]> git.proxmox.com Git - mirror_zfs.git/blob - cmd/ztest/ztest.c
OpenZFS 7163 - ztest failures due to excess error injection
[mirror_zfs.git] / cmd / ztest / ztest.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2013 Steven Hartland. All rights reserved.
26 */
27
28 /*
29 * The objective of this program is to provide a DMU/ZAP/SPA stress test
30 * that runs entirely in userland, is easy to use, and easy to extend.
31 *
32 * The overall design of the ztest program is as follows:
33 *
34 * (1) For each major functional area (e.g. adding vdevs to a pool,
35 * creating and destroying datasets, reading and writing objects, etc)
36 * we have a simple routine to test that functionality. These
37 * individual routines do not have to do anything "stressful".
38 *
39 * (2) We turn these simple functionality tests into a stress test by
40 * running them all in parallel, with as many threads as desired,
41 * and spread across as many datasets, objects, and vdevs as desired.
42 *
43 * (3) While all this is happening, we inject faults into the pool to
44 * verify that self-healing data really works.
45 *
46 * (4) Every time we open a dataset, we change its checksum and compression
47 * functions. Thus even individual objects vary from block to block
48 * in which checksum they use and whether they're compressed.
49 *
50 * (5) To verify that we never lose on-disk consistency after a crash,
51 * we run the entire test in a child of the main process.
52 * At random times, the child self-immolates with a SIGKILL.
53 * This is the software equivalent of pulling the power cord.
54 * The parent then runs the test again, using the existing
55 * storage pool, as many times as desired. If backwards compatibility
56 * testing is enabled ztest will sometimes run the "older" version
57 * of ztest after a SIGKILL.
58 *
59 * (6) To verify that we don't have future leaks or temporal incursions,
60 * many of the functional tests record the transaction group number
61 * as part of their data. When reading old data, they verify that
62 * the transaction group number is less than the current, open txg.
63 * If you add a new test, please do this if applicable.
64 *
65 * (7) Threads are created with a reduced stack size, for sanity checking.
66 * Therefore, it's important not to allocate huge buffers on the stack.
67 *
68 * When run with no arguments, ztest runs for about five minutes and
69 * produces no output if successful. To get a little bit of information,
70 * specify -V. To get more information, specify -VV, and so on.
71 *
72 * To turn this into an overnight stress test, use -T to specify run time.
73 *
74 * You can ask more more vdevs [-v], datasets [-d], or threads [-t]
75 * to increase the pool capacity, fanout, and overall stress level.
76 *
77 * Use the -k option to set the desired frequency of kills.
78 *
79 * When ztest invokes itself it passes all relevant information through a
80 * temporary file which is mmap-ed in the child process. This allows shared
81 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
82 * stored at offset 0 of this file and contains information on the size and
83 * number of shared structures in the file. The information stored in this file
84 * must remain backwards compatible with older versions of ztest so that
85 * ztest can invoke them during backwards compatibility testing (-B).
86 */
87
88 #include <sys/zfs_context.h>
89 #include <sys/spa.h>
90 #include <sys/dmu.h>
91 #include <sys/txg.h>
92 #include <sys/dbuf.h>
93 #include <sys/zap.h>
94 #include <sys/dmu_objset.h>
95 #include <sys/poll.h>
96 #include <sys/stat.h>
97 #include <sys/time.h>
98 #include <sys/wait.h>
99 #include <sys/mman.h>
100 #include <sys/resource.h>
101 #include <sys/zio.h>
102 #include <sys/zil.h>
103 #include <sys/zil_impl.h>
104 #include <sys/zfs_rlock.h>
105 #include <sys/vdev_impl.h>
106 #include <sys/vdev_file.h>
107 #include <sys/spa_impl.h>
108 #include <sys/metaslab_impl.h>
109 #include <sys/dsl_prop.h>
110 #include <sys/dsl_dataset.h>
111 #include <sys/dsl_destroy.h>
112 #include <sys/dsl_scan.h>
113 #include <sys/zio_checksum.h>
114 #include <sys/refcount.h>
115 #include <sys/zfeature.h>
116 #include <sys/dsl_userhold.h>
117 #include <sys/abd.h>
118 #include <stdio.h>
119 #include <stdio_ext.h>
120 #include <stdlib.h>
121 #include <unistd.h>
122 #include <signal.h>
123 #include <umem.h>
124 #include <ctype.h>
125 #include <math.h>
126 #include <sys/fs/zfs.h>
127 #include <zfs_fletcher.h>
128 #include <libnvpair.h>
129 #ifdef __GLIBC__
130 #include <execinfo.h> /* for backtrace() */
131 #endif
132
133 static int ztest_fd_data = -1;
134 static int ztest_fd_rand = -1;
135
136 typedef struct ztest_shared_hdr {
137 uint64_t zh_hdr_size;
138 uint64_t zh_opts_size;
139 uint64_t zh_size;
140 uint64_t zh_stats_size;
141 uint64_t zh_stats_count;
142 uint64_t zh_ds_size;
143 uint64_t zh_ds_count;
144 } ztest_shared_hdr_t;
145
146 static ztest_shared_hdr_t *ztest_shared_hdr;
147
148 typedef struct ztest_shared_opts {
149 char zo_pool[ZFS_MAX_DATASET_NAME_LEN];
150 char zo_dir[ZFS_MAX_DATASET_NAME_LEN];
151 char zo_alt_ztest[MAXNAMELEN];
152 char zo_alt_libpath[MAXNAMELEN];
153 uint64_t zo_vdevs;
154 uint64_t zo_vdevtime;
155 size_t zo_vdev_size;
156 int zo_ashift;
157 int zo_mirrors;
158 int zo_raidz;
159 int zo_raidz_parity;
160 int zo_datasets;
161 int zo_threads;
162 uint64_t zo_passtime;
163 uint64_t zo_killrate;
164 int zo_verbose;
165 int zo_init;
166 uint64_t zo_time;
167 uint64_t zo_maxloops;
168 uint64_t zo_metaslab_gang_bang;
169 } ztest_shared_opts_t;
170
171 static const ztest_shared_opts_t ztest_opts_defaults = {
172 .zo_pool = { 'z', 't', 'e', 's', 't', '\0' },
173 .zo_dir = { '/', 't', 'm', 'p', '\0' },
174 .zo_alt_ztest = { '\0' },
175 .zo_alt_libpath = { '\0' },
176 .zo_vdevs = 5,
177 .zo_ashift = SPA_MINBLOCKSHIFT,
178 .zo_mirrors = 2,
179 .zo_raidz = 4,
180 .zo_raidz_parity = 1,
181 .zo_vdev_size = SPA_MINDEVSIZE * 4, /* 256m default size */
182 .zo_datasets = 7,
183 .zo_threads = 23,
184 .zo_passtime = 60, /* 60 seconds */
185 .zo_killrate = 70, /* 70% kill rate */
186 .zo_verbose = 0,
187 .zo_init = 1,
188 .zo_time = 300, /* 5 minutes */
189 .zo_maxloops = 50, /* max loops during spa_freeze() */
190 .zo_metaslab_gang_bang = 32 << 10
191 };
192
193 extern uint64_t metaslab_gang_bang;
194 extern uint64_t metaslab_df_alloc_threshold;
195 extern int metaslab_preload_limit;
196 extern boolean_t zfs_compressed_arc_enabled;
197 extern int zfs_abd_scatter_enabled;
198
199 static ztest_shared_opts_t *ztest_shared_opts;
200 static ztest_shared_opts_t ztest_opts;
201
202 typedef struct ztest_shared_ds {
203 uint64_t zd_seq;
204 } ztest_shared_ds_t;
205
206 static ztest_shared_ds_t *ztest_shared_ds;
207 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
208
209 #define BT_MAGIC 0x123456789abcdefULL
210 #define MAXFAULTS() \
211 (MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1)
212
213 enum ztest_io_type {
214 ZTEST_IO_WRITE_TAG,
215 ZTEST_IO_WRITE_PATTERN,
216 ZTEST_IO_WRITE_ZEROES,
217 ZTEST_IO_TRUNCATE,
218 ZTEST_IO_SETATTR,
219 ZTEST_IO_REWRITE,
220 ZTEST_IO_TYPES
221 };
222
223 typedef struct ztest_block_tag {
224 uint64_t bt_magic;
225 uint64_t bt_objset;
226 uint64_t bt_object;
227 uint64_t bt_dnodesize;
228 uint64_t bt_offset;
229 uint64_t bt_gen;
230 uint64_t bt_txg;
231 uint64_t bt_crtxg;
232 } ztest_block_tag_t;
233
234 typedef struct bufwad {
235 uint64_t bw_index;
236 uint64_t bw_txg;
237 uint64_t bw_data;
238 } bufwad_t;
239
240 typedef struct rll {
241 void *rll_writer;
242 int rll_readers;
243 kmutex_t rll_lock;
244 kcondvar_t rll_cv;
245 } rll_t;
246
247 typedef struct zll {
248 list_t z_list;
249 kmutex_t z_lock;
250 } zll_t;
251
252 #define ZTEST_RANGE_LOCKS 64
253 #define ZTEST_OBJECT_LOCKS 64
254
255 /*
256 * Object descriptor. Used as a template for object lookup/create/remove.
257 */
258 typedef struct ztest_od {
259 uint64_t od_dir;
260 uint64_t od_object;
261 dmu_object_type_t od_type;
262 dmu_object_type_t od_crtype;
263 uint64_t od_blocksize;
264 uint64_t od_crblocksize;
265 uint64_t od_crdnodesize;
266 uint64_t od_gen;
267 uint64_t od_crgen;
268 char od_name[ZFS_MAX_DATASET_NAME_LEN];
269 } ztest_od_t;
270
271 /*
272 * Per-dataset state.
273 */
274 typedef struct ztest_ds {
275 ztest_shared_ds_t *zd_shared;
276 objset_t *zd_os;
277 rwlock_t zd_zilog_lock;
278 zilog_t *zd_zilog;
279 ztest_od_t *zd_od; /* debugging aid */
280 char zd_name[ZFS_MAX_DATASET_NAME_LEN];
281 kmutex_t zd_dirobj_lock;
282 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS];
283 zll_t zd_range_lock[ZTEST_RANGE_LOCKS];
284 } ztest_ds_t;
285
286 /*
287 * Per-iteration state.
288 */
289 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
290
291 typedef struct ztest_info {
292 ztest_func_t *zi_func; /* test function */
293 uint64_t zi_iters; /* iterations per execution */
294 uint64_t *zi_interval; /* execute every <interval> seconds */
295 const char *zi_funcname; /* name of test function */
296 } ztest_info_t;
297
298 typedef struct ztest_shared_callstate {
299 uint64_t zc_count; /* per-pass count */
300 uint64_t zc_time; /* per-pass time */
301 uint64_t zc_next; /* next time to call this function */
302 } ztest_shared_callstate_t;
303
304 static ztest_shared_callstate_t *ztest_shared_callstate;
305 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
306
307 ztest_func_t ztest_dmu_read_write;
308 ztest_func_t ztest_dmu_write_parallel;
309 ztest_func_t ztest_dmu_object_alloc_free;
310 ztest_func_t ztest_dmu_commit_callbacks;
311 ztest_func_t ztest_zap;
312 ztest_func_t ztest_zap_parallel;
313 ztest_func_t ztest_zil_commit;
314 ztest_func_t ztest_zil_remount;
315 ztest_func_t ztest_dmu_read_write_zcopy;
316 ztest_func_t ztest_dmu_objset_create_destroy;
317 ztest_func_t ztest_dmu_prealloc;
318 ztest_func_t ztest_fzap;
319 ztest_func_t ztest_dmu_snapshot_create_destroy;
320 ztest_func_t ztest_dsl_prop_get_set;
321 ztest_func_t ztest_spa_prop_get_set;
322 ztest_func_t ztest_spa_create_destroy;
323 ztest_func_t ztest_fault_inject;
324 ztest_func_t ztest_ddt_repair;
325 ztest_func_t ztest_dmu_snapshot_hold;
326 ztest_func_t ztest_spa_rename;
327 ztest_func_t ztest_scrub;
328 ztest_func_t ztest_dsl_dataset_promote_busy;
329 ztest_func_t ztest_vdev_attach_detach;
330 ztest_func_t ztest_vdev_LUN_growth;
331 ztest_func_t ztest_vdev_add_remove;
332 ztest_func_t ztest_vdev_aux_add_remove;
333 ztest_func_t ztest_split_pool;
334 ztest_func_t ztest_reguid;
335 ztest_func_t ztest_spa_upgrade;
336 ztest_func_t ztest_fletcher;
337 ztest_func_t ztest_fletcher_incr;
338 ztest_func_t ztest_verify_dnode_bt;
339
340 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */
341 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */
342 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */
343 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */
344 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */
345
346 #define ZTI_INIT(func, iters, interval) \
347 { .zi_func = (func), \
348 .zi_iters = (iters), \
349 .zi_interval = (interval), \
350 .zi_funcname = # func }
351
352 ztest_info_t ztest_info[] = {
353 ZTI_INIT(ztest_dmu_read_write, 1, &zopt_always),
354 ZTI_INIT(ztest_dmu_write_parallel, 10, &zopt_always),
355 ZTI_INIT(ztest_dmu_object_alloc_free, 1, &zopt_always),
356 ZTI_INIT(ztest_dmu_commit_callbacks, 1, &zopt_always),
357 ZTI_INIT(ztest_zap, 30, &zopt_always),
358 ZTI_INIT(ztest_zap_parallel, 100, &zopt_always),
359 ZTI_INIT(ztest_split_pool, 1, &zopt_always),
360 ZTI_INIT(ztest_zil_commit, 1, &zopt_incessant),
361 ZTI_INIT(ztest_zil_remount, 1, &zopt_sometimes),
362 ZTI_INIT(ztest_dmu_read_write_zcopy, 1, &zopt_often),
363 ZTI_INIT(ztest_dmu_objset_create_destroy, 1, &zopt_often),
364 ZTI_INIT(ztest_dsl_prop_get_set, 1, &zopt_often),
365 ZTI_INIT(ztest_spa_prop_get_set, 1, &zopt_sometimes),
366 #if 0
367 ZTI_INIT(ztest_dmu_prealloc, 1, &zopt_sometimes),
368 #endif
369 ZTI_INIT(ztest_fzap, 1, &zopt_sometimes),
370 ZTI_INIT(ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes),
371 ZTI_INIT(ztest_spa_create_destroy, 1, &zopt_sometimes),
372 ZTI_INIT(ztest_fault_inject, 1, &zopt_sometimes),
373 ZTI_INIT(ztest_ddt_repair, 1, &zopt_sometimes),
374 ZTI_INIT(ztest_dmu_snapshot_hold, 1, &zopt_sometimes),
375 ZTI_INIT(ztest_reguid, 1, &zopt_rarely),
376 ZTI_INIT(ztest_spa_rename, 1, &zopt_rarely),
377 ZTI_INIT(ztest_scrub, 1, &zopt_rarely),
378 ZTI_INIT(ztest_spa_upgrade, 1, &zopt_rarely),
379 ZTI_INIT(ztest_dsl_dataset_promote_busy, 1, &zopt_rarely),
380 ZTI_INIT(ztest_vdev_attach_detach, 1, &zopt_sometimes),
381 ZTI_INIT(ztest_vdev_LUN_growth, 1, &zopt_rarely),
382 ZTI_INIT(ztest_vdev_add_remove, 1, &ztest_opts.zo_vdevtime),
383 ZTI_INIT(ztest_vdev_aux_add_remove, 1, &ztest_opts.zo_vdevtime),
384 ZTI_INIT(ztest_fletcher, 1, &zopt_rarely),
385 ZTI_INIT(ztest_fletcher_incr, 1, &zopt_rarely),
386 ZTI_INIT(ztest_verify_dnode_bt, 1, &zopt_sometimes),
387 };
388
389 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t))
390
391 /*
392 * The following struct is used to hold a list of uncalled commit callbacks.
393 * The callbacks are ordered by txg number.
394 */
395 typedef struct ztest_cb_list {
396 kmutex_t zcl_callbacks_lock;
397 list_t zcl_callbacks;
398 } ztest_cb_list_t;
399
400 /*
401 * Stuff we need to share writably between parent and child.
402 */
403 typedef struct ztest_shared {
404 boolean_t zs_do_init;
405 hrtime_t zs_proc_start;
406 hrtime_t zs_proc_stop;
407 hrtime_t zs_thread_start;
408 hrtime_t zs_thread_stop;
409 hrtime_t zs_thread_kill;
410 uint64_t zs_enospc_count;
411 uint64_t zs_vdev_next_leaf;
412 uint64_t zs_vdev_aux;
413 uint64_t zs_alloc;
414 uint64_t zs_space;
415 uint64_t zs_splits;
416 uint64_t zs_mirrors;
417 uint64_t zs_metaslab_sz;
418 uint64_t zs_metaslab_df_alloc_threshold;
419 uint64_t zs_guid;
420 } ztest_shared_t;
421
422 #define ID_PARALLEL -1ULL
423
424 static char ztest_dev_template[] = "%s/%s.%llua";
425 static char ztest_aux_template[] = "%s/%s.%s.%llu";
426 ztest_shared_t *ztest_shared;
427
428 static spa_t *ztest_spa = NULL;
429 static ztest_ds_t *ztest_ds;
430
431 static kmutex_t ztest_vdev_lock;
432
433 /*
434 * The ztest_name_lock protects the pool and dataset namespace used by
435 * the individual tests. To modify the namespace, consumers must grab
436 * this lock as writer. Grabbing the lock as reader will ensure that the
437 * namespace does not change while the lock is held.
438 */
439 static rwlock_t ztest_name_lock;
440
441 static boolean_t ztest_dump_core = B_TRUE;
442 static boolean_t ztest_exiting;
443
444 /* Global commit callback list */
445 static ztest_cb_list_t zcl;
446 /* Commit cb delay */
447 static uint64_t zc_min_txg_delay = UINT64_MAX;
448 static int zc_cb_counter = 0;
449
450 /*
451 * Minimum number of commit callbacks that need to be registered for us to check
452 * whether the minimum txg delay is acceptable.
453 */
454 #define ZTEST_COMMIT_CB_MIN_REG 100
455
456 /*
457 * If a number of txgs equal to this threshold have been created after a commit
458 * callback has been registered but not called, then we assume there is an
459 * implementation bug.
460 */
461 #define ZTEST_COMMIT_CB_THRESH (TXG_CONCURRENT_STATES + 1000)
462
463 extern uint64_t metaslab_gang_bang;
464 extern uint64_t metaslab_df_alloc_threshold;
465
466 enum ztest_object {
467 ZTEST_META_DNODE = 0,
468 ZTEST_DIROBJ,
469 ZTEST_OBJECTS
470 };
471
472 static void usage(boolean_t) __NORETURN;
473
474 /*
475 * These libumem hooks provide a reasonable set of defaults for the allocator's
476 * debugging facilities.
477 */
478 const char *
479 _umem_debug_init(void)
480 {
481 return ("default,verbose"); /* $UMEM_DEBUG setting */
482 }
483
484 const char *
485 _umem_logging_init(void)
486 {
487 return ("fail,contents"); /* $UMEM_LOGGING setting */
488 }
489
490 #define BACKTRACE_SZ 100
491
492 static void sig_handler(int signo)
493 {
494 struct sigaction action;
495 #ifdef __GLIBC__ /* backtrace() is a GNU extension */
496 int nptrs;
497 void *buffer[BACKTRACE_SZ];
498
499 nptrs = backtrace(buffer, BACKTRACE_SZ);
500 backtrace_symbols_fd(buffer, nptrs, STDERR_FILENO);
501 #endif
502
503 /*
504 * Restore default action and re-raise signal so SIGSEGV and
505 * SIGABRT can trigger a core dump.
506 */
507 action.sa_handler = SIG_DFL;
508 sigemptyset(&action.sa_mask);
509 action.sa_flags = 0;
510 (void) sigaction(signo, &action, NULL);
511 raise(signo);
512 }
513
514 #define FATAL_MSG_SZ 1024
515
516 char *fatal_msg;
517
518 static void
519 fatal(int do_perror, char *message, ...)
520 {
521 va_list args;
522 int save_errno = errno;
523 char *buf;
524
525 (void) fflush(stdout);
526 buf = umem_alloc(FATAL_MSG_SZ, UMEM_NOFAIL);
527
528 va_start(args, message);
529 (void) sprintf(buf, "ztest: ");
530 /* LINTED */
531 (void) vsprintf(buf + strlen(buf), message, args);
532 va_end(args);
533 if (do_perror) {
534 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
535 ": %s", strerror(save_errno));
536 }
537 (void) fprintf(stderr, "%s\n", buf);
538 fatal_msg = buf; /* to ease debugging */
539 if (ztest_dump_core)
540 abort();
541 exit(3);
542 }
543
544 static int
545 str2shift(const char *buf)
546 {
547 const char *ends = "BKMGTPEZ";
548 int i;
549
550 if (buf[0] == '\0')
551 return (0);
552 for (i = 0; i < strlen(ends); i++) {
553 if (toupper(buf[0]) == ends[i])
554 break;
555 }
556 if (i == strlen(ends)) {
557 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
558 buf);
559 usage(B_FALSE);
560 }
561 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
562 return (10*i);
563 }
564 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
565 usage(B_FALSE);
566 /* NOTREACHED */
567 }
568
569 static uint64_t
570 nicenumtoull(const char *buf)
571 {
572 char *end;
573 uint64_t val;
574
575 val = strtoull(buf, &end, 0);
576 if (end == buf) {
577 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
578 usage(B_FALSE);
579 } else if (end[0] == '.') {
580 double fval = strtod(buf, &end);
581 fval *= pow(2, str2shift(end));
582 if (fval > UINT64_MAX) {
583 (void) fprintf(stderr, "ztest: value too large: %s\n",
584 buf);
585 usage(B_FALSE);
586 }
587 val = (uint64_t)fval;
588 } else {
589 int shift = str2shift(end);
590 if (shift >= 64 || (val << shift) >> shift != val) {
591 (void) fprintf(stderr, "ztest: value too large: %s\n",
592 buf);
593 usage(B_FALSE);
594 }
595 val <<= shift;
596 }
597 return (val);
598 }
599
600 static void
601 usage(boolean_t requested)
602 {
603 const ztest_shared_opts_t *zo = &ztest_opts_defaults;
604
605 char nice_vdev_size[10];
606 char nice_gang_bang[10];
607 FILE *fp = requested ? stdout : stderr;
608
609 nicenum(zo->zo_vdev_size, nice_vdev_size);
610 nicenum(zo->zo_metaslab_gang_bang, nice_gang_bang);
611
612 (void) fprintf(fp, "Usage: %s\n"
613 "\t[-v vdevs (default: %llu)]\n"
614 "\t[-s size_of_each_vdev (default: %s)]\n"
615 "\t[-a alignment_shift (default: %d)] use 0 for random\n"
616 "\t[-m mirror_copies (default: %d)]\n"
617 "\t[-r raidz_disks (default: %d)]\n"
618 "\t[-R raidz_parity (default: %d)]\n"
619 "\t[-d datasets (default: %d)]\n"
620 "\t[-t threads (default: %d)]\n"
621 "\t[-g gang_block_threshold (default: %s)]\n"
622 "\t[-i init_count (default: %d)] initialize pool i times\n"
623 "\t[-k kill_percentage (default: %llu%%)]\n"
624 "\t[-p pool_name (default: %s)]\n"
625 "\t[-f dir (default: %s)] file directory for vdev files\n"
626 "\t[-V] verbose (use multiple times for ever more blather)\n"
627 "\t[-E] use existing pool instead of creating new one\n"
628 "\t[-T time (default: %llu sec)] total run time\n"
629 "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n"
630 "\t[-P passtime (default: %llu sec)] time per pass\n"
631 "\t[-B alt_ztest (default: <none>)] alternate ztest path\n"
632 "\t[-h] (print help)\n"
633 "",
634 zo->zo_pool,
635 (u_longlong_t)zo->zo_vdevs, /* -v */
636 nice_vdev_size, /* -s */
637 zo->zo_ashift, /* -a */
638 zo->zo_mirrors, /* -m */
639 zo->zo_raidz, /* -r */
640 zo->zo_raidz_parity, /* -R */
641 zo->zo_datasets, /* -d */
642 zo->zo_threads, /* -t */
643 nice_gang_bang, /* -g */
644 zo->zo_init, /* -i */
645 (u_longlong_t)zo->zo_killrate, /* -k */
646 zo->zo_pool, /* -p */
647 zo->zo_dir, /* -f */
648 (u_longlong_t)zo->zo_time, /* -T */
649 (u_longlong_t)zo->zo_maxloops, /* -F */
650 (u_longlong_t)zo->zo_passtime);
651 exit(requested ? 0 : 1);
652 }
653
654 static void
655 process_options(int argc, char **argv)
656 {
657 char *path;
658 ztest_shared_opts_t *zo = &ztest_opts;
659
660 int opt;
661 uint64_t value;
662 char altdir[MAXNAMELEN] = { 0 };
663
664 bcopy(&ztest_opts_defaults, zo, sizeof (*zo));
665
666 while ((opt = getopt(argc, argv,
667 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:B:")) != EOF) {
668 value = 0;
669 switch (opt) {
670 case 'v':
671 case 's':
672 case 'a':
673 case 'm':
674 case 'r':
675 case 'R':
676 case 'd':
677 case 't':
678 case 'g':
679 case 'i':
680 case 'k':
681 case 'T':
682 case 'P':
683 case 'F':
684 value = nicenumtoull(optarg);
685 }
686 switch (opt) {
687 case 'v':
688 zo->zo_vdevs = value;
689 break;
690 case 's':
691 zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value);
692 break;
693 case 'a':
694 zo->zo_ashift = value;
695 break;
696 case 'm':
697 zo->zo_mirrors = value;
698 break;
699 case 'r':
700 zo->zo_raidz = MAX(1, value);
701 break;
702 case 'R':
703 zo->zo_raidz_parity = MIN(MAX(value, 1), 3);
704 break;
705 case 'd':
706 zo->zo_datasets = MAX(1, value);
707 break;
708 case 't':
709 zo->zo_threads = MAX(1, value);
710 break;
711 case 'g':
712 zo->zo_metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1,
713 value);
714 break;
715 case 'i':
716 zo->zo_init = value;
717 break;
718 case 'k':
719 zo->zo_killrate = value;
720 break;
721 case 'p':
722 (void) strlcpy(zo->zo_pool, optarg,
723 sizeof (zo->zo_pool));
724 break;
725 case 'f':
726 path = realpath(optarg, NULL);
727 if (path == NULL) {
728 (void) fprintf(stderr, "error: %s: %s\n",
729 optarg, strerror(errno));
730 usage(B_FALSE);
731 } else {
732 (void) strlcpy(zo->zo_dir, path,
733 sizeof (zo->zo_dir));
734 free(path);
735 }
736 break;
737 case 'V':
738 zo->zo_verbose++;
739 break;
740 case 'E':
741 zo->zo_init = 0;
742 break;
743 case 'T':
744 zo->zo_time = value;
745 break;
746 case 'P':
747 zo->zo_passtime = MAX(1, value);
748 break;
749 case 'F':
750 zo->zo_maxloops = MAX(1, value);
751 break;
752 case 'B':
753 (void) strlcpy(altdir, optarg, sizeof (altdir));
754 break;
755 case 'h':
756 usage(B_TRUE);
757 break;
758 case '?':
759 default:
760 usage(B_FALSE);
761 break;
762 }
763 }
764
765 zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1);
766
767 zo->zo_vdevtime =
768 (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs :
769 UINT64_MAX >> 2);
770
771 if (strlen(altdir) > 0) {
772 char *cmd;
773 char *realaltdir;
774 char *bin;
775 char *ztest;
776 char *isa;
777 int isalen;
778
779 cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
780 realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
781
782 VERIFY(NULL != realpath(getexecname(), cmd));
783 if (0 != access(altdir, F_OK)) {
784 ztest_dump_core = B_FALSE;
785 fatal(B_TRUE, "invalid alternate ztest path: %s",
786 altdir);
787 }
788 VERIFY(NULL != realpath(altdir, realaltdir));
789
790 /*
791 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest".
792 * We want to extract <isa> to determine if we should use
793 * 32 or 64 bit binaries.
794 */
795 bin = strstr(cmd, "/usr/bin/");
796 ztest = strstr(bin, "/ztest");
797 isa = bin + 9;
798 isalen = ztest - isa;
799 (void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest),
800 "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa);
801 (void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath),
802 "%s/usr/lib/%.*s", realaltdir, isalen, isa);
803
804 if (0 != access(zo->zo_alt_ztest, X_OK)) {
805 ztest_dump_core = B_FALSE;
806 fatal(B_TRUE, "invalid alternate ztest: %s",
807 zo->zo_alt_ztest);
808 } else if (0 != access(zo->zo_alt_libpath, X_OK)) {
809 ztest_dump_core = B_FALSE;
810 fatal(B_TRUE, "invalid alternate lib directory %s",
811 zo->zo_alt_libpath);
812 }
813
814 umem_free(cmd, MAXPATHLEN);
815 umem_free(realaltdir, MAXPATHLEN);
816 }
817 }
818
819 static void
820 ztest_kill(ztest_shared_t *zs)
821 {
822 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa));
823 zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa));
824
825 /*
826 * Before we kill off ztest, make sure that the config is updated.
827 * See comment above spa_config_sync().
828 */
829 mutex_enter(&spa_namespace_lock);
830 spa_config_sync(ztest_spa, B_FALSE, B_FALSE);
831 mutex_exit(&spa_namespace_lock);
832
833 (void) kill(getpid(), SIGKILL);
834 }
835
836 static uint64_t
837 ztest_random(uint64_t range)
838 {
839 uint64_t r;
840
841 ASSERT3S(ztest_fd_rand, >=, 0);
842
843 if (range == 0)
844 return (0);
845
846 if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r))
847 fatal(1, "short read from /dev/urandom");
848
849 return (r % range);
850 }
851
852 /* ARGSUSED */
853 static void
854 ztest_record_enospc(const char *s)
855 {
856 ztest_shared->zs_enospc_count++;
857 }
858
859 static uint64_t
860 ztest_get_ashift(void)
861 {
862 if (ztest_opts.zo_ashift == 0)
863 return (SPA_MINBLOCKSHIFT + ztest_random(5));
864 return (ztest_opts.zo_ashift);
865 }
866
867 static nvlist_t *
868 make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift)
869 {
870 char *pathbuf;
871 uint64_t vdev;
872 nvlist_t *file;
873
874 pathbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
875
876 if (ashift == 0)
877 ashift = ztest_get_ashift();
878
879 if (path == NULL) {
880 path = pathbuf;
881
882 if (aux != NULL) {
883 vdev = ztest_shared->zs_vdev_aux;
884 (void) snprintf(path, MAXPATHLEN,
885 ztest_aux_template, ztest_opts.zo_dir,
886 pool == NULL ? ztest_opts.zo_pool : pool,
887 aux, vdev);
888 } else {
889 vdev = ztest_shared->zs_vdev_next_leaf++;
890 (void) snprintf(path, MAXPATHLEN,
891 ztest_dev_template, ztest_opts.zo_dir,
892 pool == NULL ? ztest_opts.zo_pool : pool, vdev);
893 }
894 }
895
896 if (size != 0) {
897 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
898 if (fd == -1)
899 fatal(1, "can't open %s", path);
900 if (ftruncate(fd, size) != 0)
901 fatal(1, "can't ftruncate %s", path);
902 (void) close(fd);
903 }
904
905 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0);
906 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0);
907 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0);
908 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0);
909 umem_free(pathbuf, MAXPATHLEN);
910
911 return (file);
912 }
913
914 static nvlist_t *
915 make_vdev_raidz(char *path, char *aux, char *pool, size_t size,
916 uint64_t ashift, int r)
917 {
918 nvlist_t *raidz, **child;
919 int c;
920
921 if (r < 2)
922 return (make_vdev_file(path, aux, pool, size, ashift));
923 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
924
925 for (c = 0; c < r; c++)
926 child[c] = make_vdev_file(path, aux, pool, size, ashift);
927
928 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0);
929 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE,
930 VDEV_TYPE_RAIDZ) == 0);
931 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY,
932 ztest_opts.zo_raidz_parity) == 0);
933 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN,
934 child, r) == 0);
935
936 for (c = 0; c < r; c++)
937 nvlist_free(child[c]);
938
939 umem_free(child, r * sizeof (nvlist_t *));
940
941 return (raidz);
942 }
943
944 static nvlist_t *
945 make_vdev_mirror(char *path, char *aux, char *pool, size_t size,
946 uint64_t ashift, int r, int m)
947 {
948 nvlist_t *mirror, **child;
949 int c;
950
951 if (m < 1)
952 return (make_vdev_raidz(path, aux, pool, size, ashift, r));
953
954 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
955
956 for (c = 0; c < m; c++)
957 child[c] = make_vdev_raidz(path, aux, pool, size, ashift, r);
958
959 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0);
960 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE,
961 VDEV_TYPE_MIRROR) == 0);
962 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
963 child, m) == 0);
964
965 for (c = 0; c < m; c++)
966 nvlist_free(child[c]);
967
968 umem_free(child, m * sizeof (nvlist_t *));
969
970 return (mirror);
971 }
972
973 static nvlist_t *
974 make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift,
975 int log, int r, int m, int t)
976 {
977 nvlist_t *root, **child;
978 int c;
979
980 ASSERT(t > 0);
981
982 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
983
984 for (c = 0; c < t; c++) {
985 child[c] = make_vdev_mirror(path, aux, pool, size, ashift,
986 r, m);
987 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG,
988 log) == 0);
989 }
990
991 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0);
992 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0);
993 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
994 child, t) == 0);
995
996 for (c = 0; c < t; c++)
997 nvlist_free(child[c]);
998
999 umem_free(child, t * sizeof (nvlist_t *));
1000
1001 return (root);
1002 }
1003
1004 /*
1005 * Find a random spa version. Returns back a random spa version in the
1006 * range [initial_version, SPA_VERSION_FEATURES].
1007 */
1008 static uint64_t
1009 ztest_random_spa_version(uint64_t initial_version)
1010 {
1011 uint64_t version = initial_version;
1012
1013 if (version <= SPA_VERSION_BEFORE_FEATURES) {
1014 version = version +
1015 ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1);
1016 }
1017
1018 if (version > SPA_VERSION_BEFORE_FEATURES)
1019 version = SPA_VERSION_FEATURES;
1020
1021 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
1022 return (version);
1023 }
1024
1025 static int
1026 ztest_random_blocksize(void)
1027 {
1028 /*
1029 * Choose a block size >= the ashift.
1030 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks.
1031 */
1032 int maxbs = SPA_OLD_MAXBLOCKSHIFT;
1033 if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE)
1034 maxbs = 20;
1035 uint64_t block_shift =
1036 ztest_random(maxbs - ztest_spa->spa_max_ashift + 1);
1037 return (1 << (SPA_MINBLOCKSHIFT + block_shift));
1038 }
1039
1040 static int
1041 ztest_random_dnodesize(void)
1042 {
1043 int slots;
1044 int max_slots = spa_maxdnodesize(ztest_spa) >> DNODE_SHIFT;
1045
1046 if (max_slots == DNODE_MIN_SLOTS)
1047 return (DNODE_MIN_SIZE);
1048
1049 /*
1050 * Weight the random distribution more heavily toward smaller
1051 * dnode sizes since that is more likely to reflect real-world
1052 * usage.
1053 */
1054 ASSERT3U(max_slots, >, 4);
1055 switch (ztest_random(10)) {
1056 case 0:
1057 slots = 5 + ztest_random(max_slots - 4);
1058 break;
1059 case 1 ... 4:
1060 slots = 2 + ztest_random(3);
1061 break;
1062 default:
1063 slots = 1;
1064 break;
1065 }
1066
1067 return (slots << DNODE_SHIFT);
1068 }
1069
1070 static int
1071 ztest_random_ibshift(void)
1072 {
1073 return (DN_MIN_INDBLKSHIFT +
1074 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
1075 }
1076
1077 static uint64_t
1078 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
1079 {
1080 uint64_t top;
1081 vdev_t *rvd = spa->spa_root_vdev;
1082 vdev_t *tvd;
1083
1084 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1085
1086 do {
1087 top = ztest_random(rvd->vdev_children);
1088 tvd = rvd->vdev_child[top];
1089 } while (tvd->vdev_ishole || (tvd->vdev_islog && !log_ok) ||
1090 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
1091
1092 return (top);
1093 }
1094
1095 static uint64_t
1096 ztest_random_dsl_prop(zfs_prop_t prop)
1097 {
1098 uint64_t value;
1099
1100 do {
1101 value = zfs_prop_random_value(prop, ztest_random(-1ULL));
1102 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
1103
1104 return (value);
1105 }
1106
1107 static int
1108 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
1109 boolean_t inherit)
1110 {
1111 const char *propname = zfs_prop_to_name(prop);
1112 const char *valname;
1113 char *setpoint;
1114 uint64_t curval;
1115 int error;
1116
1117 error = dsl_prop_set_int(osname, propname,
1118 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value);
1119
1120 if (error == ENOSPC) {
1121 ztest_record_enospc(FTAG);
1122 return (error);
1123 }
1124 ASSERT0(error);
1125
1126 setpoint = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1127 VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint));
1128
1129 if (ztest_opts.zo_verbose >= 6) {
1130 int err;
1131
1132 err = zfs_prop_index_to_string(prop, curval, &valname);
1133 if (err)
1134 (void) printf("%s %s = %llu at '%s'\n", osname,
1135 propname, (unsigned long long)curval, setpoint);
1136 else
1137 (void) printf("%s %s = %s at '%s'\n",
1138 osname, propname, valname, setpoint);
1139 }
1140 umem_free(setpoint, MAXPATHLEN);
1141
1142 return (error);
1143 }
1144
1145 static int
1146 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value)
1147 {
1148 spa_t *spa = ztest_spa;
1149 nvlist_t *props = NULL;
1150 int error;
1151
1152 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
1153 VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0);
1154
1155 error = spa_prop_set(spa, props);
1156
1157 nvlist_free(props);
1158
1159 if (error == ENOSPC) {
1160 ztest_record_enospc(FTAG);
1161 return (error);
1162 }
1163 ASSERT0(error);
1164
1165 return (error);
1166 }
1167
1168
1169 /*
1170 * Object and range lock mechanics
1171 */
1172 typedef struct {
1173 list_node_t z_lnode;
1174 refcount_t z_refcnt;
1175 uint64_t z_object;
1176 zfs_rlock_t z_range_lock;
1177 } ztest_znode_t;
1178
1179 typedef struct {
1180 rl_t *z_rl;
1181 ztest_znode_t *z_ztznode;
1182 } ztest_zrl_t;
1183
1184 static ztest_znode_t *
1185 ztest_znode_init(uint64_t object)
1186 {
1187 ztest_znode_t *zp = umem_alloc(sizeof (*zp), UMEM_NOFAIL);
1188
1189 list_link_init(&zp->z_lnode);
1190 refcount_create(&zp->z_refcnt);
1191 zp->z_object = object;
1192 zfs_rlock_init(&zp->z_range_lock);
1193
1194 return (zp);
1195 }
1196
1197 static void
1198 ztest_znode_fini(ztest_znode_t *zp)
1199 {
1200 ASSERT(refcount_is_zero(&zp->z_refcnt));
1201 zfs_rlock_destroy(&zp->z_range_lock);
1202 zp->z_object = 0;
1203 refcount_destroy(&zp->z_refcnt);
1204 list_link_init(&zp->z_lnode);
1205 umem_free(zp, sizeof (*zp));
1206 }
1207
1208 static void
1209 ztest_zll_init(zll_t *zll)
1210 {
1211 mutex_init(&zll->z_lock, NULL, MUTEX_DEFAULT, NULL);
1212 list_create(&zll->z_list, sizeof (ztest_znode_t),
1213 offsetof(ztest_znode_t, z_lnode));
1214 }
1215
1216 static void
1217 ztest_zll_destroy(zll_t *zll)
1218 {
1219 list_destroy(&zll->z_list);
1220 mutex_destroy(&zll->z_lock);
1221 }
1222
1223 #define RL_TAG "range_lock"
1224 static ztest_znode_t *
1225 ztest_znode_get(ztest_ds_t *zd, uint64_t object)
1226 {
1227 zll_t *zll = &zd->zd_range_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1228 ztest_znode_t *zp = NULL;
1229 mutex_enter(&zll->z_lock);
1230 for (zp = list_head(&zll->z_list); (zp);
1231 zp = list_next(&zll->z_list, zp)) {
1232 if (zp->z_object == object) {
1233 refcount_add(&zp->z_refcnt, RL_TAG);
1234 break;
1235 }
1236 }
1237 if (zp == NULL) {
1238 zp = ztest_znode_init(object);
1239 refcount_add(&zp->z_refcnt, RL_TAG);
1240 list_insert_head(&zll->z_list, zp);
1241 }
1242 mutex_exit(&zll->z_lock);
1243 return (zp);
1244 }
1245
1246 static void
1247 ztest_znode_put(ztest_ds_t *zd, ztest_znode_t *zp)
1248 {
1249 zll_t *zll = NULL;
1250 ASSERT3U(zp->z_object, !=, 0);
1251 zll = &zd->zd_range_lock[zp->z_object & (ZTEST_OBJECT_LOCKS - 1)];
1252 mutex_enter(&zll->z_lock);
1253 refcount_remove(&zp->z_refcnt, RL_TAG);
1254 if (refcount_is_zero(&zp->z_refcnt)) {
1255 list_remove(&zll->z_list, zp);
1256 ztest_znode_fini(zp);
1257 }
1258 mutex_exit(&zll->z_lock);
1259 }
1260
1261
1262 static void
1263 ztest_rll_init(rll_t *rll)
1264 {
1265 rll->rll_writer = NULL;
1266 rll->rll_readers = 0;
1267 mutex_init(&rll->rll_lock, NULL, MUTEX_DEFAULT, NULL);
1268 cv_init(&rll->rll_cv, NULL, CV_DEFAULT, NULL);
1269 }
1270
1271 static void
1272 ztest_rll_destroy(rll_t *rll)
1273 {
1274 ASSERT(rll->rll_writer == NULL);
1275 ASSERT(rll->rll_readers == 0);
1276 mutex_destroy(&rll->rll_lock);
1277 cv_destroy(&rll->rll_cv);
1278 }
1279
1280 static void
1281 ztest_rll_lock(rll_t *rll, rl_type_t type)
1282 {
1283 mutex_enter(&rll->rll_lock);
1284
1285 if (type == RL_READER) {
1286 while (rll->rll_writer != NULL)
1287 (void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1288 rll->rll_readers++;
1289 } else {
1290 while (rll->rll_writer != NULL || rll->rll_readers)
1291 (void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1292 rll->rll_writer = curthread;
1293 }
1294
1295 mutex_exit(&rll->rll_lock);
1296 }
1297
1298 static void
1299 ztest_rll_unlock(rll_t *rll)
1300 {
1301 mutex_enter(&rll->rll_lock);
1302
1303 if (rll->rll_writer) {
1304 ASSERT(rll->rll_readers == 0);
1305 rll->rll_writer = NULL;
1306 } else {
1307 ASSERT(rll->rll_readers != 0);
1308 ASSERT(rll->rll_writer == NULL);
1309 rll->rll_readers--;
1310 }
1311
1312 if (rll->rll_writer == NULL && rll->rll_readers == 0)
1313 cv_broadcast(&rll->rll_cv);
1314
1315 mutex_exit(&rll->rll_lock);
1316 }
1317
1318 static void
1319 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
1320 {
1321 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1322
1323 ztest_rll_lock(rll, type);
1324 }
1325
1326 static void
1327 ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
1328 {
1329 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1330
1331 ztest_rll_unlock(rll);
1332 }
1333
1334 static ztest_zrl_t *
1335 ztest_zrl_init(rl_t *rl, ztest_znode_t *zp)
1336 {
1337 ztest_zrl_t *zrl = umem_alloc(sizeof (*zrl), UMEM_NOFAIL);
1338 zrl->z_rl = rl;
1339 zrl->z_ztznode = zp;
1340 return (zrl);
1341 }
1342
1343 static void
1344 ztest_zrl_fini(ztest_zrl_t *zrl)
1345 {
1346 umem_free(zrl, sizeof (*zrl));
1347 }
1348
1349 static ztest_zrl_t *
1350 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
1351 uint64_t size, rl_type_t type)
1352 {
1353 ztest_znode_t *zp = ztest_znode_get(zd, object);
1354 rl_t *rl = zfs_range_lock(&zp->z_range_lock, offset,
1355 size, type);
1356 return (ztest_zrl_init(rl, zp));
1357 }
1358
1359 static void
1360 ztest_range_unlock(ztest_ds_t *zd, ztest_zrl_t *zrl)
1361 {
1362 zfs_range_unlock(zrl->z_rl);
1363 ztest_znode_put(zd, zrl->z_ztznode);
1364 ztest_zrl_fini(zrl);
1365 }
1366
1367 static void
1368 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os)
1369 {
1370 zd->zd_os = os;
1371 zd->zd_zilog = dmu_objset_zil(os);
1372 zd->zd_shared = szd;
1373 dmu_objset_name(os, zd->zd_name);
1374 int l;
1375
1376 if (zd->zd_shared != NULL)
1377 zd->zd_shared->zd_seq = 0;
1378
1379 VERIFY(rwlock_init(&zd->zd_zilog_lock, USYNC_THREAD, NULL) == 0);
1380 mutex_init(&zd->zd_dirobj_lock, NULL, MUTEX_DEFAULT, NULL);
1381
1382 for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1383 ztest_rll_init(&zd->zd_object_lock[l]);
1384
1385 for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1386 ztest_zll_init(&zd->zd_range_lock[l]);
1387 }
1388
1389 static void
1390 ztest_zd_fini(ztest_ds_t *zd)
1391 {
1392 int l;
1393
1394 mutex_destroy(&zd->zd_dirobj_lock);
1395 (void) rwlock_destroy(&zd->zd_zilog_lock);
1396
1397 for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1398 ztest_rll_destroy(&zd->zd_object_lock[l]);
1399
1400 for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1401 ztest_zll_destroy(&zd->zd_range_lock[l]);
1402 }
1403
1404 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
1405
1406 static uint64_t
1407 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag)
1408 {
1409 uint64_t txg;
1410 int error;
1411
1412 /*
1413 * Attempt to assign tx to some transaction group.
1414 */
1415 error = dmu_tx_assign(tx, txg_how);
1416 if (error) {
1417 if (error == ERESTART) {
1418 ASSERT(txg_how == TXG_NOWAIT);
1419 dmu_tx_wait(tx);
1420 } else {
1421 ASSERT3U(error, ==, ENOSPC);
1422 ztest_record_enospc(tag);
1423 }
1424 dmu_tx_abort(tx);
1425 return (0);
1426 }
1427 txg = dmu_tx_get_txg(tx);
1428 ASSERT(txg != 0);
1429 return (txg);
1430 }
1431
1432 static void
1433 ztest_pattern_set(void *buf, uint64_t size, uint64_t value)
1434 {
1435 uint64_t *ip = buf;
1436 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1437
1438 while (ip < ip_end)
1439 *ip++ = value;
1440 }
1441
1442 #ifndef NDEBUG
1443 static boolean_t
1444 ztest_pattern_match(void *buf, uint64_t size, uint64_t value)
1445 {
1446 uint64_t *ip = buf;
1447 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1448 uint64_t diff = 0;
1449
1450 while (ip < ip_end)
1451 diff |= (value - *ip++);
1452
1453 return (diff == 0);
1454 }
1455 #endif
1456
1457 static void
1458 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1459 uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1460 uint64_t crtxg)
1461 {
1462 bt->bt_magic = BT_MAGIC;
1463 bt->bt_objset = dmu_objset_id(os);
1464 bt->bt_object = object;
1465 bt->bt_dnodesize = dnodesize;
1466 bt->bt_offset = offset;
1467 bt->bt_gen = gen;
1468 bt->bt_txg = txg;
1469 bt->bt_crtxg = crtxg;
1470 }
1471
1472 static void
1473 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1474 uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1475 uint64_t crtxg)
1476 {
1477 ASSERT3U(bt->bt_magic, ==, BT_MAGIC);
1478 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os));
1479 ASSERT3U(bt->bt_object, ==, object);
1480 ASSERT3U(bt->bt_dnodesize, ==, dnodesize);
1481 ASSERT3U(bt->bt_offset, ==, offset);
1482 ASSERT3U(bt->bt_gen, <=, gen);
1483 ASSERT3U(bt->bt_txg, <=, txg);
1484 ASSERT3U(bt->bt_crtxg, ==, crtxg);
1485 }
1486
1487 static ztest_block_tag_t *
1488 ztest_bt_bonus(dmu_buf_t *db)
1489 {
1490 dmu_object_info_t doi;
1491 ztest_block_tag_t *bt;
1492
1493 dmu_object_info_from_db(db, &doi);
1494 ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
1495 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
1496 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
1497
1498 return (bt);
1499 }
1500
1501 /*
1502 * Generate a token to fill up unused bonus buffer space. Try to make
1503 * it unique to the object, generation, and offset to verify that data
1504 * is not getting overwritten by data from other dnodes.
1505 */
1506 #define ZTEST_BONUS_FILL_TOKEN(obj, ds, gen, offset) \
1507 (((ds) << 48) | ((gen) << 32) | ((obj) << 8) | (offset))
1508
1509 /*
1510 * Fill up the unused bonus buffer region before the block tag with a
1511 * verifiable pattern. Filling the whole bonus area with non-zero data
1512 * helps ensure that all dnode traversal code properly skips the
1513 * interior regions of large dnodes.
1514 */
1515 void
1516 ztest_fill_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1517 objset_t *os, uint64_t gen)
1518 {
1519 uint64_t *bonusp;
1520
1521 ASSERT(IS_P2ALIGNED((char *)end - (char *)db->db_data, 8));
1522
1523 for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1524 uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1525 gen, bonusp - (uint64_t *)db->db_data);
1526 *bonusp = token;
1527 }
1528 }
1529
1530 /*
1531 * Verify that the unused area of a bonus buffer is filled with the
1532 * expected tokens.
1533 */
1534 void
1535 ztest_verify_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1536 objset_t *os, uint64_t gen)
1537 {
1538 uint64_t *bonusp;
1539
1540 for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1541 uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1542 gen, bonusp - (uint64_t *)db->db_data);
1543 VERIFY3U(*bonusp, ==, token);
1544 }
1545 }
1546
1547 /*
1548 * ZIL logging ops
1549 */
1550
1551 #define lrz_type lr_mode
1552 #define lrz_blocksize lr_uid
1553 #define lrz_ibshift lr_gid
1554 #define lrz_bonustype lr_rdev
1555 #define lrz_dnodesize lr_crtime[1]
1556
1557 static void
1558 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
1559 {
1560 char *name = (void *)(lr + 1); /* name follows lr */
1561 size_t namesize = strlen(name) + 1;
1562 itx_t *itx;
1563
1564 if (zil_replaying(zd->zd_zilog, tx))
1565 return;
1566
1567 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
1568 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1569 sizeof (*lr) + namesize - sizeof (lr_t));
1570
1571 zil_itx_assign(zd->zd_zilog, itx, tx);
1572 }
1573
1574 static void
1575 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object)
1576 {
1577 char *name = (void *)(lr + 1); /* name follows lr */
1578 size_t namesize = strlen(name) + 1;
1579 itx_t *itx;
1580
1581 if (zil_replaying(zd->zd_zilog, tx))
1582 return;
1583
1584 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
1585 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1586 sizeof (*lr) + namesize - sizeof (lr_t));
1587
1588 itx->itx_oid = object;
1589 zil_itx_assign(zd->zd_zilog, itx, tx);
1590 }
1591
1592 static void
1593 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
1594 {
1595 itx_t *itx;
1596 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
1597
1598 if (zil_replaying(zd->zd_zilog, tx))
1599 return;
1600
1601 if (lr->lr_length > ZIL_MAX_LOG_DATA)
1602 write_state = WR_INDIRECT;
1603
1604 itx = zil_itx_create(TX_WRITE,
1605 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
1606
1607 if (write_state == WR_COPIED &&
1608 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
1609 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) {
1610 zil_itx_destroy(itx);
1611 itx = zil_itx_create(TX_WRITE, sizeof (*lr));
1612 write_state = WR_NEED_COPY;
1613 }
1614 itx->itx_private = zd;
1615 itx->itx_wr_state = write_state;
1616 itx->itx_sync = (ztest_random(8) == 0);
1617 itx->itx_sod += (write_state == WR_NEED_COPY ? lr->lr_length : 0);
1618
1619 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1620 sizeof (*lr) - sizeof (lr_t));
1621
1622 zil_itx_assign(zd->zd_zilog, itx, tx);
1623 }
1624
1625 static void
1626 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
1627 {
1628 itx_t *itx;
1629
1630 if (zil_replaying(zd->zd_zilog, tx))
1631 return;
1632
1633 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
1634 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1635 sizeof (*lr) - sizeof (lr_t));
1636
1637 itx->itx_sync = B_FALSE;
1638 zil_itx_assign(zd->zd_zilog, itx, tx);
1639 }
1640
1641 static void
1642 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
1643 {
1644 itx_t *itx;
1645
1646 if (zil_replaying(zd->zd_zilog, tx))
1647 return;
1648
1649 itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
1650 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1651 sizeof (*lr) - sizeof (lr_t));
1652
1653 itx->itx_sync = B_FALSE;
1654 zil_itx_assign(zd->zd_zilog, itx, tx);
1655 }
1656
1657 /*
1658 * ZIL replay ops
1659 */
1660 static int
1661 ztest_replay_create(ztest_ds_t *zd, lr_create_t *lr, boolean_t byteswap)
1662 {
1663 char *name = (void *)(lr + 1); /* name follows lr */
1664 objset_t *os = zd->zd_os;
1665 ztest_block_tag_t *bbt;
1666 dmu_buf_t *db;
1667 dmu_tx_t *tx;
1668 uint64_t txg;
1669 int error = 0;
1670 int bonuslen;
1671
1672 if (byteswap)
1673 byteswap_uint64_array(lr, sizeof (*lr));
1674
1675 ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1676 ASSERT(name[0] != '\0');
1677
1678 tx = dmu_tx_create(os);
1679
1680 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
1681
1682 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1683 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1684 } else {
1685 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1686 }
1687
1688 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1689 if (txg == 0)
1690 return (ENOSPC);
1691
1692 ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid);
1693 bonuslen = DN_BONUS_SIZE(lr->lrz_dnodesize);
1694
1695 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1696 if (lr->lr_foid == 0) {
1697 lr->lr_foid = zap_create_dnsize(os,
1698 lr->lrz_type, lr->lrz_bonustype,
1699 bonuslen, lr->lrz_dnodesize, tx);
1700 } else {
1701 error = zap_create_claim_dnsize(os, lr->lr_foid,
1702 lr->lrz_type, lr->lrz_bonustype,
1703 bonuslen, lr->lrz_dnodesize, tx);
1704 }
1705 } else {
1706 if (lr->lr_foid == 0) {
1707 lr->lr_foid = dmu_object_alloc_dnsize(os,
1708 lr->lrz_type, 0, lr->lrz_bonustype,
1709 bonuslen, lr->lrz_dnodesize, tx);
1710 } else {
1711 error = dmu_object_claim_dnsize(os, lr->lr_foid,
1712 lr->lrz_type, 0, lr->lrz_bonustype,
1713 bonuslen, lr->lrz_dnodesize, tx);
1714 }
1715 }
1716
1717 if (error) {
1718 ASSERT3U(error, ==, EEXIST);
1719 ASSERT(zd->zd_zilog->zl_replay);
1720 dmu_tx_commit(tx);
1721 return (error);
1722 }
1723
1724 ASSERT(lr->lr_foid != 0);
1725
1726 if (lr->lrz_type != DMU_OT_ZAP_OTHER)
1727 VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid,
1728 lr->lrz_blocksize, lr->lrz_ibshift, tx));
1729
1730 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1731 bbt = ztest_bt_bonus(db);
1732 dmu_buf_will_dirty(db, tx);
1733 ztest_bt_generate(bbt, os, lr->lr_foid, lr->lrz_dnodesize, -1ULL,
1734 lr->lr_gen, txg, txg);
1735 ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, lr->lr_gen);
1736 dmu_buf_rele(db, FTAG);
1737
1738 VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
1739 &lr->lr_foid, tx));
1740
1741 (void) ztest_log_create(zd, tx, lr);
1742
1743 dmu_tx_commit(tx);
1744
1745 return (0);
1746 }
1747
1748 static int
1749 ztest_replay_remove(ztest_ds_t *zd, lr_remove_t *lr, boolean_t byteswap)
1750 {
1751 char *name = (void *)(lr + 1); /* name follows lr */
1752 objset_t *os = zd->zd_os;
1753 dmu_object_info_t doi;
1754 dmu_tx_t *tx;
1755 uint64_t object, txg;
1756
1757 if (byteswap)
1758 byteswap_uint64_array(lr, sizeof (*lr));
1759
1760 ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1761 ASSERT(name[0] != '\0');
1762
1763 VERIFY3U(0, ==,
1764 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
1765 ASSERT(object != 0);
1766
1767 ztest_object_lock(zd, object, RL_WRITER);
1768
1769 VERIFY3U(0, ==, dmu_object_info(os, object, &doi));
1770
1771 tx = dmu_tx_create(os);
1772
1773 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
1774 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
1775
1776 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1777 if (txg == 0) {
1778 ztest_object_unlock(zd, object);
1779 return (ENOSPC);
1780 }
1781
1782 if (doi.doi_type == DMU_OT_ZAP_OTHER) {
1783 VERIFY3U(0, ==, zap_destroy(os, object, tx));
1784 } else {
1785 VERIFY3U(0, ==, dmu_object_free(os, object, tx));
1786 }
1787
1788 VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx));
1789
1790 (void) ztest_log_remove(zd, tx, lr, object);
1791
1792 dmu_tx_commit(tx);
1793
1794 ztest_object_unlock(zd, object);
1795
1796 return (0);
1797 }
1798
1799 static int
1800 ztest_replay_write(ztest_ds_t *zd, lr_write_t *lr, boolean_t byteswap)
1801 {
1802 objset_t *os = zd->zd_os;
1803 void *data = lr + 1; /* data follows lr */
1804 uint64_t offset, length;
1805 ztest_block_tag_t *bt = data;
1806 ztest_block_tag_t *bbt;
1807 uint64_t gen, txg, lrtxg, crtxg;
1808 dmu_object_info_t doi;
1809 dmu_tx_t *tx;
1810 dmu_buf_t *db;
1811 arc_buf_t *abuf = NULL;
1812 ztest_zrl_t *rl;
1813
1814 if (byteswap)
1815 byteswap_uint64_array(lr, sizeof (*lr));
1816
1817 offset = lr->lr_offset;
1818 length = lr->lr_length;
1819
1820 /* If it's a dmu_sync() block, write the whole block */
1821 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
1822 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
1823 if (length < blocksize) {
1824 offset -= offset % blocksize;
1825 length = blocksize;
1826 }
1827 }
1828
1829 if (bt->bt_magic == BSWAP_64(BT_MAGIC))
1830 byteswap_uint64_array(bt, sizeof (*bt));
1831
1832 if (bt->bt_magic != BT_MAGIC)
1833 bt = NULL;
1834
1835 ztest_object_lock(zd, lr->lr_foid, RL_READER);
1836 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER);
1837
1838 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1839
1840 dmu_object_info_from_db(db, &doi);
1841
1842 bbt = ztest_bt_bonus(db);
1843 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1844 gen = bbt->bt_gen;
1845 crtxg = bbt->bt_crtxg;
1846 lrtxg = lr->lr_common.lrc_txg;
1847
1848 tx = dmu_tx_create(os);
1849
1850 dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
1851
1852 if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
1853 P2PHASE(offset, length) == 0)
1854 abuf = dmu_request_arcbuf(db, length);
1855
1856 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1857 if (txg == 0) {
1858 if (abuf != NULL)
1859 dmu_return_arcbuf(abuf);
1860 dmu_buf_rele(db, FTAG);
1861 ztest_range_unlock(zd, rl);
1862 ztest_object_unlock(zd, lr->lr_foid);
1863 return (ENOSPC);
1864 }
1865
1866 if (bt != NULL) {
1867 /*
1868 * Usually, verify the old data before writing new data --
1869 * but not always, because we also want to verify correct
1870 * behavior when the data was not recently read into cache.
1871 */
1872 ASSERT(offset % doi.doi_data_block_size == 0);
1873 if (ztest_random(4) != 0) {
1874 int prefetch = ztest_random(2) ?
1875 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
1876 ztest_block_tag_t rbt;
1877
1878 VERIFY(dmu_read(os, lr->lr_foid, offset,
1879 sizeof (rbt), &rbt, prefetch) == 0);
1880 if (rbt.bt_magic == BT_MAGIC) {
1881 ztest_bt_verify(&rbt, os, lr->lr_foid, 0,
1882 offset, gen, txg, crtxg);
1883 }
1884 }
1885
1886 /*
1887 * Writes can appear to be newer than the bonus buffer because
1888 * the ztest_get_data() callback does a dmu_read() of the
1889 * open-context data, which may be different than the data
1890 * as it was when the write was generated.
1891 */
1892 if (zd->zd_zilog->zl_replay) {
1893 ztest_bt_verify(bt, os, lr->lr_foid, 0, offset,
1894 MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
1895 bt->bt_crtxg);
1896 }
1897
1898 /*
1899 * Set the bt's gen/txg to the bonus buffer's gen/txg
1900 * so that all of the usual ASSERTs will work.
1901 */
1902 ztest_bt_generate(bt, os, lr->lr_foid, 0, offset, gen, txg,
1903 crtxg);
1904 }
1905
1906 if (abuf == NULL) {
1907 dmu_write(os, lr->lr_foid, offset, length, data, tx);
1908 } else {
1909 bcopy(data, abuf->b_data, length);
1910 dmu_assign_arcbuf(db, offset, abuf, tx);
1911 }
1912
1913 (void) ztest_log_write(zd, tx, lr);
1914
1915 dmu_buf_rele(db, FTAG);
1916
1917 dmu_tx_commit(tx);
1918
1919 ztest_range_unlock(zd, rl);
1920 ztest_object_unlock(zd, lr->lr_foid);
1921
1922 return (0);
1923 }
1924
1925 static int
1926 ztest_replay_truncate(ztest_ds_t *zd, lr_truncate_t *lr, boolean_t byteswap)
1927 {
1928 objset_t *os = zd->zd_os;
1929 dmu_tx_t *tx;
1930 uint64_t txg;
1931 ztest_zrl_t *rl;
1932
1933 if (byteswap)
1934 byteswap_uint64_array(lr, sizeof (*lr));
1935
1936 ztest_object_lock(zd, lr->lr_foid, RL_READER);
1937 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
1938 RL_WRITER);
1939
1940 tx = dmu_tx_create(os);
1941
1942 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
1943
1944 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1945 if (txg == 0) {
1946 ztest_range_unlock(zd, rl);
1947 ztest_object_unlock(zd, lr->lr_foid);
1948 return (ENOSPC);
1949 }
1950
1951 VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
1952 lr->lr_length, tx) == 0);
1953
1954 (void) ztest_log_truncate(zd, tx, lr);
1955
1956 dmu_tx_commit(tx);
1957
1958 ztest_range_unlock(zd, rl);
1959 ztest_object_unlock(zd, lr->lr_foid);
1960
1961 return (0);
1962 }
1963
1964 static int
1965 ztest_replay_setattr(ztest_ds_t *zd, lr_setattr_t *lr, boolean_t byteswap)
1966 {
1967 objset_t *os = zd->zd_os;
1968 dmu_tx_t *tx;
1969 dmu_buf_t *db;
1970 ztest_block_tag_t *bbt;
1971 uint64_t txg, lrtxg, crtxg, dnodesize;
1972
1973 if (byteswap)
1974 byteswap_uint64_array(lr, sizeof (*lr));
1975
1976 ztest_object_lock(zd, lr->lr_foid, RL_WRITER);
1977
1978 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1979
1980 tx = dmu_tx_create(os);
1981 dmu_tx_hold_bonus(tx, lr->lr_foid);
1982
1983 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1984 if (txg == 0) {
1985 dmu_buf_rele(db, FTAG);
1986 ztest_object_unlock(zd, lr->lr_foid);
1987 return (ENOSPC);
1988 }
1989
1990 bbt = ztest_bt_bonus(db);
1991 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1992 crtxg = bbt->bt_crtxg;
1993 lrtxg = lr->lr_common.lrc_txg;
1994 dnodesize = bbt->bt_dnodesize;
1995
1996 if (zd->zd_zilog->zl_replay) {
1997 ASSERT(lr->lr_size != 0);
1998 ASSERT(lr->lr_mode != 0);
1999 ASSERT(lrtxg != 0);
2000 } else {
2001 /*
2002 * Randomly change the size and increment the generation.
2003 */
2004 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
2005 sizeof (*bbt);
2006 lr->lr_mode = bbt->bt_gen + 1;
2007 ASSERT(lrtxg == 0);
2008 }
2009
2010 /*
2011 * Verify that the current bonus buffer is not newer than our txg.
2012 */
2013 ztest_bt_verify(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
2014 MAX(txg, lrtxg), crtxg);
2015
2016 dmu_buf_will_dirty(db, tx);
2017
2018 ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
2019 ASSERT3U(lr->lr_size, <=, db->db_size);
2020 VERIFY0(dmu_set_bonus(db, lr->lr_size, tx));
2021 bbt = ztest_bt_bonus(db);
2022
2023 ztest_bt_generate(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
2024 txg, crtxg);
2025 ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, bbt->bt_gen);
2026 dmu_buf_rele(db, FTAG);
2027
2028 (void) ztest_log_setattr(zd, tx, lr);
2029
2030 dmu_tx_commit(tx);
2031
2032 ztest_object_unlock(zd, lr->lr_foid);
2033
2034 return (0);
2035 }
2036
2037 zil_replay_func_t ztest_replay_vector[TX_MAX_TYPE] = {
2038 NULL, /* 0 no such transaction type */
2039 (zil_replay_func_t)ztest_replay_create, /* TX_CREATE */
2040 NULL, /* TX_MKDIR */
2041 NULL, /* TX_MKXATTR */
2042 NULL, /* TX_SYMLINK */
2043 (zil_replay_func_t)ztest_replay_remove, /* TX_REMOVE */
2044 NULL, /* TX_RMDIR */
2045 NULL, /* TX_LINK */
2046 NULL, /* TX_RENAME */
2047 (zil_replay_func_t)ztest_replay_write, /* TX_WRITE */
2048 (zil_replay_func_t)ztest_replay_truncate, /* TX_TRUNCATE */
2049 (zil_replay_func_t)ztest_replay_setattr, /* TX_SETATTR */
2050 NULL, /* TX_ACL */
2051 NULL, /* TX_CREATE_ACL */
2052 NULL, /* TX_CREATE_ATTR */
2053 NULL, /* TX_CREATE_ACL_ATTR */
2054 NULL, /* TX_MKDIR_ACL */
2055 NULL, /* TX_MKDIR_ATTR */
2056 NULL, /* TX_MKDIR_ACL_ATTR */
2057 NULL, /* TX_WRITE2 */
2058 };
2059
2060 /*
2061 * ZIL get_data callbacks
2062 */
2063 typedef struct ztest_zgd_private {
2064 ztest_ds_t *z_zd;
2065 ztest_zrl_t *z_rl;
2066 uint64_t z_object;
2067 } ztest_zgd_private_t;
2068
2069 static void
2070 ztest_get_done(zgd_t *zgd, int error)
2071 {
2072 ztest_zgd_private_t *zzp = zgd->zgd_private;
2073 ztest_ds_t *zd = zzp->z_zd;
2074 uint64_t object = zzp->z_object;
2075
2076 if (zgd->zgd_db)
2077 dmu_buf_rele(zgd->zgd_db, zgd);
2078
2079 ztest_range_unlock(zd, zzp->z_rl);
2080 ztest_object_unlock(zd, object);
2081
2082 if (error == 0 && zgd->zgd_bp)
2083 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
2084
2085 umem_free(zgd, sizeof (*zgd));
2086 umem_free(zzp, sizeof (*zzp));
2087 }
2088
2089 static int
2090 ztest_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
2091 {
2092 ztest_ds_t *zd = arg;
2093 objset_t *os = zd->zd_os;
2094 uint64_t object = lr->lr_foid;
2095 uint64_t offset = lr->lr_offset;
2096 uint64_t size = lr->lr_length;
2097 blkptr_t *bp = &lr->lr_blkptr;
2098 uint64_t txg = lr->lr_common.lrc_txg;
2099 uint64_t crtxg;
2100 dmu_object_info_t doi;
2101 dmu_buf_t *db;
2102 zgd_t *zgd;
2103 int error;
2104 ztest_zgd_private_t *zgd_private;
2105
2106 ztest_object_lock(zd, object, RL_READER);
2107 error = dmu_bonus_hold(os, object, FTAG, &db);
2108 if (error) {
2109 ztest_object_unlock(zd, object);
2110 return (error);
2111 }
2112
2113 crtxg = ztest_bt_bonus(db)->bt_crtxg;
2114
2115 if (crtxg == 0 || crtxg > txg) {
2116 dmu_buf_rele(db, FTAG);
2117 ztest_object_unlock(zd, object);
2118 return (ENOENT);
2119 }
2120
2121 dmu_object_info_from_db(db, &doi);
2122 dmu_buf_rele(db, FTAG);
2123 db = NULL;
2124
2125 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
2126 zgd->zgd_zilog = zd->zd_zilog;
2127 zgd_private = umem_zalloc(sizeof (ztest_zgd_private_t), UMEM_NOFAIL);
2128 zgd_private->z_zd = zd;
2129 zgd_private->z_object = object;
2130 zgd->zgd_private = zgd_private;
2131
2132 if (buf != NULL) { /* immediate write */
2133 zgd_private->z_rl = ztest_range_lock(zd, object, offset, size,
2134 RL_READER);
2135
2136 error = dmu_read(os, object, offset, size, buf,
2137 DMU_READ_NO_PREFETCH);
2138 ASSERT(error == 0);
2139 } else {
2140 size = doi.doi_data_block_size;
2141 if (ISP2(size)) {
2142 offset = P2ALIGN(offset, size);
2143 } else {
2144 ASSERT(offset < size);
2145 offset = 0;
2146 }
2147
2148 zgd_private->z_rl = ztest_range_lock(zd, object, offset, size,
2149 RL_READER);
2150
2151 error = dmu_buf_hold(os, object, offset, zgd, &db,
2152 DMU_READ_NO_PREFETCH);
2153
2154 if (error == 0) {
2155 blkptr_t *obp = dmu_buf_get_blkptr(db);
2156 if (obp) {
2157 ASSERT(BP_IS_HOLE(bp));
2158 *bp = *obp;
2159 }
2160
2161 zgd->zgd_db = db;
2162 zgd->zgd_bp = bp;
2163
2164 ASSERT(db->db_offset == offset);
2165 ASSERT(db->db_size == size);
2166
2167 error = dmu_sync(zio, lr->lr_common.lrc_txg,
2168 ztest_get_done, zgd);
2169
2170 if (error == 0)
2171 return (0);
2172 }
2173 }
2174
2175 ztest_get_done(zgd, error);
2176
2177 return (error);
2178 }
2179
2180 static void *
2181 ztest_lr_alloc(size_t lrsize, char *name)
2182 {
2183 char *lr;
2184 size_t namesize = name ? strlen(name) + 1 : 0;
2185
2186 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
2187
2188 if (name)
2189 bcopy(name, lr + lrsize, namesize);
2190
2191 return (lr);
2192 }
2193
2194 void
2195 ztest_lr_free(void *lr, size_t lrsize, char *name)
2196 {
2197 size_t namesize = name ? strlen(name) + 1 : 0;
2198
2199 umem_free(lr, lrsize + namesize);
2200 }
2201
2202 /*
2203 * Lookup a bunch of objects. Returns the number of objects not found.
2204 */
2205 static int
2206 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
2207 {
2208 int missing = 0;
2209 int error;
2210 int i;
2211
2212 ASSERT(mutex_held(&zd->zd_dirobj_lock));
2213
2214 for (i = 0; i < count; i++, od++) {
2215 od->od_object = 0;
2216 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
2217 sizeof (uint64_t), 1, &od->od_object);
2218 if (error) {
2219 ASSERT(error == ENOENT);
2220 ASSERT(od->od_object == 0);
2221 missing++;
2222 } else {
2223 dmu_buf_t *db;
2224 ztest_block_tag_t *bbt;
2225 dmu_object_info_t doi;
2226
2227 ASSERT(od->od_object != 0);
2228 ASSERT(missing == 0); /* there should be no gaps */
2229
2230 ztest_object_lock(zd, od->od_object, RL_READER);
2231 VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os,
2232 od->od_object, FTAG, &db));
2233 dmu_object_info_from_db(db, &doi);
2234 bbt = ztest_bt_bonus(db);
2235 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2236 od->od_type = doi.doi_type;
2237 od->od_blocksize = doi.doi_data_block_size;
2238 od->od_gen = bbt->bt_gen;
2239 dmu_buf_rele(db, FTAG);
2240 ztest_object_unlock(zd, od->od_object);
2241 }
2242 }
2243
2244 return (missing);
2245 }
2246
2247 static int
2248 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
2249 {
2250 int missing = 0;
2251 int i;
2252
2253 ASSERT(mutex_held(&zd->zd_dirobj_lock));
2254
2255 for (i = 0; i < count; i++, od++) {
2256 if (missing) {
2257 od->od_object = 0;
2258 missing++;
2259 continue;
2260 }
2261
2262 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2263
2264 lr->lr_doid = od->od_dir;
2265 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */
2266 lr->lrz_type = od->od_crtype;
2267 lr->lrz_blocksize = od->od_crblocksize;
2268 lr->lrz_ibshift = ztest_random_ibshift();
2269 lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
2270 lr->lrz_dnodesize = od->od_crdnodesize;
2271 lr->lr_gen = od->od_crgen;
2272 lr->lr_crtime[0] = time(NULL);
2273
2274 if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
2275 ASSERT(missing == 0);
2276 od->od_object = 0;
2277 missing++;
2278 } else {
2279 od->od_object = lr->lr_foid;
2280 od->od_type = od->od_crtype;
2281 od->od_blocksize = od->od_crblocksize;
2282 od->od_gen = od->od_crgen;
2283 ASSERT(od->od_object != 0);
2284 }
2285
2286 ztest_lr_free(lr, sizeof (*lr), od->od_name);
2287 }
2288
2289 return (missing);
2290 }
2291
2292 static int
2293 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
2294 {
2295 int missing = 0;
2296 int error;
2297 int i;
2298
2299 ASSERT(mutex_held(&zd->zd_dirobj_lock));
2300
2301 od += count - 1;
2302
2303 for (i = count - 1; i >= 0; i--, od--) {
2304 if (missing) {
2305 missing++;
2306 continue;
2307 }
2308
2309 /*
2310 * No object was found.
2311 */
2312 if (od->od_object == 0)
2313 continue;
2314
2315 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2316
2317 lr->lr_doid = od->od_dir;
2318
2319 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
2320 ASSERT3U(error, ==, ENOSPC);
2321 missing++;
2322 } else {
2323 od->od_object = 0;
2324 }
2325 ztest_lr_free(lr, sizeof (*lr), od->od_name);
2326 }
2327
2328 return (missing);
2329 }
2330
2331 static int
2332 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
2333 void *data)
2334 {
2335 lr_write_t *lr;
2336 int error;
2337
2338 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
2339
2340 lr->lr_foid = object;
2341 lr->lr_offset = offset;
2342 lr->lr_length = size;
2343 lr->lr_blkoff = 0;
2344 BP_ZERO(&lr->lr_blkptr);
2345
2346 bcopy(data, lr + 1, size);
2347
2348 error = ztest_replay_write(zd, lr, B_FALSE);
2349
2350 ztest_lr_free(lr, sizeof (*lr) + size, NULL);
2351
2352 return (error);
2353 }
2354
2355 static int
2356 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2357 {
2358 lr_truncate_t *lr;
2359 int error;
2360
2361 lr = ztest_lr_alloc(sizeof (*lr), NULL);
2362
2363 lr->lr_foid = object;
2364 lr->lr_offset = offset;
2365 lr->lr_length = size;
2366
2367 error = ztest_replay_truncate(zd, lr, B_FALSE);
2368
2369 ztest_lr_free(lr, sizeof (*lr), NULL);
2370
2371 return (error);
2372 }
2373
2374 static int
2375 ztest_setattr(ztest_ds_t *zd, uint64_t object)
2376 {
2377 lr_setattr_t *lr;
2378 int error;
2379
2380 lr = ztest_lr_alloc(sizeof (*lr), NULL);
2381
2382 lr->lr_foid = object;
2383 lr->lr_size = 0;
2384 lr->lr_mode = 0;
2385
2386 error = ztest_replay_setattr(zd, lr, B_FALSE);
2387
2388 ztest_lr_free(lr, sizeof (*lr), NULL);
2389
2390 return (error);
2391 }
2392
2393 static void
2394 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2395 {
2396 objset_t *os = zd->zd_os;
2397 dmu_tx_t *tx;
2398 uint64_t txg;
2399 ztest_zrl_t *rl;
2400
2401 txg_wait_synced(dmu_objset_pool(os), 0);
2402
2403 ztest_object_lock(zd, object, RL_READER);
2404 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER);
2405
2406 tx = dmu_tx_create(os);
2407
2408 dmu_tx_hold_write(tx, object, offset, size);
2409
2410 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2411
2412 if (txg != 0) {
2413 dmu_prealloc(os, object, offset, size, tx);
2414 dmu_tx_commit(tx);
2415 txg_wait_synced(dmu_objset_pool(os), txg);
2416 } else {
2417 (void) dmu_free_long_range(os, object, offset, size);
2418 }
2419
2420 ztest_range_unlock(zd, rl);
2421 ztest_object_unlock(zd, object);
2422 }
2423
2424 static void
2425 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
2426 {
2427 int err;
2428 ztest_block_tag_t wbt;
2429 dmu_object_info_t doi;
2430 enum ztest_io_type io_type;
2431 uint64_t blocksize;
2432 void *data;
2433
2434 VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0);
2435 blocksize = doi.doi_data_block_size;
2436 data = umem_alloc(blocksize, UMEM_NOFAIL);
2437
2438 /*
2439 * Pick an i/o type at random, biased toward writing block tags.
2440 */
2441 io_type = ztest_random(ZTEST_IO_TYPES);
2442 if (ztest_random(2) == 0)
2443 io_type = ZTEST_IO_WRITE_TAG;
2444
2445 (void) rw_rdlock(&zd->zd_zilog_lock);
2446
2447 switch (io_type) {
2448
2449 case ZTEST_IO_WRITE_TAG:
2450 ztest_bt_generate(&wbt, zd->zd_os, object, doi.doi_dnodesize,
2451 offset, 0, 0, 0);
2452 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
2453 break;
2454
2455 case ZTEST_IO_WRITE_PATTERN:
2456 (void) memset(data, 'a' + (object + offset) % 5, blocksize);
2457 if (ztest_random(2) == 0) {
2458 /*
2459 * Induce fletcher2 collisions to ensure that
2460 * zio_ddt_collision() detects and resolves them
2461 * when using fletcher2-verify for deduplication.
2462 */
2463 ((uint64_t *)data)[0] ^= 1ULL << 63;
2464 ((uint64_t *)data)[4] ^= 1ULL << 63;
2465 }
2466 (void) ztest_write(zd, object, offset, blocksize, data);
2467 break;
2468
2469 case ZTEST_IO_WRITE_ZEROES:
2470 bzero(data, blocksize);
2471 (void) ztest_write(zd, object, offset, blocksize, data);
2472 break;
2473
2474 case ZTEST_IO_TRUNCATE:
2475 (void) ztest_truncate(zd, object, offset, blocksize);
2476 break;
2477
2478 case ZTEST_IO_SETATTR:
2479 (void) ztest_setattr(zd, object);
2480 break;
2481 default:
2482 break;
2483
2484 case ZTEST_IO_REWRITE:
2485 (void) rw_rdlock(&ztest_name_lock);
2486 err = ztest_dsl_prop_set_uint64(zd->zd_name,
2487 ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa),
2488 B_FALSE);
2489 VERIFY(err == 0 || err == ENOSPC);
2490 err = ztest_dsl_prop_set_uint64(zd->zd_name,
2491 ZFS_PROP_COMPRESSION,
2492 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION),
2493 B_FALSE);
2494 VERIFY(err == 0 || err == ENOSPC);
2495 (void) rw_unlock(&ztest_name_lock);
2496
2497 VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data,
2498 DMU_READ_NO_PREFETCH));
2499
2500 (void) ztest_write(zd, object, offset, blocksize, data);
2501 break;
2502 }
2503
2504 (void) rw_unlock(&zd->zd_zilog_lock);
2505
2506 umem_free(data, blocksize);
2507 }
2508
2509 /*
2510 * Initialize an object description template.
2511 */
2512 static void
2513 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index,
2514 dmu_object_type_t type, uint64_t blocksize, uint64_t dnodesize,
2515 uint64_t gen)
2516 {
2517 od->od_dir = ZTEST_DIROBJ;
2518 od->od_object = 0;
2519
2520 od->od_crtype = type;
2521 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
2522 od->od_crdnodesize = dnodesize ? dnodesize : ztest_random_dnodesize();
2523 od->od_crgen = gen;
2524
2525 od->od_type = DMU_OT_NONE;
2526 od->od_blocksize = 0;
2527 od->od_gen = 0;
2528
2529 (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]",
2530 tag, (longlong_t)id, (u_longlong_t)index);
2531 }
2532
2533 /*
2534 * Lookup or create the objects for a test using the od template.
2535 * If the objects do not all exist, or if 'remove' is specified,
2536 * remove any existing objects and create new ones. Otherwise,
2537 * use the existing objects.
2538 */
2539 static int
2540 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
2541 {
2542 int count = size / sizeof (*od);
2543 int rv = 0;
2544
2545 mutex_enter(&zd->zd_dirobj_lock);
2546 if ((ztest_lookup(zd, od, count) != 0 || remove) &&
2547 (ztest_remove(zd, od, count) != 0 ||
2548 ztest_create(zd, od, count) != 0))
2549 rv = -1;
2550 zd->zd_od = od;
2551 mutex_exit(&zd->zd_dirobj_lock);
2552
2553 return (rv);
2554 }
2555
2556 /* ARGSUSED */
2557 void
2558 ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
2559 {
2560 zilog_t *zilog = zd->zd_zilog;
2561
2562 (void) rw_rdlock(&zd->zd_zilog_lock);
2563
2564 zil_commit(zilog, ztest_random(ZTEST_OBJECTS));
2565
2566 /*
2567 * Remember the committed values in zd, which is in parent/child
2568 * shared memory. If we die, the next iteration of ztest_run()
2569 * will verify that the log really does contain this record.
2570 */
2571 mutex_enter(&zilog->zl_lock);
2572 ASSERT(zd->zd_shared != NULL);
2573 ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq);
2574 zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq;
2575 mutex_exit(&zilog->zl_lock);
2576
2577 (void) rw_unlock(&zd->zd_zilog_lock);
2578 }
2579
2580 /*
2581 * This function is designed to simulate the operations that occur during a
2582 * mount/unmount operation. We hold the dataset across these operations in an
2583 * attempt to expose any implicit assumptions about ZIL management.
2584 */
2585 /* ARGSUSED */
2586 void
2587 ztest_zil_remount(ztest_ds_t *zd, uint64_t id)
2588 {
2589 objset_t *os = zd->zd_os;
2590
2591 /*
2592 * We grab the zd_dirobj_lock to ensure that no other thread is
2593 * updating the zil (i.e. adding in-memory log records) and the
2594 * zd_zilog_lock to block any I/O.
2595 */
2596 mutex_enter(&zd->zd_dirobj_lock);
2597 (void) rw_wrlock(&zd->zd_zilog_lock);
2598
2599 /* zfs_sb_teardown() */
2600 zil_close(zd->zd_zilog);
2601
2602 /* zfsvfs_setup() */
2603 VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog);
2604 zil_replay(os, zd, ztest_replay_vector);
2605
2606 (void) rw_unlock(&zd->zd_zilog_lock);
2607 mutex_exit(&zd->zd_dirobj_lock);
2608 }
2609
2610 /*
2611 * Verify that we can't destroy an active pool, create an existing pool,
2612 * or create a pool with a bad vdev spec.
2613 */
2614 /* ARGSUSED */
2615 void
2616 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
2617 {
2618 ztest_shared_opts_t *zo = &ztest_opts;
2619 spa_t *spa;
2620 nvlist_t *nvroot;
2621
2622 /*
2623 * Attempt to create using a bad file.
2624 */
2625 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1);
2626 VERIFY3U(ENOENT, ==,
2627 spa_create("ztest_bad_file", nvroot, NULL, NULL));
2628 nvlist_free(nvroot);
2629
2630 /*
2631 * Attempt to create using a bad mirror.
2632 */
2633 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 2, 1);
2634 VERIFY3U(ENOENT, ==,
2635 spa_create("ztest_bad_mirror", nvroot, NULL, NULL));
2636 nvlist_free(nvroot);
2637
2638 /*
2639 * Attempt to create an existing pool. It shouldn't matter
2640 * what's in the nvroot; we should fail with EEXIST.
2641 */
2642 (void) rw_rdlock(&ztest_name_lock);
2643 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1);
2644 VERIFY3U(EEXIST, ==, spa_create(zo->zo_pool, nvroot, NULL, NULL));
2645 nvlist_free(nvroot);
2646 VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG));
2647 VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool));
2648 spa_close(spa, FTAG);
2649
2650 (void) rw_unlock(&ztest_name_lock);
2651 }
2652
2653 /* ARGSUSED */
2654 void
2655 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id)
2656 {
2657 spa_t *spa;
2658 uint64_t initial_version = SPA_VERSION_INITIAL;
2659 uint64_t version, newversion;
2660 nvlist_t *nvroot, *props;
2661 char *name;
2662
2663 mutex_enter(&ztest_vdev_lock);
2664 name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool);
2665
2666 /*
2667 * Clean up from previous runs.
2668 */
2669 (void) spa_destroy(name);
2670
2671 nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0,
2672 0, ztest_opts.zo_raidz, ztest_opts.zo_mirrors, 1);
2673
2674 /*
2675 * If we're configuring a RAIDZ device then make sure that the
2676 * the initial version is capable of supporting that feature.
2677 */
2678 switch (ztest_opts.zo_raidz_parity) {
2679 case 0:
2680 case 1:
2681 initial_version = SPA_VERSION_INITIAL;
2682 break;
2683 case 2:
2684 initial_version = SPA_VERSION_RAIDZ2;
2685 break;
2686 case 3:
2687 initial_version = SPA_VERSION_RAIDZ3;
2688 break;
2689 }
2690
2691 /*
2692 * Create a pool with a spa version that can be upgraded. Pick
2693 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
2694 */
2695 do {
2696 version = ztest_random_spa_version(initial_version);
2697 } while (version > SPA_VERSION_BEFORE_FEATURES);
2698
2699 props = fnvlist_alloc();
2700 fnvlist_add_uint64(props,
2701 zpool_prop_to_name(ZPOOL_PROP_VERSION), version);
2702 VERIFY3S(spa_create(name, nvroot, props, NULL), ==, 0);
2703 fnvlist_free(nvroot);
2704 fnvlist_free(props);
2705
2706 VERIFY3S(spa_open(name, &spa, FTAG), ==, 0);
2707 VERIFY3U(spa_version(spa), ==, version);
2708 newversion = ztest_random_spa_version(version + 1);
2709
2710 if (ztest_opts.zo_verbose >= 4) {
2711 (void) printf("upgrading spa version from %llu to %llu\n",
2712 (u_longlong_t)version, (u_longlong_t)newversion);
2713 }
2714
2715 spa_upgrade(spa, newversion);
2716 VERIFY3U(spa_version(spa), >, version);
2717 VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config,
2718 zpool_prop_to_name(ZPOOL_PROP_VERSION)));
2719 spa_close(spa, FTAG);
2720
2721 strfree(name);
2722 mutex_exit(&ztest_vdev_lock);
2723 }
2724
2725 static vdev_t *
2726 vdev_lookup_by_path(vdev_t *vd, const char *path)
2727 {
2728 vdev_t *mvd;
2729 int c;
2730
2731 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
2732 return (vd);
2733
2734 for (c = 0; c < vd->vdev_children; c++)
2735 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
2736 NULL)
2737 return (mvd);
2738
2739 return (NULL);
2740 }
2741
2742 /*
2743 * Find the first available hole which can be used as a top-level.
2744 */
2745 int
2746 find_vdev_hole(spa_t *spa)
2747 {
2748 vdev_t *rvd = spa->spa_root_vdev;
2749 int c;
2750
2751 ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV);
2752
2753 for (c = 0; c < rvd->vdev_children; c++) {
2754 vdev_t *cvd = rvd->vdev_child[c];
2755
2756 if (cvd->vdev_ishole)
2757 break;
2758 }
2759 return (c);
2760 }
2761
2762 /*
2763 * Verify that vdev_add() works as expected.
2764 */
2765 /* ARGSUSED */
2766 void
2767 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
2768 {
2769 ztest_shared_t *zs = ztest_shared;
2770 spa_t *spa = ztest_spa;
2771 uint64_t leaves;
2772 uint64_t guid;
2773 nvlist_t *nvroot;
2774 int error;
2775
2776 mutex_enter(&ztest_vdev_lock);
2777 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz;
2778
2779 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2780
2781 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves;
2782
2783 /*
2784 * If we have slogs then remove them 1/4 of the time.
2785 */
2786 if (spa_has_slogs(spa) && ztest_random(4) == 0) {
2787 /*
2788 * Grab the guid from the head of the log class rotor.
2789 */
2790 guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid;
2791
2792 spa_config_exit(spa, SCL_VDEV, FTAG);
2793
2794 /*
2795 * We have to grab the zs_name_lock as writer to
2796 * prevent a race between removing a slog (dmu_objset_find)
2797 * and destroying a dataset. Removing the slog will
2798 * grab a reference on the dataset which may cause
2799 * dsl_destroy_head() to fail with EBUSY thus
2800 * leaving the dataset in an inconsistent state.
2801 */
2802 rw_wrlock(&ztest_name_lock);
2803 error = spa_vdev_remove(spa, guid, B_FALSE);
2804 rw_unlock(&ztest_name_lock);
2805
2806 if (error && error != EEXIST)
2807 fatal(0, "spa_vdev_remove() = %d", error);
2808 } else {
2809 spa_config_exit(spa, SCL_VDEV, FTAG);
2810
2811 /*
2812 * Make 1/4 of the devices be log devices.
2813 */
2814 nvroot = make_vdev_root(NULL, NULL, NULL,
2815 ztest_opts.zo_vdev_size, 0,
2816 ztest_random(4) == 0, ztest_opts.zo_raidz,
2817 zs->zs_mirrors, 1);
2818
2819 error = spa_vdev_add(spa, nvroot);
2820 nvlist_free(nvroot);
2821
2822 if (error == ENOSPC)
2823 ztest_record_enospc("spa_vdev_add");
2824 else if (error != 0)
2825 fatal(0, "spa_vdev_add() = %d", error);
2826 }
2827
2828 mutex_exit(&ztest_vdev_lock);
2829 }
2830
2831 /*
2832 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
2833 */
2834 /* ARGSUSED */
2835 void
2836 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
2837 {
2838 ztest_shared_t *zs = ztest_shared;
2839 spa_t *spa = ztest_spa;
2840 vdev_t *rvd = spa->spa_root_vdev;
2841 spa_aux_vdev_t *sav;
2842 char *aux;
2843 char *path;
2844 uint64_t guid = 0;
2845 int error;
2846
2847 path = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
2848
2849 if (ztest_random(2) == 0) {
2850 sav = &spa->spa_spares;
2851 aux = ZPOOL_CONFIG_SPARES;
2852 } else {
2853 sav = &spa->spa_l2cache;
2854 aux = ZPOOL_CONFIG_L2CACHE;
2855 }
2856
2857 mutex_enter(&ztest_vdev_lock);
2858
2859 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2860
2861 if (sav->sav_count != 0 && ztest_random(4) == 0) {
2862 /*
2863 * Pick a random device to remove.
2864 */
2865 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid;
2866 } else {
2867 /*
2868 * Find an unused device we can add.
2869 */
2870 zs->zs_vdev_aux = 0;
2871 for (;;) {
2872 int c;
2873 (void) snprintf(path, MAXPATHLEN, ztest_aux_template,
2874 ztest_opts.zo_dir, ztest_opts.zo_pool, aux,
2875 zs->zs_vdev_aux);
2876 for (c = 0; c < sav->sav_count; c++)
2877 if (strcmp(sav->sav_vdevs[c]->vdev_path,
2878 path) == 0)
2879 break;
2880 if (c == sav->sav_count &&
2881 vdev_lookup_by_path(rvd, path) == NULL)
2882 break;
2883 zs->zs_vdev_aux++;
2884 }
2885 }
2886
2887 spa_config_exit(spa, SCL_VDEV, FTAG);
2888
2889 if (guid == 0) {
2890 /*
2891 * Add a new device.
2892 */
2893 nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL,
2894 (ztest_opts.zo_vdev_size * 5) / 4, 0, 0, 0, 0, 1);
2895 error = spa_vdev_add(spa, nvroot);
2896 if (error != 0)
2897 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error);
2898 nvlist_free(nvroot);
2899 } else {
2900 /*
2901 * Remove an existing device. Sometimes, dirty its
2902 * vdev state first to make sure we handle removal
2903 * of devices that have pending state changes.
2904 */
2905 if (ztest_random(2) == 0)
2906 (void) vdev_online(spa, guid, 0, NULL);
2907
2908 error = spa_vdev_remove(spa, guid, B_FALSE);
2909 if (error != 0 && error != EBUSY)
2910 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error);
2911 }
2912
2913 mutex_exit(&ztest_vdev_lock);
2914
2915 umem_free(path, MAXPATHLEN);
2916 }
2917
2918 /*
2919 * split a pool if it has mirror tlvdevs
2920 */
2921 /* ARGSUSED */
2922 void
2923 ztest_split_pool(ztest_ds_t *zd, uint64_t id)
2924 {
2925 ztest_shared_t *zs = ztest_shared;
2926 spa_t *spa = ztest_spa;
2927 vdev_t *rvd = spa->spa_root_vdev;
2928 nvlist_t *tree, **child, *config, *split, **schild;
2929 uint_t c, children, schildren = 0, lastlogid = 0;
2930 int error = 0;
2931
2932 mutex_enter(&ztest_vdev_lock);
2933
2934 /* ensure we have a useable config; mirrors of raidz aren't supported */
2935 if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) {
2936 mutex_exit(&ztest_vdev_lock);
2937 return;
2938 }
2939
2940 /* clean up the old pool, if any */
2941 (void) spa_destroy("splitp");
2942
2943 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2944
2945 /* generate a config from the existing config */
2946 mutex_enter(&spa->spa_props_lock);
2947 VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE,
2948 &tree) == 0);
2949 mutex_exit(&spa->spa_props_lock);
2950
2951 VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child,
2952 &children) == 0);
2953
2954 schild = malloc(rvd->vdev_children * sizeof (nvlist_t *));
2955 for (c = 0; c < children; c++) {
2956 vdev_t *tvd = rvd->vdev_child[c];
2957 nvlist_t **mchild;
2958 uint_t mchildren;
2959
2960 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
2961 VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME,
2962 0) == 0);
2963 VERIFY(nvlist_add_string(schild[schildren],
2964 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0);
2965 VERIFY(nvlist_add_uint64(schild[schildren],
2966 ZPOOL_CONFIG_IS_HOLE, 1) == 0);
2967 if (lastlogid == 0)
2968 lastlogid = schildren;
2969 ++schildren;
2970 continue;
2971 }
2972 lastlogid = 0;
2973 VERIFY(nvlist_lookup_nvlist_array(child[c],
2974 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0);
2975 VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0);
2976 }
2977
2978 /* OK, create a config that can be used to split */
2979 VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0);
2980 VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE,
2981 VDEV_TYPE_ROOT) == 0);
2982 VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild,
2983 lastlogid != 0 ? lastlogid : schildren) == 0);
2984
2985 VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0);
2986 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0);
2987
2988 for (c = 0; c < schildren; c++)
2989 nvlist_free(schild[c]);
2990 free(schild);
2991 nvlist_free(split);
2992
2993 spa_config_exit(spa, SCL_VDEV, FTAG);
2994
2995 (void) rw_wrlock(&ztest_name_lock);
2996 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
2997 (void) rw_unlock(&ztest_name_lock);
2998
2999 nvlist_free(config);
3000
3001 if (error == 0) {
3002 (void) printf("successful split - results:\n");
3003 mutex_enter(&spa_namespace_lock);
3004 show_pool_stats(spa);
3005 show_pool_stats(spa_lookup("splitp"));
3006 mutex_exit(&spa_namespace_lock);
3007 ++zs->zs_splits;
3008 --zs->zs_mirrors;
3009 }
3010 mutex_exit(&ztest_vdev_lock);
3011
3012 }
3013
3014 /*
3015 * Verify that we can attach and detach devices.
3016 */
3017 /* ARGSUSED */
3018 void
3019 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
3020 {
3021 ztest_shared_t *zs = ztest_shared;
3022 spa_t *spa = ztest_spa;
3023 spa_aux_vdev_t *sav = &spa->spa_spares;
3024 vdev_t *rvd = spa->spa_root_vdev;
3025 vdev_t *oldvd, *newvd, *pvd;
3026 nvlist_t *root;
3027 uint64_t leaves;
3028 uint64_t leaf, top;
3029 uint64_t ashift = ztest_get_ashift();
3030 uint64_t oldguid, pguid;
3031 uint64_t oldsize, newsize;
3032 char *oldpath, *newpath;
3033 int replacing;
3034 int oldvd_has_siblings = B_FALSE;
3035 int newvd_is_spare = B_FALSE;
3036 int oldvd_is_log;
3037 int error, expected_error;
3038
3039 oldpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3040 newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3041
3042 mutex_enter(&ztest_vdev_lock);
3043 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
3044
3045 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3046
3047 /*
3048 * Decide whether to do an attach or a replace.
3049 */
3050 replacing = ztest_random(2);
3051
3052 /*
3053 * Pick a random top-level vdev.
3054 */
3055 top = ztest_random_vdev_top(spa, B_TRUE);
3056
3057 /*
3058 * Pick a random leaf within it.
3059 */
3060 leaf = ztest_random(leaves);
3061
3062 /*
3063 * Locate this vdev.
3064 */
3065 oldvd = rvd->vdev_child[top];
3066 if (zs->zs_mirrors >= 1) {
3067 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops);
3068 ASSERT(oldvd->vdev_children >= zs->zs_mirrors);
3069 oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz];
3070 }
3071 if (ztest_opts.zo_raidz > 1) {
3072 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops);
3073 ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz);
3074 oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz];
3075 }
3076
3077 /*
3078 * If we're already doing an attach or replace, oldvd may be a
3079 * mirror vdev -- in which case, pick a random child.
3080 */
3081 while (oldvd->vdev_children != 0) {
3082 oldvd_has_siblings = B_TRUE;
3083 ASSERT(oldvd->vdev_children >= 2);
3084 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
3085 }
3086
3087 oldguid = oldvd->vdev_guid;
3088 oldsize = vdev_get_min_asize(oldvd);
3089 oldvd_is_log = oldvd->vdev_top->vdev_islog;
3090 (void) strcpy(oldpath, oldvd->vdev_path);
3091 pvd = oldvd->vdev_parent;
3092 pguid = pvd->vdev_guid;
3093
3094 /*
3095 * If oldvd has siblings, then half of the time, detach it.
3096 */
3097 if (oldvd_has_siblings && ztest_random(2) == 0) {
3098 spa_config_exit(spa, SCL_VDEV, FTAG);
3099 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
3100 if (error != 0 && error != ENODEV && error != EBUSY &&
3101 error != ENOTSUP)
3102 fatal(0, "detach (%s) returned %d", oldpath, error);
3103 goto out;
3104 }
3105
3106 /*
3107 * For the new vdev, choose with equal probability between the two
3108 * standard paths (ending in either 'a' or 'b') or a random hot spare.
3109 */
3110 if (sav->sav_count != 0 && ztest_random(3) == 0) {
3111 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
3112 newvd_is_spare = B_TRUE;
3113 (void) strcpy(newpath, newvd->vdev_path);
3114 } else {
3115 (void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
3116 ztest_opts.zo_dir, ztest_opts.zo_pool,
3117 top * leaves + leaf);
3118 if (ztest_random(2) == 0)
3119 newpath[strlen(newpath) - 1] = 'b';
3120 newvd = vdev_lookup_by_path(rvd, newpath);
3121 }
3122
3123 if (newvd) {
3124 newsize = vdev_get_min_asize(newvd);
3125 } else {
3126 /*
3127 * Make newsize a little bigger or smaller than oldsize.
3128 * If it's smaller, the attach should fail.
3129 * If it's larger, and we're doing a replace,
3130 * we should get dynamic LUN growth when we're done.
3131 */
3132 newsize = 10 * oldsize / (9 + ztest_random(3));
3133 }
3134
3135 /*
3136 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
3137 * unless it's a replace; in that case any non-replacing parent is OK.
3138 *
3139 * If newvd is already part of the pool, it should fail with EBUSY.
3140 *
3141 * If newvd is too small, it should fail with EOVERFLOW.
3142 */
3143 if (pvd->vdev_ops != &vdev_mirror_ops &&
3144 pvd->vdev_ops != &vdev_root_ops && (!replacing ||
3145 pvd->vdev_ops == &vdev_replacing_ops ||
3146 pvd->vdev_ops == &vdev_spare_ops))
3147 expected_error = ENOTSUP;
3148 else if (newvd_is_spare && (!replacing || oldvd_is_log))
3149 expected_error = ENOTSUP;
3150 else if (newvd == oldvd)
3151 expected_error = replacing ? 0 : EBUSY;
3152 else if (vdev_lookup_by_path(rvd, newpath) != NULL)
3153 expected_error = EBUSY;
3154 else if (newsize < oldsize)
3155 expected_error = EOVERFLOW;
3156 else if (ashift > oldvd->vdev_top->vdev_ashift)
3157 expected_error = EDOM;
3158 else
3159 expected_error = 0;
3160
3161 spa_config_exit(spa, SCL_VDEV, FTAG);
3162
3163 /*
3164 * Build the nvlist describing newpath.
3165 */
3166 root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0,
3167 ashift, 0, 0, 0, 1);
3168
3169 error = spa_vdev_attach(spa, oldguid, root, replacing);
3170
3171 nvlist_free(root);
3172
3173 /*
3174 * If our parent was the replacing vdev, but the replace completed,
3175 * then instead of failing with ENOTSUP we may either succeed,
3176 * fail with ENODEV, or fail with EOVERFLOW.
3177 */
3178 if (expected_error == ENOTSUP &&
3179 (error == 0 || error == ENODEV || error == EOVERFLOW))
3180 expected_error = error;
3181
3182 /*
3183 * If someone grew the LUN, the replacement may be too small.
3184 */
3185 if (error == EOVERFLOW || error == EBUSY)
3186 expected_error = error;
3187
3188 /* XXX workaround 6690467 */
3189 if (error != expected_error && expected_error != EBUSY) {
3190 fatal(0, "attach (%s %llu, %s %llu, %d) "
3191 "returned %d, expected %d",
3192 oldpath, oldsize, newpath,
3193 newsize, replacing, error, expected_error);
3194 }
3195 out:
3196 mutex_exit(&ztest_vdev_lock);
3197
3198 umem_free(oldpath, MAXPATHLEN);
3199 umem_free(newpath, MAXPATHLEN);
3200 }
3201
3202 /*
3203 * Callback function which expands the physical size of the vdev.
3204 */
3205 vdev_t *
3206 grow_vdev(vdev_t *vd, void *arg)
3207 {
3208 ASSERTV(spa_t *spa = vd->vdev_spa);
3209 size_t *newsize = arg;
3210 size_t fsize;
3211 int fd;
3212
3213 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
3214 ASSERT(vd->vdev_ops->vdev_op_leaf);
3215
3216 if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
3217 return (vd);
3218
3219 fsize = lseek(fd, 0, SEEK_END);
3220 VERIFY(ftruncate(fd, *newsize) == 0);
3221
3222 if (ztest_opts.zo_verbose >= 6) {
3223 (void) printf("%s grew from %lu to %lu bytes\n",
3224 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
3225 }
3226 (void) close(fd);
3227 return (NULL);
3228 }
3229
3230 /*
3231 * Callback function which expands a given vdev by calling vdev_online().
3232 */
3233 /* ARGSUSED */
3234 vdev_t *
3235 online_vdev(vdev_t *vd, void *arg)
3236 {
3237 spa_t *spa = vd->vdev_spa;
3238 vdev_t *tvd = vd->vdev_top;
3239 uint64_t guid = vd->vdev_guid;
3240 uint64_t generation = spa->spa_config_generation + 1;
3241 vdev_state_t newstate = VDEV_STATE_UNKNOWN;
3242 int error;
3243
3244 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
3245 ASSERT(vd->vdev_ops->vdev_op_leaf);
3246
3247 /* Calling vdev_online will initialize the new metaslabs */
3248 spa_config_exit(spa, SCL_STATE, spa);
3249 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
3250 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3251
3252 /*
3253 * If vdev_online returned an error or the underlying vdev_open
3254 * failed then we abort the expand. The only way to know that
3255 * vdev_open fails is by checking the returned newstate.
3256 */
3257 if (error || newstate != VDEV_STATE_HEALTHY) {
3258 if (ztest_opts.zo_verbose >= 5) {
3259 (void) printf("Unable to expand vdev, state %llu, "
3260 "error %d\n", (u_longlong_t)newstate, error);
3261 }
3262 return (vd);
3263 }
3264 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
3265
3266 /*
3267 * Since we dropped the lock we need to ensure that we're
3268 * still talking to the original vdev. It's possible this
3269 * vdev may have been detached/replaced while we were
3270 * trying to online it.
3271 */
3272 if (generation != spa->spa_config_generation) {
3273 if (ztest_opts.zo_verbose >= 5) {
3274 (void) printf("vdev configuration has changed, "
3275 "guid %llu, state %llu, expected gen %llu, "
3276 "got gen %llu\n",
3277 (u_longlong_t)guid,
3278 (u_longlong_t)tvd->vdev_state,
3279 (u_longlong_t)generation,
3280 (u_longlong_t)spa->spa_config_generation);
3281 }
3282 return (vd);
3283 }
3284 return (NULL);
3285 }
3286
3287 /*
3288 * Traverse the vdev tree calling the supplied function.
3289 * We continue to walk the tree until we either have walked all
3290 * children or we receive a non-NULL return from the callback.
3291 * If a NULL callback is passed, then we just return back the first
3292 * leaf vdev we encounter.
3293 */
3294 vdev_t *
3295 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
3296 {
3297 uint_t c;
3298
3299 if (vd->vdev_ops->vdev_op_leaf) {
3300 if (func == NULL)
3301 return (vd);
3302 else
3303 return (func(vd, arg));
3304 }
3305
3306 for (c = 0; c < vd->vdev_children; c++) {
3307 vdev_t *cvd = vd->vdev_child[c];
3308 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
3309 return (cvd);
3310 }
3311 return (NULL);
3312 }
3313
3314 /*
3315 * Verify that dynamic LUN growth works as expected.
3316 */
3317 /* ARGSUSED */
3318 void
3319 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
3320 {
3321 spa_t *spa = ztest_spa;
3322 vdev_t *vd, *tvd;
3323 metaslab_class_t *mc;
3324 metaslab_group_t *mg;
3325 size_t psize, newsize;
3326 uint64_t top;
3327 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
3328
3329 mutex_enter(&ztest_vdev_lock);
3330 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3331
3332 top = ztest_random_vdev_top(spa, B_TRUE);
3333
3334 tvd = spa->spa_root_vdev->vdev_child[top];
3335 mg = tvd->vdev_mg;
3336 mc = mg->mg_class;
3337 old_ms_count = tvd->vdev_ms_count;
3338 old_class_space = metaslab_class_get_space(mc);
3339
3340 /*
3341 * Determine the size of the first leaf vdev associated with
3342 * our top-level device.
3343 */
3344 vd = vdev_walk_tree(tvd, NULL, NULL);
3345 ASSERT3P(vd, !=, NULL);
3346 ASSERT(vd->vdev_ops->vdev_op_leaf);
3347
3348 psize = vd->vdev_psize;
3349
3350 /*
3351 * We only try to expand the vdev if it's healthy, less than 4x its
3352 * original size, and it has a valid psize.
3353 */
3354 if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
3355 psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) {
3356 spa_config_exit(spa, SCL_STATE, spa);
3357 mutex_exit(&ztest_vdev_lock);
3358 return;
3359 }
3360 ASSERT(psize > 0);
3361 newsize = psize + psize / 8;
3362 ASSERT3U(newsize, >, psize);
3363
3364 if (ztest_opts.zo_verbose >= 6) {
3365 (void) printf("Expanding LUN %s from %lu to %lu\n",
3366 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
3367 }
3368
3369 /*
3370 * Growing the vdev is a two step process:
3371 * 1). expand the physical size (i.e. relabel)
3372 * 2). online the vdev to create the new metaslabs
3373 */
3374 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
3375 vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
3376 tvd->vdev_state != VDEV_STATE_HEALTHY) {
3377 if (ztest_opts.zo_verbose >= 5) {
3378 (void) printf("Could not expand LUN because "
3379 "the vdev configuration changed.\n");
3380 }
3381 spa_config_exit(spa, SCL_STATE, spa);
3382 mutex_exit(&ztest_vdev_lock);
3383 return;
3384 }
3385
3386 spa_config_exit(spa, SCL_STATE, spa);
3387
3388 /*
3389 * Expanding the LUN will update the config asynchronously,
3390 * thus we must wait for the async thread to complete any
3391 * pending tasks before proceeding.
3392 */
3393 for (;;) {
3394 boolean_t done;
3395 mutex_enter(&spa->spa_async_lock);
3396 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
3397 mutex_exit(&spa->spa_async_lock);
3398 if (done)
3399 break;
3400 txg_wait_synced(spa_get_dsl(spa), 0);
3401 (void) poll(NULL, 0, 100);
3402 }
3403
3404 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3405
3406 tvd = spa->spa_root_vdev->vdev_child[top];
3407 new_ms_count = tvd->vdev_ms_count;
3408 new_class_space = metaslab_class_get_space(mc);
3409
3410 if (tvd->vdev_mg != mg || mg->mg_class != mc) {
3411 if (ztest_opts.zo_verbose >= 5) {
3412 (void) printf("Could not verify LUN expansion due to "
3413 "intervening vdev offline or remove.\n");
3414 }
3415 spa_config_exit(spa, SCL_STATE, spa);
3416 mutex_exit(&ztest_vdev_lock);
3417 return;
3418 }
3419
3420 /*
3421 * Make sure we were able to grow the vdev.
3422 */
3423 if (new_ms_count <= old_ms_count)
3424 fatal(0, "LUN expansion failed: ms_count %llu <= %llu\n",
3425 old_ms_count, new_ms_count);
3426
3427 /*
3428 * Make sure we were able to grow the pool.
3429 */
3430 if (new_class_space <= old_class_space)
3431 fatal(0, "LUN expansion failed: class_space %llu <= %llu\n",
3432 old_class_space, new_class_space);
3433
3434 if (ztest_opts.zo_verbose >= 5) {
3435 char oldnumbuf[6], newnumbuf[6];
3436
3437 nicenum(old_class_space, oldnumbuf);
3438 nicenum(new_class_space, newnumbuf);
3439 (void) printf("%s grew from %s to %s\n",
3440 spa->spa_name, oldnumbuf, newnumbuf);
3441 }
3442
3443 spa_config_exit(spa, SCL_STATE, spa);
3444 mutex_exit(&ztest_vdev_lock);
3445 }
3446
3447 /*
3448 * Verify that dmu_objset_{create,destroy,open,close} work as expected.
3449 */
3450 /* ARGSUSED */
3451 static void
3452 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
3453 {
3454 /*
3455 * Create the objects common to all ztest datasets.
3456 */
3457 VERIFY(zap_create_claim(os, ZTEST_DIROBJ,
3458 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0);
3459 }
3460
3461 static int
3462 ztest_dataset_create(char *dsname)
3463 {
3464 uint64_t zilset = ztest_random(100);
3465 int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0,
3466 ztest_objset_create_cb, NULL);
3467
3468 if (err || zilset < 80)
3469 return (err);
3470
3471 if (ztest_opts.zo_verbose >= 5)
3472 (void) printf("Setting dataset %s to sync always\n", dsname);
3473 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
3474 ZFS_SYNC_ALWAYS, B_FALSE));
3475 }
3476
3477 /* ARGSUSED */
3478 static int
3479 ztest_objset_destroy_cb(const char *name, void *arg)
3480 {
3481 objset_t *os;
3482 dmu_object_info_t doi;
3483 int error;
3484
3485 /*
3486 * Verify that the dataset contains a directory object.
3487 */
3488 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, FTAG, &os));
3489 error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
3490 if (error != ENOENT) {
3491 /* We could have crashed in the middle of destroying it */
3492 ASSERT0(error);
3493 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
3494 ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
3495 }
3496 dmu_objset_disown(os, FTAG);
3497
3498 /*
3499 * Destroy the dataset.
3500 */
3501 if (strchr(name, '@') != NULL) {
3502 VERIFY0(dsl_destroy_snapshot(name, B_TRUE));
3503 } else {
3504 error = dsl_destroy_head(name);
3505 /* There could be a hold on this dataset */
3506 if (error != EBUSY)
3507 ASSERT0(error);
3508 }
3509 return (0);
3510 }
3511
3512 static boolean_t
3513 ztest_snapshot_create(char *osname, uint64_t id)
3514 {
3515 char snapname[ZFS_MAX_DATASET_NAME_LEN];
3516 int error;
3517
3518 (void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id);
3519
3520 error = dmu_objset_snapshot_one(osname, snapname);
3521 if (error == ENOSPC) {
3522 ztest_record_enospc(FTAG);
3523 return (B_FALSE);
3524 }
3525 if (error != 0 && error != EEXIST) {
3526 fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname,
3527 snapname, error);
3528 }
3529 return (B_TRUE);
3530 }
3531
3532 static boolean_t
3533 ztest_snapshot_destroy(char *osname, uint64_t id)
3534 {
3535 char snapname[ZFS_MAX_DATASET_NAME_LEN];
3536 int error;
3537
3538 (void) snprintf(snapname, sizeof (snapname), "%s@%llu", osname,
3539 (u_longlong_t)id);
3540
3541 error = dsl_destroy_snapshot(snapname, B_FALSE);
3542 if (error != 0 && error != ENOENT)
3543 fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error);
3544 return (B_TRUE);
3545 }
3546
3547 /* ARGSUSED */
3548 void
3549 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
3550 {
3551 ztest_ds_t *zdtmp;
3552 int iters;
3553 int error;
3554 objset_t *os, *os2;
3555 char name[ZFS_MAX_DATASET_NAME_LEN];
3556 zilog_t *zilog;
3557 int i;
3558
3559 zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
3560
3561 (void) rw_rdlock(&ztest_name_lock);
3562
3563 (void) snprintf(name, sizeof (name), "%s/temp_%llu",
3564 ztest_opts.zo_pool, (u_longlong_t)id);
3565
3566 /*
3567 * If this dataset exists from a previous run, process its replay log
3568 * half of the time. If we don't replay it, then dsl_destroy_head()
3569 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
3570 */
3571 if (ztest_random(2) == 0 &&
3572 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) {
3573 ztest_zd_init(zdtmp, NULL, os);
3574 zil_replay(os, zdtmp, ztest_replay_vector);
3575 ztest_zd_fini(zdtmp);
3576 dmu_objset_disown(os, FTAG);
3577 }
3578
3579 /*
3580 * There may be an old instance of the dataset we're about to
3581 * create lying around from a previous run. If so, destroy it
3582 * and all of its snapshots.
3583 */
3584 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
3585 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
3586
3587 /*
3588 * Verify that the destroyed dataset is no longer in the namespace.
3589 */
3590 VERIFY3U(ENOENT, ==, dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
3591 FTAG, &os));
3592
3593 /*
3594 * Verify that we can create a new dataset.
3595 */
3596 error = ztest_dataset_create(name);
3597 if (error) {
3598 if (error == ENOSPC) {
3599 ztest_record_enospc(FTAG);
3600 goto out;
3601 }
3602 fatal(0, "dmu_objset_create(%s) = %d", name, error);
3603 }
3604
3605 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os));
3606
3607 ztest_zd_init(zdtmp, NULL, os);
3608
3609 /*
3610 * Open the intent log for it.
3611 */
3612 zilog = zil_open(os, ztest_get_data);
3613
3614 /*
3615 * Put some objects in there, do a little I/O to them,
3616 * and randomly take a couple of snapshots along the way.
3617 */
3618 iters = ztest_random(5);
3619 for (i = 0; i < iters; i++) {
3620 ztest_dmu_object_alloc_free(zdtmp, id);
3621 if (ztest_random(iters) == 0)
3622 (void) ztest_snapshot_create(name, i);
3623 }
3624
3625 /*
3626 * Verify that we cannot create an existing dataset.
3627 */
3628 VERIFY3U(EEXIST, ==,
3629 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL));
3630
3631 /*
3632 * Verify that we can hold an objset that is also owned.
3633 */
3634 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2));
3635 dmu_objset_rele(os2, FTAG);
3636
3637 /*
3638 * Verify that we cannot own an objset that is already owned.
3639 */
3640 VERIFY3U(EBUSY, ==,
3641 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2));
3642
3643 zil_close(zilog);
3644 dmu_objset_disown(os, FTAG);
3645 ztest_zd_fini(zdtmp);
3646 out:
3647 (void) rw_unlock(&ztest_name_lock);
3648
3649 umem_free(zdtmp, sizeof (ztest_ds_t));
3650 }
3651
3652 /*
3653 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
3654 */
3655 void
3656 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
3657 {
3658 (void) rw_rdlock(&ztest_name_lock);
3659 (void) ztest_snapshot_destroy(zd->zd_name, id);
3660 (void) ztest_snapshot_create(zd->zd_name, id);
3661 (void) rw_unlock(&ztest_name_lock);
3662 }
3663
3664 /*
3665 * Cleanup non-standard snapshots and clones.
3666 */
3667 void
3668 ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
3669 {
3670 char *snap1name;
3671 char *clone1name;
3672 char *snap2name;
3673 char *clone2name;
3674 char *snap3name;
3675 int error;
3676
3677 snap1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
3678 clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
3679 snap2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
3680 clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
3681 snap3name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
3682
3683 (void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN,
3684 "%s@s1_%llu", osname, (u_longlong_t)id);
3685 (void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN,
3686 "%s/c1_%llu", osname, (u_longlong_t)id);
3687 (void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN,
3688 "%s@s2_%llu", clone1name, (u_longlong_t)id);
3689 (void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN,
3690 "%s/c2_%llu", osname, (u_longlong_t)id);
3691 (void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN,
3692 "%s@s3_%llu", clone1name, (u_longlong_t)id);
3693
3694 error = dsl_destroy_head(clone2name);
3695 if (error && error != ENOENT)
3696 fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error);
3697 error = dsl_destroy_snapshot(snap3name, B_FALSE);
3698 if (error && error != ENOENT)
3699 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error);
3700 error = dsl_destroy_snapshot(snap2name, B_FALSE);
3701 if (error && error != ENOENT)
3702 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error);
3703 error = dsl_destroy_head(clone1name);
3704 if (error && error != ENOENT)
3705 fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error);
3706 error = dsl_destroy_snapshot(snap1name, B_FALSE);
3707 if (error && error != ENOENT)
3708 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error);
3709
3710 umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
3711 umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
3712 umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
3713 umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
3714 umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
3715 }
3716
3717 /*
3718 * Verify dsl_dataset_promote handles EBUSY
3719 */
3720 void
3721 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
3722 {
3723 objset_t *os;
3724 char *snap1name;
3725 char *clone1name;
3726 char *snap2name;
3727 char *clone2name;
3728 char *snap3name;
3729 char *osname = zd->zd_name;
3730 int error;
3731
3732 snap1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
3733 clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
3734 snap2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
3735 clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
3736 snap3name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
3737
3738 (void) rw_rdlock(&ztest_name_lock);
3739
3740 ztest_dsl_dataset_cleanup(osname, id);
3741
3742 (void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN,
3743 "%s@s1_%llu", osname, (u_longlong_t)id);
3744 (void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN,
3745 "%s/c1_%llu", osname, (u_longlong_t)id);
3746 (void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN,
3747 "%s@s2_%llu", clone1name, (u_longlong_t)id);
3748 (void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN,
3749 "%s/c2_%llu", osname, (u_longlong_t)id);
3750 (void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN,
3751 "%s@s3_%llu", clone1name, (u_longlong_t)id);
3752
3753 error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1);
3754 if (error && error != EEXIST) {
3755 if (error == ENOSPC) {
3756 ztest_record_enospc(FTAG);
3757 goto out;
3758 }
3759 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error);
3760 }
3761
3762 error = dmu_objset_clone(clone1name, snap1name);
3763 if (error) {
3764 if (error == ENOSPC) {
3765 ztest_record_enospc(FTAG);
3766 goto out;
3767 }
3768 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error);
3769 }
3770
3771 error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1);
3772 if (error && error != EEXIST) {
3773 if (error == ENOSPC) {
3774 ztest_record_enospc(FTAG);
3775 goto out;
3776 }
3777 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error);
3778 }
3779
3780 error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1);
3781 if (error && error != EEXIST) {
3782 if (error == ENOSPC) {
3783 ztest_record_enospc(FTAG);
3784 goto out;
3785 }
3786 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error);
3787 }
3788
3789 error = dmu_objset_clone(clone2name, snap3name);
3790 if (error) {
3791 if (error == ENOSPC) {
3792 ztest_record_enospc(FTAG);
3793 goto out;
3794 }
3795 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error);
3796 }
3797
3798 error = dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, FTAG, &os);
3799 if (error)
3800 fatal(0, "dmu_objset_own(%s) = %d", snap2name, error);
3801 error = dsl_dataset_promote(clone2name, NULL);
3802 if (error == ENOSPC) {
3803 dmu_objset_disown(os, FTAG);
3804 ztest_record_enospc(FTAG);
3805 goto out;
3806 }
3807 if (error != EBUSY)
3808 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name,
3809 error);
3810 dmu_objset_disown(os, FTAG);
3811
3812 out:
3813 ztest_dsl_dataset_cleanup(osname, id);
3814
3815 (void) rw_unlock(&ztest_name_lock);
3816
3817 umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
3818 umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
3819 umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
3820 umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
3821 umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
3822 }
3823
3824 #undef OD_ARRAY_SIZE
3825 #define OD_ARRAY_SIZE 4
3826
3827 /*
3828 * Verify that dmu_object_{alloc,free} work as expected.
3829 */
3830 void
3831 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
3832 {
3833 ztest_od_t *od;
3834 int batchsize;
3835 int size;
3836 int b;
3837
3838 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
3839 od = umem_alloc(size, UMEM_NOFAIL);
3840 batchsize = OD_ARRAY_SIZE;
3841
3842 for (b = 0; b < batchsize; b++)
3843 ztest_od_init(od + b, id, FTAG, b, DMU_OT_UINT64_OTHER,
3844 0, 0, 0);
3845
3846 /*
3847 * Destroy the previous batch of objects, create a new batch,
3848 * and do some I/O on the new objects.
3849 */
3850 if (ztest_object_init(zd, od, size, B_TRUE) != 0)
3851 return;
3852
3853 while (ztest_random(4 * batchsize) != 0)
3854 ztest_io(zd, od[ztest_random(batchsize)].od_object,
3855 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
3856
3857 umem_free(od, size);
3858 }
3859
3860 #undef OD_ARRAY_SIZE
3861 #define OD_ARRAY_SIZE 2
3862
3863 /*
3864 * Verify that dmu_{read,write} work as expected.
3865 */
3866 void
3867 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
3868 {
3869 int size;
3870 ztest_od_t *od;
3871
3872 objset_t *os = zd->zd_os;
3873 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
3874 od = umem_alloc(size, UMEM_NOFAIL);
3875 dmu_tx_t *tx;
3876 int i, freeit, error;
3877 uint64_t n, s, txg;
3878 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
3879 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
3880 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
3881 uint64_t regions = 997;
3882 uint64_t stride = 123456789ULL;
3883 uint64_t width = 40;
3884 int free_percent = 5;
3885
3886 /*
3887 * This test uses two objects, packobj and bigobj, that are always
3888 * updated together (i.e. in the same tx) so that their contents are
3889 * in sync and can be compared. Their contents relate to each other
3890 * in a simple way: packobj is a dense array of 'bufwad' structures,
3891 * while bigobj is a sparse array of the same bufwads. Specifically,
3892 * for any index n, there are three bufwads that should be identical:
3893 *
3894 * packobj, at offset n * sizeof (bufwad_t)
3895 * bigobj, at the head of the nth chunk
3896 * bigobj, at the tail of the nth chunk
3897 *
3898 * The chunk size is arbitrary. It doesn't have to be a power of two,
3899 * and it doesn't have any relation to the object blocksize.
3900 * The only requirement is that it can hold at least two bufwads.
3901 *
3902 * Normally, we write the bufwad to each of these locations.
3903 * However, free_percent of the time we instead write zeroes to
3904 * packobj and perform a dmu_free_range() on bigobj. By comparing
3905 * bigobj to packobj, we can verify that the DMU is correctly
3906 * tracking which parts of an object are allocated and free,
3907 * and that the contents of the allocated blocks are correct.
3908 */
3909
3910 /*
3911 * Read the directory info. If it's the first time, set things up.
3912 */
3913 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, chunksize);
3914 ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
3915 chunksize);
3916
3917 if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
3918 umem_free(od, size);
3919 return;
3920 }
3921
3922 bigobj = od[0].od_object;
3923 packobj = od[1].od_object;
3924 chunksize = od[0].od_gen;
3925 ASSERT(chunksize == od[1].od_gen);
3926
3927 /*
3928 * Prefetch a random chunk of the big object.
3929 * Our aim here is to get some async reads in flight
3930 * for blocks that we may free below; the DMU should
3931 * handle this race correctly.
3932 */
3933 n = ztest_random(regions) * stride + ztest_random(width);
3934 s = 1 + ztest_random(2 * width - 1);
3935 dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize,
3936 ZIO_PRIORITY_SYNC_READ);
3937
3938 /*
3939 * Pick a random index and compute the offsets into packobj and bigobj.
3940 */
3941 n = ztest_random(regions) * stride + ztest_random(width);
3942 s = 1 + ztest_random(width - 1);
3943
3944 packoff = n * sizeof (bufwad_t);
3945 packsize = s * sizeof (bufwad_t);
3946
3947 bigoff = n * chunksize;
3948 bigsize = s * chunksize;
3949
3950 packbuf = umem_alloc(packsize, UMEM_NOFAIL);
3951 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
3952
3953 /*
3954 * free_percent of the time, free a range of bigobj rather than
3955 * overwriting it.
3956 */
3957 freeit = (ztest_random(100) < free_percent);
3958
3959 /*
3960 * Read the current contents of our objects.
3961 */
3962 error = dmu_read(os, packobj, packoff, packsize, packbuf,
3963 DMU_READ_PREFETCH);
3964 ASSERT0(error);
3965 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
3966 DMU_READ_PREFETCH);
3967 ASSERT0(error);
3968
3969 /*
3970 * Get a tx for the mods to both packobj and bigobj.
3971 */
3972 tx = dmu_tx_create(os);
3973
3974 dmu_tx_hold_write(tx, packobj, packoff, packsize);
3975
3976 if (freeit)
3977 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
3978 else
3979 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
3980
3981 /* This accounts for setting the checksum/compression. */
3982 dmu_tx_hold_bonus(tx, bigobj);
3983
3984 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3985 if (txg == 0) {
3986 umem_free(packbuf, packsize);
3987 umem_free(bigbuf, bigsize);
3988 umem_free(od, size);
3989 return;
3990 }
3991
3992 enum zio_checksum cksum;
3993 do {
3994 cksum = (enum zio_checksum)
3995 ztest_random_dsl_prop(ZFS_PROP_CHECKSUM);
3996 } while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS);
3997 dmu_object_set_checksum(os, bigobj, cksum, tx);
3998
3999 enum zio_compress comp;
4000 do {
4001 comp = (enum zio_compress)
4002 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION);
4003 } while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS);
4004 dmu_object_set_compress(os, bigobj, comp, tx);
4005
4006 /*
4007 * For each index from n to n + s, verify that the existing bufwad
4008 * in packobj matches the bufwads at the head and tail of the
4009 * corresponding chunk in bigobj. Then update all three bufwads
4010 * with the new values we want to write out.
4011 */
4012 for (i = 0; i < s; i++) {
4013 /* LINTED */
4014 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
4015 /* LINTED */
4016 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
4017 /* LINTED */
4018 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
4019
4020 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
4021 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
4022
4023 if (pack->bw_txg > txg)
4024 fatal(0, "future leak: got %llx, open txg is %llx",
4025 pack->bw_txg, txg);
4026
4027 if (pack->bw_data != 0 && pack->bw_index != n + i)
4028 fatal(0, "wrong index: got %llx, wanted %llx+%llx",
4029 pack->bw_index, n, i);
4030
4031 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
4032 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
4033
4034 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
4035 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
4036
4037 if (freeit) {
4038 bzero(pack, sizeof (bufwad_t));
4039 } else {
4040 pack->bw_index = n + i;
4041 pack->bw_txg = txg;
4042 pack->bw_data = 1 + ztest_random(-2ULL);
4043 }
4044 *bigH = *pack;
4045 *bigT = *pack;
4046 }
4047
4048 /*
4049 * We've verified all the old bufwads, and made new ones.
4050 * Now write them out.
4051 */
4052 dmu_write(os, packobj, packoff, packsize, packbuf, tx);
4053
4054 if (freeit) {
4055 if (ztest_opts.zo_verbose >= 7) {
4056 (void) printf("freeing offset %llx size %llx"
4057 " txg %llx\n",
4058 (u_longlong_t)bigoff,
4059 (u_longlong_t)bigsize,
4060 (u_longlong_t)txg);
4061 }
4062 VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx));
4063 } else {
4064 if (ztest_opts.zo_verbose >= 7) {
4065 (void) printf("writing offset %llx size %llx"
4066 " txg %llx\n",
4067 (u_longlong_t)bigoff,
4068 (u_longlong_t)bigsize,
4069 (u_longlong_t)txg);
4070 }
4071 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);
4072 }
4073
4074 dmu_tx_commit(tx);
4075
4076 /*
4077 * Sanity check the stuff we just wrote.
4078 */
4079 {
4080 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
4081 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
4082
4083 VERIFY(0 == dmu_read(os, packobj, packoff,
4084 packsize, packcheck, DMU_READ_PREFETCH));
4085 VERIFY(0 == dmu_read(os, bigobj, bigoff,
4086 bigsize, bigcheck, DMU_READ_PREFETCH));
4087
4088 ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
4089 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
4090
4091 umem_free(packcheck, packsize);
4092 umem_free(bigcheck, bigsize);
4093 }
4094
4095 umem_free(packbuf, packsize);
4096 umem_free(bigbuf, bigsize);
4097 umem_free(od, size);
4098 }
4099
4100 void
4101 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
4102 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
4103 {
4104 uint64_t i;
4105 bufwad_t *pack;
4106 bufwad_t *bigH;
4107 bufwad_t *bigT;
4108
4109 /*
4110 * For each index from n to n + s, verify that the existing bufwad
4111 * in packobj matches the bufwads at the head and tail of the
4112 * corresponding chunk in bigobj. Then update all three bufwads
4113 * with the new values we want to write out.
4114 */
4115 for (i = 0; i < s; i++) {
4116 /* LINTED */
4117 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
4118 /* LINTED */
4119 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
4120 /* LINTED */
4121 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
4122
4123 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
4124 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
4125
4126 if (pack->bw_txg > txg)
4127 fatal(0, "future leak: got %llx, open txg is %llx",
4128 pack->bw_txg, txg);
4129
4130 if (pack->bw_data != 0 && pack->bw_index != n + i)
4131 fatal(0, "wrong index: got %llx, wanted %llx+%llx",
4132 pack->bw_index, n, i);
4133
4134 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
4135 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
4136
4137 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
4138 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
4139
4140 pack->bw_index = n + i;
4141 pack->bw_txg = txg;
4142 pack->bw_data = 1 + ztest_random(-2ULL);
4143
4144 *bigH = *pack;
4145 *bigT = *pack;
4146 }
4147 }
4148
4149 #undef OD_ARRAY_SIZE
4150 #define OD_ARRAY_SIZE 2
4151
4152 void
4153 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
4154 {
4155 objset_t *os = zd->zd_os;
4156 ztest_od_t *od;
4157 dmu_tx_t *tx;
4158 uint64_t i;
4159 int error;
4160 int size;
4161 uint64_t n, s, txg;
4162 bufwad_t *packbuf, *bigbuf;
4163 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
4164 uint64_t blocksize = ztest_random_blocksize();
4165 uint64_t chunksize = blocksize;
4166 uint64_t regions = 997;
4167 uint64_t stride = 123456789ULL;
4168 uint64_t width = 9;
4169 dmu_buf_t *bonus_db;
4170 arc_buf_t **bigbuf_arcbufs;
4171 dmu_object_info_t doi;
4172
4173 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
4174 od = umem_alloc(size, UMEM_NOFAIL);
4175
4176 /*
4177 * This test uses two objects, packobj and bigobj, that are always
4178 * updated together (i.e. in the same tx) so that their contents are
4179 * in sync and can be compared. Their contents relate to each other
4180 * in a simple way: packobj is a dense array of 'bufwad' structures,
4181 * while bigobj is a sparse array of the same bufwads. Specifically,
4182 * for any index n, there are three bufwads that should be identical:
4183 *
4184 * packobj, at offset n * sizeof (bufwad_t)
4185 * bigobj, at the head of the nth chunk
4186 * bigobj, at the tail of the nth chunk
4187 *
4188 * The chunk size is set equal to bigobj block size so that
4189 * dmu_assign_arcbuf() can be tested for object updates.
4190 */
4191
4192 /*
4193 * Read the directory info. If it's the first time, set things up.
4194 */
4195 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
4196 ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
4197 chunksize);
4198
4199
4200 if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
4201 umem_free(od, size);
4202 return;
4203 }
4204
4205 bigobj = od[0].od_object;
4206 packobj = od[1].od_object;
4207 blocksize = od[0].od_blocksize;
4208 chunksize = blocksize;
4209 ASSERT(chunksize == od[1].od_gen);
4210
4211 VERIFY(dmu_object_info(os, bigobj, &doi) == 0);
4212 VERIFY(ISP2(doi.doi_data_block_size));
4213 VERIFY(chunksize == doi.doi_data_block_size);
4214 VERIFY(chunksize >= 2 * sizeof (bufwad_t));
4215
4216 /*
4217 * Pick a random index and compute the offsets into packobj and bigobj.
4218 */
4219 n = ztest_random(regions) * stride + ztest_random(width);
4220 s = 1 + ztest_random(width - 1);
4221
4222 packoff = n * sizeof (bufwad_t);
4223 packsize = s * sizeof (bufwad_t);
4224
4225 bigoff = n * chunksize;
4226 bigsize = s * chunksize;
4227
4228 packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
4229 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
4230
4231 VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
4232
4233 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
4234
4235 /*
4236 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
4237 * Iteration 1 test zcopy to already referenced dbufs.
4238 * Iteration 2 test zcopy to dirty dbuf in the same txg.
4239 * Iteration 3 test zcopy to dbuf dirty in previous txg.
4240 * Iteration 4 test zcopy when dbuf is no longer dirty.
4241 * Iteration 5 test zcopy when it can't be done.
4242 * Iteration 6 one more zcopy write.
4243 */
4244 for (i = 0; i < 7; i++) {
4245 uint64_t j;
4246 uint64_t off;
4247
4248 /*
4249 * In iteration 5 (i == 5) use arcbufs
4250 * that don't match bigobj blksz to test
4251 * dmu_assign_arcbuf() when it can't directly
4252 * assign an arcbuf to a dbuf.
4253 */
4254 for (j = 0; j < s; j++) {
4255 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
4256 bigbuf_arcbufs[j] =
4257 dmu_request_arcbuf(bonus_db, chunksize);
4258 } else {
4259 bigbuf_arcbufs[2 * j] =
4260 dmu_request_arcbuf(bonus_db, chunksize / 2);
4261 bigbuf_arcbufs[2 * j + 1] =
4262 dmu_request_arcbuf(bonus_db, chunksize / 2);
4263 }
4264 }
4265
4266 /*
4267 * Get a tx for the mods to both packobj and bigobj.
4268 */
4269 tx = dmu_tx_create(os);
4270
4271 dmu_tx_hold_write(tx, packobj, packoff, packsize);
4272 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
4273
4274 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4275 if (txg == 0) {
4276 umem_free(packbuf, packsize);
4277 umem_free(bigbuf, bigsize);
4278 for (j = 0; j < s; j++) {
4279 if (i != 5 ||
4280 chunksize < (SPA_MINBLOCKSIZE * 2)) {
4281 dmu_return_arcbuf(bigbuf_arcbufs[j]);
4282 } else {
4283 dmu_return_arcbuf(
4284 bigbuf_arcbufs[2 * j]);
4285 dmu_return_arcbuf(
4286 bigbuf_arcbufs[2 * j + 1]);
4287 }
4288 }
4289 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
4290 umem_free(od, size);
4291 dmu_buf_rele(bonus_db, FTAG);
4292 return;
4293 }
4294
4295 /*
4296 * 50% of the time don't read objects in the 1st iteration to
4297 * test dmu_assign_arcbuf() for the case when there're no
4298 * existing dbufs for the specified offsets.
4299 */
4300 if (i != 0 || ztest_random(2) != 0) {
4301 error = dmu_read(os, packobj, packoff,
4302 packsize, packbuf, DMU_READ_PREFETCH);
4303 ASSERT0(error);
4304 error = dmu_read(os, bigobj, bigoff, bigsize,
4305 bigbuf, DMU_READ_PREFETCH);
4306 ASSERT0(error);
4307 }
4308 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
4309 n, chunksize, txg);
4310
4311 /*
4312 * We've verified all the old bufwads, and made new ones.
4313 * Now write them out.
4314 */
4315 dmu_write(os, packobj, packoff, packsize, packbuf, tx);
4316 if (ztest_opts.zo_verbose >= 7) {
4317 (void) printf("writing offset %llx size %llx"
4318 " txg %llx\n",
4319 (u_longlong_t)bigoff,
4320 (u_longlong_t)bigsize,
4321 (u_longlong_t)txg);
4322 }
4323 for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
4324 dmu_buf_t *dbt;
4325 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
4326 bcopy((caddr_t)bigbuf + (off - bigoff),
4327 bigbuf_arcbufs[j]->b_data, chunksize);
4328 } else {
4329 bcopy((caddr_t)bigbuf + (off - bigoff),
4330 bigbuf_arcbufs[2 * j]->b_data,
4331 chunksize / 2);
4332 bcopy((caddr_t)bigbuf + (off - bigoff) +
4333 chunksize / 2,
4334 bigbuf_arcbufs[2 * j + 1]->b_data,
4335 chunksize / 2);
4336 }
4337
4338 if (i == 1) {
4339 VERIFY(dmu_buf_hold(os, bigobj, off,
4340 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0);
4341 }
4342 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
4343 dmu_assign_arcbuf(bonus_db, off,
4344 bigbuf_arcbufs[j], tx);
4345 } else {
4346 dmu_assign_arcbuf(bonus_db, off,
4347 bigbuf_arcbufs[2 * j], tx);
4348 dmu_assign_arcbuf(bonus_db,
4349 off + chunksize / 2,
4350 bigbuf_arcbufs[2 * j + 1], tx);
4351 }
4352 if (i == 1) {
4353 dmu_buf_rele(dbt, FTAG);
4354 }
4355 }
4356 dmu_tx_commit(tx);
4357
4358 /*
4359 * Sanity check the stuff we just wrote.
4360 */
4361 {
4362 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
4363 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
4364
4365 VERIFY(0 == dmu_read(os, packobj, packoff,
4366 packsize, packcheck, DMU_READ_PREFETCH));
4367 VERIFY(0 == dmu_read(os, bigobj, bigoff,
4368 bigsize, bigcheck, DMU_READ_PREFETCH));
4369
4370 ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
4371 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
4372
4373 umem_free(packcheck, packsize);
4374 umem_free(bigcheck, bigsize);
4375 }
4376 if (i == 2) {
4377 txg_wait_open(dmu_objset_pool(os), 0);
4378 } else if (i == 3) {
4379 txg_wait_synced(dmu_objset_pool(os), 0);
4380 }
4381 }
4382
4383 dmu_buf_rele(bonus_db, FTAG);
4384 umem_free(packbuf, packsize);
4385 umem_free(bigbuf, bigsize);
4386 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
4387 umem_free(od, size);
4388 }
4389
4390 /* ARGSUSED */
4391 void
4392 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
4393 {
4394 ztest_od_t *od;
4395
4396 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
4397 uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
4398 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4399
4400 /*
4401 * Have multiple threads write to large offsets in an object
4402 * to verify that parallel writes to an object -- even to the
4403 * same blocks within the object -- doesn't cause any trouble.
4404 */
4405 ztest_od_init(od, ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
4406
4407 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0)
4408 return;
4409
4410 while (ztest_random(10) != 0)
4411 ztest_io(zd, od->od_object, offset);
4412
4413 umem_free(od, sizeof (ztest_od_t));
4414 }
4415
4416 void
4417 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
4418 {
4419 ztest_od_t *od;
4420 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
4421 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4422 uint64_t count = ztest_random(20) + 1;
4423 uint64_t blocksize = ztest_random_blocksize();
4424 void *data;
4425
4426 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
4427
4428 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
4429
4430 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
4431 !ztest_random(2)) != 0) {
4432 umem_free(od, sizeof (ztest_od_t));
4433 return;
4434 }
4435
4436 if (ztest_truncate(zd, od->od_object, offset, count * blocksize) != 0) {
4437 umem_free(od, sizeof (ztest_od_t));
4438 return;
4439 }
4440
4441 ztest_prealloc(zd, od->od_object, offset, count * blocksize);
4442
4443 data = umem_zalloc(blocksize, UMEM_NOFAIL);
4444
4445 while (ztest_random(count) != 0) {
4446 uint64_t randoff = offset + (ztest_random(count) * blocksize);
4447 if (ztest_write(zd, od->od_object, randoff, blocksize,
4448 data) != 0)
4449 break;
4450 while (ztest_random(4) != 0)
4451 ztest_io(zd, od->od_object, randoff);
4452 }
4453
4454 umem_free(data, blocksize);
4455 umem_free(od, sizeof (ztest_od_t));
4456 }
4457
4458 /*
4459 * Verify that zap_{create,destroy,add,remove,update} work as expected.
4460 */
4461 #define ZTEST_ZAP_MIN_INTS 1
4462 #define ZTEST_ZAP_MAX_INTS 4
4463 #define ZTEST_ZAP_MAX_PROPS 1000
4464
4465 void
4466 ztest_zap(ztest_ds_t *zd, uint64_t id)
4467 {
4468 objset_t *os = zd->zd_os;
4469 ztest_od_t *od;
4470 uint64_t object;
4471 uint64_t txg, last_txg;
4472 uint64_t value[ZTEST_ZAP_MAX_INTS];
4473 uint64_t zl_ints, zl_intsize, prop;
4474 int i, ints;
4475 dmu_tx_t *tx;
4476 char propname[100], txgname[100];
4477 int error;
4478 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
4479
4480 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
4481 ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
4482
4483 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
4484 !ztest_random(2)) != 0)
4485 goto out;
4486
4487 object = od->od_object;
4488
4489 /*
4490 * Generate a known hash collision, and verify that
4491 * we can lookup and remove both entries.
4492 */
4493 tx = dmu_tx_create(os);
4494 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4495 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4496 if (txg == 0)
4497 goto out;
4498 for (i = 0; i < 2; i++) {
4499 value[i] = i;
4500 VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t),
4501 1, &value[i], tx));
4502 }
4503 for (i = 0; i < 2; i++) {
4504 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
4505 sizeof (uint64_t), 1, &value[i], tx));
4506 VERIFY3U(0, ==,
4507 zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
4508 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4509 ASSERT3U(zl_ints, ==, 1);
4510 }
4511 for (i = 0; i < 2; i++) {
4512 VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx));
4513 }
4514 dmu_tx_commit(tx);
4515
4516 /*
4517 * Generate a buch of random entries.
4518 */
4519 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
4520
4521 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
4522 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
4523 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
4524 bzero(value, sizeof (value));
4525 last_txg = 0;
4526
4527 /*
4528 * If these zap entries already exist, validate their contents.
4529 */
4530 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
4531 if (error == 0) {
4532 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4533 ASSERT3U(zl_ints, ==, 1);
4534
4535 VERIFY(zap_lookup(os, object, txgname, zl_intsize,
4536 zl_ints, &last_txg) == 0);
4537
4538 VERIFY(zap_length(os, object, propname, &zl_intsize,
4539 &zl_ints) == 0);
4540
4541 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4542 ASSERT3U(zl_ints, ==, ints);
4543
4544 VERIFY(zap_lookup(os, object, propname, zl_intsize,
4545 zl_ints, value) == 0);
4546
4547 for (i = 0; i < ints; i++) {
4548 ASSERT3U(value[i], ==, last_txg + object + i);
4549 }
4550 } else {
4551 ASSERT3U(error, ==, ENOENT);
4552 }
4553
4554 /*
4555 * Atomically update two entries in our zap object.
4556 * The first is named txg_%llu, and contains the txg
4557 * in which the property was last updated. The second
4558 * is named prop_%llu, and the nth element of its value
4559 * should be txg + object + n.
4560 */
4561 tx = dmu_tx_create(os);
4562 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4563 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4564 if (txg == 0)
4565 goto out;
4566
4567 if (last_txg > txg)
4568 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg);
4569
4570 for (i = 0; i < ints; i++)
4571 value[i] = txg + object + i;
4572
4573 VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t),
4574 1, &txg, tx));
4575 VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t),
4576 ints, value, tx));
4577
4578 dmu_tx_commit(tx);
4579
4580 /*
4581 * Remove a random pair of entries.
4582 */
4583 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
4584 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
4585 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
4586
4587 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
4588
4589 if (error == ENOENT)
4590 goto out;
4591
4592 ASSERT0(error);
4593
4594 tx = dmu_tx_create(os);
4595 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4596 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4597 if (txg == 0)
4598 goto out;
4599 VERIFY3U(0, ==, zap_remove(os, object, txgname, tx));
4600 VERIFY3U(0, ==, zap_remove(os, object, propname, tx));
4601 dmu_tx_commit(tx);
4602 out:
4603 umem_free(od, sizeof (ztest_od_t));
4604 }
4605
4606 /*
4607 * Testcase to test the upgrading of a microzap to fatzap.
4608 */
4609 void
4610 ztest_fzap(ztest_ds_t *zd, uint64_t id)
4611 {
4612 objset_t *os = zd->zd_os;
4613 ztest_od_t *od;
4614 uint64_t object, txg;
4615 int i;
4616
4617 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
4618 ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
4619
4620 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
4621 !ztest_random(2)) != 0)
4622 goto out;
4623 object = od->od_object;
4624
4625 /*
4626 * Add entries to this ZAP and make sure it spills over
4627 * and gets upgraded to a fatzap. Also, since we are adding
4628 * 2050 entries we should see ptrtbl growth and leaf-block split.
4629 */
4630 for (i = 0; i < 2050; i++) {
4631 char name[ZFS_MAX_DATASET_NAME_LEN];
4632 uint64_t value = i;
4633 dmu_tx_t *tx;
4634 int error;
4635
4636 (void) snprintf(name, sizeof (name), "fzap-%llu-%llu",
4637 (u_longlong_t)id, (u_longlong_t)value);
4638
4639 tx = dmu_tx_create(os);
4640 dmu_tx_hold_zap(tx, object, B_TRUE, name);
4641 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4642 if (txg == 0)
4643 goto out;
4644 error = zap_add(os, object, name, sizeof (uint64_t), 1,
4645 &value, tx);
4646 ASSERT(error == 0 || error == EEXIST);
4647 dmu_tx_commit(tx);
4648 }
4649 out:
4650 umem_free(od, sizeof (ztest_od_t));
4651 }
4652
4653 /* ARGSUSED */
4654 void
4655 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
4656 {
4657 objset_t *os = zd->zd_os;
4658 ztest_od_t *od;
4659 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
4660 dmu_tx_t *tx;
4661 int i, namelen, error;
4662 int micro = ztest_random(2);
4663 char name[20], string_value[20];
4664 void *data;
4665
4666 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
4667 ztest_od_init(od, ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0, 0);
4668
4669 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
4670 umem_free(od, sizeof (ztest_od_t));
4671 return;
4672 }
4673
4674 object = od->od_object;
4675
4676 /*
4677 * Generate a random name of the form 'xxx.....' where each
4678 * x is a random printable character and the dots are dots.
4679 * There are 94 such characters, and the name length goes from
4680 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
4681 */
4682 namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
4683
4684 for (i = 0; i < 3; i++)
4685 name[i] = '!' + ztest_random('~' - '!' + 1);
4686 for (; i < namelen - 1; i++)
4687 name[i] = '.';
4688 name[i] = '\0';
4689
4690 if ((namelen & 1) || micro) {
4691 wsize = sizeof (txg);
4692 wc = 1;
4693 data = &txg;
4694 } else {
4695 wsize = 1;
4696 wc = namelen;
4697 data = string_value;
4698 }
4699
4700 count = -1ULL;
4701 VERIFY0(zap_count(os, object, &count));
4702 ASSERT(count != -1ULL);
4703
4704 /*
4705 * Select an operation: length, lookup, add, update, remove.
4706 */
4707 i = ztest_random(5);
4708
4709 if (i >= 2) {
4710 tx = dmu_tx_create(os);
4711 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4712 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4713 if (txg == 0) {
4714 umem_free(od, sizeof (ztest_od_t));
4715 return;
4716 }
4717 bcopy(name, string_value, namelen);
4718 } else {
4719 tx = NULL;
4720 txg = 0;
4721 bzero(string_value, namelen);
4722 }
4723
4724 switch (i) {
4725
4726 case 0:
4727 error = zap_length(os, object, name, &zl_wsize, &zl_wc);
4728 if (error == 0) {
4729 ASSERT3U(wsize, ==, zl_wsize);
4730 ASSERT3U(wc, ==, zl_wc);
4731 } else {
4732 ASSERT3U(error, ==, ENOENT);
4733 }
4734 break;
4735
4736 case 1:
4737 error = zap_lookup(os, object, name, wsize, wc, data);
4738 if (error == 0) {
4739 if (data == string_value &&
4740 bcmp(name, data, namelen) != 0)
4741 fatal(0, "name '%s' != val '%s' len %d",
4742 name, data, namelen);
4743 } else {
4744 ASSERT3U(error, ==, ENOENT);
4745 }
4746 break;
4747
4748 case 2:
4749 error = zap_add(os, object, name, wsize, wc, data, tx);
4750 ASSERT(error == 0 || error == EEXIST);
4751 break;
4752
4753 case 3:
4754 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0);
4755 break;
4756
4757 case 4:
4758 error = zap_remove(os, object, name, tx);
4759 ASSERT(error == 0 || error == ENOENT);
4760 break;
4761 }
4762
4763 if (tx != NULL)
4764 dmu_tx_commit(tx);
4765
4766 umem_free(od, sizeof (ztest_od_t));
4767 }
4768
4769 /*
4770 * Commit callback data.
4771 */
4772 typedef struct ztest_cb_data {
4773 list_node_t zcd_node;
4774 uint64_t zcd_txg;
4775 int zcd_expected_err;
4776 boolean_t zcd_added;
4777 boolean_t zcd_called;
4778 spa_t *zcd_spa;
4779 } ztest_cb_data_t;
4780
4781 /* This is the actual commit callback function */
4782 static void
4783 ztest_commit_callback(void *arg, int error)
4784 {
4785 ztest_cb_data_t *data = arg;
4786 uint64_t synced_txg;
4787
4788 VERIFY(data != NULL);
4789 VERIFY3S(data->zcd_expected_err, ==, error);
4790 VERIFY(!data->zcd_called);
4791
4792 synced_txg = spa_last_synced_txg(data->zcd_spa);
4793 if (data->zcd_txg > synced_txg)
4794 fatal(0, "commit callback of txg %" PRIu64 " called prematurely"
4795 ", last synced txg = %" PRIu64 "\n", data->zcd_txg,
4796 synced_txg);
4797
4798 data->zcd_called = B_TRUE;
4799
4800 if (error == ECANCELED) {
4801 ASSERT0(data->zcd_txg);
4802 ASSERT(!data->zcd_added);
4803
4804 /*
4805 * The private callback data should be destroyed here, but
4806 * since we are going to check the zcd_called field after
4807 * dmu_tx_abort(), we will destroy it there.
4808 */
4809 return;
4810 }
4811
4812 ASSERT(data->zcd_added);
4813 ASSERT3U(data->zcd_txg, !=, 0);
4814
4815 (void) mutex_enter(&zcl.zcl_callbacks_lock);
4816
4817 /* See if this cb was called more quickly */
4818 if ((synced_txg - data->zcd_txg) < zc_min_txg_delay)
4819 zc_min_txg_delay = synced_txg - data->zcd_txg;
4820
4821 /* Remove our callback from the list */
4822 list_remove(&zcl.zcl_callbacks, data);
4823
4824 (void) mutex_exit(&zcl.zcl_callbacks_lock);
4825
4826 umem_free(data, sizeof (ztest_cb_data_t));
4827 }
4828
4829 /* Allocate and initialize callback data structure */
4830 static ztest_cb_data_t *
4831 ztest_create_cb_data(objset_t *os, uint64_t txg)
4832 {
4833 ztest_cb_data_t *cb_data;
4834
4835 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
4836
4837 cb_data->zcd_txg = txg;
4838 cb_data->zcd_spa = dmu_objset_spa(os);
4839 list_link_init(&cb_data->zcd_node);
4840
4841 return (cb_data);
4842 }
4843
4844 /*
4845 * Commit callback test.
4846 */
4847 void
4848 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
4849 {
4850 objset_t *os = zd->zd_os;
4851 ztest_od_t *od;
4852 dmu_tx_t *tx;
4853 ztest_cb_data_t *cb_data[3], *tmp_cb;
4854 uint64_t old_txg, txg;
4855 int i, error = 0;
4856
4857 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
4858 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
4859
4860 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
4861 umem_free(od, sizeof (ztest_od_t));
4862 return;
4863 }
4864
4865 tx = dmu_tx_create(os);
4866
4867 cb_data[0] = ztest_create_cb_data(os, 0);
4868 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
4869
4870 dmu_tx_hold_write(tx, od->od_object, 0, sizeof (uint64_t));
4871
4872 /* Every once in a while, abort the transaction on purpose */
4873 if (ztest_random(100) == 0)
4874 error = -1;
4875
4876 if (!error)
4877 error = dmu_tx_assign(tx, TXG_NOWAIT);
4878
4879 txg = error ? 0 : dmu_tx_get_txg(tx);
4880
4881 cb_data[0]->zcd_txg = txg;
4882 cb_data[1] = ztest_create_cb_data(os, txg);
4883 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
4884
4885 if (error) {
4886 /*
4887 * It's not a strict requirement to call the registered
4888 * callbacks from inside dmu_tx_abort(), but that's what
4889 * it's supposed to happen in the current implementation
4890 * so we will check for that.
4891 */
4892 for (i = 0; i < 2; i++) {
4893 cb_data[i]->zcd_expected_err = ECANCELED;
4894 VERIFY(!cb_data[i]->zcd_called);
4895 }
4896
4897 dmu_tx_abort(tx);
4898
4899 for (i = 0; i < 2; i++) {
4900 VERIFY(cb_data[i]->zcd_called);
4901 umem_free(cb_data[i], sizeof (ztest_cb_data_t));
4902 }
4903
4904 umem_free(od, sizeof (ztest_od_t));
4905 return;
4906 }
4907
4908 cb_data[2] = ztest_create_cb_data(os, txg);
4909 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
4910
4911 /*
4912 * Read existing data to make sure there isn't a future leak.
4913 */
4914 VERIFY(0 == dmu_read(os, od->od_object, 0, sizeof (uint64_t),
4915 &old_txg, DMU_READ_PREFETCH));
4916
4917 if (old_txg > txg)
4918 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64,
4919 old_txg, txg);
4920
4921 dmu_write(os, od->od_object, 0, sizeof (uint64_t), &txg, tx);
4922
4923 (void) mutex_enter(&zcl.zcl_callbacks_lock);
4924
4925 /*
4926 * Since commit callbacks don't have any ordering requirement and since
4927 * it is theoretically possible for a commit callback to be called
4928 * after an arbitrary amount of time has elapsed since its txg has been
4929 * synced, it is difficult to reliably determine whether a commit
4930 * callback hasn't been called due to high load or due to a flawed
4931 * implementation.
4932 *
4933 * In practice, we will assume that if after a certain number of txgs a
4934 * commit callback hasn't been called, then most likely there's an
4935 * implementation bug..
4936 */
4937 tmp_cb = list_head(&zcl.zcl_callbacks);
4938 if (tmp_cb != NULL &&
4939 tmp_cb->zcd_txg + ZTEST_COMMIT_CB_THRESH < txg) {
4940 fatal(0, "Commit callback threshold exceeded, oldest txg: %"
4941 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg);
4942 }
4943
4944 /*
4945 * Let's find the place to insert our callbacks.
4946 *
4947 * Even though the list is ordered by txg, it is possible for the
4948 * insertion point to not be the end because our txg may already be
4949 * quiescing at this point and other callbacks in the open txg
4950 * (from other objsets) may have sneaked in.
4951 */
4952 tmp_cb = list_tail(&zcl.zcl_callbacks);
4953 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
4954 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
4955
4956 /* Add the 3 callbacks to the list */
4957 for (i = 0; i < 3; i++) {
4958 if (tmp_cb == NULL)
4959 list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
4960 else
4961 list_insert_after(&zcl.zcl_callbacks, tmp_cb,
4962 cb_data[i]);
4963
4964 cb_data[i]->zcd_added = B_TRUE;
4965 VERIFY(!cb_data[i]->zcd_called);
4966
4967 tmp_cb = cb_data[i];
4968 }
4969
4970 zc_cb_counter += 3;
4971
4972 (void) mutex_exit(&zcl.zcl_callbacks_lock);
4973
4974 dmu_tx_commit(tx);
4975
4976 umem_free(od, sizeof (ztest_od_t));
4977 }
4978
4979 /*
4980 * Visit each object in the dataset. Verify that its properties
4981 * are consistent what was stored in the block tag when it was created,
4982 * and that its unused bonus buffer space has not been overwritten.
4983 */
4984 void
4985 ztest_verify_dnode_bt(ztest_ds_t *zd, uint64_t id)
4986 {
4987 objset_t *os = zd->zd_os;
4988 uint64_t obj;
4989 int err = 0;
4990
4991 for (obj = 0; err == 0; err = dmu_object_next(os, &obj, FALSE, 0)) {
4992 ztest_block_tag_t *bt = NULL;
4993 dmu_object_info_t doi;
4994 dmu_buf_t *db;
4995
4996 if (dmu_bonus_hold(os, obj, FTAG, &db) != 0)
4997 continue;
4998
4999 dmu_object_info_from_db(db, &doi);
5000 if (doi.doi_bonus_size >= sizeof (*bt))
5001 bt = ztest_bt_bonus(db);
5002
5003 if (bt && bt->bt_magic == BT_MAGIC) {
5004 ztest_bt_verify(bt, os, obj, doi.doi_dnodesize,
5005 bt->bt_offset, bt->bt_gen, bt->bt_txg,
5006 bt->bt_crtxg);
5007 ztest_verify_unused_bonus(db, bt, obj, os, bt->bt_gen);
5008 }
5009
5010 dmu_buf_rele(db, FTAG);
5011 }
5012 }
5013
5014 /* ARGSUSED */
5015 void
5016 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
5017 {
5018 zfs_prop_t proplist[] = {
5019 ZFS_PROP_CHECKSUM,
5020 ZFS_PROP_COMPRESSION,
5021 ZFS_PROP_COPIES,
5022 ZFS_PROP_DEDUP
5023 };
5024 int p;
5025
5026 (void) rw_rdlock(&ztest_name_lock);
5027
5028 for (p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++)
5029 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
5030 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
5031
5032 VERIFY0(ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_RECORDSIZE,
5033 ztest_random_blocksize(), (int)ztest_random(2)));
5034
5035 (void) rw_unlock(&ztest_name_lock);
5036 }
5037
5038 /* ARGSUSED */
5039 void
5040 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
5041 {
5042 nvlist_t *props = NULL;
5043
5044 (void) rw_rdlock(&ztest_name_lock);
5045
5046 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO,
5047 ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN));
5048
5049 VERIFY0(spa_prop_get(ztest_spa, &props));
5050
5051 if (ztest_opts.zo_verbose >= 6)
5052 dump_nvlist(props, 4);
5053
5054 nvlist_free(props);
5055
5056 (void) rw_unlock(&ztest_name_lock);
5057 }
5058
5059 static int
5060 user_release_one(const char *snapname, const char *holdname)
5061 {
5062 nvlist_t *snaps, *holds;
5063 int error;
5064
5065 snaps = fnvlist_alloc();
5066 holds = fnvlist_alloc();
5067 fnvlist_add_boolean(holds, holdname);
5068 fnvlist_add_nvlist(snaps, snapname, holds);
5069 fnvlist_free(holds);
5070 error = dsl_dataset_user_release(snaps, NULL);
5071 fnvlist_free(snaps);
5072 return (error);
5073 }
5074
5075 /*
5076 * Test snapshot hold/release and deferred destroy.
5077 */
5078 void
5079 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
5080 {
5081 int error;
5082 objset_t *os = zd->zd_os;
5083 objset_t *origin;
5084 char snapname[100];
5085 char fullname[100];
5086 char clonename[100];
5087 char tag[100];
5088 char osname[ZFS_MAX_DATASET_NAME_LEN];
5089 nvlist_t *holds;
5090
5091 (void) rw_rdlock(&ztest_name_lock);
5092
5093 dmu_objset_name(os, osname);
5094
5095 (void) snprintf(snapname, sizeof (snapname), "sh1_%llu",
5096 (u_longlong_t)id);
5097 (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname);
5098 (void) snprintf(clonename, sizeof (clonename),
5099 "%s/ch1_%llu", osname, (u_longlong_t)id);
5100 (void) snprintf(tag, sizeof (tag), "tag_%llu", (u_longlong_t)id);
5101
5102 /*
5103 * Clean up from any previous run.
5104 */
5105 error = dsl_destroy_head(clonename);
5106 if (error != ENOENT)
5107 ASSERT0(error);
5108 error = user_release_one(fullname, tag);
5109 if (error != ESRCH && error != ENOENT)
5110 ASSERT0(error);
5111 error = dsl_destroy_snapshot(fullname, B_FALSE);
5112 if (error != ENOENT)
5113 ASSERT0(error);
5114
5115 /*
5116 * Create snapshot, clone it, mark snap for deferred destroy,
5117 * destroy clone, verify snap was also destroyed.
5118 */
5119 error = dmu_objset_snapshot_one(osname, snapname);
5120 if (error) {
5121 if (error == ENOSPC) {
5122 ztest_record_enospc("dmu_objset_snapshot");
5123 goto out;
5124 }
5125 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
5126 }
5127
5128 error = dmu_objset_clone(clonename, fullname);
5129 if (error) {
5130 if (error == ENOSPC) {
5131 ztest_record_enospc("dmu_objset_clone");
5132 goto out;
5133 }
5134 fatal(0, "dmu_objset_clone(%s) = %d", clonename, error);
5135 }
5136
5137 error = dsl_destroy_snapshot(fullname, B_TRUE);
5138 if (error) {
5139 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
5140 fullname, error);
5141 }
5142
5143 error = dsl_destroy_head(clonename);
5144 if (error)
5145 fatal(0, "dsl_destroy_head(%s) = %d", clonename, error);
5146
5147 error = dmu_objset_hold(fullname, FTAG, &origin);
5148 if (error != ENOENT)
5149 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error);
5150
5151 /*
5152 * Create snapshot, add temporary hold, verify that we can't
5153 * destroy a held snapshot, mark for deferred destroy,
5154 * release hold, verify snapshot was destroyed.
5155 */
5156 error = dmu_objset_snapshot_one(osname, snapname);
5157 if (error) {
5158 if (error == ENOSPC) {
5159 ztest_record_enospc("dmu_objset_snapshot");
5160 goto out;
5161 }
5162 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
5163 }
5164
5165 holds = fnvlist_alloc();
5166 fnvlist_add_string(holds, fullname, tag);
5167 error = dsl_dataset_user_hold(holds, 0, NULL);
5168 fnvlist_free(holds);
5169
5170 if (error == ENOSPC) {
5171 ztest_record_enospc("dsl_dataset_user_hold");
5172 goto out;
5173 } else if (error) {
5174 fatal(0, "dsl_dataset_user_hold(%s, %s) = %u",
5175 fullname, tag, error);
5176 }
5177
5178 error = dsl_destroy_snapshot(fullname, B_FALSE);
5179 if (error != EBUSY) {
5180 fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
5181 fullname, error);
5182 }
5183
5184 error = dsl_destroy_snapshot(fullname, B_TRUE);
5185 if (error) {
5186 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
5187 fullname, error);
5188 }
5189
5190 error = user_release_one(fullname, tag);
5191 if (error)
5192 fatal(0, "user_release_one(%s, %s) = %d", fullname, tag, error);
5193
5194 VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT);
5195
5196 out:
5197 (void) rw_unlock(&ztest_name_lock);
5198 }
5199
5200 /*
5201 * Inject random faults into the on-disk data.
5202 */
5203 /* ARGSUSED */
5204 void
5205 ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
5206 {
5207 ztest_shared_t *zs = ztest_shared;
5208 spa_t *spa = ztest_spa;
5209 int fd;
5210 uint64_t offset;
5211 uint64_t leaves;
5212 uint64_t bad = 0x1990c0ffeedecadeull;
5213 uint64_t top, leaf;
5214 char *path0;
5215 char *pathrand;
5216 size_t fsize;
5217 int bshift = SPA_MAXBLOCKSHIFT + 2;
5218 int iters = 1000;
5219 int maxfaults;
5220 int mirror_save;
5221 vdev_t *vd0 = NULL;
5222 uint64_t guid0 = 0;
5223 boolean_t islog = B_FALSE;
5224
5225 path0 = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
5226 pathrand = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
5227
5228 mutex_enter(&ztest_vdev_lock);
5229 maxfaults = MAXFAULTS();
5230 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
5231 mirror_save = zs->zs_mirrors;
5232 mutex_exit(&ztest_vdev_lock);
5233
5234 ASSERT(leaves >= 1);
5235
5236 /*
5237 * Grab the name lock as reader. There are some operations
5238 * which don't like to have their vdevs changed while
5239 * they are in progress (i.e. spa_change_guid). Those
5240 * operations will have grabbed the name lock as writer.
5241 */
5242 (void) rw_rdlock(&ztest_name_lock);
5243
5244 /*
5245 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
5246 */
5247 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5248
5249 if (ztest_random(2) == 0) {
5250 /*
5251 * Inject errors on a normal data device or slog device.
5252 */
5253 top = ztest_random_vdev_top(spa, B_TRUE);
5254 leaf = ztest_random(leaves) + zs->zs_splits;
5255
5256 /*
5257 * Generate paths to the first leaf in this top-level vdev,
5258 * and to the random leaf we selected. We'll induce transient
5259 * write failures and random online/offline activity on leaf 0,
5260 * and we'll write random garbage to the randomly chosen leaf.
5261 */
5262 (void) snprintf(path0, MAXPATHLEN, ztest_dev_template,
5263 ztest_opts.zo_dir, ztest_opts.zo_pool,
5264 top * leaves + zs->zs_splits);
5265 (void) snprintf(pathrand, MAXPATHLEN, ztest_dev_template,
5266 ztest_opts.zo_dir, ztest_opts.zo_pool,
5267 top * leaves + leaf);
5268
5269 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
5270 if (vd0 != NULL && vd0->vdev_top->vdev_islog)
5271 islog = B_TRUE;
5272
5273 /*
5274 * If the top-level vdev needs to be resilvered
5275 * then we only allow faults on the device that is
5276 * resilvering.
5277 */
5278 if (vd0 != NULL && maxfaults != 1 &&
5279 (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) ||
5280 vd0->vdev_resilver_txg != 0)) {
5281 /*
5282 * Make vd0 explicitly claim to be unreadable,
5283 * or unwriteable, or reach behind its back
5284 * and close the underlying fd. We can do this if
5285 * maxfaults == 0 because we'll fail and reexecute,
5286 * and we can do it if maxfaults >= 2 because we'll
5287 * have enough redundancy. If maxfaults == 1, the
5288 * combination of this with injection of random data
5289 * corruption below exceeds the pool's fault tolerance.
5290 */
5291 vdev_file_t *vf = vd0->vdev_tsd;
5292
5293 if (vf != NULL && ztest_random(3) == 0) {
5294 (void) close(vf->vf_vnode->v_fd);
5295 vf->vf_vnode->v_fd = -1;
5296 } else if (ztest_random(2) == 0) {
5297 vd0->vdev_cant_read = B_TRUE;
5298 } else {
5299 vd0->vdev_cant_write = B_TRUE;
5300 }
5301 guid0 = vd0->vdev_guid;
5302 }
5303 } else {
5304 /*
5305 * Inject errors on an l2cache device.
5306 */
5307 spa_aux_vdev_t *sav = &spa->spa_l2cache;
5308
5309 if (sav->sav_count == 0) {
5310 spa_config_exit(spa, SCL_STATE, FTAG);
5311 (void) rw_unlock(&ztest_name_lock);
5312 goto out;
5313 }
5314 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
5315 guid0 = vd0->vdev_guid;
5316 (void) strcpy(path0, vd0->vdev_path);
5317 (void) strcpy(pathrand, vd0->vdev_path);
5318
5319 leaf = 0;
5320 leaves = 1;
5321 maxfaults = INT_MAX; /* no limit on cache devices */
5322 }
5323
5324 spa_config_exit(spa, SCL_STATE, FTAG);
5325 (void) rw_unlock(&ztest_name_lock);
5326
5327 /*
5328 * If we can tolerate two or more faults, or we're dealing
5329 * with a slog, randomly online/offline vd0.
5330 */
5331 if ((maxfaults >= 2 || islog) && guid0 != 0) {
5332 if (ztest_random(10) < 6) {
5333 int flags = (ztest_random(2) == 0 ?
5334 ZFS_OFFLINE_TEMPORARY : 0);
5335
5336 /*
5337 * We have to grab the zs_name_lock as writer to
5338 * prevent a race between offlining a slog and
5339 * destroying a dataset. Offlining the slog will
5340 * grab a reference on the dataset which may cause
5341 * dsl_destroy_head() to fail with EBUSY thus
5342 * leaving the dataset in an inconsistent state.
5343 */
5344 if (islog)
5345 (void) rw_wrlock(&ztest_name_lock);
5346
5347 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY);
5348
5349 if (islog)
5350 (void) rw_unlock(&ztest_name_lock);
5351 } else {
5352 /*
5353 * Ideally we would like to be able to randomly
5354 * call vdev_[on|off]line without holding locks
5355 * to force unpredictable failures but the side
5356 * effects of vdev_[on|off]line prevent us from
5357 * doing so. We grab the ztest_vdev_lock here to
5358 * prevent a race between injection testing and
5359 * aux_vdev removal.
5360 */
5361 mutex_enter(&ztest_vdev_lock);
5362 (void) vdev_online(spa, guid0, 0, NULL);
5363 mutex_exit(&ztest_vdev_lock);
5364 }
5365 }
5366
5367 if (maxfaults == 0)
5368 goto out;
5369
5370 /*
5371 * We have at least single-fault tolerance, so inject data corruption.
5372 */
5373 fd = open(pathrand, O_RDWR);
5374
5375 if (fd == -1) /* we hit a gap in the device namespace */
5376 goto out;
5377
5378 fsize = lseek(fd, 0, SEEK_END);
5379
5380 while (--iters != 0) {
5381 /*
5382 * The offset must be chosen carefully to ensure that
5383 * we do not inject a given logical block with errors
5384 * on two different leaf devices, because ZFS can not
5385 * tolerate that (if maxfaults==1).
5386 *
5387 * We divide each leaf into chunks of size
5388 * (# leaves * SPA_MAXBLOCKSIZE * 4). Within each chunk
5389 * there is a series of ranges to which we can inject errors.
5390 * Each range can accept errors on only a single leaf vdev.
5391 * The error injection ranges are separated by ranges
5392 * which we will not inject errors on any device (DMZs).
5393 * Each DMZ must be large enough such that a single block
5394 * can not straddle it, so that a single block can not be
5395 * a target in two different injection ranges (on different
5396 * leaf vdevs).
5397 *
5398 * For example, with 3 leaves, each chunk looks like:
5399 * 0 to 32M: injection range for leaf 0
5400 * 32M to 64M: DMZ - no injection allowed
5401 * 64M to 96M: injection range for leaf 1
5402 * 96M to 128M: DMZ - no injection allowed
5403 * 128M to 160M: injection range for leaf 2
5404 * 160M to 192M: DMZ - no injection allowed
5405 */
5406 offset = ztest_random(fsize / (leaves << bshift)) *
5407 (leaves << bshift) + (leaf << bshift) +
5408 (ztest_random(1ULL << (bshift - 1)) & -8ULL);
5409
5410 /*
5411 * Only allow damage to the labels at one end of the vdev.
5412 *
5413 * If all labels are damaged, the device will be totally
5414 * inaccessible, which will result in loss of data,
5415 * because we also damage (parts of) the other side of
5416 * the mirror/raidz.
5417 *
5418 * Additionally, we will always have both an even and an
5419 * odd label, so that we can handle crashes in the
5420 * middle of vdev_config_sync().
5421 */
5422 if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE)
5423 continue;
5424
5425 /*
5426 * The two end labels are stored at the "end" of the disk, but
5427 * the end of the disk (vdev_psize) is aligned to
5428 * sizeof (vdev_label_t).
5429 */
5430 uint64_t psize = P2ALIGN(fsize, sizeof (vdev_label_t));
5431 if ((leaf & 1) == 1 &&
5432 offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE)
5433 continue;
5434
5435 mutex_enter(&ztest_vdev_lock);
5436 if (mirror_save != zs->zs_mirrors) {
5437 mutex_exit(&ztest_vdev_lock);
5438 (void) close(fd);
5439 goto out;
5440 }
5441
5442 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
5443 fatal(1, "can't inject bad word at 0x%llx in %s",
5444 offset, pathrand);
5445
5446 mutex_exit(&ztest_vdev_lock);
5447
5448 if (ztest_opts.zo_verbose >= 7)
5449 (void) printf("injected bad word into %s,"
5450 " offset 0x%llx\n", pathrand, (u_longlong_t)offset);
5451 }
5452
5453 (void) close(fd);
5454 out:
5455 umem_free(path0, MAXPATHLEN);
5456 umem_free(pathrand, MAXPATHLEN);
5457 }
5458
5459 /*
5460 * Verify that DDT repair works as expected.
5461 */
5462 void
5463 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id)
5464 {
5465 ztest_shared_t *zs = ztest_shared;
5466 spa_t *spa = ztest_spa;
5467 objset_t *os = zd->zd_os;
5468 ztest_od_t *od;
5469 uint64_t object, blocksize, txg, pattern, psize;
5470 enum zio_checksum checksum = spa_dedup_checksum(spa);
5471 dmu_buf_t *db;
5472 dmu_tx_t *tx;
5473 abd_t *abd;
5474 blkptr_t blk;
5475 int copies = 2 * ZIO_DEDUPDITTO_MIN;
5476 int i;
5477
5478 blocksize = ztest_random_blocksize();
5479 blocksize = MIN(blocksize, 2048); /* because we write so many */
5480
5481 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5482 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
5483
5484 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
5485 umem_free(od, sizeof (ztest_od_t));
5486 return;
5487 }
5488
5489 /*
5490 * Take the name lock as writer to prevent anyone else from changing
5491 * the pool and dataset properies we need to maintain during this test.
5492 */
5493 (void) rw_wrlock(&ztest_name_lock);
5494
5495 if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum,
5496 B_FALSE) != 0 ||
5497 ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1,
5498 B_FALSE) != 0) {
5499 (void) rw_unlock(&ztest_name_lock);
5500 umem_free(od, sizeof (ztest_od_t));
5501 return;
5502 }
5503
5504 dmu_objset_stats_t dds;
5505 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
5506 dmu_objset_fast_stat(os, &dds);
5507 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
5508
5509 object = od[0].od_object;
5510 blocksize = od[0].od_blocksize;
5511 pattern = zs->zs_guid ^ dds.dds_guid;
5512
5513 ASSERT(object != 0);
5514
5515 tx = dmu_tx_create(os);
5516 dmu_tx_hold_write(tx, object, 0, copies * blocksize);
5517 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
5518 if (txg == 0) {
5519 (void) rw_unlock(&ztest_name_lock);
5520 umem_free(od, sizeof (ztest_od_t));
5521 return;
5522 }
5523
5524 /*
5525 * Write all the copies of our block.
5526 */
5527 for (i = 0; i < copies; i++) {
5528 uint64_t offset = i * blocksize;
5529 int error = dmu_buf_hold(os, object, offset, FTAG, &db,
5530 DMU_READ_NO_PREFETCH);
5531 if (error != 0) {
5532 fatal(B_FALSE, "dmu_buf_hold(%p, %llu, %llu) = %u",
5533 os, (long long)object, (long long) offset, error);
5534 }
5535 ASSERT(db->db_offset == offset);
5536 ASSERT(db->db_size == blocksize);
5537 ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) ||
5538 ztest_pattern_match(db->db_data, db->db_size, 0ULL));
5539 dmu_buf_will_fill(db, tx);
5540 ztest_pattern_set(db->db_data, db->db_size, pattern);
5541 dmu_buf_rele(db, FTAG);
5542 }
5543
5544 dmu_tx_commit(tx);
5545 txg_wait_synced(spa_get_dsl(spa), txg);
5546
5547 /*
5548 * Find out what block we got.
5549 */
5550 VERIFY0(dmu_buf_hold(os, object, 0, FTAG, &db,
5551 DMU_READ_NO_PREFETCH));
5552 blk = *((dmu_buf_impl_t *)db)->db_blkptr;
5553 dmu_buf_rele(db, FTAG);
5554
5555 /*
5556 * Damage the block. Dedup-ditto will save us when we read it later.
5557 */
5558 psize = BP_GET_PSIZE(&blk);
5559 abd = abd_alloc_linear(psize, B_TRUE);
5560 ztest_pattern_set(abd_to_buf(abd), psize, ~pattern);
5561
5562 (void) zio_wait(zio_rewrite(NULL, spa, 0, &blk,
5563 abd, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE,
5564 ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL));
5565
5566 abd_free(abd);
5567
5568 (void) rw_unlock(&ztest_name_lock);
5569 umem_free(od, sizeof (ztest_od_t));
5570 }
5571
5572 /*
5573 * Scrub the pool.
5574 */
5575 /* ARGSUSED */
5576 void
5577 ztest_scrub(ztest_ds_t *zd, uint64_t id)
5578 {
5579 spa_t *spa = ztest_spa;
5580
5581 (void) spa_scan(spa, POOL_SCAN_SCRUB);
5582 (void) poll(NULL, 0, 100); /* wait a moment, then force a restart */
5583 (void) spa_scan(spa, POOL_SCAN_SCRUB);
5584 }
5585
5586 /*
5587 * Change the guid for the pool.
5588 */
5589 /* ARGSUSED */
5590 void
5591 ztest_reguid(ztest_ds_t *zd, uint64_t id)
5592 {
5593 spa_t *spa = ztest_spa;
5594 uint64_t orig, load;
5595 int error;
5596
5597 orig = spa_guid(spa);
5598 load = spa_load_guid(spa);
5599
5600 (void) rw_wrlock(&ztest_name_lock);
5601 error = spa_change_guid(spa);
5602 (void) rw_unlock(&ztest_name_lock);
5603
5604 if (error != 0)
5605 return;
5606
5607 if (ztest_opts.zo_verbose >= 4) {
5608 (void) printf("Changed guid old %llu -> %llu\n",
5609 (u_longlong_t)orig, (u_longlong_t)spa_guid(spa));
5610 }
5611
5612 VERIFY3U(orig, !=, spa_guid(spa));
5613 VERIFY3U(load, ==, spa_load_guid(spa));
5614 }
5615
5616 /*
5617 * Rename the pool to a different name and then rename it back.
5618 */
5619 /* ARGSUSED */
5620 void
5621 ztest_spa_rename(ztest_ds_t *zd, uint64_t id)
5622 {
5623 char *oldname, *newname;
5624 spa_t *spa;
5625
5626 (void) rw_wrlock(&ztest_name_lock);
5627
5628 oldname = ztest_opts.zo_pool;
5629 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL);
5630 (void) strcpy(newname, oldname);
5631 (void) strcat(newname, "_tmp");
5632
5633 /*
5634 * Do the rename
5635 */
5636 VERIFY3U(0, ==, spa_rename(oldname, newname));
5637
5638 /*
5639 * Try to open it under the old name, which shouldn't exist
5640 */
5641 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
5642
5643 /*
5644 * Open it under the new name and make sure it's still the same spa_t.
5645 */
5646 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
5647
5648 ASSERT(spa == ztest_spa);
5649 spa_close(spa, FTAG);
5650
5651 /*
5652 * Rename it back to the original
5653 */
5654 VERIFY3U(0, ==, spa_rename(newname, oldname));
5655
5656 /*
5657 * Make sure it can still be opened
5658 */
5659 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
5660
5661 ASSERT(spa == ztest_spa);
5662 spa_close(spa, FTAG);
5663
5664 umem_free(newname, strlen(newname) + 1);
5665
5666 (void) rw_unlock(&ztest_name_lock);
5667 }
5668
5669 void
5670 ztest_fletcher(ztest_ds_t *zd, uint64_t id)
5671 {
5672 hrtime_t end = gethrtime() + NANOSEC;
5673
5674 while (gethrtime() <= end) {
5675 int run_count = 100;
5676 void *buf;
5677 uint32_t size;
5678 int *ptr;
5679 int i;
5680 zio_cksum_t zc_ref;
5681 zio_cksum_t zc_ref_byteswap;
5682
5683 size = ztest_random_blocksize();
5684 buf = umem_alloc(size, UMEM_NOFAIL);
5685
5686 for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
5687 *ptr = ztest_random(UINT_MAX);
5688
5689 VERIFY0(fletcher_4_impl_set("scalar"));
5690 fletcher_4_native(buf, size, NULL, &zc_ref);
5691 fletcher_4_byteswap(buf, size, NULL, &zc_ref_byteswap);
5692
5693 VERIFY0(fletcher_4_impl_set("cycle"));
5694 while (run_count-- > 0) {
5695 zio_cksum_t zc;
5696 zio_cksum_t zc_byteswap;
5697
5698 fletcher_4_byteswap(buf, size, NULL, &zc_byteswap);
5699 fletcher_4_native(buf, size, NULL, &zc);
5700
5701 VERIFY0(bcmp(&zc, &zc_ref, sizeof (zc)));
5702 VERIFY0(bcmp(&zc_byteswap, &zc_ref_byteswap,
5703 sizeof (zc_byteswap)));
5704 }
5705
5706 umem_free(buf, size);
5707 }
5708 }
5709
5710 void
5711 ztest_fletcher_incr(ztest_ds_t *zd, uint64_t id)
5712 {
5713 void *buf;
5714 size_t size;
5715 int *ptr;
5716 int i;
5717 zio_cksum_t zc_ref;
5718 zio_cksum_t zc_ref_bswap;
5719
5720 hrtime_t end = gethrtime() + NANOSEC;
5721
5722 while (gethrtime() <= end) {
5723 int run_count = 100;
5724
5725 size = ztest_random_blocksize();
5726 buf = umem_alloc(size, UMEM_NOFAIL);
5727
5728 for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
5729 *ptr = ztest_random(UINT_MAX);
5730
5731 VERIFY0(fletcher_4_impl_set("scalar"));
5732 fletcher_4_native(buf, size, NULL, &zc_ref);
5733 fletcher_4_byteswap(buf, size, NULL, &zc_ref_bswap);
5734
5735 VERIFY0(fletcher_4_impl_set("cycle"));
5736
5737 while (run_count-- > 0) {
5738 zio_cksum_t zc;
5739 zio_cksum_t zc_bswap;
5740 size_t pos = 0;
5741
5742 ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
5743 ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
5744
5745 while (pos < size) {
5746 size_t inc = 64 * ztest_random(size / 67);
5747 /* sometimes add few bytes to test non-simd */
5748 if (ztest_random(100) < 10)
5749 inc += P2ALIGN(ztest_random(64),
5750 sizeof (uint32_t));
5751
5752 if (inc > (size - pos))
5753 inc = size - pos;
5754
5755 fletcher_4_incremental_native(buf + pos, inc,
5756 &zc);
5757 fletcher_4_incremental_byteswap(buf + pos, inc,
5758 &zc_bswap);
5759
5760 pos += inc;
5761 }
5762
5763 VERIFY3U(pos, ==, size);
5764
5765 VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
5766 VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
5767
5768 /*
5769 * verify if incremental on the whole buffer is
5770 * equivalent to non-incremental version
5771 */
5772 ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
5773 ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
5774
5775 fletcher_4_incremental_native(buf, size, &zc);
5776 fletcher_4_incremental_byteswap(buf, size, &zc_bswap);
5777
5778 VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
5779 VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
5780 }
5781
5782 umem_free(buf, size);
5783 }
5784 }
5785
5786 static int
5787 ztest_check_path(char *path)
5788 {
5789 struct stat s;
5790 /* return true on success */
5791 return (!stat(path, &s));
5792 }
5793
5794 static void
5795 ztest_get_zdb_bin(char *bin, int len)
5796 {
5797 char *zdb_path;
5798 /*
5799 * Try to use ZDB_PATH and in-tree zdb path. If not successful, just
5800 * let popen to search through PATH.
5801 */
5802 if ((zdb_path = getenv("ZDB_PATH"))) {
5803 strlcpy(bin, zdb_path, len); /* In env */
5804 if (!ztest_check_path(bin)) {
5805 ztest_dump_core = 0;
5806 fatal(1, "invalid ZDB_PATH '%s'", bin);
5807 }
5808 return;
5809 }
5810
5811 VERIFY(realpath(getexecname(), bin) != NULL);
5812 if (strstr(bin, "/ztest/")) {
5813 strstr(bin, "/ztest/")[0] = '\0'; /* In-tree */
5814 strcat(bin, "/zdb/zdb");
5815 if (ztest_check_path(bin))
5816 return;
5817 }
5818 strcpy(bin, "zdb");
5819 }
5820
5821 /*
5822 * Verify pool integrity by running zdb.
5823 */
5824 static void
5825 ztest_run_zdb(char *pool)
5826 {
5827 int status;
5828 char *bin;
5829 char *zdb;
5830 char *zbuf;
5831 const int len = MAXPATHLEN + MAXNAMELEN + 20;
5832 FILE *fp;
5833
5834 bin = umem_alloc(len, UMEM_NOFAIL);
5835 zdb = umem_alloc(len, UMEM_NOFAIL);
5836 zbuf = umem_alloc(1024, UMEM_NOFAIL);
5837
5838 ztest_get_zdb_bin(bin, len);
5839
5840 (void) sprintf(zdb,
5841 "%s -bcc%s%s -d -U %s %s",
5842 bin,
5843 ztest_opts.zo_verbose >= 3 ? "s" : "",
5844 ztest_opts.zo_verbose >= 4 ? "v" : "",
5845 spa_config_path,
5846 pool);
5847
5848 if (ztest_opts.zo_verbose >= 5)
5849 (void) printf("Executing %s\n", strstr(zdb, "zdb "));
5850
5851 fp = popen(zdb, "r");
5852
5853 while (fgets(zbuf, 1024, fp) != NULL)
5854 if (ztest_opts.zo_verbose >= 3)
5855 (void) printf("%s", zbuf);
5856
5857 status = pclose(fp);
5858
5859 if (status == 0)
5860 goto out;
5861
5862 ztest_dump_core = 0;
5863 if (WIFEXITED(status))
5864 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status));
5865 else
5866 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status));
5867 out:
5868 umem_free(bin, len);
5869 umem_free(zdb, len);
5870 umem_free(zbuf, 1024);
5871 }
5872
5873 static void
5874 ztest_walk_pool_directory(char *header)
5875 {
5876 spa_t *spa = NULL;
5877
5878 if (ztest_opts.zo_verbose >= 6)
5879 (void) printf("%s\n", header);
5880
5881 mutex_enter(&spa_namespace_lock);
5882 while ((spa = spa_next(spa)) != NULL)
5883 if (ztest_opts.zo_verbose >= 6)
5884 (void) printf("\t%s\n", spa_name(spa));
5885 mutex_exit(&spa_namespace_lock);
5886 }
5887
5888 static void
5889 ztest_spa_import_export(char *oldname, char *newname)
5890 {
5891 nvlist_t *config, *newconfig;
5892 uint64_t pool_guid;
5893 spa_t *spa;
5894 int error;
5895
5896 if (ztest_opts.zo_verbose >= 4) {
5897 (void) printf("import/export: old = %s, new = %s\n",
5898 oldname, newname);
5899 }
5900
5901 /*
5902 * Clean up from previous runs.
5903 */
5904 (void) spa_destroy(newname);
5905
5906 /*
5907 * Get the pool's configuration and guid.
5908 */
5909 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
5910
5911 /*
5912 * Kick off a scrub to tickle scrub/export races.
5913 */
5914 if (ztest_random(2) == 0)
5915 (void) spa_scan(spa, POOL_SCAN_SCRUB);
5916
5917 pool_guid = spa_guid(spa);
5918 spa_close(spa, FTAG);
5919
5920 ztest_walk_pool_directory("pools before export");
5921
5922 /*
5923 * Export it.
5924 */
5925 VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE));
5926
5927 ztest_walk_pool_directory("pools after export");
5928
5929 /*
5930 * Try to import it.
5931 */
5932 newconfig = spa_tryimport(config);
5933 ASSERT(newconfig != NULL);
5934 nvlist_free(newconfig);
5935
5936 /*
5937 * Import it under the new name.
5938 */
5939 error = spa_import(newname, config, NULL, 0);
5940 if (error != 0) {
5941 dump_nvlist(config, 0);
5942 fatal(B_FALSE, "couldn't import pool %s as %s: error %u",
5943 oldname, newname, error);
5944 }
5945
5946 ztest_walk_pool_directory("pools after import");
5947
5948 /*
5949 * Try to import it again -- should fail with EEXIST.
5950 */
5951 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0));
5952
5953 /*
5954 * Try to import it under a different name -- should fail with EEXIST.
5955 */
5956 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0));
5957
5958 /*
5959 * Verify that the pool is no longer visible under the old name.
5960 */
5961 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
5962
5963 /*
5964 * Verify that we can open and close the pool using the new name.
5965 */
5966 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
5967 ASSERT(pool_guid == spa_guid(spa));
5968 spa_close(spa, FTAG);
5969
5970 nvlist_free(config);
5971 }
5972
5973 static void
5974 ztest_resume(spa_t *spa)
5975 {
5976 if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6)
5977 (void) printf("resuming from suspended state\n");
5978 spa_vdev_state_enter(spa, SCL_NONE);
5979 vdev_clear(spa, NULL);
5980 (void) spa_vdev_state_exit(spa, NULL, 0);
5981 (void) zio_resume(spa);
5982 }
5983
5984 static void *
5985 ztest_resume_thread(void *arg)
5986 {
5987 spa_t *spa = arg;
5988
5989 while (!ztest_exiting) {
5990 if (spa_suspended(spa))
5991 ztest_resume(spa);
5992 (void) poll(NULL, 0, 100);
5993
5994 /*
5995 * Periodically change the zfs_compressed_arc_enabled setting.
5996 */
5997 if (ztest_random(10) == 0)
5998 zfs_compressed_arc_enabled = ztest_random(2);
5999
6000 /*
6001 * Periodically change the zfs_abd_scatter_enabled setting.
6002 */
6003 if (ztest_random(10) == 0)
6004 zfs_abd_scatter_enabled = ztest_random(2);
6005 }
6006
6007 thread_exit();
6008
6009 return (NULL);
6010 }
6011
6012 #define GRACE 300
6013
6014 #if 0
6015 static void
6016 ztest_deadman_alarm(int sig)
6017 {
6018 fatal(0, "failed to complete within %d seconds of deadline", GRACE);
6019 }
6020 #endif
6021
6022 static void
6023 ztest_execute(int test, ztest_info_t *zi, uint64_t id)
6024 {
6025 ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets];
6026 ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test);
6027 hrtime_t functime = gethrtime();
6028 int i;
6029
6030 for (i = 0; i < zi->zi_iters; i++)
6031 zi->zi_func(zd, id);
6032
6033 functime = gethrtime() - functime;
6034
6035 atomic_add_64(&zc->zc_count, 1);
6036 atomic_add_64(&zc->zc_time, functime);
6037
6038 if (ztest_opts.zo_verbose >= 4)
6039 (void) printf("%6.2f sec in %s\n",
6040 (double)functime / NANOSEC, zi->zi_funcname);
6041 }
6042
6043 static void *
6044 ztest_thread(void *arg)
6045 {
6046 int rand;
6047 uint64_t id = (uintptr_t)arg;
6048 ztest_shared_t *zs = ztest_shared;
6049 uint64_t call_next;
6050 hrtime_t now;
6051 ztest_info_t *zi;
6052 ztest_shared_callstate_t *zc;
6053
6054 while ((now = gethrtime()) < zs->zs_thread_stop) {
6055 /*
6056 * See if it's time to force a crash.
6057 */
6058 if (now > zs->zs_thread_kill)
6059 ztest_kill(zs);
6060
6061 /*
6062 * If we're getting ENOSPC with some regularity, stop.
6063 */
6064 if (zs->zs_enospc_count > 10)
6065 break;
6066
6067 /*
6068 * Pick a random function to execute.
6069 */
6070 rand = ztest_random(ZTEST_FUNCS);
6071 zi = &ztest_info[rand];
6072 zc = ZTEST_GET_SHARED_CALLSTATE(rand);
6073 call_next = zc->zc_next;
6074
6075 if (now >= call_next &&
6076 atomic_cas_64(&zc->zc_next, call_next, call_next +
6077 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) {
6078 ztest_execute(rand, zi, id);
6079 }
6080 }
6081
6082 thread_exit();
6083
6084 return (NULL);
6085 }
6086
6087 static void
6088 ztest_dataset_name(char *dsname, char *pool, int d)
6089 {
6090 (void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d);
6091 }
6092
6093 static void
6094 ztest_dataset_destroy(int d)
6095 {
6096 char name[ZFS_MAX_DATASET_NAME_LEN];
6097 int t;
6098
6099 ztest_dataset_name(name, ztest_opts.zo_pool, d);
6100
6101 if (ztest_opts.zo_verbose >= 3)
6102 (void) printf("Destroying %s to free up space\n", name);
6103
6104 /*
6105 * Cleanup any non-standard clones and snapshots. In general,
6106 * ztest thread t operates on dataset (t % zopt_datasets),
6107 * so there may be more than one thing to clean up.
6108 */
6109 for (t = d; t < ztest_opts.zo_threads;
6110 t += ztest_opts.zo_datasets)
6111 ztest_dsl_dataset_cleanup(name, t);
6112
6113 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
6114 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
6115 }
6116
6117 static void
6118 ztest_dataset_dirobj_verify(ztest_ds_t *zd)
6119 {
6120 uint64_t usedobjs, dirobjs, scratch;
6121
6122 /*
6123 * ZTEST_DIROBJ is the object directory for the entire dataset.
6124 * Therefore, the number of objects in use should equal the
6125 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
6126 * If not, we have an object leak.
6127 *
6128 * Note that we can only check this in ztest_dataset_open(),
6129 * when the open-context and syncing-context values agree.
6130 * That's because zap_count() returns the open-context value,
6131 * while dmu_objset_space() returns the rootbp fill count.
6132 */
6133 VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
6134 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
6135 ASSERT3U(dirobjs + 1, ==, usedobjs);
6136 }
6137
6138 static int
6139 ztest_dataset_open(int d)
6140 {
6141 ztest_ds_t *zd = &ztest_ds[d];
6142 uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq;
6143 objset_t *os;
6144 zilog_t *zilog;
6145 char name[ZFS_MAX_DATASET_NAME_LEN];
6146 int error;
6147
6148 ztest_dataset_name(name, ztest_opts.zo_pool, d);
6149
6150 (void) rw_rdlock(&ztest_name_lock);
6151
6152 error = ztest_dataset_create(name);
6153 if (error == ENOSPC) {
6154 (void) rw_unlock(&ztest_name_lock);
6155 ztest_record_enospc(FTAG);
6156 return (error);
6157 }
6158 ASSERT(error == 0 || error == EEXIST);
6159
6160 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, zd, &os));
6161 (void) rw_unlock(&ztest_name_lock);
6162
6163 ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os);
6164
6165 zilog = zd->zd_zilog;
6166
6167 if (zilog->zl_header->zh_claim_lr_seq != 0 &&
6168 zilog->zl_header->zh_claim_lr_seq < committed_seq)
6169 fatal(0, "missing log records: claimed %llu < committed %llu",
6170 zilog->zl_header->zh_claim_lr_seq, committed_seq);
6171
6172 ztest_dataset_dirobj_verify(zd);
6173
6174 zil_replay(os, zd, ztest_replay_vector);
6175
6176 ztest_dataset_dirobj_verify(zd);
6177
6178 if (ztest_opts.zo_verbose >= 6)
6179 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n",
6180 zd->zd_name,
6181 (u_longlong_t)zilog->zl_parse_blk_count,
6182 (u_longlong_t)zilog->zl_parse_lr_count,
6183 (u_longlong_t)zilog->zl_replaying_seq);
6184
6185 zilog = zil_open(os, ztest_get_data);
6186
6187 if (zilog->zl_replaying_seq != 0 &&
6188 zilog->zl_replaying_seq < committed_seq)
6189 fatal(0, "missing log records: replayed %llu < committed %llu",
6190 zilog->zl_replaying_seq, committed_seq);
6191
6192 return (0);
6193 }
6194
6195 static void
6196 ztest_dataset_close(int d)
6197 {
6198 ztest_ds_t *zd = &ztest_ds[d];
6199
6200 zil_close(zd->zd_zilog);
6201 dmu_objset_disown(zd->zd_os, zd);
6202
6203 ztest_zd_fini(zd);
6204 }
6205
6206 /*
6207 * Kick off threads to run tests on all datasets in parallel.
6208 */
6209 static void
6210 ztest_run(ztest_shared_t *zs)
6211 {
6212 kt_did_t *tid;
6213 spa_t *spa;
6214 objset_t *os;
6215 kthread_t *resume_thread;
6216 uint64_t object;
6217 int error;
6218 int t, d;
6219
6220 ztest_exiting = B_FALSE;
6221
6222 /*
6223 * Initialize parent/child shared state.
6224 */
6225 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
6226 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0);
6227
6228 zs->zs_thread_start = gethrtime();
6229 zs->zs_thread_stop =
6230 zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC;
6231 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
6232 zs->zs_thread_kill = zs->zs_thread_stop;
6233 if (ztest_random(100) < ztest_opts.zo_killrate) {
6234 zs->zs_thread_kill -=
6235 ztest_random(ztest_opts.zo_passtime * NANOSEC);
6236 }
6237
6238 mutex_init(&zcl.zcl_callbacks_lock, NULL, MUTEX_DEFAULT, NULL);
6239
6240 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
6241 offsetof(ztest_cb_data_t, zcd_node));
6242
6243 /*
6244 * Open our pool.
6245 */
6246 kernel_init(FREAD | FWRITE);
6247 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
6248 spa->spa_debug = B_TRUE;
6249 metaslab_preload_limit = ztest_random(20) + 1;
6250 ztest_spa = spa;
6251
6252 dmu_objset_stats_t dds;
6253 VERIFY0(dmu_objset_own(ztest_opts.zo_pool,
6254 DMU_OST_ANY, B_TRUE, FTAG, &os));
6255 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
6256 dmu_objset_fast_stat(os, &dds);
6257 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
6258 zs->zs_guid = dds.dds_guid;
6259 dmu_objset_disown(os, FTAG);
6260
6261 spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN;
6262
6263 /*
6264 * We don't expect the pool to suspend unless maxfaults == 0,
6265 * in which case ztest_fault_inject() temporarily takes away
6266 * the only valid replica.
6267 */
6268 if (MAXFAULTS() == 0)
6269 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT;
6270 else
6271 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC;
6272
6273 /*
6274 * Create a thread to periodically resume suspended I/O.
6275 */
6276 VERIFY3P((resume_thread = zk_thread_create(NULL, 0,
6277 (thread_func_t)ztest_resume_thread, spa, 0, NULL, TS_RUN, 0,
6278 PTHREAD_CREATE_JOINABLE)), !=, NULL);
6279
6280 #if 0
6281 /*
6282 * Set a deadman alarm to abort() if we hang.
6283 */
6284 signal(SIGALRM, ztest_deadman_alarm);
6285 alarm((zs->zs_thread_stop - zs->zs_thread_start) / NANOSEC + GRACE);
6286 #endif
6287
6288 /*
6289 * Verify that we can safely inquire about about any object,
6290 * whether it's allocated or not. To make it interesting,
6291 * we probe a 5-wide window around each power of two.
6292 * This hits all edge cases, including zero and the max.
6293 */
6294 for (t = 0; t < 64; t++) {
6295 for (d = -5; d <= 5; d++) {
6296 error = dmu_object_info(spa->spa_meta_objset,
6297 (1ULL << t) + d, NULL);
6298 ASSERT(error == 0 || error == ENOENT ||
6299 error == EINVAL);
6300 }
6301 }
6302
6303 /*
6304 * If we got any ENOSPC errors on the previous run, destroy something.
6305 */
6306 if (zs->zs_enospc_count != 0) {
6307 int d = ztest_random(ztest_opts.zo_datasets);
6308 ztest_dataset_destroy(d);
6309 }
6310 zs->zs_enospc_count = 0;
6311
6312 tid = umem_zalloc(ztest_opts.zo_threads * sizeof (kt_did_t),
6313 UMEM_NOFAIL);
6314
6315 if (ztest_opts.zo_verbose >= 4)
6316 (void) printf("starting main threads...\n");
6317
6318 /*
6319 * Kick off all the tests that run in parallel.
6320 */
6321 for (t = 0; t < ztest_opts.zo_threads; t++) {
6322 kthread_t *thread;
6323
6324 if (t < ztest_opts.zo_datasets &&
6325 ztest_dataset_open(t) != 0) {
6326 umem_free(tid,
6327 ztest_opts.zo_threads * sizeof (kt_did_t));
6328 return;
6329 }
6330
6331 VERIFY3P(thread = zk_thread_create(NULL, 0,
6332 (thread_func_t)ztest_thread,
6333 (void *)(uintptr_t)t, 0, NULL, TS_RUN, 0,
6334 PTHREAD_CREATE_JOINABLE), !=, NULL);
6335 tid[t] = thread->t_tid;
6336 }
6337
6338 /*
6339 * Wait for all of the tests to complete. We go in reverse order
6340 * so we don't close datasets while threads are still using them.
6341 */
6342 for (t = ztest_opts.zo_threads - 1; t >= 0; t--) {
6343 thread_join(tid[t]);
6344 if (t < ztest_opts.zo_datasets)
6345 ztest_dataset_close(t);
6346 }
6347
6348 txg_wait_synced(spa_get_dsl(spa), 0);
6349
6350 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
6351 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
6352
6353 umem_free(tid, ztest_opts.zo_threads * sizeof (kt_did_t));
6354
6355 /* Kill the resume thread */
6356 ztest_exiting = B_TRUE;
6357 thread_join(resume_thread->t_tid);
6358 ztest_resume(spa);
6359
6360 /*
6361 * Right before closing the pool, kick off a bunch of async I/O;
6362 * spa_close() should wait for it to complete.
6363 */
6364 for (object = 1; object < 50; object++) {
6365 dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20,
6366 ZIO_PRIORITY_SYNC_READ);
6367 }
6368
6369 /* Verify that at least one commit cb was called in a timely fashion */
6370 if (zc_cb_counter >= ZTEST_COMMIT_CB_MIN_REG)
6371 VERIFY0(zc_min_txg_delay);
6372
6373 spa_close(spa, FTAG);
6374
6375 /*
6376 * Verify that we can loop over all pools.
6377 */
6378 mutex_enter(&spa_namespace_lock);
6379 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
6380 if (ztest_opts.zo_verbose > 3)
6381 (void) printf("spa_next: found %s\n", spa_name(spa));
6382 mutex_exit(&spa_namespace_lock);
6383
6384 /*
6385 * Verify that we can export the pool and reimport it under a
6386 * different name.
6387 */
6388 if (ztest_random(2) == 0) {
6389 char name[ZFS_MAX_DATASET_NAME_LEN];
6390 (void) snprintf(name, sizeof (name), "%s_import",
6391 ztest_opts.zo_pool);
6392 ztest_spa_import_export(ztest_opts.zo_pool, name);
6393 ztest_spa_import_export(name, ztest_opts.zo_pool);
6394 }
6395
6396 kernel_fini();
6397
6398 list_destroy(&zcl.zcl_callbacks);
6399 mutex_destroy(&zcl.zcl_callbacks_lock);
6400 (void) rwlock_destroy(&ztest_name_lock);
6401 mutex_destroy(&ztest_vdev_lock);
6402 }
6403
6404 static void
6405 ztest_freeze(void)
6406 {
6407 ztest_ds_t *zd = &ztest_ds[0];
6408 spa_t *spa;
6409 int numloops = 0;
6410
6411 if (ztest_opts.zo_verbose >= 3)
6412 (void) printf("testing spa_freeze()...\n");
6413
6414 kernel_init(FREAD | FWRITE);
6415 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
6416 VERIFY3U(0, ==, ztest_dataset_open(0));
6417 spa->spa_debug = B_TRUE;
6418 ztest_spa = spa;
6419
6420 /*
6421 * Force the first log block to be transactionally allocated.
6422 * We have to do this before we freeze the pool -- otherwise
6423 * the log chain won't be anchored.
6424 */
6425 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
6426 ztest_dmu_object_alloc_free(zd, 0);
6427 zil_commit(zd->zd_zilog, 0);
6428 }
6429
6430 txg_wait_synced(spa_get_dsl(spa), 0);
6431
6432 /*
6433 * Freeze the pool. This stops spa_sync() from doing anything,
6434 * so that the only way to record changes from now on is the ZIL.
6435 */
6436 spa_freeze(spa);
6437
6438 /*
6439 * Because it is hard to predict how much space a write will actually
6440 * require beforehand, we leave ourselves some fudge space to write over
6441 * capacity.
6442 */
6443 uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2;
6444
6445 /*
6446 * Run tests that generate log records but don't alter the pool config
6447 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
6448 * We do a txg_wait_synced() after each iteration to force the txg
6449 * to increase well beyond the last synced value in the uberblock.
6450 * The ZIL should be OK with that.
6451 *
6452 * Run a random number of times less than zo_maxloops and ensure we do
6453 * not run out of space on the pool.
6454 */
6455 while (ztest_random(10) != 0 &&
6456 numloops++ < ztest_opts.zo_maxloops &&
6457 metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) {
6458 ztest_od_t od;
6459 ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
6460 VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE));
6461 ztest_io(zd, od.od_object,
6462 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
6463 txg_wait_synced(spa_get_dsl(spa), 0);
6464 }
6465
6466 /*
6467 * Commit all of the changes we just generated.
6468 */
6469 zil_commit(zd->zd_zilog, 0);
6470 txg_wait_synced(spa_get_dsl(spa), 0);
6471
6472 /*
6473 * Close our dataset and close the pool.
6474 */
6475 ztest_dataset_close(0);
6476 spa_close(spa, FTAG);
6477 kernel_fini();
6478
6479 /*
6480 * Open and close the pool and dataset to induce log replay.
6481 */
6482 kernel_init(FREAD | FWRITE);
6483 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
6484 ASSERT(spa_freeze_txg(spa) == UINT64_MAX);
6485 VERIFY3U(0, ==, ztest_dataset_open(0));
6486 ztest_dataset_close(0);
6487
6488 spa->spa_debug = B_TRUE;
6489 ztest_spa = spa;
6490 txg_wait_synced(spa_get_dsl(spa), 0);
6491 ztest_reguid(NULL, 0);
6492
6493 spa_close(spa, FTAG);
6494 kernel_fini();
6495 }
6496
6497 void
6498 print_time(hrtime_t t, char *timebuf)
6499 {
6500 hrtime_t s = t / NANOSEC;
6501 hrtime_t m = s / 60;
6502 hrtime_t h = m / 60;
6503 hrtime_t d = h / 24;
6504
6505 s -= m * 60;
6506 m -= h * 60;
6507 h -= d * 24;
6508
6509 timebuf[0] = '\0';
6510
6511 if (d)
6512 (void) sprintf(timebuf,
6513 "%llud%02lluh%02llum%02llus", d, h, m, s);
6514 else if (h)
6515 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
6516 else if (m)
6517 (void) sprintf(timebuf, "%llum%02llus", m, s);
6518 else
6519 (void) sprintf(timebuf, "%llus", s);
6520 }
6521
6522 static nvlist_t *
6523 make_random_props(void)
6524 {
6525 nvlist_t *props;
6526
6527 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
6528 if (ztest_random(2) == 0)
6529 return (props);
6530 VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0);
6531
6532 return (props);
6533 }
6534
6535 /*
6536 * Create a storage pool with the given name and initial vdev size.
6537 * Then test spa_freeze() functionality.
6538 */
6539 static void
6540 ztest_init(ztest_shared_t *zs)
6541 {
6542 spa_t *spa;
6543 nvlist_t *nvroot, *props;
6544 int i;
6545
6546 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
6547 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0);
6548
6549 kernel_init(FREAD | FWRITE);
6550
6551 /*
6552 * Create the storage pool.
6553 */
6554 (void) spa_destroy(ztest_opts.zo_pool);
6555 ztest_shared->zs_vdev_next_leaf = 0;
6556 zs->zs_splits = 0;
6557 zs->zs_mirrors = ztest_opts.zo_mirrors;
6558 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
6559 0, ztest_opts.zo_raidz, zs->zs_mirrors, 1);
6560 props = make_random_props();
6561 for (i = 0; i < SPA_FEATURES; i++) {
6562 char *buf;
6563 VERIFY3S(-1, !=, asprintf(&buf, "feature@%s",
6564 spa_feature_table[i].fi_uname));
6565 VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0));
6566 free(buf);
6567 }
6568 VERIFY3U(0, ==, spa_create(ztest_opts.zo_pool, nvroot, props, NULL));
6569 nvlist_free(nvroot);
6570 nvlist_free(props);
6571
6572 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
6573 zs->zs_metaslab_sz =
6574 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
6575 spa_close(spa, FTAG);
6576
6577 kernel_fini();
6578
6579 ztest_run_zdb(ztest_opts.zo_pool);
6580
6581 ztest_freeze();
6582
6583 ztest_run_zdb(ztest_opts.zo_pool);
6584
6585 (void) rwlock_destroy(&ztest_name_lock);
6586 mutex_destroy(&ztest_vdev_lock);
6587 }
6588
6589 static void
6590 setup_data_fd(void)
6591 {
6592 static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX";
6593
6594 ztest_fd_data = mkstemp(ztest_name_data);
6595 ASSERT3S(ztest_fd_data, >=, 0);
6596 (void) unlink(ztest_name_data);
6597 }
6598
6599 static int
6600 shared_data_size(ztest_shared_hdr_t *hdr)
6601 {
6602 int size;
6603
6604 size = hdr->zh_hdr_size;
6605 size += hdr->zh_opts_size;
6606 size += hdr->zh_size;
6607 size += hdr->zh_stats_size * hdr->zh_stats_count;
6608 size += hdr->zh_ds_size * hdr->zh_ds_count;
6609
6610 return (size);
6611 }
6612
6613 static void
6614 setup_hdr(void)
6615 {
6616 int size;
6617 ztest_shared_hdr_t *hdr;
6618
6619 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
6620 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
6621 ASSERT(hdr != MAP_FAILED);
6622
6623 VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t)));
6624
6625 hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t);
6626 hdr->zh_opts_size = sizeof (ztest_shared_opts_t);
6627 hdr->zh_size = sizeof (ztest_shared_t);
6628 hdr->zh_stats_size = sizeof (ztest_shared_callstate_t);
6629 hdr->zh_stats_count = ZTEST_FUNCS;
6630 hdr->zh_ds_size = sizeof (ztest_shared_ds_t);
6631 hdr->zh_ds_count = ztest_opts.zo_datasets;
6632
6633 size = shared_data_size(hdr);
6634 VERIFY3U(0, ==, ftruncate(ztest_fd_data, size));
6635
6636 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
6637 }
6638
6639 static void
6640 setup_data(void)
6641 {
6642 int size, offset;
6643 ztest_shared_hdr_t *hdr;
6644 uint8_t *buf;
6645
6646 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
6647 PROT_READ, MAP_SHARED, ztest_fd_data, 0);
6648 ASSERT(hdr != MAP_FAILED);
6649
6650 size = shared_data_size(hdr);
6651
6652 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
6653 hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()),
6654 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
6655 ASSERT(hdr != MAP_FAILED);
6656 buf = (uint8_t *)hdr;
6657
6658 offset = hdr->zh_hdr_size;
6659 ztest_shared_opts = (void *)&buf[offset];
6660 offset += hdr->zh_opts_size;
6661 ztest_shared = (void *)&buf[offset];
6662 offset += hdr->zh_size;
6663 ztest_shared_callstate = (void *)&buf[offset];
6664 offset += hdr->zh_stats_size * hdr->zh_stats_count;
6665 ztest_shared_ds = (void *)&buf[offset];
6666 }
6667
6668 static boolean_t
6669 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp)
6670 {
6671 pid_t pid;
6672 int status;
6673 char *cmdbuf = NULL;
6674
6675 pid = fork();
6676
6677 if (cmd == NULL) {
6678 cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6679 (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN);
6680 cmd = cmdbuf;
6681 }
6682
6683 if (pid == -1)
6684 fatal(1, "fork failed");
6685
6686 if (pid == 0) { /* child */
6687 char *emptyargv[2] = { cmd, NULL };
6688 char fd_data_str[12];
6689
6690 struct rlimit rl = { 1024, 1024 };
6691 (void) setrlimit(RLIMIT_NOFILE, &rl);
6692
6693 (void) close(ztest_fd_rand);
6694 VERIFY(11 >= snprintf(fd_data_str, 12, "%d", ztest_fd_data));
6695 VERIFY(0 == setenv("ZTEST_FD_DATA", fd_data_str, 1));
6696
6697 (void) enable_extended_FILE_stdio(-1, -1);
6698 if (libpath != NULL)
6699 VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1));
6700 (void) execv(cmd, emptyargv);
6701 ztest_dump_core = B_FALSE;
6702 fatal(B_TRUE, "exec failed: %s", cmd);
6703 }
6704
6705 if (cmdbuf != NULL) {
6706 umem_free(cmdbuf, MAXPATHLEN);
6707 cmd = NULL;
6708 }
6709
6710 while (waitpid(pid, &status, 0) != pid)
6711 continue;
6712 if (statusp != NULL)
6713 *statusp = status;
6714
6715 if (WIFEXITED(status)) {
6716 if (WEXITSTATUS(status) != 0) {
6717 (void) fprintf(stderr, "child exited with code %d\n",
6718 WEXITSTATUS(status));
6719 exit(2);
6720 }
6721 return (B_FALSE);
6722 } else if (WIFSIGNALED(status)) {
6723 if (!ignorekill || WTERMSIG(status) != SIGKILL) {
6724 (void) fprintf(stderr, "child died with signal %d\n",
6725 WTERMSIG(status));
6726 exit(3);
6727 }
6728 return (B_TRUE);
6729 } else {
6730 (void) fprintf(stderr, "something strange happened to child\n");
6731 exit(4);
6732 /* NOTREACHED */
6733 }
6734 }
6735
6736 static void
6737 ztest_run_init(void)
6738 {
6739 int i;
6740
6741 ztest_shared_t *zs = ztest_shared;
6742
6743 ASSERT(ztest_opts.zo_init != 0);
6744
6745 /*
6746 * Blow away any existing copy of zpool.cache
6747 */
6748 (void) remove(spa_config_path);
6749
6750 /*
6751 * Create and initialize our storage pool.
6752 */
6753 for (i = 1; i <= ztest_opts.zo_init; i++) {
6754 bzero(zs, sizeof (ztest_shared_t));
6755 if (ztest_opts.zo_verbose >= 3 &&
6756 ztest_opts.zo_init != 1) {
6757 (void) printf("ztest_init(), pass %d\n", i);
6758 }
6759 ztest_init(zs);
6760 }
6761 }
6762
6763 int
6764 main(int argc, char **argv)
6765 {
6766 int kills = 0;
6767 int iters = 0;
6768 int older = 0;
6769 int newer = 0;
6770 ztest_shared_t *zs;
6771 ztest_info_t *zi;
6772 ztest_shared_callstate_t *zc;
6773 char timebuf[100];
6774 char numbuf[6];
6775 spa_t *spa;
6776 char *cmd;
6777 boolean_t hasalt;
6778 int f;
6779 char *fd_data_str = getenv("ZTEST_FD_DATA");
6780 struct sigaction action;
6781
6782 (void) setvbuf(stdout, NULL, _IOLBF, 0);
6783
6784 dprintf_setup(&argc, argv);
6785
6786 action.sa_handler = sig_handler;
6787 sigemptyset(&action.sa_mask);
6788 action.sa_flags = 0;
6789
6790 if (sigaction(SIGSEGV, &action, NULL) < 0) {
6791 (void) fprintf(stderr, "ztest: cannot catch SIGSEGV: %s.\n",
6792 strerror(errno));
6793 exit(EXIT_FAILURE);
6794 }
6795
6796 if (sigaction(SIGABRT, &action, NULL) < 0) {
6797 (void) fprintf(stderr, "ztest: cannot catch SIGABRT: %s.\n",
6798 strerror(errno));
6799 exit(EXIT_FAILURE);
6800 }
6801
6802 ztest_fd_rand = open("/dev/urandom", O_RDONLY);
6803 ASSERT3S(ztest_fd_rand, >=, 0);
6804
6805 if (!fd_data_str) {
6806 process_options(argc, argv);
6807
6808 setup_data_fd();
6809 setup_hdr();
6810 setup_data();
6811 bcopy(&ztest_opts, ztest_shared_opts,
6812 sizeof (*ztest_shared_opts));
6813 } else {
6814 ztest_fd_data = atoi(fd_data_str);
6815 setup_data();
6816 bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts));
6817 }
6818 ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count);
6819
6820 /* Override location of zpool.cache */
6821 VERIFY(asprintf((char **)&spa_config_path, "%s/zpool.cache",
6822 ztest_opts.zo_dir) != -1);
6823
6824 ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t),
6825 UMEM_NOFAIL);
6826 zs = ztest_shared;
6827
6828 if (fd_data_str) {
6829 metaslab_gang_bang = ztest_opts.zo_metaslab_gang_bang;
6830 metaslab_df_alloc_threshold =
6831 zs->zs_metaslab_df_alloc_threshold;
6832
6833 if (zs->zs_do_init)
6834 ztest_run_init();
6835 else
6836 ztest_run(zs);
6837 exit(0);
6838 }
6839
6840 hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0);
6841
6842 if (ztest_opts.zo_verbose >= 1) {
6843 (void) printf("%llu vdevs, %d datasets, %d threads,"
6844 " %llu seconds...\n",
6845 (u_longlong_t)ztest_opts.zo_vdevs,
6846 ztest_opts.zo_datasets,
6847 ztest_opts.zo_threads,
6848 (u_longlong_t)ztest_opts.zo_time);
6849 }
6850
6851 cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
6852 (void) strlcpy(cmd, getexecname(), MAXNAMELEN);
6853
6854 zs->zs_do_init = B_TRUE;
6855 if (strlen(ztest_opts.zo_alt_ztest) != 0) {
6856 if (ztest_opts.zo_verbose >= 1) {
6857 (void) printf("Executing older ztest for "
6858 "initialization: %s\n", ztest_opts.zo_alt_ztest);
6859 }
6860 VERIFY(!exec_child(ztest_opts.zo_alt_ztest,
6861 ztest_opts.zo_alt_libpath, B_FALSE, NULL));
6862 } else {
6863 VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL));
6864 }
6865 zs->zs_do_init = B_FALSE;
6866
6867 zs->zs_proc_start = gethrtime();
6868 zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC;
6869
6870 for (f = 0; f < ZTEST_FUNCS; f++) {
6871 zi = &ztest_info[f];
6872 zc = ZTEST_GET_SHARED_CALLSTATE(f);
6873 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
6874 zc->zc_next = UINT64_MAX;
6875 else
6876 zc->zc_next = zs->zs_proc_start +
6877 ztest_random(2 * zi->zi_interval[0] + 1);
6878 }
6879
6880 /*
6881 * Run the tests in a loop. These tests include fault injection
6882 * to verify that self-healing data works, and forced crashes
6883 * to verify that we never lose on-disk consistency.
6884 */
6885 while (gethrtime() < zs->zs_proc_stop) {
6886 int status;
6887 boolean_t killed;
6888
6889 /*
6890 * Initialize the workload counters for each function.
6891 */
6892 for (f = 0; f < ZTEST_FUNCS; f++) {
6893 zc = ZTEST_GET_SHARED_CALLSTATE(f);
6894 zc->zc_count = 0;
6895 zc->zc_time = 0;
6896 }
6897
6898 /* Set the allocation switch size */
6899 zs->zs_metaslab_df_alloc_threshold =
6900 ztest_random(zs->zs_metaslab_sz / 4) + 1;
6901
6902 if (!hasalt || ztest_random(2) == 0) {
6903 if (hasalt && ztest_opts.zo_verbose >= 1) {
6904 (void) printf("Executing newer ztest: %s\n",
6905 cmd);
6906 }
6907 newer++;
6908 killed = exec_child(cmd, NULL, B_TRUE, &status);
6909 } else {
6910 if (hasalt && ztest_opts.zo_verbose >= 1) {
6911 (void) printf("Executing older ztest: %s\n",
6912 ztest_opts.zo_alt_ztest);
6913 }
6914 older++;
6915 killed = exec_child(ztest_opts.zo_alt_ztest,
6916 ztest_opts.zo_alt_libpath, B_TRUE, &status);
6917 }
6918
6919 if (killed)
6920 kills++;
6921 iters++;
6922
6923 if (ztest_opts.zo_verbose >= 1) {
6924 hrtime_t now = gethrtime();
6925
6926 now = MIN(now, zs->zs_proc_stop);
6927 print_time(zs->zs_proc_stop - now, timebuf);
6928 nicenum(zs->zs_space, numbuf);
6929
6930 (void) printf("Pass %3d, %8s, %3llu ENOSPC, "
6931 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
6932 iters,
6933 WIFEXITED(status) ? "Complete" : "SIGKILL",
6934 (u_longlong_t)zs->zs_enospc_count,
6935 100.0 * zs->zs_alloc / zs->zs_space,
6936 numbuf,
6937 100.0 * (now - zs->zs_proc_start) /
6938 (ztest_opts.zo_time * NANOSEC), timebuf);
6939 }
6940
6941 if (ztest_opts.zo_verbose >= 2) {
6942 (void) printf("\nWorkload summary:\n\n");
6943 (void) printf("%7s %9s %s\n",
6944 "Calls", "Time", "Function");
6945 (void) printf("%7s %9s %s\n",
6946 "-----", "----", "--------");
6947 for (f = 0; f < ZTEST_FUNCS; f++) {
6948 zi = &ztest_info[f];
6949 zc = ZTEST_GET_SHARED_CALLSTATE(f);
6950 print_time(zc->zc_time, timebuf);
6951 (void) printf("%7llu %9s %s\n",
6952 (u_longlong_t)zc->zc_count, timebuf,
6953 zi->zi_funcname);
6954 }
6955 (void) printf("\n");
6956 }
6957
6958 /*
6959 * It's possible that we killed a child during a rename test,
6960 * in which case we'll have a 'ztest_tmp' pool lying around
6961 * instead of 'ztest'. Do a blind rename in case this happened.
6962 */
6963 kernel_init(FREAD);
6964 if (spa_open(ztest_opts.zo_pool, &spa, FTAG) == 0) {
6965 spa_close(spa, FTAG);
6966 } else {
6967 char tmpname[ZFS_MAX_DATASET_NAME_LEN];
6968 kernel_fini();
6969 kernel_init(FREAD | FWRITE);
6970 (void) snprintf(tmpname, sizeof (tmpname), "%s_tmp",
6971 ztest_opts.zo_pool);
6972 (void) spa_rename(tmpname, ztest_opts.zo_pool);
6973 }
6974 kernel_fini();
6975
6976 ztest_run_zdb(ztest_opts.zo_pool);
6977 }
6978
6979 if (ztest_opts.zo_verbose >= 1) {
6980 if (hasalt) {
6981 (void) printf("%d runs of older ztest: %s\n", older,
6982 ztest_opts.zo_alt_ztest);
6983 (void) printf("%d runs of newer ztest: %s\n", newer,
6984 cmd);
6985 }
6986 (void) printf("%d killed, %d completed, %.0f%% kill rate\n",
6987 kills, iters - kills, (100.0 * kills) / MAX(1, iters));
6988 }
6989
6990 umem_free(cmd, MAXNAMELEN);
6991
6992 return (0);
6993 }