]> git.proxmox.com Git - mirror_zfs.git/blob - cmd/ztest/ztest.c
Prefix all refcount functions with zfs_
[mirror_zfs.git] / cmd / ztest / ztest.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2013 Steven Hartland. All rights reserved.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2017 Joyent, Inc.
28 * Copyright (c) 2017, Intel Corporation.
29 */
30
31 /*
32 * The objective of this program is to provide a DMU/ZAP/SPA stress test
33 * that runs entirely in userland, is easy to use, and easy to extend.
34 *
35 * The overall design of the ztest program is as follows:
36 *
37 * (1) For each major functional area (e.g. adding vdevs to a pool,
38 * creating and destroying datasets, reading and writing objects, etc)
39 * we have a simple routine to test that functionality. These
40 * individual routines do not have to do anything "stressful".
41 *
42 * (2) We turn these simple functionality tests into a stress test by
43 * running them all in parallel, with as many threads as desired,
44 * and spread across as many datasets, objects, and vdevs as desired.
45 *
46 * (3) While all this is happening, we inject faults into the pool to
47 * verify that self-healing data really works.
48 *
49 * (4) Every time we open a dataset, we change its checksum and compression
50 * functions. Thus even individual objects vary from block to block
51 * in which checksum they use and whether they're compressed.
52 *
53 * (5) To verify that we never lose on-disk consistency after a crash,
54 * we run the entire test in a child of the main process.
55 * At random times, the child self-immolates with a SIGKILL.
56 * This is the software equivalent of pulling the power cord.
57 * The parent then runs the test again, using the existing
58 * storage pool, as many times as desired. If backwards compatibility
59 * testing is enabled ztest will sometimes run the "older" version
60 * of ztest after a SIGKILL.
61 *
62 * (6) To verify that we don't have future leaks or temporal incursions,
63 * many of the functional tests record the transaction group number
64 * as part of their data. When reading old data, they verify that
65 * the transaction group number is less than the current, open txg.
66 * If you add a new test, please do this if applicable.
67 *
68 * (7) Threads are created with a reduced stack size, for sanity checking.
69 * Therefore, it's important not to allocate huge buffers on the stack.
70 *
71 * When run with no arguments, ztest runs for about five minutes and
72 * produces no output if successful. To get a little bit of information,
73 * specify -V. To get more information, specify -VV, and so on.
74 *
75 * To turn this into an overnight stress test, use -T to specify run time.
76 *
77 * You can ask more more vdevs [-v], datasets [-d], or threads [-t]
78 * to increase the pool capacity, fanout, and overall stress level.
79 *
80 * Use the -k option to set the desired frequency of kills.
81 *
82 * When ztest invokes itself it passes all relevant information through a
83 * temporary file which is mmap-ed in the child process. This allows shared
84 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
85 * stored at offset 0 of this file and contains information on the size and
86 * number of shared structures in the file. The information stored in this file
87 * must remain backwards compatible with older versions of ztest so that
88 * ztest can invoke them during backwards compatibility testing (-B).
89 */
90
91 #include <sys/zfs_context.h>
92 #include <sys/spa.h>
93 #include <sys/dmu.h>
94 #include <sys/txg.h>
95 #include <sys/dbuf.h>
96 #include <sys/zap.h>
97 #include <sys/dmu_objset.h>
98 #include <sys/poll.h>
99 #include <sys/stat.h>
100 #include <sys/time.h>
101 #include <sys/wait.h>
102 #include <sys/mman.h>
103 #include <sys/resource.h>
104 #include <sys/zio.h>
105 #include <sys/zil.h>
106 #include <sys/zil_impl.h>
107 #include <sys/zfs_rlock.h>
108 #include <sys/vdev_impl.h>
109 #include <sys/vdev_file.h>
110 #include <sys/spa_impl.h>
111 #include <sys/metaslab_impl.h>
112 #include <sys/dsl_prop.h>
113 #include <sys/dsl_dataset.h>
114 #include <sys/dsl_destroy.h>
115 #include <sys/dsl_scan.h>
116 #include <sys/zio_checksum.h>
117 #include <sys/refcount.h>
118 #include <sys/zfeature.h>
119 #include <sys/dsl_userhold.h>
120 #include <sys/abd.h>
121 #include <stdio.h>
122 #include <stdio_ext.h>
123 #include <stdlib.h>
124 #include <unistd.h>
125 #include <signal.h>
126 #include <umem.h>
127 #include <ctype.h>
128 #include <math.h>
129 #include <sys/fs/zfs.h>
130 #include <zfs_fletcher.h>
131 #include <libnvpair.h>
132 #include <libzfs.h>
133 #include <sys/crypto/icp.h>
134 #ifdef __GLIBC__
135 #include <execinfo.h> /* for backtrace() */
136 #endif
137
138 static int ztest_fd_data = -1;
139 static int ztest_fd_rand = -1;
140
141 typedef struct ztest_shared_hdr {
142 uint64_t zh_hdr_size;
143 uint64_t zh_opts_size;
144 uint64_t zh_size;
145 uint64_t zh_stats_size;
146 uint64_t zh_stats_count;
147 uint64_t zh_ds_size;
148 uint64_t zh_ds_count;
149 } ztest_shared_hdr_t;
150
151 static ztest_shared_hdr_t *ztest_shared_hdr;
152
153 enum ztest_class_state {
154 ZTEST_VDEV_CLASS_OFF,
155 ZTEST_VDEV_CLASS_ON,
156 ZTEST_VDEV_CLASS_RND
157 };
158
159 typedef struct ztest_shared_opts {
160 char zo_pool[ZFS_MAX_DATASET_NAME_LEN];
161 char zo_dir[ZFS_MAX_DATASET_NAME_LEN];
162 char zo_alt_ztest[MAXNAMELEN];
163 char zo_alt_libpath[MAXNAMELEN];
164 uint64_t zo_vdevs;
165 uint64_t zo_vdevtime;
166 size_t zo_vdev_size;
167 int zo_ashift;
168 int zo_mirrors;
169 int zo_raidz;
170 int zo_raidz_parity;
171 int zo_datasets;
172 int zo_threads;
173 uint64_t zo_passtime;
174 uint64_t zo_killrate;
175 int zo_verbose;
176 int zo_init;
177 uint64_t zo_time;
178 uint64_t zo_maxloops;
179 uint64_t zo_metaslab_force_ganging;
180 int zo_mmp_test;
181 int zo_special_vdevs;
182 } ztest_shared_opts_t;
183
184 static const ztest_shared_opts_t ztest_opts_defaults = {
185 .zo_pool = { 'z', 't', 'e', 's', 't', '\0' },
186 .zo_dir = { '/', 't', 'm', 'p', '\0' },
187 .zo_alt_ztest = { '\0' },
188 .zo_alt_libpath = { '\0' },
189 .zo_vdevs = 5,
190 .zo_ashift = SPA_MINBLOCKSHIFT,
191 .zo_mirrors = 2,
192 .zo_raidz = 4,
193 .zo_raidz_parity = 1,
194 .zo_vdev_size = SPA_MINDEVSIZE * 4, /* 256m default size */
195 .zo_datasets = 7,
196 .zo_threads = 23,
197 .zo_passtime = 60, /* 60 seconds */
198 .zo_killrate = 70, /* 70% kill rate */
199 .zo_verbose = 0,
200 .zo_mmp_test = 0,
201 .zo_init = 1,
202 .zo_time = 300, /* 5 minutes */
203 .zo_maxloops = 50, /* max loops during spa_freeze() */
204 .zo_metaslab_force_ganging = 32 << 10,
205 .zo_special_vdevs = ZTEST_VDEV_CLASS_RND,
206 };
207
208 extern uint64_t metaslab_force_ganging;
209 extern uint64_t metaslab_df_alloc_threshold;
210 extern unsigned long zfs_deadman_synctime_ms;
211 extern int metaslab_preload_limit;
212 extern boolean_t zfs_compressed_arc_enabled;
213 extern int zfs_abd_scatter_enabled;
214 extern int dmu_object_alloc_chunk_shift;
215 extern boolean_t zfs_force_some_double_word_sm_entries;
216 extern unsigned long zio_decompress_fail_fraction;
217 extern unsigned long zfs_reconstruct_indirect_damage_fraction;
218
219 static ztest_shared_opts_t *ztest_shared_opts;
220 static ztest_shared_opts_t ztest_opts;
221 static char *ztest_wkeydata = "abcdefghijklmnopqrstuvwxyz012345";
222
223 typedef struct ztest_shared_ds {
224 uint64_t zd_seq;
225 } ztest_shared_ds_t;
226
227 static ztest_shared_ds_t *ztest_shared_ds;
228 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
229
230 #define BT_MAGIC 0x123456789abcdefULL
231 #define MAXFAULTS(zs) \
232 (MAX((zs)->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1)
233
234 enum ztest_io_type {
235 ZTEST_IO_WRITE_TAG,
236 ZTEST_IO_WRITE_PATTERN,
237 ZTEST_IO_WRITE_ZEROES,
238 ZTEST_IO_TRUNCATE,
239 ZTEST_IO_SETATTR,
240 ZTEST_IO_REWRITE,
241 ZTEST_IO_TYPES
242 };
243
244 typedef struct ztest_block_tag {
245 uint64_t bt_magic;
246 uint64_t bt_objset;
247 uint64_t bt_object;
248 uint64_t bt_dnodesize;
249 uint64_t bt_offset;
250 uint64_t bt_gen;
251 uint64_t bt_txg;
252 uint64_t bt_crtxg;
253 } ztest_block_tag_t;
254
255 typedef struct bufwad {
256 uint64_t bw_index;
257 uint64_t bw_txg;
258 uint64_t bw_data;
259 } bufwad_t;
260
261 typedef struct rll {
262 void *rll_writer;
263 int rll_readers;
264 kmutex_t rll_lock;
265 kcondvar_t rll_cv;
266 } rll_t;
267
268 typedef struct zll {
269 list_t z_list;
270 kmutex_t z_lock;
271 } zll_t;
272
273 #define ZTEST_RANGE_LOCKS 64
274 #define ZTEST_OBJECT_LOCKS 64
275
276 /*
277 * Object descriptor. Used as a template for object lookup/create/remove.
278 */
279 typedef struct ztest_od {
280 uint64_t od_dir;
281 uint64_t od_object;
282 dmu_object_type_t od_type;
283 dmu_object_type_t od_crtype;
284 uint64_t od_blocksize;
285 uint64_t od_crblocksize;
286 uint64_t od_crdnodesize;
287 uint64_t od_gen;
288 uint64_t od_crgen;
289 char od_name[ZFS_MAX_DATASET_NAME_LEN];
290 } ztest_od_t;
291
292 /*
293 * Per-dataset state.
294 */
295 typedef struct ztest_ds {
296 ztest_shared_ds_t *zd_shared;
297 objset_t *zd_os;
298 pthread_rwlock_t zd_zilog_lock;
299 zilog_t *zd_zilog;
300 ztest_od_t *zd_od; /* debugging aid */
301 char zd_name[ZFS_MAX_DATASET_NAME_LEN];
302 kmutex_t zd_dirobj_lock;
303 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS];
304 zll_t zd_range_lock[ZTEST_RANGE_LOCKS];
305 } ztest_ds_t;
306
307 /*
308 * Per-iteration state.
309 */
310 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
311
312 typedef struct ztest_info {
313 ztest_func_t *zi_func; /* test function */
314 uint64_t zi_iters; /* iterations per execution */
315 uint64_t *zi_interval; /* execute every <interval> seconds */
316 const char *zi_funcname; /* name of test function */
317 } ztest_info_t;
318
319 typedef struct ztest_shared_callstate {
320 uint64_t zc_count; /* per-pass count */
321 uint64_t zc_time; /* per-pass time */
322 uint64_t zc_next; /* next time to call this function */
323 } ztest_shared_callstate_t;
324
325 static ztest_shared_callstate_t *ztest_shared_callstate;
326 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
327
328 ztest_func_t ztest_dmu_read_write;
329 ztest_func_t ztest_dmu_write_parallel;
330 ztest_func_t ztest_dmu_object_alloc_free;
331 ztest_func_t ztest_dmu_object_next_chunk;
332 ztest_func_t ztest_dmu_commit_callbacks;
333 ztest_func_t ztest_zap;
334 ztest_func_t ztest_zap_parallel;
335 ztest_func_t ztest_zil_commit;
336 ztest_func_t ztest_zil_remount;
337 ztest_func_t ztest_dmu_read_write_zcopy;
338 ztest_func_t ztest_dmu_objset_create_destroy;
339 ztest_func_t ztest_dmu_prealloc;
340 ztest_func_t ztest_fzap;
341 ztest_func_t ztest_dmu_snapshot_create_destroy;
342 ztest_func_t ztest_dsl_prop_get_set;
343 ztest_func_t ztest_spa_prop_get_set;
344 ztest_func_t ztest_spa_create_destroy;
345 ztest_func_t ztest_fault_inject;
346 ztest_func_t ztest_ddt_repair;
347 ztest_func_t ztest_dmu_snapshot_hold;
348 ztest_func_t ztest_mmp_enable_disable;
349 ztest_func_t ztest_spa_rename;
350 ztest_func_t ztest_scrub;
351 ztest_func_t ztest_dsl_dataset_promote_busy;
352 ztest_func_t ztest_vdev_attach_detach;
353 ztest_func_t ztest_vdev_LUN_growth;
354 ztest_func_t ztest_vdev_add_remove;
355 ztest_func_t ztest_vdev_class_add;
356 ztest_func_t ztest_vdev_aux_add_remove;
357 ztest_func_t ztest_split_pool;
358 ztest_func_t ztest_reguid;
359 ztest_func_t ztest_spa_upgrade;
360 ztest_func_t ztest_device_removal;
361 ztest_func_t ztest_remap_blocks;
362 ztest_func_t ztest_spa_checkpoint_create_discard;
363 ztest_func_t ztest_fletcher;
364 ztest_func_t ztest_fletcher_incr;
365 ztest_func_t ztest_verify_dnode_bt;
366
367 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */
368 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */
369 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */
370 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */
371 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */
372
373 #define ZTI_INIT(func, iters, interval) \
374 { .zi_func = (func), \
375 .zi_iters = (iters), \
376 .zi_interval = (interval), \
377 .zi_funcname = # func }
378
379 ztest_info_t ztest_info[] = {
380 ZTI_INIT(ztest_dmu_read_write, 1, &zopt_always),
381 ZTI_INIT(ztest_dmu_write_parallel, 10, &zopt_always),
382 ZTI_INIT(ztest_dmu_object_alloc_free, 1, &zopt_always),
383 ZTI_INIT(ztest_dmu_object_next_chunk, 1, &zopt_sometimes),
384 ZTI_INIT(ztest_dmu_commit_callbacks, 1, &zopt_always),
385 ZTI_INIT(ztest_zap, 30, &zopt_always),
386 ZTI_INIT(ztest_zap_parallel, 100, &zopt_always),
387 ZTI_INIT(ztest_split_pool, 1, &zopt_always),
388 ZTI_INIT(ztest_zil_commit, 1, &zopt_incessant),
389 ZTI_INIT(ztest_zil_remount, 1, &zopt_sometimes),
390 ZTI_INIT(ztest_dmu_read_write_zcopy, 1, &zopt_often),
391 ZTI_INIT(ztest_dmu_objset_create_destroy, 1, &zopt_often),
392 ZTI_INIT(ztest_dsl_prop_get_set, 1, &zopt_often),
393 ZTI_INIT(ztest_spa_prop_get_set, 1, &zopt_sometimes),
394 #if 0
395 ZTI_INIT(ztest_dmu_prealloc, 1, &zopt_sometimes),
396 #endif
397 ZTI_INIT(ztest_fzap, 1, &zopt_sometimes),
398 ZTI_INIT(ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes),
399 ZTI_INIT(ztest_spa_create_destroy, 1, &zopt_sometimes),
400 ZTI_INIT(ztest_fault_inject, 1, &zopt_sometimes),
401 ZTI_INIT(ztest_ddt_repair, 1, &zopt_sometimes),
402 ZTI_INIT(ztest_dmu_snapshot_hold, 1, &zopt_sometimes),
403 ZTI_INIT(ztest_mmp_enable_disable, 1, &zopt_sometimes),
404 ZTI_INIT(ztest_reguid, 1, &zopt_rarely),
405 ZTI_INIT(ztest_spa_rename, 1, &zopt_rarely),
406 ZTI_INIT(ztest_scrub, 1, &zopt_rarely),
407 ZTI_INIT(ztest_spa_upgrade, 1, &zopt_rarely),
408 ZTI_INIT(ztest_dsl_dataset_promote_busy, 1, &zopt_rarely),
409 ZTI_INIT(ztest_vdev_attach_detach, 1, &zopt_sometimes),
410 ZTI_INIT(ztest_vdev_LUN_growth, 1, &zopt_rarely),
411 ZTI_INIT(ztest_vdev_add_remove, 1, &ztest_opts.zo_vdevtime),
412 ZTI_INIT(ztest_vdev_class_add, 1, &ztest_opts.zo_vdevtime),
413 ZTI_INIT(ztest_vdev_aux_add_remove, 1, &ztest_opts.zo_vdevtime),
414 ZTI_INIT(ztest_device_removal, 1, &zopt_sometimes),
415 ZTI_INIT(ztest_remap_blocks, 1, &zopt_sometimes),
416 ZTI_INIT(ztest_spa_checkpoint_create_discard, 1, &zopt_rarely),
417 ZTI_INIT(ztest_fletcher, 1, &zopt_rarely),
418 ZTI_INIT(ztest_fletcher_incr, 1, &zopt_rarely),
419 ZTI_INIT(ztest_verify_dnode_bt, 1, &zopt_sometimes),
420 };
421
422 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t))
423
424 /*
425 * The following struct is used to hold a list of uncalled commit callbacks.
426 * The callbacks are ordered by txg number.
427 */
428 typedef struct ztest_cb_list {
429 kmutex_t zcl_callbacks_lock;
430 list_t zcl_callbacks;
431 } ztest_cb_list_t;
432
433 /*
434 * Stuff we need to share writably between parent and child.
435 */
436 typedef struct ztest_shared {
437 boolean_t zs_do_init;
438 hrtime_t zs_proc_start;
439 hrtime_t zs_proc_stop;
440 hrtime_t zs_thread_start;
441 hrtime_t zs_thread_stop;
442 hrtime_t zs_thread_kill;
443 uint64_t zs_enospc_count;
444 uint64_t zs_vdev_next_leaf;
445 uint64_t zs_vdev_aux;
446 uint64_t zs_alloc;
447 uint64_t zs_space;
448 uint64_t zs_splits;
449 uint64_t zs_mirrors;
450 uint64_t zs_metaslab_sz;
451 uint64_t zs_metaslab_df_alloc_threshold;
452 uint64_t zs_guid;
453 } ztest_shared_t;
454
455 #define ID_PARALLEL -1ULL
456
457 static char ztest_dev_template[] = "%s/%s.%llua";
458 static char ztest_aux_template[] = "%s/%s.%s.%llu";
459 ztest_shared_t *ztest_shared;
460
461 static spa_t *ztest_spa = NULL;
462 static ztest_ds_t *ztest_ds;
463
464 static kmutex_t ztest_vdev_lock;
465 static boolean_t ztest_device_removal_active = B_FALSE;
466 static kmutex_t ztest_checkpoint_lock;
467
468 /*
469 * The ztest_name_lock protects the pool and dataset namespace used by
470 * the individual tests. To modify the namespace, consumers must grab
471 * this lock as writer. Grabbing the lock as reader will ensure that the
472 * namespace does not change while the lock is held.
473 */
474 static pthread_rwlock_t ztest_name_lock;
475
476 static boolean_t ztest_dump_core = B_TRUE;
477 static boolean_t ztest_dump_debug_buffer = B_FALSE;
478 static boolean_t ztest_exiting;
479
480 /* Global commit callback list */
481 static ztest_cb_list_t zcl;
482 /* Commit cb delay */
483 static uint64_t zc_min_txg_delay = UINT64_MAX;
484 static int zc_cb_counter = 0;
485
486 /*
487 * Minimum number of commit callbacks that need to be registered for us to check
488 * whether the minimum txg delay is acceptable.
489 */
490 #define ZTEST_COMMIT_CB_MIN_REG 100
491
492 /*
493 * If a number of txgs equal to this threshold have been created after a commit
494 * callback has been registered but not called, then we assume there is an
495 * implementation bug.
496 */
497 #define ZTEST_COMMIT_CB_THRESH (TXG_CONCURRENT_STATES + 1000)
498
499 enum ztest_object {
500 ZTEST_META_DNODE = 0,
501 ZTEST_DIROBJ,
502 ZTEST_OBJECTS
503 };
504
505 static void usage(boolean_t) __NORETURN;
506
507 /*
508 * These libumem hooks provide a reasonable set of defaults for the allocator's
509 * debugging facilities.
510 */
511 const char *
512 _umem_debug_init(void)
513 {
514 return ("default,verbose"); /* $UMEM_DEBUG setting */
515 }
516
517 const char *
518 _umem_logging_init(void)
519 {
520 return ("fail,contents"); /* $UMEM_LOGGING setting */
521 }
522
523 static void
524 dump_debug_buffer(void)
525 {
526 if (!ztest_dump_debug_buffer)
527 return;
528
529 (void) printf("\n");
530 zfs_dbgmsg_print("ztest");
531 }
532
533 #define BACKTRACE_SZ 100
534
535 static void sig_handler(int signo)
536 {
537 struct sigaction action;
538 #ifdef __GLIBC__ /* backtrace() is a GNU extension */
539 int nptrs;
540 void *buffer[BACKTRACE_SZ];
541
542 nptrs = backtrace(buffer, BACKTRACE_SZ);
543 backtrace_symbols_fd(buffer, nptrs, STDERR_FILENO);
544 #endif
545 dump_debug_buffer();
546
547 /*
548 * Restore default action and re-raise signal so SIGSEGV and
549 * SIGABRT can trigger a core dump.
550 */
551 action.sa_handler = SIG_DFL;
552 sigemptyset(&action.sa_mask);
553 action.sa_flags = 0;
554 (void) sigaction(signo, &action, NULL);
555 raise(signo);
556 }
557
558 #define FATAL_MSG_SZ 1024
559
560 char *fatal_msg;
561
562 static void
563 fatal(int do_perror, char *message, ...)
564 {
565 va_list args;
566 int save_errno = errno;
567 char *buf;
568
569 (void) fflush(stdout);
570 buf = umem_alloc(FATAL_MSG_SZ, UMEM_NOFAIL);
571
572 va_start(args, message);
573 (void) sprintf(buf, "ztest: ");
574 /* LINTED */
575 (void) vsprintf(buf + strlen(buf), message, args);
576 va_end(args);
577 if (do_perror) {
578 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
579 ": %s", strerror(save_errno));
580 }
581 (void) fprintf(stderr, "%s\n", buf);
582 fatal_msg = buf; /* to ease debugging */
583
584 dump_debug_buffer();
585
586 if (ztest_dump_core)
587 abort();
588 exit(3);
589 }
590
591 static int
592 str2shift(const char *buf)
593 {
594 const char *ends = "BKMGTPEZ";
595 int i;
596
597 if (buf[0] == '\0')
598 return (0);
599 for (i = 0; i < strlen(ends); i++) {
600 if (toupper(buf[0]) == ends[i])
601 break;
602 }
603 if (i == strlen(ends)) {
604 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
605 buf);
606 usage(B_FALSE);
607 }
608 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
609 return (10*i);
610 }
611 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
612 usage(B_FALSE);
613 /* NOTREACHED */
614 }
615
616 static uint64_t
617 nicenumtoull(const char *buf)
618 {
619 char *end;
620 uint64_t val;
621
622 val = strtoull(buf, &end, 0);
623 if (end == buf) {
624 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
625 usage(B_FALSE);
626 } else if (end[0] == '.') {
627 double fval = strtod(buf, &end);
628 fval *= pow(2, str2shift(end));
629 if (fval > UINT64_MAX) {
630 (void) fprintf(stderr, "ztest: value too large: %s\n",
631 buf);
632 usage(B_FALSE);
633 }
634 val = (uint64_t)fval;
635 } else {
636 int shift = str2shift(end);
637 if (shift >= 64 || (val << shift) >> shift != val) {
638 (void) fprintf(stderr, "ztest: value too large: %s\n",
639 buf);
640 usage(B_FALSE);
641 }
642 val <<= shift;
643 }
644 return (val);
645 }
646
647 static void
648 usage(boolean_t requested)
649 {
650 const ztest_shared_opts_t *zo = &ztest_opts_defaults;
651
652 char nice_vdev_size[NN_NUMBUF_SZ];
653 char nice_force_ganging[NN_NUMBUF_SZ];
654 FILE *fp = requested ? stdout : stderr;
655
656 nicenum(zo->zo_vdev_size, nice_vdev_size, sizeof (nice_vdev_size));
657 nicenum(zo->zo_metaslab_force_ganging, nice_force_ganging,
658 sizeof (nice_force_ganging));
659
660 (void) fprintf(fp, "Usage: %s\n"
661 "\t[-v vdevs (default: %llu)]\n"
662 "\t[-s size_of_each_vdev (default: %s)]\n"
663 "\t[-a alignment_shift (default: %d)] use 0 for random\n"
664 "\t[-m mirror_copies (default: %d)]\n"
665 "\t[-r raidz_disks (default: %d)]\n"
666 "\t[-R raidz_parity (default: %d)]\n"
667 "\t[-d datasets (default: %d)]\n"
668 "\t[-t threads (default: %d)]\n"
669 "\t[-g gang_block_threshold (default: %s)]\n"
670 "\t[-i init_count (default: %d)] initialize pool i times\n"
671 "\t[-k kill_percentage (default: %llu%%)]\n"
672 "\t[-p pool_name (default: %s)]\n"
673 "\t[-f dir (default: %s)] file directory for vdev files\n"
674 "\t[-M] Multi-host simulate pool imported on remote host\n"
675 "\t[-V] verbose (use multiple times for ever more blather)\n"
676 "\t[-E] use existing pool instead of creating new one\n"
677 "\t[-T time (default: %llu sec)] total run time\n"
678 "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n"
679 "\t[-P passtime (default: %llu sec)] time per pass\n"
680 "\t[-B alt_ztest (default: <none>)] alternate ztest path\n"
681 "\t[-C vdev class state (default: random)] special=on|off|random\n"
682 "\t[-o variable=value] ... set global variable to an unsigned\n"
683 "\t 32-bit integer value\n"
684 "\t[-G dump zfs_dbgmsg buffer before exiting due to an error\n"
685 "\t[-h] (print help)\n"
686 "",
687 zo->zo_pool,
688 (u_longlong_t)zo->zo_vdevs, /* -v */
689 nice_vdev_size, /* -s */
690 zo->zo_ashift, /* -a */
691 zo->zo_mirrors, /* -m */
692 zo->zo_raidz, /* -r */
693 zo->zo_raidz_parity, /* -R */
694 zo->zo_datasets, /* -d */
695 zo->zo_threads, /* -t */
696 nice_force_ganging, /* -g */
697 zo->zo_init, /* -i */
698 (u_longlong_t)zo->zo_killrate, /* -k */
699 zo->zo_pool, /* -p */
700 zo->zo_dir, /* -f */
701 (u_longlong_t)zo->zo_time, /* -T */
702 (u_longlong_t)zo->zo_maxloops, /* -F */
703 (u_longlong_t)zo->zo_passtime);
704 exit(requested ? 0 : 1);
705 }
706
707
708 static void
709 ztest_parse_name_value(const char *input, ztest_shared_opts_t *zo)
710 {
711 char name[32];
712 char *value;
713 int state = ZTEST_VDEV_CLASS_RND;
714
715 (void) strlcpy(name, input, sizeof (name));
716
717 value = strchr(name, '=');
718 if (value == NULL) {
719 (void) fprintf(stderr, "missing value in property=value "
720 "'-C' argument (%s)\n", input);
721 usage(B_FALSE);
722 }
723 *(value) = '\0';
724 value++;
725
726 if (strcmp(value, "on") == 0) {
727 state = ZTEST_VDEV_CLASS_ON;
728 } else if (strcmp(value, "off") == 0) {
729 state = ZTEST_VDEV_CLASS_OFF;
730 } else if (strcmp(value, "random") == 0) {
731 state = ZTEST_VDEV_CLASS_RND;
732 } else {
733 (void) fprintf(stderr, "invalid property value '%s'\n", value);
734 usage(B_FALSE);
735 }
736
737 if (strcmp(name, "special") == 0) {
738 zo->zo_special_vdevs = state;
739 } else {
740 (void) fprintf(stderr, "invalid property name '%s'\n", name);
741 usage(B_FALSE);
742 }
743 if (zo->zo_verbose >= 3)
744 (void) printf("%s vdev state is '%s'\n", name, value);
745 }
746
747 static void
748 process_options(int argc, char **argv)
749 {
750 char *path;
751 ztest_shared_opts_t *zo = &ztest_opts;
752
753 int opt;
754 uint64_t value;
755 char altdir[MAXNAMELEN] = { 0 };
756
757 bcopy(&ztest_opts_defaults, zo, sizeof (*zo));
758
759 while ((opt = getopt(argc, argv,
760 "v:s:a:m:r:R:d:t:g:i:k:p:f:MVET:P:hF:B:C:o:G")) != EOF) {
761 value = 0;
762 switch (opt) {
763 case 'v':
764 case 's':
765 case 'a':
766 case 'm':
767 case 'r':
768 case 'R':
769 case 'd':
770 case 't':
771 case 'g':
772 case 'i':
773 case 'k':
774 case 'T':
775 case 'P':
776 case 'F':
777 value = nicenumtoull(optarg);
778 }
779 switch (opt) {
780 case 'v':
781 zo->zo_vdevs = value;
782 break;
783 case 's':
784 zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value);
785 break;
786 case 'a':
787 zo->zo_ashift = value;
788 break;
789 case 'm':
790 zo->zo_mirrors = value;
791 break;
792 case 'r':
793 zo->zo_raidz = MAX(1, value);
794 break;
795 case 'R':
796 zo->zo_raidz_parity = MIN(MAX(value, 1), 3);
797 break;
798 case 'd':
799 zo->zo_datasets = MAX(1, value);
800 break;
801 case 't':
802 zo->zo_threads = MAX(1, value);
803 break;
804 case 'g':
805 zo->zo_metaslab_force_ganging =
806 MAX(SPA_MINBLOCKSIZE << 1, value);
807 break;
808 case 'i':
809 zo->zo_init = value;
810 break;
811 case 'k':
812 zo->zo_killrate = value;
813 break;
814 case 'p':
815 (void) strlcpy(zo->zo_pool, optarg,
816 sizeof (zo->zo_pool));
817 break;
818 case 'f':
819 path = realpath(optarg, NULL);
820 if (path == NULL) {
821 (void) fprintf(stderr, "error: %s: %s\n",
822 optarg, strerror(errno));
823 usage(B_FALSE);
824 } else {
825 (void) strlcpy(zo->zo_dir, path,
826 sizeof (zo->zo_dir));
827 free(path);
828 }
829 break;
830 case 'M':
831 zo->zo_mmp_test = 1;
832 break;
833 case 'V':
834 zo->zo_verbose++;
835 break;
836 case 'E':
837 zo->zo_init = 0;
838 break;
839 case 'T':
840 zo->zo_time = value;
841 break;
842 case 'P':
843 zo->zo_passtime = MAX(1, value);
844 break;
845 case 'F':
846 zo->zo_maxloops = MAX(1, value);
847 break;
848 case 'B':
849 (void) strlcpy(altdir, optarg, sizeof (altdir));
850 break;
851 case 'C':
852 ztest_parse_name_value(optarg, zo);
853 break;
854 case 'o':
855 if (set_global_var(optarg) != 0)
856 usage(B_FALSE);
857 break;
858 case 'G':
859 ztest_dump_debug_buffer = B_TRUE;
860 break;
861 case 'h':
862 usage(B_TRUE);
863 break;
864 case '?':
865 default:
866 usage(B_FALSE);
867 break;
868 }
869 }
870
871 zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1);
872
873 zo->zo_vdevtime =
874 (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs :
875 UINT64_MAX >> 2);
876
877 if (strlen(altdir) > 0) {
878 char *cmd;
879 char *realaltdir;
880 char *bin;
881 char *ztest;
882 char *isa;
883 int isalen;
884
885 cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
886 realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
887
888 VERIFY(NULL != realpath(getexecname(), cmd));
889 if (0 != access(altdir, F_OK)) {
890 ztest_dump_core = B_FALSE;
891 fatal(B_TRUE, "invalid alternate ztest path: %s",
892 altdir);
893 }
894 VERIFY(NULL != realpath(altdir, realaltdir));
895
896 /*
897 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest".
898 * We want to extract <isa> to determine if we should use
899 * 32 or 64 bit binaries.
900 */
901 bin = strstr(cmd, "/usr/bin/");
902 ztest = strstr(bin, "/ztest");
903 isa = bin + 9;
904 isalen = ztest - isa;
905 (void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest),
906 "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa);
907 (void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath),
908 "%s/usr/lib/%.*s", realaltdir, isalen, isa);
909
910 if (0 != access(zo->zo_alt_ztest, X_OK)) {
911 ztest_dump_core = B_FALSE;
912 fatal(B_TRUE, "invalid alternate ztest: %s",
913 zo->zo_alt_ztest);
914 } else if (0 != access(zo->zo_alt_libpath, X_OK)) {
915 ztest_dump_core = B_FALSE;
916 fatal(B_TRUE, "invalid alternate lib directory %s",
917 zo->zo_alt_libpath);
918 }
919
920 umem_free(cmd, MAXPATHLEN);
921 umem_free(realaltdir, MAXPATHLEN);
922 }
923 }
924
925 static void
926 ztest_kill(ztest_shared_t *zs)
927 {
928 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa));
929 zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa));
930
931 /*
932 * Before we kill off ztest, make sure that the config is updated.
933 * See comment above spa_write_cachefile().
934 */
935 mutex_enter(&spa_namespace_lock);
936 spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE);
937 mutex_exit(&spa_namespace_lock);
938
939 (void) kill(getpid(), SIGKILL);
940 }
941
942 static uint64_t
943 ztest_random(uint64_t range)
944 {
945 uint64_t r;
946
947 ASSERT3S(ztest_fd_rand, >=, 0);
948
949 if (range == 0)
950 return (0);
951
952 if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r))
953 fatal(1, "short read from /dev/urandom");
954
955 return (r % range);
956 }
957
958 /* ARGSUSED */
959 static void
960 ztest_record_enospc(const char *s)
961 {
962 ztest_shared->zs_enospc_count++;
963 }
964
965 static uint64_t
966 ztest_get_ashift(void)
967 {
968 if (ztest_opts.zo_ashift == 0)
969 return (SPA_MINBLOCKSHIFT + ztest_random(5));
970 return (ztest_opts.zo_ashift);
971 }
972
973 static nvlist_t *
974 make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift)
975 {
976 char *pathbuf;
977 uint64_t vdev;
978 nvlist_t *file;
979
980 pathbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
981
982 if (ashift == 0)
983 ashift = ztest_get_ashift();
984
985 if (path == NULL) {
986 path = pathbuf;
987
988 if (aux != NULL) {
989 vdev = ztest_shared->zs_vdev_aux;
990 (void) snprintf(path, MAXPATHLEN,
991 ztest_aux_template, ztest_opts.zo_dir,
992 pool == NULL ? ztest_opts.zo_pool : pool,
993 aux, vdev);
994 } else {
995 vdev = ztest_shared->zs_vdev_next_leaf++;
996 (void) snprintf(path, MAXPATHLEN,
997 ztest_dev_template, ztest_opts.zo_dir,
998 pool == NULL ? ztest_opts.zo_pool : pool, vdev);
999 }
1000 }
1001
1002 if (size != 0) {
1003 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
1004 if (fd == -1)
1005 fatal(1, "can't open %s", path);
1006 if (ftruncate(fd, size) != 0)
1007 fatal(1, "can't ftruncate %s", path);
1008 (void) close(fd);
1009 }
1010
1011 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0);
1012 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0);
1013 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0);
1014 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0);
1015 umem_free(pathbuf, MAXPATHLEN);
1016
1017 return (file);
1018 }
1019
1020 static nvlist_t *
1021 make_vdev_raidz(char *path, char *aux, char *pool, size_t size,
1022 uint64_t ashift, int r)
1023 {
1024 nvlist_t *raidz, **child;
1025 int c;
1026
1027 if (r < 2)
1028 return (make_vdev_file(path, aux, pool, size, ashift));
1029 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
1030
1031 for (c = 0; c < r; c++)
1032 child[c] = make_vdev_file(path, aux, pool, size, ashift);
1033
1034 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0);
1035 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE,
1036 VDEV_TYPE_RAIDZ) == 0);
1037 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY,
1038 ztest_opts.zo_raidz_parity) == 0);
1039 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN,
1040 child, r) == 0);
1041
1042 for (c = 0; c < r; c++)
1043 nvlist_free(child[c]);
1044
1045 umem_free(child, r * sizeof (nvlist_t *));
1046
1047 return (raidz);
1048 }
1049
1050 static nvlist_t *
1051 make_vdev_mirror(char *path, char *aux, char *pool, size_t size,
1052 uint64_t ashift, int r, int m)
1053 {
1054 nvlist_t *mirror, **child;
1055 int c;
1056
1057 if (m < 1)
1058 return (make_vdev_raidz(path, aux, pool, size, ashift, r));
1059
1060 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
1061
1062 for (c = 0; c < m; c++)
1063 child[c] = make_vdev_raidz(path, aux, pool, size, ashift, r);
1064
1065 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0);
1066 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE,
1067 VDEV_TYPE_MIRROR) == 0);
1068 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
1069 child, m) == 0);
1070
1071 for (c = 0; c < m; c++)
1072 nvlist_free(child[c]);
1073
1074 umem_free(child, m * sizeof (nvlist_t *));
1075
1076 return (mirror);
1077 }
1078
1079 static nvlist_t *
1080 make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift,
1081 const char *class, int r, int m, int t)
1082 {
1083 nvlist_t *root, **child;
1084 int c;
1085 boolean_t log;
1086
1087 ASSERT(t > 0);
1088
1089 log = (class != NULL && strcmp(class, "log") == 0);
1090
1091 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
1092
1093 for (c = 0; c < t; c++) {
1094 child[c] = make_vdev_mirror(path, aux, pool, size, ashift,
1095 r, m);
1096 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG,
1097 log) == 0);
1098
1099 if (class != NULL && class[0] != '\0') {
1100 ASSERT(m > 1 || log); /* expecting a mirror */
1101 VERIFY(nvlist_add_string(child[c],
1102 ZPOOL_CONFIG_ALLOCATION_BIAS, class) == 0);
1103 }
1104 }
1105
1106 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0);
1107 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0);
1108 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
1109 child, t) == 0);
1110
1111 for (c = 0; c < t; c++)
1112 nvlist_free(child[c]);
1113
1114 umem_free(child, t * sizeof (nvlist_t *));
1115
1116 return (root);
1117 }
1118
1119 /*
1120 * Find a random spa version. Returns back a random spa version in the
1121 * range [initial_version, SPA_VERSION_FEATURES].
1122 */
1123 static uint64_t
1124 ztest_random_spa_version(uint64_t initial_version)
1125 {
1126 uint64_t version = initial_version;
1127
1128 if (version <= SPA_VERSION_BEFORE_FEATURES) {
1129 version = version +
1130 ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1);
1131 }
1132
1133 if (version > SPA_VERSION_BEFORE_FEATURES)
1134 version = SPA_VERSION_FEATURES;
1135
1136 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
1137 return (version);
1138 }
1139
1140 static int
1141 ztest_random_blocksize(void)
1142 {
1143 ASSERT(ztest_spa->spa_max_ashift != 0);
1144
1145 /*
1146 * Choose a block size >= the ashift.
1147 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks.
1148 */
1149 int maxbs = SPA_OLD_MAXBLOCKSHIFT;
1150 if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE)
1151 maxbs = 20;
1152 uint64_t block_shift =
1153 ztest_random(maxbs - ztest_spa->spa_max_ashift + 1);
1154 return (1 << (SPA_MINBLOCKSHIFT + block_shift));
1155 }
1156
1157 static int
1158 ztest_random_dnodesize(void)
1159 {
1160 int slots;
1161 int max_slots = spa_maxdnodesize(ztest_spa) >> DNODE_SHIFT;
1162
1163 if (max_slots == DNODE_MIN_SLOTS)
1164 return (DNODE_MIN_SIZE);
1165
1166 /*
1167 * Weight the random distribution more heavily toward smaller
1168 * dnode sizes since that is more likely to reflect real-world
1169 * usage.
1170 */
1171 ASSERT3U(max_slots, >, 4);
1172 switch (ztest_random(10)) {
1173 case 0:
1174 slots = 5 + ztest_random(max_slots - 4);
1175 break;
1176 case 1 ... 4:
1177 slots = 2 + ztest_random(3);
1178 break;
1179 default:
1180 slots = 1;
1181 break;
1182 }
1183
1184 return (slots << DNODE_SHIFT);
1185 }
1186
1187 static int
1188 ztest_random_ibshift(void)
1189 {
1190 return (DN_MIN_INDBLKSHIFT +
1191 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
1192 }
1193
1194 static uint64_t
1195 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
1196 {
1197 uint64_t top;
1198 vdev_t *rvd = spa->spa_root_vdev;
1199 vdev_t *tvd;
1200
1201 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1202
1203 do {
1204 top = ztest_random(rvd->vdev_children);
1205 tvd = rvd->vdev_child[top];
1206 } while (!vdev_is_concrete(tvd) || (tvd->vdev_islog && !log_ok) ||
1207 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
1208
1209 return (top);
1210 }
1211
1212 static uint64_t
1213 ztest_random_dsl_prop(zfs_prop_t prop)
1214 {
1215 uint64_t value;
1216
1217 do {
1218 value = zfs_prop_random_value(prop, ztest_random(-1ULL));
1219 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
1220
1221 return (value);
1222 }
1223
1224 static int
1225 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
1226 boolean_t inherit)
1227 {
1228 const char *propname = zfs_prop_to_name(prop);
1229 const char *valname;
1230 char *setpoint;
1231 uint64_t curval;
1232 int error;
1233
1234 error = dsl_prop_set_int(osname, propname,
1235 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value);
1236
1237 if (error == ENOSPC) {
1238 ztest_record_enospc(FTAG);
1239 return (error);
1240 }
1241 ASSERT0(error);
1242
1243 setpoint = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1244 VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint));
1245
1246 if (ztest_opts.zo_verbose >= 6) {
1247 int err;
1248
1249 err = zfs_prop_index_to_string(prop, curval, &valname);
1250 if (err)
1251 (void) printf("%s %s = %llu at '%s'\n", osname,
1252 propname, (unsigned long long)curval, setpoint);
1253 else
1254 (void) printf("%s %s = %s at '%s'\n",
1255 osname, propname, valname, setpoint);
1256 }
1257 umem_free(setpoint, MAXPATHLEN);
1258
1259 return (error);
1260 }
1261
1262 static int
1263 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value)
1264 {
1265 spa_t *spa = ztest_spa;
1266 nvlist_t *props = NULL;
1267 int error;
1268
1269 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
1270 VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0);
1271
1272 error = spa_prop_set(spa, props);
1273
1274 nvlist_free(props);
1275
1276 if (error == ENOSPC) {
1277 ztest_record_enospc(FTAG);
1278 return (error);
1279 }
1280 ASSERT0(error);
1281
1282 return (error);
1283 }
1284
1285 static int
1286 ztest_dmu_objset_own(const char *name, dmu_objset_type_t type,
1287 boolean_t readonly, boolean_t decrypt, void *tag, objset_t **osp)
1288 {
1289 int err;
1290
1291 err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
1292 if (decrypt && err == EACCES) {
1293 char ddname[ZFS_MAX_DATASET_NAME_LEN];
1294 dsl_crypto_params_t *dcp;
1295 nvlist_t *crypto_args = fnvlist_alloc();
1296 char *cp = NULL;
1297
1298 /* spa_keystore_load_wkey() expects a dsl dir name */
1299 strcpy(ddname, name);
1300 cp = strchr(ddname, '@');
1301 if (cp != NULL)
1302 *cp = '\0';
1303
1304 fnvlist_add_uint8_array(crypto_args, "wkeydata",
1305 (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
1306 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, NULL,
1307 crypto_args, &dcp));
1308 err = spa_keystore_load_wkey(ddname, dcp, B_FALSE);
1309 dsl_crypto_params_free(dcp, B_FALSE);
1310 fnvlist_free(crypto_args);
1311
1312 if (err != 0)
1313 return (err);
1314
1315 err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
1316 }
1317
1318 return (err);
1319 }
1320
1321
1322 /*
1323 * Object and range lock mechanics
1324 */
1325 typedef struct {
1326 list_node_t z_lnode;
1327 zfs_refcount_t z_refcnt;
1328 uint64_t z_object;
1329 zfs_rlock_t z_range_lock;
1330 } ztest_znode_t;
1331
1332 typedef struct {
1333 rl_t *z_rl;
1334 ztest_znode_t *z_ztznode;
1335 } ztest_zrl_t;
1336
1337 static ztest_znode_t *
1338 ztest_znode_init(uint64_t object)
1339 {
1340 ztest_znode_t *zp = umem_alloc(sizeof (*zp), UMEM_NOFAIL);
1341
1342 list_link_init(&zp->z_lnode);
1343 zfs_refcount_create(&zp->z_refcnt);
1344 zp->z_object = object;
1345 zfs_rlock_init(&zp->z_range_lock);
1346
1347 return (zp);
1348 }
1349
1350 static void
1351 ztest_znode_fini(ztest_znode_t *zp)
1352 {
1353 ASSERT(zfs_refcount_is_zero(&zp->z_refcnt));
1354 zfs_rlock_destroy(&zp->z_range_lock);
1355 zp->z_object = 0;
1356 zfs_refcount_destroy(&zp->z_refcnt);
1357 list_link_init(&zp->z_lnode);
1358 umem_free(zp, sizeof (*zp));
1359 }
1360
1361 static void
1362 ztest_zll_init(zll_t *zll)
1363 {
1364 mutex_init(&zll->z_lock, NULL, MUTEX_DEFAULT, NULL);
1365 list_create(&zll->z_list, sizeof (ztest_znode_t),
1366 offsetof(ztest_znode_t, z_lnode));
1367 }
1368
1369 static void
1370 ztest_zll_destroy(zll_t *zll)
1371 {
1372 list_destroy(&zll->z_list);
1373 mutex_destroy(&zll->z_lock);
1374 }
1375
1376 #define RL_TAG "range_lock"
1377 static ztest_znode_t *
1378 ztest_znode_get(ztest_ds_t *zd, uint64_t object)
1379 {
1380 zll_t *zll = &zd->zd_range_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1381 ztest_znode_t *zp = NULL;
1382 mutex_enter(&zll->z_lock);
1383 for (zp = list_head(&zll->z_list); (zp);
1384 zp = list_next(&zll->z_list, zp)) {
1385 if (zp->z_object == object) {
1386 zfs_refcount_add(&zp->z_refcnt, RL_TAG);
1387 break;
1388 }
1389 }
1390 if (zp == NULL) {
1391 zp = ztest_znode_init(object);
1392 zfs_refcount_add(&zp->z_refcnt, RL_TAG);
1393 list_insert_head(&zll->z_list, zp);
1394 }
1395 mutex_exit(&zll->z_lock);
1396 return (zp);
1397 }
1398
1399 static void
1400 ztest_znode_put(ztest_ds_t *zd, ztest_znode_t *zp)
1401 {
1402 zll_t *zll = NULL;
1403 ASSERT3U(zp->z_object, !=, 0);
1404 zll = &zd->zd_range_lock[zp->z_object & (ZTEST_OBJECT_LOCKS - 1)];
1405 mutex_enter(&zll->z_lock);
1406 zfs_refcount_remove(&zp->z_refcnt, RL_TAG);
1407 if (zfs_refcount_is_zero(&zp->z_refcnt)) {
1408 list_remove(&zll->z_list, zp);
1409 ztest_znode_fini(zp);
1410 }
1411 mutex_exit(&zll->z_lock);
1412 }
1413
1414
1415 static void
1416 ztest_rll_init(rll_t *rll)
1417 {
1418 rll->rll_writer = NULL;
1419 rll->rll_readers = 0;
1420 mutex_init(&rll->rll_lock, NULL, MUTEX_DEFAULT, NULL);
1421 cv_init(&rll->rll_cv, NULL, CV_DEFAULT, NULL);
1422 }
1423
1424 static void
1425 ztest_rll_destroy(rll_t *rll)
1426 {
1427 ASSERT(rll->rll_writer == NULL);
1428 ASSERT(rll->rll_readers == 0);
1429 mutex_destroy(&rll->rll_lock);
1430 cv_destroy(&rll->rll_cv);
1431 }
1432
1433 static void
1434 ztest_rll_lock(rll_t *rll, rl_type_t type)
1435 {
1436 mutex_enter(&rll->rll_lock);
1437
1438 if (type == RL_READER) {
1439 while (rll->rll_writer != NULL)
1440 (void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1441 rll->rll_readers++;
1442 } else {
1443 while (rll->rll_writer != NULL || rll->rll_readers)
1444 (void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1445 rll->rll_writer = curthread;
1446 }
1447
1448 mutex_exit(&rll->rll_lock);
1449 }
1450
1451 static void
1452 ztest_rll_unlock(rll_t *rll)
1453 {
1454 mutex_enter(&rll->rll_lock);
1455
1456 if (rll->rll_writer) {
1457 ASSERT(rll->rll_readers == 0);
1458 rll->rll_writer = NULL;
1459 } else {
1460 ASSERT(rll->rll_readers != 0);
1461 ASSERT(rll->rll_writer == NULL);
1462 rll->rll_readers--;
1463 }
1464
1465 if (rll->rll_writer == NULL && rll->rll_readers == 0)
1466 cv_broadcast(&rll->rll_cv);
1467
1468 mutex_exit(&rll->rll_lock);
1469 }
1470
1471 static void
1472 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
1473 {
1474 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1475
1476 ztest_rll_lock(rll, type);
1477 }
1478
1479 static void
1480 ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
1481 {
1482 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1483
1484 ztest_rll_unlock(rll);
1485 }
1486
1487 static ztest_zrl_t *
1488 ztest_zrl_init(rl_t *rl, ztest_znode_t *zp)
1489 {
1490 ztest_zrl_t *zrl = umem_alloc(sizeof (*zrl), UMEM_NOFAIL);
1491 zrl->z_rl = rl;
1492 zrl->z_ztznode = zp;
1493 return (zrl);
1494 }
1495
1496 static void
1497 ztest_zrl_fini(ztest_zrl_t *zrl)
1498 {
1499 umem_free(zrl, sizeof (*zrl));
1500 }
1501
1502 static ztest_zrl_t *
1503 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
1504 uint64_t size, rl_type_t type)
1505 {
1506 ztest_znode_t *zp = ztest_znode_get(zd, object);
1507 rl_t *rl = zfs_range_lock(&zp->z_range_lock, offset,
1508 size, type);
1509 return (ztest_zrl_init(rl, zp));
1510 }
1511
1512 static void
1513 ztest_range_unlock(ztest_ds_t *zd, ztest_zrl_t *zrl)
1514 {
1515 zfs_range_unlock(zrl->z_rl);
1516 ztest_znode_put(zd, zrl->z_ztznode);
1517 ztest_zrl_fini(zrl);
1518 }
1519
1520 static void
1521 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os)
1522 {
1523 zd->zd_os = os;
1524 zd->zd_zilog = dmu_objset_zil(os);
1525 zd->zd_shared = szd;
1526 dmu_objset_name(os, zd->zd_name);
1527 int l;
1528
1529 if (zd->zd_shared != NULL)
1530 zd->zd_shared->zd_seq = 0;
1531
1532 VERIFY0(pthread_rwlock_init(&zd->zd_zilog_lock, NULL));
1533 mutex_init(&zd->zd_dirobj_lock, NULL, MUTEX_DEFAULT, NULL);
1534
1535 for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1536 ztest_rll_init(&zd->zd_object_lock[l]);
1537
1538 for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1539 ztest_zll_init(&zd->zd_range_lock[l]);
1540 }
1541
1542 static void
1543 ztest_zd_fini(ztest_ds_t *zd)
1544 {
1545 int l;
1546
1547 mutex_destroy(&zd->zd_dirobj_lock);
1548 (void) pthread_rwlock_destroy(&zd->zd_zilog_lock);
1549
1550 for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1551 ztest_rll_destroy(&zd->zd_object_lock[l]);
1552
1553 for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1554 ztest_zll_destroy(&zd->zd_range_lock[l]);
1555 }
1556
1557 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
1558
1559 static uint64_t
1560 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag)
1561 {
1562 uint64_t txg;
1563 int error;
1564
1565 /*
1566 * Attempt to assign tx to some transaction group.
1567 */
1568 error = dmu_tx_assign(tx, txg_how);
1569 if (error) {
1570 if (error == ERESTART) {
1571 ASSERT(txg_how == TXG_NOWAIT);
1572 dmu_tx_wait(tx);
1573 } else {
1574 ASSERT3U(error, ==, ENOSPC);
1575 ztest_record_enospc(tag);
1576 }
1577 dmu_tx_abort(tx);
1578 return (0);
1579 }
1580 txg = dmu_tx_get_txg(tx);
1581 ASSERT(txg != 0);
1582 return (txg);
1583 }
1584
1585 static void
1586 ztest_pattern_set(void *buf, uint64_t size, uint64_t value)
1587 {
1588 uint64_t *ip = buf;
1589 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1590
1591 while (ip < ip_end)
1592 *ip++ = value;
1593 }
1594
1595 #ifndef NDEBUG
1596 static boolean_t
1597 ztest_pattern_match(void *buf, uint64_t size, uint64_t value)
1598 {
1599 uint64_t *ip = buf;
1600 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1601 uint64_t diff = 0;
1602
1603 while (ip < ip_end)
1604 diff |= (value - *ip++);
1605
1606 return (diff == 0);
1607 }
1608 #endif
1609
1610 static void
1611 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1612 uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1613 uint64_t crtxg)
1614 {
1615 bt->bt_magic = BT_MAGIC;
1616 bt->bt_objset = dmu_objset_id(os);
1617 bt->bt_object = object;
1618 bt->bt_dnodesize = dnodesize;
1619 bt->bt_offset = offset;
1620 bt->bt_gen = gen;
1621 bt->bt_txg = txg;
1622 bt->bt_crtxg = crtxg;
1623 }
1624
1625 static void
1626 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1627 uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1628 uint64_t crtxg)
1629 {
1630 ASSERT3U(bt->bt_magic, ==, BT_MAGIC);
1631 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os));
1632 ASSERT3U(bt->bt_object, ==, object);
1633 ASSERT3U(bt->bt_dnodesize, ==, dnodesize);
1634 ASSERT3U(bt->bt_offset, ==, offset);
1635 ASSERT3U(bt->bt_gen, <=, gen);
1636 ASSERT3U(bt->bt_txg, <=, txg);
1637 ASSERT3U(bt->bt_crtxg, ==, crtxg);
1638 }
1639
1640 static ztest_block_tag_t *
1641 ztest_bt_bonus(dmu_buf_t *db)
1642 {
1643 dmu_object_info_t doi;
1644 ztest_block_tag_t *bt;
1645
1646 dmu_object_info_from_db(db, &doi);
1647 ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
1648 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
1649 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
1650
1651 return (bt);
1652 }
1653
1654 /*
1655 * Generate a token to fill up unused bonus buffer space. Try to make
1656 * it unique to the object, generation, and offset to verify that data
1657 * is not getting overwritten by data from other dnodes.
1658 */
1659 #define ZTEST_BONUS_FILL_TOKEN(obj, ds, gen, offset) \
1660 (((ds) << 48) | ((gen) << 32) | ((obj) << 8) | (offset))
1661
1662 /*
1663 * Fill up the unused bonus buffer region before the block tag with a
1664 * verifiable pattern. Filling the whole bonus area with non-zero data
1665 * helps ensure that all dnode traversal code properly skips the
1666 * interior regions of large dnodes.
1667 */
1668 void
1669 ztest_fill_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1670 objset_t *os, uint64_t gen)
1671 {
1672 uint64_t *bonusp;
1673
1674 ASSERT(IS_P2ALIGNED((char *)end - (char *)db->db_data, 8));
1675
1676 for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1677 uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1678 gen, bonusp - (uint64_t *)db->db_data);
1679 *bonusp = token;
1680 }
1681 }
1682
1683 /*
1684 * Verify that the unused area of a bonus buffer is filled with the
1685 * expected tokens.
1686 */
1687 void
1688 ztest_verify_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1689 objset_t *os, uint64_t gen)
1690 {
1691 uint64_t *bonusp;
1692
1693 for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1694 uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1695 gen, bonusp - (uint64_t *)db->db_data);
1696 VERIFY3U(*bonusp, ==, token);
1697 }
1698 }
1699
1700 /*
1701 * ZIL logging ops
1702 */
1703
1704 #define lrz_type lr_mode
1705 #define lrz_blocksize lr_uid
1706 #define lrz_ibshift lr_gid
1707 #define lrz_bonustype lr_rdev
1708 #define lrz_dnodesize lr_crtime[1]
1709
1710 static void
1711 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
1712 {
1713 char *name = (void *)(lr + 1); /* name follows lr */
1714 size_t namesize = strlen(name) + 1;
1715 itx_t *itx;
1716
1717 if (zil_replaying(zd->zd_zilog, tx))
1718 return;
1719
1720 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
1721 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1722 sizeof (*lr) + namesize - sizeof (lr_t));
1723
1724 zil_itx_assign(zd->zd_zilog, itx, tx);
1725 }
1726
1727 static void
1728 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object)
1729 {
1730 char *name = (void *)(lr + 1); /* name follows lr */
1731 size_t namesize = strlen(name) + 1;
1732 itx_t *itx;
1733
1734 if (zil_replaying(zd->zd_zilog, tx))
1735 return;
1736
1737 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
1738 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1739 sizeof (*lr) + namesize - sizeof (lr_t));
1740
1741 itx->itx_oid = object;
1742 zil_itx_assign(zd->zd_zilog, itx, tx);
1743 }
1744
1745 static void
1746 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
1747 {
1748 itx_t *itx;
1749 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
1750
1751 if (zil_replaying(zd->zd_zilog, tx))
1752 return;
1753
1754 if (lr->lr_length > ZIL_MAX_LOG_DATA)
1755 write_state = WR_INDIRECT;
1756
1757 itx = zil_itx_create(TX_WRITE,
1758 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
1759
1760 if (write_state == WR_COPIED &&
1761 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
1762 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) {
1763 zil_itx_destroy(itx);
1764 itx = zil_itx_create(TX_WRITE, sizeof (*lr));
1765 write_state = WR_NEED_COPY;
1766 }
1767 itx->itx_private = zd;
1768 itx->itx_wr_state = write_state;
1769 itx->itx_sync = (ztest_random(8) == 0);
1770
1771 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1772 sizeof (*lr) - sizeof (lr_t));
1773
1774 zil_itx_assign(zd->zd_zilog, itx, tx);
1775 }
1776
1777 static void
1778 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
1779 {
1780 itx_t *itx;
1781
1782 if (zil_replaying(zd->zd_zilog, tx))
1783 return;
1784
1785 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
1786 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1787 sizeof (*lr) - sizeof (lr_t));
1788
1789 itx->itx_sync = B_FALSE;
1790 zil_itx_assign(zd->zd_zilog, itx, tx);
1791 }
1792
1793 static void
1794 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
1795 {
1796 itx_t *itx;
1797
1798 if (zil_replaying(zd->zd_zilog, tx))
1799 return;
1800
1801 itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
1802 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1803 sizeof (*lr) - sizeof (lr_t));
1804
1805 itx->itx_sync = B_FALSE;
1806 zil_itx_assign(zd->zd_zilog, itx, tx);
1807 }
1808
1809 /*
1810 * ZIL replay ops
1811 */
1812 static int
1813 ztest_replay_create(void *arg1, void *arg2, boolean_t byteswap)
1814 {
1815 ztest_ds_t *zd = arg1;
1816 lr_create_t *lr = arg2;
1817 char *name = (void *)(lr + 1); /* name follows lr */
1818 objset_t *os = zd->zd_os;
1819 ztest_block_tag_t *bbt;
1820 dmu_buf_t *db;
1821 dmu_tx_t *tx;
1822 uint64_t txg;
1823 int error = 0;
1824 int bonuslen;
1825
1826 if (byteswap)
1827 byteswap_uint64_array(lr, sizeof (*lr));
1828
1829 ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1830 ASSERT(name[0] != '\0');
1831
1832 tx = dmu_tx_create(os);
1833
1834 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
1835
1836 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1837 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1838 } else {
1839 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1840 }
1841
1842 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1843 if (txg == 0)
1844 return (ENOSPC);
1845
1846 ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid);
1847 bonuslen = DN_BONUS_SIZE(lr->lrz_dnodesize);
1848
1849 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1850 if (lr->lr_foid == 0) {
1851 lr->lr_foid = zap_create_dnsize(os,
1852 lr->lrz_type, lr->lrz_bonustype,
1853 bonuslen, lr->lrz_dnodesize, tx);
1854 } else {
1855 error = zap_create_claim_dnsize(os, lr->lr_foid,
1856 lr->lrz_type, lr->lrz_bonustype,
1857 bonuslen, lr->lrz_dnodesize, tx);
1858 }
1859 } else {
1860 if (lr->lr_foid == 0) {
1861 lr->lr_foid = dmu_object_alloc_dnsize(os,
1862 lr->lrz_type, 0, lr->lrz_bonustype,
1863 bonuslen, lr->lrz_dnodesize, tx);
1864 } else {
1865 error = dmu_object_claim_dnsize(os, lr->lr_foid,
1866 lr->lrz_type, 0, lr->lrz_bonustype,
1867 bonuslen, lr->lrz_dnodesize, tx);
1868 }
1869 }
1870
1871 if (error) {
1872 ASSERT3U(error, ==, EEXIST);
1873 ASSERT(zd->zd_zilog->zl_replay);
1874 dmu_tx_commit(tx);
1875 return (error);
1876 }
1877
1878 ASSERT(lr->lr_foid != 0);
1879
1880 if (lr->lrz_type != DMU_OT_ZAP_OTHER)
1881 VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid,
1882 lr->lrz_blocksize, lr->lrz_ibshift, tx));
1883
1884 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1885 bbt = ztest_bt_bonus(db);
1886 dmu_buf_will_dirty(db, tx);
1887 ztest_bt_generate(bbt, os, lr->lr_foid, lr->lrz_dnodesize, -1ULL,
1888 lr->lr_gen, txg, txg);
1889 ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, lr->lr_gen);
1890 dmu_buf_rele(db, FTAG);
1891
1892 VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
1893 &lr->lr_foid, tx));
1894
1895 (void) ztest_log_create(zd, tx, lr);
1896
1897 dmu_tx_commit(tx);
1898
1899 return (0);
1900 }
1901
1902 static int
1903 ztest_replay_remove(void *arg1, void *arg2, boolean_t byteswap)
1904 {
1905 ztest_ds_t *zd = arg1;
1906 lr_remove_t *lr = arg2;
1907 char *name = (void *)(lr + 1); /* name follows lr */
1908 objset_t *os = zd->zd_os;
1909 dmu_object_info_t doi;
1910 dmu_tx_t *tx;
1911 uint64_t object, txg;
1912
1913 if (byteswap)
1914 byteswap_uint64_array(lr, sizeof (*lr));
1915
1916 ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1917 ASSERT(name[0] != '\0');
1918
1919 VERIFY3U(0, ==,
1920 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
1921 ASSERT(object != 0);
1922
1923 ztest_object_lock(zd, object, RL_WRITER);
1924
1925 VERIFY3U(0, ==, dmu_object_info(os, object, &doi));
1926
1927 tx = dmu_tx_create(os);
1928
1929 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
1930 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
1931
1932 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1933 if (txg == 0) {
1934 ztest_object_unlock(zd, object);
1935 return (ENOSPC);
1936 }
1937
1938 if (doi.doi_type == DMU_OT_ZAP_OTHER) {
1939 VERIFY3U(0, ==, zap_destroy(os, object, tx));
1940 } else {
1941 VERIFY3U(0, ==, dmu_object_free(os, object, tx));
1942 }
1943
1944 VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx));
1945
1946 (void) ztest_log_remove(zd, tx, lr, object);
1947
1948 dmu_tx_commit(tx);
1949
1950 ztest_object_unlock(zd, object);
1951
1952 return (0);
1953 }
1954
1955 static int
1956 ztest_replay_write(void *arg1, void *arg2, boolean_t byteswap)
1957 {
1958 ztest_ds_t *zd = arg1;
1959 lr_write_t *lr = arg2;
1960 objset_t *os = zd->zd_os;
1961 void *data = lr + 1; /* data follows lr */
1962 uint64_t offset, length;
1963 ztest_block_tag_t *bt = data;
1964 ztest_block_tag_t *bbt;
1965 uint64_t gen, txg, lrtxg, crtxg;
1966 dmu_object_info_t doi;
1967 dmu_tx_t *tx;
1968 dmu_buf_t *db;
1969 arc_buf_t *abuf = NULL;
1970 ztest_zrl_t *rl;
1971
1972 if (byteswap)
1973 byteswap_uint64_array(lr, sizeof (*lr));
1974
1975 offset = lr->lr_offset;
1976 length = lr->lr_length;
1977
1978 /* If it's a dmu_sync() block, write the whole block */
1979 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
1980 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
1981 if (length < blocksize) {
1982 offset -= offset % blocksize;
1983 length = blocksize;
1984 }
1985 }
1986
1987 if (bt->bt_magic == BSWAP_64(BT_MAGIC))
1988 byteswap_uint64_array(bt, sizeof (*bt));
1989
1990 if (bt->bt_magic != BT_MAGIC)
1991 bt = NULL;
1992
1993 ztest_object_lock(zd, lr->lr_foid, RL_READER);
1994 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER);
1995
1996 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1997
1998 dmu_object_info_from_db(db, &doi);
1999
2000 bbt = ztest_bt_bonus(db);
2001 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2002 gen = bbt->bt_gen;
2003 crtxg = bbt->bt_crtxg;
2004 lrtxg = lr->lr_common.lrc_txg;
2005
2006 tx = dmu_tx_create(os);
2007
2008 dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
2009
2010 if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
2011 P2PHASE(offset, length) == 0)
2012 abuf = dmu_request_arcbuf(db, length);
2013
2014 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2015 if (txg == 0) {
2016 if (abuf != NULL)
2017 dmu_return_arcbuf(abuf);
2018 dmu_buf_rele(db, FTAG);
2019 ztest_range_unlock(zd, rl);
2020 ztest_object_unlock(zd, lr->lr_foid);
2021 return (ENOSPC);
2022 }
2023
2024 if (bt != NULL) {
2025 /*
2026 * Usually, verify the old data before writing new data --
2027 * but not always, because we also want to verify correct
2028 * behavior when the data was not recently read into cache.
2029 */
2030 ASSERT(offset % doi.doi_data_block_size == 0);
2031 if (ztest_random(4) != 0) {
2032 int prefetch = ztest_random(2) ?
2033 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
2034 ztest_block_tag_t rbt;
2035
2036 VERIFY(dmu_read(os, lr->lr_foid, offset,
2037 sizeof (rbt), &rbt, prefetch) == 0);
2038 if (rbt.bt_magic == BT_MAGIC) {
2039 ztest_bt_verify(&rbt, os, lr->lr_foid, 0,
2040 offset, gen, txg, crtxg);
2041 }
2042 }
2043
2044 /*
2045 * Writes can appear to be newer than the bonus buffer because
2046 * the ztest_get_data() callback does a dmu_read() of the
2047 * open-context data, which may be different than the data
2048 * as it was when the write was generated.
2049 */
2050 if (zd->zd_zilog->zl_replay) {
2051 ztest_bt_verify(bt, os, lr->lr_foid, 0, offset,
2052 MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
2053 bt->bt_crtxg);
2054 }
2055
2056 /*
2057 * Set the bt's gen/txg to the bonus buffer's gen/txg
2058 * so that all of the usual ASSERTs will work.
2059 */
2060 ztest_bt_generate(bt, os, lr->lr_foid, 0, offset, gen, txg,
2061 crtxg);
2062 }
2063
2064 if (abuf == NULL) {
2065 dmu_write(os, lr->lr_foid, offset, length, data, tx);
2066 } else {
2067 bcopy(data, abuf->b_data, length);
2068 dmu_assign_arcbuf_by_dbuf(db, offset, abuf, tx);
2069 }
2070
2071 (void) ztest_log_write(zd, tx, lr);
2072
2073 dmu_buf_rele(db, FTAG);
2074
2075 dmu_tx_commit(tx);
2076
2077 ztest_range_unlock(zd, rl);
2078 ztest_object_unlock(zd, lr->lr_foid);
2079
2080 return (0);
2081 }
2082
2083 static int
2084 ztest_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
2085 {
2086 ztest_ds_t *zd = arg1;
2087 lr_truncate_t *lr = arg2;
2088 objset_t *os = zd->zd_os;
2089 dmu_tx_t *tx;
2090 uint64_t txg;
2091 ztest_zrl_t *rl;
2092
2093 if (byteswap)
2094 byteswap_uint64_array(lr, sizeof (*lr));
2095
2096 ztest_object_lock(zd, lr->lr_foid, RL_READER);
2097 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
2098 RL_WRITER);
2099
2100 tx = dmu_tx_create(os);
2101
2102 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
2103
2104 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2105 if (txg == 0) {
2106 ztest_range_unlock(zd, rl);
2107 ztest_object_unlock(zd, lr->lr_foid);
2108 return (ENOSPC);
2109 }
2110
2111 VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
2112 lr->lr_length, tx) == 0);
2113
2114 (void) ztest_log_truncate(zd, tx, lr);
2115
2116 dmu_tx_commit(tx);
2117
2118 ztest_range_unlock(zd, rl);
2119 ztest_object_unlock(zd, lr->lr_foid);
2120
2121 return (0);
2122 }
2123
2124 static int
2125 ztest_replay_setattr(void *arg1, void *arg2, boolean_t byteswap)
2126 {
2127 ztest_ds_t *zd = arg1;
2128 lr_setattr_t *lr = arg2;
2129 objset_t *os = zd->zd_os;
2130 dmu_tx_t *tx;
2131 dmu_buf_t *db;
2132 ztest_block_tag_t *bbt;
2133 uint64_t txg, lrtxg, crtxg, dnodesize;
2134
2135 if (byteswap)
2136 byteswap_uint64_array(lr, sizeof (*lr));
2137
2138 ztest_object_lock(zd, lr->lr_foid, RL_WRITER);
2139
2140 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2141
2142 tx = dmu_tx_create(os);
2143 dmu_tx_hold_bonus(tx, lr->lr_foid);
2144
2145 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2146 if (txg == 0) {
2147 dmu_buf_rele(db, FTAG);
2148 ztest_object_unlock(zd, lr->lr_foid);
2149 return (ENOSPC);
2150 }
2151
2152 bbt = ztest_bt_bonus(db);
2153 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2154 crtxg = bbt->bt_crtxg;
2155 lrtxg = lr->lr_common.lrc_txg;
2156 dnodesize = bbt->bt_dnodesize;
2157
2158 if (zd->zd_zilog->zl_replay) {
2159 ASSERT(lr->lr_size != 0);
2160 ASSERT(lr->lr_mode != 0);
2161 ASSERT(lrtxg != 0);
2162 } else {
2163 /*
2164 * Randomly change the size and increment the generation.
2165 */
2166 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
2167 sizeof (*bbt);
2168 lr->lr_mode = bbt->bt_gen + 1;
2169 ASSERT(lrtxg == 0);
2170 }
2171
2172 /*
2173 * Verify that the current bonus buffer is not newer than our txg.
2174 */
2175 ztest_bt_verify(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
2176 MAX(txg, lrtxg), crtxg);
2177
2178 dmu_buf_will_dirty(db, tx);
2179
2180 ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
2181 ASSERT3U(lr->lr_size, <=, db->db_size);
2182 VERIFY0(dmu_set_bonus(db, lr->lr_size, tx));
2183 bbt = ztest_bt_bonus(db);
2184
2185 ztest_bt_generate(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
2186 txg, crtxg);
2187 ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, bbt->bt_gen);
2188 dmu_buf_rele(db, FTAG);
2189
2190 (void) ztest_log_setattr(zd, tx, lr);
2191
2192 dmu_tx_commit(tx);
2193
2194 ztest_object_unlock(zd, lr->lr_foid);
2195
2196 return (0);
2197 }
2198
2199 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
2200 NULL, /* 0 no such transaction type */
2201 ztest_replay_create, /* TX_CREATE */
2202 NULL, /* TX_MKDIR */
2203 NULL, /* TX_MKXATTR */
2204 NULL, /* TX_SYMLINK */
2205 ztest_replay_remove, /* TX_REMOVE */
2206 NULL, /* TX_RMDIR */
2207 NULL, /* TX_LINK */
2208 NULL, /* TX_RENAME */
2209 ztest_replay_write, /* TX_WRITE */
2210 ztest_replay_truncate, /* TX_TRUNCATE */
2211 ztest_replay_setattr, /* TX_SETATTR */
2212 NULL, /* TX_ACL */
2213 NULL, /* TX_CREATE_ACL */
2214 NULL, /* TX_CREATE_ATTR */
2215 NULL, /* TX_CREATE_ACL_ATTR */
2216 NULL, /* TX_MKDIR_ACL */
2217 NULL, /* TX_MKDIR_ATTR */
2218 NULL, /* TX_MKDIR_ACL_ATTR */
2219 NULL, /* TX_WRITE2 */
2220 };
2221
2222 /*
2223 * ZIL get_data callbacks
2224 */
2225 typedef struct ztest_zgd_private {
2226 ztest_ds_t *z_zd;
2227 ztest_zrl_t *z_rl;
2228 uint64_t z_object;
2229 } ztest_zgd_private_t;
2230
2231 static void
2232 ztest_get_done(zgd_t *zgd, int error)
2233 {
2234 ztest_zgd_private_t *zzp = zgd->zgd_private;
2235 ztest_ds_t *zd = zzp->z_zd;
2236 uint64_t object = zzp->z_object;
2237
2238 if (zgd->zgd_db)
2239 dmu_buf_rele(zgd->zgd_db, zgd);
2240
2241 ztest_range_unlock(zd, zzp->z_rl);
2242 ztest_object_unlock(zd, object);
2243
2244 if (error == 0 && zgd->zgd_bp)
2245 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
2246
2247 umem_free(zgd, sizeof (*zgd));
2248 umem_free(zzp, sizeof (*zzp));
2249 }
2250
2251 static int
2252 ztest_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb,
2253 zio_t *zio)
2254 {
2255 ztest_ds_t *zd = arg;
2256 objset_t *os = zd->zd_os;
2257 uint64_t object = lr->lr_foid;
2258 uint64_t offset = lr->lr_offset;
2259 uint64_t size = lr->lr_length;
2260 uint64_t txg = lr->lr_common.lrc_txg;
2261 uint64_t crtxg;
2262 dmu_object_info_t doi;
2263 dmu_buf_t *db;
2264 zgd_t *zgd;
2265 int error;
2266 ztest_zgd_private_t *zgd_private;
2267
2268 ASSERT3P(lwb, !=, NULL);
2269 ASSERT3P(zio, !=, NULL);
2270 ASSERT3U(size, !=, 0);
2271
2272 ztest_object_lock(zd, object, RL_READER);
2273 error = dmu_bonus_hold(os, object, FTAG, &db);
2274 if (error) {
2275 ztest_object_unlock(zd, object);
2276 return (error);
2277 }
2278
2279 crtxg = ztest_bt_bonus(db)->bt_crtxg;
2280
2281 if (crtxg == 0 || crtxg > txg) {
2282 dmu_buf_rele(db, FTAG);
2283 ztest_object_unlock(zd, object);
2284 return (ENOENT);
2285 }
2286
2287 dmu_object_info_from_db(db, &doi);
2288 dmu_buf_rele(db, FTAG);
2289 db = NULL;
2290
2291 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
2292 zgd->zgd_lwb = lwb;
2293 zgd_private = umem_zalloc(sizeof (ztest_zgd_private_t), UMEM_NOFAIL);
2294 zgd_private->z_zd = zd;
2295 zgd_private->z_object = object;
2296 zgd->zgd_private = zgd_private;
2297
2298 if (buf != NULL) { /* immediate write */
2299 zgd_private->z_rl = ztest_range_lock(zd, object, offset, size,
2300 RL_READER);
2301 zgd->zgd_rl = zgd_private->z_rl->z_rl;
2302
2303 error = dmu_read(os, object, offset, size, buf,
2304 DMU_READ_NO_PREFETCH);
2305 ASSERT(error == 0);
2306 } else {
2307 size = doi.doi_data_block_size;
2308 if (ISP2(size)) {
2309 offset = P2ALIGN(offset, size);
2310 } else {
2311 ASSERT(offset < size);
2312 offset = 0;
2313 }
2314
2315 zgd_private->z_rl = ztest_range_lock(zd, object, offset, size,
2316 RL_READER);
2317 zgd->zgd_rl = zgd_private->z_rl->z_rl;
2318
2319 error = dmu_buf_hold(os, object, offset, zgd, &db,
2320 DMU_READ_NO_PREFETCH);
2321
2322 if (error == 0) {
2323 blkptr_t *bp = &lr->lr_blkptr;
2324
2325 zgd->zgd_db = db;
2326 zgd->zgd_bp = bp;
2327
2328 ASSERT(db->db_offset == offset);
2329 ASSERT(db->db_size == size);
2330
2331 error = dmu_sync(zio, lr->lr_common.lrc_txg,
2332 ztest_get_done, zgd);
2333
2334 if (error == 0)
2335 return (0);
2336 }
2337 }
2338
2339 ztest_get_done(zgd, error);
2340
2341 return (error);
2342 }
2343
2344 static void *
2345 ztest_lr_alloc(size_t lrsize, char *name)
2346 {
2347 char *lr;
2348 size_t namesize = name ? strlen(name) + 1 : 0;
2349
2350 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
2351
2352 if (name)
2353 bcopy(name, lr + lrsize, namesize);
2354
2355 return (lr);
2356 }
2357
2358 void
2359 ztest_lr_free(void *lr, size_t lrsize, char *name)
2360 {
2361 size_t namesize = name ? strlen(name) + 1 : 0;
2362
2363 umem_free(lr, lrsize + namesize);
2364 }
2365
2366 /*
2367 * Lookup a bunch of objects. Returns the number of objects not found.
2368 */
2369 static int
2370 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
2371 {
2372 int missing = 0;
2373 int error;
2374 int i;
2375
2376 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2377
2378 for (i = 0; i < count; i++, od++) {
2379 od->od_object = 0;
2380 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
2381 sizeof (uint64_t), 1, &od->od_object);
2382 if (error) {
2383 ASSERT(error == ENOENT);
2384 ASSERT(od->od_object == 0);
2385 missing++;
2386 } else {
2387 dmu_buf_t *db;
2388 ztest_block_tag_t *bbt;
2389 dmu_object_info_t doi;
2390
2391 ASSERT(od->od_object != 0);
2392 ASSERT(missing == 0); /* there should be no gaps */
2393
2394 ztest_object_lock(zd, od->od_object, RL_READER);
2395 VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os,
2396 od->od_object, FTAG, &db));
2397 dmu_object_info_from_db(db, &doi);
2398 bbt = ztest_bt_bonus(db);
2399 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2400 od->od_type = doi.doi_type;
2401 od->od_blocksize = doi.doi_data_block_size;
2402 od->od_gen = bbt->bt_gen;
2403 dmu_buf_rele(db, FTAG);
2404 ztest_object_unlock(zd, od->od_object);
2405 }
2406 }
2407
2408 return (missing);
2409 }
2410
2411 static int
2412 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
2413 {
2414 int missing = 0;
2415 int i;
2416
2417 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2418
2419 for (i = 0; i < count; i++, od++) {
2420 if (missing) {
2421 od->od_object = 0;
2422 missing++;
2423 continue;
2424 }
2425
2426 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2427
2428 lr->lr_doid = od->od_dir;
2429 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */
2430 lr->lrz_type = od->od_crtype;
2431 lr->lrz_blocksize = od->od_crblocksize;
2432 lr->lrz_ibshift = ztest_random_ibshift();
2433 lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
2434 lr->lrz_dnodesize = od->od_crdnodesize;
2435 lr->lr_gen = od->od_crgen;
2436 lr->lr_crtime[0] = time(NULL);
2437
2438 if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
2439 ASSERT(missing == 0);
2440 od->od_object = 0;
2441 missing++;
2442 } else {
2443 od->od_object = lr->lr_foid;
2444 od->od_type = od->od_crtype;
2445 od->od_blocksize = od->od_crblocksize;
2446 od->od_gen = od->od_crgen;
2447 ASSERT(od->od_object != 0);
2448 }
2449
2450 ztest_lr_free(lr, sizeof (*lr), od->od_name);
2451 }
2452
2453 return (missing);
2454 }
2455
2456 static int
2457 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
2458 {
2459 int missing = 0;
2460 int error;
2461 int i;
2462
2463 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2464
2465 od += count - 1;
2466
2467 for (i = count - 1; i >= 0; i--, od--) {
2468 if (missing) {
2469 missing++;
2470 continue;
2471 }
2472
2473 /*
2474 * No object was found.
2475 */
2476 if (od->od_object == 0)
2477 continue;
2478
2479 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2480
2481 lr->lr_doid = od->od_dir;
2482
2483 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
2484 ASSERT3U(error, ==, ENOSPC);
2485 missing++;
2486 } else {
2487 od->od_object = 0;
2488 }
2489 ztest_lr_free(lr, sizeof (*lr), od->od_name);
2490 }
2491
2492 return (missing);
2493 }
2494
2495 static int
2496 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
2497 void *data)
2498 {
2499 lr_write_t *lr;
2500 int error;
2501
2502 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
2503
2504 lr->lr_foid = object;
2505 lr->lr_offset = offset;
2506 lr->lr_length = size;
2507 lr->lr_blkoff = 0;
2508 BP_ZERO(&lr->lr_blkptr);
2509
2510 bcopy(data, lr + 1, size);
2511
2512 error = ztest_replay_write(zd, lr, B_FALSE);
2513
2514 ztest_lr_free(lr, sizeof (*lr) + size, NULL);
2515
2516 return (error);
2517 }
2518
2519 static int
2520 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2521 {
2522 lr_truncate_t *lr;
2523 int error;
2524
2525 lr = ztest_lr_alloc(sizeof (*lr), NULL);
2526
2527 lr->lr_foid = object;
2528 lr->lr_offset = offset;
2529 lr->lr_length = size;
2530
2531 error = ztest_replay_truncate(zd, lr, B_FALSE);
2532
2533 ztest_lr_free(lr, sizeof (*lr), NULL);
2534
2535 return (error);
2536 }
2537
2538 static int
2539 ztest_setattr(ztest_ds_t *zd, uint64_t object)
2540 {
2541 lr_setattr_t *lr;
2542 int error;
2543
2544 lr = ztest_lr_alloc(sizeof (*lr), NULL);
2545
2546 lr->lr_foid = object;
2547 lr->lr_size = 0;
2548 lr->lr_mode = 0;
2549
2550 error = ztest_replay_setattr(zd, lr, B_FALSE);
2551
2552 ztest_lr_free(lr, sizeof (*lr), NULL);
2553
2554 return (error);
2555 }
2556
2557 static void
2558 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2559 {
2560 objset_t *os = zd->zd_os;
2561 dmu_tx_t *tx;
2562 uint64_t txg;
2563 ztest_zrl_t *rl;
2564
2565 txg_wait_synced(dmu_objset_pool(os), 0);
2566
2567 ztest_object_lock(zd, object, RL_READER);
2568 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER);
2569
2570 tx = dmu_tx_create(os);
2571
2572 dmu_tx_hold_write(tx, object, offset, size);
2573
2574 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2575
2576 if (txg != 0) {
2577 dmu_prealloc(os, object, offset, size, tx);
2578 dmu_tx_commit(tx);
2579 txg_wait_synced(dmu_objset_pool(os), txg);
2580 } else {
2581 (void) dmu_free_long_range(os, object, offset, size);
2582 }
2583
2584 ztest_range_unlock(zd, rl);
2585 ztest_object_unlock(zd, object);
2586 }
2587
2588 static void
2589 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
2590 {
2591 int err;
2592 ztest_block_tag_t wbt;
2593 dmu_object_info_t doi;
2594 enum ztest_io_type io_type;
2595 uint64_t blocksize;
2596 void *data;
2597
2598 VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0);
2599 blocksize = doi.doi_data_block_size;
2600 data = umem_alloc(blocksize, UMEM_NOFAIL);
2601
2602 /*
2603 * Pick an i/o type at random, biased toward writing block tags.
2604 */
2605 io_type = ztest_random(ZTEST_IO_TYPES);
2606 if (ztest_random(2) == 0)
2607 io_type = ZTEST_IO_WRITE_TAG;
2608
2609 (void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
2610
2611 switch (io_type) {
2612
2613 case ZTEST_IO_WRITE_TAG:
2614 ztest_bt_generate(&wbt, zd->zd_os, object, doi.doi_dnodesize,
2615 offset, 0, 0, 0);
2616 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
2617 break;
2618
2619 case ZTEST_IO_WRITE_PATTERN:
2620 (void) memset(data, 'a' + (object + offset) % 5, blocksize);
2621 if (ztest_random(2) == 0) {
2622 /*
2623 * Induce fletcher2 collisions to ensure that
2624 * zio_ddt_collision() detects and resolves them
2625 * when using fletcher2-verify for deduplication.
2626 */
2627 ((uint64_t *)data)[0] ^= 1ULL << 63;
2628 ((uint64_t *)data)[4] ^= 1ULL << 63;
2629 }
2630 (void) ztest_write(zd, object, offset, blocksize, data);
2631 break;
2632
2633 case ZTEST_IO_WRITE_ZEROES:
2634 bzero(data, blocksize);
2635 (void) ztest_write(zd, object, offset, blocksize, data);
2636 break;
2637
2638 case ZTEST_IO_TRUNCATE:
2639 (void) ztest_truncate(zd, object, offset, blocksize);
2640 break;
2641
2642 case ZTEST_IO_SETATTR:
2643 (void) ztest_setattr(zd, object);
2644 break;
2645 default:
2646 break;
2647
2648 case ZTEST_IO_REWRITE:
2649 (void) pthread_rwlock_rdlock(&ztest_name_lock);
2650 err = ztest_dsl_prop_set_uint64(zd->zd_name,
2651 ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa),
2652 B_FALSE);
2653 VERIFY(err == 0 || err == ENOSPC);
2654 err = ztest_dsl_prop_set_uint64(zd->zd_name,
2655 ZFS_PROP_COMPRESSION,
2656 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION),
2657 B_FALSE);
2658 VERIFY(err == 0 || err == ENOSPC);
2659 (void) pthread_rwlock_unlock(&ztest_name_lock);
2660
2661 VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data,
2662 DMU_READ_NO_PREFETCH));
2663
2664 (void) ztest_write(zd, object, offset, blocksize, data);
2665 break;
2666 }
2667
2668 (void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2669
2670 umem_free(data, blocksize);
2671 }
2672
2673 /*
2674 * Initialize an object description template.
2675 */
2676 static void
2677 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index,
2678 dmu_object_type_t type, uint64_t blocksize, uint64_t dnodesize,
2679 uint64_t gen)
2680 {
2681 od->od_dir = ZTEST_DIROBJ;
2682 od->od_object = 0;
2683
2684 od->od_crtype = type;
2685 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
2686 od->od_crdnodesize = dnodesize ? dnodesize : ztest_random_dnodesize();
2687 od->od_crgen = gen;
2688
2689 od->od_type = DMU_OT_NONE;
2690 od->od_blocksize = 0;
2691 od->od_gen = 0;
2692
2693 (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]",
2694 tag, (longlong_t)id, (u_longlong_t)index);
2695 }
2696
2697 /*
2698 * Lookup or create the objects for a test using the od template.
2699 * If the objects do not all exist, or if 'remove' is specified,
2700 * remove any existing objects and create new ones. Otherwise,
2701 * use the existing objects.
2702 */
2703 static int
2704 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
2705 {
2706 int count = size / sizeof (*od);
2707 int rv = 0;
2708
2709 mutex_enter(&zd->zd_dirobj_lock);
2710 if ((ztest_lookup(zd, od, count) != 0 || remove) &&
2711 (ztest_remove(zd, od, count) != 0 ||
2712 ztest_create(zd, od, count) != 0))
2713 rv = -1;
2714 zd->zd_od = od;
2715 mutex_exit(&zd->zd_dirobj_lock);
2716
2717 return (rv);
2718 }
2719
2720 /* ARGSUSED */
2721 void
2722 ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
2723 {
2724 zilog_t *zilog = zd->zd_zilog;
2725
2726 (void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
2727
2728 zil_commit(zilog, ztest_random(ZTEST_OBJECTS));
2729
2730 /*
2731 * Remember the committed values in zd, which is in parent/child
2732 * shared memory. If we die, the next iteration of ztest_run()
2733 * will verify that the log really does contain this record.
2734 */
2735 mutex_enter(&zilog->zl_lock);
2736 ASSERT(zd->zd_shared != NULL);
2737 ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq);
2738 zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq;
2739 mutex_exit(&zilog->zl_lock);
2740
2741 (void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2742 }
2743
2744 /*
2745 * This function is designed to simulate the operations that occur during a
2746 * mount/unmount operation. We hold the dataset across these operations in an
2747 * attempt to expose any implicit assumptions about ZIL management.
2748 */
2749 /* ARGSUSED */
2750 void
2751 ztest_zil_remount(ztest_ds_t *zd, uint64_t id)
2752 {
2753 objset_t *os = zd->zd_os;
2754
2755 /*
2756 * We grab the zd_dirobj_lock to ensure that no other thread is
2757 * updating the zil (i.e. adding in-memory log records) and the
2758 * zd_zilog_lock to block any I/O.
2759 */
2760 mutex_enter(&zd->zd_dirobj_lock);
2761 (void) pthread_rwlock_wrlock(&zd->zd_zilog_lock);
2762
2763 /* zfsvfs_teardown() */
2764 zil_close(zd->zd_zilog);
2765
2766 /* zfsvfs_setup() */
2767 VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog);
2768 zil_replay(os, zd, ztest_replay_vector);
2769
2770 (void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2771 mutex_exit(&zd->zd_dirobj_lock);
2772 }
2773
2774 /*
2775 * Verify that we can't destroy an active pool, create an existing pool,
2776 * or create a pool with a bad vdev spec.
2777 */
2778 /* ARGSUSED */
2779 void
2780 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
2781 {
2782 ztest_shared_opts_t *zo = &ztest_opts;
2783 spa_t *spa;
2784 nvlist_t *nvroot;
2785
2786 if (zo->zo_mmp_test)
2787 return;
2788
2789 /*
2790 * Attempt to create using a bad file.
2791 */
2792 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
2793 VERIFY3U(ENOENT, ==,
2794 spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL));
2795 nvlist_free(nvroot);
2796
2797 /*
2798 * Attempt to create using a bad mirror.
2799 */
2800 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 2, 1);
2801 VERIFY3U(ENOENT, ==,
2802 spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL));
2803 nvlist_free(nvroot);
2804
2805 /*
2806 * Attempt to create an existing pool. It shouldn't matter
2807 * what's in the nvroot; we should fail with EEXIST.
2808 */
2809 (void) pthread_rwlock_rdlock(&ztest_name_lock);
2810 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
2811 VERIFY3U(EEXIST, ==,
2812 spa_create(zo->zo_pool, nvroot, NULL, NULL, NULL));
2813 nvlist_free(nvroot);
2814 VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG));
2815 VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool));
2816 spa_close(spa, FTAG);
2817
2818 (void) pthread_rwlock_unlock(&ztest_name_lock);
2819 }
2820
2821 /*
2822 * Start and then stop the MMP threads to ensure the startup and shutdown code
2823 * works properly. Actual protection and property-related code tested via ZTS.
2824 */
2825 /* ARGSUSED */
2826 void
2827 ztest_mmp_enable_disable(ztest_ds_t *zd, uint64_t id)
2828 {
2829 ztest_shared_opts_t *zo = &ztest_opts;
2830 spa_t *spa = ztest_spa;
2831
2832 if (zo->zo_mmp_test)
2833 return;
2834
2835 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
2836 mutex_enter(&spa->spa_props_lock);
2837
2838 zfs_multihost_fail_intervals = 0;
2839
2840 if (!spa_multihost(spa)) {
2841 spa->spa_multihost = B_TRUE;
2842 mmp_thread_start(spa);
2843 }
2844
2845 mutex_exit(&spa->spa_props_lock);
2846 spa_config_exit(spa, SCL_CONFIG, FTAG);
2847
2848 txg_wait_synced(spa_get_dsl(spa), 0);
2849 mmp_signal_all_threads();
2850 txg_wait_synced(spa_get_dsl(spa), 0);
2851
2852 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
2853 mutex_enter(&spa->spa_props_lock);
2854
2855 if (spa_multihost(spa)) {
2856 mmp_thread_stop(spa);
2857 spa->spa_multihost = B_FALSE;
2858 }
2859
2860 mutex_exit(&spa->spa_props_lock);
2861 spa_config_exit(spa, SCL_CONFIG, FTAG);
2862 }
2863
2864 /* ARGSUSED */
2865 void
2866 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id)
2867 {
2868 spa_t *spa;
2869 uint64_t initial_version = SPA_VERSION_INITIAL;
2870 uint64_t version, newversion;
2871 nvlist_t *nvroot, *props;
2872 char *name;
2873
2874 if (ztest_opts.zo_mmp_test)
2875 return;
2876
2877 mutex_enter(&ztest_vdev_lock);
2878 name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool);
2879
2880 /*
2881 * Clean up from previous runs.
2882 */
2883 (void) spa_destroy(name);
2884
2885 nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0,
2886 NULL, ztest_opts.zo_raidz, ztest_opts.zo_mirrors, 1);
2887
2888 /*
2889 * If we're configuring a RAIDZ device then make sure that the
2890 * the initial version is capable of supporting that feature.
2891 */
2892 switch (ztest_opts.zo_raidz_parity) {
2893 case 0:
2894 case 1:
2895 initial_version = SPA_VERSION_INITIAL;
2896 break;
2897 case 2:
2898 initial_version = SPA_VERSION_RAIDZ2;
2899 break;
2900 case 3:
2901 initial_version = SPA_VERSION_RAIDZ3;
2902 break;
2903 }
2904
2905 /*
2906 * Create a pool with a spa version that can be upgraded. Pick
2907 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
2908 */
2909 do {
2910 version = ztest_random_spa_version(initial_version);
2911 } while (version > SPA_VERSION_BEFORE_FEATURES);
2912
2913 props = fnvlist_alloc();
2914 fnvlist_add_uint64(props,
2915 zpool_prop_to_name(ZPOOL_PROP_VERSION), version);
2916 VERIFY3S(spa_create(name, nvroot, props, NULL, NULL), ==, 0);
2917 fnvlist_free(nvroot);
2918 fnvlist_free(props);
2919
2920 VERIFY3S(spa_open(name, &spa, FTAG), ==, 0);
2921 VERIFY3U(spa_version(spa), ==, version);
2922 newversion = ztest_random_spa_version(version + 1);
2923
2924 if (ztest_opts.zo_verbose >= 4) {
2925 (void) printf("upgrading spa version from %llu to %llu\n",
2926 (u_longlong_t)version, (u_longlong_t)newversion);
2927 }
2928
2929 spa_upgrade(spa, newversion);
2930 VERIFY3U(spa_version(spa), >, version);
2931 VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config,
2932 zpool_prop_to_name(ZPOOL_PROP_VERSION)));
2933 spa_close(spa, FTAG);
2934
2935 strfree(name);
2936 mutex_exit(&ztest_vdev_lock);
2937 }
2938
2939 static void
2940 ztest_spa_checkpoint(spa_t *spa)
2941 {
2942 ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
2943
2944 int error = spa_checkpoint(spa->spa_name);
2945
2946 switch (error) {
2947 case 0:
2948 case ZFS_ERR_DEVRM_IN_PROGRESS:
2949 case ZFS_ERR_DISCARDING_CHECKPOINT:
2950 case ZFS_ERR_CHECKPOINT_EXISTS:
2951 break;
2952 case ENOSPC:
2953 ztest_record_enospc(FTAG);
2954 break;
2955 default:
2956 fatal(0, "spa_checkpoint(%s) = %d", spa->spa_name, error);
2957 }
2958 }
2959
2960 static void
2961 ztest_spa_discard_checkpoint(spa_t *spa)
2962 {
2963 ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
2964
2965 int error = spa_checkpoint_discard(spa->spa_name);
2966
2967 switch (error) {
2968 case 0:
2969 case ZFS_ERR_DISCARDING_CHECKPOINT:
2970 case ZFS_ERR_NO_CHECKPOINT:
2971 break;
2972 default:
2973 fatal(0, "spa_discard_checkpoint(%s) = %d",
2974 spa->spa_name, error);
2975 }
2976
2977 }
2978
2979 /* ARGSUSED */
2980 void
2981 ztest_spa_checkpoint_create_discard(ztest_ds_t *zd, uint64_t id)
2982 {
2983 spa_t *spa = ztest_spa;
2984
2985 mutex_enter(&ztest_checkpoint_lock);
2986 if (ztest_random(2) == 0) {
2987 ztest_spa_checkpoint(spa);
2988 } else {
2989 ztest_spa_discard_checkpoint(spa);
2990 }
2991 mutex_exit(&ztest_checkpoint_lock);
2992 }
2993
2994
2995 static vdev_t *
2996 vdev_lookup_by_path(vdev_t *vd, const char *path)
2997 {
2998 vdev_t *mvd;
2999 int c;
3000
3001 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
3002 return (vd);
3003
3004 for (c = 0; c < vd->vdev_children; c++)
3005 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
3006 NULL)
3007 return (mvd);
3008
3009 return (NULL);
3010 }
3011
3012 /*
3013 * Find the first available hole which can be used as a top-level.
3014 */
3015 int
3016 find_vdev_hole(spa_t *spa)
3017 {
3018 vdev_t *rvd = spa->spa_root_vdev;
3019 int c;
3020
3021 ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV);
3022
3023 for (c = 0; c < rvd->vdev_children; c++) {
3024 vdev_t *cvd = rvd->vdev_child[c];
3025
3026 if (cvd->vdev_ishole)
3027 break;
3028 }
3029 return (c);
3030 }
3031
3032 /*
3033 * Verify that vdev_add() works as expected.
3034 */
3035 /* ARGSUSED */
3036 void
3037 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
3038 {
3039 ztest_shared_t *zs = ztest_shared;
3040 spa_t *spa = ztest_spa;
3041 uint64_t leaves;
3042 uint64_t guid;
3043 nvlist_t *nvroot;
3044 int error;
3045
3046 if (ztest_opts.zo_mmp_test)
3047 return;
3048
3049 mutex_enter(&ztest_vdev_lock);
3050 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz;
3051
3052 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3053
3054 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves;
3055
3056 /*
3057 * If we have slogs then remove them 1/4 of the time.
3058 */
3059 if (spa_has_slogs(spa) && ztest_random(4) == 0) {
3060 metaslab_group_t *mg;
3061
3062 /*
3063 * find the first real slog in log allocation class
3064 */
3065 mg = spa_log_class(spa)->mc_rotor;
3066 while (!mg->mg_vd->vdev_islog)
3067 mg = mg->mg_next;
3068
3069 guid = mg->mg_vd->vdev_guid;
3070
3071 spa_config_exit(spa, SCL_VDEV, FTAG);
3072
3073 /*
3074 * We have to grab the zs_name_lock as writer to
3075 * prevent a race between removing a slog (dmu_objset_find)
3076 * and destroying a dataset. Removing the slog will
3077 * grab a reference on the dataset which may cause
3078 * dsl_destroy_head() to fail with EBUSY thus
3079 * leaving the dataset in an inconsistent state.
3080 */
3081 pthread_rwlock_wrlock(&ztest_name_lock);
3082 error = spa_vdev_remove(spa, guid, B_FALSE);
3083 pthread_rwlock_unlock(&ztest_name_lock);
3084
3085 switch (error) {
3086 case 0:
3087 case EEXIST: /* Generic zil_reset() error */
3088 case EBUSY: /* Replay required */
3089 case EACCES: /* Crypto key not loaded */
3090 case ZFS_ERR_CHECKPOINT_EXISTS:
3091 case ZFS_ERR_DISCARDING_CHECKPOINT:
3092 break;
3093 default:
3094 fatal(0, "spa_vdev_remove() = %d", error);
3095 }
3096 } else {
3097 spa_config_exit(spa, SCL_VDEV, FTAG);
3098
3099 /*
3100 * Make 1/4 of the devices be log devices
3101 */
3102 nvroot = make_vdev_root(NULL, NULL, NULL,
3103 ztest_opts.zo_vdev_size, 0, (ztest_random(4) == 0) ?
3104 "log" : NULL, ztest_opts.zo_raidz, zs->zs_mirrors, 1);
3105
3106 error = spa_vdev_add(spa, nvroot);
3107 nvlist_free(nvroot);
3108
3109 switch (error) {
3110 case 0:
3111 break;
3112 case ENOSPC:
3113 ztest_record_enospc("spa_vdev_add");
3114 break;
3115 default:
3116 fatal(0, "spa_vdev_add() = %d", error);
3117 }
3118 }
3119
3120 mutex_exit(&ztest_vdev_lock);
3121 }
3122
3123 /* ARGSUSED */
3124 void
3125 ztest_vdev_class_add(ztest_ds_t *zd, uint64_t id)
3126 {
3127 ztest_shared_t *zs = ztest_shared;
3128 spa_t *spa = ztest_spa;
3129 uint64_t leaves;
3130 nvlist_t *nvroot;
3131 const char *class = (ztest_random(2) == 0) ?
3132 VDEV_ALLOC_BIAS_SPECIAL : VDEV_ALLOC_BIAS_DEDUP;
3133 int error;
3134
3135 /*
3136 * By default add a special vdev 50% of the time
3137 */
3138 if ((ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_OFF) ||
3139 (ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_RND &&
3140 ztest_random(2) == 0)) {
3141 return;
3142 }
3143
3144 mutex_enter(&ztest_vdev_lock);
3145
3146 /* Only test with mirrors */
3147 if (zs->zs_mirrors < 2) {
3148 mutex_exit(&ztest_vdev_lock);
3149 return;
3150 }
3151
3152 /* requires feature@allocation_classes */
3153 if (!spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)) {
3154 mutex_exit(&ztest_vdev_lock);
3155 return;
3156 }
3157
3158 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz;
3159
3160 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3161 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves;
3162 spa_config_exit(spa, SCL_VDEV, FTAG);
3163
3164 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
3165 class, ztest_opts.zo_raidz, zs->zs_mirrors, 1);
3166
3167 error = spa_vdev_add(spa, nvroot);
3168 nvlist_free(nvroot);
3169
3170 if (error == ENOSPC)
3171 ztest_record_enospc("spa_vdev_add");
3172 else if (error != 0)
3173 fatal(0, "spa_vdev_add() = %d", error);
3174
3175 /*
3176 * 50% of the time allow small blocks in the special class
3177 */
3178 if (error == 0 &&
3179 spa_special_class(spa)->mc_groups == 1 && ztest_random(2) == 0) {
3180 if (ztest_opts.zo_verbose >= 3)
3181 (void) printf("Enabling special VDEV small blocks\n");
3182 (void) ztest_dsl_prop_set_uint64(zd->zd_name,
3183 ZFS_PROP_SPECIAL_SMALL_BLOCKS, 32768, B_FALSE);
3184 }
3185
3186 mutex_exit(&ztest_vdev_lock);
3187
3188 if (ztest_opts.zo_verbose >= 3) {
3189 metaslab_class_t *mc;
3190
3191 if (strcmp(class, VDEV_ALLOC_BIAS_SPECIAL) == 0)
3192 mc = spa_special_class(spa);
3193 else
3194 mc = spa_dedup_class(spa);
3195 (void) printf("Added a %s mirrored vdev (of %d)\n",
3196 class, (int)mc->mc_groups);
3197 }
3198 }
3199
3200 /*
3201 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
3202 */
3203 /* ARGSUSED */
3204 void
3205 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
3206 {
3207 ztest_shared_t *zs = ztest_shared;
3208 spa_t *spa = ztest_spa;
3209 vdev_t *rvd = spa->spa_root_vdev;
3210 spa_aux_vdev_t *sav;
3211 char *aux;
3212 char *path;
3213 uint64_t guid = 0;
3214 int error;
3215
3216 if (ztest_opts.zo_mmp_test)
3217 return;
3218
3219 path = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3220
3221 if (ztest_random(2) == 0) {
3222 sav = &spa->spa_spares;
3223 aux = ZPOOL_CONFIG_SPARES;
3224 } else {
3225 sav = &spa->spa_l2cache;
3226 aux = ZPOOL_CONFIG_L2CACHE;
3227 }
3228
3229 mutex_enter(&ztest_vdev_lock);
3230
3231 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3232
3233 if (sav->sav_count != 0 && ztest_random(4) == 0) {
3234 /*
3235 * Pick a random device to remove.
3236 */
3237 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid;
3238 } else {
3239 /*
3240 * Find an unused device we can add.
3241 */
3242 zs->zs_vdev_aux = 0;
3243 for (;;) {
3244 int c;
3245 (void) snprintf(path, MAXPATHLEN, ztest_aux_template,
3246 ztest_opts.zo_dir, ztest_opts.zo_pool, aux,
3247 zs->zs_vdev_aux);
3248 for (c = 0; c < sav->sav_count; c++)
3249 if (strcmp(sav->sav_vdevs[c]->vdev_path,
3250 path) == 0)
3251 break;
3252 if (c == sav->sav_count &&
3253 vdev_lookup_by_path(rvd, path) == NULL)
3254 break;
3255 zs->zs_vdev_aux++;
3256 }
3257 }
3258
3259 spa_config_exit(spa, SCL_VDEV, FTAG);
3260
3261 if (guid == 0) {
3262 /*
3263 * Add a new device.
3264 */
3265 nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL,
3266 (ztest_opts.zo_vdev_size * 5) / 4, 0, NULL, 0, 0, 1);
3267 error = spa_vdev_add(spa, nvroot);
3268
3269 switch (error) {
3270 case 0:
3271 break;
3272 default:
3273 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error);
3274 }
3275 nvlist_free(nvroot);
3276 } else {
3277 /*
3278 * Remove an existing device. Sometimes, dirty its
3279 * vdev state first to make sure we handle removal
3280 * of devices that have pending state changes.
3281 */
3282 if (ztest_random(2) == 0)
3283 (void) vdev_online(spa, guid, 0, NULL);
3284
3285 error = spa_vdev_remove(spa, guid, B_FALSE);
3286
3287 switch (error) {
3288 case 0:
3289 case EBUSY:
3290 case ZFS_ERR_CHECKPOINT_EXISTS:
3291 case ZFS_ERR_DISCARDING_CHECKPOINT:
3292 break;
3293 default:
3294 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error);
3295 }
3296 }
3297
3298 mutex_exit(&ztest_vdev_lock);
3299
3300 umem_free(path, MAXPATHLEN);
3301 }
3302
3303 /*
3304 * split a pool if it has mirror tlvdevs
3305 */
3306 /* ARGSUSED */
3307 void
3308 ztest_split_pool(ztest_ds_t *zd, uint64_t id)
3309 {
3310 ztest_shared_t *zs = ztest_shared;
3311 spa_t *spa = ztest_spa;
3312 vdev_t *rvd = spa->spa_root_vdev;
3313 nvlist_t *tree, **child, *config, *split, **schild;
3314 uint_t c, children, schildren = 0, lastlogid = 0;
3315 int error = 0;
3316
3317 if (ztest_opts.zo_mmp_test)
3318 return;
3319
3320 mutex_enter(&ztest_vdev_lock);
3321
3322 /* ensure we have a useable config; mirrors of raidz aren't supported */
3323 if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) {
3324 mutex_exit(&ztest_vdev_lock);
3325 return;
3326 }
3327
3328 /* clean up the old pool, if any */
3329 (void) spa_destroy("splitp");
3330
3331 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3332
3333 /* generate a config from the existing config */
3334 mutex_enter(&spa->spa_props_lock);
3335 VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE,
3336 &tree) == 0);
3337 mutex_exit(&spa->spa_props_lock);
3338
3339 VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child,
3340 &children) == 0);
3341
3342 schild = malloc(rvd->vdev_children * sizeof (nvlist_t *));
3343 for (c = 0; c < children; c++) {
3344 vdev_t *tvd = rvd->vdev_child[c];
3345 nvlist_t **mchild;
3346 uint_t mchildren;
3347
3348 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
3349 VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME,
3350 0) == 0);
3351 VERIFY(nvlist_add_string(schild[schildren],
3352 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0);
3353 VERIFY(nvlist_add_uint64(schild[schildren],
3354 ZPOOL_CONFIG_IS_HOLE, 1) == 0);
3355 if (lastlogid == 0)
3356 lastlogid = schildren;
3357 ++schildren;
3358 continue;
3359 }
3360 lastlogid = 0;
3361 VERIFY(nvlist_lookup_nvlist_array(child[c],
3362 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0);
3363 VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0);
3364 }
3365
3366 /* OK, create a config that can be used to split */
3367 VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0);
3368 VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE,
3369 VDEV_TYPE_ROOT) == 0);
3370 VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild,
3371 lastlogid != 0 ? lastlogid : schildren) == 0);
3372
3373 VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0);
3374 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0);
3375
3376 for (c = 0; c < schildren; c++)
3377 nvlist_free(schild[c]);
3378 free(schild);
3379 nvlist_free(split);
3380
3381 spa_config_exit(spa, SCL_VDEV, FTAG);
3382
3383 (void) pthread_rwlock_wrlock(&ztest_name_lock);
3384 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
3385 (void) pthread_rwlock_unlock(&ztest_name_lock);
3386
3387 nvlist_free(config);
3388
3389 if (error == 0) {
3390 (void) printf("successful split - results:\n");
3391 mutex_enter(&spa_namespace_lock);
3392 show_pool_stats(spa);
3393 show_pool_stats(spa_lookup("splitp"));
3394 mutex_exit(&spa_namespace_lock);
3395 ++zs->zs_splits;
3396 --zs->zs_mirrors;
3397 }
3398 mutex_exit(&ztest_vdev_lock);
3399 }
3400
3401 /*
3402 * Verify that we can attach and detach devices.
3403 */
3404 /* ARGSUSED */
3405 void
3406 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
3407 {
3408 ztest_shared_t *zs = ztest_shared;
3409 spa_t *spa = ztest_spa;
3410 spa_aux_vdev_t *sav = &spa->spa_spares;
3411 vdev_t *rvd = spa->spa_root_vdev;
3412 vdev_t *oldvd, *newvd, *pvd;
3413 nvlist_t *root;
3414 uint64_t leaves;
3415 uint64_t leaf, top;
3416 uint64_t ashift = ztest_get_ashift();
3417 uint64_t oldguid, pguid;
3418 uint64_t oldsize, newsize;
3419 char *oldpath, *newpath;
3420 int replacing;
3421 int oldvd_has_siblings = B_FALSE;
3422 int newvd_is_spare = B_FALSE;
3423 int oldvd_is_log;
3424 int error, expected_error;
3425
3426 if (ztest_opts.zo_mmp_test)
3427 return;
3428
3429 oldpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3430 newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3431
3432 mutex_enter(&ztest_vdev_lock);
3433 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
3434
3435 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3436
3437 /*
3438 * If a vdev is in the process of being removed, its removal may
3439 * finish while we are in progress, leading to an unexpected error
3440 * value. Don't bother trying to attach while we are in the middle
3441 * of removal.
3442 */
3443 if (ztest_device_removal_active) {
3444 spa_config_exit(spa, SCL_ALL, FTAG);
3445 mutex_exit(&ztest_vdev_lock);
3446 return;
3447 }
3448
3449 /*
3450 * Decide whether to do an attach or a replace.
3451 */
3452 replacing = ztest_random(2);
3453
3454 /*
3455 * Pick a random top-level vdev.
3456 */
3457 top = ztest_random_vdev_top(spa, B_TRUE);
3458
3459 /*
3460 * Pick a random leaf within it.
3461 */
3462 leaf = ztest_random(leaves);
3463
3464 /*
3465 * Locate this vdev.
3466 */
3467 oldvd = rvd->vdev_child[top];
3468
3469 /* pick a child from the mirror */
3470 if (zs->zs_mirrors >= 1) {
3471 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops);
3472 ASSERT(oldvd->vdev_children >= zs->zs_mirrors);
3473 oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz];
3474 }
3475
3476 /* pick a child out of the raidz group */
3477 if (ztest_opts.zo_raidz > 1) {
3478 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops);
3479 ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz);
3480 oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz];
3481 }
3482
3483 /*
3484 * If we're already doing an attach or replace, oldvd may be a
3485 * mirror vdev -- in which case, pick a random child.
3486 */
3487 while (oldvd->vdev_children != 0) {
3488 oldvd_has_siblings = B_TRUE;
3489 ASSERT(oldvd->vdev_children >= 2);
3490 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
3491 }
3492
3493 oldguid = oldvd->vdev_guid;
3494 oldsize = vdev_get_min_asize(oldvd);
3495 oldvd_is_log = oldvd->vdev_top->vdev_islog;
3496 (void) strcpy(oldpath, oldvd->vdev_path);
3497 pvd = oldvd->vdev_parent;
3498 pguid = pvd->vdev_guid;
3499
3500 /*
3501 * If oldvd has siblings, then half of the time, detach it.
3502 */
3503 if (oldvd_has_siblings && ztest_random(2) == 0) {
3504 spa_config_exit(spa, SCL_ALL, FTAG);
3505 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
3506 if (error != 0 && error != ENODEV && error != EBUSY &&
3507 error != ENOTSUP && error != ZFS_ERR_CHECKPOINT_EXISTS &&
3508 error != ZFS_ERR_DISCARDING_CHECKPOINT)
3509 fatal(0, "detach (%s) returned %d", oldpath, error);
3510 goto out;
3511 }
3512
3513 /*
3514 * For the new vdev, choose with equal probability between the two
3515 * standard paths (ending in either 'a' or 'b') or a random hot spare.
3516 */
3517 if (sav->sav_count != 0 && ztest_random(3) == 0) {
3518 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
3519 newvd_is_spare = B_TRUE;
3520 (void) strcpy(newpath, newvd->vdev_path);
3521 } else {
3522 (void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
3523 ztest_opts.zo_dir, ztest_opts.zo_pool,
3524 top * leaves + leaf);
3525 if (ztest_random(2) == 0)
3526 newpath[strlen(newpath) - 1] = 'b';
3527 newvd = vdev_lookup_by_path(rvd, newpath);
3528 }
3529
3530 if (newvd) {
3531 /*
3532 * Reopen to ensure the vdev's asize field isn't stale.
3533 */
3534 vdev_reopen(newvd);
3535 newsize = vdev_get_min_asize(newvd);
3536 } else {
3537 /*
3538 * Make newsize a little bigger or smaller than oldsize.
3539 * If it's smaller, the attach should fail.
3540 * If it's larger, and we're doing a replace,
3541 * we should get dynamic LUN growth when we're done.
3542 */
3543 newsize = 10 * oldsize / (9 + ztest_random(3));
3544 }
3545
3546 /*
3547 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
3548 * unless it's a replace; in that case any non-replacing parent is OK.
3549 *
3550 * If newvd is already part of the pool, it should fail with EBUSY.
3551 *
3552 * If newvd is too small, it should fail with EOVERFLOW.
3553 */
3554 if (pvd->vdev_ops != &vdev_mirror_ops &&
3555 pvd->vdev_ops != &vdev_root_ops && (!replacing ||
3556 pvd->vdev_ops == &vdev_replacing_ops ||
3557 pvd->vdev_ops == &vdev_spare_ops))
3558 expected_error = ENOTSUP;
3559 else if (newvd_is_spare && (!replacing || oldvd_is_log))
3560 expected_error = ENOTSUP;
3561 else if (newvd == oldvd)
3562 expected_error = replacing ? 0 : EBUSY;
3563 else if (vdev_lookup_by_path(rvd, newpath) != NULL)
3564 expected_error = EBUSY;
3565 else if (newsize < oldsize)
3566 expected_error = EOVERFLOW;
3567 else if (ashift > oldvd->vdev_top->vdev_ashift)
3568 expected_error = EDOM;
3569 else
3570 expected_error = 0;
3571
3572 spa_config_exit(spa, SCL_ALL, FTAG);
3573
3574 /*
3575 * Build the nvlist describing newpath.
3576 */
3577 root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0,
3578 ashift, NULL, 0, 0, 1);
3579
3580 error = spa_vdev_attach(spa, oldguid, root, replacing);
3581
3582 nvlist_free(root);
3583
3584 /*
3585 * If our parent was the replacing vdev, but the replace completed,
3586 * then instead of failing with ENOTSUP we may either succeed,
3587 * fail with ENODEV, or fail with EOVERFLOW.
3588 */
3589 if (expected_error == ENOTSUP &&
3590 (error == 0 || error == ENODEV || error == EOVERFLOW))
3591 expected_error = error;
3592
3593 /*
3594 * If someone grew the LUN, the replacement may be too small.
3595 */
3596 if (error == EOVERFLOW || error == EBUSY)
3597 expected_error = error;
3598
3599 if (error == ZFS_ERR_CHECKPOINT_EXISTS ||
3600 error == ZFS_ERR_DISCARDING_CHECKPOINT)
3601 expected_error = error;
3602
3603 /* XXX workaround 6690467 */
3604 if (error != expected_error && expected_error != EBUSY) {
3605 fatal(0, "attach (%s %llu, %s %llu, %d) "
3606 "returned %d, expected %d",
3607 oldpath, oldsize, newpath,
3608 newsize, replacing, error, expected_error);
3609 }
3610 out:
3611 mutex_exit(&ztest_vdev_lock);
3612
3613 umem_free(oldpath, MAXPATHLEN);
3614 umem_free(newpath, MAXPATHLEN);
3615 }
3616
3617 /* ARGSUSED */
3618 void
3619 ztest_device_removal(ztest_ds_t *zd, uint64_t id)
3620 {
3621 spa_t *spa = ztest_spa;
3622 vdev_t *vd;
3623 uint64_t guid;
3624 int error;
3625
3626 mutex_enter(&ztest_vdev_lock);
3627
3628 if (ztest_device_removal_active) {
3629 mutex_exit(&ztest_vdev_lock);
3630 return;
3631 }
3632
3633 /*
3634 * Remove a random top-level vdev and wait for removal to finish.
3635 */
3636 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3637 vd = vdev_lookup_top(spa, ztest_random_vdev_top(spa, B_FALSE));
3638 guid = vd->vdev_guid;
3639 spa_config_exit(spa, SCL_VDEV, FTAG);
3640
3641 error = spa_vdev_remove(spa, guid, B_FALSE);
3642 if (error == 0) {
3643 ztest_device_removal_active = B_TRUE;
3644 mutex_exit(&ztest_vdev_lock);
3645
3646 while (spa->spa_vdev_removal != NULL)
3647 txg_wait_synced(spa_get_dsl(spa), 0);
3648 } else {
3649 mutex_exit(&ztest_vdev_lock);
3650 return;
3651 }
3652
3653 /*
3654 * The pool needs to be scrubbed after completing device removal.
3655 * Failure to do so may result in checksum errors due to the
3656 * strategy employed by ztest_fault_inject() when selecting which
3657 * offset are redundant and can be damaged.
3658 */
3659 error = spa_scan(spa, POOL_SCAN_SCRUB);
3660 if (error == 0) {
3661 while (dsl_scan_scrubbing(spa_get_dsl(spa)))
3662 txg_wait_synced(spa_get_dsl(spa), 0);
3663 }
3664
3665 mutex_enter(&ztest_vdev_lock);
3666 ztest_device_removal_active = B_FALSE;
3667 mutex_exit(&ztest_vdev_lock);
3668 }
3669
3670 /*
3671 * Callback function which expands the physical size of the vdev.
3672 */
3673 vdev_t *
3674 grow_vdev(vdev_t *vd, void *arg)
3675 {
3676 ASSERTV(spa_t *spa = vd->vdev_spa);
3677 size_t *newsize = arg;
3678 size_t fsize;
3679 int fd;
3680
3681 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
3682 ASSERT(vd->vdev_ops->vdev_op_leaf);
3683
3684 if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
3685 return (vd);
3686
3687 fsize = lseek(fd, 0, SEEK_END);
3688 VERIFY(ftruncate(fd, *newsize) == 0);
3689
3690 if (ztest_opts.zo_verbose >= 6) {
3691 (void) printf("%s grew from %lu to %lu bytes\n",
3692 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
3693 }
3694 (void) close(fd);
3695 return (NULL);
3696 }
3697
3698 /*
3699 * Callback function which expands a given vdev by calling vdev_online().
3700 */
3701 /* ARGSUSED */
3702 vdev_t *
3703 online_vdev(vdev_t *vd, void *arg)
3704 {
3705 spa_t *spa = vd->vdev_spa;
3706 vdev_t *tvd = vd->vdev_top;
3707 uint64_t guid = vd->vdev_guid;
3708 uint64_t generation = spa->spa_config_generation + 1;
3709 vdev_state_t newstate = VDEV_STATE_UNKNOWN;
3710 int error;
3711
3712 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
3713 ASSERT(vd->vdev_ops->vdev_op_leaf);
3714
3715 /* Calling vdev_online will initialize the new metaslabs */
3716 spa_config_exit(spa, SCL_STATE, spa);
3717 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
3718 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3719
3720 /*
3721 * If vdev_online returned an error or the underlying vdev_open
3722 * failed then we abort the expand. The only way to know that
3723 * vdev_open fails is by checking the returned newstate.
3724 */
3725 if (error || newstate != VDEV_STATE_HEALTHY) {
3726 if (ztest_opts.zo_verbose >= 5) {
3727 (void) printf("Unable to expand vdev, state %llu, "
3728 "error %d\n", (u_longlong_t)newstate, error);
3729 }
3730 return (vd);
3731 }
3732 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
3733
3734 /*
3735 * Since we dropped the lock we need to ensure that we're
3736 * still talking to the original vdev. It's possible this
3737 * vdev may have been detached/replaced while we were
3738 * trying to online it.
3739 */
3740 if (generation != spa->spa_config_generation) {
3741 if (ztest_opts.zo_verbose >= 5) {
3742 (void) printf("vdev configuration has changed, "
3743 "guid %llu, state %llu, expected gen %llu, "
3744 "got gen %llu\n",
3745 (u_longlong_t)guid,
3746 (u_longlong_t)tvd->vdev_state,
3747 (u_longlong_t)generation,
3748 (u_longlong_t)spa->spa_config_generation);
3749 }
3750 return (vd);
3751 }
3752 return (NULL);
3753 }
3754
3755 /*
3756 * Traverse the vdev tree calling the supplied function.
3757 * We continue to walk the tree until we either have walked all
3758 * children or we receive a non-NULL return from the callback.
3759 * If a NULL callback is passed, then we just return back the first
3760 * leaf vdev we encounter.
3761 */
3762 vdev_t *
3763 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
3764 {
3765 uint_t c;
3766
3767 if (vd->vdev_ops->vdev_op_leaf) {
3768 if (func == NULL)
3769 return (vd);
3770 else
3771 return (func(vd, arg));
3772 }
3773
3774 for (c = 0; c < vd->vdev_children; c++) {
3775 vdev_t *cvd = vd->vdev_child[c];
3776 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
3777 return (cvd);
3778 }
3779 return (NULL);
3780 }
3781
3782 /*
3783 * Verify that dynamic LUN growth works as expected.
3784 */
3785 /* ARGSUSED */
3786 void
3787 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
3788 {
3789 spa_t *spa = ztest_spa;
3790 vdev_t *vd, *tvd;
3791 metaslab_class_t *mc;
3792 metaslab_group_t *mg;
3793 size_t psize, newsize;
3794 uint64_t top;
3795 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
3796
3797 mutex_enter(&ztest_checkpoint_lock);
3798 mutex_enter(&ztest_vdev_lock);
3799 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3800
3801 /*
3802 * If there is a vdev removal in progress, it could complete while
3803 * we are running, in which case we would not be able to verify
3804 * that the metaslab_class space increased (because it decreases
3805 * when the device removal completes).
3806 */
3807 if (ztest_device_removal_active) {
3808 spa_config_exit(spa, SCL_STATE, spa);
3809 mutex_exit(&ztest_vdev_lock);
3810 mutex_exit(&ztest_checkpoint_lock);
3811 return;
3812 }
3813
3814 top = ztest_random_vdev_top(spa, B_TRUE);
3815
3816 tvd = spa->spa_root_vdev->vdev_child[top];
3817 mg = tvd->vdev_mg;
3818 mc = mg->mg_class;
3819 old_ms_count = tvd->vdev_ms_count;
3820 old_class_space = metaslab_class_get_space(mc);
3821
3822 /*
3823 * Determine the size of the first leaf vdev associated with
3824 * our top-level device.
3825 */
3826 vd = vdev_walk_tree(tvd, NULL, NULL);
3827 ASSERT3P(vd, !=, NULL);
3828 ASSERT(vd->vdev_ops->vdev_op_leaf);
3829
3830 psize = vd->vdev_psize;
3831
3832 /*
3833 * We only try to expand the vdev if it's healthy, less than 4x its
3834 * original size, and it has a valid psize.
3835 */
3836 if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
3837 psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) {
3838 spa_config_exit(spa, SCL_STATE, spa);
3839 mutex_exit(&ztest_vdev_lock);
3840 mutex_exit(&ztest_checkpoint_lock);
3841 return;
3842 }
3843 ASSERT(psize > 0);
3844 newsize = psize + MAX(psize / 8, SPA_MAXBLOCKSIZE);
3845 ASSERT3U(newsize, >, psize);
3846
3847 if (ztest_opts.zo_verbose >= 6) {
3848 (void) printf("Expanding LUN %s from %lu to %lu\n",
3849 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
3850 }
3851
3852 /*
3853 * Growing the vdev is a two step process:
3854 * 1). expand the physical size (i.e. relabel)
3855 * 2). online the vdev to create the new metaslabs
3856 */
3857 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
3858 vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
3859 tvd->vdev_state != VDEV_STATE_HEALTHY) {
3860 if (ztest_opts.zo_verbose >= 5) {
3861 (void) printf("Could not expand LUN because "
3862 "the vdev configuration changed.\n");
3863 }
3864 spa_config_exit(spa, SCL_STATE, spa);
3865 mutex_exit(&ztest_vdev_lock);
3866 mutex_exit(&ztest_checkpoint_lock);
3867 return;
3868 }
3869
3870 spa_config_exit(spa, SCL_STATE, spa);
3871
3872 /*
3873 * Expanding the LUN will update the config asynchronously,
3874 * thus we must wait for the async thread to complete any
3875 * pending tasks before proceeding.
3876 */
3877 for (;;) {
3878 boolean_t done;
3879 mutex_enter(&spa->spa_async_lock);
3880 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
3881 mutex_exit(&spa->spa_async_lock);
3882 if (done)
3883 break;
3884 txg_wait_synced(spa_get_dsl(spa), 0);
3885 (void) poll(NULL, 0, 100);
3886 }
3887
3888 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3889
3890 tvd = spa->spa_root_vdev->vdev_child[top];
3891 new_ms_count = tvd->vdev_ms_count;
3892 new_class_space = metaslab_class_get_space(mc);
3893
3894 if (tvd->vdev_mg != mg || mg->mg_class != mc) {
3895 if (ztest_opts.zo_verbose >= 5) {
3896 (void) printf("Could not verify LUN expansion due to "
3897 "intervening vdev offline or remove.\n");
3898 }
3899 spa_config_exit(spa, SCL_STATE, spa);
3900 mutex_exit(&ztest_vdev_lock);
3901 mutex_exit(&ztest_checkpoint_lock);
3902 return;
3903 }
3904
3905 /*
3906 * Make sure we were able to grow the vdev.
3907 */
3908 if (new_ms_count <= old_ms_count) {
3909 fatal(0, "LUN expansion failed: ms_count %llu < %llu\n",
3910 old_ms_count, new_ms_count);
3911 }
3912
3913 /*
3914 * Make sure we were able to grow the pool.
3915 */
3916 if (new_class_space <= old_class_space) {
3917 fatal(0, "LUN expansion failed: class_space %llu < %llu\n",
3918 old_class_space, new_class_space);
3919 }
3920
3921 if (ztest_opts.zo_verbose >= 5) {
3922 char oldnumbuf[NN_NUMBUF_SZ], newnumbuf[NN_NUMBUF_SZ];
3923
3924 nicenum(old_class_space, oldnumbuf, sizeof (oldnumbuf));
3925 nicenum(new_class_space, newnumbuf, sizeof (newnumbuf));
3926 (void) printf("%s grew from %s to %s\n",
3927 spa->spa_name, oldnumbuf, newnumbuf);
3928 }
3929
3930 spa_config_exit(spa, SCL_STATE, spa);
3931 mutex_exit(&ztest_vdev_lock);
3932 mutex_exit(&ztest_checkpoint_lock);
3933 }
3934
3935 /*
3936 * Verify that dmu_objset_{create,destroy,open,close} work as expected.
3937 */
3938 /* ARGSUSED */
3939 static void
3940 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
3941 {
3942 /*
3943 * Create the objects common to all ztest datasets.
3944 */
3945 VERIFY(zap_create_claim(os, ZTEST_DIROBJ,
3946 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0);
3947 }
3948
3949 static int
3950 ztest_dataset_create(char *dsname)
3951 {
3952 int err;
3953 uint64_t rand;
3954 dsl_crypto_params_t *dcp = NULL;
3955
3956 /*
3957 * 50% of the time, we create encrypted datasets
3958 * using a random cipher suite and a hard-coded
3959 * wrapping key.
3960 */
3961 rand = ztest_random(2);
3962 if (rand != 0) {
3963 nvlist_t *crypto_args = fnvlist_alloc();
3964 nvlist_t *props = fnvlist_alloc();
3965
3966 /* slight bias towards the default cipher suite */
3967 rand = ztest_random(ZIO_CRYPT_FUNCTIONS);
3968 if (rand < ZIO_CRYPT_AES_128_CCM)
3969 rand = ZIO_CRYPT_ON;
3970
3971 fnvlist_add_uint64(props,
3972 zfs_prop_to_name(ZFS_PROP_ENCRYPTION), rand);
3973 fnvlist_add_uint8_array(crypto_args, "wkeydata",
3974 (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
3975
3976 /*
3977 * These parameters aren't really used by the kernel. They
3978 * are simply stored so that userspace knows how to load
3979 * the wrapping key.
3980 */
3981 fnvlist_add_uint64(props,
3982 zfs_prop_to_name(ZFS_PROP_KEYFORMAT), ZFS_KEYFORMAT_RAW);
3983 fnvlist_add_string(props,
3984 zfs_prop_to_name(ZFS_PROP_KEYLOCATION), "prompt");
3985 fnvlist_add_uint64(props,
3986 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 0ULL);
3987 fnvlist_add_uint64(props,
3988 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 0ULL);
3989
3990 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, props,
3991 crypto_args, &dcp));
3992
3993 /*
3994 * Cycle through all available encryption implementations
3995 * to verify interoperability.
3996 */
3997 VERIFY0(gcm_impl_set("cycle"));
3998 VERIFY0(aes_impl_set("cycle"));
3999
4000 fnvlist_free(crypto_args);
4001 fnvlist_free(props);
4002 }
4003
4004 err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, dcp,
4005 ztest_objset_create_cb, NULL);
4006 dsl_crypto_params_free(dcp, !!err);
4007
4008 rand = ztest_random(100);
4009 if (err || rand < 80)
4010 return (err);
4011
4012 if (ztest_opts.zo_verbose >= 5)
4013 (void) printf("Setting dataset %s to sync always\n", dsname);
4014 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
4015 ZFS_SYNC_ALWAYS, B_FALSE));
4016 }
4017
4018 /* ARGSUSED */
4019 static int
4020 ztest_objset_destroy_cb(const char *name, void *arg)
4021 {
4022 objset_t *os;
4023 dmu_object_info_t doi;
4024 int error;
4025
4026 /*
4027 * Verify that the dataset contains a directory object.
4028 */
4029 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
4030 B_TRUE, FTAG, &os));
4031 error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
4032 if (error != ENOENT) {
4033 /* We could have crashed in the middle of destroying it */
4034 ASSERT0(error);
4035 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
4036 ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
4037 }
4038 dmu_objset_disown(os, B_TRUE, FTAG);
4039
4040 /*
4041 * Destroy the dataset.
4042 */
4043 if (strchr(name, '@') != NULL) {
4044 VERIFY0(dsl_destroy_snapshot(name, B_TRUE));
4045 } else {
4046 error = dsl_destroy_head(name);
4047 /* There could be a hold on this dataset */
4048 if (error != EBUSY)
4049 ASSERT0(error);
4050 }
4051 return (0);
4052 }
4053
4054 static boolean_t
4055 ztest_snapshot_create(char *osname, uint64_t id)
4056 {
4057 char snapname[ZFS_MAX_DATASET_NAME_LEN];
4058 int error;
4059
4060 (void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id);
4061
4062 error = dmu_objset_snapshot_one(osname, snapname);
4063 if (error == ENOSPC) {
4064 ztest_record_enospc(FTAG);
4065 return (B_FALSE);
4066 }
4067 if (error != 0 && error != EEXIST) {
4068 fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname,
4069 snapname, error);
4070 }
4071 return (B_TRUE);
4072 }
4073
4074 static boolean_t
4075 ztest_snapshot_destroy(char *osname, uint64_t id)
4076 {
4077 char snapname[ZFS_MAX_DATASET_NAME_LEN];
4078 int error;
4079
4080 (void) snprintf(snapname, sizeof (snapname), "%s@%llu", osname,
4081 (u_longlong_t)id);
4082
4083 error = dsl_destroy_snapshot(snapname, B_FALSE);
4084 if (error != 0 && error != ENOENT)
4085 fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error);
4086 return (B_TRUE);
4087 }
4088
4089 /* ARGSUSED */
4090 void
4091 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
4092 {
4093 ztest_ds_t *zdtmp;
4094 int iters;
4095 int error;
4096 objset_t *os, *os2;
4097 char name[ZFS_MAX_DATASET_NAME_LEN];
4098 zilog_t *zilog;
4099 int i;
4100
4101 zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
4102
4103 (void) pthread_rwlock_rdlock(&ztest_name_lock);
4104
4105 (void) snprintf(name, sizeof (name), "%s/temp_%llu",
4106 ztest_opts.zo_pool, (u_longlong_t)id);
4107
4108 /*
4109 * If this dataset exists from a previous run, process its replay log
4110 * half of the time. If we don't replay it, then dsl_destroy_head()
4111 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
4112 */
4113 if (ztest_random(2) == 0 &&
4114 ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
4115 B_TRUE, FTAG, &os) == 0) {
4116 ztest_zd_init(zdtmp, NULL, os);
4117 zil_replay(os, zdtmp, ztest_replay_vector);
4118 ztest_zd_fini(zdtmp);
4119 txg_wait_synced(dmu_objset_pool(os), 0);
4120 dmu_objset_disown(os, B_TRUE, FTAG);
4121 }
4122
4123 /*
4124 * There may be an old instance of the dataset we're about to
4125 * create lying around from a previous run. If so, destroy it
4126 * and all of its snapshots.
4127 */
4128 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
4129 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
4130
4131 /*
4132 * Verify that the destroyed dataset is no longer in the namespace.
4133 */
4134 VERIFY3U(ENOENT, ==, ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
4135 B_TRUE, FTAG, &os));
4136
4137 /*
4138 * Verify that we can create a new dataset.
4139 */
4140 error = ztest_dataset_create(name);
4141 if (error) {
4142 if (error == ENOSPC) {
4143 ztest_record_enospc(FTAG);
4144 goto out;
4145 }
4146 fatal(0, "dmu_objset_create(%s) = %d", name, error);
4147 }
4148
4149 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, B_TRUE,
4150 FTAG, &os));
4151
4152 ztest_zd_init(zdtmp, NULL, os);
4153
4154 /*
4155 * Open the intent log for it.
4156 */
4157 zilog = zil_open(os, ztest_get_data);
4158
4159 /*
4160 * Put some objects in there, do a little I/O to them,
4161 * and randomly take a couple of snapshots along the way.
4162 */
4163 iters = ztest_random(5);
4164 for (i = 0; i < iters; i++) {
4165 ztest_dmu_object_alloc_free(zdtmp, id);
4166 if (ztest_random(iters) == 0)
4167 (void) ztest_snapshot_create(name, i);
4168 }
4169
4170 /*
4171 * Verify that we cannot create an existing dataset.
4172 */
4173 VERIFY3U(EEXIST, ==,
4174 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL, NULL));
4175
4176 /*
4177 * Verify that we can hold an objset that is also owned.
4178 */
4179 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2));
4180 dmu_objset_rele(os2, FTAG);
4181
4182 /*
4183 * Verify that we cannot own an objset that is already owned.
4184 */
4185 VERIFY3U(EBUSY, ==, ztest_dmu_objset_own(name, DMU_OST_OTHER,
4186 B_FALSE, B_TRUE, FTAG, &os2));
4187
4188 zil_close(zilog);
4189 txg_wait_synced(spa_get_dsl(os->os_spa), 0);
4190 dmu_objset_disown(os, B_TRUE, FTAG);
4191 ztest_zd_fini(zdtmp);
4192 out:
4193 (void) pthread_rwlock_unlock(&ztest_name_lock);
4194
4195 umem_free(zdtmp, sizeof (ztest_ds_t));
4196 }
4197
4198 /*
4199 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
4200 */
4201 void
4202 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
4203 {
4204 (void) pthread_rwlock_rdlock(&ztest_name_lock);
4205 (void) ztest_snapshot_destroy(zd->zd_name, id);
4206 (void) ztest_snapshot_create(zd->zd_name, id);
4207 (void) pthread_rwlock_unlock(&ztest_name_lock);
4208 }
4209
4210 /*
4211 * Cleanup non-standard snapshots and clones.
4212 */
4213 void
4214 ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
4215 {
4216 char *snap1name;
4217 char *clone1name;
4218 char *snap2name;
4219 char *clone2name;
4220 char *snap3name;
4221 int error;
4222
4223 snap1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4224 clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4225 snap2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4226 clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4227 snap3name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4228
4229 (void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN,
4230 "%s@s1_%llu", osname, (u_longlong_t)id);
4231 (void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN,
4232 "%s/c1_%llu", osname, (u_longlong_t)id);
4233 (void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN,
4234 "%s@s2_%llu", clone1name, (u_longlong_t)id);
4235 (void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN,
4236 "%s/c2_%llu", osname, (u_longlong_t)id);
4237 (void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN,
4238 "%s@s3_%llu", clone1name, (u_longlong_t)id);
4239
4240 error = dsl_destroy_head(clone2name);
4241 if (error && error != ENOENT)
4242 fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error);
4243 error = dsl_destroy_snapshot(snap3name, B_FALSE);
4244 if (error && error != ENOENT)
4245 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error);
4246 error = dsl_destroy_snapshot(snap2name, B_FALSE);
4247 if (error && error != ENOENT)
4248 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error);
4249 error = dsl_destroy_head(clone1name);
4250 if (error && error != ENOENT)
4251 fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error);
4252 error = dsl_destroy_snapshot(snap1name, B_FALSE);
4253 if (error && error != ENOENT)
4254 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error);
4255
4256 umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
4257 umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
4258 umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
4259 umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
4260 umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
4261 }
4262
4263 /*
4264 * Verify dsl_dataset_promote handles EBUSY
4265 */
4266 void
4267 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
4268 {
4269 objset_t *os;
4270 char *snap1name;
4271 char *clone1name;
4272 char *snap2name;
4273 char *clone2name;
4274 char *snap3name;
4275 char *osname = zd->zd_name;
4276 int error;
4277
4278 snap1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4279 clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4280 snap2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4281 clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4282 snap3name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4283
4284 (void) pthread_rwlock_rdlock(&ztest_name_lock);
4285
4286 ztest_dsl_dataset_cleanup(osname, id);
4287
4288 (void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN,
4289 "%s@s1_%llu", osname, (u_longlong_t)id);
4290 (void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN,
4291 "%s/c1_%llu", osname, (u_longlong_t)id);
4292 (void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN,
4293 "%s@s2_%llu", clone1name, (u_longlong_t)id);
4294 (void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN,
4295 "%s/c2_%llu", osname, (u_longlong_t)id);
4296 (void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN,
4297 "%s@s3_%llu", clone1name, (u_longlong_t)id);
4298
4299 error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1);
4300 if (error && error != EEXIST) {
4301 if (error == ENOSPC) {
4302 ztest_record_enospc(FTAG);
4303 goto out;
4304 }
4305 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error);
4306 }
4307
4308 error = dmu_objset_clone(clone1name, snap1name);
4309 if (error) {
4310 if (error == ENOSPC) {
4311 ztest_record_enospc(FTAG);
4312 goto out;
4313 }
4314 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error);
4315 }
4316
4317 error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1);
4318 if (error && error != EEXIST) {
4319 if (error == ENOSPC) {
4320 ztest_record_enospc(FTAG);
4321 goto out;
4322 }
4323 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error);
4324 }
4325
4326 error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1);
4327 if (error && error != EEXIST) {
4328 if (error == ENOSPC) {
4329 ztest_record_enospc(FTAG);
4330 goto out;
4331 }
4332 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error);
4333 }
4334
4335 error = dmu_objset_clone(clone2name, snap3name);
4336 if (error) {
4337 if (error == ENOSPC) {
4338 ztest_record_enospc(FTAG);
4339 goto out;
4340 }
4341 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error);
4342 }
4343
4344 error = ztest_dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, B_TRUE,
4345 FTAG, &os);
4346 if (error)
4347 fatal(0, "dmu_objset_own(%s) = %d", snap2name, error);
4348 error = dsl_dataset_promote(clone2name, NULL);
4349 if (error == ENOSPC) {
4350 dmu_objset_disown(os, B_TRUE, FTAG);
4351 ztest_record_enospc(FTAG);
4352 goto out;
4353 }
4354 if (error != EBUSY)
4355 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name,
4356 error);
4357 dmu_objset_disown(os, B_TRUE, FTAG);
4358
4359 out:
4360 ztest_dsl_dataset_cleanup(osname, id);
4361
4362 (void) pthread_rwlock_unlock(&ztest_name_lock);
4363
4364 umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
4365 umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
4366 umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
4367 umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
4368 umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
4369 }
4370
4371 #undef OD_ARRAY_SIZE
4372 #define OD_ARRAY_SIZE 4
4373
4374 /*
4375 * Verify that dmu_object_{alloc,free} work as expected.
4376 */
4377 void
4378 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
4379 {
4380 ztest_od_t *od;
4381 int batchsize;
4382 int size;
4383 int b;
4384
4385 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
4386 od = umem_alloc(size, UMEM_NOFAIL);
4387 batchsize = OD_ARRAY_SIZE;
4388
4389 for (b = 0; b < batchsize; b++)
4390 ztest_od_init(od + b, id, FTAG, b, DMU_OT_UINT64_OTHER,
4391 0, 0, 0);
4392
4393 /*
4394 * Destroy the previous batch of objects, create a new batch,
4395 * and do some I/O on the new objects.
4396 */
4397 if (ztest_object_init(zd, od, size, B_TRUE) != 0)
4398 return;
4399
4400 while (ztest_random(4 * batchsize) != 0)
4401 ztest_io(zd, od[ztest_random(batchsize)].od_object,
4402 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4403
4404 umem_free(od, size);
4405 }
4406
4407 /*
4408 * Rewind the global allocator to verify object allocation backfilling.
4409 */
4410 void
4411 ztest_dmu_object_next_chunk(ztest_ds_t *zd, uint64_t id)
4412 {
4413 objset_t *os = zd->zd_os;
4414 int dnodes_per_chunk = 1 << dmu_object_alloc_chunk_shift;
4415 uint64_t object;
4416
4417 /*
4418 * Rewind the global allocator randomly back to a lower object number
4419 * to force backfilling and reclamation of recently freed dnodes.
4420 */
4421 mutex_enter(&os->os_obj_lock);
4422 object = ztest_random(os->os_obj_next_chunk);
4423 os->os_obj_next_chunk = P2ALIGN(object, dnodes_per_chunk);
4424 mutex_exit(&os->os_obj_lock);
4425 }
4426
4427 #undef OD_ARRAY_SIZE
4428 #define OD_ARRAY_SIZE 2
4429
4430 /*
4431 * Verify that dmu_{read,write} work as expected.
4432 */
4433 void
4434 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
4435 {
4436 int size;
4437 ztest_od_t *od;
4438
4439 objset_t *os = zd->zd_os;
4440 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
4441 od = umem_alloc(size, UMEM_NOFAIL);
4442 dmu_tx_t *tx;
4443 int i, freeit, error;
4444 uint64_t n, s, txg;
4445 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
4446 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
4447 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
4448 uint64_t regions = 997;
4449 uint64_t stride = 123456789ULL;
4450 uint64_t width = 40;
4451 int free_percent = 5;
4452
4453 /*
4454 * This test uses two objects, packobj and bigobj, that are always
4455 * updated together (i.e. in the same tx) so that their contents are
4456 * in sync and can be compared. Their contents relate to each other
4457 * in a simple way: packobj is a dense array of 'bufwad' structures,
4458 * while bigobj is a sparse array of the same bufwads. Specifically,
4459 * for any index n, there are three bufwads that should be identical:
4460 *
4461 * packobj, at offset n * sizeof (bufwad_t)
4462 * bigobj, at the head of the nth chunk
4463 * bigobj, at the tail of the nth chunk
4464 *
4465 * The chunk size is arbitrary. It doesn't have to be a power of two,
4466 * and it doesn't have any relation to the object blocksize.
4467 * The only requirement is that it can hold at least two bufwads.
4468 *
4469 * Normally, we write the bufwad to each of these locations.
4470 * However, free_percent of the time we instead write zeroes to
4471 * packobj and perform a dmu_free_range() on bigobj. By comparing
4472 * bigobj to packobj, we can verify that the DMU is correctly
4473 * tracking which parts of an object are allocated and free,
4474 * and that the contents of the allocated blocks are correct.
4475 */
4476
4477 /*
4478 * Read the directory info. If it's the first time, set things up.
4479 */
4480 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, chunksize);
4481 ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
4482 chunksize);
4483
4484 if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
4485 umem_free(od, size);
4486 return;
4487 }
4488
4489 bigobj = od[0].od_object;
4490 packobj = od[1].od_object;
4491 chunksize = od[0].od_gen;
4492 ASSERT(chunksize == od[1].od_gen);
4493
4494 /*
4495 * Prefetch a random chunk of the big object.
4496 * Our aim here is to get some async reads in flight
4497 * for blocks that we may free below; the DMU should
4498 * handle this race correctly.
4499 */
4500 n = ztest_random(regions) * stride + ztest_random(width);
4501 s = 1 + ztest_random(2 * width - 1);
4502 dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize,
4503 ZIO_PRIORITY_SYNC_READ);
4504
4505 /*
4506 * Pick a random index and compute the offsets into packobj and bigobj.
4507 */
4508 n = ztest_random(regions) * stride + ztest_random(width);
4509 s = 1 + ztest_random(width - 1);
4510
4511 packoff = n * sizeof (bufwad_t);
4512 packsize = s * sizeof (bufwad_t);
4513
4514 bigoff = n * chunksize;
4515 bigsize = s * chunksize;
4516
4517 packbuf = umem_alloc(packsize, UMEM_NOFAIL);
4518 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
4519
4520 /*
4521 * free_percent of the time, free a range of bigobj rather than
4522 * overwriting it.
4523 */
4524 freeit = (ztest_random(100) < free_percent);
4525
4526 /*
4527 * Read the current contents of our objects.
4528 */
4529 error = dmu_read(os, packobj, packoff, packsize, packbuf,
4530 DMU_READ_PREFETCH);
4531 ASSERT0(error);
4532 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
4533 DMU_READ_PREFETCH);
4534 ASSERT0(error);
4535
4536 /*
4537 * Get a tx for the mods to both packobj and bigobj.
4538 */
4539 tx = dmu_tx_create(os);
4540
4541 dmu_tx_hold_write(tx, packobj, packoff, packsize);
4542
4543 if (freeit)
4544 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
4545 else
4546 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
4547
4548 /* This accounts for setting the checksum/compression. */
4549 dmu_tx_hold_bonus(tx, bigobj);
4550
4551 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4552 if (txg == 0) {
4553 umem_free(packbuf, packsize);
4554 umem_free(bigbuf, bigsize);
4555 umem_free(od, size);
4556 return;
4557 }
4558
4559 enum zio_checksum cksum;
4560 do {
4561 cksum = (enum zio_checksum)
4562 ztest_random_dsl_prop(ZFS_PROP_CHECKSUM);
4563 } while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS);
4564 dmu_object_set_checksum(os, bigobj, cksum, tx);
4565
4566 enum zio_compress comp;
4567 do {
4568 comp = (enum zio_compress)
4569 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION);
4570 } while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS);
4571 dmu_object_set_compress(os, bigobj, comp, tx);
4572
4573 /*
4574 * For each index from n to n + s, verify that the existing bufwad
4575 * in packobj matches the bufwads at the head and tail of the
4576 * corresponding chunk in bigobj. Then update all three bufwads
4577 * with the new values we want to write out.
4578 */
4579 for (i = 0; i < s; i++) {
4580 /* LINTED */
4581 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
4582 /* LINTED */
4583 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
4584 /* LINTED */
4585 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
4586
4587 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
4588 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
4589
4590 if (pack->bw_txg > txg)
4591 fatal(0, "future leak: got %llx, open txg is %llx",
4592 pack->bw_txg, txg);
4593
4594 if (pack->bw_data != 0 && pack->bw_index != n + i)
4595 fatal(0, "wrong index: got %llx, wanted %llx+%llx",
4596 pack->bw_index, n, i);
4597
4598 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
4599 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
4600
4601 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
4602 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
4603
4604 if (freeit) {
4605 bzero(pack, sizeof (bufwad_t));
4606 } else {
4607 pack->bw_index = n + i;
4608 pack->bw_txg = txg;
4609 pack->bw_data = 1 + ztest_random(-2ULL);
4610 }
4611 *bigH = *pack;
4612 *bigT = *pack;
4613 }
4614
4615 /*
4616 * We've verified all the old bufwads, and made new ones.
4617 * Now write them out.
4618 */
4619 dmu_write(os, packobj, packoff, packsize, packbuf, tx);
4620
4621 if (freeit) {
4622 if (ztest_opts.zo_verbose >= 7) {
4623 (void) printf("freeing offset %llx size %llx"
4624 " txg %llx\n",
4625 (u_longlong_t)bigoff,
4626 (u_longlong_t)bigsize,
4627 (u_longlong_t)txg);
4628 }
4629 VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx));
4630 } else {
4631 if (ztest_opts.zo_verbose >= 7) {
4632 (void) printf("writing offset %llx size %llx"
4633 " txg %llx\n",
4634 (u_longlong_t)bigoff,
4635 (u_longlong_t)bigsize,
4636 (u_longlong_t)txg);
4637 }
4638 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);
4639 }
4640
4641 dmu_tx_commit(tx);
4642
4643 /*
4644 * Sanity check the stuff we just wrote.
4645 */
4646 {
4647 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
4648 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
4649
4650 VERIFY(0 == dmu_read(os, packobj, packoff,
4651 packsize, packcheck, DMU_READ_PREFETCH));
4652 VERIFY(0 == dmu_read(os, bigobj, bigoff,
4653 bigsize, bigcheck, DMU_READ_PREFETCH));
4654
4655 ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
4656 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
4657
4658 umem_free(packcheck, packsize);
4659 umem_free(bigcheck, bigsize);
4660 }
4661
4662 umem_free(packbuf, packsize);
4663 umem_free(bigbuf, bigsize);
4664 umem_free(od, size);
4665 }
4666
4667 void
4668 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
4669 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
4670 {
4671 uint64_t i;
4672 bufwad_t *pack;
4673 bufwad_t *bigH;
4674 bufwad_t *bigT;
4675
4676 /*
4677 * For each index from n to n + s, verify that the existing bufwad
4678 * in packobj matches the bufwads at the head and tail of the
4679 * corresponding chunk in bigobj. Then update all three bufwads
4680 * with the new values we want to write out.
4681 */
4682 for (i = 0; i < s; i++) {
4683 /* LINTED */
4684 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
4685 /* LINTED */
4686 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
4687 /* LINTED */
4688 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
4689
4690 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
4691 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
4692
4693 if (pack->bw_txg > txg)
4694 fatal(0, "future leak: got %llx, open txg is %llx",
4695 pack->bw_txg, txg);
4696
4697 if (pack->bw_data != 0 && pack->bw_index != n + i)
4698 fatal(0, "wrong index: got %llx, wanted %llx+%llx",
4699 pack->bw_index, n, i);
4700
4701 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
4702 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
4703
4704 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
4705 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
4706
4707 pack->bw_index = n + i;
4708 pack->bw_txg = txg;
4709 pack->bw_data = 1 + ztest_random(-2ULL);
4710
4711 *bigH = *pack;
4712 *bigT = *pack;
4713 }
4714 }
4715
4716 #undef OD_ARRAY_SIZE
4717 #define OD_ARRAY_SIZE 2
4718
4719 void
4720 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
4721 {
4722 objset_t *os = zd->zd_os;
4723 ztest_od_t *od;
4724 dmu_tx_t *tx;
4725 uint64_t i;
4726 int error;
4727 int size;
4728 uint64_t n, s, txg;
4729 bufwad_t *packbuf, *bigbuf;
4730 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
4731 uint64_t blocksize = ztest_random_blocksize();
4732 uint64_t chunksize = blocksize;
4733 uint64_t regions = 997;
4734 uint64_t stride = 123456789ULL;
4735 uint64_t width = 9;
4736 dmu_buf_t *bonus_db;
4737 arc_buf_t **bigbuf_arcbufs;
4738 dmu_object_info_t doi;
4739
4740 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
4741 od = umem_alloc(size, UMEM_NOFAIL);
4742
4743 /*
4744 * This test uses two objects, packobj and bigobj, that are always
4745 * updated together (i.e. in the same tx) so that their contents are
4746 * in sync and can be compared. Their contents relate to each other
4747 * in a simple way: packobj is a dense array of 'bufwad' structures,
4748 * while bigobj is a sparse array of the same bufwads. Specifically,
4749 * for any index n, there are three bufwads that should be identical:
4750 *
4751 * packobj, at offset n * sizeof (bufwad_t)
4752 * bigobj, at the head of the nth chunk
4753 * bigobj, at the tail of the nth chunk
4754 *
4755 * The chunk size is set equal to bigobj block size so that
4756 * dmu_assign_arcbuf_by_dbuf() can be tested for object updates.
4757 */
4758
4759 /*
4760 * Read the directory info. If it's the first time, set things up.
4761 */
4762 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
4763 ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
4764 chunksize);
4765
4766
4767 if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
4768 umem_free(od, size);
4769 return;
4770 }
4771
4772 bigobj = od[0].od_object;
4773 packobj = od[1].od_object;
4774 blocksize = od[0].od_blocksize;
4775 chunksize = blocksize;
4776 ASSERT(chunksize == od[1].od_gen);
4777
4778 VERIFY(dmu_object_info(os, bigobj, &doi) == 0);
4779 VERIFY(ISP2(doi.doi_data_block_size));
4780 VERIFY(chunksize == doi.doi_data_block_size);
4781 VERIFY(chunksize >= 2 * sizeof (bufwad_t));
4782
4783 /*
4784 * Pick a random index and compute the offsets into packobj and bigobj.
4785 */
4786 n = ztest_random(regions) * stride + ztest_random(width);
4787 s = 1 + ztest_random(width - 1);
4788
4789 packoff = n * sizeof (bufwad_t);
4790 packsize = s * sizeof (bufwad_t);
4791
4792 bigoff = n * chunksize;
4793 bigsize = s * chunksize;
4794
4795 packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
4796 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
4797
4798 VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
4799
4800 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
4801
4802 /*
4803 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
4804 * Iteration 1 test zcopy to already referenced dbufs.
4805 * Iteration 2 test zcopy to dirty dbuf in the same txg.
4806 * Iteration 3 test zcopy to dbuf dirty in previous txg.
4807 * Iteration 4 test zcopy when dbuf is no longer dirty.
4808 * Iteration 5 test zcopy when it can't be done.
4809 * Iteration 6 one more zcopy write.
4810 */
4811 for (i = 0; i < 7; i++) {
4812 uint64_t j;
4813 uint64_t off;
4814
4815 /*
4816 * In iteration 5 (i == 5) use arcbufs
4817 * that don't match bigobj blksz to test
4818 * dmu_assign_arcbuf_by_dbuf() when it can't directly
4819 * assign an arcbuf to a dbuf.
4820 */
4821 for (j = 0; j < s; j++) {
4822 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
4823 bigbuf_arcbufs[j] =
4824 dmu_request_arcbuf(bonus_db, chunksize);
4825 } else {
4826 bigbuf_arcbufs[2 * j] =
4827 dmu_request_arcbuf(bonus_db, chunksize / 2);
4828 bigbuf_arcbufs[2 * j + 1] =
4829 dmu_request_arcbuf(bonus_db, chunksize / 2);
4830 }
4831 }
4832
4833 /*
4834 * Get a tx for the mods to both packobj and bigobj.
4835 */
4836 tx = dmu_tx_create(os);
4837
4838 dmu_tx_hold_write(tx, packobj, packoff, packsize);
4839 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
4840
4841 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4842 if (txg == 0) {
4843 umem_free(packbuf, packsize);
4844 umem_free(bigbuf, bigsize);
4845 for (j = 0; j < s; j++) {
4846 if (i != 5 ||
4847 chunksize < (SPA_MINBLOCKSIZE * 2)) {
4848 dmu_return_arcbuf(bigbuf_arcbufs[j]);
4849 } else {
4850 dmu_return_arcbuf(
4851 bigbuf_arcbufs[2 * j]);
4852 dmu_return_arcbuf(
4853 bigbuf_arcbufs[2 * j + 1]);
4854 }
4855 }
4856 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
4857 umem_free(od, size);
4858 dmu_buf_rele(bonus_db, FTAG);
4859 return;
4860 }
4861
4862 /*
4863 * 50% of the time don't read objects in the 1st iteration to
4864 * test dmu_assign_arcbuf_by_dbuf() for the case when there are
4865 * no existing dbufs for the specified offsets.
4866 */
4867 if (i != 0 || ztest_random(2) != 0) {
4868 error = dmu_read(os, packobj, packoff,
4869 packsize, packbuf, DMU_READ_PREFETCH);
4870 ASSERT0(error);
4871 error = dmu_read(os, bigobj, bigoff, bigsize,
4872 bigbuf, DMU_READ_PREFETCH);
4873 ASSERT0(error);
4874 }
4875 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
4876 n, chunksize, txg);
4877
4878 /*
4879 * We've verified all the old bufwads, and made new ones.
4880 * Now write them out.
4881 */
4882 dmu_write(os, packobj, packoff, packsize, packbuf, tx);
4883 if (ztest_opts.zo_verbose >= 7) {
4884 (void) printf("writing offset %llx size %llx"
4885 " txg %llx\n",
4886 (u_longlong_t)bigoff,
4887 (u_longlong_t)bigsize,
4888 (u_longlong_t)txg);
4889 }
4890 for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
4891 dmu_buf_t *dbt;
4892 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
4893 bcopy((caddr_t)bigbuf + (off - bigoff),
4894 bigbuf_arcbufs[j]->b_data, chunksize);
4895 } else {
4896 bcopy((caddr_t)bigbuf + (off - bigoff),
4897 bigbuf_arcbufs[2 * j]->b_data,
4898 chunksize / 2);
4899 bcopy((caddr_t)bigbuf + (off - bigoff) +
4900 chunksize / 2,
4901 bigbuf_arcbufs[2 * j + 1]->b_data,
4902 chunksize / 2);
4903 }
4904
4905 if (i == 1) {
4906 VERIFY(dmu_buf_hold(os, bigobj, off,
4907 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0);
4908 }
4909 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
4910 dmu_assign_arcbuf_by_dbuf(bonus_db, off,
4911 bigbuf_arcbufs[j], tx);
4912 } else {
4913 dmu_assign_arcbuf_by_dbuf(bonus_db, off,
4914 bigbuf_arcbufs[2 * j], tx);
4915 dmu_assign_arcbuf_by_dbuf(bonus_db,
4916 off + chunksize / 2,
4917 bigbuf_arcbufs[2 * j + 1], tx);
4918 }
4919 if (i == 1) {
4920 dmu_buf_rele(dbt, FTAG);
4921 }
4922 }
4923 dmu_tx_commit(tx);
4924
4925 /*
4926 * Sanity check the stuff we just wrote.
4927 */
4928 {
4929 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
4930 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
4931
4932 VERIFY(0 == dmu_read(os, packobj, packoff,
4933 packsize, packcheck, DMU_READ_PREFETCH));
4934 VERIFY(0 == dmu_read(os, bigobj, bigoff,
4935 bigsize, bigcheck, DMU_READ_PREFETCH));
4936
4937 ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
4938 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
4939
4940 umem_free(packcheck, packsize);
4941 umem_free(bigcheck, bigsize);
4942 }
4943 if (i == 2) {
4944 txg_wait_open(dmu_objset_pool(os), 0);
4945 } else if (i == 3) {
4946 txg_wait_synced(dmu_objset_pool(os), 0);
4947 }
4948 }
4949
4950 dmu_buf_rele(bonus_db, FTAG);
4951 umem_free(packbuf, packsize);
4952 umem_free(bigbuf, bigsize);
4953 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
4954 umem_free(od, size);
4955 }
4956
4957 /* ARGSUSED */
4958 void
4959 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
4960 {
4961 ztest_od_t *od;
4962
4963 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
4964 uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
4965 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4966
4967 /*
4968 * Have multiple threads write to large offsets in an object
4969 * to verify that parallel writes to an object -- even to the
4970 * same blocks within the object -- doesn't cause any trouble.
4971 */
4972 ztest_od_init(od, ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
4973
4974 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0)
4975 return;
4976
4977 while (ztest_random(10) != 0)
4978 ztest_io(zd, od->od_object, offset);
4979
4980 umem_free(od, sizeof (ztest_od_t));
4981 }
4982
4983 void
4984 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
4985 {
4986 ztest_od_t *od;
4987 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
4988 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4989 uint64_t count = ztest_random(20) + 1;
4990 uint64_t blocksize = ztest_random_blocksize();
4991 void *data;
4992
4993 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
4994
4995 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
4996
4997 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
4998 !ztest_random(2)) != 0) {
4999 umem_free(od, sizeof (ztest_od_t));
5000 return;
5001 }
5002
5003 if (ztest_truncate(zd, od->od_object, offset, count * blocksize) != 0) {
5004 umem_free(od, sizeof (ztest_od_t));
5005 return;
5006 }
5007
5008 ztest_prealloc(zd, od->od_object, offset, count * blocksize);
5009
5010 data = umem_zalloc(blocksize, UMEM_NOFAIL);
5011
5012 while (ztest_random(count) != 0) {
5013 uint64_t randoff = offset + (ztest_random(count) * blocksize);
5014 if (ztest_write(zd, od->od_object, randoff, blocksize,
5015 data) != 0)
5016 break;
5017 while (ztest_random(4) != 0)
5018 ztest_io(zd, od->od_object, randoff);
5019 }
5020
5021 umem_free(data, blocksize);
5022 umem_free(od, sizeof (ztest_od_t));
5023 }
5024
5025 /*
5026 * Verify that zap_{create,destroy,add,remove,update} work as expected.
5027 */
5028 #define ZTEST_ZAP_MIN_INTS 1
5029 #define ZTEST_ZAP_MAX_INTS 4
5030 #define ZTEST_ZAP_MAX_PROPS 1000
5031
5032 void
5033 ztest_zap(ztest_ds_t *zd, uint64_t id)
5034 {
5035 objset_t *os = zd->zd_os;
5036 ztest_od_t *od;
5037 uint64_t object;
5038 uint64_t txg, last_txg;
5039 uint64_t value[ZTEST_ZAP_MAX_INTS];
5040 uint64_t zl_ints, zl_intsize, prop;
5041 int i, ints;
5042 dmu_tx_t *tx;
5043 char propname[100], txgname[100];
5044 int error;
5045 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
5046
5047 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5048 ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
5049
5050 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5051 !ztest_random(2)) != 0)
5052 goto out;
5053
5054 object = od->od_object;
5055
5056 /*
5057 * Generate a known hash collision, and verify that
5058 * we can lookup and remove both entries.
5059 */
5060 tx = dmu_tx_create(os);
5061 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5062 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5063 if (txg == 0)
5064 goto out;
5065 for (i = 0; i < 2; i++) {
5066 value[i] = i;
5067 VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t),
5068 1, &value[i], tx));
5069 }
5070 for (i = 0; i < 2; i++) {
5071 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
5072 sizeof (uint64_t), 1, &value[i], tx));
5073 VERIFY3U(0, ==,
5074 zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
5075 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5076 ASSERT3U(zl_ints, ==, 1);
5077 }
5078 for (i = 0; i < 2; i++) {
5079 VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx));
5080 }
5081 dmu_tx_commit(tx);
5082
5083 /*
5084 * Generate a buch of random entries.
5085 */
5086 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
5087
5088 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
5089 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
5090 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
5091 bzero(value, sizeof (value));
5092 last_txg = 0;
5093
5094 /*
5095 * If these zap entries already exist, validate their contents.
5096 */
5097 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
5098 if (error == 0) {
5099 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5100 ASSERT3U(zl_ints, ==, 1);
5101
5102 VERIFY(zap_lookup(os, object, txgname, zl_intsize,
5103 zl_ints, &last_txg) == 0);
5104
5105 VERIFY(zap_length(os, object, propname, &zl_intsize,
5106 &zl_ints) == 0);
5107
5108 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5109 ASSERT3U(zl_ints, ==, ints);
5110
5111 VERIFY(zap_lookup(os, object, propname, zl_intsize,
5112 zl_ints, value) == 0);
5113
5114 for (i = 0; i < ints; i++) {
5115 ASSERT3U(value[i], ==, last_txg + object + i);
5116 }
5117 } else {
5118 ASSERT3U(error, ==, ENOENT);
5119 }
5120
5121 /*
5122 * Atomically update two entries in our zap object.
5123 * The first is named txg_%llu, and contains the txg
5124 * in which the property was last updated. The second
5125 * is named prop_%llu, and the nth element of its value
5126 * should be txg + object + n.
5127 */
5128 tx = dmu_tx_create(os);
5129 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5130 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5131 if (txg == 0)
5132 goto out;
5133
5134 if (last_txg > txg)
5135 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg);
5136
5137 for (i = 0; i < ints; i++)
5138 value[i] = txg + object + i;
5139
5140 VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t),
5141 1, &txg, tx));
5142 VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t),
5143 ints, value, tx));
5144
5145 dmu_tx_commit(tx);
5146
5147 /*
5148 * Remove a random pair of entries.
5149 */
5150 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
5151 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
5152 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
5153
5154 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
5155
5156 if (error == ENOENT)
5157 goto out;
5158
5159 ASSERT0(error);
5160
5161 tx = dmu_tx_create(os);
5162 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5163 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5164 if (txg == 0)
5165 goto out;
5166 VERIFY3U(0, ==, zap_remove(os, object, txgname, tx));
5167 VERIFY3U(0, ==, zap_remove(os, object, propname, tx));
5168 dmu_tx_commit(tx);
5169 out:
5170 umem_free(od, sizeof (ztest_od_t));
5171 }
5172
5173 /*
5174 * Testcase to test the upgrading of a microzap to fatzap.
5175 */
5176 void
5177 ztest_fzap(ztest_ds_t *zd, uint64_t id)
5178 {
5179 objset_t *os = zd->zd_os;
5180 ztest_od_t *od;
5181 uint64_t object, txg;
5182 int i;
5183
5184 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5185 ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
5186
5187 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5188 !ztest_random(2)) != 0)
5189 goto out;
5190 object = od->od_object;
5191
5192 /*
5193 * Add entries to this ZAP and make sure it spills over
5194 * and gets upgraded to a fatzap. Also, since we are adding
5195 * 2050 entries we should see ptrtbl growth and leaf-block split.
5196 */
5197 for (i = 0; i < 2050; i++) {
5198 char name[ZFS_MAX_DATASET_NAME_LEN];
5199 uint64_t value = i;
5200 dmu_tx_t *tx;
5201 int error;
5202
5203 (void) snprintf(name, sizeof (name), "fzap-%llu-%llu",
5204 (u_longlong_t)id, (u_longlong_t)value);
5205
5206 tx = dmu_tx_create(os);
5207 dmu_tx_hold_zap(tx, object, B_TRUE, name);
5208 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5209 if (txg == 0)
5210 goto out;
5211 error = zap_add(os, object, name, sizeof (uint64_t), 1,
5212 &value, tx);
5213 ASSERT(error == 0 || error == EEXIST);
5214 dmu_tx_commit(tx);
5215 }
5216 out:
5217 umem_free(od, sizeof (ztest_od_t));
5218 }
5219
5220 /* ARGSUSED */
5221 void
5222 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
5223 {
5224 objset_t *os = zd->zd_os;
5225 ztest_od_t *od;
5226 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
5227 dmu_tx_t *tx;
5228 int i, namelen, error;
5229 int micro = ztest_random(2);
5230 char name[20], string_value[20];
5231 void *data;
5232
5233 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5234 ztest_od_init(od, ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0, 0);
5235
5236 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
5237 umem_free(od, sizeof (ztest_od_t));
5238 return;
5239 }
5240
5241 object = od->od_object;
5242
5243 /*
5244 * Generate a random name of the form 'xxx.....' where each
5245 * x is a random printable character and the dots are dots.
5246 * There are 94 such characters, and the name length goes from
5247 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
5248 */
5249 namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
5250
5251 for (i = 0; i < 3; i++)
5252 name[i] = '!' + ztest_random('~' - '!' + 1);
5253 for (; i < namelen - 1; i++)
5254 name[i] = '.';
5255 name[i] = '\0';
5256
5257 if ((namelen & 1) || micro) {
5258 wsize = sizeof (txg);
5259 wc = 1;
5260 data = &txg;
5261 } else {
5262 wsize = 1;
5263 wc = namelen;
5264 data = string_value;
5265 }
5266
5267 count = -1ULL;
5268 VERIFY0(zap_count(os, object, &count));
5269 ASSERT(count != -1ULL);
5270
5271 /*
5272 * Select an operation: length, lookup, add, update, remove.
5273 */
5274 i = ztest_random(5);
5275
5276 if (i >= 2) {
5277 tx = dmu_tx_create(os);
5278 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5279 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5280 if (txg == 0) {
5281 umem_free(od, sizeof (ztest_od_t));
5282 return;
5283 }
5284 bcopy(name, string_value, namelen);
5285 } else {
5286 tx = NULL;
5287 txg = 0;
5288 bzero(string_value, namelen);
5289 }
5290
5291 switch (i) {
5292
5293 case 0:
5294 error = zap_length(os, object, name, &zl_wsize, &zl_wc);
5295 if (error == 0) {
5296 ASSERT3U(wsize, ==, zl_wsize);
5297 ASSERT3U(wc, ==, zl_wc);
5298 } else {
5299 ASSERT3U(error, ==, ENOENT);
5300 }
5301 break;
5302
5303 case 1:
5304 error = zap_lookup(os, object, name, wsize, wc, data);
5305 if (error == 0) {
5306 if (data == string_value &&
5307 bcmp(name, data, namelen) != 0)
5308 fatal(0, "name '%s' != val '%s' len %d",
5309 name, data, namelen);
5310 } else {
5311 ASSERT3U(error, ==, ENOENT);
5312 }
5313 break;
5314
5315 case 2:
5316 error = zap_add(os, object, name, wsize, wc, data, tx);
5317 ASSERT(error == 0 || error == EEXIST);
5318 break;
5319
5320 case 3:
5321 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0);
5322 break;
5323
5324 case 4:
5325 error = zap_remove(os, object, name, tx);
5326 ASSERT(error == 0 || error == ENOENT);
5327 break;
5328 }
5329
5330 if (tx != NULL)
5331 dmu_tx_commit(tx);
5332
5333 umem_free(od, sizeof (ztest_od_t));
5334 }
5335
5336 /*
5337 * Commit callback data.
5338 */
5339 typedef struct ztest_cb_data {
5340 list_node_t zcd_node;
5341 uint64_t zcd_txg;
5342 int zcd_expected_err;
5343 boolean_t zcd_added;
5344 boolean_t zcd_called;
5345 spa_t *zcd_spa;
5346 } ztest_cb_data_t;
5347
5348 /* This is the actual commit callback function */
5349 static void
5350 ztest_commit_callback(void *arg, int error)
5351 {
5352 ztest_cb_data_t *data = arg;
5353 uint64_t synced_txg;
5354
5355 VERIFY(data != NULL);
5356 VERIFY3S(data->zcd_expected_err, ==, error);
5357 VERIFY(!data->zcd_called);
5358
5359 synced_txg = spa_last_synced_txg(data->zcd_spa);
5360 if (data->zcd_txg > synced_txg)
5361 fatal(0, "commit callback of txg %" PRIu64 " called prematurely"
5362 ", last synced txg = %" PRIu64 "\n", data->zcd_txg,
5363 synced_txg);
5364
5365 data->zcd_called = B_TRUE;
5366
5367 if (error == ECANCELED) {
5368 ASSERT0(data->zcd_txg);
5369 ASSERT(!data->zcd_added);
5370
5371 /*
5372 * The private callback data should be destroyed here, but
5373 * since we are going to check the zcd_called field after
5374 * dmu_tx_abort(), we will destroy it there.
5375 */
5376 return;
5377 }
5378
5379 ASSERT(data->zcd_added);
5380 ASSERT3U(data->zcd_txg, !=, 0);
5381
5382 (void) mutex_enter(&zcl.zcl_callbacks_lock);
5383
5384 /* See if this cb was called more quickly */
5385 if ((synced_txg - data->zcd_txg) < zc_min_txg_delay)
5386 zc_min_txg_delay = synced_txg - data->zcd_txg;
5387
5388 /* Remove our callback from the list */
5389 list_remove(&zcl.zcl_callbacks, data);
5390
5391 (void) mutex_exit(&zcl.zcl_callbacks_lock);
5392
5393 umem_free(data, sizeof (ztest_cb_data_t));
5394 }
5395
5396 /* Allocate and initialize callback data structure */
5397 static ztest_cb_data_t *
5398 ztest_create_cb_data(objset_t *os, uint64_t txg)
5399 {
5400 ztest_cb_data_t *cb_data;
5401
5402 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
5403
5404 cb_data->zcd_txg = txg;
5405 cb_data->zcd_spa = dmu_objset_spa(os);
5406 list_link_init(&cb_data->zcd_node);
5407
5408 return (cb_data);
5409 }
5410
5411 /*
5412 * Commit callback test.
5413 */
5414 void
5415 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
5416 {
5417 objset_t *os = zd->zd_os;
5418 ztest_od_t *od;
5419 dmu_tx_t *tx;
5420 ztest_cb_data_t *cb_data[3], *tmp_cb;
5421 uint64_t old_txg, txg;
5422 int i, error = 0;
5423
5424 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5425 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
5426
5427 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
5428 umem_free(od, sizeof (ztest_od_t));
5429 return;
5430 }
5431
5432 tx = dmu_tx_create(os);
5433
5434 cb_data[0] = ztest_create_cb_data(os, 0);
5435 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
5436
5437 dmu_tx_hold_write(tx, od->od_object, 0, sizeof (uint64_t));
5438
5439 /* Every once in a while, abort the transaction on purpose */
5440 if (ztest_random(100) == 0)
5441 error = -1;
5442
5443 if (!error)
5444 error = dmu_tx_assign(tx, TXG_NOWAIT);
5445
5446 txg = error ? 0 : dmu_tx_get_txg(tx);
5447
5448 cb_data[0]->zcd_txg = txg;
5449 cb_data[1] = ztest_create_cb_data(os, txg);
5450 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
5451
5452 if (error) {
5453 /*
5454 * It's not a strict requirement to call the registered
5455 * callbacks from inside dmu_tx_abort(), but that's what
5456 * it's supposed to happen in the current implementation
5457 * so we will check for that.
5458 */
5459 for (i = 0; i < 2; i++) {
5460 cb_data[i]->zcd_expected_err = ECANCELED;
5461 VERIFY(!cb_data[i]->zcd_called);
5462 }
5463
5464 dmu_tx_abort(tx);
5465
5466 for (i = 0; i < 2; i++) {
5467 VERIFY(cb_data[i]->zcd_called);
5468 umem_free(cb_data[i], sizeof (ztest_cb_data_t));
5469 }
5470
5471 umem_free(od, sizeof (ztest_od_t));
5472 return;
5473 }
5474
5475 cb_data[2] = ztest_create_cb_data(os, txg);
5476 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
5477
5478 /*
5479 * Read existing data to make sure there isn't a future leak.
5480 */
5481 VERIFY(0 == dmu_read(os, od->od_object, 0, sizeof (uint64_t),
5482 &old_txg, DMU_READ_PREFETCH));
5483
5484 if (old_txg > txg)
5485 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64,
5486 old_txg, txg);
5487
5488 dmu_write(os, od->od_object, 0, sizeof (uint64_t), &txg, tx);
5489
5490 (void) mutex_enter(&zcl.zcl_callbacks_lock);
5491
5492 /*
5493 * Since commit callbacks don't have any ordering requirement and since
5494 * it is theoretically possible for a commit callback to be called
5495 * after an arbitrary amount of time has elapsed since its txg has been
5496 * synced, it is difficult to reliably determine whether a commit
5497 * callback hasn't been called due to high load or due to a flawed
5498 * implementation.
5499 *
5500 * In practice, we will assume that if after a certain number of txgs a
5501 * commit callback hasn't been called, then most likely there's an
5502 * implementation bug..
5503 */
5504 tmp_cb = list_head(&zcl.zcl_callbacks);
5505 if (tmp_cb != NULL &&
5506 tmp_cb->zcd_txg + ZTEST_COMMIT_CB_THRESH < txg) {
5507 fatal(0, "Commit callback threshold exceeded, oldest txg: %"
5508 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg);
5509 }
5510
5511 /*
5512 * Let's find the place to insert our callbacks.
5513 *
5514 * Even though the list is ordered by txg, it is possible for the
5515 * insertion point to not be the end because our txg may already be
5516 * quiescing at this point and other callbacks in the open txg
5517 * (from other objsets) may have sneaked in.
5518 */
5519 tmp_cb = list_tail(&zcl.zcl_callbacks);
5520 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
5521 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
5522
5523 /* Add the 3 callbacks to the list */
5524 for (i = 0; i < 3; i++) {
5525 if (tmp_cb == NULL)
5526 list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
5527 else
5528 list_insert_after(&zcl.zcl_callbacks, tmp_cb,
5529 cb_data[i]);
5530
5531 cb_data[i]->zcd_added = B_TRUE;
5532 VERIFY(!cb_data[i]->zcd_called);
5533
5534 tmp_cb = cb_data[i];
5535 }
5536
5537 zc_cb_counter += 3;
5538
5539 (void) mutex_exit(&zcl.zcl_callbacks_lock);
5540
5541 dmu_tx_commit(tx);
5542
5543 umem_free(od, sizeof (ztest_od_t));
5544 }
5545
5546 /*
5547 * Visit each object in the dataset. Verify that its properties
5548 * are consistent what was stored in the block tag when it was created,
5549 * and that its unused bonus buffer space has not been overwritten.
5550 */
5551 /* ARGSUSED */
5552 void
5553 ztest_verify_dnode_bt(ztest_ds_t *zd, uint64_t id)
5554 {
5555 objset_t *os = zd->zd_os;
5556 uint64_t obj;
5557 int err = 0;
5558
5559 for (obj = 0; err == 0; err = dmu_object_next(os, &obj, FALSE, 0)) {
5560 ztest_block_tag_t *bt = NULL;
5561 dmu_object_info_t doi;
5562 dmu_buf_t *db;
5563
5564 ztest_object_lock(zd, obj, RL_READER);
5565 if (dmu_bonus_hold(os, obj, FTAG, &db) != 0) {
5566 ztest_object_unlock(zd, obj);
5567 continue;
5568 }
5569
5570 dmu_object_info_from_db(db, &doi);
5571 if (doi.doi_bonus_size >= sizeof (*bt))
5572 bt = ztest_bt_bonus(db);
5573
5574 if (bt && bt->bt_magic == BT_MAGIC) {
5575 ztest_bt_verify(bt, os, obj, doi.doi_dnodesize,
5576 bt->bt_offset, bt->bt_gen, bt->bt_txg,
5577 bt->bt_crtxg);
5578 ztest_verify_unused_bonus(db, bt, obj, os, bt->bt_gen);
5579 }
5580
5581 dmu_buf_rele(db, FTAG);
5582 ztest_object_unlock(zd, obj);
5583 }
5584 }
5585
5586 /* ARGSUSED */
5587 void
5588 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
5589 {
5590 zfs_prop_t proplist[] = {
5591 ZFS_PROP_CHECKSUM,
5592 ZFS_PROP_COMPRESSION,
5593 ZFS_PROP_COPIES,
5594 ZFS_PROP_DEDUP
5595 };
5596 int p;
5597
5598 (void) pthread_rwlock_rdlock(&ztest_name_lock);
5599
5600 for (p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++)
5601 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
5602 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
5603
5604 VERIFY0(ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_RECORDSIZE,
5605 ztest_random_blocksize(), (int)ztest_random(2)));
5606
5607 (void) pthread_rwlock_unlock(&ztest_name_lock);
5608 }
5609
5610 /* ARGSUSED */
5611 void
5612 ztest_remap_blocks(ztest_ds_t *zd, uint64_t id)
5613 {
5614 (void) pthread_rwlock_rdlock(&ztest_name_lock);
5615
5616 int error = dmu_objset_remap_indirects(zd->zd_name);
5617 if (error == ENOSPC)
5618 error = 0;
5619 ASSERT0(error);
5620
5621 (void) pthread_rwlock_unlock(&ztest_name_lock);
5622 }
5623
5624 /* ARGSUSED */
5625 void
5626 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
5627 {
5628 nvlist_t *props = NULL;
5629
5630 (void) pthread_rwlock_rdlock(&ztest_name_lock);
5631
5632 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO,
5633 ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN));
5634
5635 VERIFY0(spa_prop_get(ztest_spa, &props));
5636
5637 if (ztest_opts.zo_verbose >= 6)
5638 dump_nvlist(props, 4);
5639
5640 nvlist_free(props);
5641
5642 (void) pthread_rwlock_unlock(&ztest_name_lock);
5643 }
5644
5645 static int
5646 user_release_one(const char *snapname, const char *holdname)
5647 {
5648 nvlist_t *snaps, *holds;
5649 int error;
5650
5651 snaps = fnvlist_alloc();
5652 holds = fnvlist_alloc();
5653 fnvlist_add_boolean(holds, holdname);
5654 fnvlist_add_nvlist(snaps, snapname, holds);
5655 fnvlist_free(holds);
5656 error = dsl_dataset_user_release(snaps, NULL);
5657 fnvlist_free(snaps);
5658 return (error);
5659 }
5660
5661 /*
5662 * Test snapshot hold/release and deferred destroy.
5663 */
5664 void
5665 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
5666 {
5667 int error;
5668 objset_t *os = zd->zd_os;
5669 objset_t *origin;
5670 char snapname[100];
5671 char fullname[100];
5672 char clonename[100];
5673 char tag[100];
5674 char osname[ZFS_MAX_DATASET_NAME_LEN];
5675 nvlist_t *holds;
5676
5677 (void) pthread_rwlock_rdlock(&ztest_name_lock);
5678
5679 dmu_objset_name(os, osname);
5680
5681 (void) snprintf(snapname, sizeof (snapname), "sh1_%llu",
5682 (u_longlong_t)id);
5683 (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname);
5684 (void) snprintf(clonename, sizeof (clonename),
5685 "%s/ch1_%llu", osname, (u_longlong_t)id);
5686 (void) snprintf(tag, sizeof (tag), "tag_%llu", (u_longlong_t)id);
5687
5688 /*
5689 * Clean up from any previous run.
5690 */
5691 error = dsl_destroy_head(clonename);
5692 if (error != ENOENT)
5693 ASSERT0(error);
5694 error = user_release_one(fullname, tag);
5695 if (error != ESRCH && error != ENOENT)
5696 ASSERT0(error);
5697 error = dsl_destroy_snapshot(fullname, B_FALSE);
5698 if (error != ENOENT)
5699 ASSERT0(error);
5700
5701 /*
5702 * Create snapshot, clone it, mark snap for deferred destroy,
5703 * destroy clone, verify snap was also destroyed.
5704 */
5705 error = dmu_objset_snapshot_one(osname, snapname);
5706 if (error) {
5707 if (error == ENOSPC) {
5708 ztest_record_enospc("dmu_objset_snapshot");
5709 goto out;
5710 }
5711 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
5712 }
5713
5714 error = dmu_objset_clone(clonename, fullname);
5715 if (error) {
5716 if (error == ENOSPC) {
5717 ztest_record_enospc("dmu_objset_clone");
5718 goto out;
5719 }
5720 fatal(0, "dmu_objset_clone(%s) = %d", clonename, error);
5721 }
5722
5723 error = dsl_destroy_snapshot(fullname, B_TRUE);
5724 if (error) {
5725 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
5726 fullname, error);
5727 }
5728
5729 error = dsl_destroy_head(clonename);
5730 if (error)
5731 fatal(0, "dsl_destroy_head(%s) = %d", clonename, error);
5732
5733 error = dmu_objset_hold(fullname, FTAG, &origin);
5734 if (error != ENOENT)
5735 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error);
5736
5737 /*
5738 * Create snapshot, add temporary hold, verify that we can't
5739 * destroy a held snapshot, mark for deferred destroy,
5740 * release hold, verify snapshot was destroyed.
5741 */
5742 error = dmu_objset_snapshot_one(osname, snapname);
5743 if (error) {
5744 if (error == ENOSPC) {
5745 ztest_record_enospc("dmu_objset_snapshot");
5746 goto out;
5747 }
5748 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
5749 }
5750
5751 holds = fnvlist_alloc();
5752 fnvlist_add_string(holds, fullname, tag);
5753 error = dsl_dataset_user_hold(holds, 0, NULL);
5754 fnvlist_free(holds);
5755
5756 if (error == ENOSPC) {
5757 ztest_record_enospc("dsl_dataset_user_hold");
5758 goto out;
5759 } else if (error) {
5760 fatal(0, "dsl_dataset_user_hold(%s, %s) = %u",
5761 fullname, tag, error);
5762 }
5763
5764 error = dsl_destroy_snapshot(fullname, B_FALSE);
5765 if (error != EBUSY) {
5766 fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
5767 fullname, error);
5768 }
5769
5770 error = dsl_destroy_snapshot(fullname, B_TRUE);
5771 if (error) {
5772 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
5773 fullname, error);
5774 }
5775
5776 error = user_release_one(fullname, tag);
5777 if (error)
5778 fatal(0, "user_release_one(%s, %s) = %d", fullname, tag, error);
5779
5780 VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT);
5781
5782 out:
5783 (void) pthread_rwlock_unlock(&ztest_name_lock);
5784 }
5785
5786 /*
5787 * Inject random faults into the on-disk data.
5788 */
5789 /* ARGSUSED */
5790 void
5791 ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
5792 {
5793 ztest_shared_t *zs = ztest_shared;
5794 spa_t *spa = ztest_spa;
5795 int fd;
5796 uint64_t offset;
5797 uint64_t leaves;
5798 uint64_t bad = 0x1990c0ffeedecadeull;
5799 uint64_t top, leaf;
5800 char *path0;
5801 char *pathrand;
5802 size_t fsize;
5803 int bshift = SPA_MAXBLOCKSHIFT + 2;
5804 int iters = 1000;
5805 int maxfaults;
5806 int mirror_save;
5807 vdev_t *vd0 = NULL;
5808 uint64_t guid0 = 0;
5809 boolean_t islog = B_FALSE;
5810
5811 path0 = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
5812 pathrand = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
5813
5814 mutex_enter(&ztest_vdev_lock);
5815
5816 /*
5817 * Device removal is in progress, fault injection must be disabled
5818 * until it completes and the pool is scrubbed. The fault injection
5819 * strategy for damaging blocks does not take in to account evacuated
5820 * blocks which may have already been damaged.
5821 */
5822 if (ztest_device_removal_active) {
5823 mutex_exit(&ztest_vdev_lock);
5824 goto out;
5825 }
5826
5827 maxfaults = MAXFAULTS(zs);
5828 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
5829 mirror_save = zs->zs_mirrors;
5830 mutex_exit(&ztest_vdev_lock);
5831
5832 ASSERT(leaves >= 1);
5833
5834 /*
5835 * Grab the name lock as reader. There are some operations
5836 * which don't like to have their vdevs changed while
5837 * they are in progress (i.e. spa_change_guid). Those
5838 * operations will have grabbed the name lock as writer.
5839 */
5840 (void) pthread_rwlock_rdlock(&ztest_name_lock);
5841
5842 /*
5843 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
5844 */
5845 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5846
5847 if (ztest_random(2) == 0) {
5848 /*
5849 * Inject errors on a normal data device or slog device.
5850 */
5851 top = ztest_random_vdev_top(spa, B_TRUE);
5852 leaf = ztest_random(leaves) + zs->zs_splits;
5853
5854 /*
5855 * Generate paths to the first leaf in this top-level vdev,
5856 * and to the random leaf we selected. We'll induce transient
5857 * write failures and random online/offline activity on leaf 0,
5858 * and we'll write random garbage to the randomly chosen leaf.
5859 */
5860 (void) snprintf(path0, MAXPATHLEN, ztest_dev_template,
5861 ztest_opts.zo_dir, ztest_opts.zo_pool,
5862 top * leaves + zs->zs_splits);
5863 (void) snprintf(pathrand, MAXPATHLEN, ztest_dev_template,
5864 ztest_opts.zo_dir, ztest_opts.zo_pool,
5865 top * leaves + leaf);
5866
5867 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
5868 if (vd0 != NULL && vd0->vdev_top->vdev_islog)
5869 islog = B_TRUE;
5870
5871 /*
5872 * If the top-level vdev needs to be resilvered
5873 * then we only allow faults on the device that is
5874 * resilvering.
5875 */
5876 if (vd0 != NULL && maxfaults != 1 &&
5877 (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) ||
5878 vd0->vdev_resilver_txg != 0)) {
5879 /*
5880 * Make vd0 explicitly claim to be unreadable,
5881 * or unwriteable, or reach behind its back
5882 * and close the underlying fd. We can do this if
5883 * maxfaults == 0 because we'll fail and reexecute,
5884 * and we can do it if maxfaults >= 2 because we'll
5885 * have enough redundancy. If maxfaults == 1, the
5886 * combination of this with injection of random data
5887 * corruption below exceeds the pool's fault tolerance.
5888 */
5889 vdev_file_t *vf = vd0->vdev_tsd;
5890
5891 zfs_dbgmsg("injecting fault to vdev %llu; maxfaults=%d",
5892 (long long)vd0->vdev_id, (int)maxfaults);
5893
5894 if (vf != NULL && ztest_random(3) == 0) {
5895 (void) close(vf->vf_vnode->v_fd);
5896 vf->vf_vnode->v_fd = -1;
5897 } else if (ztest_random(2) == 0) {
5898 vd0->vdev_cant_read = B_TRUE;
5899 } else {
5900 vd0->vdev_cant_write = B_TRUE;
5901 }
5902 guid0 = vd0->vdev_guid;
5903 }
5904 } else {
5905 /*
5906 * Inject errors on an l2cache device.
5907 */
5908 spa_aux_vdev_t *sav = &spa->spa_l2cache;
5909
5910 if (sav->sav_count == 0) {
5911 spa_config_exit(spa, SCL_STATE, FTAG);
5912 (void) pthread_rwlock_unlock(&ztest_name_lock);
5913 goto out;
5914 }
5915 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
5916 guid0 = vd0->vdev_guid;
5917 (void) strcpy(path0, vd0->vdev_path);
5918 (void) strcpy(pathrand, vd0->vdev_path);
5919
5920 leaf = 0;
5921 leaves = 1;
5922 maxfaults = INT_MAX; /* no limit on cache devices */
5923 }
5924
5925 spa_config_exit(spa, SCL_STATE, FTAG);
5926 (void) pthread_rwlock_unlock(&ztest_name_lock);
5927
5928 /*
5929 * If we can tolerate two or more faults, or we're dealing
5930 * with a slog, randomly online/offline vd0.
5931 */
5932 if ((maxfaults >= 2 || islog) && guid0 != 0) {
5933 if (ztest_random(10) < 6) {
5934 int flags = (ztest_random(2) == 0 ?
5935 ZFS_OFFLINE_TEMPORARY : 0);
5936
5937 /*
5938 * We have to grab the zs_name_lock as writer to
5939 * prevent a race between offlining a slog and
5940 * destroying a dataset. Offlining the slog will
5941 * grab a reference on the dataset which may cause
5942 * dsl_destroy_head() to fail with EBUSY thus
5943 * leaving the dataset in an inconsistent state.
5944 */
5945 if (islog)
5946 (void) pthread_rwlock_wrlock(&ztest_name_lock);
5947
5948 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY);
5949
5950 if (islog)
5951 (void) pthread_rwlock_unlock(&ztest_name_lock);
5952 } else {
5953 /*
5954 * Ideally we would like to be able to randomly
5955 * call vdev_[on|off]line without holding locks
5956 * to force unpredictable failures but the side
5957 * effects of vdev_[on|off]line prevent us from
5958 * doing so. We grab the ztest_vdev_lock here to
5959 * prevent a race between injection testing and
5960 * aux_vdev removal.
5961 */
5962 mutex_enter(&ztest_vdev_lock);
5963 (void) vdev_online(spa, guid0, 0, NULL);
5964 mutex_exit(&ztest_vdev_lock);
5965 }
5966 }
5967
5968 if (maxfaults == 0)
5969 goto out;
5970
5971 /*
5972 * We have at least single-fault tolerance, so inject data corruption.
5973 */
5974 fd = open(pathrand, O_RDWR);
5975
5976 if (fd == -1) /* we hit a gap in the device namespace */
5977 goto out;
5978
5979 fsize = lseek(fd, 0, SEEK_END);
5980
5981 while (--iters != 0) {
5982 /*
5983 * The offset must be chosen carefully to ensure that
5984 * we do not inject a given logical block with errors
5985 * on two different leaf devices, because ZFS can not
5986 * tolerate that (if maxfaults==1).
5987 *
5988 * We divide each leaf into chunks of size
5989 * (# leaves * SPA_MAXBLOCKSIZE * 4). Within each chunk
5990 * there is a series of ranges to which we can inject errors.
5991 * Each range can accept errors on only a single leaf vdev.
5992 * The error injection ranges are separated by ranges
5993 * which we will not inject errors on any device (DMZs).
5994 * Each DMZ must be large enough such that a single block
5995 * can not straddle it, so that a single block can not be
5996 * a target in two different injection ranges (on different
5997 * leaf vdevs).
5998 *
5999 * For example, with 3 leaves, each chunk looks like:
6000 * 0 to 32M: injection range for leaf 0
6001 * 32M to 64M: DMZ - no injection allowed
6002 * 64M to 96M: injection range for leaf 1
6003 * 96M to 128M: DMZ - no injection allowed
6004 * 128M to 160M: injection range for leaf 2
6005 * 160M to 192M: DMZ - no injection allowed
6006 */
6007 offset = ztest_random(fsize / (leaves << bshift)) *
6008 (leaves << bshift) + (leaf << bshift) +
6009 (ztest_random(1ULL << (bshift - 1)) & -8ULL);
6010
6011 /*
6012 * Only allow damage to the labels at one end of the vdev.
6013 *
6014 * If all labels are damaged, the device will be totally
6015 * inaccessible, which will result in loss of data,
6016 * because we also damage (parts of) the other side of
6017 * the mirror/raidz.
6018 *
6019 * Additionally, we will always have both an even and an
6020 * odd label, so that we can handle crashes in the
6021 * middle of vdev_config_sync().
6022 */
6023 if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE)
6024 continue;
6025
6026 /*
6027 * The two end labels are stored at the "end" of the disk, but
6028 * the end of the disk (vdev_psize) is aligned to
6029 * sizeof (vdev_label_t).
6030 */
6031 uint64_t psize = P2ALIGN(fsize, sizeof (vdev_label_t));
6032 if ((leaf & 1) == 1 &&
6033 offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE)
6034 continue;
6035
6036 mutex_enter(&ztest_vdev_lock);
6037 if (mirror_save != zs->zs_mirrors) {
6038 mutex_exit(&ztest_vdev_lock);
6039 (void) close(fd);
6040 goto out;
6041 }
6042
6043 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
6044 fatal(1, "can't inject bad word at 0x%llx in %s",
6045 offset, pathrand);
6046
6047 mutex_exit(&ztest_vdev_lock);
6048
6049 if (ztest_opts.zo_verbose >= 7)
6050 (void) printf("injected bad word into %s,"
6051 " offset 0x%llx\n", pathrand, (u_longlong_t)offset);
6052 }
6053
6054 (void) close(fd);
6055 out:
6056 umem_free(path0, MAXPATHLEN);
6057 umem_free(pathrand, MAXPATHLEN);
6058 }
6059
6060 /*
6061 * Verify that DDT repair works as expected.
6062 */
6063 void
6064 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id)
6065 {
6066 ztest_shared_t *zs = ztest_shared;
6067 spa_t *spa = ztest_spa;
6068 objset_t *os = zd->zd_os;
6069 ztest_od_t *od;
6070 uint64_t object, blocksize, txg, pattern, psize;
6071 enum zio_checksum checksum = spa_dedup_checksum(spa);
6072 dmu_buf_t *db;
6073 dmu_tx_t *tx;
6074 abd_t *abd;
6075 blkptr_t blk;
6076 int copies = 2 * ZIO_DEDUPDITTO_MIN;
6077 int i;
6078
6079 blocksize = ztest_random_blocksize();
6080 blocksize = MIN(blocksize, 2048); /* because we write so many */
6081
6082 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
6083 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
6084
6085 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
6086 umem_free(od, sizeof (ztest_od_t));
6087 return;
6088 }
6089
6090 /*
6091 * Take the name lock as writer to prevent anyone else from changing
6092 * the pool and dataset properies we need to maintain during this test.
6093 */
6094 (void) pthread_rwlock_wrlock(&ztest_name_lock);
6095
6096 if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum,
6097 B_FALSE) != 0 ||
6098 ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1,
6099 B_FALSE) != 0) {
6100 (void) pthread_rwlock_unlock(&ztest_name_lock);
6101 umem_free(od, sizeof (ztest_od_t));
6102 return;
6103 }
6104
6105 dmu_objset_stats_t dds;
6106 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
6107 dmu_objset_fast_stat(os, &dds);
6108 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
6109
6110 object = od[0].od_object;
6111 blocksize = od[0].od_blocksize;
6112 pattern = zs->zs_guid ^ dds.dds_guid;
6113
6114 ASSERT(object != 0);
6115
6116 tx = dmu_tx_create(os);
6117 dmu_tx_hold_write(tx, object, 0, copies * blocksize);
6118 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
6119 if (txg == 0) {
6120 (void) pthread_rwlock_unlock(&ztest_name_lock);
6121 umem_free(od, sizeof (ztest_od_t));
6122 return;
6123 }
6124
6125 /*
6126 * Write all the copies of our block.
6127 */
6128 for (i = 0; i < copies; i++) {
6129 uint64_t offset = i * blocksize;
6130 int error = dmu_buf_hold(os, object, offset, FTAG, &db,
6131 DMU_READ_NO_PREFETCH);
6132 if (error != 0) {
6133 fatal(B_FALSE, "dmu_buf_hold(%p, %llu, %llu) = %u",
6134 os, (long long)object, (long long) offset, error);
6135 }
6136 ASSERT(db->db_offset == offset);
6137 ASSERT(db->db_size == blocksize);
6138 ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) ||
6139 ztest_pattern_match(db->db_data, db->db_size, 0ULL));
6140 dmu_buf_will_fill(db, tx);
6141 ztest_pattern_set(db->db_data, db->db_size, pattern);
6142 dmu_buf_rele(db, FTAG);
6143 }
6144
6145 dmu_tx_commit(tx);
6146 txg_wait_synced(spa_get_dsl(spa), txg);
6147
6148 /*
6149 * Find out what block we got.
6150 */
6151 VERIFY0(dmu_buf_hold(os, object, 0, FTAG, &db,
6152 DMU_READ_NO_PREFETCH));
6153 blk = *((dmu_buf_impl_t *)db)->db_blkptr;
6154 dmu_buf_rele(db, FTAG);
6155
6156 /*
6157 * Damage the block. Dedup-ditto will save us when we read it later.
6158 */
6159 psize = BP_GET_PSIZE(&blk);
6160 abd = abd_alloc_linear(psize, B_TRUE);
6161 ztest_pattern_set(abd_to_buf(abd), psize, ~pattern);
6162
6163 (void) zio_wait(zio_rewrite(NULL, spa, 0, &blk,
6164 abd, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE,
6165 ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL));
6166
6167 abd_free(abd);
6168
6169 (void) pthread_rwlock_unlock(&ztest_name_lock);
6170 umem_free(od, sizeof (ztest_od_t));
6171 }
6172
6173 /*
6174 * Scrub the pool.
6175 */
6176 /* ARGSUSED */
6177 void
6178 ztest_scrub(ztest_ds_t *zd, uint64_t id)
6179 {
6180 spa_t *spa = ztest_spa;
6181
6182 /*
6183 * Scrub in progress by device removal.
6184 */
6185 if (ztest_device_removal_active)
6186 return;
6187
6188 (void) spa_scan(spa, POOL_SCAN_SCRUB);
6189 (void) poll(NULL, 0, 100); /* wait a moment, then force a restart */
6190 (void) spa_scan(spa, POOL_SCAN_SCRUB);
6191 }
6192
6193 /*
6194 * Change the guid for the pool.
6195 */
6196 /* ARGSUSED */
6197 void
6198 ztest_reguid(ztest_ds_t *zd, uint64_t id)
6199 {
6200 spa_t *spa = ztest_spa;
6201 uint64_t orig, load;
6202 int error;
6203
6204 if (ztest_opts.zo_mmp_test)
6205 return;
6206
6207 orig = spa_guid(spa);
6208 load = spa_load_guid(spa);
6209
6210 (void) pthread_rwlock_wrlock(&ztest_name_lock);
6211 error = spa_change_guid(spa);
6212 (void) pthread_rwlock_unlock(&ztest_name_lock);
6213
6214 if (error != 0)
6215 return;
6216
6217 if (ztest_opts.zo_verbose >= 4) {
6218 (void) printf("Changed guid old %llu -> %llu\n",
6219 (u_longlong_t)orig, (u_longlong_t)spa_guid(spa));
6220 }
6221
6222 VERIFY3U(orig, !=, spa_guid(spa));
6223 VERIFY3U(load, ==, spa_load_guid(spa));
6224 }
6225
6226 /*
6227 * Rename the pool to a different name and then rename it back.
6228 */
6229 /* ARGSUSED */
6230 void
6231 ztest_spa_rename(ztest_ds_t *zd, uint64_t id)
6232 {
6233 char *oldname, *newname;
6234 spa_t *spa;
6235
6236 if (ztest_opts.zo_mmp_test)
6237 return;
6238
6239 (void) pthread_rwlock_wrlock(&ztest_name_lock);
6240
6241 oldname = ztest_opts.zo_pool;
6242 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL);
6243 (void) strcpy(newname, oldname);
6244 (void) strcat(newname, "_tmp");
6245
6246 /*
6247 * Do the rename
6248 */
6249 VERIFY3U(0, ==, spa_rename(oldname, newname));
6250
6251 /*
6252 * Try to open it under the old name, which shouldn't exist
6253 */
6254 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
6255
6256 /*
6257 * Open it under the new name and make sure it's still the same spa_t.
6258 */
6259 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
6260
6261 ASSERT(spa == ztest_spa);
6262 spa_close(spa, FTAG);
6263
6264 /*
6265 * Rename it back to the original
6266 */
6267 VERIFY3U(0, ==, spa_rename(newname, oldname));
6268
6269 /*
6270 * Make sure it can still be opened
6271 */
6272 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
6273
6274 ASSERT(spa == ztest_spa);
6275 spa_close(spa, FTAG);
6276
6277 umem_free(newname, strlen(newname) + 1);
6278
6279 (void) pthread_rwlock_unlock(&ztest_name_lock);
6280 }
6281
6282 void
6283 ztest_fletcher(ztest_ds_t *zd, uint64_t id)
6284 {
6285 hrtime_t end = gethrtime() + NANOSEC;
6286
6287 while (gethrtime() <= end) {
6288 int run_count = 100;
6289 void *buf;
6290 struct abd *abd_data, *abd_meta;
6291 uint32_t size;
6292 int *ptr;
6293 int i;
6294 zio_cksum_t zc_ref;
6295 zio_cksum_t zc_ref_byteswap;
6296
6297 size = ztest_random_blocksize();
6298
6299 buf = umem_alloc(size, UMEM_NOFAIL);
6300 abd_data = abd_alloc(size, B_FALSE);
6301 abd_meta = abd_alloc(size, B_TRUE);
6302
6303 for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6304 *ptr = ztest_random(UINT_MAX);
6305
6306 abd_copy_from_buf_off(abd_data, buf, 0, size);
6307 abd_copy_from_buf_off(abd_meta, buf, 0, size);
6308
6309 VERIFY0(fletcher_4_impl_set("scalar"));
6310 fletcher_4_native(buf, size, NULL, &zc_ref);
6311 fletcher_4_byteswap(buf, size, NULL, &zc_ref_byteswap);
6312
6313 VERIFY0(fletcher_4_impl_set("cycle"));
6314 while (run_count-- > 0) {
6315 zio_cksum_t zc;
6316 zio_cksum_t zc_byteswap;
6317
6318 fletcher_4_byteswap(buf, size, NULL, &zc_byteswap);
6319 fletcher_4_native(buf, size, NULL, &zc);
6320
6321 VERIFY0(bcmp(&zc, &zc_ref, sizeof (zc)));
6322 VERIFY0(bcmp(&zc_byteswap, &zc_ref_byteswap,
6323 sizeof (zc_byteswap)));
6324
6325 /* Test ABD - data */
6326 abd_fletcher_4_byteswap(abd_data, size, NULL,
6327 &zc_byteswap);
6328 abd_fletcher_4_native(abd_data, size, NULL, &zc);
6329
6330 VERIFY0(bcmp(&zc, &zc_ref, sizeof (zc)));
6331 VERIFY0(bcmp(&zc_byteswap, &zc_ref_byteswap,
6332 sizeof (zc_byteswap)));
6333
6334 /* Test ABD - metadata */
6335 abd_fletcher_4_byteswap(abd_meta, size, NULL,
6336 &zc_byteswap);
6337 abd_fletcher_4_native(abd_meta, size, NULL, &zc);
6338
6339 VERIFY0(bcmp(&zc, &zc_ref, sizeof (zc)));
6340 VERIFY0(bcmp(&zc_byteswap, &zc_ref_byteswap,
6341 sizeof (zc_byteswap)));
6342
6343 }
6344
6345 umem_free(buf, size);
6346 abd_free(abd_data);
6347 abd_free(abd_meta);
6348 }
6349 }
6350
6351 void
6352 ztest_fletcher_incr(ztest_ds_t *zd, uint64_t id)
6353 {
6354 void *buf;
6355 size_t size;
6356 int *ptr;
6357 int i;
6358 zio_cksum_t zc_ref;
6359 zio_cksum_t zc_ref_bswap;
6360
6361 hrtime_t end = gethrtime() + NANOSEC;
6362
6363 while (gethrtime() <= end) {
6364 int run_count = 100;
6365
6366 size = ztest_random_blocksize();
6367 buf = umem_alloc(size, UMEM_NOFAIL);
6368
6369 for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6370 *ptr = ztest_random(UINT_MAX);
6371
6372 VERIFY0(fletcher_4_impl_set("scalar"));
6373 fletcher_4_native(buf, size, NULL, &zc_ref);
6374 fletcher_4_byteswap(buf, size, NULL, &zc_ref_bswap);
6375
6376 VERIFY0(fletcher_4_impl_set("cycle"));
6377
6378 while (run_count-- > 0) {
6379 zio_cksum_t zc;
6380 zio_cksum_t zc_bswap;
6381 size_t pos = 0;
6382
6383 ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
6384 ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
6385
6386 while (pos < size) {
6387 size_t inc = 64 * ztest_random(size / 67);
6388 /* sometimes add few bytes to test non-simd */
6389 if (ztest_random(100) < 10)
6390 inc += P2ALIGN(ztest_random(64),
6391 sizeof (uint32_t));
6392
6393 if (inc > (size - pos))
6394 inc = size - pos;
6395
6396 fletcher_4_incremental_native(buf + pos, inc,
6397 &zc);
6398 fletcher_4_incremental_byteswap(buf + pos, inc,
6399 &zc_bswap);
6400
6401 pos += inc;
6402 }
6403
6404 VERIFY3U(pos, ==, size);
6405
6406 VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
6407 VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
6408
6409 /*
6410 * verify if incremental on the whole buffer is
6411 * equivalent to non-incremental version
6412 */
6413 ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
6414 ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
6415
6416 fletcher_4_incremental_native(buf, size, &zc);
6417 fletcher_4_incremental_byteswap(buf, size, &zc_bswap);
6418
6419 VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
6420 VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
6421 }
6422
6423 umem_free(buf, size);
6424 }
6425 }
6426
6427 static int
6428 ztest_check_path(char *path)
6429 {
6430 struct stat s;
6431 /* return true on success */
6432 return (!stat(path, &s));
6433 }
6434
6435 static void
6436 ztest_get_zdb_bin(char *bin, int len)
6437 {
6438 char *zdb_path;
6439 /*
6440 * Try to use ZDB_PATH and in-tree zdb path. If not successful, just
6441 * let popen to search through PATH.
6442 */
6443 if ((zdb_path = getenv("ZDB_PATH"))) {
6444 strlcpy(bin, zdb_path, len); /* In env */
6445 if (!ztest_check_path(bin)) {
6446 ztest_dump_core = 0;
6447 fatal(1, "invalid ZDB_PATH '%s'", bin);
6448 }
6449 return;
6450 }
6451
6452 VERIFY(realpath(getexecname(), bin) != NULL);
6453 if (strstr(bin, "/ztest/")) {
6454 strstr(bin, "/ztest/")[0] = '\0'; /* In-tree */
6455 strcat(bin, "/zdb/zdb");
6456 if (ztest_check_path(bin))
6457 return;
6458 }
6459 strcpy(bin, "zdb");
6460 }
6461
6462 /*
6463 * Verify pool integrity by running zdb.
6464 */
6465 static void
6466 ztest_run_zdb(char *pool)
6467 {
6468 int status;
6469 char *bin;
6470 char *zdb;
6471 char *zbuf;
6472 const int len = MAXPATHLEN + MAXNAMELEN + 20;
6473 FILE *fp;
6474
6475 bin = umem_alloc(len, UMEM_NOFAIL);
6476 zdb = umem_alloc(len, UMEM_NOFAIL);
6477 zbuf = umem_alloc(1024, UMEM_NOFAIL);
6478
6479 ztest_get_zdb_bin(bin, len);
6480
6481 (void) sprintf(zdb,
6482 "%s -bcc%s%s -G -d -U %s "
6483 "-o zfs_reconstruct_indirect_combinations_max=65536 %s",
6484 bin,
6485 ztest_opts.zo_verbose >= 3 ? "s" : "",
6486 ztest_opts.zo_verbose >= 4 ? "v" : "",
6487 spa_config_path,
6488 pool);
6489
6490 if (ztest_opts.zo_verbose >= 5)
6491 (void) printf("Executing %s\n", strstr(zdb, "zdb "));
6492
6493 fp = popen(zdb, "r");
6494
6495 while (fgets(zbuf, 1024, fp) != NULL)
6496 if (ztest_opts.zo_verbose >= 3)
6497 (void) printf("%s", zbuf);
6498
6499 status = pclose(fp);
6500
6501 if (status == 0)
6502 goto out;
6503
6504 ztest_dump_core = 0;
6505 if (WIFEXITED(status))
6506 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status));
6507 else
6508 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status));
6509 out:
6510 umem_free(bin, len);
6511 umem_free(zdb, len);
6512 umem_free(zbuf, 1024);
6513 }
6514
6515 static void
6516 ztest_walk_pool_directory(char *header)
6517 {
6518 spa_t *spa = NULL;
6519
6520 if (ztest_opts.zo_verbose >= 6)
6521 (void) printf("%s\n", header);
6522
6523 mutex_enter(&spa_namespace_lock);
6524 while ((spa = spa_next(spa)) != NULL)
6525 if (ztest_opts.zo_verbose >= 6)
6526 (void) printf("\t%s\n", spa_name(spa));
6527 mutex_exit(&spa_namespace_lock);
6528 }
6529
6530 static void
6531 ztest_spa_import_export(char *oldname, char *newname)
6532 {
6533 nvlist_t *config, *newconfig;
6534 uint64_t pool_guid;
6535 spa_t *spa;
6536 int error;
6537
6538 if (ztest_opts.zo_verbose >= 4) {
6539 (void) printf("import/export: old = %s, new = %s\n",
6540 oldname, newname);
6541 }
6542
6543 /*
6544 * Clean up from previous runs.
6545 */
6546 (void) spa_destroy(newname);
6547
6548 /*
6549 * Get the pool's configuration and guid.
6550 */
6551 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
6552
6553 /*
6554 * Kick off a scrub to tickle scrub/export races.
6555 */
6556 if (ztest_random(2) == 0)
6557 (void) spa_scan(spa, POOL_SCAN_SCRUB);
6558
6559 pool_guid = spa_guid(spa);
6560 spa_close(spa, FTAG);
6561
6562 ztest_walk_pool_directory("pools before export");
6563
6564 /*
6565 * Export it.
6566 */
6567 VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE));
6568
6569 ztest_walk_pool_directory("pools after export");
6570
6571 /*
6572 * Try to import it.
6573 */
6574 newconfig = spa_tryimport(config);
6575 ASSERT(newconfig != NULL);
6576 nvlist_free(newconfig);
6577
6578 /*
6579 * Import it under the new name.
6580 */
6581 error = spa_import(newname, config, NULL, 0);
6582 if (error != 0) {
6583 dump_nvlist(config, 0);
6584 fatal(B_FALSE, "couldn't import pool %s as %s: error %u",
6585 oldname, newname, error);
6586 }
6587
6588 ztest_walk_pool_directory("pools after import");
6589
6590 /*
6591 * Try to import it again -- should fail with EEXIST.
6592 */
6593 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0));
6594
6595 /*
6596 * Try to import it under a different name -- should fail with EEXIST.
6597 */
6598 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0));
6599
6600 /*
6601 * Verify that the pool is no longer visible under the old name.
6602 */
6603 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
6604
6605 /*
6606 * Verify that we can open and close the pool using the new name.
6607 */
6608 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
6609 ASSERT(pool_guid == spa_guid(spa));
6610 spa_close(spa, FTAG);
6611
6612 nvlist_free(config);
6613 }
6614
6615 static void
6616 ztest_resume(spa_t *spa)
6617 {
6618 if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6)
6619 (void) printf("resuming from suspended state\n");
6620 spa_vdev_state_enter(spa, SCL_NONE);
6621 vdev_clear(spa, NULL);
6622 (void) spa_vdev_state_exit(spa, NULL, 0);
6623 (void) zio_resume(spa);
6624 }
6625
6626 static void
6627 ztest_resume_thread(void *arg)
6628 {
6629 spa_t *spa = arg;
6630
6631 while (!ztest_exiting) {
6632 if (spa_suspended(spa))
6633 ztest_resume(spa);
6634 (void) poll(NULL, 0, 100);
6635
6636 /*
6637 * Periodically change the zfs_compressed_arc_enabled setting.
6638 */
6639 if (ztest_random(10) == 0)
6640 zfs_compressed_arc_enabled = ztest_random(2);
6641
6642 /*
6643 * Periodically change the zfs_abd_scatter_enabled setting.
6644 */
6645 if (ztest_random(10) == 0)
6646 zfs_abd_scatter_enabled = ztest_random(2);
6647 }
6648
6649 thread_exit();
6650 }
6651
6652 static void
6653 ztest_deadman_thread(void *arg)
6654 {
6655 ztest_shared_t *zs = arg;
6656 spa_t *spa = ztest_spa;
6657 hrtime_t delta, overdue, total = 0;
6658
6659 for (;;) {
6660 delta = zs->zs_thread_stop - zs->zs_thread_start +
6661 MSEC2NSEC(zfs_deadman_synctime_ms);
6662
6663 (void) poll(NULL, 0, (int)NSEC2MSEC(delta));
6664
6665 /*
6666 * If the pool is suspended then fail immediately. Otherwise,
6667 * check to see if the pool is making any progress. If
6668 * vdev_deadman() discovers that there hasn't been any recent
6669 * I/Os then it will end up aborting the tests.
6670 */
6671 if (spa_suspended(spa) || spa->spa_root_vdev == NULL) {
6672 fatal(0, "aborting test after %llu seconds because "
6673 "pool has transitioned to a suspended state.",
6674 zfs_deadman_synctime_ms / 1000);
6675 }
6676 vdev_deadman(spa->spa_root_vdev, FTAG);
6677
6678 /*
6679 * If the process doesn't complete within a grace period of
6680 * zfs_deadman_synctime_ms over the expected finish time,
6681 * then it may be hung and is terminated.
6682 */
6683 overdue = zs->zs_proc_stop + MSEC2NSEC(zfs_deadman_synctime_ms);
6684 total += zfs_deadman_synctime_ms / 1000;
6685 if (gethrtime() > overdue) {
6686 fatal(0, "aborting test after %llu seconds because "
6687 "the process is overdue for termination.", total);
6688 }
6689
6690 (void) printf("ztest has been running for %lld seconds\n",
6691 total);
6692 }
6693 }
6694
6695 static void
6696 ztest_execute(int test, ztest_info_t *zi, uint64_t id)
6697 {
6698 ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets];
6699 ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test);
6700 hrtime_t functime = gethrtime();
6701 int i;
6702
6703 for (i = 0; i < zi->zi_iters; i++)
6704 zi->zi_func(zd, id);
6705
6706 functime = gethrtime() - functime;
6707
6708 atomic_add_64(&zc->zc_count, 1);
6709 atomic_add_64(&zc->zc_time, functime);
6710
6711 if (ztest_opts.zo_verbose >= 4)
6712 (void) printf("%6.2f sec in %s\n",
6713 (double)functime / NANOSEC, zi->zi_funcname);
6714 }
6715
6716 static void
6717 ztest_thread(void *arg)
6718 {
6719 int rand;
6720 uint64_t id = (uintptr_t)arg;
6721 ztest_shared_t *zs = ztest_shared;
6722 uint64_t call_next;
6723 hrtime_t now;
6724 ztest_info_t *zi;
6725 ztest_shared_callstate_t *zc;
6726
6727 while ((now = gethrtime()) < zs->zs_thread_stop) {
6728 /*
6729 * See if it's time to force a crash.
6730 */
6731 if (now > zs->zs_thread_kill)
6732 ztest_kill(zs);
6733
6734 /*
6735 * If we're getting ENOSPC with some regularity, stop.
6736 */
6737 if (zs->zs_enospc_count > 10)
6738 break;
6739
6740 /*
6741 * Pick a random function to execute.
6742 */
6743 rand = ztest_random(ZTEST_FUNCS);
6744 zi = &ztest_info[rand];
6745 zc = ZTEST_GET_SHARED_CALLSTATE(rand);
6746 call_next = zc->zc_next;
6747
6748 if (now >= call_next &&
6749 atomic_cas_64(&zc->zc_next, call_next, call_next +
6750 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) {
6751 ztest_execute(rand, zi, id);
6752 }
6753 }
6754
6755 thread_exit();
6756 }
6757
6758 static void
6759 ztest_dataset_name(char *dsname, char *pool, int d)
6760 {
6761 (void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d);
6762 }
6763
6764 static void
6765 ztest_dataset_destroy(int d)
6766 {
6767 char name[ZFS_MAX_DATASET_NAME_LEN];
6768 int t;
6769
6770 ztest_dataset_name(name, ztest_opts.zo_pool, d);
6771
6772 if (ztest_opts.zo_verbose >= 3)
6773 (void) printf("Destroying %s to free up space\n", name);
6774
6775 /*
6776 * Cleanup any non-standard clones and snapshots. In general,
6777 * ztest thread t operates on dataset (t % zopt_datasets),
6778 * so there may be more than one thing to clean up.
6779 */
6780 for (t = d; t < ztest_opts.zo_threads;
6781 t += ztest_opts.zo_datasets)
6782 ztest_dsl_dataset_cleanup(name, t);
6783
6784 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
6785 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
6786 }
6787
6788 static void
6789 ztest_dataset_dirobj_verify(ztest_ds_t *zd)
6790 {
6791 uint64_t usedobjs, dirobjs, scratch;
6792
6793 /*
6794 * ZTEST_DIROBJ is the object directory for the entire dataset.
6795 * Therefore, the number of objects in use should equal the
6796 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
6797 * If not, we have an object leak.
6798 *
6799 * Note that we can only check this in ztest_dataset_open(),
6800 * when the open-context and syncing-context values agree.
6801 * That's because zap_count() returns the open-context value,
6802 * while dmu_objset_space() returns the rootbp fill count.
6803 */
6804 VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
6805 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
6806 ASSERT3U(dirobjs + 1, ==, usedobjs);
6807 }
6808
6809 static int
6810 ztest_dataset_open(int d)
6811 {
6812 ztest_ds_t *zd = &ztest_ds[d];
6813 uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq;
6814 objset_t *os;
6815 zilog_t *zilog;
6816 char name[ZFS_MAX_DATASET_NAME_LEN];
6817 int error;
6818
6819 ztest_dataset_name(name, ztest_opts.zo_pool, d);
6820
6821 (void) pthread_rwlock_rdlock(&ztest_name_lock);
6822
6823 error = ztest_dataset_create(name);
6824 if (error == ENOSPC) {
6825 (void) pthread_rwlock_unlock(&ztest_name_lock);
6826 ztest_record_enospc(FTAG);
6827 return (error);
6828 }
6829 ASSERT(error == 0 || error == EEXIST);
6830
6831 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
6832 B_TRUE, zd, &os));
6833 (void) pthread_rwlock_unlock(&ztest_name_lock);
6834
6835 ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os);
6836
6837 zilog = zd->zd_zilog;
6838
6839 if (zilog->zl_header->zh_claim_lr_seq != 0 &&
6840 zilog->zl_header->zh_claim_lr_seq < committed_seq)
6841 fatal(0, "missing log records: claimed %llu < committed %llu",
6842 zilog->zl_header->zh_claim_lr_seq, committed_seq);
6843
6844 ztest_dataset_dirobj_verify(zd);
6845
6846 zil_replay(os, zd, ztest_replay_vector);
6847
6848 ztest_dataset_dirobj_verify(zd);
6849
6850 if (ztest_opts.zo_verbose >= 6)
6851 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n",
6852 zd->zd_name,
6853 (u_longlong_t)zilog->zl_parse_blk_count,
6854 (u_longlong_t)zilog->zl_parse_lr_count,
6855 (u_longlong_t)zilog->zl_replaying_seq);
6856
6857 zilog = zil_open(os, ztest_get_data);
6858
6859 if (zilog->zl_replaying_seq != 0 &&
6860 zilog->zl_replaying_seq < committed_seq)
6861 fatal(0, "missing log records: replayed %llu < committed %llu",
6862 zilog->zl_replaying_seq, committed_seq);
6863
6864 return (0);
6865 }
6866
6867 static void
6868 ztest_dataset_close(int d)
6869 {
6870 ztest_ds_t *zd = &ztest_ds[d];
6871
6872 zil_close(zd->zd_zilog);
6873 txg_wait_synced(spa_get_dsl(zd->zd_os->os_spa), 0);
6874 dmu_objset_disown(zd->zd_os, B_TRUE, zd);
6875
6876 ztest_zd_fini(zd);
6877 }
6878
6879 /*
6880 * Kick off threads to run tests on all datasets in parallel.
6881 */
6882 static void
6883 ztest_run(ztest_shared_t *zs)
6884 {
6885 spa_t *spa;
6886 objset_t *os;
6887 kthread_t *resume_thread;
6888 kthread_t **run_threads;
6889 uint64_t object;
6890 int error;
6891 int t, d;
6892
6893 ztest_exiting = B_FALSE;
6894
6895 /*
6896 * Initialize parent/child shared state.
6897 */
6898 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
6899 mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
6900 VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
6901
6902 zs->zs_thread_start = gethrtime();
6903 zs->zs_thread_stop =
6904 zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC;
6905 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
6906 zs->zs_thread_kill = zs->zs_thread_stop;
6907 if (ztest_random(100) < ztest_opts.zo_killrate) {
6908 zs->zs_thread_kill -=
6909 ztest_random(ztest_opts.zo_passtime * NANOSEC);
6910 }
6911
6912 mutex_init(&zcl.zcl_callbacks_lock, NULL, MUTEX_DEFAULT, NULL);
6913
6914 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
6915 offsetof(ztest_cb_data_t, zcd_node));
6916
6917 /*
6918 * Open our pool.
6919 */
6920 kernel_init(FREAD | FWRITE);
6921 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
6922 metaslab_preload_limit = ztest_random(20) + 1;
6923 ztest_spa = spa;
6924
6925 dmu_objset_stats_t dds;
6926 VERIFY0(ztest_dmu_objset_own(ztest_opts.zo_pool,
6927 DMU_OST_ANY, B_TRUE, B_TRUE, FTAG, &os));
6928 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
6929 dmu_objset_fast_stat(os, &dds);
6930 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
6931 zs->zs_guid = dds.dds_guid;
6932 dmu_objset_disown(os, B_TRUE, FTAG);
6933
6934 spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN;
6935
6936 /*
6937 * Create a thread to periodically resume suspended I/O.
6938 */
6939 resume_thread = thread_create(NULL, 0, ztest_resume_thread,
6940 spa, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
6941
6942 /*
6943 * Create a deadman thread and set to panic if we hang.
6944 */
6945 (void) thread_create(NULL, 0, ztest_deadman_thread,
6946 zs, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
6947
6948 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
6949
6950 /*
6951 * Verify that we can safely inquire about any object,
6952 * whether it's allocated or not. To make it interesting,
6953 * we probe a 5-wide window around each power of two.
6954 * This hits all edge cases, including zero and the max.
6955 */
6956 for (t = 0; t < 64; t++) {
6957 for (d = -5; d <= 5; d++) {
6958 error = dmu_object_info(spa->spa_meta_objset,
6959 (1ULL << t) + d, NULL);
6960 ASSERT(error == 0 || error == ENOENT ||
6961 error == EINVAL);
6962 }
6963 }
6964
6965 /*
6966 * If we got any ENOSPC errors on the previous run, destroy something.
6967 */
6968 if (zs->zs_enospc_count != 0) {
6969 int d = ztest_random(ztest_opts.zo_datasets);
6970 ztest_dataset_destroy(d);
6971 }
6972 zs->zs_enospc_count = 0;
6973
6974 run_threads = umem_zalloc(ztest_opts.zo_threads * sizeof (kthread_t *),
6975 UMEM_NOFAIL);
6976
6977 if (ztest_opts.zo_verbose >= 4)
6978 (void) printf("starting main threads...\n");
6979
6980 /*
6981 * Kick off all the tests that run in parallel.
6982 */
6983 for (t = 0; t < ztest_opts.zo_threads; t++) {
6984 if (t < ztest_opts.zo_datasets && ztest_dataset_open(t) != 0) {
6985 umem_free(run_threads, ztest_opts.zo_threads *
6986 sizeof (kthread_t *));
6987 return;
6988 }
6989
6990 run_threads[t] = thread_create(NULL, 0, ztest_thread,
6991 (void *)(uintptr_t)t, 0, NULL, TS_RUN | TS_JOINABLE,
6992 defclsyspri);
6993 }
6994
6995 /*
6996 * Wait for all of the tests to complete. We go in reverse order
6997 * so we don't close datasets while threads are still using them.
6998 */
6999 for (t = ztest_opts.zo_threads - 1; t >= 0; t--) {
7000 VERIFY0(thread_join(run_threads[t]));
7001 if (t < ztest_opts.zo_datasets)
7002 ztest_dataset_close(t);
7003 }
7004
7005 txg_wait_synced(spa_get_dsl(spa), 0);
7006
7007 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
7008 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
7009
7010 umem_free(run_threads, ztest_opts.zo_threads * sizeof (kthread_t *));
7011
7012 /* Kill the resume thread */
7013 ztest_exiting = B_TRUE;
7014 VERIFY0(thread_join(resume_thread));
7015 ztest_resume(spa);
7016
7017 /*
7018 * Right before closing the pool, kick off a bunch of async I/O;
7019 * spa_close() should wait for it to complete.
7020 */
7021 for (object = 1; object < 50; object++) {
7022 dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20,
7023 ZIO_PRIORITY_SYNC_READ);
7024 }
7025
7026 /* Verify that at least one commit cb was called in a timely fashion */
7027 if (zc_cb_counter >= ZTEST_COMMIT_CB_MIN_REG)
7028 VERIFY0(zc_min_txg_delay);
7029
7030 spa_close(spa, FTAG);
7031
7032 /*
7033 * Verify that we can loop over all pools.
7034 */
7035 mutex_enter(&spa_namespace_lock);
7036 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
7037 if (ztest_opts.zo_verbose > 3)
7038 (void) printf("spa_next: found %s\n", spa_name(spa));
7039 mutex_exit(&spa_namespace_lock);
7040
7041 /*
7042 * Verify that we can export the pool and reimport it under a
7043 * different name.
7044 */
7045 if ((ztest_random(2) == 0) && !ztest_opts.zo_mmp_test) {
7046 char name[ZFS_MAX_DATASET_NAME_LEN];
7047 (void) snprintf(name, sizeof (name), "%s_import",
7048 ztest_opts.zo_pool);
7049 ztest_spa_import_export(ztest_opts.zo_pool, name);
7050 ztest_spa_import_export(name, ztest_opts.zo_pool);
7051 }
7052
7053 kernel_fini();
7054
7055 list_destroy(&zcl.zcl_callbacks);
7056 mutex_destroy(&zcl.zcl_callbacks_lock);
7057 (void) pthread_rwlock_destroy(&ztest_name_lock);
7058 mutex_destroy(&ztest_vdev_lock);
7059 mutex_destroy(&ztest_checkpoint_lock);
7060 }
7061
7062 static void
7063 ztest_freeze(void)
7064 {
7065 ztest_ds_t *zd = &ztest_ds[0];
7066 spa_t *spa;
7067 int numloops = 0;
7068
7069 if (ztest_opts.zo_verbose >= 3)
7070 (void) printf("testing spa_freeze()...\n");
7071
7072 kernel_init(FREAD | FWRITE);
7073 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
7074 VERIFY3U(0, ==, ztest_dataset_open(0));
7075 ztest_spa = spa;
7076
7077 /*
7078 * Force the first log block to be transactionally allocated.
7079 * We have to do this before we freeze the pool -- otherwise
7080 * the log chain won't be anchored.
7081 */
7082 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
7083 ztest_dmu_object_alloc_free(zd, 0);
7084 zil_commit(zd->zd_zilog, 0);
7085 }
7086
7087 txg_wait_synced(spa_get_dsl(spa), 0);
7088
7089 /*
7090 * Freeze the pool. This stops spa_sync() from doing anything,
7091 * so that the only way to record changes from now on is the ZIL.
7092 */
7093 spa_freeze(spa);
7094
7095 /*
7096 * Because it is hard to predict how much space a write will actually
7097 * require beforehand, we leave ourselves some fudge space to write over
7098 * capacity.
7099 */
7100 uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2;
7101
7102 /*
7103 * Run tests that generate log records but don't alter the pool config
7104 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
7105 * We do a txg_wait_synced() after each iteration to force the txg
7106 * to increase well beyond the last synced value in the uberblock.
7107 * The ZIL should be OK with that.
7108 *
7109 * Run a random number of times less than zo_maxloops and ensure we do
7110 * not run out of space on the pool.
7111 */
7112 while (ztest_random(10) != 0 &&
7113 numloops++ < ztest_opts.zo_maxloops &&
7114 metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) {
7115 ztest_od_t od;
7116 ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
7117 VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE));
7118 ztest_io(zd, od.od_object,
7119 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
7120 txg_wait_synced(spa_get_dsl(spa), 0);
7121 }
7122
7123 /*
7124 * Commit all of the changes we just generated.
7125 */
7126 zil_commit(zd->zd_zilog, 0);
7127 txg_wait_synced(spa_get_dsl(spa), 0);
7128
7129 /*
7130 * Close our dataset and close the pool.
7131 */
7132 ztest_dataset_close(0);
7133 spa_close(spa, FTAG);
7134 kernel_fini();
7135
7136 /*
7137 * Open and close the pool and dataset to induce log replay.
7138 */
7139 kernel_init(FREAD | FWRITE);
7140 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
7141 ASSERT(spa_freeze_txg(spa) == UINT64_MAX);
7142 VERIFY3U(0, ==, ztest_dataset_open(0));
7143 ztest_spa = spa;
7144 txg_wait_synced(spa_get_dsl(spa), 0);
7145 ztest_dataset_close(0);
7146 ztest_reguid(NULL, 0);
7147
7148 spa_close(spa, FTAG);
7149 kernel_fini();
7150 }
7151
7152 void
7153 print_time(hrtime_t t, char *timebuf)
7154 {
7155 hrtime_t s = t / NANOSEC;
7156 hrtime_t m = s / 60;
7157 hrtime_t h = m / 60;
7158 hrtime_t d = h / 24;
7159
7160 s -= m * 60;
7161 m -= h * 60;
7162 h -= d * 24;
7163
7164 timebuf[0] = '\0';
7165
7166 if (d)
7167 (void) sprintf(timebuf,
7168 "%llud%02lluh%02llum%02llus", d, h, m, s);
7169 else if (h)
7170 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
7171 else if (m)
7172 (void) sprintf(timebuf, "%llum%02llus", m, s);
7173 else
7174 (void) sprintf(timebuf, "%llus", s);
7175 }
7176
7177 static nvlist_t *
7178 make_random_props(void)
7179 {
7180 nvlist_t *props;
7181
7182 VERIFY0(nvlist_alloc(&props, NV_UNIQUE_NAME, 0));
7183
7184 if (ztest_random(2) == 0)
7185 return (props);
7186
7187 VERIFY0(nvlist_add_uint64(props,
7188 zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE), 1));
7189
7190 return (props);
7191 }
7192
7193 /*
7194 * Import a storage pool with the given name.
7195 */
7196 static void
7197 ztest_import(ztest_shared_t *zs)
7198 {
7199 libzfs_handle_t *hdl;
7200 importargs_t args = { 0 };
7201 spa_t *spa;
7202 nvlist_t *cfg = NULL;
7203 int nsearch = 1;
7204 char *searchdirs[nsearch];
7205 char *name = ztest_opts.zo_pool;
7206 int flags = ZFS_IMPORT_MISSING_LOG;
7207 int error;
7208
7209 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
7210 mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
7211 VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
7212
7213 kernel_init(FREAD | FWRITE);
7214 hdl = libzfs_init();
7215
7216 searchdirs[0] = ztest_opts.zo_dir;
7217 args.paths = nsearch;
7218 args.path = searchdirs;
7219 args.can_be_active = B_FALSE;
7220
7221 error = zpool_tryimport(hdl, name, &cfg, &args);
7222 if (error)
7223 (void) fatal(0, "No pools found\n");
7224
7225 VERIFY0(spa_import(name, cfg, NULL, flags));
7226 VERIFY0(spa_open(name, &spa, FTAG));
7227 zs->zs_metaslab_sz =
7228 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
7229 spa_close(spa, FTAG);
7230
7231 libzfs_fini(hdl);
7232 kernel_fini();
7233
7234 if (!ztest_opts.zo_mmp_test) {
7235 ztest_run_zdb(ztest_opts.zo_pool);
7236 ztest_freeze();
7237 ztest_run_zdb(ztest_opts.zo_pool);
7238 }
7239
7240 (void) pthread_rwlock_destroy(&ztest_name_lock);
7241 mutex_destroy(&ztest_vdev_lock);
7242 mutex_destroy(&ztest_checkpoint_lock);
7243 }
7244
7245 /*
7246 * Create a storage pool with the given name and initial vdev size.
7247 * Then test spa_freeze() functionality.
7248 */
7249 static void
7250 ztest_init(ztest_shared_t *zs)
7251 {
7252 spa_t *spa;
7253 nvlist_t *nvroot, *props;
7254 int i;
7255
7256 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
7257 mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
7258 VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
7259
7260 kernel_init(FREAD | FWRITE);
7261
7262 /*
7263 * Create the storage pool.
7264 */
7265 (void) spa_destroy(ztest_opts.zo_pool);
7266 ztest_shared->zs_vdev_next_leaf = 0;
7267 zs->zs_splits = 0;
7268 zs->zs_mirrors = ztest_opts.zo_mirrors;
7269 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
7270 NULL, ztest_opts.zo_raidz, zs->zs_mirrors, 1);
7271 props = make_random_props();
7272
7273 /*
7274 * We don't expect the pool to suspend unless maxfaults == 0,
7275 * in which case ztest_fault_inject() temporarily takes away
7276 * the only valid replica.
7277 */
7278 VERIFY0(nvlist_add_uint64(props,
7279 zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
7280 MAXFAULTS(zs) ? ZIO_FAILURE_MODE_PANIC : ZIO_FAILURE_MODE_WAIT));
7281
7282 for (i = 0; i < SPA_FEATURES; i++) {
7283 char *buf;
7284 VERIFY3S(-1, !=, asprintf(&buf, "feature@%s",
7285 spa_feature_table[i].fi_uname));
7286 VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0));
7287 free(buf);
7288 }
7289
7290 VERIFY0(spa_create(ztest_opts.zo_pool, nvroot, props, NULL, NULL));
7291 nvlist_free(nvroot);
7292 nvlist_free(props);
7293
7294 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
7295 zs->zs_metaslab_sz =
7296 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
7297 spa_close(spa, FTAG);
7298
7299 kernel_fini();
7300
7301 if (!ztest_opts.zo_mmp_test) {
7302 ztest_run_zdb(ztest_opts.zo_pool);
7303 ztest_freeze();
7304 ztest_run_zdb(ztest_opts.zo_pool);
7305 }
7306
7307 (void) pthread_rwlock_destroy(&ztest_name_lock);
7308 mutex_destroy(&ztest_vdev_lock);
7309 mutex_destroy(&ztest_checkpoint_lock);
7310 }
7311
7312 static void
7313 setup_data_fd(void)
7314 {
7315 static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX";
7316
7317 ztest_fd_data = mkstemp(ztest_name_data);
7318 ASSERT3S(ztest_fd_data, >=, 0);
7319 (void) unlink(ztest_name_data);
7320 }
7321
7322 static int
7323 shared_data_size(ztest_shared_hdr_t *hdr)
7324 {
7325 int size;
7326
7327 size = hdr->zh_hdr_size;
7328 size += hdr->zh_opts_size;
7329 size += hdr->zh_size;
7330 size += hdr->zh_stats_size * hdr->zh_stats_count;
7331 size += hdr->zh_ds_size * hdr->zh_ds_count;
7332
7333 return (size);
7334 }
7335
7336 static void
7337 setup_hdr(void)
7338 {
7339 int size;
7340 ztest_shared_hdr_t *hdr;
7341
7342 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
7343 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
7344 ASSERT(hdr != MAP_FAILED);
7345
7346 VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t)));
7347
7348 hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t);
7349 hdr->zh_opts_size = sizeof (ztest_shared_opts_t);
7350 hdr->zh_size = sizeof (ztest_shared_t);
7351 hdr->zh_stats_size = sizeof (ztest_shared_callstate_t);
7352 hdr->zh_stats_count = ZTEST_FUNCS;
7353 hdr->zh_ds_size = sizeof (ztest_shared_ds_t);
7354 hdr->zh_ds_count = ztest_opts.zo_datasets;
7355
7356 size = shared_data_size(hdr);
7357 VERIFY3U(0, ==, ftruncate(ztest_fd_data, size));
7358
7359 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
7360 }
7361
7362 static void
7363 setup_data(void)
7364 {
7365 int size, offset;
7366 ztest_shared_hdr_t *hdr;
7367 uint8_t *buf;
7368
7369 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
7370 PROT_READ, MAP_SHARED, ztest_fd_data, 0);
7371 ASSERT(hdr != MAP_FAILED);
7372
7373 size = shared_data_size(hdr);
7374
7375 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
7376 hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()),
7377 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
7378 ASSERT(hdr != MAP_FAILED);
7379 buf = (uint8_t *)hdr;
7380
7381 offset = hdr->zh_hdr_size;
7382 ztest_shared_opts = (void *)&buf[offset];
7383 offset += hdr->zh_opts_size;
7384 ztest_shared = (void *)&buf[offset];
7385 offset += hdr->zh_size;
7386 ztest_shared_callstate = (void *)&buf[offset];
7387 offset += hdr->zh_stats_size * hdr->zh_stats_count;
7388 ztest_shared_ds = (void *)&buf[offset];
7389 }
7390
7391 static boolean_t
7392 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp)
7393 {
7394 pid_t pid;
7395 int status;
7396 char *cmdbuf = NULL;
7397
7398 pid = fork();
7399
7400 if (cmd == NULL) {
7401 cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
7402 (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN);
7403 cmd = cmdbuf;
7404 }
7405
7406 if (pid == -1)
7407 fatal(1, "fork failed");
7408
7409 if (pid == 0) { /* child */
7410 char *emptyargv[2] = { cmd, NULL };
7411 char fd_data_str[12];
7412
7413 struct rlimit rl = { 1024, 1024 };
7414 (void) setrlimit(RLIMIT_NOFILE, &rl);
7415
7416 (void) close(ztest_fd_rand);
7417 VERIFY(11 >= snprintf(fd_data_str, 12, "%d", ztest_fd_data));
7418 VERIFY(0 == setenv("ZTEST_FD_DATA", fd_data_str, 1));
7419
7420 (void) enable_extended_FILE_stdio(-1, -1);
7421 if (libpath != NULL)
7422 VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1));
7423 (void) execv(cmd, emptyargv);
7424 ztest_dump_core = B_FALSE;
7425 fatal(B_TRUE, "exec failed: %s", cmd);
7426 }
7427
7428 if (cmdbuf != NULL) {
7429 umem_free(cmdbuf, MAXPATHLEN);
7430 cmd = NULL;
7431 }
7432
7433 while (waitpid(pid, &status, 0) != pid)
7434 continue;
7435 if (statusp != NULL)
7436 *statusp = status;
7437
7438 if (WIFEXITED(status)) {
7439 if (WEXITSTATUS(status) != 0) {
7440 (void) fprintf(stderr, "child exited with code %d\n",
7441 WEXITSTATUS(status));
7442 exit(2);
7443 }
7444 return (B_FALSE);
7445 } else if (WIFSIGNALED(status)) {
7446 if (!ignorekill || WTERMSIG(status) != SIGKILL) {
7447 (void) fprintf(stderr, "child died with signal %d\n",
7448 WTERMSIG(status));
7449 exit(3);
7450 }
7451 return (B_TRUE);
7452 } else {
7453 (void) fprintf(stderr, "something strange happened to child\n");
7454 exit(4);
7455 /* NOTREACHED */
7456 }
7457 }
7458
7459 static void
7460 ztest_run_init(void)
7461 {
7462 int i;
7463
7464 ztest_shared_t *zs = ztest_shared;
7465
7466 /*
7467 * Blow away any existing copy of zpool.cache
7468 */
7469 (void) remove(spa_config_path);
7470
7471 if (ztest_opts.zo_init == 0) {
7472 if (ztest_opts.zo_verbose >= 1)
7473 (void) printf("Importing pool %s\n",
7474 ztest_opts.zo_pool);
7475 ztest_import(zs);
7476 return;
7477 }
7478
7479 /*
7480 * Create and initialize our storage pool.
7481 */
7482 for (i = 1; i <= ztest_opts.zo_init; i++) {
7483 bzero(zs, sizeof (ztest_shared_t));
7484 if (ztest_opts.zo_verbose >= 3 &&
7485 ztest_opts.zo_init != 1) {
7486 (void) printf("ztest_init(), pass %d\n", i);
7487 }
7488 ztest_init(zs);
7489 }
7490 }
7491
7492 int
7493 main(int argc, char **argv)
7494 {
7495 int kills = 0;
7496 int iters = 0;
7497 int older = 0;
7498 int newer = 0;
7499 ztest_shared_t *zs;
7500 ztest_info_t *zi;
7501 ztest_shared_callstate_t *zc;
7502 char timebuf[100];
7503 char numbuf[NN_NUMBUF_SZ];
7504 spa_t *spa;
7505 char *cmd;
7506 boolean_t hasalt;
7507 int f;
7508 char *fd_data_str = getenv("ZTEST_FD_DATA");
7509 struct sigaction action;
7510
7511 (void) setvbuf(stdout, NULL, _IOLBF, 0);
7512
7513 dprintf_setup(&argc, argv);
7514 zfs_deadman_synctime_ms = 300000;
7515 /*
7516 * As two-word space map entries may not come up often (especially
7517 * if pool and vdev sizes are small) we want to force at least some
7518 * of them so the feature get tested.
7519 */
7520 zfs_force_some_double_word_sm_entries = B_TRUE;
7521
7522 /*
7523 * Verify that even extensively damaged split blocks with many
7524 * segments can be reconstructed in a reasonable amount of time
7525 * when reconstruction is known to be possible.
7526 */
7527 zfs_reconstruct_indirect_damage_fraction = 4;
7528
7529 action.sa_handler = sig_handler;
7530 sigemptyset(&action.sa_mask);
7531 action.sa_flags = 0;
7532
7533 if (sigaction(SIGSEGV, &action, NULL) < 0) {
7534 (void) fprintf(stderr, "ztest: cannot catch SIGSEGV: %s.\n",
7535 strerror(errno));
7536 exit(EXIT_FAILURE);
7537 }
7538
7539 if (sigaction(SIGABRT, &action, NULL) < 0) {
7540 (void) fprintf(stderr, "ztest: cannot catch SIGABRT: %s.\n",
7541 strerror(errno));
7542 exit(EXIT_FAILURE);
7543 }
7544
7545 /*
7546 * Force random_get_bytes() to use /dev/urandom in order to prevent
7547 * ztest from needlessly depleting the system entropy pool.
7548 */
7549 random_path = "/dev/urandom";
7550 ztest_fd_rand = open(random_path, O_RDONLY);
7551 ASSERT3S(ztest_fd_rand, >=, 0);
7552
7553 if (!fd_data_str) {
7554 process_options(argc, argv);
7555
7556 setup_data_fd();
7557 setup_hdr();
7558 setup_data();
7559 bcopy(&ztest_opts, ztest_shared_opts,
7560 sizeof (*ztest_shared_opts));
7561 } else {
7562 ztest_fd_data = atoi(fd_data_str);
7563 setup_data();
7564 bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts));
7565 }
7566 ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count);
7567
7568 /* Override location of zpool.cache */
7569 VERIFY(asprintf((char **)&spa_config_path, "%s/zpool.cache",
7570 ztest_opts.zo_dir) != -1);
7571
7572 ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t),
7573 UMEM_NOFAIL);
7574 zs = ztest_shared;
7575
7576 if (fd_data_str) {
7577 metaslab_force_ganging = ztest_opts.zo_metaslab_force_ganging;
7578 metaslab_df_alloc_threshold =
7579 zs->zs_metaslab_df_alloc_threshold;
7580
7581 if (zs->zs_do_init)
7582 ztest_run_init();
7583 else
7584 ztest_run(zs);
7585 exit(0);
7586 }
7587
7588 hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0);
7589
7590 if (ztest_opts.zo_verbose >= 1) {
7591 (void) printf("%llu vdevs, %d datasets, %d threads,"
7592 " %llu seconds...\n",
7593 (u_longlong_t)ztest_opts.zo_vdevs,
7594 ztest_opts.zo_datasets,
7595 ztest_opts.zo_threads,
7596 (u_longlong_t)ztest_opts.zo_time);
7597 }
7598
7599 cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
7600 (void) strlcpy(cmd, getexecname(), MAXNAMELEN);
7601
7602 zs->zs_do_init = B_TRUE;
7603 if (strlen(ztest_opts.zo_alt_ztest) != 0) {
7604 if (ztest_opts.zo_verbose >= 1) {
7605 (void) printf("Executing older ztest for "
7606 "initialization: %s\n", ztest_opts.zo_alt_ztest);
7607 }
7608 VERIFY(!exec_child(ztest_opts.zo_alt_ztest,
7609 ztest_opts.zo_alt_libpath, B_FALSE, NULL));
7610 } else {
7611 VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL));
7612 }
7613 zs->zs_do_init = B_FALSE;
7614
7615 zs->zs_proc_start = gethrtime();
7616 zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC;
7617
7618 for (f = 0; f < ZTEST_FUNCS; f++) {
7619 zi = &ztest_info[f];
7620 zc = ZTEST_GET_SHARED_CALLSTATE(f);
7621 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
7622 zc->zc_next = UINT64_MAX;
7623 else
7624 zc->zc_next = zs->zs_proc_start +
7625 ztest_random(2 * zi->zi_interval[0] + 1);
7626 }
7627
7628 /*
7629 * Run the tests in a loop. These tests include fault injection
7630 * to verify that self-healing data works, and forced crashes
7631 * to verify that we never lose on-disk consistency.
7632 */
7633 while (gethrtime() < zs->zs_proc_stop) {
7634 int status;
7635 boolean_t killed;
7636
7637 /*
7638 * Initialize the workload counters for each function.
7639 */
7640 for (f = 0; f < ZTEST_FUNCS; f++) {
7641 zc = ZTEST_GET_SHARED_CALLSTATE(f);
7642 zc->zc_count = 0;
7643 zc->zc_time = 0;
7644 }
7645
7646 /* Set the allocation switch size */
7647 zs->zs_metaslab_df_alloc_threshold =
7648 ztest_random(zs->zs_metaslab_sz / 4) + 1;
7649
7650 if (!hasalt || ztest_random(2) == 0) {
7651 if (hasalt && ztest_opts.zo_verbose >= 1) {
7652 (void) printf("Executing newer ztest: %s\n",
7653 cmd);
7654 }
7655 newer++;
7656 killed = exec_child(cmd, NULL, B_TRUE, &status);
7657 } else {
7658 if (hasalt && ztest_opts.zo_verbose >= 1) {
7659 (void) printf("Executing older ztest: %s\n",
7660 ztest_opts.zo_alt_ztest);
7661 }
7662 older++;
7663 killed = exec_child(ztest_opts.zo_alt_ztest,
7664 ztest_opts.zo_alt_libpath, B_TRUE, &status);
7665 }
7666
7667 if (killed)
7668 kills++;
7669 iters++;
7670
7671 if (ztest_opts.zo_verbose >= 1) {
7672 hrtime_t now = gethrtime();
7673
7674 now = MIN(now, zs->zs_proc_stop);
7675 print_time(zs->zs_proc_stop - now, timebuf);
7676 nicenum(zs->zs_space, numbuf, sizeof (numbuf));
7677
7678 (void) printf("Pass %3d, %8s, %3llu ENOSPC, "
7679 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
7680 iters,
7681 WIFEXITED(status) ? "Complete" : "SIGKILL",
7682 (u_longlong_t)zs->zs_enospc_count,
7683 100.0 * zs->zs_alloc / zs->zs_space,
7684 numbuf,
7685 100.0 * (now - zs->zs_proc_start) /
7686 (ztest_opts.zo_time * NANOSEC), timebuf);
7687 }
7688
7689 if (ztest_opts.zo_verbose >= 2) {
7690 (void) printf("\nWorkload summary:\n\n");
7691 (void) printf("%7s %9s %s\n",
7692 "Calls", "Time", "Function");
7693 (void) printf("%7s %9s %s\n",
7694 "-----", "----", "--------");
7695 for (f = 0; f < ZTEST_FUNCS; f++) {
7696 zi = &ztest_info[f];
7697 zc = ZTEST_GET_SHARED_CALLSTATE(f);
7698 print_time(zc->zc_time, timebuf);
7699 (void) printf("%7llu %9s %s\n",
7700 (u_longlong_t)zc->zc_count, timebuf,
7701 zi->zi_funcname);
7702 }
7703 (void) printf("\n");
7704 }
7705
7706 /*
7707 * It's possible that we killed a child during a rename test,
7708 * in which case we'll have a 'ztest_tmp' pool lying around
7709 * instead of 'ztest'. Do a blind rename in case this happened.
7710 */
7711 kernel_init(FREAD);
7712 if (spa_open(ztest_opts.zo_pool, &spa, FTAG) == 0) {
7713 spa_close(spa, FTAG);
7714 } else {
7715 char tmpname[ZFS_MAX_DATASET_NAME_LEN];
7716 kernel_fini();
7717 kernel_init(FREAD | FWRITE);
7718 (void) snprintf(tmpname, sizeof (tmpname), "%s_tmp",
7719 ztest_opts.zo_pool);
7720 (void) spa_rename(tmpname, ztest_opts.zo_pool);
7721 }
7722 kernel_fini();
7723
7724 if (!ztest_opts.zo_mmp_test)
7725 ztest_run_zdb(ztest_opts.zo_pool);
7726 }
7727
7728 if (ztest_opts.zo_verbose >= 1) {
7729 if (hasalt) {
7730 (void) printf("%d runs of older ztest: %s\n", older,
7731 ztest_opts.zo_alt_ztest);
7732 (void) printf("%d runs of newer ztest: %s\n", newer,
7733 cmd);
7734 }
7735 (void) printf("%d killed, %d completed, %.0f%% kill rate\n",
7736 kills, iters - kills, (100.0 * kills) / MAX(1, iters));
7737 }
7738
7739 umem_free(cmd, MAXNAMELEN);
7740
7741 return (0);
7742 }