]> git.proxmox.com Git - mirror_zfs.git/blob - cmd/ztest/ztest.c
Illumos #3090 and #3102
[mirror_zfs.git] / cmd / ztest / ztest.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 */
26
27 /*
28 * The objective of this program is to provide a DMU/ZAP/SPA stress test
29 * that runs entirely in userland, is easy to use, and easy to extend.
30 *
31 * The overall design of the ztest program is as follows:
32 *
33 * (1) For each major functional area (e.g. adding vdevs to a pool,
34 * creating and destroying datasets, reading and writing objects, etc)
35 * we have a simple routine to test that functionality. These
36 * individual routines do not have to do anything "stressful".
37 *
38 * (2) We turn these simple functionality tests into a stress test by
39 * running them all in parallel, with as many threads as desired,
40 * and spread across as many datasets, objects, and vdevs as desired.
41 *
42 * (3) While all this is happening, we inject faults into the pool to
43 * verify that self-healing data really works.
44 *
45 * (4) Every time we open a dataset, we change its checksum and compression
46 * functions. Thus even individual objects vary from block to block
47 * in which checksum they use and whether they're compressed.
48 *
49 * (5) To verify that we never lose on-disk consistency after a crash,
50 * we run the entire test in a child of the main process.
51 * At random times, the child self-immolates with a SIGKILL.
52 * This is the software equivalent of pulling the power cord.
53 * The parent then runs the test again, using the existing
54 * storage pool, as many times as desired. If backwards compatability
55 * testing is enabled ztest will sometimes run the "older" version
56 * of ztest after a SIGKILL.
57 *
58 * (6) To verify that we don't have future leaks or temporal incursions,
59 * many of the functional tests record the transaction group number
60 * as part of their data. When reading old data, they verify that
61 * the transaction group number is less than the current, open txg.
62 * If you add a new test, please do this if applicable.
63 *
64 * (7) Threads are created with a reduced stack size, for sanity checking.
65 * Therefore, it's important not to allocate huge buffers on the stack.
66 *
67 * When run with no arguments, ztest runs for about five minutes and
68 * produces no output if successful. To get a little bit of information,
69 * specify -V. To get more information, specify -VV, and so on.
70 *
71 * To turn this into an overnight stress test, use -T to specify run time.
72 *
73 * You can ask more more vdevs [-v], datasets [-d], or threads [-t]
74 * to increase the pool capacity, fanout, and overall stress level.
75 *
76 * Use the -k option to set the desired frequency of kills.
77 *
78 * When ztest invokes itself it passes all relevant information through a
79 * temporary file which is mmap-ed in the child process. This allows shared
80 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
81 * stored at offset 0 of this file and contains information on the size and
82 * number of shared structures in the file. The information stored in this file
83 * must remain backwards compatible with older versions of ztest so that
84 * ztest can invoke them during backwards compatibility testing (-B).
85 */
86
87 #include <sys/zfs_context.h>
88 #include <sys/spa.h>
89 #include <sys/dmu.h>
90 #include <sys/txg.h>
91 #include <sys/dbuf.h>
92 #include <sys/zap.h>
93 #include <sys/dmu_objset.h>
94 #include <sys/poll.h>
95 #include <sys/stat.h>
96 #include <sys/time.h>
97 #include <sys/wait.h>
98 #include <sys/mman.h>
99 #include <sys/resource.h>
100 #include <sys/zio.h>
101 #include <sys/zil.h>
102 #include <sys/zil_impl.h>
103 #include <sys/vdev_impl.h>
104 #include <sys/vdev_file.h>
105 #include <sys/spa_impl.h>
106 #include <sys/metaslab_impl.h>
107 #include <sys/dsl_prop.h>
108 #include <sys/dsl_dataset.h>
109 #include <sys/dsl_scan.h>
110 #include <sys/zio_checksum.h>
111 #include <sys/refcount.h>
112 #include <sys/zfeature.h>
113 #include <stdio.h>
114 #include <stdio_ext.h>
115 #include <stdlib.h>
116 #include <unistd.h>
117 #include <signal.h>
118 #include <umem.h>
119 #include <dlfcn.h>
120 #include <ctype.h>
121 #include <math.h>
122 #include <sys/fs/zfs.h>
123 #include <libnvpair.h>
124
125 static int ztest_fd_data = -1;
126 static int ztest_fd_rand = -1;
127
128 typedef struct ztest_shared_hdr {
129 uint64_t zh_hdr_size;
130 uint64_t zh_opts_size;
131 uint64_t zh_size;
132 uint64_t zh_stats_size;
133 uint64_t zh_stats_count;
134 uint64_t zh_ds_size;
135 uint64_t zh_ds_count;
136 } ztest_shared_hdr_t;
137
138 static ztest_shared_hdr_t *ztest_shared_hdr;
139
140 typedef struct ztest_shared_opts {
141 char zo_pool[MAXNAMELEN];
142 char zo_dir[MAXNAMELEN];
143 char zo_alt_ztest[MAXNAMELEN];
144 char zo_alt_libpath[MAXNAMELEN];
145 uint64_t zo_vdevs;
146 uint64_t zo_vdevtime;
147 size_t zo_vdev_size;
148 int zo_ashift;
149 int zo_mirrors;
150 int zo_raidz;
151 int zo_raidz_parity;
152 int zo_datasets;
153 int zo_threads;
154 uint64_t zo_passtime;
155 uint64_t zo_killrate;
156 int zo_verbose;
157 int zo_init;
158 uint64_t zo_time;
159 uint64_t zo_maxloops;
160 uint64_t zo_metaslab_gang_bang;
161 } ztest_shared_opts_t;
162
163 static const ztest_shared_opts_t ztest_opts_defaults = {
164 .zo_pool = { 'z', 't', 'e', 's', 't', '\0' },
165 .zo_dir = { '/', 't', 'm', 'p', '\0' },
166 .zo_alt_ztest = { '\0' },
167 .zo_alt_libpath = { '\0' },
168 .zo_vdevs = 5,
169 .zo_ashift = SPA_MINBLOCKSHIFT,
170 .zo_mirrors = 2,
171 .zo_raidz = 4,
172 .zo_raidz_parity = 1,
173 .zo_vdev_size = SPA_MINDEVSIZE,
174 .zo_datasets = 7,
175 .zo_threads = 23,
176 .zo_passtime = 60, /* 60 seconds */
177 .zo_killrate = 70, /* 70% kill rate */
178 .zo_verbose = 0,
179 .zo_init = 1,
180 .zo_time = 300, /* 5 minutes */
181 .zo_maxloops = 50, /* max loops during spa_freeze() */
182 .zo_metaslab_gang_bang = 32 << 10
183 };
184
185 extern uint64_t metaslab_gang_bang;
186 extern uint64_t metaslab_df_alloc_threshold;
187
188 static ztest_shared_opts_t *ztest_shared_opts;
189 static ztest_shared_opts_t ztest_opts;
190
191 typedef struct ztest_shared_ds {
192 uint64_t zd_seq;
193 } ztest_shared_ds_t;
194
195 static ztest_shared_ds_t *ztest_shared_ds;
196 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
197
198 #define BT_MAGIC 0x123456789abcdefULL
199 #define MAXFAULTS() \
200 (MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1)
201
202 enum ztest_io_type {
203 ZTEST_IO_WRITE_TAG,
204 ZTEST_IO_WRITE_PATTERN,
205 ZTEST_IO_WRITE_ZEROES,
206 ZTEST_IO_TRUNCATE,
207 ZTEST_IO_SETATTR,
208 ZTEST_IO_TYPES
209 };
210
211 typedef struct ztest_block_tag {
212 uint64_t bt_magic;
213 uint64_t bt_objset;
214 uint64_t bt_object;
215 uint64_t bt_offset;
216 uint64_t bt_gen;
217 uint64_t bt_txg;
218 uint64_t bt_crtxg;
219 } ztest_block_tag_t;
220
221 typedef struct bufwad {
222 uint64_t bw_index;
223 uint64_t bw_txg;
224 uint64_t bw_data;
225 } bufwad_t;
226
227 /*
228 * XXX -- fix zfs range locks to be generic so we can use them here.
229 */
230 typedef enum {
231 RL_READER,
232 RL_WRITER,
233 RL_APPEND
234 } rl_type_t;
235
236 typedef struct rll {
237 void *rll_writer;
238 int rll_readers;
239 kmutex_t rll_lock;
240 kcondvar_t rll_cv;
241 } rll_t;
242
243 typedef struct rl {
244 uint64_t rl_object;
245 uint64_t rl_offset;
246 uint64_t rl_size;
247 rll_t *rl_lock;
248 } rl_t;
249
250 #define ZTEST_RANGE_LOCKS 64
251 #define ZTEST_OBJECT_LOCKS 64
252
253 /*
254 * Object descriptor. Used as a template for object lookup/create/remove.
255 */
256 typedef struct ztest_od {
257 uint64_t od_dir;
258 uint64_t od_object;
259 dmu_object_type_t od_type;
260 dmu_object_type_t od_crtype;
261 uint64_t od_blocksize;
262 uint64_t od_crblocksize;
263 uint64_t od_gen;
264 uint64_t od_crgen;
265 char od_name[MAXNAMELEN];
266 } ztest_od_t;
267
268 /*
269 * Per-dataset state.
270 */
271 typedef struct ztest_ds {
272 ztest_shared_ds_t *zd_shared;
273 objset_t *zd_os;
274 krwlock_t zd_zilog_lock;
275 zilog_t *zd_zilog;
276 ztest_od_t *zd_od; /* debugging aid */
277 char zd_name[MAXNAMELEN];
278 kmutex_t zd_dirobj_lock;
279 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS];
280 rll_t zd_range_lock[ZTEST_RANGE_LOCKS];
281 } ztest_ds_t;
282
283 /*
284 * Per-iteration state.
285 */
286 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
287
288 typedef struct ztest_info {
289 ztest_func_t *zi_func; /* test function */
290 uint64_t zi_iters; /* iterations per execution */
291 uint64_t *zi_interval; /* execute every <interval> seconds */
292 } ztest_info_t;
293
294 typedef struct ztest_shared_callstate {
295 uint64_t zc_count; /* per-pass count */
296 uint64_t zc_time; /* per-pass time */
297 uint64_t zc_next; /* next time to call this function */
298 } ztest_shared_callstate_t;
299
300 static ztest_shared_callstate_t *ztest_shared_callstate;
301 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
302
303 /*
304 * Note: these aren't static because we want dladdr() to work.
305 */
306 ztest_func_t ztest_dmu_read_write;
307 ztest_func_t ztest_dmu_write_parallel;
308 ztest_func_t ztest_dmu_object_alloc_free;
309 ztest_func_t ztest_dmu_commit_callbacks;
310 ztest_func_t ztest_zap;
311 ztest_func_t ztest_zap_parallel;
312 ztest_func_t ztest_zil_commit;
313 ztest_func_t ztest_zil_remount;
314 ztest_func_t ztest_dmu_read_write_zcopy;
315 ztest_func_t ztest_dmu_objset_create_destroy;
316 ztest_func_t ztest_dmu_prealloc;
317 ztest_func_t ztest_fzap;
318 ztest_func_t ztest_dmu_snapshot_create_destroy;
319 ztest_func_t ztest_dsl_prop_get_set;
320 ztest_func_t ztest_spa_prop_get_set;
321 ztest_func_t ztest_spa_create_destroy;
322 ztest_func_t ztest_fault_inject;
323 ztest_func_t ztest_ddt_repair;
324 ztest_func_t ztest_dmu_snapshot_hold;
325 ztest_func_t ztest_spa_rename;
326 ztest_func_t ztest_scrub;
327 ztest_func_t ztest_dsl_dataset_promote_busy;
328 ztest_func_t ztest_vdev_attach_detach;
329 ztest_func_t ztest_vdev_LUN_growth;
330 ztest_func_t ztest_vdev_add_remove;
331 ztest_func_t ztest_vdev_aux_add_remove;
332 ztest_func_t ztest_split_pool;
333 ztest_func_t ztest_reguid;
334
335 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */
336 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */
337 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */
338 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */
339 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */
340
341 ztest_info_t ztest_info[] = {
342 { ztest_dmu_read_write, 1, &zopt_always },
343 { ztest_dmu_write_parallel, 10, &zopt_always },
344 { ztest_dmu_object_alloc_free, 1, &zopt_always },
345 { ztest_dmu_commit_callbacks, 1, &zopt_always },
346 { ztest_zap, 30, &zopt_always },
347 { ztest_zap_parallel, 100, &zopt_always },
348 { ztest_split_pool, 1, &zopt_always },
349 { ztest_zil_commit, 1, &zopt_incessant },
350 { ztest_zil_remount, 1, &zopt_sometimes },
351 { ztest_dmu_read_write_zcopy, 1, &zopt_often },
352 { ztest_dmu_objset_create_destroy, 1, &zopt_often },
353 { ztest_dsl_prop_get_set, 1, &zopt_often },
354 { ztest_spa_prop_get_set, 1, &zopt_sometimes },
355 #if 0
356 { ztest_dmu_prealloc, 1, &zopt_sometimes },
357 #endif
358 { ztest_fzap, 1, &zopt_sometimes },
359 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes },
360 { ztest_spa_create_destroy, 1, &zopt_sometimes },
361 { ztest_fault_inject, 1, &zopt_sometimes },
362 { ztest_ddt_repair, 1, &zopt_sometimes },
363 { ztest_dmu_snapshot_hold, 1, &zopt_sometimes },
364 { ztest_reguid, 1, &zopt_sometimes },
365 { ztest_spa_rename, 1, &zopt_rarely },
366 { ztest_scrub, 1, &zopt_rarely },
367 { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely },
368 { ztest_vdev_attach_detach, 1, &zopt_rarely },
369 { ztest_vdev_LUN_growth, 1, &zopt_rarely },
370 { ztest_vdev_add_remove, 1,
371 &ztest_opts.zo_vdevtime },
372 { ztest_vdev_aux_add_remove, 1,
373 &ztest_opts.zo_vdevtime },
374 };
375
376 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t))
377
378 /*
379 * The following struct is used to hold a list of uncalled commit callbacks.
380 * The callbacks are ordered by txg number.
381 */
382 typedef struct ztest_cb_list {
383 kmutex_t zcl_callbacks_lock;
384 list_t zcl_callbacks;
385 } ztest_cb_list_t;
386
387 /*
388 * Stuff we need to share writably between parent and child.
389 */
390 typedef struct ztest_shared {
391 boolean_t zs_do_init;
392 hrtime_t zs_proc_start;
393 hrtime_t zs_proc_stop;
394 hrtime_t zs_thread_start;
395 hrtime_t zs_thread_stop;
396 hrtime_t zs_thread_kill;
397 uint64_t zs_enospc_count;
398 uint64_t zs_vdev_next_leaf;
399 uint64_t zs_vdev_aux;
400 uint64_t zs_alloc;
401 uint64_t zs_space;
402 uint64_t zs_splits;
403 uint64_t zs_mirrors;
404 uint64_t zs_metaslab_sz;
405 uint64_t zs_metaslab_df_alloc_threshold;
406 uint64_t zs_guid;
407 } ztest_shared_t;
408
409 #define ID_PARALLEL -1ULL
410
411 static char ztest_dev_template[] = "%s/%s.%llua";
412 static char ztest_aux_template[] = "%s/%s.%s.%llu";
413 ztest_shared_t *ztest_shared;
414
415 static spa_t *ztest_spa = NULL;
416 static ztest_ds_t *ztest_ds;
417
418 static kmutex_t ztest_vdev_lock;
419
420 /*
421 * The ztest_name_lock protects the pool and dataset namespace used by
422 * the individual tests. To modify the namespace, consumers must grab
423 * this lock as writer. Grabbing the lock as reader will ensure that the
424 * namespace does not change while the lock is held.
425 */
426 static krwlock_t ztest_name_lock;
427
428 static boolean_t ztest_dump_core = B_TRUE;
429 static boolean_t ztest_exiting;
430
431 /* Global commit callback list */
432 static ztest_cb_list_t zcl;
433 /* Commit cb delay */
434 static uint64_t zc_min_txg_delay = UINT64_MAX;
435 static int zc_cb_counter = 0;
436
437 /*
438 * Minimum number of commit callbacks that need to be registered for us to check
439 * whether the minimum txg delay is acceptable.
440 */
441 #define ZTEST_COMMIT_CB_MIN_REG 100
442
443 /*
444 * If a number of txgs equal to this threshold have been created after a commit
445 * callback has been registered but not called, then we assume there is an
446 * implementation bug.
447 */
448 #define ZTEST_COMMIT_CB_THRESH (TXG_CONCURRENT_STATES + 1000)
449
450 extern uint64_t metaslab_gang_bang;
451 extern uint64_t metaslab_df_alloc_threshold;
452
453 enum ztest_object {
454 ZTEST_META_DNODE = 0,
455 ZTEST_DIROBJ,
456 ZTEST_OBJECTS
457 };
458
459 static void usage(boolean_t) __NORETURN;
460
461 /*
462 * These libumem hooks provide a reasonable set of defaults for the allocator's
463 * debugging facilities.
464 */
465 const char *
466 _umem_debug_init(void)
467 {
468 return ("default,verbose"); /* $UMEM_DEBUG setting */
469 }
470
471 const char *
472 _umem_logging_init(void)
473 {
474 return ("fail,contents"); /* $UMEM_LOGGING setting */
475 }
476
477 #define FATAL_MSG_SZ 1024
478
479 char *fatal_msg;
480
481 static void
482 fatal(int do_perror, char *message, ...)
483 {
484 va_list args;
485 int save_errno = errno;
486 char *buf;
487
488 (void) fflush(stdout);
489 buf = umem_alloc(FATAL_MSG_SZ, UMEM_NOFAIL);
490
491 va_start(args, message);
492 (void) sprintf(buf, "ztest: ");
493 /* LINTED */
494 (void) vsprintf(buf + strlen(buf), message, args);
495 va_end(args);
496 if (do_perror) {
497 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
498 ": %s", strerror(save_errno));
499 }
500 (void) fprintf(stderr, "%s\n", buf);
501 fatal_msg = buf; /* to ease debugging */
502 if (ztest_dump_core)
503 abort();
504 exit(3);
505 }
506
507 static int
508 str2shift(const char *buf)
509 {
510 const char *ends = "BKMGTPEZ";
511 int i;
512
513 if (buf[0] == '\0')
514 return (0);
515 for (i = 0; i < strlen(ends); i++) {
516 if (toupper(buf[0]) == ends[i])
517 break;
518 }
519 if (i == strlen(ends)) {
520 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
521 buf);
522 usage(B_FALSE);
523 }
524 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
525 return (10*i);
526 }
527 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
528 usage(B_FALSE);
529 /* NOTREACHED */
530 }
531
532 static uint64_t
533 nicenumtoull(const char *buf)
534 {
535 char *end;
536 uint64_t val;
537
538 val = strtoull(buf, &end, 0);
539 if (end == buf) {
540 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
541 usage(B_FALSE);
542 } else if (end[0] == '.') {
543 double fval = strtod(buf, &end);
544 fval *= pow(2, str2shift(end));
545 if (fval > UINT64_MAX) {
546 (void) fprintf(stderr, "ztest: value too large: %s\n",
547 buf);
548 usage(B_FALSE);
549 }
550 val = (uint64_t)fval;
551 } else {
552 int shift = str2shift(end);
553 if (shift >= 64 || (val << shift) >> shift != val) {
554 (void) fprintf(stderr, "ztest: value too large: %s\n",
555 buf);
556 usage(B_FALSE);
557 }
558 val <<= shift;
559 }
560 return (val);
561 }
562
563 static void
564 usage(boolean_t requested)
565 {
566 const ztest_shared_opts_t *zo = &ztest_opts_defaults;
567
568 char nice_vdev_size[10];
569 char nice_gang_bang[10];
570 FILE *fp = requested ? stdout : stderr;
571
572 nicenum(zo->zo_vdev_size, nice_vdev_size);
573 nicenum(zo->zo_metaslab_gang_bang, nice_gang_bang);
574
575 (void) fprintf(fp, "Usage: %s\n"
576 "\t[-v vdevs (default: %llu)]\n"
577 "\t[-s size_of_each_vdev (default: %s)]\n"
578 "\t[-a alignment_shift (default: %d)] use 0 for random\n"
579 "\t[-m mirror_copies (default: %d)]\n"
580 "\t[-r raidz_disks (default: %d)]\n"
581 "\t[-R raidz_parity (default: %d)]\n"
582 "\t[-d datasets (default: %d)]\n"
583 "\t[-t threads (default: %d)]\n"
584 "\t[-g gang_block_threshold (default: %s)]\n"
585 "\t[-i init_count (default: %d)] initialize pool i times\n"
586 "\t[-k kill_percentage (default: %llu%%)]\n"
587 "\t[-p pool_name (default: %s)]\n"
588 "\t[-f dir (default: %s)] file directory for vdev files\n"
589 "\t[-V] verbose (use multiple times for ever more blather)\n"
590 "\t[-E] use existing pool instead of creating new one\n"
591 "\t[-T time (default: %llu sec)] total run time\n"
592 "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n"
593 "\t[-P passtime (default: %llu sec)] time per pass\n"
594 "\t[-B alt_ztest (default: <none>)] alternate ztest path\n"
595 "\t[-h] (print help)\n"
596 "",
597 zo->zo_pool,
598 (u_longlong_t)zo->zo_vdevs, /* -v */
599 nice_vdev_size, /* -s */
600 zo->zo_ashift, /* -a */
601 zo->zo_mirrors, /* -m */
602 zo->zo_raidz, /* -r */
603 zo->zo_raidz_parity, /* -R */
604 zo->zo_datasets, /* -d */
605 zo->zo_threads, /* -t */
606 nice_gang_bang, /* -g */
607 zo->zo_init, /* -i */
608 (u_longlong_t)zo->zo_killrate, /* -k */
609 zo->zo_pool, /* -p */
610 zo->zo_dir, /* -f */
611 (u_longlong_t)zo->zo_time, /* -T */
612 (u_longlong_t)zo->zo_maxloops, /* -F */
613 (u_longlong_t)zo->zo_passtime);
614 exit(requested ? 0 : 1);
615 }
616
617 static void
618 process_options(int argc, char **argv)
619 {
620 char *path;
621 ztest_shared_opts_t *zo = &ztest_opts;
622
623 int opt;
624 uint64_t value;
625 char altdir[MAXNAMELEN] = { 0 };
626
627 bcopy(&ztest_opts_defaults, zo, sizeof (*zo));
628
629 while ((opt = getopt(argc, argv,
630 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:B:")) != EOF) {
631 value = 0;
632 switch (opt) {
633 case 'v':
634 case 's':
635 case 'a':
636 case 'm':
637 case 'r':
638 case 'R':
639 case 'd':
640 case 't':
641 case 'g':
642 case 'i':
643 case 'k':
644 case 'T':
645 case 'P':
646 case 'F':
647 value = nicenumtoull(optarg);
648 }
649 switch (opt) {
650 case 'v':
651 zo->zo_vdevs = value;
652 break;
653 case 's':
654 zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value);
655 break;
656 case 'a':
657 zo->zo_ashift = value;
658 break;
659 case 'm':
660 zo->zo_mirrors = value;
661 break;
662 case 'r':
663 zo->zo_raidz = MAX(1, value);
664 break;
665 case 'R':
666 zo->zo_raidz_parity = MIN(MAX(value, 1), 3);
667 break;
668 case 'd':
669 zo->zo_datasets = MAX(1, value);
670 break;
671 case 't':
672 zo->zo_threads = MAX(1, value);
673 break;
674 case 'g':
675 zo->zo_metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1,
676 value);
677 break;
678 case 'i':
679 zo->zo_init = value;
680 break;
681 case 'k':
682 zo->zo_killrate = value;
683 break;
684 case 'p':
685 (void) strlcpy(zo->zo_pool, optarg,
686 sizeof (zo->zo_pool));
687 break;
688 case 'f':
689 path = realpath(optarg, NULL);
690 if (path == NULL) {
691 (void) fprintf(stderr, "error: %s: %s\n",
692 optarg, strerror(errno));
693 usage(B_FALSE);
694 } else {
695 (void) strlcpy(zo->zo_dir, path,
696 sizeof (zo->zo_dir));
697 }
698 break;
699 case 'V':
700 zo->zo_verbose++;
701 break;
702 case 'E':
703 zo->zo_init = 0;
704 break;
705 case 'T':
706 zo->zo_time = value;
707 break;
708 case 'P':
709 zo->zo_passtime = MAX(1, value);
710 break;
711 case 'F':
712 zo->zo_maxloops = MAX(1, value);
713 break;
714 case 'B':
715 (void) strlcpy(altdir, optarg, sizeof (altdir));
716 break;
717 case 'h':
718 usage(B_TRUE);
719 break;
720 case '?':
721 default:
722 usage(B_FALSE);
723 break;
724 }
725 }
726
727 zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1);
728
729 zo->zo_vdevtime =
730 (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs :
731 UINT64_MAX >> 2);
732
733 if (strlen(altdir) > 0) {
734 char *cmd;
735 char *realaltdir;
736 char *bin;
737 char *ztest;
738 char *isa;
739 int isalen;
740
741 cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
742 realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
743
744 VERIFY(NULL != realpath(getexecname(), cmd));
745 if (0 != access(altdir, F_OK)) {
746 ztest_dump_core = B_FALSE;
747 fatal(B_TRUE, "invalid alternate ztest path: %s",
748 altdir);
749 }
750 VERIFY(NULL != realpath(altdir, realaltdir));
751
752 /*
753 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest".
754 * We want to extract <isa> to determine if we should use
755 * 32 or 64 bit binaries.
756 */
757 bin = strstr(cmd, "/usr/bin/");
758 ztest = strstr(bin, "/ztest");
759 isa = bin + 9;
760 isalen = ztest - isa;
761 (void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest),
762 "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa);
763 (void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath),
764 "%s/usr/lib/%.*s", realaltdir, isalen, isa);
765
766 if (0 != access(zo->zo_alt_ztest, X_OK)) {
767 ztest_dump_core = B_FALSE;
768 fatal(B_TRUE, "invalid alternate ztest: %s",
769 zo->zo_alt_ztest);
770 } else if (0 != access(zo->zo_alt_libpath, X_OK)) {
771 ztest_dump_core = B_FALSE;
772 fatal(B_TRUE, "invalid alternate lib directory %s",
773 zo->zo_alt_libpath);
774 }
775
776 umem_free(cmd, MAXPATHLEN);
777 umem_free(realaltdir, MAXPATHLEN);
778 }
779 }
780
781 static void
782 ztest_kill(ztest_shared_t *zs)
783 {
784 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa));
785 zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa));
786 (void) kill(getpid(), SIGKILL);
787 }
788
789 static uint64_t
790 ztest_random(uint64_t range)
791 {
792 uint64_t r;
793
794 ASSERT3S(ztest_fd_rand, >=, 0);
795
796 if (range == 0)
797 return (0);
798
799 if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r))
800 fatal(1, "short read from /dev/urandom");
801
802 return (r % range);
803 }
804
805 /* ARGSUSED */
806 static void
807 ztest_record_enospc(const char *s)
808 {
809 ztest_shared->zs_enospc_count++;
810 }
811
812 static uint64_t
813 ztest_get_ashift(void)
814 {
815 if (ztest_opts.zo_ashift == 0)
816 return (SPA_MINBLOCKSHIFT + ztest_random(3));
817 return (ztest_opts.zo_ashift);
818 }
819
820 static nvlist_t *
821 make_vdev_file(char *path, char *aux, size_t size, uint64_t ashift)
822 {
823 char *pathbuf;
824 uint64_t vdev;
825 nvlist_t *file;
826
827 pathbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
828
829 if (ashift == 0)
830 ashift = ztest_get_ashift();
831
832 if (path == NULL) {
833 path = pathbuf;
834
835 if (aux != NULL) {
836 vdev = ztest_shared->zs_vdev_aux;
837 (void) snprintf(path, MAXPATHLEN,
838 ztest_aux_template, ztest_opts.zo_dir,
839 ztest_opts.zo_pool, aux, vdev);
840 } else {
841 vdev = ztest_shared->zs_vdev_next_leaf++;
842 (void) snprintf(path, MAXPATHLEN,
843 ztest_dev_template, ztest_opts.zo_dir,
844 ztest_opts.zo_pool, vdev);
845 }
846 }
847
848 if (size != 0) {
849 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
850 if (fd == -1)
851 fatal(1, "can't open %s", path);
852 if (ftruncate(fd, size) != 0)
853 fatal(1, "can't ftruncate %s", path);
854 (void) close(fd);
855 }
856
857 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0);
858 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0);
859 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0);
860 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0);
861 umem_free(pathbuf, MAXPATHLEN);
862
863 return (file);
864 }
865
866 static nvlist_t *
867 make_vdev_raidz(char *path, char *aux, size_t size, uint64_t ashift, int r)
868 {
869 nvlist_t *raidz, **child;
870 int c;
871
872 if (r < 2)
873 return (make_vdev_file(path, aux, size, ashift));
874 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
875
876 for (c = 0; c < r; c++)
877 child[c] = make_vdev_file(path, aux, size, ashift);
878
879 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0);
880 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE,
881 VDEV_TYPE_RAIDZ) == 0);
882 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY,
883 ztest_opts.zo_raidz_parity) == 0);
884 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN,
885 child, r) == 0);
886
887 for (c = 0; c < r; c++)
888 nvlist_free(child[c]);
889
890 umem_free(child, r * sizeof (nvlist_t *));
891
892 return (raidz);
893 }
894
895 static nvlist_t *
896 make_vdev_mirror(char *path, char *aux, size_t size, uint64_t ashift,
897 int r, int m)
898 {
899 nvlist_t *mirror, **child;
900 int c;
901
902 if (m < 1)
903 return (make_vdev_raidz(path, aux, size, ashift, r));
904
905 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
906
907 for (c = 0; c < m; c++)
908 child[c] = make_vdev_raidz(path, aux, size, ashift, r);
909
910 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0);
911 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE,
912 VDEV_TYPE_MIRROR) == 0);
913 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
914 child, m) == 0);
915
916 for (c = 0; c < m; c++)
917 nvlist_free(child[c]);
918
919 umem_free(child, m * sizeof (nvlist_t *));
920
921 return (mirror);
922 }
923
924 static nvlist_t *
925 make_vdev_root(char *path, char *aux, size_t size, uint64_t ashift,
926 int log, int r, int m, int t)
927 {
928 nvlist_t *root, **child;
929 int c;
930
931 ASSERT(t > 0);
932
933 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
934
935 for (c = 0; c < t; c++) {
936 child[c] = make_vdev_mirror(path, aux, size, ashift, r, m);
937 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG,
938 log) == 0);
939 }
940
941 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0);
942 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0);
943 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
944 child, t) == 0);
945
946 for (c = 0; c < t; c++)
947 nvlist_free(child[c]);
948
949 umem_free(child, t * sizeof (nvlist_t *));
950
951 return (root);
952 }
953
954 static int
955 ztest_random_blocksize(void)
956 {
957 return (1 << (SPA_MINBLOCKSHIFT +
958 ztest_random(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1)));
959 }
960
961 static int
962 ztest_random_ibshift(void)
963 {
964 return (DN_MIN_INDBLKSHIFT +
965 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
966 }
967
968 static uint64_t
969 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
970 {
971 uint64_t top;
972 vdev_t *rvd = spa->spa_root_vdev;
973 vdev_t *tvd;
974
975 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
976
977 do {
978 top = ztest_random(rvd->vdev_children);
979 tvd = rvd->vdev_child[top];
980 } while (tvd->vdev_ishole || (tvd->vdev_islog && !log_ok) ||
981 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
982
983 return (top);
984 }
985
986 static uint64_t
987 ztest_random_dsl_prop(zfs_prop_t prop)
988 {
989 uint64_t value;
990
991 do {
992 value = zfs_prop_random_value(prop, ztest_random(-1ULL));
993 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
994
995 return (value);
996 }
997
998 static int
999 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
1000 boolean_t inherit)
1001 {
1002 const char *propname = zfs_prop_to_name(prop);
1003 const char *valname;
1004 char *setpoint;
1005 uint64_t curval;
1006 int error;
1007
1008 error = dsl_prop_set(osname, propname,
1009 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL),
1010 sizeof (value), 1, &value);
1011
1012 if (error == ENOSPC) {
1013 ztest_record_enospc(FTAG);
1014 return (error);
1015 }
1016 ASSERT3U(error, ==, 0);
1017
1018 setpoint = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1019 VERIFY3U(dsl_prop_get(osname, propname, sizeof (curval),
1020 1, &curval, setpoint), ==, 0);
1021
1022 if (ztest_opts.zo_verbose >= 6) {
1023 VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0);
1024 (void) printf("%s %s = %s at '%s'\n",
1025 osname, propname, valname, setpoint);
1026 }
1027 umem_free(setpoint, MAXPATHLEN);
1028
1029 return (error);
1030 }
1031
1032 static int
1033 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value)
1034 {
1035 spa_t *spa = ztest_spa;
1036 nvlist_t *props = NULL;
1037 int error;
1038
1039 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
1040 VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0);
1041
1042 error = spa_prop_set(spa, props);
1043
1044 nvlist_free(props);
1045
1046 if (error == ENOSPC) {
1047 ztest_record_enospc(FTAG);
1048 return (error);
1049 }
1050 ASSERT3U(error, ==, 0);
1051
1052 return (error);
1053 }
1054
1055 static void
1056 ztest_rll_init(rll_t *rll)
1057 {
1058 rll->rll_writer = NULL;
1059 rll->rll_readers = 0;
1060 mutex_init(&rll->rll_lock, NULL, MUTEX_DEFAULT, NULL);
1061 cv_init(&rll->rll_cv, NULL, CV_DEFAULT, NULL);
1062 }
1063
1064 static void
1065 ztest_rll_destroy(rll_t *rll)
1066 {
1067 ASSERT(rll->rll_writer == NULL);
1068 ASSERT(rll->rll_readers == 0);
1069 mutex_destroy(&rll->rll_lock);
1070 cv_destroy(&rll->rll_cv);
1071 }
1072
1073 static void
1074 ztest_rll_lock(rll_t *rll, rl_type_t type)
1075 {
1076 mutex_enter(&rll->rll_lock);
1077
1078 if (type == RL_READER) {
1079 while (rll->rll_writer != NULL)
1080 (void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1081 rll->rll_readers++;
1082 } else {
1083 while (rll->rll_writer != NULL || rll->rll_readers)
1084 (void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1085 rll->rll_writer = curthread;
1086 }
1087
1088 mutex_exit(&rll->rll_lock);
1089 }
1090
1091 static void
1092 ztest_rll_unlock(rll_t *rll)
1093 {
1094 mutex_enter(&rll->rll_lock);
1095
1096 if (rll->rll_writer) {
1097 ASSERT(rll->rll_readers == 0);
1098 rll->rll_writer = NULL;
1099 } else {
1100 ASSERT(rll->rll_readers != 0);
1101 ASSERT(rll->rll_writer == NULL);
1102 rll->rll_readers--;
1103 }
1104
1105 if (rll->rll_writer == NULL && rll->rll_readers == 0)
1106 cv_broadcast(&rll->rll_cv);
1107
1108 mutex_exit(&rll->rll_lock);
1109 }
1110
1111 static void
1112 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
1113 {
1114 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1115
1116 ztest_rll_lock(rll, type);
1117 }
1118
1119 static void
1120 ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
1121 {
1122 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1123
1124 ztest_rll_unlock(rll);
1125 }
1126
1127 static rl_t *
1128 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
1129 uint64_t size, rl_type_t type)
1130 {
1131 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1));
1132 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)];
1133 rl_t *rl;
1134
1135 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL);
1136 rl->rl_object = object;
1137 rl->rl_offset = offset;
1138 rl->rl_size = size;
1139 rl->rl_lock = rll;
1140
1141 ztest_rll_lock(rll, type);
1142
1143 return (rl);
1144 }
1145
1146 static void
1147 ztest_range_unlock(rl_t *rl)
1148 {
1149 rll_t *rll = rl->rl_lock;
1150
1151 ztest_rll_unlock(rll);
1152
1153 umem_free(rl, sizeof (*rl));
1154 }
1155
1156 static void
1157 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os)
1158 {
1159 zd->zd_os = os;
1160 zd->zd_zilog = dmu_objset_zil(os);
1161 zd->zd_shared = szd;
1162 dmu_objset_name(os, zd->zd_name);
1163 int l;
1164
1165 if (zd->zd_shared != NULL)
1166 zd->zd_shared->zd_seq = 0;
1167
1168 rw_init(&zd->zd_zilog_lock, NULL, RW_DEFAULT, NULL);
1169 mutex_init(&zd->zd_dirobj_lock, NULL, MUTEX_DEFAULT, NULL);
1170
1171 for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1172 ztest_rll_init(&zd->zd_object_lock[l]);
1173
1174 for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1175 ztest_rll_init(&zd->zd_range_lock[l]);
1176 }
1177
1178 static void
1179 ztest_zd_fini(ztest_ds_t *zd)
1180 {
1181 int l;
1182
1183 mutex_destroy(&zd->zd_dirobj_lock);
1184 rw_destroy(&zd->zd_zilog_lock);
1185
1186 for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1187 ztest_rll_destroy(&zd->zd_object_lock[l]);
1188
1189 for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1190 ztest_rll_destroy(&zd->zd_range_lock[l]);
1191 }
1192
1193 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
1194
1195 static uint64_t
1196 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag)
1197 {
1198 uint64_t txg;
1199 int error;
1200
1201 /*
1202 * Attempt to assign tx to some transaction group.
1203 */
1204 error = dmu_tx_assign(tx, txg_how);
1205 if (error) {
1206 if (error == ERESTART) {
1207 ASSERT(txg_how == TXG_NOWAIT);
1208 dmu_tx_wait(tx);
1209 } else {
1210 ASSERT3U(error, ==, ENOSPC);
1211 ztest_record_enospc(tag);
1212 }
1213 dmu_tx_abort(tx);
1214 return (0);
1215 }
1216 txg = dmu_tx_get_txg(tx);
1217 ASSERT(txg != 0);
1218 return (txg);
1219 }
1220
1221 static void
1222 ztest_pattern_set(void *buf, uint64_t size, uint64_t value)
1223 {
1224 uint64_t *ip = buf;
1225 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1226
1227 while (ip < ip_end)
1228 *ip++ = value;
1229 }
1230
1231 #ifndef NDEBUG
1232 static boolean_t
1233 ztest_pattern_match(void *buf, uint64_t size, uint64_t value)
1234 {
1235 uint64_t *ip = buf;
1236 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1237 uint64_t diff = 0;
1238
1239 while (ip < ip_end)
1240 diff |= (value - *ip++);
1241
1242 return (diff == 0);
1243 }
1244 #endif
1245
1246 static void
1247 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1248 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg)
1249 {
1250 bt->bt_magic = BT_MAGIC;
1251 bt->bt_objset = dmu_objset_id(os);
1252 bt->bt_object = object;
1253 bt->bt_offset = offset;
1254 bt->bt_gen = gen;
1255 bt->bt_txg = txg;
1256 bt->bt_crtxg = crtxg;
1257 }
1258
1259 static void
1260 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1261 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg)
1262 {
1263 ASSERT(bt->bt_magic == BT_MAGIC);
1264 ASSERT(bt->bt_objset == dmu_objset_id(os));
1265 ASSERT(bt->bt_object == object);
1266 ASSERT(bt->bt_offset == offset);
1267 ASSERT(bt->bt_gen <= gen);
1268 ASSERT(bt->bt_txg <= txg);
1269 ASSERT(bt->bt_crtxg == crtxg);
1270 }
1271
1272 static ztest_block_tag_t *
1273 ztest_bt_bonus(dmu_buf_t *db)
1274 {
1275 dmu_object_info_t doi;
1276 ztest_block_tag_t *bt;
1277
1278 dmu_object_info_from_db(db, &doi);
1279 ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
1280 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
1281 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
1282
1283 return (bt);
1284 }
1285
1286 /*
1287 * ZIL logging ops
1288 */
1289
1290 #define lrz_type lr_mode
1291 #define lrz_blocksize lr_uid
1292 #define lrz_ibshift lr_gid
1293 #define lrz_bonustype lr_rdev
1294 #define lrz_bonuslen lr_crtime[1]
1295
1296 static void
1297 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
1298 {
1299 char *name = (void *)(lr + 1); /* name follows lr */
1300 size_t namesize = strlen(name) + 1;
1301 itx_t *itx;
1302
1303 if (zil_replaying(zd->zd_zilog, tx))
1304 return;
1305
1306 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
1307 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1308 sizeof (*lr) + namesize - sizeof (lr_t));
1309
1310 zil_itx_assign(zd->zd_zilog, itx, tx);
1311 }
1312
1313 static void
1314 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object)
1315 {
1316 char *name = (void *)(lr + 1); /* name follows lr */
1317 size_t namesize = strlen(name) + 1;
1318 itx_t *itx;
1319
1320 if (zil_replaying(zd->zd_zilog, tx))
1321 return;
1322
1323 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
1324 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1325 sizeof (*lr) + namesize - sizeof (lr_t));
1326
1327 itx->itx_oid = object;
1328 zil_itx_assign(zd->zd_zilog, itx, tx);
1329 }
1330
1331 static void
1332 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
1333 {
1334 itx_t *itx;
1335 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
1336
1337 if (zil_replaying(zd->zd_zilog, tx))
1338 return;
1339
1340 if (lr->lr_length > ZIL_MAX_LOG_DATA)
1341 write_state = WR_INDIRECT;
1342
1343 itx = zil_itx_create(TX_WRITE,
1344 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
1345
1346 if (write_state == WR_COPIED &&
1347 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
1348 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) {
1349 zil_itx_destroy(itx);
1350 itx = zil_itx_create(TX_WRITE, sizeof (*lr));
1351 write_state = WR_NEED_COPY;
1352 }
1353 itx->itx_private = zd;
1354 itx->itx_wr_state = write_state;
1355 itx->itx_sync = (ztest_random(8) == 0);
1356 itx->itx_sod += (write_state == WR_NEED_COPY ? lr->lr_length : 0);
1357
1358 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1359 sizeof (*lr) - sizeof (lr_t));
1360
1361 zil_itx_assign(zd->zd_zilog, itx, tx);
1362 }
1363
1364 static void
1365 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
1366 {
1367 itx_t *itx;
1368
1369 if (zil_replaying(zd->zd_zilog, tx))
1370 return;
1371
1372 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
1373 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1374 sizeof (*lr) - sizeof (lr_t));
1375
1376 itx->itx_sync = B_FALSE;
1377 zil_itx_assign(zd->zd_zilog, itx, tx);
1378 }
1379
1380 static void
1381 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
1382 {
1383 itx_t *itx;
1384
1385 if (zil_replaying(zd->zd_zilog, tx))
1386 return;
1387
1388 itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
1389 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1390 sizeof (*lr) - sizeof (lr_t));
1391
1392 itx->itx_sync = B_FALSE;
1393 zil_itx_assign(zd->zd_zilog, itx, tx);
1394 }
1395
1396 /*
1397 * ZIL replay ops
1398 */
1399 static int
1400 ztest_replay_create(ztest_ds_t *zd, lr_create_t *lr, boolean_t byteswap)
1401 {
1402 char *name = (void *)(lr + 1); /* name follows lr */
1403 objset_t *os = zd->zd_os;
1404 ztest_block_tag_t *bbt;
1405 dmu_buf_t *db;
1406 dmu_tx_t *tx;
1407 uint64_t txg;
1408 int error = 0;
1409
1410 if (byteswap)
1411 byteswap_uint64_array(lr, sizeof (*lr));
1412
1413 ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1414 ASSERT(name[0] != '\0');
1415
1416 tx = dmu_tx_create(os);
1417
1418 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
1419
1420 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1421 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1422 } else {
1423 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1424 }
1425
1426 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1427 if (txg == 0)
1428 return (ENOSPC);
1429
1430 ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid);
1431
1432 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1433 if (lr->lr_foid == 0) {
1434 lr->lr_foid = zap_create(os,
1435 lr->lrz_type, lr->lrz_bonustype,
1436 lr->lrz_bonuslen, tx);
1437 } else {
1438 error = zap_create_claim(os, lr->lr_foid,
1439 lr->lrz_type, lr->lrz_bonustype,
1440 lr->lrz_bonuslen, tx);
1441 }
1442 } else {
1443 if (lr->lr_foid == 0) {
1444 lr->lr_foid = dmu_object_alloc(os,
1445 lr->lrz_type, 0, lr->lrz_bonustype,
1446 lr->lrz_bonuslen, tx);
1447 } else {
1448 error = dmu_object_claim(os, lr->lr_foid,
1449 lr->lrz_type, 0, lr->lrz_bonustype,
1450 lr->lrz_bonuslen, tx);
1451 }
1452 }
1453
1454 if (error) {
1455 ASSERT3U(error, ==, EEXIST);
1456 ASSERT(zd->zd_zilog->zl_replay);
1457 dmu_tx_commit(tx);
1458 return (error);
1459 }
1460
1461 ASSERT(lr->lr_foid != 0);
1462
1463 if (lr->lrz_type != DMU_OT_ZAP_OTHER)
1464 VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid,
1465 lr->lrz_blocksize, lr->lrz_ibshift, tx));
1466
1467 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1468 bbt = ztest_bt_bonus(db);
1469 dmu_buf_will_dirty(db, tx);
1470 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg);
1471 dmu_buf_rele(db, FTAG);
1472
1473 VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
1474 &lr->lr_foid, tx));
1475
1476 (void) ztest_log_create(zd, tx, lr);
1477
1478 dmu_tx_commit(tx);
1479
1480 return (0);
1481 }
1482
1483 static int
1484 ztest_replay_remove(ztest_ds_t *zd, lr_remove_t *lr, boolean_t byteswap)
1485 {
1486 char *name = (void *)(lr + 1); /* name follows lr */
1487 objset_t *os = zd->zd_os;
1488 dmu_object_info_t doi;
1489 dmu_tx_t *tx;
1490 uint64_t object, txg;
1491
1492 if (byteswap)
1493 byteswap_uint64_array(lr, sizeof (*lr));
1494
1495 ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1496 ASSERT(name[0] != '\0');
1497
1498 VERIFY3U(0, ==,
1499 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
1500 ASSERT(object != 0);
1501
1502 ztest_object_lock(zd, object, RL_WRITER);
1503
1504 VERIFY3U(0, ==, dmu_object_info(os, object, &doi));
1505
1506 tx = dmu_tx_create(os);
1507
1508 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
1509 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
1510
1511 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1512 if (txg == 0) {
1513 ztest_object_unlock(zd, object);
1514 return (ENOSPC);
1515 }
1516
1517 if (doi.doi_type == DMU_OT_ZAP_OTHER) {
1518 VERIFY3U(0, ==, zap_destroy(os, object, tx));
1519 } else {
1520 VERIFY3U(0, ==, dmu_object_free(os, object, tx));
1521 }
1522
1523 VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx));
1524
1525 (void) ztest_log_remove(zd, tx, lr, object);
1526
1527 dmu_tx_commit(tx);
1528
1529 ztest_object_unlock(zd, object);
1530
1531 return (0);
1532 }
1533
1534 static int
1535 ztest_replay_write(ztest_ds_t *zd, lr_write_t *lr, boolean_t byteswap)
1536 {
1537 objset_t *os = zd->zd_os;
1538 void *data = lr + 1; /* data follows lr */
1539 uint64_t offset, length;
1540 ztest_block_tag_t *bt = data;
1541 ztest_block_tag_t *bbt;
1542 uint64_t gen, txg, lrtxg, crtxg;
1543 dmu_object_info_t doi;
1544 dmu_tx_t *tx;
1545 dmu_buf_t *db;
1546 arc_buf_t *abuf = NULL;
1547 rl_t *rl;
1548
1549 if (byteswap)
1550 byteswap_uint64_array(lr, sizeof (*lr));
1551
1552 offset = lr->lr_offset;
1553 length = lr->lr_length;
1554
1555 /* If it's a dmu_sync() block, write the whole block */
1556 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
1557 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
1558 if (length < blocksize) {
1559 offset -= offset % blocksize;
1560 length = blocksize;
1561 }
1562 }
1563
1564 if (bt->bt_magic == BSWAP_64(BT_MAGIC))
1565 byteswap_uint64_array(bt, sizeof (*bt));
1566
1567 if (bt->bt_magic != BT_MAGIC)
1568 bt = NULL;
1569
1570 ztest_object_lock(zd, lr->lr_foid, RL_READER);
1571 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER);
1572
1573 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1574
1575 dmu_object_info_from_db(db, &doi);
1576
1577 bbt = ztest_bt_bonus(db);
1578 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1579 gen = bbt->bt_gen;
1580 crtxg = bbt->bt_crtxg;
1581 lrtxg = lr->lr_common.lrc_txg;
1582
1583 tx = dmu_tx_create(os);
1584
1585 dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
1586
1587 if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
1588 P2PHASE(offset, length) == 0)
1589 abuf = dmu_request_arcbuf(db, length);
1590
1591 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1592 if (txg == 0) {
1593 if (abuf != NULL)
1594 dmu_return_arcbuf(abuf);
1595 dmu_buf_rele(db, FTAG);
1596 ztest_range_unlock(rl);
1597 ztest_object_unlock(zd, lr->lr_foid);
1598 return (ENOSPC);
1599 }
1600
1601 if (bt != NULL) {
1602 /*
1603 * Usually, verify the old data before writing new data --
1604 * but not always, because we also want to verify correct
1605 * behavior when the data was not recently read into cache.
1606 */
1607 ASSERT(offset % doi.doi_data_block_size == 0);
1608 if (ztest_random(4) != 0) {
1609 int prefetch = ztest_random(2) ?
1610 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
1611 ztest_block_tag_t rbt;
1612
1613 VERIFY(dmu_read(os, lr->lr_foid, offset,
1614 sizeof (rbt), &rbt, prefetch) == 0);
1615 if (rbt.bt_magic == BT_MAGIC) {
1616 ztest_bt_verify(&rbt, os, lr->lr_foid,
1617 offset, gen, txg, crtxg);
1618 }
1619 }
1620
1621 /*
1622 * Writes can appear to be newer than the bonus buffer because
1623 * the ztest_get_data() callback does a dmu_read() of the
1624 * open-context data, which may be different than the data
1625 * as it was when the write was generated.
1626 */
1627 if (zd->zd_zilog->zl_replay) {
1628 ztest_bt_verify(bt, os, lr->lr_foid, offset,
1629 MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
1630 bt->bt_crtxg);
1631 }
1632
1633 /*
1634 * Set the bt's gen/txg to the bonus buffer's gen/txg
1635 * so that all of the usual ASSERTs will work.
1636 */
1637 ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg);
1638 }
1639
1640 if (abuf == NULL) {
1641 dmu_write(os, lr->lr_foid, offset, length, data, tx);
1642 } else {
1643 bcopy(data, abuf->b_data, length);
1644 dmu_assign_arcbuf(db, offset, abuf, tx);
1645 }
1646
1647 (void) ztest_log_write(zd, tx, lr);
1648
1649 dmu_buf_rele(db, FTAG);
1650
1651 dmu_tx_commit(tx);
1652
1653 ztest_range_unlock(rl);
1654 ztest_object_unlock(zd, lr->lr_foid);
1655
1656 return (0);
1657 }
1658
1659 static int
1660 ztest_replay_truncate(ztest_ds_t *zd, lr_truncate_t *lr, boolean_t byteswap)
1661 {
1662 objset_t *os = zd->zd_os;
1663 dmu_tx_t *tx;
1664 uint64_t txg;
1665 rl_t *rl;
1666
1667 if (byteswap)
1668 byteswap_uint64_array(lr, sizeof (*lr));
1669
1670 ztest_object_lock(zd, lr->lr_foid, RL_READER);
1671 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
1672 RL_WRITER);
1673
1674 tx = dmu_tx_create(os);
1675
1676 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
1677
1678 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1679 if (txg == 0) {
1680 ztest_range_unlock(rl);
1681 ztest_object_unlock(zd, lr->lr_foid);
1682 return (ENOSPC);
1683 }
1684
1685 VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
1686 lr->lr_length, tx) == 0);
1687
1688 (void) ztest_log_truncate(zd, tx, lr);
1689
1690 dmu_tx_commit(tx);
1691
1692 ztest_range_unlock(rl);
1693 ztest_object_unlock(zd, lr->lr_foid);
1694
1695 return (0);
1696 }
1697
1698 static int
1699 ztest_replay_setattr(ztest_ds_t *zd, lr_setattr_t *lr, boolean_t byteswap)
1700 {
1701 objset_t *os = zd->zd_os;
1702 dmu_tx_t *tx;
1703 dmu_buf_t *db;
1704 ztest_block_tag_t *bbt;
1705 uint64_t txg, lrtxg, crtxg;
1706
1707 if (byteswap)
1708 byteswap_uint64_array(lr, sizeof (*lr));
1709
1710 ztest_object_lock(zd, lr->lr_foid, RL_WRITER);
1711
1712 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1713
1714 tx = dmu_tx_create(os);
1715 dmu_tx_hold_bonus(tx, lr->lr_foid);
1716
1717 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1718 if (txg == 0) {
1719 dmu_buf_rele(db, FTAG);
1720 ztest_object_unlock(zd, lr->lr_foid);
1721 return (ENOSPC);
1722 }
1723
1724 bbt = ztest_bt_bonus(db);
1725 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1726 crtxg = bbt->bt_crtxg;
1727 lrtxg = lr->lr_common.lrc_txg;
1728
1729 if (zd->zd_zilog->zl_replay) {
1730 ASSERT(lr->lr_size != 0);
1731 ASSERT(lr->lr_mode != 0);
1732 ASSERT(lrtxg != 0);
1733 } else {
1734 /*
1735 * Randomly change the size and increment the generation.
1736 */
1737 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
1738 sizeof (*bbt);
1739 lr->lr_mode = bbt->bt_gen + 1;
1740 ASSERT(lrtxg == 0);
1741 }
1742
1743 /*
1744 * Verify that the current bonus buffer is not newer than our txg.
1745 */
1746 ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode,
1747 MAX(txg, lrtxg), crtxg);
1748
1749 dmu_buf_will_dirty(db, tx);
1750
1751 ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
1752 ASSERT3U(lr->lr_size, <=, db->db_size);
1753 VERIFY3U(dmu_set_bonus(db, lr->lr_size, tx), ==, 0);
1754 bbt = ztest_bt_bonus(db);
1755
1756 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg);
1757
1758 dmu_buf_rele(db, FTAG);
1759
1760 (void) ztest_log_setattr(zd, tx, lr);
1761
1762 dmu_tx_commit(tx);
1763
1764 ztest_object_unlock(zd, lr->lr_foid);
1765
1766 return (0);
1767 }
1768
1769 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
1770 NULL, /* 0 no such transaction type */
1771 (zil_replay_func_t *)ztest_replay_create, /* TX_CREATE */
1772 NULL, /* TX_MKDIR */
1773 NULL, /* TX_MKXATTR */
1774 NULL, /* TX_SYMLINK */
1775 (zil_replay_func_t *)ztest_replay_remove, /* TX_REMOVE */
1776 NULL, /* TX_RMDIR */
1777 NULL, /* TX_LINK */
1778 NULL, /* TX_RENAME */
1779 (zil_replay_func_t *)ztest_replay_write, /* TX_WRITE */
1780 (zil_replay_func_t *)ztest_replay_truncate, /* TX_TRUNCATE */
1781 (zil_replay_func_t *)ztest_replay_setattr, /* TX_SETATTR */
1782 NULL, /* TX_ACL */
1783 NULL, /* TX_CREATE_ACL */
1784 NULL, /* TX_CREATE_ATTR */
1785 NULL, /* TX_CREATE_ACL_ATTR */
1786 NULL, /* TX_MKDIR_ACL */
1787 NULL, /* TX_MKDIR_ATTR */
1788 NULL, /* TX_MKDIR_ACL_ATTR */
1789 NULL, /* TX_WRITE2 */
1790 };
1791
1792 /*
1793 * ZIL get_data callbacks
1794 */
1795
1796 static void
1797 ztest_get_done(zgd_t *zgd, int error)
1798 {
1799 ztest_ds_t *zd = zgd->zgd_private;
1800 uint64_t object = zgd->zgd_rl->rl_object;
1801
1802 if (zgd->zgd_db)
1803 dmu_buf_rele(zgd->zgd_db, zgd);
1804
1805 ztest_range_unlock(zgd->zgd_rl);
1806 ztest_object_unlock(zd, object);
1807
1808 if (error == 0 && zgd->zgd_bp)
1809 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
1810
1811 umem_free(zgd, sizeof (*zgd));
1812 }
1813
1814 static int
1815 ztest_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
1816 {
1817 ztest_ds_t *zd = arg;
1818 objset_t *os = zd->zd_os;
1819 uint64_t object = lr->lr_foid;
1820 uint64_t offset = lr->lr_offset;
1821 uint64_t size = lr->lr_length;
1822 blkptr_t *bp = &lr->lr_blkptr;
1823 uint64_t txg = lr->lr_common.lrc_txg;
1824 uint64_t crtxg;
1825 dmu_object_info_t doi;
1826 dmu_buf_t *db;
1827 zgd_t *zgd;
1828 int error;
1829
1830 ztest_object_lock(zd, object, RL_READER);
1831 error = dmu_bonus_hold(os, object, FTAG, &db);
1832 if (error) {
1833 ztest_object_unlock(zd, object);
1834 return (error);
1835 }
1836
1837 crtxg = ztest_bt_bonus(db)->bt_crtxg;
1838
1839 if (crtxg == 0 || crtxg > txg) {
1840 dmu_buf_rele(db, FTAG);
1841 ztest_object_unlock(zd, object);
1842 return (ENOENT);
1843 }
1844
1845 dmu_object_info_from_db(db, &doi);
1846 dmu_buf_rele(db, FTAG);
1847 db = NULL;
1848
1849 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
1850 zgd->zgd_zilog = zd->zd_zilog;
1851 zgd->zgd_private = zd;
1852
1853 if (buf != NULL) { /* immediate write */
1854 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size,
1855 RL_READER);
1856
1857 error = dmu_read(os, object, offset, size, buf,
1858 DMU_READ_NO_PREFETCH);
1859 ASSERT(error == 0);
1860 } else {
1861 size = doi.doi_data_block_size;
1862 if (ISP2(size)) {
1863 offset = P2ALIGN(offset, size);
1864 } else {
1865 ASSERT(offset < size);
1866 offset = 0;
1867 }
1868
1869 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size,
1870 RL_READER);
1871
1872 error = dmu_buf_hold(os, object, offset, zgd, &db,
1873 DMU_READ_NO_PREFETCH);
1874
1875 if (error == 0) {
1876 zgd->zgd_db = db;
1877 zgd->zgd_bp = bp;
1878
1879 ASSERT(db->db_offset == offset);
1880 ASSERT(db->db_size == size);
1881
1882 error = dmu_sync(zio, lr->lr_common.lrc_txg,
1883 ztest_get_done, zgd);
1884
1885 if (error == 0)
1886 return (0);
1887 }
1888 }
1889
1890 ztest_get_done(zgd, error);
1891
1892 return (error);
1893 }
1894
1895 static void *
1896 ztest_lr_alloc(size_t lrsize, char *name)
1897 {
1898 char *lr;
1899 size_t namesize = name ? strlen(name) + 1 : 0;
1900
1901 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
1902
1903 if (name)
1904 bcopy(name, lr + lrsize, namesize);
1905
1906 return (lr);
1907 }
1908
1909 void
1910 ztest_lr_free(void *lr, size_t lrsize, char *name)
1911 {
1912 size_t namesize = name ? strlen(name) + 1 : 0;
1913
1914 umem_free(lr, lrsize + namesize);
1915 }
1916
1917 /*
1918 * Lookup a bunch of objects. Returns the number of objects not found.
1919 */
1920 static int
1921 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
1922 {
1923 int missing = 0;
1924 int error;
1925 int i;
1926
1927 ASSERT(mutex_held(&zd->zd_dirobj_lock));
1928
1929 for (i = 0; i < count; i++, od++) {
1930 od->od_object = 0;
1931 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
1932 sizeof (uint64_t), 1, &od->od_object);
1933 if (error) {
1934 ASSERT(error == ENOENT);
1935 ASSERT(od->od_object == 0);
1936 missing++;
1937 } else {
1938 dmu_buf_t *db;
1939 ztest_block_tag_t *bbt;
1940 dmu_object_info_t doi;
1941
1942 ASSERT(od->od_object != 0);
1943 ASSERT(missing == 0); /* there should be no gaps */
1944
1945 ztest_object_lock(zd, od->od_object, RL_READER);
1946 VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os,
1947 od->od_object, FTAG, &db));
1948 dmu_object_info_from_db(db, &doi);
1949 bbt = ztest_bt_bonus(db);
1950 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1951 od->od_type = doi.doi_type;
1952 od->od_blocksize = doi.doi_data_block_size;
1953 od->od_gen = bbt->bt_gen;
1954 dmu_buf_rele(db, FTAG);
1955 ztest_object_unlock(zd, od->od_object);
1956 }
1957 }
1958
1959 return (missing);
1960 }
1961
1962 static int
1963 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
1964 {
1965 int missing = 0;
1966 int i;
1967
1968 ASSERT(mutex_held(&zd->zd_dirobj_lock));
1969
1970 for (i = 0; i < count; i++, od++) {
1971 if (missing) {
1972 od->od_object = 0;
1973 missing++;
1974 continue;
1975 }
1976
1977 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
1978
1979 lr->lr_doid = od->od_dir;
1980 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */
1981 lr->lrz_type = od->od_crtype;
1982 lr->lrz_blocksize = od->od_crblocksize;
1983 lr->lrz_ibshift = ztest_random_ibshift();
1984 lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
1985 lr->lrz_bonuslen = dmu_bonus_max();
1986 lr->lr_gen = od->od_crgen;
1987 lr->lr_crtime[0] = time(NULL);
1988
1989 if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
1990 ASSERT(missing == 0);
1991 od->od_object = 0;
1992 missing++;
1993 } else {
1994 od->od_object = lr->lr_foid;
1995 od->od_type = od->od_crtype;
1996 od->od_blocksize = od->od_crblocksize;
1997 od->od_gen = od->od_crgen;
1998 ASSERT(od->od_object != 0);
1999 }
2000
2001 ztest_lr_free(lr, sizeof (*lr), od->od_name);
2002 }
2003
2004 return (missing);
2005 }
2006
2007 static int
2008 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
2009 {
2010 int missing = 0;
2011 int error;
2012 int i;
2013
2014 ASSERT(mutex_held(&zd->zd_dirobj_lock));
2015
2016 od += count - 1;
2017
2018 for (i = count - 1; i >= 0; i--, od--) {
2019 if (missing) {
2020 missing++;
2021 continue;
2022 }
2023
2024 if (od->od_object == 0)
2025 continue;
2026
2027 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2028
2029 lr->lr_doid = od->od_dir;
2030
2031 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
2032 ASSERT3U(error, ==, ENOSPC);
2033 missing++;
2034 } else {
2035 od->od_object = 0;
2036 }
2037 ztest_lr_free(lr, sizeof (*lr), od->od_name);
2038 }
2039
2040 return (missing);
2041 }
2042
2043 static int
2044 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
2045 void *data)
2046 {
2047 lr_write_t *lr;
2048 int error;
2049
2050 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
2051
2052 lr->lr_foid = object;
2053 lr->lr_offset = offset;
2054 lr->lr_length = size;
2055 lr->lr_blkoff = 0;
2056 BP_ZERO(&lr->lr_blkptr);
2057
2058 bcopy(data, lr + 1, size);
2059
2060 error = ztest_replay_write(zd, lr, B_FALSE);
2061
2062 ztest_lr_free(lr, sizeof (*lr) + size, NULL);
2063
2064 return (error);
2065 }
2066
2067 static int
2068 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2069 {
2070 lr_truncate_t *lr;
2071 int error;
2072
2073 lr = ztest_lr_alloc(sizeof (*lr), NULL);
2074
2075 lr->lr_foid = object;
2076 lr->lr_offset = offset;
2077 lr->lr_length = size;
2078
2079 error = ztest_replay_truncate(zd, lr, B_FALSE);
2080
2081 ztest_lr_free(lr, sizeof (*lr), NULL);
2082
2083 return (error);
2084 }
2085
2086 static int
2087 ztest_setattr(ztest_ds_t *zd, uint64_t object)
2088 {
2089 lr_setattr_t *lr;
2090 int error;
2091
2092 lr = ztest_lr_alloc(sizeof (*lr), NULL);
2093
2094 lr->lr_foid = object;
2095 lr->lr_size = 0;
2096 lr->lr_mode = 0;
2097
2098 error = ztest_replay_setattr(zd, lr, B_FALSE);
2099
2100 ztest_lr_free(lr, sizeof (*lr), NULL);
2101
2102 return (error);
2103 }
2104
2105 static void
2106 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2107 {
2108 objset_t *os = zd->zd_os;
2109 dmu_tx_t *tx;
2110 uint64_t txg;
2111 rl_t *rl;
2112
2113 txg_wait_synced(dmu_objset_pool(os), 0);
2114
2115 ztest_object_lock(zd, object, RL_READER);
2116 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER);
2117
2118 tx = dmu_tx_create(os);
2119
2120 dmu_tx_hold_write(tx, object, offset, size);
2121
2122 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2123
2124 if (txg != 0) {
2125 dmu_prealloc(os, object, offset, size, tx);
2126 dmu_tx_commit(tx);
2127 txg_wait_synced(dmu_objset_pool(os), txg);
2128 } else {
2129 (void) dmu_free_long_range(os, object, offset, size);
2130 }
2131
2132 ztest_range_unlock(rl);
2133 ztest_object_unlock(zd, object);
2134 }
2135
2136 static void
2137 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
2138 {
2139 ztest_block_tag_t wbt;
2140 dmu_object_info_t doi;
2141 enum ztest_io_type io_type;
2142 uint64_t blocksize;
2143 void *data;
2144
2145 VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0);
2146 blocksize = doi.doi_data_block_size;
2147 data = umem_alloc(blocksize, UMEM_NOFAIL);
2148
2149 /*
2150 * Pick an i/o type at random, biased toward writing block tags.
2151 */
2152 io_type = ztest_random(ZTEST_IO_TYPES);
2153 if (ztest_random(2) == 0)
2154 io_type = ZTEST_IO_WRITE_TAG;
2155
2156 (void) rw_enter(&zd->zd_zilog_lock, RW_READER);
2157
2158 switch (io_type) {
2159
2160 case ZTEST_IO_WRITE_TAG:
2161 ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0);
2162 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
2163 break;
2164
2165 case ZTEST_IO_WRITE_PATTERN:
2166 (void) memset(data, 'a' + (object + offset) % 5, blocksize);
2167 if (ztest_random(2) == 0) {
2168 /*
2169 * Induce fletcher2 collisions to ensure that
2170 * zio_ddt_collision() detects and resolves them
2171 * when using fletcher2-verify for deduplication.
2172 */
2173 ((uint64_t *)data)[0] ^= 1ULL << 63;
2174 ((uint64_t *)data)[4] ^= 1ULL << 63;
2175 }
2176 (void) ztest_write(zd, object, offset, blocksize, data);
2177 break;
2178
2179 case ZTEST_IO_WRITE_ZEROES:
2180 bzero(data, blocksize);
2181 (void) ztest_write(zd, object, offset, blocksize, data);
2182 break;
2183
2184 case ZTEST_IO_TRUNCATE:
2185 (void) ztest_truncate(zd, object, offset, blocksize);
2186 break;
2187
2188 case ZTEST_IO_SETATTR:
2189 (void) ztest_setattr(zd, object);
2190 break;
2191 default:
2192 break;
2193 }
2194
2195 (void) rw_exit(&zd->zd_zilog_lock);
2196
2197 umem_free(data, blocksize);
2198 }
2199
2200 /*
2201 * Initialize an object description template.
2202 */
2203 static void
2204 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index,
2205 dmu_object_type_t type, uint64_t blocksize, uint64_t gen)
2206 {
2207 od->od_dir = ZTEST_DIROBJ;
2208 od->od_object = 0;
2209
2210 od->od_crtype = type;
2211 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
2212 od->od_crgen = gen;
2213
2214 od->od_type = DMU_OT_NONE;
2215 od->od_blocksize = 0;
2216 od->od_gen = 0;
2217
2218 (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]",
2219 tag, (longlong_t)id, (u_longlong_t)index);
2220 }
2221
2222 /*
2223 * Lookup or create the objects for a test using the od template.
2224 * If the objects do not all exist, or if 'remove' is specified,
2225 * remove any existing objects and create new ones. Otherwise,
2226 * use the existing objects.
2227 */
2228 static int
2229 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
2230 {
2231 int count = size / sizeof (*od);
2232 int rv = 0;
2233
2234 mutex_enter(&zd->zd_dirobj_lock);
2235 if ((ztest_lookup(zd, od, count) != 0 || remove) &&
2236 (ztest_remove(zd, od, count) != 0 ||
2237 ztest_create(zd, od, count) != 0))
2238 rv = -1;
2239 zd->zd_od = od;
2240 mutex_exit(&zd->zd_dirobj_lock);
2241
2242 return (rv);
2243 }
2244
2245 /* ARGSUSED */
2246 void
2247 ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
2248 {
2249 zilog_t *zilog = zd->zd_zilog;
2250
2251 (void) rw_enter(&zd->zd_zilog_lock, RW_READER);
2252
2253 zil_commit(zilog, ztest_random(ZTEST_OBJECTS));
2254
2255 /*
2256 * Remember the committed values in zd, which is in parent/child
2257 * shared memory. If we die, the next iteration of ztest_run()
2258 * will verify that the log really does contain this record.
2259 */
2260 mutex_enter(&zilog->zl_lock);
2261 ASSERT(zd->zd_shared != NULL);
2262 ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq);
2263 zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq;
2264 mutex_exit(&zilog->zl_lock);
2265
2266 (void) rw_exit(&zd->zd_zilog_lock);
2267 }
2268
2269 /*
2270 * This function is designed to simulate the operations that occur during a
2271 * mount/unmount operation. We hold the dataset across these operations in an
2272 * attempt to expose any implicit assumptions about ZIL management.
2273 */
2274 /* ARGSUSED */
2275 void
2276 ztest_zil_remount(ztest_ds_t *zd, uint64_t id)
2277 {
2278 objset_t *os = zd->zd_os;
2279
2280 (void) rw_enter(&zd->zd_zilog_lock, RW_WRITER);
2281
2282 /* zfs_sb_teardown() */
2283 zil_close(zd->zd_zilog);
2284
2285 /* zfsvfs_setup() */
2286 VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog);
2287 zil_replay(os, zd, ztest_replay_vector);
2288
2289 (void) rw_exit(&zd->zd_zilog_lock);
2290 }
2291
2292 /*
2293 * Verify that we can't destroy an active pool, create an existing pool,
2294 * or create a pool with a bad vdev spec.
2295 */
2296 /* ARGSUSED */
2297 void
2298 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
2299 {
2300 ztest_shared_opts_t *zo = &ztest_opts;
2301 spa_t *spa;
2302 nvlist_t *nvroot;
2303
2304 /*
2305 * Attempt to create using a bad file.
2306 */
2307 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1);
2308 VERIFY3U(ENOENT, ==,
2309 spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL));
2310 nvlist_free(nvroot);
2311
2312 /*
2313 * Attempt to create using a bad mirror.
2314 */
2315 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 2, 1);
2316 VERIFY3U(ENOENT, ==,
2317 spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL));
2318 nvlist_free(nvroot);
2319
2320 /*
2321 * Attempt to create an existing pool. It shouldn't matter
2322 * what's in the nvroot; we should fail with EEXIST.
2323 */
2324 (void) rw_enter(&ztest_name_lock, RW_READER);
2325 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1);
2326 VERIFY3U(EEXIST, ==, spa_create(zo->zo_pool, nvroot, NULL, NULL, NULL));
2327 nvlist_free(nvroot);
2328 VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG));
2329 VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool));
2330 spa_close(spa, FTAG);
2331
2332 (void) rw_exit(&ztest_name_lock);
2333 }
2334
2335 static vdev_t *
2336 vdev_lookup_by_path(vdev_t *vd, const char *path)
2337 {
2338 vdev_t *mvd;
2339 int c;
2340
2341 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
2342 return (vd);
2343
2344 for (c = 0; c < vd->vdev_children; c++)
2345 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
2346 NULL)
2347 return (mvd);
2348
2349 return (NULL);
2350 }
2351
2352 /*
2353 * Find the first available hole which can be used as a top-level.
2354 */
2355 int
2356 find_vdev_hole(spa_t *spa)
2357 {
2358 vdev_t *rvd = spa->spa_root_vdev;
2359 int c;
2360
2361 ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV);
2362
2363 for (c = 0; c < rvd->vdev_children; c++) {
2364 vdev_t *cvd = rvd->vdev_child[c];
2365
2366 if (cvd->vdev_ishole)
2367 break;
2368 }
2369 return (c);
2370 }
2371
2372 /*
2373 * Verify that vdev_add() works as expected.
2374 */
2375 /* ARGSUSED */
2376 void
2377 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
2378 {
2379 ztest_shared_t *zs = ztest_shared;
2380 spa_t *spa = ztest_spa;
2381 uint64_t leaves;
2382 uint64_t guid;
2383 nvlist_t *nvroot;
2384 int error;
2385
2386 mutex_enter(&ztest_vdev_lock);
2387 leaves =
2388 MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz;
2389
2390 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2391
2392 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves;
2393
2394 /*
2395 * If we have slogs then remove them 1/4 of the time.
2396 */
2397 if (spa_has_slogs(spa) && ztest_random(4) == 0) {
2398 /*
2399 * Grab the guid from the head of the log class rotor.
2400 */
2401 guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid;
2402
2403 spa_config_exit(spa, SCL_VDEV, FTAG);
2404
2405 /*
2406 * We have to grab the zs_name_lock as writer to
2407 * prevent a race between removing a slog (dmu_objset_find)
2408 * and destroying a dataset. Removing the slog will
2409 * grab a reference on the dataset which may cause
2410 * dmu_objset_destroy() to fail with EBUSY thus
2411 * leaving the dataset in an inconsistent state.
2412 */
2413 rw_enter(&ztest_name_lock, RW_WRITER);
2414 error = spa_vdev_remove(spa, guid, B_FALSE);
2415 rw_exit(&ztest_name_lock);
2416
2417 if (error && error != EEXIST)
2418 fatal(0, "spa_vdev_remove() = %d", error);
2419 } else {
2420 spa_config_exit(spa, SCL_VDEV, FTAG);
2421
2422 /*
2423 * Make 1/4 of the devices be log devices.
2424 */
2425 nvroot = make_vdev_root(NULL, NULL,
2426 ztest_opts.zo_vdev_size, 0,
2427 ztest_random(4) == 0, ztest_opts.zo_raidz,
2428 zs->zs_mirrors, 1);
2429
2430 error = spa_vdev_add(spa, nvroot);
2431 nvlist_free(nvroot);
2432
2433 if (error == ENOSPC)
2434 ztest_record_enospc("spa_vdev_add");
2435 else if (error != 0)
2436 fatal(0, "spa_vdev_add() = %d", error);
2437 }
2438
2439 mutex_exit(&ztest_vdev_lock);
2440 }
2441
2442 /*
2443 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
2444 */
2445 /* ARGSUSED */
2446 void
2447 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
2448 {
2449 ztest_shared_t *zs = ztest_shared;
2450 spa_t *spa = ztest_spa;
2451 vdev_t *rvd = spa->spa_root_vdev;
2452 spa_aux_vdev_t *sav;
2453 char *aux;
2454 char *path;
2455 uint64_t guid = 0;
2456 int error;
2457
2458 path = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
2459
2460 if (ztest_random(2) == 0) {
2461 sav = &spa->spa_spares;
2462 aux = ZPOOL_CONFIG_SPARES;
2463 } else {
2464 sav = &spa->spa_l2cache;
2465 aux = ZPOOL_CONFIG_L2CACHE;
2466 }
2467
2468 mutex_enter(&ztest_vdev_lock);
2469
2470 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2471
2472 if (sav->sav_count != 0 && ztest_random(4) == 0) {
2473 /*
2474 * Pick a random device to remove.
2475 */
2476 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid;
2477 } else {
2478 /*
2479 * Find an unused device we can add.
2480 */
2481 zs->zs_vdev_aux = 0;
2482 for (;;) {
2483 int c;
2484 (void) snprintf(path, sizeof (path), ztest_aux_template,
2485 ztest_opts.zo_dir, ztest_opts.zo_pool, aux,
2486 zs->zs_vdev_aux);
2487 for (c = 0; c < sav->sav_count; c++)
2488 if (strcmp(sav->sav_vdevs[c]->vdev_path,
2489 path) == 0)
2490 break;
2491 if (c == sav->sav_count &&
2492 vdev_lookup_by_path(rvd, path) == NULL)
2493 break;
2494 zs->zs_vdev_aux++;
2495 }
2496 }
2497
2498 spa_config_exit(spa, SCL_VDEV, FTAG);
2499
2500 if (guid == 0) {
2501 /*
2502 * Add a new device.
2503 */
2504 nvlist_t *nvroot = make_vdev_root(NULL, aux,
2505 (ztest_opts.zo_vdev_size * 5) / 4, 0, 0, 0, 0, 1);
2506 error = spa_vdev_add(spa, nvroot);
2507 if (error != 0)
2508 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error);
2509 nvlist_free(nvroot);
2510 } else {
2511 /*
2512 * Remove an existing device. Sometimes, dirty its
2513 * vdev state first to make sure we handle removal
2514 * of devices that have pending state changes.
2515 */
2516 if (ztest_random(2) == 0)
2517 (void) vdev_online(spa, guid, 0, NULL);
2518
2519 error = spa_vdev_remove(spa, guid, B_FALSE);
2520 if (error != 0 && error != EBUSY)
2521 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error);
2522 }
2523
2524 mutex_exit(&ztest_vdev_lock);
2525
2526 umem_free(path, MAXPATHLEN);
2527 }
2528
2529 /*
2530 * split a pool if it has mirror tlvdevs
2531 */
2532 /* ARGSUSED */
2533 void
2534 ztest_split_pool(ztest_ds_t *zd, uint64_t id)
2535 {
2536 ztest_shared_t *zs = ztest_shared;
2537 spa_t *spa = ztest_spa;
2538 vdev_t *rvd = spa->spa_root_vdev;
2539 nvlist_t *tree, **child, *config, *split, **schild;
2540 uint_t c, children, schildren = 0, lastlogid = 0;
2541 int error = 0;
2542
2543 mutex_enter(&ztest_vdev_lock);
2544
2545 /* ensure we have a useable config; mirrors of raidz aren't supported */
2546 if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) {
2547 mutex_exit(&ztest_vdev_lock);
2548 return;
2549 }
2550
2551 /* clean up the old pool, if any */
2552 (void) spa_destroy("splitp");
2553
2554 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2555
2556 /* generate a config from the existing config */
2557 mutex_enter(&spa->spa_props_lock);
2558 VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE,
2559 &tree) == 0);
2560 mutex_exit(&spa->spa_props_lock);
2561
2562 VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child,
2563 &children) == 0);
2564
2565 schild = malloc(rvd->vdev_children * sizeof (nvlist_t *));
2566 for (c = 0; c < children; c++) {
2567 vdev_t *tvd = rvd->vdev_child[c];
2568 nvlist_t **mchild;
2569 uint_t mchildren;
2570
2571 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
2572 VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME,
2573 0) == 0);
2574 VERIFY(nvlist_add_string(schild[schildren],
2575 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0);
2576 VERIFY(nvlist_add_uint64(schild[schildren],
2577 ZPOOL_CONFIG_IS_HOLE, 1) == 0);
2578 if (lastlogid == 0)
2579 lastlogid = schildren;
2580 ++schildren;
2581 continue;
2582 }
2583 lastlogid = 0;
2584 VERIFY(nvlist_lookup_nvlist_array(child[c],
2585 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0);
2586 VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0);
2587 }
2588
2589 /* OK, create a config that can be used to split */
2590 VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0);
2591 VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE,
2592 VDEV_TYPE_ROOT) == 0);
2593 VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild,
2594 lastlogid != 0 ? lastlogid : schildren) == 0);
2595
2596 VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0);
2597 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0);
2598
2599 for (c = 0; c < schildren; c++)
2600 nvlist_free(schild[c]);
2601 free(schild);
2602 nvlist_free(split);
2603
2604 spa_config_exit(spa, SCL_VDEV, FTAG);
2605
2606 (void) rw_enter(&ztest_name_lock, RW_WRITER);
2607 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
2608 (void) rw_exit(&ztest_name_lock);
2609
2610 nvlist_free(config);
2611
2612 if (error == 0) {
2613 (void) printf("successful split - results:\n");
2614 mutex_enter(&spa_namespace_lock);
2615 show_pool_stats(spa);
2616 show_pool_stats(spa_lookup("splitp"));
2617 mutex_exit(&spa_namespace_lock);
2618 ++zs->zs_splits;
2619 --zs->zs_mirrors;
2620 }
2621 mutex_exit(&ztest_vdev_lock);
2622
2623 }
2624
2625 /*
2626 * Verify that we can attach and detach devices.
2627 */
2628 /* ARGSUSED */
2629 void
2630 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
2631 {
2632 ztest_shared_t *zs = ztest_shared;
2633 spa_t *spa = ztest_spa;
2634 spa_aux_vdev_t *sav = &spa->spa_spares;
2635 vdev_t *rvd = spa->spa_root_vdev;
2636 vdev_t *oldvd, *newvd, *pvd;
2637 nvlist_t *root;
2638 uint64_t leaves;
2639 uint64_t leaf, top;
2640 uint64_t ashift = ztest_get_ashift();
2641 uint64_t oldguid, pguid;
2642 size_t oldsize, newsize;
2643 char *oldpath, *newpath;
2644 int replacing;
2645 int oldvd_has_siblings = B_FALSE;
2646 int newvd_is_spare = B_FALSE;
2647 int oldvd_is_log;
2648 int error, expected_error;
2649
2650 oldpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
2651 newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
2652
2653 mutex_enter(&ztest_vdev_lock);
2654 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
2655
2656 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2657
2658 /*
2659 * Decide whether to do an attach or a replace.
2660 */
2661 replacing = ztest_random(2);
2662
2663 /*
2664 * Pick a random top-level vdev.
2665 */
2666 top = ztest_random_vdev_top(spa, B_TRUE);
2667
2668 /*
2669 * Pick a random leaf within it.
2670 */
2671 leaf = ztest_random(leaves);
2672
2673 /*
2674 * Locate this vdev.
2675 */
2676 oldvd = rvd->vdev_child[top];
2677 if (zs->zs_mirrors >= 1) {
2678 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops);
2679 ASSERT(oldvd->vdev_children >= zs->zs_mirrors);
2680 oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz];
2681 }
2682 if (ztest_opts.zo_raidz > 1) {
2683 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops);
2684 ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz);
2685 oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz];
2686 }
2687
2688 /*
2689 * If we're already doing an attach or replace, oldvd may be a
2690 * mirror vdev -- in which case, pick a random child.
2691 */
2692 while (oldvd->vdev_children != 0) {
2693 oldvd_has_siblings = B_TRUE;
2694 ASSERT(oldvd->vdev_children >= 2);
2695 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
2696 }
2697
2698 oldguid = oldvd->vdev_guid;
2699 oldsize = vdev_get_min_asize(oldvd);
2700 oldvd_is_log = oldvd->vdev_top->vdev_islog;
2701 (void) strcpy(oldpath, oldvd->vdev_path);
2702 pvd = oldvd->vdev_parent;
2703 pguid = pvd->vdev_guid;
2704
2705 /*
2706 * If oldvd has siblings, then half of the time, detach it.
2707 */
2708 if (oldvd_has_siblings && ztest_random(2) == 0) {
2709 spa_config_exit(spa, SCL_VDEV, FTAG);
2710 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
2711 if (error != 0 && error != ENODEV && error != EBUSY &&
2712 error != ENOTSUP)
2713 fatal(0, "detach (%s) returned %d", oldpath, error);
2714 goto out;
2715 }
2716
2717 /*
2718 * For the new vdev, choose with equal probability between the two
2719 * standard paths (ending in either 'a' or 'b') or a random hot spare.
2720 */
2721 if (sav->sav_count != 0 && ztest_random(3) == 0) {
2722 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
2723 newvd_is_spare = B_TRUE;
2724 (void) strcpy(newpath, newvd->vdev_path);
2725 } else {
2726 (void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
2727 ztest_opts.zo_dir, ztest_opts.zo_pool,
2728 top * leaves + leaf);
2729 if (ztest_random(2) == 0)
2730 newpath[strlen(newpath) - 1] = 'b';
2731 newvd = vdev_lookup_by_path(rvd, newpath);
2732 }
2733
2734 if (newvd) {
2735 newsize = vdev_get_min_asize(newvd);
2736 } else {
2737 /*
2738 * Make newsize a little bigger or smaller than oldsize.
2739 * If it's smaller, the attach should fail.
2740 * If it's larger, and we're doing a replace,
2741 * we should get dynamic LUN growth when we're done.
2742 */
2743 newsize = 10 * oldsize / (9 + ztest_random(3));
2744 }
2745
2746 /*
2747 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
2748 * unless it's a replace; in that case any non-replacing parent is OK.
2749 *
2750 * If newvd is already part of the pool, it should fail with EBUSY.
2751 *
2752 * If newvd is too small, it should fail with EOVERFLOW.
2753 */
2754 if (pvd->vdev_ops != &vdev_mirror_ops &&
2755 pvd->vdev_ops != &vdev_root_ops && (!replacing ||
2756 pvd->vdev_ops == &vdev_replacing_ops ||
2757 pvd->vdev_ops == &vdev_spare_ops))
2758 expected_error = ENOTSUP;
2759 else if (newvd_is_spare && (!replacing || oldvd_is_log))
2760 expected_error = ENOTSUP;
2761 else if (newvd == oldvd)
2762 expected_error = replacing ? 0 : EBUSY;
2763 else if (vdev_lookup_by_path(rvd, newpath) != NULL)
2764 expected_error = EBUSY;
2765 else if (newsize < oldsize)
2766 expected_error = EOVERFLOW;
2767 else if (ashift > oldvd->vdev_top->vdev_ashift)
2768 expected_error = EDOM;
2769 else
2770 expected_error = 0;
2771
2772 spa_config_exit(spa, SCL_VDEV, FTAG);
2773
2774 /*
2775 * Build the nvlist describing newpath.
2776 */
2777 root = make_vdev_root(newpath, NULL, newvd == NULL ? newsize : 0,
2778 ashift, 0, 0, 0, 1);
2779
2780 error = spa_vdev_attach(spa, oldguid, root, replacing);
2781
2782 nvlist_free(root);
2783
2784 /*
2785 * If our parent was the replacing vdev, but the replace completed,
2786 * then instead of failing with ENOTSUP we may either succeed,
2787 * fail with ENODEV, or fail with EOVERFLOW.
2788 */
2789 if (expected_error == ENOTSUP &&
2790 (error == 0 || error == ENODEV || error == EOVERFLOW))
2791 expected_error = error;
2792
2793 /*
2794 * If someone grew the LUN, the replacement may be too small.
2795 */
2796 if (error == EOVERFLOW || error == EBUSY)
2797 expected_error = error;
2798
2799 /* XXX workaround 6690467 */
2800 if (error != expected_error && expected_error != EBUSY) {
2801 fatal(0, "attach (%s %llu, %s %llu, %d) "
2802 "returned %d, expected %d",
2803 oldpath, (longlong_t)oldsize, newpath,
2804 (longlong_t)newsize, replacing, error, expected_error);
2805 }
2806 out:
2807 mutex_exit(&ztest_vdev_lock);
2808
2809 umem_free(oldpath, MAXPATHLEN);
2810 umem_free(newpath, MAXPATHLEN);
2811 }
2812
2813 /*
2814 * Callback function which expands the physical size of the vdev.
2815 */
2816 vdev_t *
2817 grow_vdev(vdev_t *vd, void *arg)
2818 {
2819 ASSERTV(spa_t *spa = vd->vdev_spa);
2820 size_t *newsize = arg;
2821 size_t fsize;
2822 int fd;
2823
2824 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
2825 ASSERT(vd->vdev_ops->vdev_op_leaf);
2826
2827 if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
2828 return (vd);
2829
2830 fsize = lseek(fd, 0, SEEK_END);
2831 VERIFY(ftruncate(fd, *newsize) == 0);
2832
2833 if (ztest_opts.zo_verbose >= 6) {
2834 (void) printf("%s grew from %lu to %lu bytes\n",
2835 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
2836 }
2837 (void) close(fd);
2838 return (NULL);
2839 }
2840
2841 /*
2842 * Callback function which expands a given vdev by calling vdev_online().
2843 */
2844 /* ARGSUSED */
2845 vdev_t *
2846 online_vdev(vdev_t *vd, void *arg)
2847 {
2848 spa_t *spa = vd->vdev_spa;
2849 vdev_t *tvd = vd->vdev_top;
2850 uint64_t guid = vd->vdev_guid;
2851 uint64_t generation = spa->spa_config_generation + 1;
2852 vdev_state_t newstate = VDEV_STATE_UNKNOWN;
2853 int error;
2854
2855 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
2856 ASSERT(vd->vdev_ops->vdev_op_leaf);
2857
2858 /* Calling vdev_online will initialize the new metaslabs */
2859 spa_config_exit(spa, SCL_STATE, spa);
2860 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
2861 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
2862
2863 /*
2864 * If vdev_online returned an error or the underlying vdev_open
2865 * failed then we abort the expand. The only way to know that
2866 * vdev_open fails is by checking the returned newstate.
2867 */
2868 if (error || newstate != VDEV_STATE_HEALTHY) {
2869 if (ztest_opts.zo_verbose >= 5) {
2870 (void) printf("Unable to expand vdev, state %llu, "
2871 "error %d\n", (u_longlong_t)newstate, error);
2872 }
2873 return (vd);
2874 }
2875 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
2876
2877 /*
2878 * Since we dropped the lock we need to ensure that we're
2879 * still talking to the original vdev. It's possible this
2880 * vdev may have been detached/replaced while we were
2881 * trying to online it.
2882 */
2883 if (generation != spa->spa_config_generation) {
2884 if (ztest_opts.zo_verbose >= 5) {
2885 (void) printf("vdev configuration has changed, "
2886 "guid %llu, state %llu, expected gen %llu, "
2887 "got gen %llu\n",
2888 (u_longlong_t)guid,
2889 (u_longlong_t)tvd->vdev_state,
2890 (u_longlong_t)generation,
2891 (u_longlong_t)spa->spa_config_generation);
2892 }
2893 return (vd);
2894 }
2895 return (NULL);
2896 }
2897
2898 /*
2899 * Traverse the vdev tree calling the supplied function.
2900 * We continue to walk the tree until we either have walked all
2901 * children or we receive a non-NULL return from the callback.
2902 * If a NULL callback is passed, then we just return back the first
2903 * leaf vdev we encounter.
2904 */
2905 vdev_t *
2906 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
2907 {
2908 uint_t c;
2909
2910 if (vd->vdev_ops->vdev_op_leaf) {
2911 if (func == NULL)
2912 return (vd);
2913 else
2914 return (func(vd, arg));
2915 }
2916
2917 for (c = 0; c < vd->vdev_children; c++) {
2918 vdev_t *cvd = vd->vdev_child[c];
2919 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
2920 return (cvd);
2921 }
2922 return (NULL);
2923 }
2924
2925 /*
2926 * Verify that dynamic LUN growth works as expected.
2927 */
2928 /* ARGSUSED */
2929 void
2930 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
2931 {
2932 spa_t *spa = ztest_spa;
2933 vdev_t *vd, *tvd;
2934 metaslab_class_t *mc;
2935 metaslab_group_t *mg;
2936 size_t psize, newsize;
2937 uint64_t top;
2938 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
2939
2940 mutex_enter(&ztest_vdev_lock);
2941 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
2942
2943 top = ztest_random_vdev_top(spa, B_TRUE);
2944
2945 tvd = spa->spa_root_vdev->vdev_child[top];
2946 mg = tvd->vdev_mg;
2947 mc = mg->mg_class;
2948 old_ms_count = tvd->vdev_ms_count;
2949 old_class_space = metaslab_class_get_space(mc);
2950
2951 /*
2952 * Determine the size of the first leaf vdev associated with
2953 * our top-level device.
2954 */
2955 vd = vdev_walk_tree(tvd, NULL, NULL);
2956 ASSERT3P(vd, !=, NULL);
2957 ASSERT(vd->vdev_ops->vdev_op_leaf);
2958
2959 psize = vd->vdev_psize;
2960
2961 /*
2962 * We only try to expand the vdev if it's healthy, less than 4x its
2963 * original size, and it has a valid psize.
2964 */
2965 if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
2966 psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) {
2967 spa_config_exit(spa, SCL_STATE, spa);
2968 mutex_exit(&ztest_vdev_lock);
2969 return;
2970 }
2971 ASSERT(psize > 0);
2972 newsize = psize + psize / 8;
2973 ASSERT3U(newsize, >, psize);
2974
2975 if (ztest_opts.zo_verbose >= 6) {
2976 (void) printf("Expanding LUN %s from %lu to %lu\n",
2977 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
2978 }
2979
2980 /*
2981 * Growing the vdev is a two step process:
2982 * 1). expand the physical size (i.e. relabel)
2983 * 2). online the vdev to create the new metaslabs
2984 */
2985 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
2986 vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
2987 tvd->vdev_state != VDEV_STATE_HEALTHY) {
2988 if (ztest_opts.zo_verbose >= 5) {
2989 (void) printf("Could not expand LUN because "
2990 "the vdev configuration changed.\n");
2991 }
2992 spa_config_exit(spa, SCL_STATE, spa);
2993 mutex_exit(&ztest_vdev_lock);
2994 return;
2995 }
2996
2997 spa_config_exit(spa, SCL_STATE, spa);
2998
2999 /*
3000 * Expanding the LUN will update the config asynchronously,
3001 * thus we must wait for the async thread to complete any
3002 * pending tasks before proceeding.
3003 */
3004 for (;;) {
3005 boolean_t done;
3006 mutex_enter(&spa->spa_async_lock);
3007 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
3008 mutex_exit(&spa->spa_async_lock);
3009 if (done)
3010 break;
3011 txg_wait_synced(spa_get_dsl(spa), 0);
3012 (void) poll(NULL, 0, 100);
3013 }
3014
3015 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3016
3017 tvd = spa->spa_root_vdev->vdev_child[top];
3018 new_ms_count = tvd->vdev_ms_count;
3019 new_class_space = metaslab_class_get_space(mc);
3020
3021 if (tvd->vdev_mg != mg || mg->mg_class != mc) {
3022 if (ztest_opts.zo_verbose >= 5) {
3023 (void) printf("Could not verify LUN expansion due to "
3024 "intervening vdev offline or remove.\n");
3025 }
3026 spa_config_exit(spa, SCL_STATE, spa);
3027 mutex_exit(&ztest_vdev_lock);
3028 return;
3029 }
3030
3031 /*
3032 * Make sure we were able to grow the vdev.
3033 */
3034 if (new_ms_count <= old_ms_count)
3035 fatal(0, "LUN expansion failed: ms_count %llu <= %llu\n",
3036 old_ms_count, new_ms_count);
3037
3038 /*
3039 * Make sure we were able to grow the pool.
3040 */
3041 if (new_class_space <= old_class_space)
3042 fatal(0, "LUN expansion failed: class_space %llu <= %llu\n",
3043 old_class_space, new_class_space);
3044
3045 if (ztest_opts.zo_verbose >= 5) {
3046 char oldnumbuf[6], newnumbuf[6];
3047
3048 nicenum(old_class_space, oldnumbuf);
3049 nicenum(new_class_space, newnumbuf);
3050 (void) printf("%s grew from %s to %s\n",
3051 spa->spa_name, oldnumbuf, newnumbuf);
3052 }
3053
3054 spa_config_exit(spa, SCL_STATE, spa);
3055 mutex_exit(&ztest_vdev_lock);
3056 }
3057
3058 /*
3059 * Verify that dmu_objset_{create,destroy,open,close} work as expected.
3060 */
3061 /* ARGSUSED */
3062 static void
3063 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
3064 {
3065 /*
3066 * Create the objects common to all ztest datasets.
3067 */
3068 VERIFY(zap_create_claim(os, ZTEST_DIROBJ,
3069 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0);
3070 }
3071
3072 static int
3073 ztest_dataset_create(char *dsname)
3074 {
3075 uint64_t zilset = ztest_random(100);
3076 int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0,
3077 ztest_objset_create_cb, NULL);
3078
3079 if (err || zilset < 80)
3080 return (err);
3081
3082 if (ztest_opts.zo_verbose >= 5)
3083 (void) printf("Setting dataset %s to sync always\n", dsname);
3084 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
3085 ZFS_SYNC_ALWAYS, B_FALSE));
3086 }
3087
3088 /* ARGSUSED */
3089 static int
3090 ztest_objset_destroy_cb(const char *name, void *arg)
3091 {
3092 objset_t *os;
3093 dmu_object_info_t doi;
3094 int error;
3095
3096 /*
3097 * Verify that the dataset contains a directory object.
3098 */
3099 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os));
3100 error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
3101 if (error != ENOENT) {
3102 /* We could have crashed in the middle of destroying it */
3103 ASSERT3U(error, ==, 0);
3104 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
3105 ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
3106 }
3107 dmu_objset_rele(os, FTAG);
3108
3109 /*
3110 * Destroy the dataset.
3111 */
3112 VERIFY3U(0, ==, dmu_objset_destroy(name, B_FALSE));
3113 return (0);
3114 }
3115
3116 static boolean_t
3117 ztest_snapshot_create(char *osname, uint64_t id)
3118 {
3119 char snapname[MAXNAMELEN];
3120 int error;
3121
3122 (void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname,
3123 (u_longlong_t)id);
3124
3125 error = dmu_objset_snapshot(osname, strchr(snapname, '@') + 1,
3126 NULL, NULL, B_FALSE, B_FALSE, -1);
3127 if (error == ENOSPC) {
3128 ztest_record_enospc(FTAG);
3129 return (B_FALSE);
3130 }
3131 if (error != 0 && error != EEXIST)
3132 fatal(0, "ztest_snapshot_create(%s) = %d", snapname, error);
3133 return (B_TRUE);
3134 }
3135
3136 static boolean_t
3137 ztest_snapshot_destroy(char *osname, uint64_t id)
3138 {
3139 char snapname[MAXNAMELEN];
3140 int error;
3141
3142 (void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname,
3143 (u_longlong_t)id);
3144
3145 error = dmu_objset_destroy(snapname, B_FALSE);
3146 if (error != 0 && error != ENOENT)
3147 fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error);
3148 return (B_TRUE);
3149 }
3150
3151 /* ARGSUSED */
3152 void
3153 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
3154 {
3155 ztest_ds_t *zdtmp;
3156 int iters;
3157 int error;
3158 objset_t *os, *os2;
3159 char *name;
3160 zilog_t *zilog;
3161 int i;
3162
3163 zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
3164 name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3165
3166 (void) rw_enter(&ztest_name_lock, RW_READER);
3167
3168 (void) snprintf(name, MAXNAMELEN, "%s/temp_%llu",
3169 ztest_opts.zo_pool, (u_longlong_t)id);
3170
3171 /*
3172 * If this dataset exists from a previous run, process its replay log
3173 * half of the time. If we don't replay it, then dmu_objset_destroy()
3174 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
3175 */
3176 if (ztest_random(2) == 0 &&
3177 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) {
3178 ztest_zd_init(zdtmp, NULL, os);
3179 zil_replay(os, zdtmp, ztest_replay_vector);
3180 ztest_zd_fini(zdtmp);
3181 dmu_objset_disown(os, FTAG);
3182 }
3183
3184 /*
3185 * There may be an old instance of the dataset we're about to
3186 * create lying around from a previous run. If so, destroy it
3187 * and all of its snapshots.
3188 */
3189 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
3190 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
3191
3192 /*
3193 * Verify that the destroyed dataset is no longer in the namespace.
3194 */
3195 VERIFY3U(ENOENT, ==, dmu_objset_hold(name, FTAG, &os));
3196
3197 /*
3198 * Verify that we can create a new dataset.
3199 */
3200 error = ztest_dataset_create(name);
3201 if (error) {
3202 if (error == ENOSPC) {
3203 ztest_record_enospc(FTAG);
3204 goto out;
3205 }
3206 fatal(0, "dmu_objset_create(%s) = %d", name, error);
3207 }
3208
3209 VERIFY3U(0, ==,
3210 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os));
3211
3212 ztest_zd_init(zdtmp, NULL, os);
3213
3214 /*
3215 * Open the intent log for it.
3216 */
3217 zilog = zil_open(os, ztest_get_data);
3218
3219 /*
3220 * Put some objects in there, do a little I/O to them,
3221 * and randomly take a couple of snapshots along the way.
3222 */
3223 iters = ztest_random(5);
3224 for (i = 0; i < iters; i++) {
3225 ztest_dmu_object_alloc_free(zdtmp, id);
3226 if (ztest_random(iters) == 0)
3227 (void) ztest_snapshot_create(name, i);
3228 }
3229
3230 /*
3231 * Verify that we cannot create an existing dataset.
3232 */
3233 VERIFY3U(EEXIST, ==,
3234 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL));
3235
3236 /*
3237 * Verify that we can hold an objset that is also owned.
3238 */
3239 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2));
3240 dmu_objset_rele(os2, FTAG);
3241
3242 /*
3243 * Verify that we cannot own an objset that is already owned.
3244 */
3245 VERIFY3U(EBUSY, ==,
3246 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2));
3247
3248 zil_close(zilog);
3249 dmu_objset_disown(os, FTAG);
3250 ztest_zd_fini(zdtmp);
3251 out:
3252 (void) rw_exit(&ztest_name_lock);
3253
3254 umem_free(name, MAXNAMELEN);
3255 umem_free(zdtmp, sizeof (ztest_ds_t));
3256 }
3257
3258 /*
3259 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
3260 */
3261 void
3262 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
3263 {
3264 (void) rw_enter(&ztest_name_lock, RW_READER);
3265 (void) ztest_snapshot_destroy(zd->zd_name, id);
3266 (void) ztest_snapshot_create(zd->zd_name, id);
3267 (void) rw_exit(&ztest_name_lock);
3268 }
3269
3270 /*
3271 * Cleanup non-standard snapshots and clones.
3272 */
3273 void
3274 ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
3275 {
3276 char *snap1name;
3277 char *clone1name;
3278 char *snap2name;
3279 char *clone2name;
3280 char *snap3name;
3281 int error;
3282
3283 snap1name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3284 clone1name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3285 snap2name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3286 clone2name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3287 snap3name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3288
3289 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu",
3290 osname, (u_longlong_t)id);
3291 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu",
3292 osname, (u_longlong_t)id);
3293 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu",
3294 clone1name, (u_longlong_t)id);
3295 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu",
3296 osname, (u_longlong_t)id);
3297 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu",
3298 clone1name, (u_longlong_t)id);
3299
3300 error = dmu_objset_destroy(clone2name, B_FALSE);
3301 if (error && error != ENOENT)
3302 fatal(0, "dmu_objset_destroy(%s) = %d", clone2name, error);
3303 error = dmu_objset_destroy(snap3name, B_FALSE);
3304 if (error && error != ENOENT)
3305 fatal(0, "dmu_objset_destroy(%s) = %d", snap3name, error);
3306 error = dmu_objset_destroy(snap2name, B_FALSE);
3307 if (error && error != ENOENT)
3308 fatal(0, "dmu_objset_destroy(%s) = %d", snap2name, error);
3309 error = dmu_objset_destroy(clone1name, B_FALSE);
3310 if (error && error != ENOENT)
3311 fatal(0, "dmu_objset_destroy(%s) = %d", clone1name, error);
3312 error = dmu_objset_destroy(snap1name, B_FALSE);
3313 if (error && error != ENOENT)
3314 fatal(0, "dmu_objset_destroy(%s) = %d", snap1name, error);
3315
3316 umem_free(snap1name, MAXNAMELEN);
3317 umem_free(clone1name, MAXNAMELEN);
3318 umem_free(snap2name, MAXNAMELEN);
3319 umem_free(clone2name, MAXNAMELEN);
3320 umem_free(snap3name, MAXNAMELEN);
3321 }
3322
3323 /*
3324 * Verify dsl_dataset_promote handles EBUSY
3325 */
3326 void
3327 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
3328 {
3329 objset_t *clone;
3330 dsl_dataset_t *ds;
3331 char *snap1name;
3332 char *clone1name;
3333 char *snap2name;
3334 char *clone2name;
3335 char *snap3name;
3336 char *osname = zd->zd_name;
3337 int error;
3338
3339 snap1name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3340 clone1name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3341 snap2name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3342 clone2name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3343 snap3name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3344
3345 (void) rw_enter(&ztest_name_lock, RW_READER);
3346
3347 ztest_dsl_dataset_cleanup(osname, id);
3348
3349 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu",
3350 osname, (u_longlong_t)id);
3351 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu",
3352 osname, (u_longlong_t)id);
3353 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu",
3354 clone1name, (u_longlong_t)id);
3355 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu",
3356 osname, (u_longlong_t)id);
3357 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu",
3358 clone1name, (u_longlong_t)id);
3359
3360 error = dmu_objset_snapshot(osname, strchr(snap1name, '@')+1,
3361 NULL, NULL, B_FALSE, B_FALSE, -1);
3362 if (error && error != EEXIST) {
3363 if (error == ENOSPC) {
3364 ztest_record_enospc(FTAG);
3365 goto out;
3366 }
3367 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error);
3368 }
3369
3370 error = dmu_objset_hold(snap1name, FTAG, &clone);
3371 if (error)
3372 fatal(0, "dmu_open_snapshot(%s) = %d", snap1name, error);
3373
3374 error = dmu_objset_clone(clone1name, dmu_objset_ds(clone), 0);
3375 dmu_objset_rele(clone, FTAG);
3376 if (error) {
3377 if (error == ENOSPC) {
3378 ztest_record_enospc(FTAG);
3379 goto out;
3380 }
3381 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error);
3382 }
3383
3384 error = dmu_objset_snapshot(clone1name, strchr(snap2name, '@')+1,
3385 NULL, NULL, B_FALSE, B_FALSE, -1);
3386 if (error && error != EEXIST) {
3387 if (error == ENOSPC) {
3388 ztest_record_enospc(FTAG);
3389 goto out;
3390 }
3391 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error);
3392 }
3393
3394 error = dmu_objset_snapshot(clone1name, strchr(snap3name, '@')+1,
3395 NULL, NULL, B_FALSE, B_FALSE, -1);
3396 if (error && error != EEXIST) {
3397 if (error == ENOSPC) {
3398 ztest_record_enospc(FTAG);
3399 goto out;
3400 }
3401 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error);
3402 }
3403
3404 error = dmu_objset_hold(snap3name, FTAG, &clone);
3405 if (error)
3406 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error);
3407
3408 error = dmu_objset_clone(clone2name, dmu_objset_ds(clone), 0);
3409 dmu_objset_rele(clone, FTAG);
3410 if (error) {
3411 if (error == ENOSPC) {
3412 ztest_record_enospc(FTAG);
3413 goto out;
3414 }
3415 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error);
3416 }
3417
3418 error = dsl_dataset_own(snap2name, B_FALSE, FTAG, &ds);
3419 if (error)
3420 fatal(0, "dsl_dataset_own(%s) = %d", snap2name, error);
3421 error = dsl_dataset_promote(clone2name, NULL);
3422 if (error != EBUSY)
3423 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name,
3424 error);
3425 dsl_dataset_disown(ds, FTAG);
3426
3427 out:
3428 ztest_dsl_dataset_cleanup(osname, id);
3429
3430 (void) rw_exit(&ztest_name_lock);
3431
3432 umem_free(snap1name, MAXNAMELEN);
3433 umem_free(clone1name, MAXNAMELEN);
3434 umem_free(snap2name, MAXNAMELEN);
3435 umem_free(clone2name, MAXNAMELEN);
3436 umem_free(snap3name, MAXNAMELEN);
3437 }
3438
3439 #undef OD_ARRAY_SIZE
3440 #define OD_ARRAY_SIZE 4
3441
3442 /*
3443 * Verify that dmu_object_{alloc,free} work as expected.
3444 */
3445 void
3446 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
3447 {
3448 ztest_od_t *od;
3449 int batchsize;
3450 int size;
3451 int b;
3452
3453 size = sizeof(ztest_od_t) * OD_ARRAY_SIZE;
3454 od = umem_alloc(size, UMEM_NOFAIL);
3455 batchsize = OD_ARRAY_SIZE;
3456
3457 for (b = 0; b < batchsize; b++)
3458 ztest_od_init(od + b, id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0);
3459
3460 /*
3461 * Destroy the previous batch of objects, create a new batch,
3462 * and do some I/O on the new objects.
3463 */
3464 if (ztest_object_init(zd, od, size, B_TRUE) != 0)
3465 return;
3466
3467 while (ztest_random(4 * batchsize) != 0)
3468 ztest_io(zd, od[ztest_random(batchsize)].od_object,
3469 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
3470
3471 umem_free(od, size);
3472 }
3473
3474 #undef OD_ARRAY_SIZE
3475 #define OD_ARRAY_SIZE 2
3476
3477 /*
3478 * Verify that dmu_{read,write} work as expected.
3479 */
3480 void
3481 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
3482 {
3483 int size;
3484 ztest_od_t *od;
3485
3486 objset_t *os = zd->zd_os;
3487 size = sizeof(ztest_od_t) * OD_ARRAY_SIZE;
3488 od = umem_alloc(size, UMEM_NOFAIL);
3489 dmu_tx_t *tx;
3490 int i, freeit, error;
3491 uint64_t n, s, txg;
3492 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
3493 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
3494 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
3495 uint64_t regions = 997;
3496 uint64_t stride = 123456789ULL;
3497 uint64_t width = 40;
3498 int free_percent = 5;
3499
3500 /*
3501 * This test uses two objects, packobj and bigobj, that are always
3502 * updated together (i.e. in the same tx) so that their contents are
3503 * in sync and can be compared. Their contents relate to each other
3504 * in a simple way: packobj is a dense array of 'bufwad' structures,
3505 * while bigobj is a sparse array of the same bufwads. Specifically,
3506 * for any index n, there are three bufwads that should be identical:
3507 *
3508 * packobj, at offset n * sizeof (bufwad_t)
3509 * bigobj, at the head of the nth chunk
3510 * bigobj, at the tail of the nth chunk
3511 *
3512 * The chunk size is arbitrary. It doesn't have to be a power of two,
3513 * and it doesn't have any relation to the object blocksize.
3514 * The only requirement is that it can hold at least two bufwads.
3515 *
3516 * Normally, we write the bufwad to each of these locations.
3517 * However, free_percent of the time we instead write zeroes to
3518 * packobj and perform a dmu_free_range() on bigobj. By comparing
3519 * bigobj to packobj, we can verify that the DMU is correctly
3520 * tracking which parts of an object are allocated and free,
3521 * and that the contents of the allocated blocks are correct.
3522 */
3523
3524 /*
3525 * Read the directory info. If it's the first time, set things up.
3526 */
3527 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize);
3528 ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize);
3529
3530 if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
3531 umem_free(od, size);
3532 return;
3533 }
3534
3535 bigobj = od[0].od_object;
3536 packobj = od[1].od_object;
3537 chunksize = od[0].od_gen;
3538 ASSERT(chunksize == od[1].od_gen);
3539
3540 /*
3541 * Prefetch a random chunk of the big object.
3542 * Our aim here is to get some async reads in flight
3543 * for blocks that we may free below; the DMU should
3544 * handle this race correctly.
3545 */
3546 n = ztest_random(regions) * stride + ztest_random(width);
3547 s = 1 + ztest_random(2 * width - 1);
3548 dmu_prefetch(os, bigobj, n * chunksize, s * chunksize);
3549
3550 /*
3551 * Pick a random index and compute the offsets into packobj and bigobj.
3552 */
3553 n = ztest_random(regions) * stride + ztest_random(width);
3554 s = 1 + ztest_random(width - 1);
3555
3556 packoff = n * sizeof (bufwad_t);
3557 packsize = s * sizeof (bufwad_t);
3558
3559 bigoff = n * chunksize;
3560 bigsize = s * chunksize;
3561
3562 packbuf = umem_alloc(packsize, UMEM_NOFAIL);
3563 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
3564
3565 /*
3566 * free_percent of the time, free a range of bigobj rather than
3567 * overwriting it.
3568 */
3569 freeit = (ztest_random(100) < free_percent);
3570
3571 /*
3572 * Read the current contents of our objects.
3573 */
3574 error = dmu_read(os, packobj, packoff, packsize, packbuf,
3575 DMU_READ_PREFETCH);
3576 ASSERT3U(error, ==, 0);
3577 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
3578 DMU_READ_PREFETCH);
3579 ASSERT3U(error, ==, 0);
3580
3581 /*
3582 * Get a tx for the mods to both packobj and bigobj.
3583 */
3584 tx = dmu_tx_create(os);
3585
3586 dmu_tx_hold_write(tx, packobj, packoff, packsize);
3587
3588 if (freeit)
3589 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
3590 else
3591 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
3592
3593 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3594 if (txg == 0) {
3595 umem_free(packbuf, packsize);
3596 umem_free(bigbuf, bigsize);
3597 umem_free(od, size);
3598 return;
3599 }
3600
3601 dmu_object_set_checksum(os, bigobj,
3602 (enum zio_checksum)ztest_random_dsl_prop(ZFS_PROP_CHECKSUM), tx);
3603
3604 dmu_object_set_compress(os, bigobj,
3605 (enum zio_compress)ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), tx);
3606
3607 /*
3608 * For each index from n to n + s, verify that the existing bufwad
3609 * in packobj matches the bufwads at the head and tail of the
3610 * corresponding chunk in bigobj. Then update all three bufwads
3611 * with the new values we want to write out.
3612 */
3613 for (i = 0; i < s; i++) {
3614 /* LINTED */
3615 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
3616 /* LINTED */
3617 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
3618 /* LINTED */
3619 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
3620
3621 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
3622 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
3623
3624 if (pack->bw_txg > txg)
3625 fatal(0, "future leak: got %llx, open txg is %llx",
3626 pack->bw_txg, txg);
3627
3628 if (pack->bw_data != 0 && pack->bw_index != n + i)
3629 fatal(0, "wrong index: got %llx, wanted %llx+%llx",
3630 pack->bw_index, n, i);
3631
3632 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
3633 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
3634
3635 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
3636 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
3637
3638 if (freeit) {
3639 bzero(pack, sizeof (bufwad_t));
3640 } else {
3641 pack->bw_index = n + i;
3642 pack->bw_txg = txg;
3643 pack->bw_data = 1 + ztest_random(-2ULL);
3644 }
3645 *bigH = *pack;
3646 *bigT = *pack;
3647 }
3648
3649 /*
3650 * We've verified all the old bufwads, and made new ones.
3651 * Now write them out.
3652 */
3653 dmu_write(os, packobj, packoff, packsize, packbuf, tx);
3654
3655 if (freeit) {
3656 if (ztest_opts.zo_verbose >= 7) {
3657 (void) printf("freeing offset %llx size %llx"
3658 " txg %llx\n",
3659 (u_longlong_t)bigoff,
3660 (u_longlong_t)bigsize,
3661 (u_longlong_t)txg);
3662 }
3663 VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx));
3664 } else {
3665 if (ztest_opts.zo_verbose >= 7) {
3666 (void) printf("writing offset %llx size %llx"
3667 " txg %llx\n",
3668 (u_longlong_t)bigoff,
3669 (u_longlong_t)bigsize,
3670 (u_longlong_t)txg);
3671 }
3672 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);
3673 }
3674
3675 dmu_tx_commit(tx);
3676
3677 /*
3678 * Sanity check the stuff we just wrote.
3679 */
3680 {
3681 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
3682 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
3683
3684 VERIFY(0 == dmu_read(os, packobj, packoff,
3685 packsize, packcheck, DMU_READ_PREFETCH));
3686 VERIFY(0 == dmu_read(os, bigobj, bigoff,
3687 bigsize, bigcheck, DMU_READ_PREFETCH));
3688
3689 ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
3690 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
3691
3692 umem_free(packcheck, packsize);
3693 umem_free(bigcheck, bigsize);
3694 }
3695
3696 umem_free(packbuf, packsize);
3697 umem_free(bigbuf, bigsize);
3698 umem_free(od, size);
3699 }
3700
3701 void
3702 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
3703 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
3704 {
3705 uint64_t i;
3706 bufwad_t *pack;
3707 bufwad_t *bigH;
3708 bufwad_t *bigT;
3709
3710 /*
3711 * For each index from n to n + s, verify that the existing bufwad
3712 * in packobj matches the bufwads at the head and tail of the
3713 * corresponding chunk in bigobj. Then update all three bufwads
3714 * with the new values we want to write out.
3715 */
3716 for (i = 0; i < s; i++) {
3717 /* LINTED */
3718 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
3719 /* LINTED */
3720 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
3721 /* LINTED */
3722 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
3723
3724 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
3725 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
3726
3727 if (pack->bw_txg > txg)
3728 fatal(0, "future leak: got %llx, open txg is %llx",
3729 pack->bw_txg, txg);
3730
3731 if (pack->bw_data != 0 && pack->bw_index != n + i)
3732 fatal(0, "wrong index: got %llx, wanted %llx+%llx",
3733 pack->bw_index, n, i);
3734
3735 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
3736 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
3737
3738 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
3739 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
3740
3741 pack->bw_index = n + i;
3742 pack->bw_txg = txg;
3743 pack->bw_data = 1 + ztest_random(-2ULL);
3744
3745 *bigH = *pack;
3746 *bigT = *pack;
3747 }
3748 }
3749
3750 #undef OD_ARRAY_SIZE
3751 #define OD_ARRAY_SIZE 2
3752
3753 void
3754 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
3755 {
3756 objset_t *os = zd->zd_os;
3757 ztest_od_t *od;
3758 dmu_tx_t *tx;
3759 uint64_t i;
3760 int error;
3761 int size;
3762 uint64_t n, s, txg;
3763 bufwad_t *packbuf, *bigbuf;
3764 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
3765 uint64_t blocksize = ztest_random_blocksize();
3766 uint64_t chunksize = blocksize;
3767 uint64_t regions = 997;
3768 uint64_t stride = 123456789ULL;
3769 uint64_t width = 9;
3770 dmu_buf_t *bonus_db;
3771 arc_buf_t **bigbuf_arcbufs;
3772 dmu_object_info_t doi;
3773
3774 size = sizeof(ztest_od_t) * OD_ARRAY_SIZE;
3775 od = umem_alloc(size, UMEM_NOFAIL);
3776
3777 /*
3778 * This test uses two objects, packobj and bigobj, that are always
3779 * updated together (i.e. in the same tx) so that their contents are
3780 * in sync and can be compared. Their contents relate to each other
3781 * in a simple way: packobj is a dense array of 'bufwad' structures,
3782 * while bigobj is a sparse array of the same bufwads. Specifically,
3783 * for any index n, there are three bufwads that should be identical:
3784 *
3785 * packobj, at offset n * sizeof (bufwad_t)
3786 * bigobj, at the head of the nth chunk
3787 * bigobj, at the tail of the nth chunk
3788 *
3789 * The chunk size is set equal to bigobj block size so that
3790 * dmu_assign_arcbuf() can be tested for object updates.
3791 */
3792
3793 /*
3794 * Read the directory info. If it's the first time, set things up.
3795 */
3796 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
3797 ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize);
3798
3799
3800 if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
3801 umem_free(od, size);
3802 return;
3803 }
3804
3805 bigobj = od[0].od_object;
3806 packobj = od[1].od_object;
3807 blocksize = od[0].od_blocksize;
3808 chunksize = blocksize;
3809 ASSERT(chunksize == od[1].od_gen);
3810
3811 VERIFY(dmu_object_info(os, bigobj, &doi) == 0);
3812 VERIFY(ISP2(doi.doi_data_block_size));
3813 VERIFY(chunksize == doi.doi_data_block_size);
3814 VERIFY(chunksize >= 2 * sizeof (bufwad_t));
3815
3816 /*
3817 * Pick a random index and compute the offsets into packobj and bigobj.
3818 */
3819 n = ztest_random(regions) * stride + ztest_random(width);
3820 s = 1 + ztest_random(width - 1);
3821
3822 packoff = n * sizeof (bufwad_t);
3823 packsize = s * sizeof (bufwad_t);
3824
3825 bigoff = n * chunksize;
3826 bigsize = s * chunksize;
3827
3828 packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
3829 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
3830
3831 VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
3832
3833 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
3834
3835 /*
3836 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
3837 * Iteration 1 test zcopy to already referenced dbufs.
3838 * Iteration 2 test zcopy to dirty dbuf in the same txg.
3839 * Iteration 3 test zcopy to dbuf dirty in previous txg.
3840 * Iteration 4 test zcopy when dbuf is no longer dirty.
3841 * Iteration 5 test zcopy when it can't be done.
3842 * Iteration 6 one more zcopy write.
3843 */
3844 for (i = 0; i < 7; i++) {
3845 uint64_t j;
3846 uint64_t off;
3847
3848 /*
3849 * In iteration 5 (i == 5) use arcbufs
3850 * that don't match bigobj blksz to test
3851 * dmu_assign_arcbuf() when it can't directly
3852 * assign an arcbuf to a dbuf.
3853 */
3854 for (j = 0; j < s; j++) {
3855 if (i != 5) {
3856 bigbuf_arcbufs[j] =
3857 dmu_request_arcbuf(bonus_db, chunksize);
3858 } else {
3859 bigbuf_arcbufs[2 * j] =
3860 dmu_request_arcbuf(bonus_db, chunksize / 2);
3861 bigbuf_arcbufs[2 * j + 1] =
3862 dmu_request_arcbuf(bonus_db, chunksize / 2);
3863 }
3864 }
3865
3866 /*
3867 * Get a tx for the mods to both packobj and bigobj.
3868 */
3869 tx = dmu_tx_create(os);
3870
3871 dmu_tx_hold_write(tx, packobj, packoff, packsize);
3872 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
3873
3874 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3875 if (txg == 0) {
3876 umem_free(packbuf, packsize);
3877 umem_free(bigbuf, bigsize);
3878 for (j = 0; j < s; j++) {
3879 if (i != 5) {
3880 dmu_return_arcbuf(bigbuf_arcbufs[j]);
3881 } else {
3882 dmu_return_arcbuf(
3883 bigbuf_arcbufs[2 * j]);
3884 dmu_return_arcbuf(
3885 bigbuf_arcbufs[2 * j + 1]);
3886 }
3887 }
3888 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
3889 umem_free(od, size);
3890 dmu_buf_rele(bonus_db, FTAG);
3891 return;
3892 }
3893
3894 /*
3895 * 50% of the time don't read objects in the 1st iteration to
3896 * test dmu_assign_arcbuf() for the case when there're no
3897 * existing dbufs for the specified offsets.
3898 */
3899 if (i != 0 || ztest_random(2) != 0) {
3900 error = dmu_read(os, packobj, packoff,
3901 packsize, packbuf, DMU_READ_PREFETCH);
3902 ASSERT3U(error, ==, 0);
3903 error = dmu_read(os, bigobj, bigoff, bigsize,
3904 bigbuf, DMU_READ_PREFETCH);
3905 ASSERT3U(error, ==, 0);
3906 }
3907 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
3908 n, chunksize, txg);
3909
3910 /*
3911 * We've verified all the old bufwads, and made new ones.
3912 * Now write them out.
3913 */
3914 dmu_write(os, packobj, packoff, packsize, packbuf, tx);
3915 if (ztest_opts.zo_verbose >= 7) {
3916 (void) printf("writing offset %llx size %llx"
3917 " txg %llx\n",
3918 (u_longlong_t)bigoff,
3919 (u_longlong_t)bigsize,
3920 (u_longlong_t)txg);
3921 }
3922 for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
3923 dmu_buf_t *dbt;
3924 if (i != 5) {
3925 bcopy((caddr_t)bigbuf + (off - bigoff),
3926 bigbuf_arcbufs[j]->b_data, chunksize);
3927 } else {
3928 bcopy((caddr_t)bigbuf + (off - bigoff),
3929 bigbuf_arcbufs[2 * j]->b_data,
3930 chunksize / 2);
3931 bcopy((caddr_t)bigbuf + (off - bigoff) +
3932 chunksize / 2,
3933 bigbuf_arcbufs[2 * j + 1]->b_data,
3934 chunksize / 2);
3935 }
3936
3937 if (i == 1) {
3938 VERIFY(dmu_buf_hold(os, bigobj, off,
3939 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0);
3940 }
3941 if (i != 5) {
3942 dmu_assign_arcbuf(bonus_db, off,
3943 bigbuf_arcbufs[j], tx);
3944 } else {
3945 dmu_assign_arcbuf(bonus_db, off,
3946 bigbuf_arcbufs[2 * j], tx);
3947 dmu_assign_arcbuf(bonus_db,
3948 off + chunksize / 2,
3949 bigbuf_arcbufs[2 * j + 1], tx);
3950 }
3951 if (i == 1) {
3952 dmu_buf_rele(dbt, FTAG);
3953 }
3954 }
3955 dmu_tx_commit(tx);
3956
3957 /*
3958 * Sanity check the stuff we just wrote.
3959 */
3960 {
3961 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
3962 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
3963
3964 VERIFY(0 == dmu_read(os, packobj, packoff,
3965 packsize, packcheck, DMU_READ_PREFETCH));
3966 VERIFY(0 == dmu_read(os, bigobj, bigoff,
3967 bigsize, bigcheck, DMU_READ_PREFETCH));
3968
3969 ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
3970 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
3971
3972 umem_free(packcheck, packsize);
3973 umem_free(bigcheck, bigsize);
3974 }
3975 if (i == 2) {
3976 txg_wait_open(dmu_objset_pool(os), 0);
3977 } else if (i == 3) {
3978 txg_wait_synced(dmu_objset_pool(os), 0);
3979 }
3980 }
3981
3982 dmu_buf_rele(bonus_db, FTAG);
3983 umem_free(packbuf, packsize);
3984 umem_free(bigbuf, bigsize);
3985 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
3986 umem_free(od, size);
3987 }
3988
3989 /* ARGSUSED */
3990 void
3991 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
3992 {
3993 ztest_od_t *od;
3994
3995 od = umem_alloc(sizeof(ztest_od_t), UMEM_NOFAIL);
3996 uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
3997 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
3998
3999 /*
4000 * Have multiple threads write to large offsets in an object
4001 * to verify that parallel writes to an object -- even to the
4002 * same blocks within the object -- doesn't cause any trouble.
4003 */
4004 ztest_od_init(od, ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
4005
4006 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0)
4007 return;
4008
4009 while (ztest_random(10) != 0)
4010 ztest_io(zd, od->od_object, offset);
4011
4012 umem_free(od, sizeof(ztest_od_t));
4013 }
4014
4015 void
4016 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
4017 {
4018 ztest_od_t *od;
4019 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
4020 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4021 uint64_t count = ztest_random(20) + 1;
4022 uint64_t blocksize = ztest_random_blocksize();
4023 void *data;
4024
4025 od = umem_alloc(sizeof(ztest_od_t), UMEM_NOFAIL);
4026
4027 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
4028
4029 if (ztest_object_init(zd, od, sizeof (ztest_od_t), !ztest_random(2)) != 0) {
4030 umem_free(od, sizeof(ztest_od_t));
4031 return;
4032 }
4033
4034 if (ztest_truncate(zd, od->od_object, offset, count * blocksize) != 0) {
4035 umem_free(od, sizeof(ztest_od_t));
4036 return;
4037 }
4038
4039 ztest_prealloc(zd, od->od_object, offset, count * blocksize);
4040
4041 data = umem_zalloc(blocksize, UMEM_NOFAIL);
4042
4043 while (ztest_random(count) != 0) {
4044 uint64_t randoff = offset + (ztest_random(count) * blocksize);
4045 if (ztest_write(zd, od->od_object, randoff, blocksize,
4046 data) != 0)
4047 break;
4048 while (ztest_random(4) != 0)
4049 ztest_io(zd, od->od_object, randoff);
4050 }
4051
4052 umem_free(data, blocksize);
4053 umem_free(od, sizeof(ztest_od_t));
4054 }
4055
4056 /*
4057 * Verify that zap_{create,destroy,add,remove,update} work as expected.
4058 */
4059 #define ZTEST_ZAP_MIN_INTS 1
4060 #define ZTEST_ZAP_MAX_INTS 4
4061 #define ZTEST_ZAP_MAX_PROPS 1000
4062
4063 void
4064 ztest_zap(ztest_ds_t *zd, uint64_t id)
4065 {
4066 objset_t *os = zd->zd_os;
4067 ztest_od_t *od;
4068 uint64_t object;
4069 uint64_t txg, last_txg;
4070 uint64_t value[ZTEST_ZAP_MAX_INTS];
4071 uint64_t zl_ints, zl_intsize, prop;
4072 int i, ints;
4073 dmu_tx_t *tx;
4074 char propname[100], txgname[100];
4075 int error;
4076 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
4077
4078 od = umem_alloc(sizeof(ztest_od_t), UMEM_NOFAIL);
4079 ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0);
4080
4081 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
4082 !ztest_random(2)) != 0)
4083 goto out;
4084
4085 object = od->od_object;
4086
4087 /*
4088 * Generate a known hash collision, and verify that
4089 * we can lookup and remove both entries.
4090 */
4091 tx = dmu_tx_create(os);
4092 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4093 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4094 if (txg == 0)
4095 goto out;
4096 for (i = 0; i < 2; i++) {
4097 value[i] = i;
4098 VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t),
4099 1, &value[i], tx));
4100 }
4101 for (i = 0; i < 2; i++) {
4102 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
4103 sizeof (uint64_t), 1, &value[i], tx));
4104 VERIFY3U(0, ==,
4105 zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
4106 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4107 ASSERT3U(zl_ints, ==, 1);
4108 }
4109 for (i = 0; i < 2; i++) {
4110 VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx));
4111 }
4112 dmu_tx_commit(tx);
4113
4114 /*
4115 * Generate a buch of random entries.
4116 */
4117 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
4118
4119 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
4120 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
4121 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
4122 bzero(value, sizeof (value));
4123 last_txg = 0;
4124
4125 /*
4126 * If these zap entries already exist, validate their contents.
4127 */
4128 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
4129 if (error == 0) {
4130 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4131 ASSERT3U(zl_ints, ==, 1);
4132
4133 VERIFY(zap_lookup(os, object, txgname, zl_intsize,
4134 zl_ints, &last_txg) == 0);
4135
4136 VERIFY(zap_length(os, object, propname, &zl_intsize,
4137 &zl_ints) == 0);
4138
4139 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4140 ASSERT3U(zl_ints, ==, ints);
4141
4142 VERIFY(zap_lookup(os, object, propname, zl_intsize,
4143 zl_ints, value) == 0);
4144
4145 for (i = 0; i < ints; i++) {
4146 ASSERT3U(value[i], ==, last_txg + object + i);
4147 }
4148 } else {
4149 ASSERT3U(error, ==, ENOENT);
4150 }
4151
4152 /*
4153 * Atomically update two entries in our zap object.
4154 * The first is named txg_%llu, and contains the txg
4155 * in which the property was last updated. The second
4156 * is named prop_%llu, and the nth element of its value
4157 * should be txg + object + n.
4158 */
4159 tx = dmu_tx_create(os);
4160 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4161 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4162 if (txg == 0)
4163 goto out;
4164
4165 if (last_txg > txg)
4166 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg);
4167
4168 for (i = 0; i < ints; i++)
4169 value[i] = txg + object + i;
4170
4171 VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t),
4172 1, &txg, tx));
4173 VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t),
4174 ints, value, tx));
4175
4176 dmu_tx_commit(tx);
4177
4178 /*
4179 * Remove a random pair of entries.
4180 */
4181 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
4182 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
4183 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
4184
4185 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
4186
4187 if (error == ENOENT)
4188 goto out;
4189
4190 ASSERT3U(error, ==, 0);
4191
4192 tx = dmu_tx_create(os);
4193 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4194 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4195 if (txg == 0)
4196 goto out;
4197 VERIFY3U(0, ==, zap_remove(os, object, txgname, tx));
4198 VERIFY3U(0, ==, zap_remove(os, object, propname, tx));
4199 dmu_tx_commit(tx);
4200 out:
4201 umem_free(od, sizeof(ztest_od_t));
4202 }
4203
4204 /*
4205 * Testcase to test the upgrading of a microzap to fatzap.
4206 */
4207 void
4208 ztest_fzap(ztest_ds_t *zd, uint64_t id)
4209 {
4210 objset_t *os = zd->zd_os;
4211 ztest_od_t *od;
4212 uint64_t object, txg;
4213 int i;
4214
4215 od = umem_alloc(sizeof(ztest_od_t), UMEM_NOFAIL);
4216 ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0);
4217
4218 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
4219 !ztest_random(2)) != 0)
4220 goto out;
4221 object = od->od_object;
4222
4223 /*
4224 * Add entries to this ZAP and make sure it spills over
4225 * and gets upgraded to a fatzap. Also, since we are adding
4226 * 2050 entries we should see ptrtbl growth and leaf-block split.
4227 */
4228 for (i = 0; i < 2050; i++) {
4229 char name[MAXNAMELEN];
4230 uint64_t value = i;
4231 dmu_tx_t *tx;
4232 int error;
4233
4234 (void) snprintf(name, sizeof (name), "fzap-%llu-%llu",
4235 (u_longlong_t)id, (u_longlong_t)value);
4236
4237 tx = dmu_tx_create(os);
4238 dmu_tx_hold_zap(tx, object, B_TRUE, name);
4239 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4240 if (txg == 0)
4241 goto out;
4242 error = zap_add(os, object, name, sizeof (uint64_t), 1,
4243 &value, tx);
4244 ASSERT(error == 0 || error == EEXIST);
4245 dmu_tx_commit(tx);
4246 }
4247 out:
4248 umem_free(od, sizeof(ztest_od_t));
4249 }
4250
4251 /* ARGSUSED */
4252 void
4253 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
4254 {
4255 objset_t *os = zd->zd_os;
4256 ztest_od_t *od;
4257 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
4258 dmu_tx_t *tx;
4259 int i, namelen, error;
4260 int micro = ztest_random(2);
4261 char name[20], string_value[20];
4262 void *data;
4263
4264 od = umem_alloc(sizeof(ztest_od_t), UMEM_NOFAIL);
4265 ztest_od_init(od, ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0);
4266
4267 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
4268 umem_free(od, sizeof(ztest_od_t));
4269 return;
4270 }
4271
4272 object = od->od_object;
4273
4274 /*
4275 * Generate a random name of the form 'xxx.....' where each
4276 * x is a random printable character and the dots are dots.
4277 * There are 94 such characters, and the name length goes from
4278 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
4279 */
4280 namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
4281
4282 for (i = 0; i < 3; i++)
4283 name[i] = '!' + ztest_random('~' - '!' + 1);
4284 for (; i < namelen - 1; i++)
4285 name[i] = '.';
4286 name[i] = '\0';
4287
4288 if ((namelen & 1) || micro) {
4289 wsize = sizeof (txg);
4290 wc = 1;
4291 data = &txg;
4292 } else {
4293 wsize = 1;
4294 wc = namelen;
4295 data = string_value;
4296 }
4297
4298 count = -1ULL;
4299 VERIFY(zap_count(os, object, &count) == 0);
4300 ASSERT(count != -1ULL);
4301
4302 /*
4303 * Select an operation: length, lookup, add, update, remove.
4304 */
4305 i = ztest_random(5);
4306
4307 if (i >= 2) {
4308 tx = dmu_tx_create(os);
4309 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4310 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4311 if (txg == 0)
4312 return;
4313 bcopy(name, string_value, namelen);
4314 } else {
4315 tx = NULL;
4316 txg = 0;
4317 bzero(string_value, namelen);
4318 }
4319
4320 switch (i) {
4321
4322 case 0:
4323 error = zap_length(os, object, name, &zl_wsize, &zl_wc);
4324 if (error == 0) {
4325 ASSERT3U(wsize, ==, zl_wsize);
4326 ASSERT3U(wc, ==, zl_wc);
4327 } else {
4328 ASSERT3U(error, ==, ENOENT);
4329 }
4330 break;
4331
4332 case 1:
4333 error = zap_lookup(os, object, name, wsize, wc, data);
4334 if (error == 0) {
4335 if (data == string_value &&
4336 bcmp(name, data, namelen) != 0)
4337 fatal(0, "name '%s' != val '%s' len %d",
4338 name, data, namelen);
4339 } else {
4340 ASSERT3U(error, ==, ENOENT);
4341 }
4342 break;
4343
4344 case 2:
4345 error = zap_add(os, object, name, wsize, wc, data, tx);
4346 ASSERT(error == 0 || error == EEXIST);
4347 break;
4348
4349 case 3:
4350 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0);
4351 break;
4352
4353 case 4:
4354 error = zap_remove(os, object, name, tx);
4355 ASSERT(error == 0 || error == ENOENT);
4356 break;
4357 }
4358
4359 if (tx != NULL)
4360 dmu_tx_commit(tx);
4361
4362 umem_free(od, sizeof(ztest_od_t));
4363 }
4364
4365 /*
4366 * Commit callback data.
4367 */
4368 typedef struct ztest_cb_data {
4369 list_node_t zcd_node;
4370 uint64_t zcd_txg;
4371 int zcd_expected_err;
4372 boolean_t zcd_added;
4373 boolean_t zcd_called;
4374 spa_t *zcd_spa;
4375 } ztest_cb_data_t;
4376
4377 /* This is the actual commit callback function */
4378 static void
4379 ztest_commit_callback(void *arg, int error)
4380 {
4381 ztest_cb_data_t *data = arg;
4382 uint64_t synced_txg;
4383
4384 VERIFY(data != NULL);
4385 VERIFY3S(data->zcd_expected_err, ==, error);
4386 VERIFY(!data->zcd_called);
4387
4388 synced_txg = spa_last_synced_txg(data->zcd_spa);
4389 if (data->zcd_txg > synced_txg)
4390 fatal(0, "commit callback of txg %" PRIu64 " called prematurely"
4391 ", last synced txg = %" PRIu64 "\n", data->zcd_txg,
4392 synced_txg);
4393
4394 data->zcd_called = B_TRUE;
4395
4396 if (error == ECANCELED) {
4397 ASSERT3U(data->zcd_txg, ==, 0);
4398 ASSERT(!data->zcd_added);
4399
4400 /*
4401 * The private callback data should be destroyed here, but
4402 * since we are going to check the zcd_called field after
4403 * dmu_tx_abort(), we will destroy it there.
4404 */
4405 return;
4406 }
4407
4408 ASSERT(data->zcd_added);
4409 ASSERT3U(data->zcd_txg, !=, 0);
4410
4411 (void) mutex_enter(&zcl.zcl_callbacks_lock);
4412
4413 /* See if this cb was called more quickly */
4414 if ((synced_txg - data->zcd_txg) < zc_min_txg_delay)
4415 zc_min_txg_delay = synced_txg - data->zcd_txg;
4416
4417 /* Remove our callback from the list */
4418 list_remove(&zcl.zcl_callbacks, data);
4419
4420 (void) mutex_exit(&zcl.zcl_callbacks_lock);
4421
4422 umem_free(data, sizeof (ztest_cb_data_t));
4423 }
4424
4425 /* Allocate and initialize callback data structure */
4426 static ztest_cb_data_t *
4427 ztest_create_cb_data(objset_t *os, uint64_t txg)
4428 {
4429 ztest_cb_data_t *cb_data;
4430
4431 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
4432
4433 cb_data->zcd_txg = txg;
4434 cb_data->zcd_spa = dmu_objset_spa(os);
4435 list_link_init(&cb_data->zcd_node);
4436
4437 return (cb_data);
4438 }
4439
4440 /*
4441 * Commit callback test.
4442 */
4443 void
4444 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
4445 {
4446 objset_t *os = zd->zd_os;
4447 ztest_od_t *od;
4448 dmu_tx_t *tx;
4449 ztest_cb_data_t *cb_data[3], *tmp_cb;
4450 uint64_t old_txg, txg;
4451 int i, error = 0;
4452
4453 od = umem_alloc(sizeof(ztest_od_t), UMEM_NOFAIL);
4454 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
4455
4456 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
4457 umem_free(od, sizeof(ztest_od_t));
4458 return;
4459 }
4460
4461 tx = dmu_tx_create(os);
4462
4463 cb_data[0] = ztest_create_cb_data(os, 0);
4464 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
4465
4466 dmu_tx_hold_write(tx, od->od_object, 0, sizeof (uint64_t));
4467
4468 /* Every once in a while, abort the transaction on purpose */
4469 if (ztest_random(100) == 0)
4470 error = -1;
4471
4472 if (!error)
4473 error = dmu_tx_assign(tx, TXG_NOWAIT);
4474
4475 txg = error ? 0 : dmu_tx_get_txg(tx);
4476
4477 cb_data[0]->zcd_txg = txg;
4478 cb_data[1] = ztest_create_cb_data(os, txg);
4479 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
4480
4481 if (error) {
4482 /*
4483 * It's not a strict requirement to call the registered
4484 * callbacks from inside dmu_tx_abort(), but that's what
4485 * it's supposed to happen in the current implementation
4486 * so we will check for that.
4487 */
4488 for (i = 0; i < 2; i++) {
4489 cb_data[i]->zcd_expected_err = ECANCELED;
4490 VERIFY(!cb_data[i]->zcd_called);
4491 }
4492
4493 dmu_tx_abort(tx);
4494
4495 for (i = 0; i < 2; i++) {
4496 VERIFY(cb_data[i]->zcd_called);
4497 umem_free(cb_data[i], sizeof (ztest_cb_data_t));
4498 }
4499
4500 umem_free(od, sizeof(ztest_od_t));
4501 return;
4502 }
4503
4504 cb_data[2] = ztest_create_cb_data(os, txg);
4505 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
4506
4507 /*
4508 * Read existing data to make sure there isn't a future leak.
4509 */
4510 VERIFY(0 == dmu_read(os, od->od_object, 0, sizeof (uint64_t),
4511 &old_txg, DMU_READ_PREFETCH));
4512
4513 if (old_txg > txg)
4514 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64,
4515 old_txg, txg);
4516
4517 dmu_write(os, od->od_object, 0, sizeof (uint64_t), &txg, tx);
4518
4519 (void) mutex_enter(&zcl.zcl_callbacks_lock);
4520
4521 /*
4522 * Since commit callbacks don't have any ordering requirement and since
4523 * it is theoretically possible for a commit callback to be called
4524 * after an arbitrary amount of time has elapsed since its txg has been
4525 * synced, it is difficult to reliably determine whether a commit
4526 * callback hasn't been called due to high load or due to a flawed
4527 * implementation.
4528 *
4529 * In practice, we will assume that if after a certain number of txgs a
4530 * commit callback hasn't been called, then most likely there's an
4531 * implementation bug..
4532 */
4533 tmp_cb = list_head(&zcl.zcl_callbacks);
4534 if (tmp_cb != NULL &&
4535 tmp_cb->zcd_txg + ZTEST_COMMIT_CB_THRESH < txg) {
4536 fatal(0, "Commit callback threshold exceeded, oldest txg: %"
4537 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg);
4538 }
4539
4540 /*
4541 * Let's find the place to insert our callbacks.
4542 *
4543 * Even though the list is ordered by txg, it is possible for the
4544 * insertion point to not be the end because our txg may already be
4545 * quiescing at this point and other callbacks in the open txg
4546 * (from other objsets) may have sneaked in.
4547 */
4548 tmp_cb = list_tail(&zcl.zcl_callbacks);
4549 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
4550 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
4551
4552 /* Add the 3 callbacks to the list */
4553 for (i = 0; i < 3; i++) {
4554 if (tmp_cb == NULL)
4555 list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
4556 else
4557 list_insert_after(&zcl.zcl_callbacks, tmp_cb,
4558 cb_data[i]);
4559
4560 cb_data[i]->zcd_added = B_TRUE;
4561 VERIFY(!cb_data[i]->zcd_called);
4562
4563 tmp_cb = cb_data[i];
4564 }
4565
4566 zc_cb_counter += 3;
4567
4568 (void) mutex_exit(&zcl.zcl_callbacks_lock);
4569
4570 dmu_tx_commit(tx);
4571
4572 umem_free(od, sizeof(ztest_od_t));
4573 }
4574
4575 /* ARGSUSED */
4576 void
4577 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
4578 {
4579 zfs_prop_t proplist[] = {
4580 ZFS_PROP_CHECKSUM,
4581 ZFS_PROP_COMPRESSION,
4582 ZFS_PROP_COPIES,
4583 ZFS_PROP_DEDUP
4584 };
4585 int p;
4586
4587 (void) rw_enter(&ztest_name_lock, RW_READER);
4588
4589 for (p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++)
4590 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
4591 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
4592
4593 (void) rw_exit(&ztest_name_lock);
4594 }
4595
4596 /* ARGSUSED */
4597 void
4598 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
4599 {
4600 nvlist_t *props = NULL;
4601
4602 (void) rw_enter(&ztest_name_lock, RW_READER);
4603
4604 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO,
4605 ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN));
4606
4607 VERIFY3U(spa_prop_get(ztest_spa, &props), ==, 0);
4608
4609 if (ztest_opts.zo_verbose >= 6)
4610 dump_nvlist(props, 4);
4611
4612 nvlist_free(props);
4613
4614 (void) rw_exit(&ztest_name_lock);
4615 }
4616
4617 /*
4618 * Test snapshot hold/release and deferred destroy.
4619 */
4620 void
4621 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
4622 {
4623 int error;
4624 objset_t *os = zd->zd_os;
4625 objset_t *origin;
4626 char snapname[100];
4627 char fullname[100];
4628 char clonename[100];
4629 char tag[100];
4630 char osname[MAXNAMELEN];
4631
4632 (void) rw_enter(&ztest_name_lock, RW_READER);
4633
4634 dmu_objset_name(os, osname);
4635
4636 (void) snprintf(snapname, 100, "sh1_%llu", (u_longlong_t)id);
4637 (void) snprintf(fullname, 100, "%s@%s", osname, snapname);
4638 (void) snprintf(clonename, 100, "%s/ch1_%llu",osname,(u_longlong_t)id);
4639 (void) snprintf(tag, 100, "tag_%llu", (u_longlong_t)id);
4640
4641 /*
4642 * Clean up from any previous run.
4643 */
4644 (void) dmu_objset_destroy(clonename, B_FALSE);
4645 (void) dsl_dataset_user_release(osname, snapname, tag, B_FALSE);
4646 (void) dmu_objset_destroy(fullname, B_FALSE);
4647
4648 /*
4649 * Create snapshot, clone it, mark snap for deferred destroy,
4650 * destroy clone, verify snap was also destroyed.
4651 */
4652 error = dmu_objset_snapshot(osname, snapname, NULL, NULL, FALSE,
4653 FALSE, -1);
4654 if (error) {
4655 if (error == ENOSPC) {
4656 ztest_record_enospc("dmu_objset_snapshot");
4657 goto out;
4658 }
4659 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
4660 }
4661
4662 error = dmu_objset_hold(fullname, FTAG, &origin);
4663 if (error)
4664 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error);
4665
4666 error = dmu_objset_clone(clonename, dmu_objset_ds(origin), 0);
4667 dmu_objset_rele(origin, FTAG);
4668 if (error) {
4669 if (error == ENOSPC) {
4670 ztest_record_enospc("dmu_objset_clone");
4671 goto out;
4672 }
4673 fatal(0, "dmu_objset_clone(%s) = %d", clonename, error);
4674 }
4675
4676 error = dmu_objset_destroy(fullname, B_TRUE);
4677 if (error) {
4678 fatal(0, "dmu_objset_destroy(%s, B_TRUE) = %d",
4679 fullname, error);
4680 }
4681
4682 error = dmu_objset_destroy(clonename, B_FALSE);
4683 if (error)
4684 fatal(0, "dmu_objset_destroy(%s) = %d", clonename, error);
4685
4686 error = dmu_objset_hold(fullname, FTAG, &origin);
4687 if (error != ENOENT)
4688 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error);
4689
4690 /*
4691 * Create snapshot, add temporary hold, verify that we can't
4692 * destroy a held snapshot, mark for deferred destroy,
4693 * release hold, verify snapshot was destroyed.
4694 */
4695 error = dmu_objset_snapshot(osname, snapname, NULL, NULL, FALSE,
4696 FALSE, -1);
4697 if (error) {
4698 if (error == ENOSPC) {
4699 ztest_record_enospc("dmu_objset_snapshot");
4700 goto out;
4701 }
4702 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
4703 }
4704
4705 error = dsl_dataset_user_hold(osname, snapname, tag, B_FALSE,
4706 B_TRUE, -1);
4707 if (error)
4708 fatal(0, "dsl_dataset_user_hold(%s)", fullname, tag);
4709
4710 error = dmu_objset_destroy(fullname, B_FALSE);
4711 if (error != EBUSY) {
4712 fatal(0, "dmu_objset_destroy(%s, B_FALSE) = %d",
4713 fullname, error);
4714 }
4715
4716 error = dmu_objset_destroy(fullname, B_TRUE);
4717 if (error) {
4718 fatal(0, "dmu_objset_destroy(%s, B_TRUE) = %d",
4719 fullname, error);
4720 }
4721
4722 error = dsl_dataset_user_release(osname, snapname, tag, B_FALSE);
4723 if (error)
4724 fatal(0, "dsl_dataset_user_release(%s)", fullname, tag);
4725
4726 VERIFY(dmu_objset_hold(fullname, FTAG, &origin) == ENOENT);
4727
4728 out:
4729 (void) rw_exit(&ztest_name_lock);
4730 }
4731
4732 /*
4733 * Inject random faults into the on-disk data.
4734 */
4735 /* ARGSUSED */
4736 void
4737 ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
4738 {
4739 ztest_shared_t *zs = ztest_shared;
4740 spa_t *spa = ztest_spa;
4741 int fd;
4742 uint64_t offset;
4743 uint64_t leaves;
4744 uint64_t bad = 0x1990c0ffeedecadeull;
4745 uint64_t top, leaf;
4746 char *path0;
4747 char *pathrand;
4748 size_t fsize;
4749 int bshift = SPA_MAXBLOCKSHIFT + 2; /* don't scrog all labels */
4750 int iters = 1000;
4751 int maxfaults;
4752 int mirror_save;
4753 vdev_t *vd0 = NULL;
4754 uint64_t guid0 = 0;
4755 boolean_t islog = B_FALSE;
4756
4757 path0 = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
4758 pathrand = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
4759
4760 mutex_enter(&ztest_vdev_lock);
4761 maxfaults = MAXFAULTS();
4762 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
4763 mirror_save = zs->zs_mirrors;
4764 mutex_exit(&ztest_vdev_lock);
4765
4766 ASSERT(leaves >= 1);
4767
4768 /*
4769 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
4770 */
4771 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4772
4773 if (ztest_random(2) == 0) {
4774 /*
4775 * Inject errors on a normal data device or slog device.
4776 */
4777 top = ztest_random_vdev_top(spa, B_TRUE);
4778 leaf = ztest_random(leaves) + zs->zs_splits;
4779
4780 /*
4781 * Generate paths to the first leaf in this top-level vdev,
4782 * and to the random leaf we selected. We'll induce transient
4783 * write failures and random online/offline activity on leaf 0,
4784 * and we'll write random garbage to the randomly chosen leaf.
4785 */
4786 (void) snprintf(path0, MAXPATHLEN, ztest_dev_template,
4787 ztest_opts.zo_dir, ztest_opts.zo_pool,
4788 top * leaves + zs->zs_splits);
4789 (void) snprintf(pathrand, MAXPATHLEN, ztest_dev_template,
4790 ztest_opts.zo_dir, ztest_opts.zo_pool,
4791 top * leaves + leaf);
4792
4793 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
4794 if (vd0 != NULL && vd0->vdev_top->vdev_islog)
4795 islog = B_TRUE;
4796
4797 if (vd0 != NULL && maxfaults != 1) {
4798 /*
4799 * Make vd0 explicitly claim to be unreadable,
4800 * or unwriteable, or reach behind its back
4801 * and close the underlying fd. We can do this if
4802 * maxfaults == 0 because we'll fail and reexecute,
4803 * and we can do it if maxfaults >= 2 because we'll
4804 * have enough redundancy. If maxfaults == 1, the
4805 * combination of this with injection of random data
4806 * corruption below exceeds the pool's fault tolerance.
4807 */
4808 vdev_file_t *vf = vd0->vdev_tsd;
4809
4810 if (vf != NULL && ztest_random(3) == 0) {
4811 (void) close(vf->vf_vnode->v_fd);
4812 vf->vf_vnode->v_fd = -1;
4813 } else if (ztest_random(2) == 0) {
4814 vd0->vdev_cant_read = B_TRUE;
4815 } else {
4816 vd0->vdev_cant_write = B_TRUE;
4817 }
4818 guid0 = vd0->vdev_guid;
4819 }
4820 } else {
4821 /*
4822 * Inject errors on an l2cache device.
4823 */
4824 spa_aux_vdev_t *sav = &spa->spa_l2cache;
4825
4826 if (sav->sav_count == 0) {
4827 spa_config_exit(spa, SCL_STATE, FTAG);
4828 goto out;
4829 }
4830 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
4831 guid0 = vd0->vdev_guid;
4832 (void) strcpy(path0, vd0->vdev_path);
4833 (void) strcpy(pathrand, vd0->vdev_path);
4834
4835 leaf = 0;
4836 leaves = 1;
4837 maxfaults = INT_MAX; /* no limit on cache devices */
4838 }
4839
4840 spa_config_exit(spa, SCL_STATE, FTAG);
4841
4842 /*
4843 * If we can tolerate two or more faults, or we're dealing
4844 * with a slog, randomly online/offline vd0.
4845 */
4846 if ((maxfaults >= 2 || islog) && guid0 != 0) {
4847 if (ztest_random(10) < 6) {
4848 int flags = (ztest_random(2) == 0 ?
4849 ZFS_OFFLINE_TEMPORARY : 0);
4850
4851 /*
4852 * We have to grab the zs_name_lock as writer to
4853 * prevent a race between offlining a slog and
4854 * destroying a dataset. Offlining the slog will
4855 * grab a reference on the dataset which may cause
4856 * dmu_objset_destroy() to fail with EBUSY thus
4857 * leaving the dataset in an inconsistent state.
4858 */
4859 if (islog)
4860 (void) rw_enter(&ztest_name_lock,
4861 RW_WRITER);
4862
4863 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY);
4864
4865 if (islog)
4866 (void) rw_exit(&ztest_name_lock);
4867 } else {
4868 (void) vdev_online(spa, guid0, 0, NULL);
4869 }
4870 }
4871
4872 if (maxfaults == 0)
4873 goto out;
4874
4875 /*
4876 * We have at least single-fault tolerance, so inject data corruption.
4877 */
4878 fd = open(pathrand, O_RDWR);
4879
4880 if (fd == -1) /* we hit a gap in the device namespace */
4881 goto out;
4882
4883 fsize = lseek(fd, 0, SEEK_END);
4884
4885 while (--iters != 0) {
4886 offset = ztest_random(fsize / (leaves << bshift)) *
4887 (leaves << bshift) + (leaf << bshift) +
4888 (ztest_random(1ULL << (bshift - 1)) & -8ULL);
4889
4890 if (offset >= fsize)
4891 continue;
4892
4893 mutex_enter(&ztest_vdev_lock);
4894 if (mirror_save != zs->zs_mirrors) {
4895 mutex_exit(&ztest_vdev_lock);
4896 (void) close(fd);
4897 goto out;
4898 }
4899
4900 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
4901 fatal(1, "can't inject bad word at 0x%llx in %s",
4902 offset, pathrand);
4903
4904 mutex_exit(&ztest_vdev_lock);
4905
4906 if (ztest_opts.zo_verbose >= 7)
4907 (void) printf("injected bad word into %s,"
4908 " offset 0x%llx\n", pathrand, (u_longlong_t)offset);
4909 }
4910
4911 (void) close(fd);
4912 out:
4913 umem_free(path0, MAXPATHLEN);
4914 umem_free(pathrand, MAXPATHLEN);
4915 }
4916
4917 /*
4918 * Verify that DDT repair works as expected.
4919 */
4920 void
4921 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id)
4922 {
4923 ztest_shared_t *zs = ztest_shared;
4924 spa_t *spa = ztest_spa;
4925 objset_t *os = zd->zd_os;
4926 ztest_od_t *od;
4927 uint64_t object, blocksize, txg, pattern, psize;
4928 enum zio_checksum checksum = spa_dedup_checksum(spa);
4929 dmu_buf_t *db;
4930 dmu_tx_t *tx;
4931 void *buf;
4932 blkptr_t blk;
4933 int copies = 2 * ZIO_DEDUPDITTO_MIN;
4934 int i;
4935
4936 blocksize = ztest_random_blocksize();
4937 blocksize = MIN(blocksize, 2048); /* because we write so many */
4938
4939 od = umem_alloc(sizeof(ztest_od_t), UMEM_NOFAIL);
4940 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
4941
4942 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
4943 umem_free(od, sizeof(ztest_od_t));
4944 return;
4945 }
4946
4947 /*
4948 * Take the name lock as writer to prevent anyone else from changing
4949 * the pool and dataset properies we need to maintain during this test.
4950 */
4951 (void) rw_enter(&ztest_name_lock, RW_WRITER);
4952
4953 if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum,
4954 B_FALSE) != 0 ||
4955 ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1,
4956 B_FALSE) != 0) {
4957 (void) rw_exit(&ztest_name_lock);
4958 umem_free(od, sizeof(ztest_od_t));
4959 return;
4960 }
4961
4962 object = od[0].od_object;
4963 blocksize = od[0].od_blocksize;
4964 pattern = zs->zs_guid ^ dmu_objset_fsid_guid(os);
4965
4966 ASSERT(object != 0);
4967
4968 tx = dmu_tx_create(os);
4969 dmu_tx_hold_write(tx, object, 0, copies * blocksize);
4970 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
4971 if (txg == 0) {
4972 (void) rw_exit(&ztest_name_lock);
4973 umem_free(od, sizeof(ztest_od_t));
4974 return;
4975 }
4976
4977 /*
4978 * Write all the copies of our block.
4979 */
4980 for (i = 0; i < copies; i++) {
4981 uint64_t offset = i * blocksize;
4982 VERIFY(dmu_buf_hold(os, object, offset, FTAG, &db,
4983 DMU_READ_NO_PREFETCH) == 0);
4984 ASSERT(db->db_offset == offset);
4985 ASSERT(db->db_size == blocksize);
4986 ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) ||
4987 ztest_pattern_match(db->db_data, db->db_size, 0ULL));
4988 dmu_buf_will_fill(db, tx);
4989 ztest_pattern_set(db->db_data, db->db_size, pattern);
4990 dmu_buf_rele(db, FTAG);
4991 }
4992
4993 dmu_tx_commit(tx);
4994 txg_wait_synced(spa_get_dsl(spa), txg);
4995
4996 /*
4997 * Find out what block we got.
4998 */
4999 VERIFY(dmu_buf_hold(os, object, 0, FTAG, &db,
5000 DMU_READ_NO_PREFETCH) == 0);
5001 blk = *((dmu_buf_impl_t *)db)->db_blkptr;
5002 dmu_buf_rele(db, FTAG);
5003
5004 /*
5005 * Damage the block. Dedup-ditto will save us when we read it later.
5006 */
5007 psize = BP_GET_PSIZE(&blk);
5008 buf = zio_buf_alloc(psize);
5009 ztest_pattern_set(buf, psize, ~pattern);
5010
5011 (void) zio_wait(zio_rewrite(NULL, spa, 0, &blk,
5012 buf, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE,
5013 ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL));
5014
5015 zio_buf_free(buf, psize);
5016
5017 (void) rw_exit(&ztest_name_lock);
5018 umem_free(od, sizeof(ztest_od_t));
5019 }
5020
5021 /*
5022 * Scrub the pool.
5023 */
5024 /* ARGSUSED */
5025 void
5026 ztest_scrub(ztest_ds_t *zd, uint64_t id)
5027 {
5028 spa_t *spa = ztest_spa;
5029
5030 (void) spa_scan(spa, POOL_SCAN_SCRUB);
5031 (void) poll(NULL, 0, 100); /* wait a moment, then force a restart */
5032 (void) spa_scan(spa, POOL_SCAN_SCRUB);
5033 }
5034
5035 /*
5036 * Change the guid for the pool.
5037 */
5038 /* ARGSUSED */
5039 void
5040 ztest_reguid(ztest_ds_t *zd, uint64_t id)
5041 {
5042 spa_t *spa = ztest_spa;
5043 uint64_t orig, load;
5044 int error;
5045
5046 orig = spa_guid(spa);
5047 load = spa_load_guid(spa);
5048
5049 (void) rw_enter(&ztest_name_lock, RW_WRITER);
5050 error = spa_change_guid(spa);
5051 (void) rw_exit(&ztest_name_lock);
5052
5053 if (error != 0)
5054 return;
5055
5056 if (ztest_opts.zo_verbose >= 3) {
5057 (void) printf("Changed guid old %llu -> %llu\n",
5058 (u_longlong_t)orig, (u_longlong_t)spa_guid(spa));
5059 }
5060
5061 VERIFY3U(orig, !=, spa_guid(spa));
5062 VERIFY3U(load, ==, spa_load_guid(spa));
5063 }
5064
5065 /*
5066 * Rename the pool to a different name and then rename it back.
5067 */
5068 /* ARGSUSED */
5069 void
5070 ztest_spa_rename(ztest_ds_t *zd, uint64_t id)
5071 {
5072 char *oldname, *newname;
5073 spa_t *spa;
5074
5075 (void) rw_enter(&ztest_name_lock, RW_WRITER);
5076
5077 oldname = ztest_opts.zo_pool;
5078 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL);
5079 (void) strcpy(newname, oldname);
5080 (void) strcat(newname, "_tmp");
5081
5082 /*
5083 * Do the rename
5084 */
5085 VERIFY3U(0, ==, spa_rename(oldname, newname));
5086
5087 /*
5088 * Try to open it under the old name, which shouldn't exist
5089 */
5090 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
5091
5092 /*
5093 * Open it under the new name and make sure it's still the same spa_t.
5094 */
5095 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
5096
5097 ASSERT(spa == ztest_spa);
5098 spa_close(spa, FTAG);
5099
5100 /*
5101 * Rename it back to the original
5102 */
5103 VERIFY3U(0, ==, spa_rename(newname, oldname));
5104
5105 /*
5106 * Make sure it can still be opened
5107 */
5108 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
5109
5110 ASSERT(spa == ztest_spa);
5111 spa_close(spa, FTAG);
5112
5113 umem_free(newname, strlen(newname) + 1);
5114
5115 (void) rw_exit(&ztest_name_lock);
5116 }
5117
5118 /*
5119 * Verify pool integrity by running zdb.
5120 */
5121 static void
5122 ztest_run_zdb(char *pool)
5123 {
5124 int status;
5125 char *bin;
5126 char *zdb;
5127 char *zbuf;
5128 FILE *fp;
5129
5130 bin = umem_alloc(MAXPATHLEN + MAXNAMELEN + 20, UMEM_NOFAIL);
5131 zdb = umem_alloc(MAXPATHLEN + MAXNAMELEN + 20, UMEM_NOFAIL);
5132 zbuf = umem_alloc(1024, UMEM_NOFAIL);
5133
5134 VERIFY(realpath(getexecname(), bin) != NULL);
5135 if (strncmp(bin, "/usr/sbin/ztest", 15) == 0) {
5136 strcpy(bin, "/usr/sbin/zdb"); /* Installed */
5137 } else if (strncmp(bin, "/sbin/ztest", 11) == 0) {
5138 strcpy(bin, "/sbin/zdb"); /* Installed */
5139 } else {
5140 strstr(bin, "/ztest/")[0] = '\0'; /* In-tree */
5141 strcat(bin, "/zdb/zdb");
5142 }
5143
5144 (void) sprintf(zdb,
5145 "%s -bcc%s%s -U %s %s",
5146 bin,
5147 ztest_opts.zo_verbose >= 3 ? "s" : "",
5148 ztest_opts.zo_verbose >= 4 ? "v" : "",
5149 spa_config_path,
5150 pool);
5151
5152 if (ztest_opts.zo_verbose >= 5)
5153 (void) printf("Executing %s\n", strstr(zdb, "zdb "));
5154
5155 fp = popen(zdb, "r");
5156
5157 while (fgets(zbuf, 1024, fp) != NULL)
5158 if (ztest_opts.zo_verbose >= 3)
5159 (void) printf("%s", zbuf);
5160
5161 status = pclose(fp);
5162
5163 if (status == 0)
5164 goto out;
5165
5166 ztest_dump_core = 0;
5167 if (WIFEXITED(status))
5168 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status));
5169 else
5170 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status));
5171 out:
5172 umem_free(bin, MAXPATHLEN + MAXNAMELEN + 20);
5173 umem_free(zdb, MAXPATHLEN + MAXNAMELEN + 20);
5174 umem_free(zbuf, 1024);
5175 }
5176
5177 static void
5178 ztest_walk_pool_directory(char *header)
5179 {
5180 spa_t *spa = NULL;
5181
5182 if (ztest_opts.zo_verbose >= 6)
5183 (void) printf("%s\n", header);
5184
5185 mutex_enter(&spa_namespace_lock);
5186 while ((spa = spa_next(spa)) != NULL)
5187 if (ztest_opts.zo_verbose >= 6)
5188 (void) printf("\t%s\n", spa_name(spa));
5189 mutex_exit(&spa_namespace_lock);
5190 }
5191
5192 static void
5193 ztest_spa_import_export(char *oldname, char *newname)
5194 {
5195 nvlist_t *config, *newconfig;
5196 uint64_t pool_guid;
5197 spa_t *spa;
5198
5199 if (ztest_opts.zo_verbose >= 4) {
5200 (void) printf("import/export: old = %s, new = %s\n",
5201 oldname, newname);
5202 }
5203
5204 /*
5205 * Clean up from previous runs.
5206 */
5207 (void) spa_destroy(newname);
5208
5209 /*
5210 * Get the pool's configuration and guid.
5211 */
5212 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
5213
5214 /*
5215 * Kick off a scrub to tickle scrub/export races.
5216 */
5217 if (ztest_random(2) == 0)
5218 (void) spa_scan(spa, POOL_SCAN_SCRUB);
5219
5220 pool_guid = spa_guid(spa);
5221 spa_close(spa, FTAG);
5222
5223 ztest_walk_pool_directory("pools before export");
5224
5225 /*
5226 * Export it.
5227 */
5228 VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE));
5229
5230 ztest_walk_pool_directory("pools after export");
5231
5232 /*
5233 * Try to import it.
5234 */
5235 newconfig = spa_tryimport(config);
5236 ASSERT(newconfig != NULL);
5237 nvlist_free(newconfig);
5238
5239 /*
5240 * Import it under the new name.
5241 */
5242 VERIFY3U(0, ==, spa_import(newname, config, NULL, 0));
5243
5244 ztest_walk_pool_directory("pools after import");
5245
5246 /*
5247 * Try to import it again -- should fail with EEXIST.
5248 */
5249 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0));
5250
5251 /*
5252 * Try to import it under a different name -- should fail with EEXIST.
5253 */
5254 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0));
5255
5256 /*
5257 * Verify that the pool is no longer visible under the old name.
5258 */
5259 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
5260
5261 /*
5262 * Verify that we can open and close the pool using the new name.
5263 */
5264 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
5265 ASSERT(pool_guid == spa_guid(spa));
5266 spa_close(spa, FTAG);
5267
5268 nvlist_free(config);
5269 }
5270
5271 static void
5272 ztest_resume(spa_t *spa)
5273 {
5274 if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6)
5275 (void) printf("resuming from suspended state\n");
5276 spa_vdev_state_enter(spa, SCL_NONE);
5277 vdev_clear(spa, NULL);
5278 (void) spa_vdev_state_exit(spa, NULL, 0);
5279 (void) zio_resume(spa);
5280 }
5281
5282 static void *
5283 ztest_resume_thread(void *arg)
5284 {
5285 spa_t *spa = arg;
5286
5287 while (!ztest_exiting) {
5288 if (spa_suspended(spa))
5289 ztest_resume(spa);
5290 (void) poll(NULL, 0, 100);
5291 }
5292
5293 thread_exit();
5294
5295 return (NULL);
5296 }
5297
5298 #define GRACE 300
5299
5300 #if 0
5301 static void
5302 ztest_deadman_alarm(int sig)
5303 {
5304 fatal(0, "failed to complete within %d seconds of deadline", GRACE);
5305 }
5306 #endif
5307
5308 static void
5309 ztest_execute(int test, ztest_info_t *zi, uint64_t id)
5310 {
5311 ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets];
5312 ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test);
5313 hrtime_t functime = gethrtime();
5314 int i;
5315
5316 for (i = 0; i < zi->zi_iters; i++)
5317 zi->zi_func(zd, id);
5318
5319 functime = gethrtime() - functime;
5320
5321 atomic_add_64(&zc->zc_count, 1);
5322 atomic_add_64(&zc->zc_time, functime);
5323
5324 if (ztest_opts.zo_verbose >= 4) {
5325 Dl_info dli;
5326 (void) dladdr((void *)zi->zi_func, &dli);
5327 (void) printf("%6.2f sec in %s\n",
5328 (double)functime / NANOSEC, dli.dli_sname);
5329 }
5330 }
5331
5332 static void *
5333 ztest_thread(void *arg)
5334 {
5335 int rand;
5336 uint64_t id = (uintptr_t)arg;
5337 ztest_shared_t *zs = ztest_shared;
5338 uint64_t call_next;
5339 hrtime_t now;
5340 ztest_info_t *zi;
5341 ztest_shared_callstate_t *zc;
5342
5343 while ((now = gethrtime()) < zs->zs_thread_stop) {
5344 /*
5345 * See if it's time to force a crash.
5346 */
5347 if (now > zs->zs_thread_kill)
5348 ztest_kill(zs);
5349
5350 /*
5351 * If we're getting ENOSPC with some regularity, stop.
5352 */
5353 if (zs->zs_enospc_count > 10)
5354 break;
5355
5356 /*
5357 * Pick a random function to execute.
5358 */
5359 rand = ztest_random(ZTEST_FUNCS);
5360 zi = &ztest_info[rand];
5361 zc = ZTEST_GET_SHARED_CALLSTATE(rand);
5362 call_next = zc->zc_next;
5363
5364 if (now >= call_next &&
5365 atomic_cas_64(&zc->zc_next, call_next, call_next +
5366 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) {
5367 ztest_execute(rand, zi, id);
5368 }
5369 }
5370
5371 thread_exit();
5372
5373 return (NULL);
5374 }
5375
5376 static void
5377 ztest_dataset_name(char *dsname, char *pool, int d)
5378 {
5379 (void) snprintf(dsname, MAXNAMELEN, "%s/ds_%d", pool, d);
5380 }
5381
5382 static void
5383 ztest_dataset_destroy(int d)
5384 {
5385 char name[MAXNAMELEN];
5386 int t;
5387
5388 ztest_dataset_name(name, ztest_opts.zo_pool, d);
5389
5390 if (ztest_opts.zo_verbose >= 3)
5391 (void) printf("Destroying %s to free up space\n", name);
5392
5393 /*
5394 * Cleanup any non-standard clones and snapshots. In general,
5395 * ztest thread t operates on dataset (t % zopt_datasets),
5396 * so there may be more than one thing to clean up.
5397 */
5398 for (t = d; t < ztest_opts.zo_threads;
5399 t += ztest_opts.zo_datasets)
5400 ztest_dsl_dataset_cleanup(name, t);
5401
5402 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
5403 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
5404 }
5405
5406 static void
5407 ztest_dataset_dirobj_verify(ztest_ds_t *zd)
5408 {
5409 uint64_t usedobjs, dirobjs, scratch;
5410
5411 /*
5412 * ZTEST_DIROBJ is the object directory for the entire dataset.
5413 * Therefore, the number of objects in use should equal the
5414 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
5415 * If not, we have an object leak.
5416 *
5417 * Note that we can only check this in ztest_dataset_open(),
5418 * when the open-context and syncing-context values agree.
5419 * That's because zap_count() returns the open-context value,
5420 * while dmu_objset_space() returns the rootbp fill count.
5421 */
5422 VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
5423 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
5424 ASSERT3U(dirobjs + 1, ==, usedobjs);
5425 }
5426
5427 static int
5428 ztest_dataset_open(int d)
5429 {
5430 ztest_ds_t *zd = &ztest_ds[d];
5431 uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq;
5432 objset_t *os;
5433 zilog_t *zilog;
5434 char name[MAXNAMELEN];
5435 int error;
5436
5437 ztest_dataset_name(name, ztest_opts.zo_pool, d);
5438
5439 (void) rw_enter(&ztest_name_lock, RW_READER);
5440
5441 error = ztest_dataset_create(name);
5442 if (error == ENOSPC) {
5443 (void) rw_exit(&ztest_name_lock);
5444 ztest_record_enospc(FTAG);
5445 return (error);
5446 }
5447 ASSERT(error == 0 || error == EEXIST);
5448
5449 VERIFY3U(dmu_objset_hold(name, zd, &os), ==, 0);
5450 (void) rw_exit(&ztest_name_lock);
5451
5452 ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os);
5453
5454 zilog = zd->zd_zilog;
5455
5456 if (zilog->zl_header->zh_claim_lr_seq != 0 &&
5457 zilog->zl_header->zh_claim_lr_seq < committed_seq)
5458 fatal(0, "missing log records: claimed %llu < committed %llu",
5459 zilog->zl_header->zh_claim_lr_seq, committed_seq);
5460
5461 ztest_dataset_dirobj_verify(zd);
5462
5463 zil_replay(os, zd, ztest_replay_vector);
5464
5465 ztest_dataset_dirobj_verify(zd);
5466
5467 if (ztest_opts.zo_verbose >= 6)
5468 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n",
5469 zd->zd_name,
5470 (u_longlong_t)zilog->zl_parse_blk_count,
5471 (u_longlong_t)zilog->zl_parse_lr_count,
5472 (u_longlong_t)zilog->zl_replaying_seq);
5473
5474 zilog = zil_open(os, ztest_get_data);
5475
5476 if (zilog->zl_replaying_seq != 0 &&
5477 zilog->zl_replaying_seq < committed_seq)
5478 fatal(0, "missing log records: replayed %llu < committed %llu",
5479 zilog->zl_replaying_seq, committed_seq);
5480
5481 return (0);
5482 }
5483
5484 static void
5485 ztest_dataset_close(int d)
5486 {
5487 ztest_ds_t *zd = &ztest_ds[d];
5488
5489 zil_close(zd->zd_zilog);
5490 dmu_objset_rele(zd->zd_os, zd);
5491
5492 ztest_zd_fini(zd);
5493 }
5494
5495 /*
5496 * Kick off threads to run tests on all datasets in parallel.
5497 */
5498 static void
5499 ztest_run(ztest_shared_t *zs)
5500 {
5501 kt_did_t *tid;
5502 spa_t *spa;
5503 objset_t *os;
5504 kthread_t *resume_thread;
5505 uint64_t object;
5506 int error;
5507 int t, d;
5508
5509 ztest_exiting = B_FALSE;
5510
5511 /*
5512 * Initialize parent/child shared state.
5513 */
5514 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
5515 rw_init(&ztest_name_lock, NULL, RW_DEFAULT, NULL);
5516
5517 zs->zs_thread_start = gethrtime();
5518 zs->zs_thread_stop =
5519 zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC;
5520 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
5521 zs->zs_thread_kill = zs->zs_thread_stop;
5522 if (ztest_random(100) < ztest_opts.zo_killrate) {
5523 zs->zs_thread_kill -=
5524 ztest_random(ztest_opts.zo_passtime * NANOSEC);
5525 }
5526
5527 mutex_init(&zcl.zcl_callbacks_lock, NULL, MUTEX_DEFAULT, NULL);
5528
5529 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
5530 offsetof(ztest_cb_data_t, zcd_node));
5531
5532 /*
5533 * Open our pool.
5534 */
5535 kernel_init(FREAD | FWRITE);
5536 VERIFY(spa_open(ztest_opts.zo_pool, &spa, FTAG) == 0);
5537 spa->spa_debug = B_TRUE;
5538 ztest_spa = spa;
5539
5540 VERIFY3U(0, ==, dmu_objset_hold(ztest_opts.zo_pool, FTAG, &os));
5541 zs->zs_guid = dmu_objset_fsid_guid(os);
5542 dmu_objset_rele(os, FTAG);
5543
5544 spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN;
5545
5546 /*
5547 * We don't expect the pool to suspend unless maxfaults == 0,
5548 * in which case ztest_fault_inject() temporarily takes away
5549 * the only valid replica.
5550 */
5551 if (MAXFAULTS() == 0)
5552 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT;
5553 else
5554 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC;
5555
5556 /*
5557 * Create a thread to periodically resume suspended I/O.
5558 */
5559 VERIFY3P((resume_thread = zk_thread_create(NULL, 0,
5560 (thread_func_t)ztest_resume_thread, spa, TS_RUN, NULL, 0, 0,
5561 PTHREAD_CREATE_JOINABLE)), !=, NULL);
5562
5563 #if 0
5564 /*
5565 * Set a deadman alarm to abort() if we hang.
5566 */
5567 signal(SIGALRM, ztest_deadman_alarm);
5568 alarm((zs->zs_thread_stop - zs->zs_thread_start) / NANOSEC + GRACE);
5569 #endif
5570
5571 /*
5572 * Verify that we can safely inquire about about any object,
5573 * whether it's allocated or not. To make it interesting,
5574 * we probe a 5-wide window around each power of two.
5575 * This hits all edge cases, including zero and the max.
5576 */
5577 for (t = 0; t < 64; t++) {
5578 for (d = -5; d <= 5; d++) {
5579 error = dmu_object_info(spa->spa_meta_objset,
5580 (1ULL << t) + d, NULL);
5581 ASSERT(error == 0 || error == ENOENT ||
5582 error == EINVAL);
5583 }
5584 }
5585
5586 /*
5587 * If we got any ENOSPC errors on the previous run, destroy something.
5588 */
5589 if (zs->zs_enospc_count != 0) {
5590 int d = ztest_random(ztest_opts.zo_datasets);
5591 ztest_dataset_destroy(d);
5592 }
5593 zs->zs_enospc_count = 0;
5594
5595 tid = umem_zalloc(ztest_opts.zo_threads * sizeof (kt_did_t),
5596 UMEM_NOFAIL);
5597
5598 if (ztest_opts.zo_verbose >= 4)
5599 (void) printf("starting main threads...\n");
5600
5601 /*
5602 * Kick off all the tests that run in parallel.
5603 */
5604 for (t = 0; t < ztest_opts.zo_threads; t++) {
5605 kthread_t *thread;
5606
5607 if (t < ztest_opts.zo_datasets &&
5608 ztest_dataset_open(t) != 0)
5609 return;
5610
5611 VERIFY3P(thread = zk_thread_create(NULL, 0,
5612 (thread_func_t)ztest_thread,
5613 (void *)(uintptr_t)t, TS_RUN, NULL, 0, 0,
5614 PTHREAD_CREATE_JOINABLE), !=, NULL);
5615 tid[t] = thread->t_tid;
5616 }
5617
5618 /*
5619 * Wait for all of the tests to complete. We go in reverse order
5620 * so we don't close datasets while threads are still using them.
5621 */
5622 for (t = ztest_opts.zo_threads - 1; t >= 0; t--) {
5623 thread_join(tid[t]);
5624 if (t < ztest_opts.zo_datasets)
5625 ztest_dataset_close(t);
5626 }
5627
5628 txg_wait_synced(spa_get_dsl(spa), 0);
5629
5630 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
5631 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
5632
5633 umem_free(tid, ztest_opts.zo_threads * sizeof (kt_did_t));
5634
5635 /* Kill the resume thread */
5636 ztest_exiting = B_TRUE;
5637 thread_join(resume_thread->t_tid);
5638 ztest_resume(spa);
5639
5640 /*
5641 * Right before closing the pool, kick off a bunch of async I/O;
5642 * spa_close() should wait for it to complete.
5643 */
5644 for (object = 1; object < 50; object++)
5645 dmu_prefetch(spa->spa_meta_objset, object, 0, 1ULL << 20);
5646
5647 /* Verify that at least one commit cb was called in a timely fashion */
5648 if (zc_cb_counter >= ZTEST_COMMIT_CB_MIN_REG)
5649 VERIFY3U(zc_min_txg_delay, ==, 0);
5650
5651 spa_close(spa, FTAG);
5652
5653 /*
5654 * Verify that we can loop over all pools.
5655 */
5656 mutex_enter(&spa_namespace_lock);
5657 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
5658 if (ztest_opts.zo_verbose > 3)
5659 (void) printf("spa_next: found %s\n", spa_name(spa));
5660 mutex_exit(&spa_namespace_lock);
5661
5662 /*
5663 * Verify that we can export the pool and reimport it under a
5664 * different name.
5665 */
5666 if (ztest_random(2) == 0) {
5667 char name[MAXNAMELEN];
5668 (void) snprintf(name, MAXNAMELEN, "%s_import",
5669 ztest_opts.zo_pool);
5670 ztest_spa_import_export(ztest_opts.zo_pool, name);
5671 ztest_spa_import_export(name, ztest_opts.zo_pool);
5672 }
5673
5674 kernel_fini();
5675
5676 list_destroy(&zcl.zcl_callbacks);
5677 mutex_destroy(&zcl.zcl_callbacks_lock);
5678 rw_destroy(&ztest_name_lock);
5679 mutex_destroy(&ztest_vdev_lock);
5680 }
5681
5682 static void
5683 ztest_freeze(void)
5684 {
5685 ztest_ds_t *zd = &ztest_ds[0];
5686 spa_t *spa;
5687 int numloops = 0;
5688
5689 if (ztest_opts.zo_verbose >= 3)
5690 (void) printf("testing spa_freeze()...\n");
5691
5692 kernel_init(FREAD | FWRITE);
5693 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
5694 VERIFY3U(0, ==, ztest_dataset_open(0));
5695
5696 /*
5697 * Force the first log block to be transactionally allocated.
5698 * We have to do this before we freeze the pool -- otherwise
5699 * the log chain won't be anchored.
5700 */
5701 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
5702 ztest_dmu_object_alloc_free(zd, 0);
5703 zil_commit(zd->zd_zilog, 0);
5704 }
5705
5706 txg_wait_synced(spa_get_dsl(spa), 0);
5707
5708 /*
5709 * Freeze the pool. This stops spa_sync() from doing anything,
5710 * so that the only way to record changes from now on is the ZIL.
5711 */
5712 spa_freeze(spa);
5713
5714 /*
5715 * Run tests that generate log records but don't alter the pool config
5716 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
5717 * We do a txg_wait_synced() after each iteration to force the txg
5718 * to increase well beyond the last synced value in the uberblock.
5719 * The ZIL should be OK with that.
5720 */
5721 while (ztest_random(10) != 0 &&
5722 numloops++ < ztest_opts.zo_maxloops) {
5723 ztest_dmu_write_parallel(zd, 0);
5724 ztest_dmu_object_alloc_free(zd, 0);
5725 txg_wait_synced(spa_get_dsl(spa), 0);
5726 }
5727
5728 /*
5729 * Commit all of the changes we just generated.
5730 */
5731 zil_commit(zd->zd_zilog, 0);
5732 txg_wait_synced(spa_get_dsl(spa), 0);
5733
5734 /*
5735 * Close our dataset and close the pool.
5736 */
5737 ztest_dataset_close(0);
5738 spa_close(spa, FTAG);
5739 kernel_fini();
5740
5741 /*
5742 * Open and close the pool and dataset to induce log replay.
5743 */
5744 kernel_init(FREAD | FWRITE);
5745 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
5746 VERIFY3U(0, ==, ztest_dataset_open(0));
5747 ztest_dataset_close(0);
5748
5749 spa->spa_debug = B_TRUE;
5750 ztest_spa = spa;
5751 txg_wait_synced(spa_get_dsl(spa), 0);
5752 ztest_reguid(NULL, 0);
5753
5754 spa_close(spa, FTAG);
5755 kernel_fini();
5756 }
5757
5758 void
5759 print_time(hrtime_t t, char *timebuf)
5760 {
5761 hrtime_t s = t / NANOSEC;
5762 hrtime_t m = s / 60;
5763 hrtime_t h = m / 60;
5764 hrtime_t d = h / 24;
5765
5766 s -= m * 60;
5767 m -= h * 60;
5768 h -= d * 24;
5769
5770 timebuf[0] = '\0';
5771
5772 if (d)
5773 (void) sprintf(timebuf,
5774 "%llud%02lluh%02llum%02llus", d, h, m, s);
5775 else if (h)
5776 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
5777 else if (m)
5778 (void) sprintf(timebuf, "%llum%02llus", m, s);
5779 else
5780 (void) sprintf(timebuf, "%llus", s);
5781 }
5782
5783 static nvlist_t *
5784 make_random_props(void)
5785 {
5786 nvlist_t *props;
5787
5788 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
5789 if (ztest_random(2) == 0)
5790 return (props);
5791 VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0);
5792
5793 return (props);
5794 }
5795
5796 /*
5797 * Create a storage pool with the given name and initial vdev size.
5798 * Then test spa_freeze() functionality.
5799 */
5800 static void
5801 ztest_init(ztest_shared_t *zs)
5802 {
5803 spa_t *spa;
5804 nvlist_t *nvroot, *props;
5805 int i;
5806
5807 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
5808 rw_init(&ztest_name_lock, NULL, RW_DEFAULT, NULL);
5809
5810 kernel_init(FREAD | FWRITE);
5811
5812 /*
5813 * Create the storage pool.
5814 */
5815 (void) spa_destroy(ztest_opts.zo_pool);
5816 ztest_shared->zs_vdev_next_leaf = 0;
5817 zs->zs_splits = 0;
5818 zs->zs_mirrors = ztest_opts.zo_mirrors;
5819 nvroot = make_vdev_root(NULL, NULL, ztest_opts.zo_vdev_size, 0,
5820 0, ztest_opts.zo_raidz, zs->zs_mirrors, 1);
5821 props = make_random_props();
5822 for (i = 0; i < SPA_FEATURES; i++) {
5823 char *buf;
5824 VERIFY3S(-1, !=, asprintf(&buf, "feature@%s",
5825 spa_feature_table[i].fi_uname));
5826 VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0));
5827 free(buf);
5828 }
5829 VERIFY3U(0, ==, spa_create(ztest_opts.zo_pool, nvroot, props,
5830 NULL, NULL));
5831 nvlist_free(nvroot);
5832
5833 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
5834 zs->zs_metaslab_sz =
5835 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
5836 spa_close(spa, FTAG);
5837
5838 kernel_fini();
5839
5840 ztest_run_zdb(ztest_opts.zo_pool);
5841
5842 ztest_freeze();
5843
5844 ztest_run_zdb(ztest_opts.zo_pool);
5845
5846 rw_destroy(&ztest_name_lock);
5847 mutex_destroy(&ztest_vdev_lock);
5848 }
5849
5850 static void
5851 setup_data_fd(void)
5852 {
5853 static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX";
5854
5855 ztest_fd_data = mkstemp(ztest_name_data);
5856 ASSERT3S(ztest_fd_data, >=, 0);
5857 (void) unlink(ztest_name_data);
5858 }
5859
5860 static int
5861 shared_data_size(ztest_shared_hdr_t *hdr)
5862 {
5863 int size;
5864
5865 size = hdr->zh_hdr_size;
5866 size += hdr->zh_opts_size;
5867 size += hdr->zh_size;
5868 size += hdr->zh_stats_size * hdr->zh_stats_count;
5869 size += hdr->zh_ds_size * hdr->zh_ds_count;
5870
5871 return (size);
5872 }
5873
5874 static void
5875 setup_hdr(void)
5876 {
5877 int size;
5878 ztest_shared_hdr_t *hdr;
5879
5880 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
5881 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
5882 ASSERT(hdr != MAP_FAILED);
5883
5884 VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t)));
5885
5886 hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t);
5887 hdr->zh_opts_size = sizeof (ztest_shared_opts_t);
5888 hdr->zh_size = sizeof (ztest_shared_t);
5889 hdr->zh_stats_size = sizeof (ztest_shared_callstate_t);
5890 hdr->zh_stats_count = ZTEST_FUNCS;
5891 hdr->zh_ds_size = sizeof (ztest_shared_ds_t);
5892 hdr->zh_ds_count = ztest_opts.zo_datasets;
5893
5894 size = shared_data_size(hdr);
5895 VERIFY3U(0, ==, ftruncate(ztest_fd_data, size));
5896
5897 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
5898 }
5899
5900 static void
5901 setup_data(void)
5902 {
5903 int size, offset;
5904 ztest_shared_hdr_t *hdr;
5905 uint8_t *buf;
5906
5907 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
5908 PROT_READ, MAP_SHARED, ztest_fd_data, 0);
5909 ASSERT(hdr != MAP_FAILED);
5910
5911 size = shared_data_size(hdr);
5912
5913 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
5914 hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()),
5915 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
5916 ASSERT(hdr != MAP_FAILED);
5917 buf = (uint8_t *)hdr;
5918
5919 offset = hdr->zh_hdr_size;
5920 ztest_shared_opts = (void *)&buf[offset];
5921 offset += hdr->zh_opts_size;
5922 ztest_shared = (void *)&buf[offset];
5923 offset += hdr->zh_size;
5924 ztest_shared_callstate = (void *)&buf[offset];
5925 offset += hdr->zh_stats_size * hdr->zh_stats_count;
5926 ztest_shared_ds = (void *)&buf[offset];
5927 }
5928
5929 static boolean_t
5930 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp)
5931 {
5932 pid_t pid;
5933 int status;
5934 char *cmdbuf = NULL;
5935
5936 pid = fork();
5937
5938 if (cmd == NULL) {
5939 cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
5940 (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN);
5941 cmd = cmdbuf;
5942 }
5943
5944 if (pid == -1)
5945 fatal(1, "fork failed");
5946
5947 if (pid == 0) { /* child */
5948 char *emptyargv[2] = { cmd, NULL };
5949 char fd_data_str[12];
5950
5951 struct rlimit rl = { 1024, 1024 };
5952 (void) setrlimit(RLIMIT_NOFILE, &rl);
5953
5954 (void) close(ztest_fd_rand);
5955 VERIFY(11 >= snprintf(fd_data_str, 12, "%d", ztest_fd_data));
5956 VERIFY(0 == setenv("ZTEST_FD_DATA", fd_data_str, 1));
5957
5958 (void) enable_extended_FILE_stdio(-1, -1);
5959 if (libpath != NULL)
5960 VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1));
5961 (void) execv(cmd, emptyargv);
5962 ztest_dump_core = B_FALSE;
5963 fatal(B_TRUE, "exec failed: %s", cmd);
5964 }
5965
5966 if (cmdbuf != NULL) {
5967 umem_free(cmdbuf, MAXPATHLEN);
5968 cmd = NULL;
5969 }
5970
5971 while (waitpid(pid, &status, 0) != pid)
5972 continue;
5973 if (statusp != NULL)
5974 *statusp = status;
5975
5976 if (WIFEXITED(status)) {
5977 if (WEXITSTATUS(status) != 0) {
5978 (void) fprintf(stderr, "child exited with code %d\n",
5979 WEXITSTATUS(status));
5980 exit(2);
5981 }
5982 return (B_FALSE);
5983 } else if (WIFSIGNALED(status)) {
5984 if (!ignorekill || WTERMSIG(status) != SIGKILL) {
5985 (void) fprintf(stderr, "child died with signal %d\n",
5986 WTERMSIG(status));
5987 exit(3);
5988 }
5989 return (B_TRUE);
5990 } else {
5991 (void) fprintf(stderr, "something strange happened to child\n");
5992 exit(4);
5993 /* NOTREACHED */
5994 }
5995 }
5996
5997 static void
5998 ztest_run_init(void)
5999 {
6000 int i;
6001
6002 ztest_shared_t *zs = ztest_shared;
6003
6004 ASSERT(ztest_opts.zo_init != 0);
6005
6006 /*
6007 * Blow away any existing copy of zpool.cache
6008 */
6009 (void) remove(spa_config_path);
6010
6011 /*
6012 * Create and initialize our storage pool.
6013 */
6014 for (i = 1; i <= ztest_opts.zo_init; i++) {
6015 bzero(zs, sizeof (ztest_shared_t));
6016 if (ztest_opts.zo_verbose >= 3 &&
6017 ztest_opts.zo_init != 1) {
6018 (void) printf("ztest_init(), pass %d\n", i);
6019 }
6020 ztest_init(zs);
6021 }
6022 }
6023
6024 int
6025 main(int argc, char **argv)
6026 {
6027 int kills = 0;
6028 int iters = 0;
6029 int older = 0;
6030 int newer = 0;
6031 ztest_shared_t *zs;
6032 ztest_info_t *zi;
6033 ztest_shared_callstate_t *zc;
6034 char timebuf[100];
6035 char numbuf[6];
6036 spa_t *spa;
6037 char *cmd;
6038 boolean_t hasalt;
6039 int f;
6040 char *fd_data_str = getenv("ZTEST_FD_DATA");
6041
6042 (void) setvbuf(stdout, NULL, _IOLBF, 0);
6043
6044 ztest_fd_rand = open("/dev/urandom", O_RDONLY);
6045 ASSERT3S(ztest_fd_rand, >=, 0);
6046
6047 if (!fd_data_str) {
6048 dprintf_setup(&argc, argv);
6049 process_options(argc, argv);
6050
6051 setup_data_fd();
6052 setup_hdr();
6053 setup_data();
6054 bcopy(&ztest_opts, ztest_shared_opts,
6055 sizeof (*ztest_shared_opts));
6056 } else {
6057 ztest_fd_data = atoi(fd_data_str);
6058 setup_data();
6059 bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts));
6060 }
6061 ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count);
6062
6063 /* Override location of zpool.cache */
6064 VERIFY(asprintf((char **)&spa_config_path, "%s/zpool.cache",
6065 ztest_opts.zo_dir) != -1);
6066
6067 ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t),
6068 UMEM_NOFAIL);
6069 zs = ztest_shared;
6070
6071 if (fd_data_str) {
6072 metaslab_gang_bang = ztest_opts.zo_metaslab_gang_bang;
6073 metaslab_df_alloc_threshold =
6074 zs->zs_metaslab_df_alloc_threshold;
6075
6076 if (zs->zs_do_init)
6077 ztest_run_init();
6078 else
6079 ztest_run(zs);
6080 exit(0);
6081 }
6082
6083 hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0);
6084
6085 if (ztest_opts.zo_verbose >= 1) {
6086 (void) printf("%llu vdevs, %d datasets, %d threads,"
6087 " %llu seconds...\n",
6088 (u_longlong_t)ztest_opts.zo_vdevs,
6089 ztest_opts.zo_datasets,
6090 ztest_opts.zo_threads,
6091 (u_longlong_t)ztest_opts.zo_time);
6092 }
6093
6094 cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
6095 (void) strlcpy(cmd, getexecname(), MAXNAMELEN);
6096
6097 zs->zs_do_init = B_TRUE;
6098 if (strlen(ztest_opts.zo_alt_ztest) != 0) {
6099 if (ztest_opts.zo_verbose >= 1) {
6100 (void) printf("Executing older ztest for "
6101 "initialization: %s\n", ztest_opts.zo_alt_ztest);
6102 }
6103 VERIFY(!exec_child(ztest_opts.zo_alt_ztest,
6104 ztest_opts.zo_alt_libpath, B_FALSE, NULL));
6105 } else {
6106 VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL));
6107 }
6108 zs->zs_do_init = B_FALSE;
6109
6110 zs->zs_proc_start = gethrtime();
6111 zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC;
6112
6113 for (f = 0; f < ZTEST_FUNCS; f++) {
6114 zi = &ztest_info[f];
6115 zc = ZTEST_GET_SHARED_CALLSTATE(f);
6116 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
6117 zc->zc_next = UINT64_MAX;
6118 else
6119 zc->zc_next = zs->zs_proc_start +
6120 ztest_random(2 * zi->zi_interval[0] + 1);
6121 }
6122
6123 /*
6124 * Run the tests in a loop. These tests include fault injection
6125 * to verify that self-healing data works, and forced crashes
6126 * to verify that we never lose on-disk consistency.
6127 */
6128 while (gethrtime() < zs->zs_proc_stop) {
6129 int status;
6130 boolean_t killed;
6131
6132 /*
6133 * Initialize the workload counters for each function.
6134 */
6135 for (f = 0; f < ZTEST_FUNCS; f++) {
6136 zc = ZTEST_GET_SHARED_CALLSTATE(f);
6137 zc->zc_count = 0;
6138 zc->zc_time = 0;
6139 }
6140
6141 /* Set the allocation switch size */
6142 zs->zs_metaslab_df_alloc_threshold =
6143 ztest_random(zs->zs_metaslab_sz / 4) + 1;
6144
6145 if (!hasalt || ztest_random(2) == 0) {
6146 if (hasalt && ztest_opts.zo_verbose >= 1) {
6147 (void) printf("Executing newer ztest: %s\n",
6148 cmd);
6149 }
6150 newer++;
6151 killed = exec_child(cmd, NULL, B_TRUE, &status);
6152 } else {
6153 if (hasalt && ztest_opts.zo_verbose >= 1) {
6154 (void) printf("Executing older ztest: %s\n",
6155 ztest_opts.zo_alt_ztest);
6156 }
6157 older++;
6158 killed = exec_child(ztest_opts.zo_alt_ztest,
6159 ztest_opts.zo_alt_libpath, B_TRUE, &status);
6160 }
6161
6162 if (killed)
6163 kills++;
6164 iters++;
6165
6166 if (ztest_opts.zo_verbose >= 1) {
6167 hrtime_t now = gethrtime();
6168
6169 now = MIN(now, zs->zs_proc_stop);
6170 print_time(zs->zs_proc_stop - now, timebuf);
6171 nicenum(zs->zs_space, numbuf);
6172
6173 (void) printf("Pass %3d, %8s, %3llu ENOSPC, "
6174 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
6175 iters,
6176 WIFEXITED(status) ? "Complete" : "SIGKILL",
6177 (u_longlong_t)zs->zs_enospc_count,
6178 100.0 * zs->zs_alloc / zs->zs_space,
6179 numbuf,
6180 100.0 * (now - zs->zs_proc_start) /
6181 (ztest_opts.zo_time * NANOSEC), timebuf);
6182 }
6183
6184 if (ztest_opts.zo_verbose >= 2) {
6185 (void) printf("\nWorkload summary:\n\n");
6186 (void) printf("%7s %9s %s\n",
6187 "Calls", "Time", "Function");
6188 (void) printf("%7s %9s %s\n",
6189 "-----", "----", "--------");
6190 for (f = 0; f < ZTEST_FUNCS; f++) {
6191 Dl_info dli;
6192
6193 zi = &ztest_info[f];
6194 zc = ZTEST_GET_SHARED_CALLSTATE(f);
6195 print_time(zc->zc_time, timebuf);
6196 (void) dladdr((void *)zi->zi_func, &dli);
6197 (void) printf("%7llu %9s %s\n",
6198 (u_longlong_t)zc->zc_count, timebuf,
6199 dli.dli_sname);
6200 }
6201 (void) printf("\n");
6202 }
6203
6204 /*
6205 * It's possible that we killed a child during a rename test,
6206 * in which case we'll have a 'ztest_tmp' pool lying around
6207 * instead of 'ztest'. Do a blind rename in case this happened.
6208 */
6209 kernel_init(FREAD);
6210 if (spa_open(ztest_opts.zo_pool, &spa, FTAG) == 0) {
6211 spa_close(spa, FTAG);
6212 } else {
6213 char tmpname[MAXNAMELEN];
6214 kernel_fini();
6215 kernel_init(FREAD | FWRITE);
6216 (void) snprintf(tmpname, sizeof (tmpname), "%s_tmp",
6217 ztest_opts.zo_pool);
6218 (void) spa_rename(tmpname, ztest_opts.zo_pool);
6219 }
6220 kernel_fini();
6221
6222 ztest_run_zdb(ztest_opts.zo_pool);
6223 }
6224
6225 if (ztest_opts.zo_verbose >= 1) {
6226 if (hasalt) {
6227 (void) printf("%d runs of older ztest: %s\n", older,
6228 ztest_opts.zo_alt_ztest);
6229 (void) printf("%d runs of newer ztest: %s\n", newer,
6230 cmd);
6231 }
6232 (void) printf("%d killed, %d completed, %.0f%% kill rate\n",
6233 kills, iters - kills, (100.0 * kills) / MAX(1, iters));
6234 }
6235
6236 umem_free(cmd, MAXNAMELEN);
6237
6238 return (0);
6239 }