456789ULL;
4061 uint64_t width = 40;
4062 int free_percent = 5;
4063
4064 /*
4065 * This test uses two objects, packobj and bigobj, that are always
4066 * updated together (i.e. in the same tx) so that their contents are
4067 * in sync and can be compared. Their contents relate to each other
4068 * in a simple way: packobj is a dense array of 'bufwad' structures,
4069 * while bigobj is a sparse array of the same bufwads. Specifically,
4070 * for any index n, there are three bufwads that should be identical:
4071 *
4072 * packobj, at offset n * sizeof (bufwad_t)
4073 * bigobj, at the head of the nth chunk
4074 * bigobj, at the tail of the nth chunk
4075 *
4076 * The chunk size is arbitrary. It doesn't have to be a power of two,
4077 * and it doesn't have any relation to the object blocksize.
4078 * The only requirement is that it can hold at least two bufwads.
4079 *
4080 * Normally, we write the bufwad to each of these locations.
4081 * However, free_percent of the time we instead write zeroes to
4082 * packobj and perform a dmu_free_range() on bigobj. By comparing
4083 * bigobj to packobj, we can verify that the DMU is correctly
4084 * tracking which parts of an object are allocated and free,
4085 * and that the contents of the allocated blocks are correct.
4086 */
4087
4088 /*
4089 * Read the directory info. If it's the first time, set things up.
4090 */
4091 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, chunksize);
4092 ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
4093 chunksize);
4094
4095 if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
4096 umem_free(od, size);
4097 return;
4098 }
4099
4100 bigobj = od[0].od_object;
4101 packobj = od[1].od_object;
4102 chunksize = od[0].od_gen;
4103 ASSERT(chunksize == od[1].od_gen);
4104
4105 /*
4106 * Prefetch a random chunk of the big object.
4107 * Our aim here is to get some async reads in flight
4108 * for blocks that we may free below; the DMU should
4109 * handle this race correctly.
4110 */
4111 n = ztest_random(regions) * stride + ztest_random(width);
4112 s = 1 + ztest_random(2 * width - 1);
4113 dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize,
4114 ZIO_PRIORITY_SYNC_READ);
4115
4116 /*
4117 * Pick a random index and compute the offsets into packobj and bigobj.
4118 */
4119 n = ztest_random(regions) * stride + ztest_random(width);
4120 s = 1 + ztest_random(width - 1);
4121
4122 packoff = n * sizeof (bufwad_t);
4123 packsize = s * sizeof (bufwad_t);
4124
4125 bigoff = n * chunksize;
4126 bigsize = s * chunksize;
4127
4128 packbuf = umem_alloc(packsize, UMEM_NOFAIL);
4129 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
4130
4131 /*
4132 * free_percent of the time, free a range of bigobj rather than
4133 * overwriting it.
4134 */
4135 freeit = (ztest_random(100) < free_percent);
4136
4137 /*
4138 * Read the current contents of our objects.
4139 */
4140 error = dmu_read(os, packobj, packoff, packsize, packbuf,
4141 DMU_READ_PREFETCH);
4142 ASSERT0(error);
4143 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
4144 DMU_READ_PREFETCH);
4145 ASSERT0(error);
4146
4147 /*
4148 * Get a tx for the mods to both packobj and bigobj.
4149 */
4150 tx = dmu_tx_create(os);
4151
4152 dmu_tx_hold_write(tx, packobj, packoff, packsize);
4153
4154 if (freeit)
4155 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
4156 else
4157 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
4158
4159 /* This accounts for setting the checksum/compression. */
4160 dmu_tx_hold_bonus(tx, bigobj);
4161
4162 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4163 if (txg == 0) {
4164 umem_free(packbuf, packsize);
4165 umem_free(bigbuf, bigsize);
4166 umem_free(od, size);
4167 return;
4168 }
4169
4170 enum zio_checksum cksum;
4171 do {
4172 cksum = (enum zio_checksum)
4173 ztest_random_dsl_prop(ZFS_PROP_CHECKSUM);
4174 } while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS);
4175 dmu_object_set_checksum(os, bigobj, cksum, tx);
4176
4177 enum zio_compress comp;
4178 do {
4179 comp = (enum zio_compress)
4180 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION);
4181 } while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS);
4182 dmu_object_set_compress(os, bigobj, comp, tx);
4183
4184 /*
4185 * For each index from n to n + s, verify that the existing bufwad
4186 * in packobj matches the bufwads at the head and tail of the
4187 * corresponding chunk in bigobj. Then update all three bufwads
4188 * with the new values we want to write out.
4189 */
4190 for (i = 0; i < s; i++) {
4191 /* LINTED */
4192 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
4193 /* LINTED */
4194 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
4195 /* LINTED */
4196 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
4197
4198 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
4199 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
4200
4201 if (pack->bw_txg > txg)
4202 fatal(0, "future leak: got %llx, open txg is %llx",
4203 pack->bw_txg, txg);
4204
4205 if (pack->bw_data != 0 && pack->bw_index != n + i)
4206 fatal(0, "wrong index: got %llx, wanted %llx+%llx",
4207 pack->bw_index, n, i);
4208
4209 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
4210 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
4211
4212 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
4213 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
4214
4215 if (freeit) {
4216 bzero(pack, sizeof (bufwad_t));
4217 } else {
4218 pack->bw_index = n + i;
4219 pack->bw_txg = txg;
4220 pack->bw_data = 1 + ztest_random(-2ULL);
4221 }
4222 *bigH = *pack;
4223 *bigT = *pack;
4224 }
4225
4226 /*
4227 * We've verified all the old bufwads, and made new ones.
4228 * Now write them out.
4229 */
4230 dmu_write(os, packobj, packoff, packsize, packbuf, tx);
4231
4232 if (freeit) {
4233 if (ztest_opts.zo_verbose >= 7) {
4234 (void) printf("freeing offset %llx size %llx"
4235 " txg %llx\n",
4236 (u_longlong_t)bigoff,
4237 (u_longlong_t)bigsize,
4238 (u_longlong_t)txg);
4239 }
4240 VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx));
4241 } else {
4242 if (ztest_opts.zo_verbose >= 7) {
4243 (void) printf("writing offset %llx size %llx"
4244 " txg %llx\n",
4245 (u_longlong_t)bigoff,
4246 (u_longlong_t)bigsize,
4247 (u_longlong_t)txg);
4248 }
4249 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);
4250 }
4251
4252 dmu_tx_commit(tx);
4253
4254 /*
4255 * Sanity check the stuff we just wrote.
4256 */
4257 {
4258 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
4259 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
4260
4261 VERIFY(0 == dmu_read(os, packobj, packoff,
4262 packsize, packcheck, DMU_READ_PREFETCH));
4263 VERIFY(0 == dmu_read(os, bigobj, bigoff,
4264 bigsize, bigcheck, DMU_READ_PREFETCH));
4265
4266 ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
4267 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
4268
4269 umem_free(packcheck, packsize);
4270 umem_free(bigcheck, bigsize);
4271 }
4272
4273 umem_free(packbuf, packsize);
4274 umem_free(bigbuf, bigsize);
4275 umem_free(od, size);
4276 }
4277
4278 void
4279 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
4280 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
4281 {
4282 uint64_t i;
4283 bufwad_t *pack;
4284 bufwad_t *bigH;
4285 bufwad_t *bigT;
4286
4287 /*
4288 * For each index from n to n + s, verify that the existing bufwad
4289 * in packobj matches the bufwads at the head and tail of the
4290 * corresponding chunk in bigobj. Then update all three bufwads
4291 * with the new values we want to write out.
4292 */
4293 for (i = 0; i < s; i++) {
4294 /* LINTED */
4295 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
4296 /* LINTED */
4297 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
4298 /* LINTED */
4299 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
4300
4301 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
4302 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
4303
4304 if (pack->bw_txg > txg)
4305 fatal(0, "future leak: got %llx, open txg is %llx",
4306 pack->bw_txg, txg);
4307
4308 if (pack->bw_data != 0 && pack->bw_index != n + i)
4309 fatal(0, "wrong index: got %llx, wanted %llx+%llx",
4310 pack->bw_index, n, i);
4311
4312 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
4313 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
4314
4315 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
4316 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
4317
4318 pack->bw_index = n + i;
4319 pack->bw_txg = txg;
4320 pack->bw_data = 1 + ztest_random(-2ULL);
4321
4322 *bigH = *pack;
4323 *bigT = *pack;
4324 }
4325 }
4326
4327 #undef OD_ARRAY_SIZE
4328 #define OD_ARRAY_SIZE 2
4329
4330 void
4331 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
4332 {
4333 objset_t *os = zd->zd_os;
4334 ztest_od_t *od;
4335 dmu_tx_t *tx;
4336 uint64_t i;
4337 int error;
4338 int size;
4339 uint64_t n, s, txg;
4340 bufwad_t *packbuf, *bigbuf;
4341 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
4342 uint64_t blocksize = ztest_random_blocksize();
4343 uint64_t chunksize = blocksize;
4344 uint64_t regions = 997;
4345 uint64_t stride = 123456789ULL;
4346 uint64_t width = 9;
4347 dmu_buf_t *bonus_db;
4348 arc_buf_t **bigbuf_arcbufs;
4349 dmu_object_info_t doi;
4350
4351 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
4352 od = umem_alloc(size, UMEM_NOFAIL);
4353
4354 /*
4355 * This test uses two objects, packobj and bigobj, that are always
4356 * updated together (i.e. in the same tx) so that their contents are
4357 * in sync and can be compared. Their contents relate to each other
4358 * in a simple way: packobj is a dense array of 'bufwad' structures,
4359 * while bigobj is a sparse array of the same bufwads. Specifically,
4360 * for any index n, there are three bufwads that should be identical:
4361 *
4362 * packobj, at offset n * sizeof (bufwad_t)
4363 * bigobj, at the head of the nth chunk
4364 * bigobj, at the tail of the nth chunk
4365 *
4366 * The chunk size is set equal to bigobj block size so that
4367 * dmu_assign_arcbuf_by_dbuf() can be tested for object updates.
4368 */
4369
4370 /*
4371 * Read the directory info. If it's the first time, set things up.
4372 */
4373 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
4374 ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
4375 chunksize);
4376
4377
4378 if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
4379 umem_free(od, size);
4380 return;
4381 }
4382
4383 bigobj = od[0].od_object;
4384 packobj = od[1].od_object;
4385 blocksize = od[0].od_blocksize;
4386 chunksize = blocksize;
4387 ASSERT(chunksize == od[1].od_gen);
4388
4389 VERIFY(dmu_object_info(os, bigobj, &doi) == 0);
4390 VERIFY(ISP2(doi.doi_data_block_size));
4391 VERIFY(chunksize == doi.doi_data_block_size);
4392 VERIFY(chunksize >= 2 * sizeof (bufwad_t));
4393
4394 /*
4395 * Pick a random index and compute the offsets into packobj and bigobj.
4396 */
4397 n = ztest_random(regions) * stride + ztest_random(width);
4398 s = 1 + ztest_random(width - 1);
4399
4400 packoff = n * sizeof (bufwad_t);
4401 packsize = s * sizeof (bufwad_t);
4402
4403 bigoff = n * chunksize;
4404 bigsize = s * chunksize;
4405
4406 packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
4407 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
4408
4409 VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
4410
4411 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
4412
4413 /*
4414 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
4415 * Iteration 1 test zcopy to already referenced dbufs.
4416 * Iteration 2 test zcopy to dirty dbuf in the same txg.
4417 * Iteration 3 test zcopy to dbuf dirty in previous txg.
4418 * Iteration 4 test zcopy when dbuf is no longer dirty.
4419 * Iteration 5 test zcopy when it can't be done.
4420 * Iteration 6 one more zcopy write.
4421 */
4422 for (i = 0; i < 7; i++) {
4423 uint64_t j;
4424 uint64_t off;
4425
4426 /*
4427 * In iteration 5 (i == 5) use arcbufs
4428 * that don't match bigobj blksz to test
4429 * dmu_assign_arcbuf_by_dbuf() when it can't directly
4430 * assign an arcbuf to a dbuf.
4431 */
4432 for (j = 0; j < s; j++) {
4433 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
4434 bigbuf_arcbufs[j] =
4435 dmu_request_arcbuf(bonus_db, chunksize);
4436 } else {
4437 bigbuf_arcbufs[2 * j] =
4438 dmu_request_arcbuf(bonus_db, chunksize / 2);
4439 bigbuf_arcbufs[2 * j + 1] =
4440 dmu_request_arcbuf(bonus_db, chunksize / 2);
4441 }
4442 }
4443
4444 /*
4445 * Get a tx for the mods to both packobj and bigobj.
4446 */
4447 tx = dmu_tx_create(os);
4448
4449 dmu_tx_hold_write(tx, packobj, packoff, packsize);
4450 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
4451
4452 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4453 if (txg == 0) {
4454 umem_free(packbuf, packsize);
4455 umem_free(bigbuf, bigsize);
4456 for (j = 0; j < s; j++) {
4457 if (i != 5 ||
4458 chunksize < (SPA_MINBLOCKSIZE * 2)) {
4459 dmu_return_arcbuf(bigbuf_arcbufs[j]);
4460 } else {
4461 dmu_return_arcbuf(
4462 bigbuf_arcbufs[2 * j]);
4463 dmu_return_arcbuf(
4464 bigbuf_arcbufs[2 * j + 1]);
4465 }
4466 }
4467 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
4468 umem_free(od, size);
4469 dmu_buf_rele(bonus_db, FTAG);
4470 return;
4471 }
4472
4473 /*
4474 * 50% of the time don't read objects in the 1st iteration to
4475 * test dmu_assign_arcbuf_by_dbuf() for the case when there are
4476 * no existing dbufs for the specified offsets.
4477 */
4478 if (i != 0 || ztest_random(2) != 0) {
4479 error = dmu_read(os, packobj, packoff,
4480 packsize, packbuf, DMU_READ_PREFETCH);
4481 ASSERT0(error);
4482 error = dmu_read(os, bigobj, bigoff, bigsize,
4483 bigbuf, DMU_READ_PREFETCH);
4484 ASSERT0(error);
4485 }
4486 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
4487 n, chunksize, txg);
4488
4489 /*
4490 * We've verified all the old bufwads, and made new ones.
4491 * Now write them out.
4492 */
4493 dmu_write(os, packobj, packoff, packsize, packbuf, tx);
4494 if (ztest_opts.zo_verbose >= 7) {
4495 (void) printf("writing offset %llx size %llx"
4496 " txg %llx\n",
4497 (u_longlong_t)bigoff,
4498 (u_longlong_t)bigsize,
4499 (u_longlong_t)txg);
4500 }
4501 for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
4502 dmu_buf_t *dbt;
4503 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
4504 bcopy((caddr_t)bigbuf + (off - bigoff),
4505 bigbuf_arcbufs[j]->b_data, chunksize);
4506 } else {
4507 bcopy((caddr_t)bigbuf + (off - bigoff),
4508 bigbuf_arcbufs[2 * j]->b_data,
4509 chunksize / 2);
4510 bcopy((caddr_t)bigbuf + (off - bigoff) +
4511 chunksize / 2,
4512 bigbuf_arcbufs[2 * j + 1]->b_data,
4513 chunksize / 2);
4514 }
4515
4516 if (i == 1) {
4517 VERIFY(dmu_buf_hold(os, bigobj, off,
4518 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0);
4519 }
4520 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
4521 dmu_assign_arcbuf_by_dbuf(bonus_db, off,
4522 bigbuf_arcbufs[j], tx);
4523 } else {
4524 dmu_assign_arcbuf_by_dbuf(bonus_db, off,
4525 bigbuf_arcbufs[2 * j], tx);
4526 dmu_assign_arcbuf_by_dbuf(bonus_db,
4527 off + chunksize / 2,
4528 bigbuf_arcbufs[2 * j + 1], tx);
4529 }
4530 if (i == 1) {
4531 dmu_buf_rele(dbt, FTAG);
4532 }
4533 }
4534 dmu_tx_commit(tx);
4535
4536 /*
4537 * Sanity check the stuff we just wrote.
4538 */
4539 {
4540 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
4541 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
4542
4543 VERIFY(0 == dmu_read(os, packobj, packoff,
4544 packsize, packcheck, DMU_READ_PREFETCH));
4545 VERIFY(0 == dmu_read(os, bigobj, bigoff,
4546 bigsize, bigcheck, DMU_READ_PREFETCH));
4547
4548 ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
4549 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
4550
4551 umem_free(packcheck, packsize);
4552 umem_free(bigcheck, bigsize);
4553 }
4554 if (i == 2) {
4555 txg_wait_open(dmu_objset_pool(os), 0);
4556 } else if (i == 3) {
4557 txg_wait_synced(dmu_objset_pool(os), 0);
4558 }
4559 }
4560
4561 dmu_buf_rele(bonus_db, FTAG);
4562 umem_free(packbuf, packsize);
4563 umem_free(bigbuf, bigsize);
4564 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
4565 umem_free(od, size);
4566 }
4567
4568 /* ARGSUSED */
4569 void
4570 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
4571 {
4572 ztest_od_t *od;
4573
4574 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
4575 uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
4576 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4577
4578 /*
4579 * Have multiple threads write to large offsets in an object
4580 * to verify that parallel writes to an object -- even to the
4581 * same blocks within the object -- doesn't cause any trouble.
4582 */
4583 ztest_od_init(od, ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
4584
4585 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0)
4586 return;
4587
4588 while (ztest_random(10) != 0)
4589 ztest_io(zd, od->od_object, offset);
4590
4591 umem_free(od, sizeof (ztest_od_t));
4592 }
4593
4594 void
4595 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
4596 {
4597 ztest_od_t *od;
4598 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
4599 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4600 uint64_t count = ztest_random(20) + 1;
4601 uint64_t blocksize = ztest_random_blocksize();
4602 void *data;
4603
4604 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
4605
4606 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
4607
4608 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
4609 !ztest_random(2)) != 0) {
4610 umem_free(od, sizeof (ztest_od_t));
4611 return;
4612 }
4613
4614 if (ztest_truncate(zd, od->od_object, offset, count * blocksize) != 0) {
4615 umem_free(od, sizeof (ztest_od_t));
4616 return;
4617 }
4618
4619 ztest_prealloc(zd, od->od_object, offset, count * blocksize);
4620
4621 data = umem_zalloc(blocksize, UMEM_NOFAIL);
4622
4623 while (ztest_random(count) != 0) {
4624 uint64_t randoff = offset + (ztest_random(count) * blocksize);
4625 if (ztest_write(zd, od->od_object, randoff, blocksize,
4626 data) != 0)
4627 break;
4628 while (ztest_random(4) != 0)
4629 ztest_io(zd, od->od_object, randoff);
4630 }
4631
4632 umem_free(data, blocksize);
4633 umem_free(od, sizeof (ztest_od_t));
4634 }
4635
4636 /*
4637 * Verify that zap_{create,destroy,add,remove,update} work as expected.
4638 */
4639 #define ZTEST_ZAP_MIN_INTS 1
4640 #define ZTEST_ZAP_MAX_INTS 4
4641 #define ZTEST_ZAP_MAX_PROPS 1000
4642
4643 void
4644 ztest_zap(ztest_ds_t *zd, uint64_t id)
4645 {
4646 objset_t *os = zd->zd_os;
4647 ztest_od_t *od;
4648 uint64_t object;
4649 uint64_t txg, last_txg;
4650 uint64_t value[ZTEST_ZAP_MAX_INTS];
4651 uint64_t zl_ints, zl_intsize, prop;
4652 int i, ints;
4653 dmu_tx_t *tx;
4654 char propname[100], txgname[100];
4655 int error;
4656 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
4657
4658 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
4659 ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
4660
4661 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
4662 !ztest_random(2)) != 0)
4663 goto out;
4664
4665 object = od->od_object;
4666
4667 /*
4668 * Generate a known hash collision, and verify that
4669 * we can lookup and remove both entries.
4670 */
4671 tx = dmu_tx_create(os);
4672 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4673 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4674 if (txg == 0)
4675 goto out;
4676 for (i = 0; i < 2; i++) {
4677 value[i] = i;
4678 VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t),
4679 1, &value[i], tx));
4680 }
4681 for (i = 0; i < 2; i++) {
4682 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
4683 sizeof (uint64_t), 1, &value[i], tx));
4684 VERIFY3U(0, ==,
4685 zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
4686 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4687 ASSERT3U(zl_ints, ==, 1);
4688 }
4689 for (i = 0; i < 2; i++) {
4690 VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx));
4691 }
4692 dmu_tx_commit(tx);
4693
4694 /*
4695 * Generate a buch of random entries.
4696 */
4697 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
4698
4699 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
4700 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
4701 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
4702 bzero(value, sizeof (value));
4703 last_txg = 0;
4704
4705 /*
4706 * If these zap entries already exist, validate their contents.
4707 */
4708 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
4709 if (error == 0) {
4710 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4711 ASSERT3U(zl_ints, ==, 1);
4712
4713 VERIFY(zap_lookup(os, object, txgname, zl_intsize,
4714 zl_ints, &last_txg) == 0);
4715
4716 VERIFY(zap_length(os, object, propname, &zl_intsize,
4717 &zl_ints) == 0);
4718
4719 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4720 ASSERT3U(zl_ints, ==, ints);
4721
4722 VERIFY(zap_lookup(os, object, propname, zl_intsize,
4723 zl_ints, value) == 0);
4724
4725 for (i = 0; i < ints; i++) {
4726 ASSERT3U(value[i], ==, last_txg + object + i);
4727 }
4728 } else {
4729 ASSERT3U(error, ==, ENOENT);
4730 }
4731
4732 /*
4733 * Atomically update two entries in our zap object.
4734 * The first is named txg_%llu, and contains the txg
4735 * in which the property was last updated. The second
4736 * is named prop_%llu, and the nth element of its value
4737 * should be txg + object + n.
4738 */
4739 tx = dmu_tx_create(os);
4740 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4741 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4742 if (txg == 0)
4743 goto out;
4744
4745 if (last_txg > txg)
4746 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg);
4747
4748 for (i = 0; i < ints; i++)
4749 value[i] = txg + object + i;
4750
4751 VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t),
4752 1, &txg, tx));
4753 VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t),
4754 ints, value, tx));
4755
4756 dmu_tx_commit(tx);
4757
4758 /*
4759 * Remove a random pair of entries.
4760 */
4761 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
4762 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
4763 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
4764
4765 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
4766
4767 if (error == ENOENT)
4768 goto out;
4769
4770 ASSERT0(error);
4771
4772 tx = dmu_tx_create(os);
4773 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4774 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4775 if (txg == 0)
4776 goto out;
4777 VERIFY3U(0, ==, zap_remove(os, object, txgname, tx));
4778 VERIFY3U(0, ==, zap_remove(os, object, propname, tx));
4779 dmu_tx_commit(tx);
4780 out:
4781 umem_free(od, sizeof (ztest_od_t));
4782 }
4783
4784 /*
4785 * Testcase to test the upgrading of a microzap to fatzap.
4786 */
4787 void
4788 ztest_fzap(ztest_ds_t *zd, uint64_t id)
4789 {
4790 objset_t *os = zd->zd_os;
4791 ztest_od_t *od;
4792 uint64_t object, txg;
4793 int i;
4794
4795 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
4796 ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
4797
4798 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
4799 !ztest_random(2)) != 0)
4800 goto out;
4801 object = od->od_object;
4802
4803 /*
4804 * Add entries to this ZAP and make sure it spills over
4805 * and gets upgraded to a fatzap. Also, since we are adding
4806 * 2050 entries we should see ptrtbl growth and leaf-block split.
4807 */
4808 for (i = 0; i < 2050; i++) {
4809 char name[ZFS_MAX_DATASET_NAME_LEN];
4810 uint64_t value = i;
4811 dmu_tx_t *tx;
4812 int error;
4813
4814 (void) snprintf(name, sizeof (name), "fzap-%llu-%llu",
4815 (u_longlong_t)id, (u_longlong_t)value);
4816
4817 tx = dmu_tx_create(os);
4818 dmu_tx_hold_zap(tx, object, B_TRUE, name);
4819 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4820 if (txg == 0)
4821 goto out;
4822 error = zap_add(os, object, name, sizeof (uint64_t), 1,
4823 &value, tx);
4824 ASSERT(error == 0 || error == EEXIST);
4825 dmu_tx_commit(tx);
4826 }
4827 out:
4828 umem_free(od, sizeof (ztest_od_t));
4829 }
4830
4831 /* ARGSUSED */
4832 void
4833 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
4834 {
4835 objset_t *os = zd->zd_os;
4836 ztest_od_t *od;
4837 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
4838 dmu_tx_t *tx;
4839 int i, namelen, error;
4840 int micro = ztest_random(2);
4841 char name[20], string_value[20];
4842 void *data;
4843
4844 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
4845 ztest_od_init(od, ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0, 0);
4846
4847 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
4848 umem_free(od, sizeof (ztest_od_t));
4849 return;
4850 }
4851
4852 object = od->od_object;
4853
4854 /*
4855 * Generate a random name of the form 'xxx.....' where each
4856 * x is a random printable character and the dots are dots.
4857 * There are 94 such characters, and the name length goes from
4858 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
4859 */
4860 namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
4861
4862 for (i = 0; i < 3; i++)
4863 name[i] = '!' + ztest_random('~' - '!' + 1);
4864 for (; i < namelen - 1; i++)
4865 name[i] = '.';
4866 name[i] = '\0';
4867
4868 if ((namelen & 1) || micro) {
4869 wsize = sizeof (txg);
4870 wc = 1;
4871 data = &txg;
4872 } else {
4873 wsize = 1;
4874 wc = namelen;
4875 data = string_value;
4876 }
4877
4878 count = -1ULL;
4879 VERIFY0(zap_count(os, object, &count));
4880 ASSERT(count != -1ULL);
4881
4882 /*
4883 * Select an operation: length, lookup, add, update, remove.
4884 */
4885 i = ztest_random(5);
4886
4887 if (i >= 2) {
4888 tx = dmu_tx_create(os);
4889 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4890 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4891 if (txg == 0) {
4892 umem_free(od, sizeof (ztest_od_t));
4893 return;
4894 }
4895 bcopy(name, string_value, namelen);
4896 } else {
4897 tx = NULL;
4898 txg = 0;
4899 bzero(string_value, namelen);
4900 }
4901
4902 switch (i) {
4903
4904 case 0:
4905 error = zap_length(os, object, name, &zl_wsize, &zl_wc);
4906 if (error == 0) {
4907 ASSERT3U(wsize, ==, zl_wsize);
4908 ASSERT3U(wc, ==, zl_wc);
4909 } else {
4910 ASSERT3U(error, ==, ENOENT);
4911 }
4912 break;
4913
4914 case 1:
4915 error = zap_lookup(os, object, name, wsize, wc, data);
4916 if (error == 0) {
4917 if (data == string_value &&
4918 bcmp(name, data, namelen) != 0)
4919 fatal(0, "name '%s' != val '%s' len %d",
4920 name, data, namelen);
4921 } else {
4922 ASSERT3U(error, ==, ENOENT);
4923 }
4924 break;
4925
4926 case 2:
4927 error = zap_add(os, object, name, wsize, wc, data, tx);
4928 ASSERT(error == 0 || error == EEXIST);
4929 break;
4930
4931 case 3:
4932 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0);
4933 break;
4934
4935 case 4:
4936 error = zap_remove(os, object, name, tx);
4937 ASSERT(error == 0 || error == ENOENT);
4938 break;
4939 }
4940
4941 if (tx != NULL)
4942 dmu_tx_commit(tx);
4943
4944 umem_free(od, sizeof (ztest_od_t));
4945 }
4946
4947 /*
4948 * Commit callback data.
4949 */
4950 typedef struct ztest_cb_data {
4951 list_node_t zcd_node;
4952 uint64_t zcd_txg;
4953 int zcd_expected_err;
4954 boolean_t zcd_added;
4955 boolean_t zcd_called;
4956 spa_t *zcd_spa;
4957 } ztest_cb_data_t;
4958
4959 /* This is the actual commit callback function */
4960 static void
4961 ztest_commit_callback(void *arg, int error)
4962 {
4963 ztest_cb_data_t *data = arg;
4964 uint64_t synced_txg;
4965
4966 VERIFY(data != NULL);
4967 VERIFY3S(data->zcd_expected_err, ==, error);
4968 VERIFY(!data->zcd_called);
4969
4970 synced_txg = spa_last_synced_txg(data->zcd_spa);
4971 if (data->zcd_txg > synced_txg)
4972 fatal(0, "commit callback of txg %" PRIu64 " called prematurely"
4973 ", last synced txg = %" PRIu64 "\n", data->zcd_txg,
4974 synced_txg);
4975
4976 data->zcd_called = B_TRUE;
4977
4978 if (error == ECANCELED) {
4979 ASSERT0(data->zcd_txg);
4980 ASSERT(!data->zcd_added);
4981
4982 /*
4983 * The private callback data should be destroyed here, but
4984 * since we are going to check the zcd_called field after
4985 * dmu_tx_abort(), we will destroy it there.
4986 */
4987 return;
4988 }
4989
4990 ASSERT(data->zcd_added);
4991 ASSERT3U(data->zcd_txg, !=, 0);
4992
4993 (void) mutex_enter(&zcl.zcl_callbacks_lock);
4994
4995 /* See if this cb was called more quickly */
4996 if ((synced_txg - data->zcd_txg) < zc_min_txg_delay)
4997 zc_min_txg_delay = synced_txg - data->zcd_txg;
4998
4999 /* Remove our callback from the list */
5000 list_remove(&zcl.zcl_callbacks, data);
5001
5002 (void) mutex_exit(&zcl.zcl_callbacks_lock);
5003
5004 umem_free(data, sizeof (ztest_cb_data_t));
5005 }
5006
5007 /* Allocate and initialize callback data structure */
5008 static ztest_cb_data_t *
5009 ztest_create_cb_data(objset_t *os, uint64_t txg)
5010 {
5011 ztest_cb_data_t *cb_data;
5012
5013 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
5014
5015 cb_data->zcd_txg = txg;
5016 cb_data->zcd_spa = dmu_objset_spa(os);
5017 list_link_init(&cb_data->zcd_node);
5018
5019 return (cb_data);
5020 }
5021
5022 /*
5023 * Commit callback test.
5024 */
5025 void
5026 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
5027 {
5028 objset_t *os = zd->zd_os;
5029 ztest_od_t *od;
5030 dmu_tx_t *tx;
5031 ztest_cb_data_t *cb_data[3], *tmp_cb;
5032 uint64_t old_txg, txg;
5033 int i, error = 0;
5034
5035 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5036 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
5037
5038 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
5039 umem_free(od, sizeof (ztest_od_t));
5040 return;
5041 }
5042
5043 tx = dmu_tx_create(os);
5044
5045 cb_data[0] = ztest_create_cb_data(os, 0);
5046 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
5047
5048 dmu_tx_hold_write(tx, od->od_object, 0, sizeof (uint64_t));
5049
5050 /* Every once in a while, abort the transaction on purpose */
5051 if (ztest_random(100) == 0)
5052 error = -1;
5053
5054 if (!error)
5055 error = dmu_tx_assign(tx, TXG_NOWAIT);
5056
5057 txg = error ? 0 : dmu_tx_get_txg(tx);
5058
5059 cb_data[0]->zcd_txg = txg;
5060 cb_data[1] = ztest_create_cb_data(os, txg);
5061 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
5062
5063 if (error) {
5064 /*
5065 * It's not a strict requirement to call the registered
5066 * callbacks from inside dmu_tx_abort(), but that's what
5067 * it's supposed to happen in the current implementation
5068 * so we will check for that.
5069 */
5070 for (i = 0; i < 2; i++) {
5071 cb_data[i]->zcd_expected_err = ECANCELED;
5072 VERIFY(!cb_data[i]->zcd_called);
5073 }
5074
5075 dmu_tx_abort(tx);
5076
5077 for (i = 0; i < 2; i++) {
5078 VERIFY(cb_data[i]->zcd_called);
5079 umem_free(cb_data[i], sizeof (ztest_cb_data_t));
5080 }
5081
5082 umem_free(od, sizeof (ztest_od_t));
5083 return;
5084 }
5085
5086 cb_data[2] = ztest_create_cb_data(os, txg);
5087 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
5088
5089 /*
5090 * Read existing data to make sure there isn't a future leak.
5091 */
5092 VERIFY(0 == dmu_read(os, od->od_object, 0, sizeof (uint64_t),
5093 &old_txg, DMU_READ_PREFETCH));
5094
5095 if (old_txg > txg)
5096 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64,
5097 old_txg, txg);
5098
5099 dmu_write(os, od->od_object, 0, sizeof (uint64_t), &txg, tx);
5100
5101 (void) mutex_enter(&zcl.zcl_callbacks_lock);
5102
5103 /*
5104 * Since commit callbacks don't have any ordering requirement and since
5105 * it is theoretically possible for a commit callback to be called
5106 * after an arbitrary amount of time has elapsed since its txg has been
5107 * synced, it is difficult to reliably determine whether a commit
5108 * callback hasn't been called due to high load or due to a flawed
5109 * implementation.
5110 *
5111 * In practice, we will assume that if after a certain number of txgs a
5112 * commit callback hasn't been called, then most likely there's an
5113 * implementation bug..
5114 */
5115 tmp_cb = list_head(&zcl.zcl_callbacks);
5116 if (tmp_cb != NULL &&
5117 tmp_cb->zcd_txg + ZTEST_COMMIT_CB_THRESH < txg) {
5118 fatal(0, "Commit callback threshold exceeded, oldest txg: %"
5119 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg);
5120 }
5121
5122 /*
5123 * Let's find the place to insert our callbacks.
5124 *
5125 * Even though the list is ordered by txg, it is possible for the
5126 * insertion point to not be the end because our txg may already be
5127 * quiescing at this point and other callbacks in the open txg
5128 * (from other objsets) may have sneaked in.
5129 */
5130 tmp_cb = list_tail(&zcl.zcl_callbacks);
5131 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
5132 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
5133
5134 /* Add the 3 callbacks to the list */
5135 for (i = 0; i < 3; i++) {
5136 if (tmp_cb == NULL)
5137 list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
5138 else
5139 list_insert_after(&zcl.zcl_callbacks, tmp_cb,
5140 cb_data[i]);
5141
5142 cb_data[i]->zcd_added = B_TRUE;
5143 VERIFY(!cb_data[i]->zcd_called);
5144
5145 tmp_cb = cb_data[i];
5146 }
5147
5148 zc_cb_counter += 3;
5149
5150 (void) mutex_exit(&zcl.zcl_callbacks_lock);
5151
5152 dmu_tx_commit(tx);
5153
5154 umem_free(od, sizeof (ztest_od_t));
5155 }
5156
5157 /*
5158 * Visit each object in the dataset. Verify that its properties
5159 * are consistent what was stored in the block tag when it was created,
5160 * and that its unused bonus buffer space has not been overwritten.
5161 */
5162 /* ARGSUSED */
5163 void
5164 ztest_verify_dnode_bt(ztest_ds_t *zd, uint64_t id)
5165 {
5166 objset_t *os = zd->zd_os;
5167 uint64_t obj;
5168 int err = 0;
5169
5170 for (obj = 0; err == 0; err = dmu_object_next(os, &obj, FALSE, 0)) {
5171 ztest_block_tag_t *bt = NULL;
5172 dmu_object_info_t doi;
5173 dmu_buf_t *db;
5174
5175 ztest_object_lock(zd, obj, RL_READER);
5176 if (dmu_bonus_hold(os, obj, FTAG, &db) != 0) {
5177 ztest_object_unlock(zd, obj);
5178 continue;
5179 }
5180
5181 dmu_object_info_from_db(db, &doi);
5182 if (doi.doi_bonus_size >= sizeof (*bt))
5183 bt = ztest_bt_bonus(db);
5184
5185 if (bt && bt->bt_magic == BT_MAGIC) {
5186 ztest_bt_verify(bt, os, obj, doi.doi_dnodesize,
5187 bt->bt_offset, bt->bt_gen, bt->bt_txg,
5188 bt->bt_crtxg);
5189 ztest_verify_unused_bonus(db, bt, obj, os, bt->bt_gen);
5190 }
5191
5192 dmu_buf_rele(db, FTAG);
5193 ztest_object_unlock(zd, obj);
5194 }
5195 }
5196
5197 /* ARGSUSED */
5198 void
5199 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
5200 {
5201 zfs_prop_t proplist[] = {
5202 ZFS_PROP_CHECKSUM,
5203 ZFS_PROP_COMPRESSION,
5204 ZFS_PROP_COPIES,
5205 ZFS_PROP_DEDUP
5206 };
5207 int p;
5208
5209 (void) rw_rdlock(&ztest_name_lock);
5210
5211 for (p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++)
5212 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
5213 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
5214
5215 VERIFY0(ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_RECORDSIZE,
5216 ztest_random_blocksize(), (int)ztest_random(2)));
5217
5218 (void) rw_unlock(&ztest_name_lock);
5219 }
5220
5221 /* ARGSUSED */
5222 void
5223 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
5224 {
5225 nvlist_t *props = NULL;
5226
5227 (void) rw_rdlock(&ztest_name_lock);
5228
5229 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO,
5230 ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN));
5231
5232 VERIFY0(spa_prop_get(ztest_spa, &props));
5233
5234 if (ztest_opts.zo_verbose >= 6)
5235 dump_nvlist(props, 4);
5236
5237 nvlist_free(props);
5238
5239 (void) rw_unlock(&ztest_name_lock);
5240 }
5241
5242 static int
5243 user_release_one(const char *snapname, const char *holdname)
5244 {
5245 nvlist_t *snaps, *holds;
5246 int error;
5247
5248 snaps = fnvlist_alloc();
5249 holds = fnvlist_alloc();
5250 fnvlist_add_boolean(holds, holdname);
5251 fnvlist_add_nvlist(snaps, snapname, holds);
5252 fnvlist_free(holds);
5253 error = dsl_dataset_user_release(snaps, NULL);
5254 fnvlist_free(snaps);
5255 return (error);
5256 }
5257
5258 /*
5259 * Test snapshot hold/release and deferred destroy.
5260 */
5261 void
5262 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
5263 {
5264 int error;
5265 objset_t *os = zd->zd_os;
5266 objset_t *origin;
5267 char snapname[100];
5268 char fullname[100];
5269 char clonename[100];
5270 char tag[100];
5271 char osname[ZFS_MAX_DATASET_NAME_LEN];
5272 nvlist_t *holds;
5273
5274 (void) rw_rdlock(&ztest_name_lock);
5275
5276 dmu_objset_name(os, osname);
5277
5278 (void) snprintf(snapname, sizeof (snapname), "sh1_%llu",
5279 (u_longlong_t)id);
5280 (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname);
5281 (void) snprintf(clonename, sizeof (clonename),
5282 "%s/ch1_%llu", osname, (u_longlong_t)id);
5283 (void) snprintf(tag, sizeof (tag), "tag_%llu", (u_longlong_t)id);
5284
5285 /*
5286 * Clean up from any previous run.
5287 */
5288 error = dsl_destroy_head(clonename);
5289 if (error != ENOENT)
5290 ASSERT0(error);
5291 error = user_release_one(fullname, tag);
5292 if (error != ESRCH && error != ENOENT)
5293 ASSERT0(error);
5294 error = dsl_destroy_snapshot(fullname, B_FALSE);
5295 if (error != ENOENT)
5296 ASSERT0(error);
5297
5298 /*
5299 * Create snapshot, clone it, mark snap for deferred destroy,
5300 * destroy clone, verify snap was also destroyed.
5301 */
5302 error = dmu_objset_snapshot_one(osname, snapname);
5303 if (error) {
5304 if (error == ENOSPC) {
5305 ztest_record_enospc("dmu_objset_snapshot");
5306 goto out;
5307 }
5308 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
5309 }
5310
5311 error = dmu_objset_clone(clonename, fullname);
5312 if (error) {
5313 if (error == ENOSPC) {
5314 ztest_record_enospc("dmu_objset_clone");
5315 goto out;
5316 }
5317 fatal(0, "dmu_objset_clone(%s) = %d", clonename, error);
5318 }
5319
5320 error = dsl_destroy_snapshot(fullname, B_TRUE);
5321 if (error) {
5322 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
5323 fullname, error);
5324 }
5325
5326 error = dsl_destroy_head(clonename);
5327 if (error)
5328 fatal(0, "dsl_destroy_head(%s) = %d", clonename, error);
5329
5330 error = dmu_objset_hold(fullname, FTAG, &origin);
5331 if (error != ENOENT)
5332 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error);
5333
5334 /*
5335 * Create snapshot, add temporary hold, verify that we can't
5336 * destroy a held snapshot, mark for deferred destroy,
5337 * release hold, verify snapshot was destroyed.
5338 */
5339 error = dmu_objset_snapshot_one(osname, snapname);
5340 if (error) {
5341 if (error == ENOSPC) {
5342 ztest_record_enospc("dmu_objset_snapshot");
5343 goto out;
5344 }
5345 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
5346 }
5347
5348 holds = fnvlist_alloc();
5349 fnvlist_add_string(holds, fullname, tag);
5350 error = dsl_dataset_user_hold(holds, 0, NULL);
5351 fnvlist_free(holds);
5352
5353 if (error == ENOSPC) {
5354 ztest_record_enospc("dsl_dataset_user_hold");
5355 goto out;
5356 } else if (error) {
5357 fatal(0, "dsl_dataset_user_hold(%s, %s) = %u",
5358 fullname, tag, error);
5359 }
5360
5361 error = dsl_destroy_snapshot(fullname, B_FALSE);
5362 if (error != EBUSY) {
5363 fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
5364 fullname, error);
5365 }
5366
5367 error = dsl_destroy_snapshot(fullname, B_TRUE);
5368 if (error) {
5369 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
5370 fullname, error);
5371 }
5372
5373 error = user_release_one(fullname, tag);
5374 if (error)
5375 fatal(0, "user_release_one(%s, %s) = %d", fullname, tag, error);
5376
5377 VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT);
5378
5379 out:
5380 (void) rw_unlock(&ztest_name_lock);
5381 }
5382
5383 /*
5384 * Inject random faults into the on-disk data.
5385 */
5386 /* ARGSUSED */
5387 void
5388 ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
5389 {
5390 ztest_shared_t *zs = ztest_shared;
5391 spa_t *spa = ztest_spa;
5392 int fd;
5393 uint64_t offset;
5394 uint64_t leaves;
5395 uint64_t bad = 0x1990c0ffeedecadeull;
5396 uint64_t top, leaf;
5397 char *path0;
5398 char *pathrand;
5399 size_t fsize;
5400 int bshift = SPA_MAXBLOCKSHIFT + 2;
5401 int iters = 1000;
5402 int maxfaults;
5403 int mirror_save;
5404 vdev_t *vd0 = NULL;
5405 uint64_t guid0 = 0;
5406 boolean_t islog = B_FALSE;
5407
5408 path0 = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
5409 pathrand = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
5410
5411 mutex_enter(&ztest_vdev_lock);
5412 maxfaults = MAXFAULTS();
5413 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
5414 mirror_save = zs->zs_mirrors;
5415 mutex_exit(&ztest_vdev_lock);
5416
5417 ASSERT(leaves >= 1);
5418
5419 /*
5420 * Grab the name lock as reader. There are some operations
5421 * which don't like to have their vdevs changed while
5422 * they are in progress (i.e. spa_change_guid). Those
5423 * operations will have grabbed the name lock as writer.
5424 */
5425 (void) rw_rdlock(&ztest_name_lock);
5426
5427 /*
5428 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
5429 */
5430 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5431
5432 if (ztest_random(2) == 0) {
5433 /*
5434 * Inject errors on a normal data device or slog device.
5435 */
5436 top = ztest_random_vdev_top(spa, B_TRUE);
5437 leaf = ztest_random(leaves) + zs->zs_splits;
5438
5439 /*
5440 * Generate paths to the first leaf in this top-level vdev,
5441 * and to the random leaf we selected. We'll induce transient
5442 * write failures and random online/offline activity on leaf 0,
5443 * and we'll write random garbage to the randomly chosen leaf.
5444 */
5445 (void) snprintf(path0, MAXPATHLEN, ztest_dev_template,
5446 ztest_opts.zo_dir, ztest_opts.zo_pool,
5447 top * leaves + zs->zs_splits);
5448 (void) snprintf(pathrand, MAXPATHLEN, ztest_dev_template,
5449 ztest_opts.zo_dir, ztest_opts.zo_pool,
5450 top * leaves + leaf);
5451
5452 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
5453 if (vd0 != NULL && vd0->vdev_top->vdev_islog)
5454 islog = B_TRUE;
5455
5456 /*
5457 * If the top-level vdev needs to be resilvered
5458 * then we only allow faults on the device that is
5459 * resilvering.
5460 */
5461 if (vd0 != NULL && maxfaults != 1 &&
5462 (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) ||
5463 vd0->vdev_resilver_txg != 0)) {
5464 /*
5465 * Make vd0 explicitly claim to be unreadable,
5466 * or unwriteable, or reach behind its back
5467 * and close the underlying fd. We can do this if
5468 * maxfaults == 0 because we'll fail and reexecute,
5469 * and we can do it if maxfaults >= 2 because we'll
5470 * have enough redundancy. If maxfaults == 1, the
5471 * combination of this with injection of random data
5472 * corruption below exceeds the pool's fault tolerance.
5473 */
5474 vdev_file_t *vf = vd0->vdev_tsd;
5475
5476 if (vf != NULL && ztest_random(3) == 0) {
5477 (void) close(vf->vf_vnode->v_fd);
5478 vf->vf_vnode->v_fd = -1;
5479 } else if (ztest_random(2) == 0) {
5480 vd0->vdev_cant_read = B_TRUE;
5481 } else {
5482 vd0->vdev_cant_write = B_TRUE;
5483 }
5484 guid0 = vd0->vdev_guid;
5485 }
5486 } else {
5487 /*
5488 * Inject errors on an l2cache device.
5489 */
5490 spa_aux_vdev_t *sav = &spa->spa_l2cache;
5491
5492 if (sav->sav_count == 0) {
5493 spa_config_exit(spa, SCL_STATE, FTAG);
5494 (void) rw_unlock(&ztest_name_lock);
5495 goto out;
5496 }
5497 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
5498 guid0 = vd0->vdev_guid;
5499 (void) strcpy(path0, vd0->vdev_path);
5500 (void) strcpy(pathrand, vd0->vdev_path);
5501
5502 leaf = 0;
5503 leaves = 1;
5504 maxfaults = INT_MAX; /* no limit on cache devices */
5505 }
5506
5507 spa_config_exit(spa, SCL_STATE, FTAG);
5508 (void) rw_unlock(&ztest_name_lock);
5509
5510 /*
5511 * If we can tolerate two or more faults, or we're dealing
5512 * with a slog, randomly online/offline vd0.
5513 */
5514 if ((maxfaults >= 2 || islog) && guid0 != 0) {
5515 if (ztest_random(10) < 6) {
5516 int flags = (ztest_random(2) == 0 ?
5517 ZFS_OFFLINE_TEMPORARY : 0);
5518
5519 /*
5520 * We have to grab the zs_name_lock as writer to
5521 * prevent a race between offlining a slog and
5522 * destroying a dataset. Offlining the slog will
5523 * grab a reference on the dataset which may cause
5524 * dsl_destroy_head() to fail with EBUSY thus
5525 * leaving the dataset in an inconsistent state.
5526 */
5527 if (islog)
5528 (void) rw_wrlock(&ztest_name_lock);
5529
5530 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY);
5531
5532 if (islog)
5533 (void) rw_unlock(&ztest_name_lock);
5534 } else {
5535 /*
5536 * Ideally we would like to be able to randomly
5537 * call vdev_[on|off]line without holding locks
5538 * to force unpredictable failures but the side
5539 * effects of vdev_[on|off]line prevent us from
5540 * doing so. We grab the ztest_vdev_lock here to
5541 * prevent a race between injection testing and
5542 * aux_vdev removal.
5543 */
5544 mutex_enter(&ztest_vdev_lock);
5545 (void) vdev_online(spa, guid0, 0, NULL);
5546 mutex_exit(&ztest_vdev_lock);
5547 }
5548 }
5549
5550 if (maxfaults == 0)
5551 goto out;
5552
5553 /*
5554 * We have at least single-fault tolerance, so inject data corruption.
5555 */
5556 fd = open(pathrand, O_RDWR);
5557
5558 if (fd == -1) /* we hit a gap in the device namespace */
5559 goto out;
5560
5561 fsize = lseek(fd, 0, SEEK_END);
5562
5563 while (--iters != 0) {
5564 /*
5565 * The offset must be chosen carefully to ensure that
5566 * we do not inject a given logical block with errors
5567 * on two different leaf devices, because ZFS can not
5568 * tolerate that (if maxfaults==1).
5569 *
5570 * We divide each leaf into chunks of size
5571 * (# leaves * SPA_MAXBLOCKSIZE * 4). Within each chunk
5572 * there is a series of ranges to which we can inject errors.
5573 * Each range can accept errors on only a single leaf vdev.
5574 * The error injection ranges are separated by ranges
5575 * which we will not inject errors on any device (DMZs).
5576 * Each DMZ must be large enough such that a single block
5577 * can not straddle it, so that a single block can not be
5578 * a target in two different injection ranges (on different
5579 * leaf vdevs).
5580 *
5581 * For example, with 3 leaves, each chunk looks like:
5582 * 0 to 32M: injection range for leaf 0
5583 * 32M to 64M: DMZ - no injection allowed
5584 * 64M to 96M: injection range for leaf 1
5585 * 96M to 128M: DMZ - no injection allowed
5586 * 128M to 160M: injection range for leaf 2
5587 * 160M to 192M: DMZ - no injection allowed
5588 */
5589 offset = ztest_random(fsize / (leaves << bshift)) *
5590 (leaves << bshift) + (leaf << bshift) +
5591 (ztest_random(1ULL << (bshift - 1)) & -8ULL);
5592
5593 /*
5594 * Only allow damage to the labels at one end of the vdev.
5595 *
5596 * If all labels are damaged, the device will be totally
5597 * inaccessible, which will result in loss of data,
5598 * because we also damage (parts of) the other side of
5599 * the mirror/raidz.
5600 *
5601 * Additionally, we will always have both an even and an
5602 * odd label, so that we can handle crashes in the
5603 * middle of vdev_config_sync().
5604 */
5605 if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE)
5606 continue;
5607
5608 /*
5609 * The two end labels are stored at the "end" of the disk, but
5610 * the end of the disk (vdev_psize) is aligned to
5611 * sizeof (vdev_label_t).
5612 */
5613 uint64_t psize = P2ALIGN(fsize, sizeof (vdev_label_t));
5614 if ((leaf & 1) == 1 &&
5615 offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE)
5616 continue;
5617
5618 mutex_enter(&ztest_vdev_lock);
5619 if (mirror_save != zs->zs_mirrors) {
5620 mutex_exit(&ztest_vdev_lock);
5621 (void) close(fd);
5622 goto out;
5623 }
5624
5625 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
5626 fatal(1, "can't inject bad word at 0x%llx in %s",
5627 offset, pathrand);
5628
5629 mutex_exit(&ztest_vdev_lock);
5630
5631 if (ztest_opts.zo_verbose >= 7)
5632 (void) printf("injected bad word into %s,"
5633 " offset 0x%llx\n", pathrand, (u_longlong_t)offset);
5634 }
5635
5636 (void) close(fd);
5637 out:
5638 umem_free(path0, MAXPATHLEN);
5639 umem_free(pathrand, MAXPATHLEN);
5640 }
5641
5642 /*
5643 * Verify that DDT repair works as expected.
5644 */
5645 void
5646 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id)
5647 {
5648 ztest_shared_t *zs = ztest_shared;
5649 spa_t *spa = ztest_spa;
5650 objset_t *os = zd->zd_os;
5651 ztest_od_t *od;
5652 uint64_t object, blocksize, txg, pattern, psize;
5653 enum zio_checksum checksum = spa_dedup_checksum(spa);
5654 dmu_buf_t *db;
5655 dmu_tx_t *tx;
5656 abd_t *abd;
5657 blkptr_t blk;
5658 int copies = 2 * ZIO_DEDUPDITTO_MIN;
5659 int i;
5660
5661 blocksize = ztest_random_blocksize();
5662 blocksize = MIN(blocksize, 2048); /* because we write so many */
5663
5664 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5665 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
5666
5667 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
5668 umem_free(od, sizeof (ztest_od_t));
5669 return;
5670 }
5671
5672 /*
5673 * Take the name lock as writer to prevent anyone else from changing
5674 * the pool and dataset properies we need to maintain during this test.
5675 */
5676 (void) rw_wrlock(&ztest_name_lock);
5677
5678 if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum,
5679 B_FALSE) != 0 ||
5680 ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1,
5681 B_FALSE) != 0) {
5682 (void) rw_unlock(&ztest_name_lock);
5683 umem_free(od, sizeof (ztest_od_t));
5684 return;
5685 }
5686
5687 dmu_objset_stats_t dds;
5688 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
5689 dmu_objset_fast_stat(os, &dds);
5690 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
5691
5692 object = od[0].od_object;
5693 blocksize = od[0].od_blocksize;
5694 pattern = zs->zs_guid ^ dds.dds_guid;
5695
5696 ASSERT(object != 0);
5697
5698 tx = dmu_tx_create(os);
5699 dmu_tx_hold_write(tx, object, 0, copies * blocksize);
5700 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
5701 if (txg == 0) {
5702 (void) rw_unlock(&ztest_name_lock);
5703 umem_free(od, sizeof (ztest_od_t));
5704 return;
5705 }
5706
5707 /*
5708 * Write all the copies of our block.
5709 */
5710 for (i = 0; i < copies; i++) {
5711 uint64_t offset = i * blocksize;
5712 int error = dmu_buf_hold(os, object, offset, FTAG, &db,
5713 DMU_READ_NO_PREFETCH);
5714 if (error != 0) {
5715 fatal(B_FALSE, "dmu_buf_hold(%p, %llu, %llu) = %u",
5716 os, (long long)object, (long long) offset, error);
5717 }
5718 ASSERT(db->db_offset == offset);
5719 ASSERT(db->db_size == blocksize);
5720 ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) ||
5721 ztest_pattern_match(db->db_data, db->db_size, 0ULL));
5722 dmu_buf_will_fill(db, tx);
5723 ztest_pattern_set(db->db_data, db->db_size, pattern);
5724 dmu_buf_rele(db, FTAG);
5725 }
5726
5727 dmu_tx_commit(tx);
5728 txg_wait_synced(spa_get_dsl(spa), txg);
5729
5730 /*
5731 * Find out what block we got.
5732 */
5733 VERIFY0(dmu_buf_hold(os, object, 0, FTAG, &db,
5734 DMU_READ_NO_PREFETCH));
5735 blk = *((dmu_buf_impl_t *)db)->db_blkptr;
5736 dmu_buf_rele(db, FTAG);
5737
5738 /*
5739 * Damage the block. Dedup-ditto will save us when we read it later.
5740 */
5741 psize = BP_GET_PSIZE(&blk);
5742 abd = abd_alloc_linear(psize, B_TRUE);
5743 ztest_pattern_set(abd_to_buf(abd), psize, ~pattern);
5744
5745 (void) zio_wait(zio_rewrite(NULL, spa, 0, &blk,
5746 abd, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE,
5747 ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL));
5748
5749 abd_free(abd);
5750
5751 (void) rw_unlock(&ztest_name_lock);
5752 umem_free(od, sizeof (ztest_od_t));
5753 }
5754
5755 /*
5756 * Scrub the pool.
5757 */
5758 /* ARGSUSED */
5759 void
5760 ztest_scrub(ztest_ds_t *zd, uint64_t id)
5761 {
5762 spa_t *spa = ztest_spa;
5763
5764 (void) spa_scan(spa, POOL_SCAN_SCRUB);
5765 (void) poll(NULL, 0, 100); /* wait a moment, then force a restart */
5766 (void) spa_scan(spa, POOL_SCAN_SCRUB);
5767 }
5768
5769 /*
5770 * Change the guid for the pool.
5771 */
5772 /* ARGSUSED */
5773 void
5774 ztest_reguid(ztest_ds_t *zd, uint64_t id)
5775 {
5776 spa_t *spa = ztest_spa;
5777 uint64_t orig, load;
5778 int error;
5779
5780 if (ztest_opts.zo_mmp_test)
5781 return;
5782
5783 orig = spa_guid(spa);
5784 load = spa_load_guid(spa);
5785
5786 (void) rw_wrlock(&ztest_name_lock);
5787 error = spa_change_guid(spa);
5788 (void) rw_unlock(&ztest_name_lock);
5789
5790 if (error != 0)
5791 return;
5792
5793 if (ztest_opts.zo_verbose >= 4) {
5794 (void) printf("Changed guid old %llu -> %llu\n",
5795 (u_longlong_t)orig, (u_longlong_t)spa_guid(spa));
5796 }
5797
5798 VERIFY3U(orig, !=, spa_guid(spa));
5799 VERIFY3U(load, ==, spa_load_guid(spa));
5800 }
5801
5802 /*
5803 * Rename the pool to a different name and then rename it back.
5804 */
5805 /* ARGSUSED */
5806 void
5807 ztest_spa_rename(ztest_ds_t *zd, uint64_t id)
5808 {
5809 char *oldname, *newname;
5810 spa_t *spa;
5811
5812 if (ztest_opts.zo_mmp_test)
5813 return;
5814
5815 (void) rw_wrlock(&ztest_name_lock);
5816
5817 oldname = ztest_opts.zo_pool;
5818 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL);
5819 (void) strcpy(newname, oldname);
5820 (void) strcat(newname, "_tmp");
5821
5822 /*
5823 * Do the rename
5824 */
5825 VERIFY3U(0, ==, spa_rename(oldname, newname));
5826
5827 /*
5828 * Try to open it under the old name, which shouldn't exist
5829 */
5830 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
5831
5832 /*
5833 * Open it under the new name and make sure it's still the same spa_t.
5834 */
5835 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
5836
5837 ASSERT(spa == ztest_spa);
5838 spa_close(spa, FTAG);
5839
5840 /*
5841 * Rename it back to the original
5842 */
5843 VERIFY3U(0, ==, spa_rename(newname, oldname));
5844
5845 /*
5846 * Make sure it can still be opened
5847 */
5848 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
5849
5850 ASSERT(spa == ztest_spa);
5851 spa_close(spa, FTAG);
5852
5853 umem_free(newname, strlen(newname) + 1);
5854
5855 (void) rw_unlock(&ztest_name_lock);
5856 }
5857
5858 void
5859 ztest_fletcher(ztest_ds_t *zd, uint64_t id)
5860 {
5861 hrtime_t end = gethrtime() + NANOSEC;
5862
5863 while (gethrtime() <= end) {
5864 int run_count = 100;
5865 void *buf;
5866 struct abd *abd_data, *abd_meta;
5867 uint32_t size;
5868 int *ptr;
5869 int i;
5870 zio_cksum_t zc_ref;
5871 zio_cksum_t zc_ref_byteswap;
5872
5873 size = ztest_random_blocksize();
5874
5875 buf = umem_alloc(size, UMEM_NOFAIL);
5876 abd_data = abd_alloc(size, B_FALSE);
5877 abd_meta = abd_alloc(size, B_TRUE);
5878
5879 for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
5880 *ptr = ztest_random(UINT_MAX);
5881
5882 abd_copy_from_buf_off(abd_data, buf, 0, size);
5883 abd_copy_from_buf_off(abd_meta, buf, 0, size);
5884
5885 VERIFY0(fletcher_4_impl_set("scalar"));
5886 fletcher_4_native(buf, size, NULL, &zc_ref);
5887 fletcher_4_byteswap(buf, size, NULL, &zc_ref_byteswap);
5888
5889 VERIFY0(fletcher_4_impl_set("cycle"));
5890 while (run_count-- > 0) {
5891 zio_cksum_t zc;
5892 zio_cksum_t zc_byteswap;
5893
5894 fletcher_4_byteswap(buf, size, NULL, &zc_byteswap);
5895 fletcher_4_native(buf, size, NULL, &zc);
5896
5897 VERIFY0(bcmp(&zc, &zc_ref, sizeof (zc)));
5898 VERIFY0(bcmp(&zc_byteswap, &zc_ref_byteswap,
5899 sizeof (zc_byteswap)));
5900
5901 /* Test ABD - data */
5902 abd_fletcher_4_byteswap(abd_data, size, NULL,
5903 &zc_byteswap);
5904 abd_fletcher_4_native(abd_data, size, NULL, &zc);
5905
5906 VERIFY0(bcmp(&zc, &zc_ref, sizeof (zc)));
5907 VERIFY0(bcmp(&zc_byteswap, &zc_ref_byteswap,
5908 sizeof (zc_byteswap)));
5909
5910 /* Test ABD - metadata */
5911 abd_fletcher_4_byteswap(abd_meta, size, NULL,
5912 &zc_byteswap);
5913 abd_fletcher_4_native(abd_meta, size, NULL, &zc);
5914
5915 VERIFY0(bcmp(&zc, &zc_ref, sizeof (zc)));
5916 VERIFY0(bcmp(&zc_byteswap, &zc_ref_byteswap,
5917 sizeof (zc_byteswap)));
5918
5919 }
5920
5921 umem_free(buf, size);
5922 abd_free(abd_data);
5923 abd_free(abd_meta);
5924 }
5925 }
5926
5927 void
5928 ztest_fletcher_incr(ztest_ds_t *zd, uint64_t id)
5929 {
5930 void *buf;
5931 size_t size;
5932 int *ptr;
5933 int i;
5934 zio_cksum_t zc_ref;
5935 zio_cksum_t zc_ref_bswap;
5936
5937 hrtime_t end = gethrtime() + NANOSEC;
5938
5939 while (gethrtime() <= end) {
5940 int run_count = 100;
5941
5942 size = ztest_random_blocksize();
5943 buf = umem_alloc(size, UMEM_NOFAIL);
5944
5945 for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
5946 *ptr = ztest_random(UINT_MAX);
5947
5948 VERIFY0(fletcher_4_impl_set("scalar"));
5949 fletcher_4_native(buf, size, NULL, &zc_ref);
5950 fletcher_4_byteswap(buf, size, NULL, &zc_ref_bswap);
5951
5952 VERIFY0(fletcher_4_impl_set("cycle"));
5953
5954 while (run_count-- > 0) {
5955 zio_cksum_t zc;
5956 zio_cksum_t zc_bswap;
5957 size_t pos = 0;
5958
5959 ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
5960 ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
5961
5962 while (pos < size) {
5963 size_t inc = 64 * ztest_random(size / 67);
5964 /* sometimes add few bytes to test non-simd */
5965 if (ztest_random(100) < 10)
5966 inc += P2ALIGN(ztest_random(64),
5967 sizeof (uint32_t));
5968
5969 if (inc > (size - pos))
5970 inc = size - pos;
5971
5972 fletcher_4_incremental_native(buf + pos, inc,
5973 &zc);
5974 fletcher_4_incremental_byteswap(buf + pos, inc,
5975 &zc_bswap);
5976
5977 pos += inc;
5978 }
5979
5980 VERIFY3U(pos, ==, size);
5981
5982 VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
5983 VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
5984
5985 /*
5986 * verify if incremental on the whole buffer is
5987 * equivalent to non-incremental version
5988 */
5989 ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
5990 ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
5991
5992 fletcher_4_incremental_native(buf, size, &zc);
5993 fletcher_4_incremental_byteswap(buf, size, &zc_bswap);
5994
5995 VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
5996 VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
5997 }
5998
5999 umem_free(buf, size);
6000 }
6001 }
6002
6003 static int
6004 ztest_check_path(char *path)
6005 {
6006 struct stat s;
6007 /* return true on success */
6008 return (!stat(path, &s));
6009 }
6010
6011 static void
6012 ztest_get_zdb_bin(char *bin, int len)
6013 {
6014 char *zdb_path;
6015 /*
6016 * Try to use ZDB_PATH and in-tree zdb path. If not successful, just
6017 * let popen to search through PATH.
6018 */
6019 if ((zdb_path = getenv("ZDB_PATH"))) {
6020 strlcpy(bin, zdb_path, len); /* In env */
6021 if (!ztest_check_path(bin)) {
6022 ztest_dump_core = 0;
6023 fatal(1, "invalid ZDB_PATH '%s'", bin);
6024 }
6025 return;
6026 }
6027
6028 VERIFY(realpath(getexecname(), bin) != NULL);
6029 if (strstr(bin, "/ztest/")) {
6030 strstr(bin, "/ztest/")[0] = '\0'; /* In-tree */
6031 strcat(bin, "/zdb/zdb");
6032 if (ztest_check_path(bin))
6033 return;
6034 }
6035 strcpy(bin, "zdb");
6036 }
6037
6038 /*
6039 * Verify pool integrity by running zdb.
6040 */
6041 static void
6042 ztest_run_zdb(char *pool)
6043 {
6044 int status;
6045 char *bin;
6046 char *zdb;
6047 char *zbuf;
6048 const int len = MAXPATHLEN + MAXNAMELEN + 20;
6049 FILE *fp;
6050
6051 bin = umem_alloc(len, UMEM_NOFAIL);
6052 zdb = umem_alloc(len, UMEM_NOFAIL);
6053 zbuf = umem_alloc(1024, UMEM_NOFAIL);
6054
6055 ztest_get_zdb_bin(bin, len);
6056
6057 (void) sprintf(zdb,
6058 "%s -bcc%s%s -G -d -U %s %s",
6059 bin,
6060 ztest_opts.zo_verbose >= 3 ? "s" : "",
6061 ztest_opts.zo_verbose >= 4 ? "v" : "",
6062 spa_config_path,
6063 pool);
6064
6065 if (ztest_opts.zo_verbose >= 5)
6066 (void) printf("Executing %s\n", strstr(zdb, "zdb "));
6067
6068 fp = popen(zdb, "r");
6069
6070 while (fgets(zbuf, 1024, fp) != NULL)
6071 if (ztest_opts.zo_verbose >= 3)
6072 (void) printf("%s", zbuf);
6073
6074 status = pclose(fp);
6075
6076 if (status == 0)
6077 goto out;
6078
6079 ztest_dump_core = 0;
6080 if (WIFEXITED(status))
6081 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status));
6082 else
6083 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status));
6084 out:
6085 umem_free(bin, len);
6086 umem_free(zdb, len);
6087 umem_free(zbuf, 1024);
6088 }
6089
6090 static void
6091 ztest_walk_pool_directory(char *header)
6092 {
6093 spa_t *spa = NULL;
6094
6095 if (ztest_opts.zo_verbose >= 6)
6096 (void) printf("%s\n", header);
6097
6098 mutex_enter(&spa_namespace_lock);
6099 while ((spa = spa_next(spa)) != NULL)
6100 if (ztest_opts.zo_verbose >= 6)
6101 (void) printf("\t%s\n", spa_name(spa));
6102 mutex_exit(&spa_namespace_lock);
6103 }
6104
6105 static void
6106 ztest_spa_import_export(char *oldname, char *newname)
6107 {
6108 nvlist_t *config, *newconfig;
6109 uint64_t pool_guid;
6110 spa_t *spa;
6111 int error;
6112
6113 if (ztest_opts.zo_verbose >= 4) {
6114 (void) printf("import/export: old = %s, new = %s\n",
6115 oldname, newname);
6116 }
6117
6118 /*
6119 * Clean up from previous runs.
6120 */
6121 (void) spa_destroy(newname);
6122
6123 /*
6124 * Get the pool's configuration and guid.
6125 */
6126 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
6127
6128 /*
6129 * Kick off a scrub to tickle scrub/export races.
6130 */
6131 if (ztest_random(2) == 0)
6132 (void) spa_scan(spa, POOL_SCAN_SCRUB);
6133
6134 pool_guid = spa_guid(spa);
6135 spa_close(spa, FTAG);
6136
6137 ztest_walk_pool_directory("pools before export");
6138
6139 /*
6140 * Export it.
6141 */
6142 VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE));
6143
6144 ztest_walk_pool_directory("pools after export");
6145
6146 /*
6147 * Try to import it.
6148 */
6149 newconfig = spa_tryimport(config);
6150 ASSERT(newconfig != NULL);
6151 nvlist_free(newconfig);
6152
6153 /*
6154 * Import it under the new name.
6155 */
6156 error = spa_import(newname, config, NULL, 0);
6157 if (error != 0) {
6158 dump_nvlist(config, 0);
6159 fatal(B_FALSE, "couldn't import pool %s as %s: error %u",
6160 oldname, newname, error);
6161 }
6162
6163 ztest_walk_pool_directory("pools after import");
6164
6165 /*
6166 * Try to import it again -- should fail with EEXIST.
6167 */
6168 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0));
6169
6170 /*
6171 * Try to import it under a different name -- should fail with EEXIST.
6172 */
6173 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0));
6174
6175 /*
6176 * Verify that the pool is no longer visible under the old name.
6177 */
6178 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
6179
6180 /*
6181 * Verify that we can open and close the pool using the new name.
6182 */
6183 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
6184 ASSERT(pool_guid == spa_guid(spa));
6185 spa_close(spa, FTAG);
6186
6187 nvlist_free(config);
6188 }
6189
6190 static void
6191 ztest_resume(spa_t *spa)
6192 {
6193 if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6)
6194 (void) printf("resuming from suspended state\n");
6195 spa_vdev_state_enter(spa, SCL_NONE);
6196 vdev_clear(spa, NULL);
6197 (void) spa_vdev_state_exit(spa, NULL, 0);
6198 (void) zio_resume(spa);
6199 }
6200
6201 static void
6202 ztest_resume_thread(void *arg)
6203 {
6204 spa_t *spa = arg;
6205
6206 while (!ztest_exiting) {
6207 if (spa_suspended(spa))
6208 ztest_resume(spa);
6209 (void) poll(NULL, 0, 100);
6210
6211 /*
6212 * Periodically change the zfs_compressed_arc_enabled setting.
6213 */
6214 if (ztest_random(10) == 0)
6215 zfs_compressed_arc_enabled = ztest_random(2);
6216
6217 /*
6218 * Periodically change the zfs_abd_scatter_enabled setting.
6219 */
6220 if (ztest_random(10) == 0)
6221 zfs_abd_scatter_enabled = ztest_random(2);
6222 }
6223
6224 thread_exit();
6225 }
6226
6227 #define GRACE 300
6228
6229 #if 0
6230 static void
6231 ztest_deadman_alarm(int sig)
6232 {
6233 fatal(0, "failed to complete within %d seconds of deadline", GRACE);
6234 }
6235 #endif
6236
6237 static void
6238 ztest_execute(int test, ztest_info_t *zi, uint64_t id)
6239 {
6240 ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets];
6241 ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test);
6242 hrtime_t functime = gethrtime();
6243 int i;
6244
6245 for (i = 0; i < zi->zi_iters; i++)
6246 zi->zi_func(zd, id);
6247
6248 functime = gethrtime() - functime;
6249
6250 atomic_add_64(&zc->zc_count, 1);
6251 atomic_add_64(&zc->zc_time, functime);
6252
6253 if (ztest_opts.zo_verbose >= 4)
6254 (void) printf("%6.2f sec in %s\n",
6255 (double)functime / NANOSEC, zi->zi_funcname);
6256 }
6257
6258 static void
6259 ztest_thread(void *arg)
6260 {
6261 int rand;
6262 uint64_t id = (uintptr_t)arg;
6263 ztest_shared_t *zs = ztest_shared;
6264 uint64_t call_next;
6265 hrtime_t now;
6266 ztest_info_t *zi;
6267 ztest_shared_callstate_t *zc;
6268
6269 while ((now = gethrtime()) < zs->zs_thread_stop) {
6270 /*
6271 * See if it's time to force a crash.
6272 */
6273 if (now > zs->zs_thread_kill)
6274 ztest_kill(zs);
6275
6276 /*
6277 * If we're getting ENOSPC with some regularity, stop.
6278 */
6279 if (zs->zs_enospc_count > 10)
6280 break;
6281
6282 /*
6283 * Pick a random function to execute.
6284 */
6285 rand = ztest_random(ZTEST_FUNCS);
6286 zi = &ztest_info[rand];
6287 zc = ZTEST_GET_SHARED_CALLSTATE(rand);
6288 call_next = zc->zc_next;
6289
6290 if (now >= call_next &&
6291 atomic_cas_64(&zc->zc_next, call_next, call_next +
6292 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) {
6293 ztest_execute(rand, zi, id);
6294 }
6295 }
6296
6297 thread_exit();
6298 }
6299
6300 static void
6301 ztest_dataset_name(char *dsname, char *pool, int d)
6302 {
6303 (void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d);
6304 }
6305
6306 static void
6307 ztest_dataset_destroy(int d)
6308 {
6309 char name[ZFS_MAX_DATASET_NAME_LEN];
6310 int t;
6311
6312 ztest_dataset_name(name, ztest_opts.zo_pool, d);
6313
6314 if (ztest_opts.zo_verbose >= 3)
6315 (void) printf("Destroying %s to free up space\n", name);
6316
6317 /*
6318 * Cleanup any non-standard clones and snapshots. In general,
6319 * ztest thread t operates on dataset (t % zopt_datasets),
6320 * so there may be more than one thing to clean up.
6321 */
6322 for (t = d; t < ztest_opts.zo_threads;
6323 t += ztest_opts.zo_datasets)
6324 ztest_dsl_dataset_cleanup(name, t);
6325
6326 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
6327 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
6328 }
6329
6330 static void
6331 ztest_dataset_dirobj_verify(ztest_ds_t *zd)
6332 {
6333 uint64_t usedobjs, dirobjs, scratch;
6334
6335 /*
6336 * ZTEST_DIROBJ is the object directory for the entire dataset.
6337 * Therefore, the number of objects in use should equal the
6338 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
6339 * If not, we have an object leak.
6340 *
6341 * Note that we can only check this in ztest_dataset_open(),
6342 * when the open-context and syncing-context values agree.
6343 * That's because zap_count() returns the open-context value,
6344 * while dmu_objset_space() returns the rootbp fill count.
6345 */
6346 VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
6347 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
6348 ASSERT3U(dirobjs + 1, ==, usedobjs);
6349 }
6350
6351 static int
6352 ztest_dataset_open(int d)
6353 {
6354 ztest_ds_t *zd = &ztest_ds[d];
6355 uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq;
6356 objset_t *os;
6357 zilog_t *zilog;
6358 char name[ZFS_MAX_DATASET_NAME_LEN];
6359 int error;
6360
6361 ztest_dataset_name(name, ztest_opts.zo_pool, d);
6362
6363 (void) rw_rdlock(&ztest_name_lock);
6364
6365 error = ztest_dataset_create(name);
6366 if (error == ENOSPC) {
6367 (void) rw_unlock(&ztest_name_lock);
6368 ztest_record_enospc(FTAG);
6369 return (error);
6370 }
6371 ASSERT(error == 0 || error == EEXIST);
6372
6373 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
6374 B_TRUE, zd, &os));
6375 (void) rw_unlock(&ztest_name_lock);
6376
6377 ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os);
6378
6379 zilog = zd->zd_zilog;
6380
6381 if (zilog->zl_header->zh_claim_lr_seq != 0 &&
6382 zilog->zl_header->zh_claim_lr_seq < committed_seq)
6383 fatal(0, "missing log records: claimed %llu < committed %llu",
6384 zilog->zl_header->zh_claim_lr_seq, committed_seq);
6385
6386 ztest_dataset_dirobj_verify(zd);
6387
6388 zil_replay(os, zd, ztest_replay_vector);
6389
6390 ztest_dataset_dirobj_verify(zd);
6391
6392 if (ztest_opts.zo_verbose >= 6)
6393 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n",
6394 zd->zd_name,
6395 (u_longlong_t)zilog->zl_parse_blk_count,
6396 (u_longlong_t)zilog->zl_parse_lr_count,
6397 (u_longlong_t)zilog->zl_replaying_seq);
6398
6399 zilog = zil_open(os, ztest_get_data);
6400
6401 if (zilog->zl_replaying_seq != 0 &&
6402 zilog->zl_replaying_seq < committed_seq)
6403 fatal(0, "missing log records: replayed %llu < committed %llu",
6404 zilog->zl_replaying_seq, committed_seq);
6405
6406 return (0);
6407 }
6408
6409 static void
6410 ztest_dataset_close(int d)
6411 {
6412 ztest_ds_t *zd = &ztest_ds[d];
6413
6414 zil_close(zd->zd_zilog);
6415 txg_wait_synced(spa_get_dsl(zd->zd_os->os_spa), 0);
6416 dmu_objset_disown(zd->zd_os, B_TRUE, zd);
6417
6418 ztest_zd_fini(zd);
6419 }
6420
6421 /*
6422 * Kick off threads to run tests on all datasets in parallel.
6423 */
6424 static void
6425 ztest_run(ztest_shared_t *zs)
6426 {
6427 spa_t *spa;
6428 objset_t *os;
6429 kthread_t *resume_thread;
6430 kthread_t **run_threads;
6431 uint64_t object;
6432 int error;
6433 int t, d;
6434
6435 ztest_exiting = B_FALSE;
6436
6437 /*
6438 * Initialize parent/child shared state.
6439 */
6440 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
6441 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0);
6442
6443 zs->zs_thread_start = gethrtime();
6444 zs->zs_thread_stop =
6445 zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC;
6446 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
6447 zs->zs_thread_kill = zs->zs_thread_stop;
6448 if (ztest_random(100) < ztest_opts.zo_killrate) {
6449 zs->zs_thread_kill -=
6450 ztest_random(ztest_opts.zo_passtime * NANOSEC);
6451 }
6452
6453 mutex_init(&zcl.zcl_callbacks_lock, NULL, MUTEX_DEFAULT, NULL);
6454
6455 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
6456 offsetof(ztest_cb_data_t, zcd_node));
6457
6458 /*
6459 * Open our pool.
6460 */
6461 kernel_init(FREAD | FWRITE);
6462 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
6463 spa->spa_debug = B_TRUE;
6464 metaslab_preload_limit = ztest_random(20) + 1;
6465 ztest_spa = spa;
6466
6467 dmu_objset_stats_t dds;
6468 VERIFY0(ztest_dmu_objset_own(ztest_opts.zo_pool,
6469 DMU_OST_ANY, B_TRUE, B_TRUE, FTAG, &os));
6470 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
6471 dmu_objset_fast_stat(os, &dds);
6472 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
6473 zs->zs_guid = dds.dds_guid;
6474 dmu_objset_disown(os, B_TRUE, FTAG);
6475
6476 spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN;
6477
6478 /*
6479 * We don't expect the pool to suspend unless maxfaults == 0,
6480 * in which case ztest_fault_inject() temporarily takes away
6481 * the only valid replica.
6482 */
6483 if (MAXFAULTS() == 0)
6484 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT;
6485 else
6486 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC;
6487
6488 /*
6489 * Create a thread to periodically resume suspended I/O.
6490 */
6491 resume_thread = thread_create(NULL, 0, ztest_resume_thread,
6492 spa, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
6493
6494 #if 0
6495 /*
6496 * Set a deadman alarm to abort() if we hang.
6497 */
6498 signal(SIGALRM, ztest_deadman_alarm);
6499 alarm((zs->zs_thread_stop - zs->zs_thread_start) / NANOSEC + GRACE);
6500 #endif
6501
6502 /*
6503 * Verify that we can safely inquire about about any object,
6504 * whether it's allocated or not. To make it interesting,
6505 * we probe a 5-wide window around each power of two.
6506 * This hits all edge cases, including zero and the max.
6507 */
6508 for (t = 0; t < 64; t++) {
6509 for (d = -5; d <= 5; d++) {
6510 error = dmu_object_info(spa->spa_meta_objset,
6511 (1ULL << t) + d, NULL);
6512 ASSERT(error == 0 || error == ENOENT ||
6513 error == EINVAL);
6514 }
6515 }
6516
6517 /*
6518 * If we got any ENOSPC errors on the previous run, destroy something.
6519 */
6520 if (zs->zs_enospc_count != 0) {
6521 int d = ztest_random(ztest_opts.zo_datasets);
6522 ztest_dataset_destroy(d);
6523 }
6524 zs->zs_enospc_count = 0;
6525
6526 run_threads = umem_zalloc(ztest_opts.zo_threads * sizeof (kthread_t *),
6527 UMEM_NOFAIL);
6528
6529 if (ztest_opts.zo_verbose >= 4)
6530 (void) printf("starting main threads...\n");
6531
6532 /*
6533 * Kick off all the tests that run in parallel.
6534 */
6535 for (t = 0; t < ztest_opts.zo_threads; t++) {
6536 if (t < ztest_opts.zo_datasets && ztest_dataset_open(t) != 0) {
6537 umem_free(run_threads, ztest_opts.zo_threads *
6538 sizeof (kthread_t *));
6539 return;
6540 }
6541
6542 run_threads[t] = thread_create(NULL, 0, ztest_thread,
6543 (void *)(uintptr_t)t, 0, NULL, TS_RUN | TS_JOINABLE,
6544 defclsyspri);
6545 }
6546
6547 /*
6548 * Wait for all of the tests to complete. We go in reverse order
6549 * so we don't close datasets while threads are still using them.
6550 */
6551 for (t = ztest_opts.zo_threads - 1; t >= 0; t--) {
6552 VERIFY0(thread_join(run_threads[t]));
6553 if (t < ztest_opts.zo_datasets)
6554 ztest_dataset_close(t);
6555 }
6556
6557 txg_wait_synced(spa_get_dsl(spa), 0);
6558
6559 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
6560 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
6561
6562 umem_free(run_threads, ztest_opts.zo_threads * sizeof (kthread_t *));
6563
6564 /* Kill the resume thread */
6565 ztest_exiting = B_TRUE;
6566 VERIFY0(thread_join(resume_thread));
6567 ztest_resume(spa);
6568
6569 /*
6570 * Right before closing the pool, kick off a bunch of async I/O;
6571 * spa_close() should wait for it to complete.
6572 */
6573 for (object = 1; object < 50; object++) {
6574 dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20,
6575 ZIO_PRIORITY_SYNC_READ);
6576 }
6577
6578 /* Verify that at least one commit cb was called in a timely fashion */
6579 if (zc_cb_counter >= ZTEST_COMMIT_CB_MIN_REG)
6580 VERIFY0(zc_min_txg_delay);
6581
6582 spa_close(spa, FTAG);
6583
6584 /*
6585 * Verify that we can loop over all pools.
6586 */
6587 mutex_enter(&spa_namespace_lock);
6588 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
6589 if (ztest_opts.zo_verbose > 3)
6590 (void) printf("spa_next: found %s\n", spa_name(spa));
6591 mutex_exit(&spa_namespace_lock);
6592
6593 /*
6594 * Verify that we can export the pool and reimport it under a
6595 * different name.
6596 */
6597 if ((ztest_random(2) == 0) && !ztest_opts.zo_mmp_test) {
6598 char name[ZFS_MAX_DATASET_NAME_LEN];
6599 (void) snprintf(name, sizeof (name), "%s_import",
6600 ztest_opts.zo_pool);
6601 ztest_spa_import_export(ztest_opts.zo_pool, name);
6602 ztest_spa_import_export(name, ztest_opts.zo_pool);
6603 }
6604
6605 kernel_fini();
6606
6607 list_destroy(&zcl.zcl_callbacks);
6608 mutex_destroy(&zcl.zcl_callbacks_lock);
6609 (void) rwlock_destroy(&ztest_name_lock);
6610 mutex_destroy(&ztest_vdev_lock);
6611 }
6612
6613 static void
6614 ztest_freeze(void)
6615 {
6616 ztest_ds_t *zd = &ztest_ds[0];
6617 spa_t *spa;
6618 int numloops = 0;
6619
6620 if (ztest_opts.zo_verbose >= 3)
6621 (void) printf("testing spa_freeze()...\n");
6622
6623 kernel_init(FREAD | FWRITE);
6624 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
6625 VERIFY3U(0, ==, ztest_dataset_open(0));
6626 spa->spa_debug = B_TRUE;
6627 ztest_spa = spa;
6628
6629 /*
6630 * Force the first log block to be transactionally allocated.
6631 * We have to do this before we freeze the pool -- otherwise
6632 * the log chain won't be anchored.
6633 */
6634 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
6635 ztest_dmu_object_alloc_free(zd, 0);
6636 zil_commit(zd->zd_zilog, 0);
6637 }
6638
6639 txg_wait_synced(spa_get_dsl(spa), 0);
6640
6641 /*
6642 * Freeze the pool. This stops spa_sync() from doing anything,
6643 * so that the only way to record changes from now on is the ZIL.
6644 */
6645 spa_freeze(spa);
6646
6647 /*
6648 * Because it is hard to predict how much space a write will actually
6649 * require beforehand, we leave ourselves some fudge space to write over
6650 * capacity.
6651 */
6652 uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2;
6653
6654 /*
6655 * Run tests that generate log records but don't alter the pool config
6656 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
6657 * We do a txg_wait_synced() after each iteration to force the txg
6658 * to increase well beyond the last synced value in the uberblock.
6659 * The ZIL should be OK with that.
6660 *
6661 * Run a random number of times less than zo_maxloops and ensure we do
6662 * not run out of space on the pool.
6663 */
6664 while (ztest_random(10) != 0 &&
6665 numloops++ < ztest_opts.zo_maxloops &&
6666 metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) {
6667 ztest_od_t od;
6668 ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
6669 VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE));
6670 ztest_io(zd, od.od_object,
6671 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
6672 txg_wait_synced(spa_get_dsl(spa), 0);
6673 }
6674
6675 /*
6676 * Commit all of the changes we just generated.
6677 */
6678 zil_commit(zd->zd_zilog, 0);
6679 txg_wait_synced(spa_get_dsl(spa), 0);
6680
6681 /*
6682 * Close our dataset and close the pool.
6683 */
6684 ztest_dataset_close(0);
6685 spa_close(spa, FTAG);
6686 kernel_fini();
6687
6688 /*
6689 * Open and close the pool and dataset to induce log replay.
6690 */
6691 kernel_init(FREAD | FWRITE);
6692 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
6693 ASSERT(spa_freeze_txg(spa) == UINT64_MAX);
6694 VERIFY3U(0, ==, ztest_dataset_open(0));
6695 spa->spa_debug = B_TRUE;
6696 ztest_spa = spa;
6697 txg_wait_synced(spa_get_dsl(spa), 0);
6698 ztest_dataset_close(0);
6699 ztest_reguid(NULL, 0);
6700
6701 spa_close(spa, FTAG);
6702 kernel_fini();
6703 }
6704
6705 void
6706 print_time(hrtime_t t, char *timebuf)
6707 {
6708 hrtime_t s = t / NANOSEC;
6709 hrtime_t m = s / 60;
6710 hrtime_t h = m / 60;
6711 hrtime_t d = h / 24;
6712
6713 s -= m * 60;
6714 m -= h * 60;
6715 h -= d * 24;
6716
6717 timebuf[0] = '\0';
6718
6719 if (d)
6720 (void) sprintf(timebuf,
6721 "%llud%02lluh%02llum%02llus", d, h, m, s);
6722 else if (h)
6723 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
6724 else if (m)
6725 (void) sprintf(timebuf, "%llum%02llus", m, s);
6726 else
6727 (void) sprintf(timebuf, "%llus", s);
6728 }
6729
6730 static nvlist_t *
6731 make_random_props(void)
6732 {
6733 nvlist_t *props;
6734
6735 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
6736 if (ztest_random(2) == 0)
6737 return (props);
6738 VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0);
6739
6740 return (props);
6741 }
6742
6743 /*
6744 * Import a storage pool with the given name.
6745 */
6746 static void
6747 ztest_import(ztest_shared_t *zs)
6748 {
6749 libzfs_handle_t *hdl;
6750 importargs_t args = { 0 };
6751 spa_t *spa;
6752 nvlist_t *cfg = NULL;
6753 int nsearch = 1;
6754 char *searchdirs[nsearch];
6755 char *name = ztest_opts.zo_pool;
6756 int flags = ZFS_IMPORT_MISSING_LOG;
6757 int error;
6758
6759 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
6760 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0);
6761
6762 kernel_init(FREAD | FWRITE);
6763 hdl = libzfs_init();
6764
6765 searchdirs[0] = ztest_opts.zo_dir;
6766 args.paths = nsearch;
6767 args.path = searchdirs;
6768 args.can_be_active = B_FALSE;
6769
6770 error = zpool_tryimport(hdl, name, &cfg, &args);
6771 if (error)
6772 (void) fatal(0, "No pools found\n");
6773
6774 VERIFY0(spa_import(name, cfg, NULL, flags));
6775 VERIFY0(spa_open(name, &spa, FTAG));
6776 zs->zs_metaslab_sz =
6777 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
6778 spa_close(spa, FTAG);
6779
6780 libzfs_fini(hdl);
6781 kernel_fini();
6782
6783 if (!ztest_opts.zo_mmp_test) {
6784 ztest_run_zdb(ztest_opts.zo_pool);
6785 ztest_freeze();
6786 ztest_run_zdb(ztest_opts.zo_pool);
6787 }
6788
6789 (void) rwlock_destroy(&ztest_name_lock);
6790 mutex_destroy(&ztest_vdev_lock);
6791 }
6792
6793 /*
6794 * Create a storage pool with the given name and initial vdev size.
6795 * Then test spa_freeze() functionality.
6796 */
6797 static void
6798 ztest_init(ztest_shared_t *zs)
6799 {
6800 spa_t *spa;
6801 nvlist_t *nvroot, *props;
6802 int i;
6803
6804 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
6805 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0);
6806
6807 kernel_init(FREAD | FWRITE);
6808
6809 /*
6810 * Create the storage pool.
6811 */
6812 (void) spa_destroy(ztest_opts.zo_pool);
6813 ztest_shared->zs_vdev_next_leaf = 0;
6814 zs->zs_splits = 0;
6815 zs->zs_mirrors = ztest_opts.zo_mirrors;
6816 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
6817 0, ztest_opts.zo_raidz, zs->zs_mirrors, 1);
6818 props = make_random_props();
6819 for (i = 0; i < SPA_FEATURES; i++) {
6820 char *buf;
6821 VERIFY3S(-1, !=, asprintf(&buf, "feature@%s",
6822 spa_feature_table[i].fi_uname));
6823 VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0));
6824 free(buf);
6825 }
6826 VERIFY3U(0, ==,
6827 spa_create(ztest_opts.zo_pool, nvroot, props, NULL, NULL));
6828 nvlist_free(nvroot);
6829 nvlist_free(props);
6830
6831 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
6832 zs->zs_metaslab_sz =
6833 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
6834 spa_close(spa, FTAG);
6835
6836 kernel_fini();
6837
6838 if (!ztest_opts.zo_mmp_test) {
6839 ztest_run_zdb(ztest_opts.zo_pool);
6840 ztest_freeze();
6841 ztest_run_zdb(ztest_opts.zo_pool);
6842 }
6843
6844 (void) rwlock_destroy(&ztest_name_lock);
6845 mutex_destroy(&ztest_vdev_lock);
6846 }
6847
6848 static void
6849 setup_data_fd(void)
6850 {
6851 static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX";
6852
6853 ztest_fd_data = mkstemp(ztest_name_data);
6854 ASSERT3S(ztest_fd_data, >=, 0);
6855 (void) unlink(ztest_name_data);
6856 }
6857
6858 static int
6859 shared_data_size(ztest_shared_hdr_t *hdr)
6860 {
6861 int size;
6862
6863 size = hdr->zh_hdr_size;
6864 size += hdr->zh_opts_size;
6865 size += hdr->zh_size;
6866 size += hdr->zh_stats_size * hdr->zh_stats_count;
6867 size += hdr->zh_ds_size * hdr->zh_ds_count;
6868
6869 return (size);
6870 }
6871
6872 static void
6873 setup_hdr(void)
6874 {
6875 int size;
6876 ztest_shared_hdr_t *hdr;
6877
6878 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
6879 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
6880 ASSERT(hdr != MAP_FAILED);
6881
6882 VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t)));
6883
6884 hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t);
6885 hdr->zh_opts_size = sizeof (ztest_shared_opts_t);
6886 hdr->zh_size = sizeof (ztest_shared_t);
6887 hdr->zh_stats_size = sizeof (ztest_shared_callstate_t);
6888 hdr->zh_stats_count = ZTEST_FUNCS;
6889 hdr->zh_ds_size = sizeof (ztest_shared_ds_t);
6890 hdr->zh_ds_count = ztest_opts.zo_datasets;
6891
6892 size = shared_data_size(hdr);
6893 VERIFY3U(0, ==, ftruncate(ztest_fd_data, size));
6894
6895 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
6896 }
6897
6898 static void
6899 setup_data(void)
6900 {
6901 int size, offset;
6902 ztest_shared_hdr_t *hdr;
6903 uint8_t *buf;
6904
6905 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
6906 PROT_READ, MAP_SHARED, ztest_fd_data, 0);
6907 ASSERT(hdr != MAP_FAILED);
6908
6909 size = shared_data_size(hdr);
6910
6911 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
6912 hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()),
6913 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
6914 ASSERT(hdr != MAP_FAILED);
6915 buf = (uint8_t *)hdr;
6916
6917 offset = hdr->zh_hdr_size;
6918 ztest_shared_opts = (void *)&buf[offset];
6919 offset += hdr->zh_opts_size;
6920 ztest_shared = (void *)&buf[offset];
6921 offset += hdr->zh_size;
6922 ztest_shared_callstate = (void *)&buf[offset];
6923 offset += hdr->zh_stats_size * hdr->zh_stats_count;
6924 ztest_shared_ds = (void *)&buf[offset];
6925 }
6926
6927 static boolean_t
6928 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp)
6929 {
6930 pid_t pid;
6931 int status;
6932 char *cmdbuf = NULL;
6933
6934 pid = fork();
6935
6936 if (cmd == NULL) {
6937 cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6938 (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN);
6939 cmd = cmdbuf;
6940 }
6941
6942 if (pid == -1)
6943 fatal(1, "fork failed");
6944
6945 if (pid == 0) { /* child */
6946 char *emptyargv[2] = { cmd, NULL };
6947 char fd_data_str[12];
6948
6949 struct rlimit rl = { 1024, 1024 };
6950 (void) setrlimit(RLIMIT_NOFILE, &rl);
6951
6952 (void) close(ztest_fd_rand);
6953 VERIFY(11 >= snprintf(fd_data_str, 12, "%d", ztest_fd_data));
6954 VERIFY(0 == setenv("ZTEST_FD_DATA", fd_data_str, 1));
6955
6956 (void) enable_extended_FILE_stdio(-1, -1);
6957 if (libpath != NULL)
6958 VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1));
6959 (void) execv(cmd, emptyargv);
6960 ztest_dump_core = B_FALSE;
6961 fatal(B_TRUE, "exec failed: %s", cmd);
6962 }
6963
6964 if (cmdbuf != NULL) {
6965 umem_free(cmdbuf, MAXPATHLEN);
6966 cmd = NULL;
6967 }
6968
6969 while (waitpid(pid, &status, 0) != pid)
6970 continue;
6971 if (statusp != NULL)
6972 *statusp = status;
6973
6974 if (WIFEXITED(status)) {
6975 if (WEXITSTATUS(status) != 0) {
6976 (void) fprintf(stderr, "child exited with code %d\n",
6977 WEXITSTATUS(status));
6978 exit(2);
6979 }
6980 return (B_FALSE);
6981 } else if (WIFSIGNALED(status)) {
6982 if (!ignorekill || WTERMSIG(status) != SIGKILL) {
6983 (void) fprintf(stderr, "child died with signal %d\n",
6984 WTERMSIG(status));
6985 exit(3);
6986 }
6987 return (B_TRUE);
6988 } else {
6989 (void) fprintf(stderr, "something strange happened to child\n");
6990 exit(4);
6991 /* NOTREACHED */
6992 }
6993 }
6994
6995 static void
6996 ztest_run_init(void)
6997 {
6998 int i;
6999
7000 ztest_shared_t *zs = ztest_shared;
7001
7002 /*
7003 * Blow away any existing copy of zpool.cache
7004 */
7005 (void) remove(spa_config_path);
7006
7007 if (ztest_opts.zo_init == 0) {
7008 if (ztest_opts.zo_verbose >= 1)
7009 (void) printf("Importing pool %s\n",
7010 ztest_opts.zo_pool);
7011 ztest_import(zs);
7012 return;
7013 }
7014
7015 /*
7016 * Create and initialize our storage pool.
7017 */
7018 for (i = 1; i <= ztest_opts.zo_init; i++) {
7019 bzero(zs, sizeof (ztest_shared_t));
7020 if (ztest_opts.zo_verbose >= 3 &&
7021 ztest_opts.zo_init != 1) {
7022 (void) printf("ztest_init(), pass %d\n", i);
7023 }
7024 ztest_init(zs);
7025 }
7026 }
7027
7028 int
7029 main(int argc, char **argv)
7030 {
7031 int kills = 0;
7032 int iters = 0;
7033 int older = 0;
7034 int newer = 0;
7035 ztest_shared_t *zs;
7036 ztest_info_t *zi;
7037 ztest_shared_callstate_t *zc;
7038 char timebuf[100];
7039 char numbuf[NN_NUMBUF_SZ];
7040 spa_t *spa;
7041 char *cmd;
7042 boolean_t hasalt;
7043 int f;
7044 char *fd_data_str = getenv("ZTEST_FD_DATA");
7045 struct sigaction action;
7046
7047 (void) setvbuf(stdout, NULL, _IOLBF, 0);
7048
7049 dprintf_setup(&argc, argv);
7050
7051 action.sa_handler = sig_handler;
7052 sigemptyset(&action.sa_mask);
7053 action.sa_flags = 0;
7054
7055 if (sigaction(SIGSEGV, &action, NULL) < 0) {
7056 (void) fprintf(stderr, "ztest: cannot catch SIGSEGV: %s.\n",
7057 strerror(errno));
7058 exit(EXIT_FAILURE);
7059 }
7060
7061 if (sigaction(SIGABRT, &action, NULL) < 0) {
7062 (void) fprintf(stderr, "ztest: cannot catch SIGABRT: %s.\n",
7063 strerror(errno));
7064 exit(EXIT_FAILURE);
7065 }
7066
7067 ztest_fd_rand = open("/dev/urandom", O_RDONLY);
7068 ASSERT3S(ztest_fd_rand, >=, 0);
7069
7070 if (!fd_data_str) {
7071 process_options(argc, argv);
7072
7073 setup_data_fd();
7074 setup_hdr();
7075 setup_data();
7076 bcopy(&ztest_opts, ztest_shared_opts,
7077 sizeof (*ztest_shared_opts));
7078 } else {
7079 ztest_fd_data = atoi(fd_data_str);
7080 setup_data();
7081 bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts));
7082 }
7083 ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count);
7084
7085 /* Override location of zpool.cache */
7086 VERIFY(asprintf((char **)&spa_config_path, "%s/zpool.cache",
7087 ztest_opts.zo_dir) != -1);
7088
7089 ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t),
7090 UMEM_NOFAIL);
7091 zs = ztest_shared;
7092
7093 if (fd_data_str) {
7094 metaslab_gang_bang = ztest_opts.zo_metaslab_gang_bang;
7095 metaslab_df_alloc_threshold =
7096 zs->zs_metaslab_df_alloc_threshold;
7097
7098 if (zs->zs_do_init)
7099 ztest_run_init();
7100 else
7101 ztest_run(zs);
7102 exit(0);
7103 }
7104
7105 hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0);
7106
7107 if (ztest_opts.zo_verbose >= 1) {
7108 (void) printf("%llu vdevs, %d datasets, %d threads,"
7109 " %llu seconds...\n",
7110 (u_longlong_t)ztest_opts.zo_vdevs,
7111 ztest_opts.zo_datasets,
7112 ztest_opts.zo_threads,
7113 (u_longlong_t)ztest_opts.zo_time);
7114 }
7115
7116 cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
7117 (void) strlcpy(cmd, getexecname(), MAXNAMELEN);
7118
7119 zs->zs_do_init = B_TRUE;
7120 if (strlen(ztest_opts.zo_alt_ztest) != 0) {
7121 if (ztest_opts.zo_verbose >= 1) {
7122 (void) printf("Executing older ztest for "
7123 "initialization: %s\n", ztest_opts.zo_alt_ztest);
7124 }
7125 VERIFY(!exec_child(ztest_opts.zo_alt_ztest,
7126 ztest_opts.zo_alt_libpath, B_FALSE, NULL));
7127 } else {
7128 VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL));
7129 }
7130 zs->zs_do_init = B_FALSE;
7131
7132 zs->zs_proc_start = gethrtime();
7133 zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC;
7134
7135 for (f = 0; f < ZTEST_FUNCS; f++) {
7136 zi = &ztest_info[f];
7137 zc = ZTEST_GET_SHARED_CALLSTATE(f);
7138 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
7139 zc->zc_next = UINT64_MAX;
7140 else
7141 zc->zc_next = zs->zs_proc_start +
7142 ztest_random(2 * zi->zi_interval[0] + 1);
7143 }
7144
7145 /*
7146 * Run the tests in a loop. These tests include fault injection
7147 * to verify that self-healing data works, and forced crashes
7148 * to verify that we never lose on-disk consistency.
7149 */
7150 while (gethrtime() < zs->zs_proc_stop) {
7151 int status;
7152 boolean_t killed;
7153
7154 /*
7155 * Initialize the workload counters for each function.
7156 */
7157 for (f = 0; f < ZTEST_FUNCS; f++) {
7158 zc = ZTEST_GET_SHARED_CALLSTATE(f);
7159 zc->zc_count = 0;
7160 zc->zc_time = 0;
7161 }
7162
7163 /* Set the allocation switch size */
7164 zs->zs_metaslab_df_alloc_threshold =
7165 ztest_random(zs->zs_metaslab_sz / 4) + 1;
7166
7167 if (!hasalt || ztest_random(2) == 0) {
7168 if (hasalt && ztest_opts.zo_verbose >= 1) {
7169 (void) printf("Executing newer ztest: %s\n",
7170 cmd);
7171 }
7172 newer++;
7173 killed = exec_child(cmd, NULL, B_TRUE, &status);
7174 } else {
7175 if (hasalt && ztest_opts.zo_verbose >= 1) {
7176 (void) printf("Executing older ztest: %s\n",
7177 ztest_opts.zo_alt_ztest);
7178 }
7179 older++;
7180 killed = exec_child(ztest_opts.zo_alt_ztest,
7181 ztest_opts.zo_alt_libpath, B_TRUE, &status);
7182 }
7183
7184 if (killed)
7185 kills++;
7186 iters++;
7187
7188 if (ztest_opts.zo_verbose >= 1) {
7189 hrtime_t now = gethrtime();
7190
7191 now = MIN(now, zs->zs_proc_stop);
7192 print_time(zs->zs_proc_stop - now, timebuf);
7193 nicenum(zs->zs_space, numbuf, sizeof (numbuf));
7194
7195 (void) printf("Pass %3d, %8s, %3llu ENOSPC, "
7196 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
7197 iters,
7198 WIFEXITED(status) ? "Complete" : "SIGKILL",
7199 (u_longlong_t)zs->zs_enospc_count,
7200 100.0 * zs->zs_alloc / zs->zs_space,
7201 numbuf,
7202 100.0 * (now - zs->zs_proc_start) /
7203 (ztest_opts.zo_time * NANOSEC), timebuf);
7204 }
7205
7206 if (ztest_opts.zo_verbose >= 2) {
7207 (void) printf("\nWorkload summary:\n\n");
7208 (void) printf("%7s %9s %s\n",
7209 "Calls", "Time", "Function");
7210 (void) printf("%7s %9s %s\n",
7211 "-----", "----", "--------");
7212 for (f = 0; f < ZTEST_FUNCS; f++) {
7213 zi = &ztest_info[f];
7214 zc = ZTEST_GET_SHARED_CALLSTATE(f);
7215 print_time(zc->zc_time, timebuf);
7216 (void) printf("%7llu %9s %s\n",
7217 (u_longlong_t)zc->zc_count, timebuf,
7218 zi->zi_funcname);
7219 }
7220 (void) printf("\n");
7221 }
7222
7223 /*
7224 * It's possible that we killed a child during a rename test,
7225 * in which case we'll have a 'ztest_tmp' pool lying around
7226 * instead of 'ztest'. Do a blind rename in case this happened.
7227 */
7228 kernel_init(FREAD);
7229 if (spa_open(ztest_opts.zo_pool, &spa, FTAG) == 0) {
7230 spa_close(spa, FTAG);
7231 } else {
7232 char tmpname[ZFS_MAX_DATASET_NAME_LEN];
7233 kernel_fini();
7234 kernel_init(FREAD | FWRITE);
7235 (void) snprintf(tmpname, sizeof (tmpname), "%s_tmp",
7236 ztest_opts.zo_pool);
7237 (void) spa_rename(tmpname, ztest_opts.zo_pool);
7238 }
7239 kernel_fini();
7240
7241 if (!ztest_opts.zo_mmp_test)
7242 ztest_run_zdb(ztest_opts.zo_pool);
7243 }
7244
7245 if (ztest_opts.zo_verbose >= 1) {
7246 if (hasalt) {
7247 (void) printf("%d runs of older ztest: %s\n", older,
7248 ztest_opts.zo_alt_ztest);
7249 (void) printf("%d runs of newer ztest: %s\n", newer,
7250 cmd);
7251 }
7252 (void) printf("%d killed, %d completed, %.0f%% kill rate\n",
7253 kills, iters - kills, (100.0 * kills) / MAX(1, iters));
7254 }
7255
7256 umem_free(cmd, MAXNAMELEN);
7257
7258 return (0);
7259 }