]> git.proxmox.com Git - mirror_zfs.git/blob - cmd/ztest/ztest.c
OpenZFS 9689 - zfs range lock code should not be zpl-specific
[mirror_zfs.git] / cmd / ztest / ztest.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2013 Steven Hartland. All rights reserved.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2017 Joyent, Inc.
28 * Copyright (c) 2017, Intel Corporation.
29 */
30
31 /*
32 * The objective of this program is to provide a DMU/ZAP/SPA stress test
33 * that runs entirely in userland, is easy to use, and easy to extend.
34 *
35 * The overall design of the ztest program is as follows:
36 *
37 * (1) For each major functional area (e.g. adding vdevs to a pool,
38 * creating and destroying datasets, reading and writing objects, etc)
39 * we have a simple routine to test that functionality. These
40 * individual routines do not have to do anything "stressful".
41 *
42 * (2) We turn these simple functionality tests into a stress test by
43 * running them all in parallel, with as many threads as desired,
44 * and spread across as many datasets, objects, and vdevs as desired.
45 *
46 * (3) While all this is happening, we inject faults into the pool to
47 * verify that self-healing data really works.
48 *
49 * (4) Every time we open a dataset, we change its checksum and compression
50 * functions. Thus even individual objects vary from block to block
51 * in which checksum they use and whether they're compressed.
52 *
53 * (5) To verify that we never lose on-disk consistency after a crash,
54 * we run the entire test in a child of the main process.
55 * At random times, the child self-immolates with a SIGKILL.
56 * This is the software equivalent of pulling the power cord.
57 * The parent then runs the test again, using the existing
58 * storage pool, as many times as desired. If backwards compatibility
59 * testing is enabled ztest will sometimes run the "older" version
60 * of ztest after a SIGKILL.
61 *
62 * (6) To verify that we don't have future leaks or temporal incursions,
63 * many of the functional tests record the transaction group number
64 * as part of their data. When reading old data, they verify that
65 * the transaction group number is less than the current, open txg.
66 * If you add a new test, please do this if applicable.
67 *
68 * (7) Threads are created with a reduced stack size, for sanity checking.
69 * Therefore, it's important not to allocate huge buffers on the stack.
70 *
71 * When run with no arguments, ztest runs for about five minutes and
72 * produces no output if successful. To get a little bit of information,
73 * specify -V. To get more information, specify -VV, and so on.
74 *
75 * To turn this into an overnight stress test, use -T to specify run time.
76 *
77 * You can ask more more vdevs [-v], datasets [-d], or threads [-t]
78 * to increase the pool capacity, fanout, and overall stress level.
79 *
80 * Use the -k option to set the desired frequency of kills.
81 *
82 * When ztest invokes itself it passes all relevant information through a
83 * temporary file which is mmap-ed in the child process. This allows shared
84 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
85 * stored at offset 0 of this file and contains information on the size and
86 * number of shared structures in the file. The information stored in this file
87 * must remain backwards compatible with older versions of ztest so that
88 * ztest can invoke them during backwards compatibility testing (-B).
89 */
90
91 #include <sys/zfs_context.h>
92 #include <sys/spa.h>
93 #include <sys/dmu.h>
94 #include <sys/txg.h>
95 #include <sys/dbuf.h>
96 #include <sys/zap.h>
97 #include <sys/dmu_objset.h>
98 #include <sys/poll.h>
99 #include <sys/stat.h>
100 #include <sys/time.h>
101 #include <sys/wait.h>
102 #include <sys/mman.h>
103 #include <sys/resource.h>
104 #include <sys/zio.h>
105 #include <sys/zil.h>
106 #include <sys/zil_impl.h>
107 #include <sys/vdev_impl.h>
108 #include <sys/vdev_file.h>
109 #include <sys/spa_impl.h>
110 #include <sys/metaslab_impl.h>
111 #include <sys/dsl_prop.h>
112 #include <sys/dsl_dataset.h>
113 #include <sys/dsl_destroy.h>
114 #include <sys/dsl_scan.h>
115 #include <sys/zio_checksum.h>
116 #include <sys/refcount.h>
117 #include <sys/zfeature.h>
118 #include <sys/dsl_userhold.h>
119 #include <sys/abd.h>
120 #include <stdio.h>
121 #include <stdio_ext.h>
122 #include <stdlib.h>
123 #include <unistd.h>
124 #include <signal.h>
125 #include <umem.h>
126 #include <ctype.h>
127 #include <math.h>
128 #include <sys/fs/zfs.h>
129 #include <zfs_fletcher.h>
130 #include <libnvpair.h>
131 #include <libzfs.h>
132 #include <sys/crypto/icp.h>
133 #ifdef __GLIBC__
134 #include <execinfo.h> /* for backtrace() */
135 #endif
136
137 static int ztest_fd_data = -1;
138 static int ztest_fd_rand = -1;
139
140 typedef struct ztest_shared_hdr {
141 uint64_t zh_hdr_size;
142 uint64_t zh_opts_size;
143 uint64_t zh_size;
144 uint64_t zh_stats_size;
145 uint64_t zh_stats_count;
146 uint64_t zh_ds_size;
147 uint64_t zh_ds_count;
148 } ztest_shared_hdr_t;
149
150 static ztest_shared_hdr_t *ztest_shared_hdr;
151
152 enum ztest_class_state {
153 ZTEST_VDEV_CLASS_OFF,
154 ZTEST_VDEV_CLASS_ON,
155 ZTEST_VDEV_CLASS_RND
156 };
157
158 typedef struct ztest_shared_opts {
159 char zo_pool[ZFS_MAX_DATASET_NAME_LEN];
160 char zo_dir[ZFS_MAX_DATASET_NAME_LEN];
161 char zo_alt_ztest[MAXNAMELEN];
162 char zo_alt_libpath[MAXNAMELEN];
163 uint64_t zo_vdevs;
164 uint64_t zo_vdevtime;
165 size_t zo_vdev_size;
166 int zo_ashift;
167 int zo_mirrors;
168 int zo_raidz;
169 int zo_raidz_parity;
170 int zo_datasets;
171 int zo_threads;
172 uint64_t zo_passtime;
173 uint64_t zo_killrate;
174 int zo_verbose;
175 int zo_init;
176 uint64_t zo_time;
177 uint64_t zo_maxloops;
178 uint64_t zo_metaslab_force_ganging;
179 int zo_mmp_test;
180 int zo_special_vdevs;
181 } ztest_shared_opts_t;
182
183 static const ztest_shared_opts_t ztest_opts_defaults = {
184 .zo_pool = { 'z', 't', 'e', 's', 't', '\0' },
185 .zo_dir = { '/', 't', 'm', 'p', '\0' },
186 .zo_alt_ztest = { '\0' },
187 .zo_alt_libpath = { '\0' },
188 .zo_vdevs = 5,
189 .zo_ashift = SPA_MINBLOCKSHIFT,
190 .zo_mirrors = 2,
191 .zo_raidz = 4,
192 .zo_raidz_parity = 1,
193 .zo_vdev_size = SPA_MINDEVSIZE * 4, /* 256m default size */
194 .zo_datasets = 7,
195 .zo_threads = 23,
196 .zo_passtime = 60, /* 60 seconds */
197 .zo_killrate = 70, /* 70% kill rate */
198 .zo_verbose = 0,
199 .zo_mmp_test = 0,
200 .zo_init = 1,
201 .zo_time = 300, /* 5 minutes */
202 .zo_maxloops = 50, /* max loops during spa_freeze() */
203 .zo_metaslab_force_ganging = 32 << 10,
204 .zo_special_vdevs = ZTEST_VDEV_CLASS_RND,
205 };
206
207 extern uint64_t metaslab_force_ganging;
208 extern uint64_t metaslab_df_alloc_threshold;
209 extern unsigned long zfs_deadman_synctime_ms;
210 extern int metaslab_preload_limit;
211 extern boolean_t zfs_compressed_arc_enabled;
212 extern int zfs_abd_scatter_enabled;
213 extern int dmu_object_alloc_chunk_shift;
214 extern boolean_t zfs_force_some_double_word_sm_entries;
215 extern unsigned long zio_decompress_fail_fraction;
216 extern unsigned long zfs_reconstruct_indirect_damage_fraction;
217
218 static ztest_shared_opts_t *ztest_shared_opts;
219 static ztest_shared_opts_t ztest_opts;
220 static char *ztest_wkeydata = "abcdefghijklmnopqrstuvwxyz012345";
221
222 typedef struct ztest_shared_ds {
223 uint64_t zd_seq;
224 } ztest_shared_ds_t;
225
226 static ztest_shared_ds_t *ztest_shared_ds;
227 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
228
229 #define BT_MAGIC 0x123456789abcdefULL
230 #define MAXFAULTS(zs) \
231 (MAX((zs)->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1)
232
233 enum ztest_io_type {
234 ZTEST_IO_WRITE_TAG,
235 ZTEST_IO_WRITE_PATTERN,
236 ZTEST_IO_WRITE_ZEROES,
237 ZTEST_IO_TRUNCATE,
238 ZTEST_IO_SETATTR,
239 ZTEST_IO_REWRITE,
240 ZTEST_IO_TYPES
241 };
242
243 typedef struct ztest_block_tag {
244 uint64_t bt_magic;
245 uint64_t bt_objset;
246 uint64_t bt_object;
247 uint64_t bt_dnodesize;
248 uint64_t bt_offset;
249 uint64_t bt_gen;
250 uint64_t bt_txg;
251 uint64_t bt_crtxg;
252 } ztest_block_tag_t;
253
254 typedef struct bufwad {
255 uint64_t bw_index;
256 uint64_t bw_txg;
257 uint64_t bw_data;
258 } bufwad_t;
259
260 /*
261 * It would be better to use a rangelock_t per object. Unfortunately
262 * the rangelock_t is not a drop-in replacement for rl_t, because we
263 * still need to map from object ID to rangelock_t.
264 */
265 typedef enum {
266 RL_READER,
267 RL_WRITER,
268 RL_APPEND
269 } rl_type_t;
270
271 typedef struct rll {
272 void *rll_writer;
273 int rll_readers;
274 kmutex_t rll_lock;
275 kcondvar_t rll_cv;
276 } rll_t;
277
278 typedef struct rl {
279 uint64_t rl_object;
280 uint64_t rl_offset;
281 uint64_t rl_size;
282 rll_t *rl_lock;
283 } rl_t;
284
285 #define ZTEST_RANGE_LOCKS 64
286 #define ZTEST_OBJECT_LOCKS 64
287
288 /*
289 * Object descriptor. Used as a template for object lookup/create/remove.
290 */
291 typedef struct ztest_od {
292 uint64_t od_dir;
293 uint64_t od_object;
294 dmu_object_type_t od_type;
295 dmu_object_type_t od_crtype;
296 uint64_t od_blocksize;
297 uint64_t od_crblocksize;
298 uint64_t od_crdnodesize;
299 uint64_t od_gen;
300 uint64_t od_crgen;
301 char od_name[ZFS_MAX_DATASET_NAME_LEN];
302 } ztest_od_t;
303
304 /*
305 * Per-dataset state.
306 */
307 typedef struct ztest_ds {
308 ztest_shared_ds_t *zd_shared;
309 objset_t *zd_os;
310 pthread_rwlock_t zd_zilog_lock;
311 zilog_t *zd_zilog;
312 ztest_od_t *zd_od; /* debugging aid */
313 char zd_name[ZFS_MAX_DATASET_NAME_LEN];
314 kmutex_t zd_dirobj_lock;
315 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS];
316 rll_t zd_range_lock[ZTEST_RANGE_LOCKS];
317 } ztest_ds_t;
318
319 /*
320 * Per-iteration state.
321 */
322 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
323
324 typedef struct ztest_info {
325 ztest_func_t *zi_func; /* test function */
326 uint64_t zi_iters; /* iterations per execution */
327 uint64_t *zi_interval; /* execute every <interval> seconds */
328 const char *zi_funcname; /* name of test function */
329 } ztest_info_t;
330
331 typedef struct ztest_shared_callstate {
332 uint64_t zc_count; /* per-pass count */
333 uint64_t zc_time; /* per-pass time */
334 uint64_t zc_next; /* next time to call this function */
335 } ztest_shared_callstate_t;
336
337 static ztest_shared_callstate_t *ztest_shared_callstate;
338 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
339
340 ztest_func_t ztest_dmu_read_write;
341 ztest_func_t ztest_dmu_write_parallel;
342 ztest_func_t ztest_dmu_object_alloc_free;
343 ztest_func_t ztest_dmu_object_next_chunk;
344 ztest_func_t ztest_dmu_commit_callbacks;
345 ztest_func_t ztest_zap;
346 ztest_func_t ztest_zap_parallel;
347 ztest_func_t ztest_zil_commit;
348 ztest_func_t ztest_zil_remount;
349 ztest_func_t ztest_dmu_read_write_zcopy;
350 ztest_func_t ztest_dmu_objset_create_destroy;
351 ztest_func_t ztest_dmu_prealloc;
352 ztest_func_t ztest_fzap;
353 ztest_func_t ztest_dmu_snapshot_create_destroy;
354 ztest_func_t ztest_dsl_prop_get_set;
355 ztest_func_t ztest_spa_prop_get_set;
356 ztest_func_t ztest_spa_create_destroy;
357 ztest_func_t ztest_fault_inject;
358 ztest_func_t ztest_ddt_repair;
359 ztest_func_t ztest_dmu_snapshot_hold;
360 ztest_func_t ztest_mmp_enable_disable;
361 ztest_func_t ztest_spa_rename;
362 ztest_func_t ztest_scrub;
363 ztest_func_t ztest_dsl_dataset_promote_busy;
364 ztest_func_t ztest_vdev_attach_detach;
365 ztest_func_t ztest_vdev_LUN_growth;
366 ztest_func_t ztest_vdev_add_remove;
367 ztest_func_t ztest_vdev_class_add;
368 ztest_func_t ztest_vdev_aux_add_remove;
369 ztest_func_t ztest_split_pool;
370 ztest_func_t ztest_reguid;
371 ztest_func_t ztest_spa_upgrade;
372 ztest_func_t ztest_device_removal;
373 ztest_func_t ztest_remap_blocks;
374 ztest_func_t ztest_spa_checkpoint_create_discard;
375 ztest_func_t ztest_fletcher;
376 ztest_func_t ztest_fletcher_incr;
377 ztest_func_t ztest_verify_dnode_bt;
378
379 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */
380 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */
381 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */
382 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */
383 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */
384
385 #define ZTI_INIT(func, iters, interval) \
386 { .zi_func = (func), \
387 .zi_iters = (iters), \
388 .zi_interval = (interval), \
389 .zi_funcname = # func }
390
391 ztest_info_t ztest_info[] = {
392 ZTI_INIT(ztest_dmu_read_write, 1, &zopt_always),
393 ZTI_INIT(ztest_dmu_write_parallel, 10, &zopt_always),
394 ZTI_INIT(ztest_dmu_object_alloc_free, 1, &zopt_always),
395 ZTI_INIT(ztest_dmu_object_next_chunk, 1, &zopt_sometimes),
396 ZTI_INIT(ztest_dmu_commit_callbacks, 1, &zopt_always),
397 ZTI_INIT(ztest_zap, 30, &zopt_always),
398 ZTI_INIT(ztest_zap_parallel, 100, &zopt_always),
399 ZTI_INIT(ztest_split_pool, 1, &zopt_always),
400 ZTI_INIT(ztest_zil_commit, 1, &zopt_incessant),
401 ZTI_INIT(ztest_zil_remount, 1, &zopt_sometimes),
402 ZTI_INIT(ztest_dmu_read_write_zcopy, 1, &zopt_often),
403 ZTI_INIT(ztest_dmu_objset_create_destroy, 1, &zopt_often),
404 ZTI_INIT(ztest_dsl_prop_get_set, 1, &zopt_often),
405 ZTI_INIT(ztest_spa_prop_get_set, 1, &zopt_sometimes),
406 #if 0
407 ZTI_INIT(ztest_dmu_prealloc, 1, &zopt_sometimes),
408 #endif
409 ZTI_INIT(ztest_fzap, 1, &zopt_sometimes),
410 ZTI_INIT(ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes),
411 ZTI_INIT(ztest_spa_create_destroy, 1, &zopt_sometimes),
412 ZTI_INIT(ztest_fault_inject, 1, &zopt_sometimes),
413 ZTI_INIT(ztest_ddt_repair, 1, &zopt_sometimes),
414 ZTI_INIT(ztest_dmu_snapshot_hold, 1, &zopt_sometimes),
415 ZTI_INIT(ztest_mmp_enable_disable, 1, &zopt_sometimes),
416 ZTI_INIT(ztest_reguid, 1, &zopt_rarely),
417 ZTI_INIT(ztest_spa_rename, 1, &zopt_rarely),
418 ZTI_INIT(ztest_scrub, 1, &zopt_rarely),
419 ZTI_INIT(ztest_spa_upgrade, 1, &zopt_rarely),
420 ZTI_INIT(ztest_dsl_dataset_promote_busy, 1, &zopt_rarely),
421 ZTI_INIT(ztest_vdev_attach_detach, 1, &zopt_sometimes),
422 ZTI_INIT(ztest_vdev_LUN_growth, 1, &zopt_rarely),
423 ZTI_INIT(ztest_vdev_add_remove, 1, &ztest_opts.zo_vdevtime),
424 ZTI_INIT(ztest_vdev_class_add, 1, &ztest_opts.zo_vdevtime),
425 ZTI_INIT(ztest_vdev_aux_add_remove, 1, &ztest_opts.zo_vdevtime),
426 ZTI_INIT(ztest_device_removal, 1, &zopt_sometimes),
427 ZTI_INIT(ztest_remap_blocks, 1, &zopt_sometimes),
428 ZTI_INIT(ztest_spa_checkpoint_create_discard, 1, &zopt_rarely),
429 ZTI_INIT(ztest_fletcher, 1, &zopt_rarely),
430 ZTI_INIT(ztest_fletcher_incr, 1, &zopt_rarely),
431 ZTI_INIT(ztest_verify_dnode_bt, 1, &zopt_sometimes),
432 };
433
434 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t))
435
436 /*
437 * The following struct is used to hold a list of uncalled commit callbacks.
438 * The callbacks are ordered by txg number.
439 */
440 typedef struct ztest_cb_list {
441 kmutex_t zcl_callbacks_lock;
442 list_t zcl_callbacks;
443 } ztest_cb_list_t;
444
445 /*
446 * Stuff we need to share writably between parent and child.
447 */
448 typedef struct ztest_shared {
449 boolean_t zs_do_init;
450 hrtime_t zs_proc_start;
451 hrtime_t zs_proc_stop;
452 hrtime_t zs_thread_start;
453 hrtime_t zs_thread_stop;
454 hrtime_t zs_thread_kill;
455 uint64_t zs_enospc_count;
456 uint64_t zs_vdev_next_leaf;
457 uint64_t zs_vdev_aux;
458 uint64_t zs_alloc;
459 uint64_t zs_space;
460 uint64_t zs_splits;
461 uint64_t zs_mirrors;
462 uint64_t zs_metaslab_sz;
463 uint64_t zs_metaslab_df_alloc_threshold;
464 uint64_t zs_guid;
465 } ztest_shared_t;
466
467 #define ID_PARALLEL -1ULL
468
469 static char ztest_dev_template[] = "%s/%s.%llua";
470 static char ztest_aux_template[] = "%s/%s.%s.%llu";
471 ztest_shared_t *ztest_shared;
472
473 static spa_t *ztest_spa = NULL;
474 static ztest_ds_t *ztest_ds;
475
476 static kmutex_t ztest_vdev_lock;
477 static boolean_t ztest_device_removal_active = B_FALSE;
478 static kmutex_t ztest_checkpoint_lock;
479
480 /*
481 * The ztest_name_lock protects the pool and dataset namespace used by
482 * the individual tests. To modify the namespace, consumers must grab
483 * this lock as writer. Grabbing the lock as reader will ensure that the
484 * namespace does not change while the lock is held.
485 */
486 static pthread_rwlock_t ztest_name_lock;
487
488 static boolean_t ztest_dump_core = B_TRUE;
489 static boolean_t ztest_dump_debug_buffer = B_FALSE;
490 static boolean_t ztest_exiting;
491
492 /* Global commit callback list */
493 static ztest_cb_list_t zcl;
494 /* Commit cb delay */
495 static uint64_t zc_min_txg_delay = UINT64_MAX;
496 static int zc_cb_counter = 0;
497
498 /*
499 * Minimum number of commit callbacks that need to be registered for us to check
500 * whether the minimum txg delay is acceptable.
501 */
502 #define ZTEST_COMMIT_CB_MIN_REG 100
503
504 /*
505 * If a number of txgs equal to this threshold have been created after a commit
506 * callback has been registered but not called, then we assume there is an
507 * implementation bug.
508 */
509 #define ZTEST_COMMIT_CB_THRESH (TXG_CONCURRENT_STATES + 1000)
510
511 enum ztest_object {
512 ZTEST_META_DNODE = 0,
513 ZTEST_DIROBJ,
514 ZTEST_OBJECTS
515 };
516
517 static void usage(boolean_t) __NORETURN;
518
519 /*
520 * These libumem hooks provide a reasonable set of defaults for the allocator's
521 * debugging facilities.
522 */
523 const char *
524 _umem_debug_init(void)
525 {
526 return ("default,verbose"); /* $UMEM_DEBUG setting */
527 }
528
529 const char *
530 _umem_logging_init(void)
531 {
532 return ("fail,contents"); /* $UMEM_LOGGING setting */
533 }
534
535 static void
536 dump_debug_buffer(void)
537 {
538 if (!ztest_dump_debug_buffer)
539 return;
540
541 (void) printf("\n");
542 zfs_dbgmsg_print("ztest");
543 }
544
545 #define BACKTRACE_SZ 100
546
547 static void sig_handler(int signo)
548 {
549 struct sigaction action;
550 #ifdef __GLIBC__ /* backtrace() is a GNU extension */
551 int nptrs;
552 void *buffer[BACKTRACE_SZ];
553
554 nptrs = backtrace(buffer, BACKTRACE_SZ);
555 backtrace_symbols_fd(buffer, nptrs, STDERR_FILENO);
556 #endif
557 dump_debug_buffer();
558
559 /*
560 * Restore default action and re-raise signal so SIGSEGV and
561 * SIGABRT can trigger a core dump.
562 */
563 action.sa_handler = SIG_DFL;
564 sigemptyset(&action.sa_mask);
565 action.sa_flags = 0;
566 (void) sigaction(signo, &action, NULL);
567 raise(signo);
568 }
569
570 #define FATAL_MSG_SZ 1024
571
572 char *fatal_msg;
573
574 static void
575 fatal(int do_perror, char *message, ...)
576 {
577 va_list args;
578 int save_errno = errno;
579 char *buf;
580
581 (void) fflush(stdout);
582 buf = umem_alloc(FATAL_MSG_SZ, UMEM_NOFAIL);
583
584 va_start(args, message);
585 (void) sprintf(buf, "ztest: ");
586 /* LINTED */
587 (void) vsprintf(buf + strlen(buf), message, args);
588 va_end(args);
589 if (do_perror) {
590 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
591 ": %s", strerror(save_errno));
592 }
593 (void) fprintf(stderr, "%s\n", buf);
594 fatal_msg = buf; /* to ease debugging */
595
596 dump_debug_buffer();
597
598 if (ztest_dump_core)
599 abort();
600 exit(3);
601 }
602
603 static int
604 str2shift(const char *buf)
605 {
606 const char *ends = "BKMGTPEZ";
607 int i;
608
609 if (buf[0] == '\0')
610 return (0);
611 for (i = 0; i < strlen(ends); i++) {
612 if (toupper(buf[0]) == ends[i])
613 break;
614 }
615 if (i == strlen(ends)) {
616 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
617 buf);
618 usage(B_FALSE);
619 }
620 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
621 return (10*i);
622 }
623 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
624 usage(B_FALSE);
625 /* NOTREACHED */
626 }
627
628 static uint64_t
629 nicenumtoull(const char *buf)
630 {
631 char *end;
632 uint64_t val;
633
634 val = strtoull(buf, &end, 0);
635 if (end == buf) {
636 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
637 usage(B_FALSE);
638 } else if (end[0] == '.') {
639 double fval = strtod(buf, &end);
640 fval *= pow(2, str2shift(end));
641 if (fval > UINT64_MAX) {
642 (void) fprintf(stderr, "ztest: value too large: %s\n",
643 buf);
644 usage(B_FALSE);
645 }
646 val = (uint64_t)fval;
647 } else {
648 int shift = str2shift(end);
649 if (shift >= 64 || (val << shift) >> shift != val) {
650 (void) fprintf(stderr, "ztest: value too large: %s\n",
651 buf);
652 usage(B_FALSE);
653 }
654 val <<= shift;
655 }
656 return (val);
657 }
658
659 static void
660 usage(boolean_t requested)
661 {
662 const ztest_shared_opts_t *zo = &ztest_opts_defaults;
663
664 char nice_vdev_size[NN_NUMBUF_SZ];
665 char nice_force_ganging[NN_NUMBUF_SZ];
666 FILE *fp = requested ? stdout : stderr;
667
668 nicenum(zo->zo_vdev_size, nice_vdev_size, sizeof (nice_vdev_size));
669 nicenum(zo->zo_metaslab_force_ganging, nice_force_ganging,
670 sizeof (nice_force_ganging));
671
672 (void) fprintf(fp, "Usage: %s\n"
673 "\t[-v vdevs (default: %llu)]\n"
674 "\t[-s size_of_each_vdev (default: %s)]\n"
675 "\t[-a alignment_shift (default: %d)] use 0 for random\n"
676 "\t[-m mirror_copies (default: %d)]\n"
677 "\t[-r raidz_disks (default: %d)]\n"
678 "\t[-R raidz_parity (default: %d)]\n"
679 "\t[-d datasets (default: %d)]\n"
680 "\t[-t threads (default: %d)]\n"
681 "\t[-g gang_block_threshold (default: %s)]\n"
682 "\t[-i init_count (default: %d)] initialize pool i times\n"
683 "\t[-k kill_percentage (default: %llu%%)]\n"
684 "\t[-p pool_name (default: %s)]\n"
685 "\t[-f dir (default: %s)] file directory for vdev files\n"
686 "\t[-M] Multi-host simulate pool imported on remote host\n"
687 "\t[-V] verbose (use multiple times for ever more blather)\n"
688 "\t[-E] use existing pool instead of creating new one\n"
689 "\t[-T time (default: %llu sec)] total run time\n"
690 "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n"
691 "\t[-P passtime (default: %llu sec)] time per pass\n"
692 "\t[-B alt_ztest (default: <none>)] alternate ztest path\n"
693 "\t[-C vdev class state (default: random)] special=on|off|random\n"
694 "\t[-o variable=value] ... set global variable to an unsigned\n"
695 "\t 32-bit integer value\n"
696 "\t[-G dump zfs_dbgmsg buffer before exiting due to an error\n"
697 "\t[-h] (print help)\n"
698 "",
699 zo->zo_pool,
700 (u_longlong_t)zo->zo_vdevs, /* -v */
701 nice_vdev_size, /* -s */
702 zo->zo_ashift, /* -a */
703 zo->zo_mirrors, /* -m */
704 zo->zo_raidz, /* -r */
705 zo->zo_raidz_parity, /* -R */
706 zo->zo_datasets, /* -d */
707 zo->zo_threads, /* -t */
708 nice_force_ganging, /* -g */
709 zo->zo_init, /* -i */
710 (u_longlong_t)zo->zo_killrate, /* -k */
711 zo->zo_pool, /* -p */
712 zo->zo_dir, /* -f */
713 (u_longlong_t)zo->zo_time, /* -T */
714 (u_longlong_t)zo->zo_maxloops, /* -F */
715 (u_longlong_t)zo->zo_passtime);
716 exit(requested ? 0 : 1);
717 }
718
719
720 static void
721 ztest_parse_name_value(const char *input, ztest_shared_opts_t *zo)
722 {
723 char name[32];
724 char *value;
725 int state = ZTEST_VDEV_CLASS_RND;
726
727 (void) strlcpy(name, input, sizeof (name));
728
729 value = strchr(name, '=');
730 if (value == NULL) {
731 (void) fprintf(stderr, "missing value in property=value "
732 "'-C' argument (%s)\n", input);
733 usage(B_FALSE);
734 }
735 *(value) = '\0';
736 value++;
737
738 if (strcmp(value, "on") == 0) {
739 state = ZTEST_VDEV_CLASS_ON;
740 } else if (strcmp(value, "off") == 0) {
741 state = ZTEST_VDEV_CLASS_OFF;
742 } else if (strcmp(value, "random") == 0) {
743 state = ZTEST_VDEV_CLASS_RND;
744 } else {
745 (void) fprintf(stderr, "invalid property value '%s'\n", value);
746 usage(B_FALSE);
747 }
748
749 if (strcmp(name, "special") == 0) {
750 zo->zo_special_vdevs = state;
751 } else {
752 (void) fprintf(stderr, "invalid property name '%s'\n", name);
753 usage(B_FALSE);
754 }
755 if (zo->zo_verbose >= 3)
756 (void) printf("%s vdev state is '%s'\n", name, value);
757 }
758
759 static void
760 process_options(int argc, char **argv)
761 {
762 char *path;
763 ztest_shared_opts_t *zo = &ztest_opts;
764
765 int opt;
766 uint64_t value;
767 char altdir[MAXNAMELEN] = { 0 };
768
769 bcopy(&ztest_opts_defaults, zo, sizeof (*zo));
770
771 while ((opt = getopt(argc, argv,
772 "v:s:a:m:r:R:d:t:g:i:k:p:f:MVET:P:hF:B:C:o:G")) != EOF) {
773 value = 0;
774 switch (opt) {
775 case 'v':
776 case 's':
777 case 'a':
778 case 'm':
779 case 'r':
780 case 'R':
781 case 'd':
782 case 't':
783 case 'g':
784 case 'i':
785 case 'k':
786 case 'T':
787 case 'P':
788 case 'F':
789 value = nicenumtoull(optarg);
790 }
791 switch (opt) {
792 case 'v':
793 zo->zo_vdevs = value;
794 break;
795 case 's':
796 zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value);
797 break;
798 case 'a':
799 zo->zo_ashift = value;
800 break;
801 case 'm':
802 zo->zo_mirrors = value;
803 break;
804 case 'r':
805 zo->zo_raidz = MAX(1, value);
806 break;
807 case 'R':
808 zo->zo_raidz_parity = MIN(MAX(value, 1), 3);
809 break;
810 case 'd':
811 zo->zo_datasets = MAX(1, value);
812 break;
813 case 't':
814 zo->zo_threads = MAX(1, value);
815 break;
816 case 'g':
817 zo->zo_metaslab_force_ganging =
818 MAX(SPA_MINBLOCKSIZE << 1, value);
819 break;
820 case 'i':
821 zo->zo_init = value;
822 break;
823 case 'k':
824 zo->zo_killrate = value;
825 break;
826 case 'p':
827 (void) strlcpy(zo->zo_pool, optarg,
828 sizeof (zo->zo_pool));
829 break;
830 case 'f':
831 path = realpath(optarg, NULL);
832 if (path == NULL) {
833 (void) fprintf(stderr, "error: %s: %s\n",
834 optarg, strerror(errno));
835 usage(B_FALSE);
836 } else {
837 (void) strlcpy(zo->zo_dir, path,
838 sizeof (zo->zo_dir));
839 free(path);
840 }
841 break;
842 case 'M':
843 zo->zo_mmp_test = 1;
844 break;
845 case 'V':
846 zo->zo_verbose++;
847 break;
848 case 'E':
849 zo->zo_init = 0;
850 break;
851 case 'T':
852 zo->zo_time = value;
853 break;
854 case 'P':
855 zo->zo_passtime = MAX(1, value);
856 break;
857 case 'F':
858 zo->zo_maxloops = MAX(1, value);
859 break;
860 case 'B':
861 (void) strlcpy(altdir, optarg, sizeof (altdir));
862 break;
863 case 'C':
864 ztest_parse_name_value(optarg, zo);
865 break;
866 case 'o':
867 if (set_global_var(optarg) != 0)
868 usage(B_FALSE);
869 break;
870 case 'G':
871 ztest_dump_debug_buffer = B_TRUE;
872 break;
873 case 'h':
874 usage(B_TRUE);
875 break;
876 case '?':
877 default:
878 usage(B_FALSE);
879 break;
880 }
881 }
882
883 zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1);
884
885 zo->zo_vdevtime =
886 (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs :
887 UINT64_MAX >> 2);
888
889 if (strlen(altdir) > 0) {
890 char *cmd;
891 char *realaltdir;
892 char *bin;
893 char *ztest;
894 char *isa;
895 int isalen;
896
897 cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
898 realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
899
900 VERIFY(NULL != realpath(getexecname(), cmd));
901 if (0 != access(altdir, F_OK)) {
902 ztest_dump_core = B_FALSE;
903 fatal(B_TRUE, "invalid alternate ztest path: %s",
904 altdir);
905 }
906 VERIFY(NULL != realpath(altdir, realaltdir));
907
908 /*
909 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest".
910 * We want to extract <isa> to determine if we should use
911 * 32 or 64 bit binaries.
912 */
913 bin = strstr(cmd, "/usr/bin/");
914 ztest = strstr(bin, "/ztest");
915 isa = bin + 9;
916 isalen = ztest - isa;
917 (void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest),
918 "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa);
919 (void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath),
920 "%s/usr/lib/%.*s", realaltdir, isalen, isa);
921
922 if (0 != access(zo->zo_alt_ztest, X_OK)) {
923 ztest_dump_core = B_FALSE;
924 fatal(B_TRUE, "invalid alternate ztest: %s",
925 zo->zo_alt_ztest);
926 } else if (0 != access(zo->zo_alt_libpath, X_OK)) {
927 ztest_dump_core = B_FALSE;
928 fatal(B_TRUE, "invalid alternate lib directory %s",
929 zo->zo_alt_libpath);
930 }
931
932 umem_free(cmd, MAXPATHLEN);
933 umem_free(realaltdir, MAXPATHLEN);
934 }
935 }
936
937 static void
938 ztest_kill(ztest_shared_t *zs)
939 {
940 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa));
941 zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa));
942
943 /*
944 * Before we kill off ztest, make sure that the config is updated.
945 * See comment above spa_write_cachefile().
946 */
947 mutex_enter(&spa_namespace_lock);
948 spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE);
949 mutex_exit(&spa_namespace_lock);
950
951 (void) kill(getpid(), SIGKILL);
952 }
953
954 static uint64_t
955 ztest_random(uint64_t range)
956 {
957 uint64_t r;
958
959 ASSERT3S(ztest_fd_rand, >=, 0);
960
961 if (range == 0)
962 return (0);
963
964 if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r))
965 fatal(1, "short read from /dev/urandom");
966
967 return (r % range);
968 }
969
970 /* ARGSUSED */
971 static void
972 ztest_record_enospc(const char *s)
973 {
974 ztest_shared->zs_enospc_count++;
975 }
976
977 static uint64_t
978 ztest_get_ashift(void)
979 {
980 if (ztest_opts.zo_ashift == 0)
981 return (SPA_MINBLOCKSHIFT + ztest_random(5));
982 return (ztest_opts.zo_ashift);
983 }
984
985 static nvlist_t *
986 make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift)
987 {
988 char *pathbuf;
989 uint64_t vdev;
990 nvlist_t *file;
991
992 pathbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
993
994 if (ashift == 0)
995 ashift = ztest_get_ashift();
996
997 if (path == NULL) {
998 path = pathbuf;
999
1000 if (aux != NULL) {
1001 vdev = ztest_shared->zs_vdev_aux;
1002 (void) snprintf(path, MAXPATHLEN,
1003 ztest_aux_template, ztest_opts.zo_dir,
1004 pool == NULL ? ztest_opts.zo_pool : pool,
1005 aux, vdev);
1006 } else {
1007 vdev = ztest_shared->zs_vdev_next_leaf++;
1008 (void) snprintf(path, MAXPATHLEN,
1009 ztest_dev_template, ztest_opts.zo_dir,
1010 pool == NULL ? ztest_opts.zo_pool : pool, vdev);
1011 }
1012 }
1013
1014 if (size != 0) {
1015 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
1016 if (fd == -1)
1017 fatal(1, "can't open %s", path);
1018 if (ftruncate(fd, size) != 0)
1019 fatal(1, "can't ftruncate %s", path);
1020 (void) close(fd);
1021 }
1022
1023 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0);
1024 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0);
1025 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0);
1026 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0);
1027 umem_free(pathbuf, MAXPATHLEN);
1028
1029 return (file);
1030 }
1031
1032 static nvlist_t *
1033 make_vdev_raidz(char *path, char *aux, char *pool, size_t size,
1034 uint64_t ashift, int r)
1035 {
1036 nvlist_t *raidz, **child;
1037 int c;
1038
1039 if (r < 2)
1040 return (make_vdev_file(path, aux, pool, size, ashift));
1041 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
1042
1043 for (c = 0; c < r; c++)
1044 child[c] = make_vdev_file(path, aux, pool, size, ashift);
1045
1046 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0);
1047 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE,
1048 VDEV_TYPE_RAIDZ) == 0);
1049 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY,
1050 ztest_opts.zo_raidz_parity) == 0);
1051 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN,
1052 child, r) == 0);
1053
1054 for (c = 0; c < r; c++)
1055 nvlist_free(child[c]);
1056
1057 umem_free(child, r * sizeof (nvlist_t *));
1058
1059 return (raidz);
1060 }
1061
1062 static nvlist_t *
1063 make_vdev_mirror(char *path, char *aux, char *pool, size_t size,
1064 uint64_t ashift, int r, int m)
1065 {
1066 nvlist_t *mirror, **child;
1067 int c;
1068
1069 if (m < 1)
1070 return (make_vdev_raidz(path, aux, pool, size, ashift, r));
1071
1072 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
1073
1074 for (c = 0; c < m; c++)
1075 child[c] = make_vdev_raidz(path, aux, pool, size, ashift, r);
1076
1077 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0);
1078 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE,
1079 VDEV_TYPE_MIRROR) == 0);
1080 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
1081 child, m) == 0);
1082
1083 for (c = 0; c < m; c++)
1084 nvlist_free(child[c]);
1085
1086 umem_free(child, m * sizeof (nvlist_t *));
1087
1088 return (mirror);
1089 }
1090
1091 static nvlist_t *
1092 make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift,
1093 const char *class, int r, int m, int t)
1094 {
1095 nvlist_t *root, **child;
1096 int c;
1097 boolean_t log;
1098
1099 ASSERT(t > 0);
1100
1101 log = (class != NULL && strcmp(class, "log") == 0);
1102
1103 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
1104
1105 for (c = 0; c < t; c++) {
1106 child[c] = make_vdev_mirror(path, aux, pool, size, ashift,
1107 r, m);
1108 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG,
1109 log) == 0);
1110
1111 if (class != NULL && class[0] != '\0') {
1112 ASSERT(m > 1 || log); /* expecting a mirror */
1113 VERIFY(nvlist_add_string(child[c],
1114 ZPOOL_CONFIG_ALLOCATION_BIAS, class) == 0);
1115 }
1116 }
1117
1118 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0);
1119 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0);
1120 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
1121 child, t) == 0);
1122
1123 for (c = 0; c < t; c++)
1124 nvlist_free(child[c]);
1125
1126 umem_free(child, t * sizeof (nvlist_t *));
1127
1128 return (root);
1129 }
1130
1131 /*
1132 * Find a random spa version. Returns back a random spa version in the
1133 * range [initial_version, SPA_VERSION_FEATURES].
1134 */
1135 static uint64_t
1136 ztest_random_spa_version(uint64_t initial_version)
1137 {
1138 uint64_t version = initial_version;
1139
1140 if (version <= SPA_VERSION_BEFORE_FEATURES) {
1141 version = version +
1142 ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1);
1143 }
1144
1145 if (version > SPA_VERSION_BEFORE_FEATURES)
1146 version = SPA_VERSION_FEATURES;
1147
1148 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
1149 return (version);
1150 }
1151
1152 static int
1153 ztest_random_blocksize(void)
1154 {
1155 ASSERT(ztest_spa->spa_max_ashift != 0);
1156
1157 /*
1158 * Choose a block size >= the ashift.
1159 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks.
1160 */
1161 int maxbs = SPA_OLD_MAXBLOCKSHIFT;
1162 if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE)
1163 maxbs = 20;
1164 uint64_t block_shift =
1165 ztest_random(maxbs - ztest_spa->spa_max_ashift + 1);
1166 return (1 << (SPA_MINBLOCKSHIFT + block_shift));
1167 }
1168
1169 static int
1170 ztest_random_dnodesize(void)
1171 {
1172 int slots;
1173 int max_slots = spa_maxdnodesize(ztest_spa) >> DNODE_SHIFT;
1174
1175 if (max_slots == DNODE_MIN_SLOTS)
1176 return (DNODE_MIN_SIZE);
1177
1178 /*
1179 * Weight the random distribution more heavily toward smaller
1180 * dnode sizes since that is more likely to reflect real-world
1181 * usage.
1182 */
1183 ASSERT3U(max_slots, >, 4);
1184 switch (ztest_random(10)) {
1185 case 0:
1186 slots = 5 + ztest_random(max_slots - 4);
1187 break;
1188 case 1 ... 4:
1189 slots = 2 + ztest_random(3);
1190 break;
1191 default:
1192 slots = 1;
1193 break;
1194 }
1195
1196 return (slots << DNODE_SHIFT);
1197 }
1198
1199 static int
1200 ztest_random_ibshift(void)
1201 {
1202 return (DN_MIN_INDBLKSHIFT +
1203 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
1204 }
1205
1206 static uint64_t
1207 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
1208 {
1209 uint64_t top;
1210 vdev_t *rvd = spa->spa_root_vdev;
1211 vdev_t *tvd;
1212
1213 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1214
1215 do {
1216 top = ztest_random(rvd->vdev_children);
1217 tvd = rvd->vdev_child[top];
1218 } while (!vdev_is_concrete(tvd) || (tvd->vdev_islog && !log_ok) ||
1219 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
1220
1221 return (top);
1222 }
1223
1224 static uint64_t
1225 ztest_random_dsl_prop(zfs_prop_t prop)
1226 {
1227 uint64_t value;
1228
1229 do {
1230 value = zfs_prop_random_value(prop, ztest_random(-1ULL));
1231 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
1232
1233 return (value);
1234 }
1235
1236 static int
1237 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
1238 boolean_t inherit)
1239 {
1240 const char *propname = zfs_prop_to_name(prop);
1241 const char *valname;
1242 char *setpoint;
1243 uint64_t curval;
1244 int error;
1245
1246 error = dsl_prop_set_int(osname, propname,
1247 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value);
1248
1249 if (error == ENOSPC) {
1250 ztest_record_enospc(FTAG);
1251 return (error);
1252 }
1253 ASSERT0(error);
1254
1255 setpoint = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1256 VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint));
1257
1258 if (ztest_opts.zo_verbose >= 6) {
1259 int err;
1260
1261 err = zfs_prop_index_to_string(prop, curval, &valname);
1262 if (err)
1263 (void) printf("%s %s = %llu at '%s'\n", osname,
1264 propname, (unsigned long long)curval, setpoint);
1265 else
1266 (void) printf("%s %s = %s at '%s'\n",
1267 osname, propname, valname, setpoint);
1268 }
1269 umem_free(setpoint, MAXPATHLEN);
1270
1271 return (error);
1272 }
1273
1274 static int
1275 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value)
1276 {
1277 spa_t *spa = ztest_spa;
1278 nvlist_t *props = NULL;
1279 int error;
1280
1281 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
1282 VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0);
1283
1284 error = spa_prop_set(spa, props);
1285
1286 nvlist_free(props);
1287
1288 if (error == ENOSPC) {
1289 ztest_record_enospc(FTAG);
1290 return (error);
1291 }
1292 ASSERT0(error);
1293
1294 return (error);
1295 }
1296
1297 static int
1298 ztest_dmu_objset_own(const char *name, dmu_objset_type_t type,
1299 boolean_t readonly, boolean_t decrypt, void *tag, objset_t **osp)
1300 {
1301 int err;
1302
1303 err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
1304 if (decrypt && err == EACCES) {
1305 char ddname[ZFS_MAX_DATASET_NAME_LEN];
1306 dsl_crypto_params_t *dcp;
1307 nvlist_t *crypto_args = fnvlist_alloc();
1308 char *cp = NULL;
1309
1310 /* spa_keystore_load_wkey() expects a dsl dir name */
1311 strcpy(ddname, name);
1312 cp = strchr(ddname, '@');
1313 if (cp != NULL)
1314 *cp = '\0';
1315
1316 fnvlist_add_uint8_array(crypto_args, "wkeydata",
1317 (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
1318 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, NULL,
1319 crypto_args, &dcp));
1320 err = spa_keystore_load_wkey(ddname, dcp, B_FALSE);
1321 dsl_crypto_params_free(dcp, B_FALSE);
1322 fnvlist_free(crypto_args);
1323
1324 if (err != 0)
1325 return (err);
1326
1327 err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
1328 }
1329
1330 return (err);
1331 }
1332
1333 static void
1334 ztest_rll_init(rll_t *rll)
1335 {
1336 rll->rll_writer = NULL;
1337 rll->rll_readers = 0;
1338 mutex_init(&rll->rll_lock, NULL, MUTEX_DEFAULT, NULL);
1339 cv_init(&rll->rll_cv, NULL, CV_DEFAULT, NULL);
1340 }
1341
1342 static void
1343 ztest_rll_destroy(rll_t *rll)
1344 {
1345 ASSERT(rll->rll_writer == NULL);
1346 ASSERT(rll->rll_readers == 0);
1347 mutex_destroy(&rll->rll_lock);
1348 cv_destroy(&rll->rll_cv);
1349 }
1350
1351 static void
1352 ztest_rll_lock(rll_t *rll, rl_type_t type)
1353 {
1354 mutex_enter(&rll->rll_lock);
1355
1356 if (type == RL_READER) {
1357 while (rll->rll_writer != NULL)
1358 (void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1359 rll->rll_readers++;
1360 } else {
1361 while (rll->rll_writer != NULL || rll->rll_readers)
1362 (void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1363 rll->rll_writer = curthread;
1364 }
1365
1366 mutex_exit(&rll->rll_lock);
1367 }
1368
1369 static void
1370 ztest_rll_unlock(rll_t *rll)
1371 {
1372 mutex_enter(&rll->rll_lock);
1373
1374 if (rll->rll_writer) {
1375 ASSERT(rll->rll_readers == 0);
1376 rll->rll_writer = NULL;
1377 } else {
1378 ASSERT(rll->rll_readers != 0);
1379 ASSERT(rll->rll_writer == NULL);
1380 rll->rll_readers--;
1381 }
1382
1383 if (rll->rll_writer == NULL && rll->rll_readers == 0)
1384 cv_broadcast(&rll->rll_cv);
1385
1386 mutex_exit(&rll->rll_lock);
1387 }
1388
1389 static void
1390 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
1391 {
1392 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1393
1394 ztest_rll_lock(rll, type);
1395 }
1396
1397 static void
1398 ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
1399 {
1400 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1401
1402 ztest_rll_unlock(rll);
1403 }
1404
1405 static rl_t *
1406 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
1407 uint64_t size, rl_type_t type)
1408 {
1409 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1));
1410 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)];
1411 rl_t *rl;
1412
1413 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL);
1414 rl->rl_object = object;
1415 rl->rl_offset = offset;
1416 rl->rl_size = size;
1417 rl->rl_lock = rll;
1418
1419 ztest_rll_lock(rll, type);
1420
1421 return (rl);
1422 }
1423
1424 static void
1425 ztest_range_unlock(rl_t *rl)
1426 {
1427 rll_t *rll = rl->rl_lock;
1428
1429 ztest_rll_unlock(rll);
1430
1431 umem_free(rl, sizeof (*rl));
1432 }
1433
1434 static void
1435 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os)
1436 {
1437 zd->zd_os = os;
1438 zd->zd_zilog = dmu_objset_zil(os);
1439 zd->zd_shared = szd;
1440 dmu_objset_name(os, zd->zd_name);
1441 int l;
1442
1443 if (zd->zd_shared != NULL)
1444 zd->zd_shared->zd_seq = 0;
1445
1446 VERIFY0(pthread_rwlock_init(&zd->zd_zilog_lock, NULL));
1447 mutex_init(&zd->zd_dirobj_lock, NULL, MUTEX_DEFAULT, NULL);
1448
1449 for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1450 ztest_rll_init(&zd->zd_object_lock[l]);
1451
1452 for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1453 ztest_rll_init(&zd->zd_range_lock[l]);
1454 }
1455
1456 static void
1457 ztest_zd_fini(ztest_ds_t *zd)
1458 {
1459 int l;
1460
1461 mutex_destroy(&zd->zd_dirobj_lock);
1462 (void) pthread_rwlock_destroy(&zd->zd_zilog_lock);
1463
1464 for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1465 ztest_rll_destroy(&zd->zd_object_lock[l]);
1466
1467 for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1468 ztest_rll_destroy(&zd->zd_range_lock[l]);
1469 }
1470
1471 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
1472
1473 static uint64_t
1474 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag)
1475 {
1476 uint64_t txg;
1477 int error;
1478
1479 /*
1480 * Attempt to assign tx to some transaction group.
1481 */
1482 error = dmu_tx_assign(tx, txg_how);
1483 if (error) {
1484 if (error == ERESTART) {
1485 ASSERT(txg_how == TXG_NOWAIT);
1486 dmu_tx_wait(tx);
1487 } else {
1488 ASSERT3U(error, ==, ENOSPC);
1489 ztest_record_enospc(tag);
1490 }
1491 dmu_tx_abort(tx);
1492 return (0);
1493 }
1494 txg = dmu_tx_get_txg(tx);
1495 ASSERT(txg != 0);
1496 return (txg);
1497 }
1498
1499 static void
1500 ztest_pattern_set(void *buf, uint64_t size, uint64_t value)
1501 {
1502 uint64_t *ip = buf;
1503 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1504
1505 while (ip < ip_end)
1506 *ip++ = value;
1507 }
1508
1509 #ifndef NDEBUG
1510 static boolean_t
1511 ztest_pattern_match(void *buf, uint64_t size, uint64_t value)
1512 {
1513 uint64_t *ip = buf;
1514 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1515 uint64_t diff = 0;
1516
1517 while (ip < ip_end)
1518 diff |= (value - *ip++);
1519
1520 return (diff == 0);
1521 }
1522 #endif
1523
1524 static void
1525 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1526 uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1527 uint64_t crtxg)
1528 {
1529 bt->bt_magic = BT_MAGIC;
1530 bt->bt_objset = dmu_objset_id(os);
1531 bt->bt_object = object;
1532 bt->bt_dnodesize = dnodesize;
1533 bt->bt_offset = offset;
1534 bt->bt_gen = gen;
1535 bt->bt_txg = txg;
1536 bt->bt_crtxg = crtxg;
1537 }
1538
1539 static void
1540 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1541 uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1542 uint64_t crtxg)
1543 {
1544 ASSERT3U(bt->bt_magic, ==, BT_MAGIC);
1545 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os));
1546 ASSERT3U(bt->bt_object, ==, object);
1547 ASSERT3U(bt->bt_dnodesize, ==, dnodesize);
1548 ASSERT3U(bt->bt_offset, ==, offset);
1549 ASSERT3U(bt->bt_gen, <=, gen);
1550 ASSERT3U(bt->bt_txg, <=, txg);
1551 ASSERT3U(bt->bt_crtxg, ==, crtxg);
1552 }
1553
1554 static ztest_block_tag_t *
1555 ztest_bt_bonus(dmu_buf_t *db)
1556 {
1557 dmu_object_info_t doi;
1558 ztest_block_tag_t *bt;
1559
1560 dmu_object_info_from_db(db, &doi);
1561 ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
1562 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
1563 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
1564
1565 return (bt);
1566 }
1567
1568 /*
1569 * Generate a token to fill up unused bonus buffer space. Try to make
1570 * it unique to the object, generation, and offset to verify that data
1571 * is not getting overwritten by data from other dnodes.
1572 */
1573 #define ZTEST_BONUS_FILL_TOKEN(obj, ds, gen, offset) \
1574 (((ds) << 48) | ((gen) << 32) | ((obj) << 8) | (offset))
1575
1576 /*
1577 * Fill up the unused bonus buffer region before the block tag with a
1578 * verifiable pattern. Filling the whole bonus area with non-zero data
1579 * helps ensure that all dnode traversal code properly skips the
1580 * interior regions of large dnodes.
1581 */
1582 void
1583 ztest_fill_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1584 objset_t *os, uint64_t gen)
1585 {
1586 uint64_t *bonusp;
1587
1588 ASSERT(IS_P2ALIGNED((char *)end - (char *)db->db_data, 8));
1589
1590 for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1591 uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1592 gen, bonusp - (uint64_t *)db->db_data);
1593 *bonusp = token;
1594 }
1595 }
1596
1597 /*
1598 * Verify that the unused area of a bonus buffer is filled with the
1599 * expected tokens.
1600 */
1601 void
1602 ztest_verify_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1603 objset_t *os, uint64_t gen)
1604 {
1605 uint64_t *bonusp;
1606
1607 for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1608 uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1609 gen, bonusp - (uint64_t *)db->db_data);
1610 VERIFY3U(*bonusp, ==, token);
1611 }
1612 }
1613
1614 /*
1615 * ZIL logging ops
1616 */
1617
1618 #define lrz_type lr_mode
1619 #define lrz_blocksize lr_uid
1620 #define lrz_ibshift lr_gid
1621 #define lrz_bonustype lr_rdev
1622 #define lrz_dnodesize lr_crtime[1]
1623
1624 static void
1625 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
1626 {
1627 char *name = (void *)(lr + 1); /* name follows lr */
1628 size_t namesize = strlen(name) + 1;
1629 itx_t *itx;
1630
1631 if (zil_replaying(zd->zd_zilog, tx))
1632 return;
1633
1634 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
1635 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1636 sizeof (*lr) + namesize - sizeof (lr_t));
1637
1638 zil_itx_assign(zd->zd_zilog, itx, tx);
1639 }
1640
1641 static void
1642 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object)
1643 {
1644 char *name = (void *)(lr + 1); /* name follows lr */
1645 size_t namesize = strlen(name) + 1;
1646 itx_t *itx;
1647
1648 if (zil_replaying(zd->zd_zilog, tx))
1649 return;
1650
1651 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
1652 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1653 sizeof (*lr) + namesize - sizeof (lr_t));
1654
1655 itx->itx_oid = object;
1656 zil_itx_assign(zd->zd_zilog, itx, tx);
1657 }
1658
1659 static void
1660 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
1661 {
1662 itx_t *itx;
1663 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
1664
1665 if (zil_replaying(zd->zd_zilog, tx))
1666 return;
1667
1668 if (lr->lr_length > ZIL_MAX_LOG_DATA)
1669 write_state = WR_INDIRECT;
1670
1671 itx = zil_itx_create(TX_WRITE,
1672 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
1673
1674 if (write_state == WR_COPIED &&
1675 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
1676 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) {
1677 zil_itx_destroy(itx);
1678 itx = zil_itx_create(TX_WRITE, sizeof (*lr));
1679 write_state = WR_NEED_COPY;
1680 }
1681 itx->itx_private = zd;
1682 itx->itx_wr_state = write_state;
1683 itx->itx_sync = (ztest_random(8) == 0);
1684
1685 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1686 sizeof (*lr) - sizeof (lr_t));
1687
1688 zil_itx_assign(zd->zd_zilog, itx, tx);
1689 }
1690
1691 static void
1692 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
1693 {
1694 itx_t *itx;
1695
1696 if (zil_replaying(zd->zd_zilog, tx))
1697 return;
1698
1699 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
1700 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1701 sizeof (*lr) - sizeof (lr_t));
1702
1703 itx->itx_sync = B_FALSE;
1704 zil_itx_assign(zd->zd_zilog, itx, tx);
1705 }
1706
1707 static void
1708 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
1709 {
1710 itx_t *itx;
1711
1712 if (zil_replaying(zd->zd_zilog, tx))
1713 return;
1714
1715 itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
1716 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1717 sizeof (*lr) - sizeof (lr_t));
1718
1719 itx->itx_sync = B_FALSE;
1720 zil_itx_assign(zd->zd_zilog, itx, tx);
1721 }
1722
1723 /*
1724 * ZIL replay ops
1725 */
1726 static int
1727 ztest_replay_create(void *arg1, void *arg2, boolean_t byteswap)
1728 {
1729 ztest_ds_t *zd = arg1;
1730 lr_create_t *lr = arg2;
1731 char *name = (void *)(lr + 1); /* name follows lr */
1732 objset_t *os = zd->zd_os;
1733 ztest_block_tag_t *bbt;
1734 dmu_buf_t *db;
1735 dmu_tx_t *tx;
1736 uint64_t txg;
1737 int error = 0;
1738 int bonuslen;
1739
1740 if (byteswap)
1741 byteswap_uint64_array(lr, sizeof (*lr));
1742
1743 ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1744 ASSERT(name[0] != '\0');
1745
1746 tx = dmu_tx_create(os);
1747
1748 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
1749
1750 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1751 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1752 } else {
1753 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1754 }
1755
1756 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1757 if (txg == 0)
1758 return (ENOSPC);
1759
1760 ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid);
1761 bonuslen = DN_BONUS_SIZE(lr->lrz_dnodesize);
1762
1763 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1764 if (lr->lr_foid == 0) {
1765 lr->lr_foid = zap_create_dnsize(os,
1766 lr->lrz_type, lr->lrz_bonustype,
1767 bonuslen, lr->lrz_dnodesize, tx);
1768 } else {
1769 error = zap_create_claim_dnsize(os, lr->lr_foid,
1770 lr->lrz_type, lr->lrz_bonustype,
1771 bonuslen, lr->lrz_dnodesize, tx);
1772 }
1773 } else {
1774 if (lr->lr_foid == 0) {
1775 lr->lr_foid = dmu_object_alloc_dnsize(os,
1776 lr->lrz_type, 0, lr->lrz_bonustype,
1777 bonuslen, lr->lrz_dnodesize, tx);
1778 } else {
1779 error = dmu_object_claim_dnsize(os, lr->lr_foid,
1780 lr->lrz_type, 0, lr->lrz_bonustype,
1781 bonuslen, lr->lrz_dnodesize, tx);
1782 }
1783 }
1784
1785 if (error) {
1786 ASSERT3U(error, ==, EEXIST);
1787 ASSERT(zd->zd_zilog->zl_replay);
1788 dmu_tx_commit(tx);
1789 return (error);
1790 }
1791
1792 ASSERT(lr->lr_foid != 0);
1793
1794 if (lr->lrz_type != DMU_OT_ZAP_OTHER)
1795 VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid,
1796 lr->lrz_blocksize, lr->lrz_ibshift, tx));
1797
1798 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1799 bbt = ztest_bt_bonus(db);
1800 dmu_buf_will_dirty(db, tx);
1801 ztest_bt_generate(bbt, os, lr->lr_foid, lr->lrz_dnodesize, -1ULL,
1802 lr->lr_gen, txg, txg);
1803 ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, lr->lr_gen);
1804 dmu_buf_rele(db, FTAG);
1805
1806 VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
1807 &lr->lr_foid, tx));
1808
1809 (void) ztest_log_create(zd, tx, lr);
1810
1811 dmu_tx_commit(tx);
1812
1813 return (0);
1814 }
1815
1816 static int
1817 ztest_replay_remove(void *arg1, void *arg2, boolean_t byteswap)
1818 {
1819 ztest_ds_t *zd = arg1;
1820 lr_remove_t *lr = arg2;
1821 char *name = (void *)(lr + 1); /* name follows lr */
1822 objset_t *os = zd->zd_os;
1823 dmu_object_info_t doi;
1824 dmu_tx_t *tx;
1825 uint64_t object, txg;
1826
1827 if (byteswap)
1828 byteswap_uint64_array(lr, sizeof (*lr));
1829
1830 ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1831 ASSERT(name[0] != '\0');
1832
1833 VERIFY3U(0, ==,
1834 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
1835 ASSERT(object != 0);
1836
1837 ztest_object_lock(zd, object, RL_WRITER);
1838
1839 VERIFY3U(0, ==, dmu_object_info(os, object, &doi));
1840
1841 tx = dmu_tx_create(os);
1842
1843 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
1844 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
1845
1846 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1847 if (txg == 0) {
1848 ztest_object_unlock(zd, object);
1849 return (ENOSPC);
1850 }
1851
1852 if (doi.doi_type == DMU_OT_ZAP_OTHER) {
1853 VERIFY3U(0, ==, zap_destroy(os, object, tx));
1854 } else {
1855 VERIFY3U(0, ==, dmu_object_free(os, object, tx));
1856 }
1857
1858 VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx));
1859
1860 (void) ztest_log_remove(zd, tx, lr, object);
1861
1862 dmu_tx_commit(tx);
1863
1864 ztest_object_unlock(zd, object);
1865
1866 return (0);
1867 }
1868
1869 static int
1870 ztest_replay_write(void *arg1, void *arg2, boolean_t byteswap)
1871 {
1872 ztest_ds_t *zd = arg1;
1873 lr_write_t *lr = arg2;
1874 objset_t *os = zd->zd_os;
1875 void *data = lr + 1; /* data follows lr */
1876 uint64_t offset, length;
1877 ztest_block_tag_t *bt = data;
1878 ztest_block_tag_t *bbt;
1879 uint64_t gen, txg, lrtxg, crtxg;
1880 dmu_object_info_t doi;
1881 dmu_tx_t *tx;
1882 dmu_buf_t *db;
1883 arc_buf_t *abuf = NULL;
1884 rl_t *rl;
1885
1886 if (byteswap)
1887 byteswap_uint64_array(lr, sizeof (*lr));
1888
1889 offset = lr->lr_offset;
1890 length = lr->lr_length;
1891
1892 /* If it's a dmu_sync() block, write the whole block */
1893 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
1894 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
1895 if (length < blocksize) {
1896 offset -= offset % blocksize;
1897 length = blocksize;
1898 }
1899 }
1900
1901 if (bt->bt_magic == BSWAP_64(BT_MAGIC))
1902 byteswap_uint64_array(bt, sizeof (*bt));
1903
1904 if (bt->bt_magic != BT_MAGIC)
1905 bt = NULL;
1906
1907 ztest_object_lock(zd, lr->lr_foid, RL_READER);
1908 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER);
1909
1910 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1911
1912 dmu_object_info_from_db(db, &doi);
1913
1914 bbt = ztest_bt_bonus(db);
1915 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1916 gen = bbt->bt_gen;
1917 crtxg = bbt->bt_crtxg;
1918 lrtxg = lr->lr_common.lrc_txg;
1919
1920 tx = dmu_tx_create(os);
1921
1922 dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
1923
1924 if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
1925 P2PHASE(offset, length) == 0)
1926 abuf = dmu_request_arcbuf(db, length);
1927
1928 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1929 if (txg == 0) {
1930 if (abuf != NULL)
1931 dmu_return_arcbuf(abuf);
1932 dmu_buf_rele(db, FTAG);
1933 ztest_range_unlock(rl);
1934 ztest_object_unlock(zd, lr->lr_foid);
1935 return (ENOSPC);
1936 }
1937
1938 if (bt != NULL) {
1939 /*
1940 * Usually, verify the old data before writing new data --
1941 * but not always, because we also want to verify correct
1942 * behavior when the data was not recently read into cache.
1943 */
1944 ASSERT(offset % doi.doi_data_block_size == 0);
1945 if (ztest_random(4) != 0) {
1946 int prefetch = ztest_random(2) ?
1947 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
1948 ztest_block_tag_t rbt;
1949
1950 VERIFY(dmu_read(os, lr->lr_foid, offset,
1951 sizeof (rbt), &rbt, prefetch) == 0);
1952 if (rbt.bt_magic == BT_MAGIC) {
1953 ztest_bt_verify(&rbt, os, lr->lr_foid, 0,
1954 offset, gen, txg, crtxg);
1955 }
1956 }
1957
1958 /*
1959 * Writes can appear to be newer than the bonus buffer because
1960 * the ztest_get_data() callback does a dmu_read() of the
1961 * open-context data, which may be different than the data
1962 * as it was when the write was generated.
1963 */
1964 if (zd->zd_zilog->zl_replay) {
1965 ztest_bt_verify(bt, os, lr->lr_foid, 0, offset,
1966 MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
1967 bt->bt_crtxg);
1968 }
1969
1970 /*
1971 * Set the bt's gen/txg to the bonus buffer's gen/txg
1972 * so that all of the usual ASSERTs will work.
1973 */
1974 ztest_bt_generate(bt, os, lr->lr_foid, 0, offset, gen, txg,
1975 crtxg);
1976 }
1977
1978 if (abuf == NULL) {
1979 dmu_write(os, lr->lr_foid, offset, length, data, tx);
1980 } else {
1981 bcopy(data, abuf->b_data, length);
1982 dmu_assign_arcbuf_by_dbuf(db, offset, abuf, tx);
1983 }
1984
1985 (void) ztest_log_write(zd, tx, lr);
1986
1987 dmu_buf_rele(db, FTAG);
1988
1989 dmu_tx_commit(tx);
1990
1991 ztest_range_unlock(rl);
1992 ztest_object_unlock(zd, lr->lr_foid);
1993
1994 return (0);
1995 }
1996
1997 static int
1998 ztest_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
1999 {
2000 ztest_ds_t *zd = arg1;
2001 lr_truncate_t *lr = arg2;
2002 objset_t *os = zd->zd_os;
2003 dmu_tx_t *tx;
2004 uint64_t txg;
2005 rl_t *rl;
2006
2007 if (byteswap)
2008 byteswap_uint64_array(lr, sizeof (*lr));
2009
2010 ztest_object_lock(zd, lr->lr_foid, RL_READER);
2011 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
2012 RL_WRITER);
2013
2014 tx = dmu_tx_create(os);
2015
2016 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
2017
2018 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2019 if (txg == 0) {
2020 ztest_range_unlock(rl);
2021 ztest_object_unlock(zd, lr->lr_foid);
2022 return (ENOSPC);
2023 }
2024
2025 VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
2026 lr->lr_length, tx) == 0);
2027
2028 (void) ztest_log_truncate(zd, tx, lr);
2029
2030 dmu_tx_commit(tx);
2031
2032 ztest_range_unlock(rl);
2033 ztest_object_unlock(zd, lr->lr_foid);
2034
2035 return (0);
2036 }
2037
2038 static int
2039 ztest_replay_setattr(void *arg1, void *arg2, boolean_t byteswap)
2040 {
2041 ztest_ds_t *zd = arg1;
2042 lr_setattr_t *lr = arg2;
2043 objset_t *os = zd->zd_os;
2044 dmu_tx_t *tx;
2045 dmu_buf_t *db;
2046 ztest_block_tag_t *bbt;
2047 uint64_t txg, lrtxg, crtxg, dnodesize;
2048
2049 if (byteswap)
2050 byteswap_uint64_array(lr, sizeof (*lr));
2051
2052 ztest_object_lock(zd, lr->lr_foid, RL_WRITER);
2053
2054 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2055
2056 tx = dmu_tx_create(os);
2057 dmu_tx_hold_bonus(tx, lr->lr_foid);
2058
2059 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2060 if (txg == 0) {
2061 dmu_buf_rele(db, FTAG);
2062 ztest_object_unlock(zd, lr->lr_foid);
2063 return (ENOSPC);
2064 }
2065
2066 bbt = ztest_bt_bonus(db);
2067 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2068 crtxg = bbt->bt_crtxg;
2069 lrtxg = lr->lr_common.lrc_txg;
2070 dnodesize = bbt->bt_dnodesize;
2071
2072 if (zd->zd_zilog->zl_replay) {
2073 ASSERT(lr->lr_size != 0);
2074 ASSERT(lr->lr_mode != 0);
2075 ASSERT(lrtxg != 0);
2076 } else {
2077 /*
2078 * Randomly change the size and increment the generation.
2079 */
2080 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
2081 sizeof (*bbt);
2082 lr->lr_mode = bbt->bt_gen + 1;
2083 ASSERT(lrtxg == 0);
2084 }
2085
2086 /*
2087 * Verify that the current bonus buffer is not newer than our txg.
2088 */
2089 ztest_bt_verify(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
2090 MAX(txg, lrtxg), crtxg);
2091
2092 dmu_buf_will_dirty(db, tx);
2093
2094 ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
2095 ASSERT3U(lr->lr_size, <=, db->db_size);
2096 VERIFY0(dmu_set_bonus(db, lr->lr_size, tx));
2097 bbt = ztest_bt_bonus(db);
2098
2099 ztest_bt_generate(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
2100 txg, crtxg);
2101 ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, bbt->bt_gen);
2102 dmu_buf_rele(db, FTAG);
2103
2104 (void) ztest_log_setattr(zd, tx, lr);
2105
2106 dmu_tx_commit(tx);
2107
2108 ztest_object_unlock(zd, lr->lr_foid);
2109
2110 return (0);
2111 }
2112
2113 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
2114 NULL, /* 0 no such transaction type */
2115 ztest_replay_create, /* TX_CREATE */
2116 NULL, /* TX_MKDIR */
2117 NULL, /* TX_MKXATTR */
2118 NULL, /* TX_SYMLINK */
2119 ztest_replay_remove, /* TX_REMOVE */
2120 NULL, /* TX_RMDIR */
2121 NULL, /* TX_LINK */
2122 NULL, /* TX_RENAME */
2123 ztest_replay_write, /* TX_WRITE */
2124 ztest_replay_truncate, /* TX_TRUNCATE */
2125 ztest_replay_setattr, /* TX_SETATTR */
2126 NULL, /* TX_ACL */
2127 NULL, /* TX_CREATE_ACL */
2128 NULL, /* TX_CREATE_ATTR */
2129 NULL, /* TX_CREATE_ACL_ATTR */
2130 NULL, /* TX_MKDIR_ACL */
2131 NULL, /* TX_MKDIR_ATTR */
2132 NULL, /* TX_MKDIR_ACL_ATTR */
2133 NULL, /* TX_WRITE2 */
2134 };
2135
2136 /*
2137 * ZIL get_data callbacks
2138 */
2139
2140 static void
2141 ztest_get_done(zgd_t *zgd, int error)
2142 {
2143 ztest_ds_t *zd = zgd->zgd_private;
2144 uint64_t object = ((rl_t *)zgd->zgd_lr)->rl_object;
2145
2146 if (zgd->zgd_db)
2147 dmu_buf_rele(zgd->zgd_db, zgd);
2148
2149 ztest_range_unlock((rl_t *)zgd->zgd_lr);
2150 ztest_object_unlock(zd, object);
2151
2152 if (error == 0 && zgd->zgd_bp)
2153 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
2154
2155 umem_free(zgd, sizeof (*zgd));
2156 }
2157
2158 static int
2159 ztest_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb,
2160 zio_t *zio)
2161 {
2162 ztest_ds_t *zd = arg;
2163 objset_t *os = zd->zd_os;
2164 uint64_t object = lr->lr_foid;
2165 uint64_t offset = lr->lr_offset;
2166 uint64_t size = lr->lr_length;
2167 uint64_t txg = lr->lr_common.lrc_txg;
2168 uint64_t crtxg;
2169 dmu_object_info_t doi;
2170 dmu_buf_t *db;
2171 zgd_t *zgd;
2172 int error;
2173
2174 ASSERT3P(lwb, !=, NULL);
2175 ASSERT3P(zio, !=, NULL);
2176 ASSERT3U(size, !=, 0);
2177
2178 ztest_object_lock(zd, object, RL_READER);
2179 error = dmu_bonus_hold(os, object, FTAG, &db);
2180 if (error) {
2181 ztest_object_unlock(zd, object);
2182 return (error);
2183 }
2184
2185 crtxg = ztest_bt_bonus(db)->bt_crtxg;
2186
2187 if (crtxg == 0 || crtxg > txg) {
2188 dmu_buf_rele(db, FTAG);
2189 ztest_object_unlock(zd, object);
2190 return (ENOENT);
2191 }
2192
2193 dmu_object_info_from_db(db, &doi);
2194 dmu_buf_rele(db, FTAG);
2195 db = NULL;
2196
2197 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
2198 zgd->zgd_lwb = lwb;
2199 zgd->zgd_private = zd;
2200
2201 if (buf != NULL) { /* immediate write */
2202 zgd->zgd_lr = (struct locked_range *)ztest_range_lock(zd,
2203 object, offset, size, RL_READER);
2204
2205 error = dmu_read(os, object, offset, size, buf,
2206 DMU_READ_NO_PREFETCH);
2207 ASSERT(error == 0);
2208 } else {
2209 size = doi.doi_data_block_size;
2210 if (ISP2(size)) {
2211 offset = P2ALIGN(offset, size);
2212 } else {
2213 ASSERT(offset < size);
2214 offset = 0;
2215 }
2216
2217 zgd->zgd_lr = (struct locked_range *)ztest_range_lock(zd,
2218 object, offset, size, RL_READER);
2219
2220 error = dmu_buf_hold(os, object, offset, zgd, &db,
2221 DMU_READ_NO_PREFETCH);
2222
2223 if (error == 0) {
2224 blkptr_t *bp = &lr->lr_blkptr;
2225
2226 zgd->zgd_db = db;
2227 zgd->zgd_bp = bp;
2228
2229 ASSERT(db->db_offset == offset);
2230 ASSERT(db->db_size == size);
2231
2232 error = dmu_sync(zio, lr->lr_common.lrc_txg,
2233 ztest_get_done, zgd);
2234
2235 if (error == 0)
2236 return (0);
2237 }
2238 }
2239
2240 ztest_get_done(zgd, error);
2241
2242 return (error);
2243 }
2244
2245 static void *
2246 ztest_lr_alloc(size_t lrsize, char *name)
2247 {
2248 char *lr;
2249 size_t namesize = name ? strlen(name) + 1 : 0;
2250
2251 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
2252
2253 if (name)
2254 bcopy(name, lr + lrsize, namesize);
2255
2256 return (lr);
2257 }
2258
2259 void
2260 ztest_lr_free(void *lr, size_t lrsize, char *name)
2261 {
2262 size_t namesize = name ? strlen(name) + 1 : 0;
2263
2264 umem_free(lr, lrsize + namesize);
2265 }
2266
2267 /*
2268 * Lookup a bunch of objects. Returns the number of objects not found.
2269 */
2270 static int
2271 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
2272 {
2273 int missing = 0;
2274 int error;
2275 int i;
2276
2277 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2278
2279 for (i = 0; i < count; i++, od++) {
2280 od->od_object = 0;
2281 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
2282 sizeof (uint64_t), 1, &od->od_object);
2283 if (error) {
2284 ASSERT(error == ENOENT);
2285 ASSERT(od->od_object == 0);
2286 missing++;
2287 } else {
2288 dmu_buf_t *db;
2289 ztest_block_tag_t *bbt;
2290 dmu_object_info_t doi;
2291
2292 ASSERT(od->od_object != 0);
2293 ASSERT(missing == 0); /* there should be no gaps */
2294
2295 ztest_object_lock(zd, od->od_object, RL_READER);
2296 VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os,
2297 od->od_object, FTAG, &db));
2298 dmu_object_info_from_db(db, &doi);
2299 bbt = ztest_bt_bonus(db);
2300 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2301 od->od_type = doi.doi_type;
2302 od->od_blocksize = doi.doi_data_block_size;
2303 od->od_gen = bbt->bt_gen;
2304 dmu_buf_rele(db, FTAG);
2305 ztest_object_unlock(zd, od->od_object);
2306 }
2307 }
2308
2309 return (missing);
2310 }
2311
2312 static int
2313 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
2314 {
2315 int missing = 0;
2316 int i;
2317
2318 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2319
2320 for (i = 0; i < count; i++, od++) {
2321 if (missing) {
2322 od->od_object = 0;
2323 missing++;
2324 continue;
2325 }
2326
2327 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2328
2329 lr->lr_doid = od->od_dir;
2330 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */
2331 lr->lrz_type = od->od_crtype;
2332 lr->lrz_blocksize = od->od_crblocksize;
2333 lr->lrz_ibshift = ztest_random_ibshift();
2334 lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
2335 lr->lrz_dnodesize = od->od_crdnodesize;
2336 lr->lr_gen = od->od_crgen;
2337 lr->lr_crtime[0] = time(NULL);
2338
2339 if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
2340 ASSERT(missing == 0);
2341 od->od_object = 0;
2342 missing++;
2343 } else {
2344 od->od_object = lr->lr_foid;
2345 od->od_type = od->od_crtype;
2346 od->od_blocksize = od->od_crblocksize;
2347 od->od_gen = od->od_crgen;
2348 ASSERT(od->od_object != 0);
2349 }
2350
2351 ztest_lr_free(lr, sizeof (*lr), od->od_name);
2352 }
2353
2354 return (missing);
2355 }
2356
2357 static int
2358 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
2359 {
2360 int missing = 0;
2361 int error;
2362 int i;
2363
2364 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2365
2366 od += count - 1;
2367
2368 for (i = count - 1; i >= 0; i--, od--) {
2369 if (missing) {
2370 missing++;
2371 continue;
2372 }
2373
2374 /*
2375 * No object was found.
2376 */
2377 if (od->od_object == 0)
2378 continue;
2379
2380 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2381
2382 lr->lr_doid = od->od_dir;
2383
2384 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
2385 ASSERT3U(error, ==, ENOSPC);
2386 missing++;
2387 } else {
2388 od->od_object = 0;
2389 }
2390 ztest_lr_free(lr, sizeof (*lr), od->od_name);
2391 }
2392
2393 return (missing);
2394 }
2395
2396 static int
2397 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
2398 void *data)
2399 {
2400 lr_write_t *lr;
2401 int error;
2402
2403 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
2404
2405 lr->lr_foid = object;
2406 lr->lr_offset = offset;
2407 lr->lr_length = size;
2408 lr->lr_blkoff = 0;
2409 BP_ZERO(&lr->lr_blkptr);
2410
2411 bcopy(data, lr + 1, size);
2412
2413 error = ztest_replay_write(zd, lr, B_FALSE);
2414
2415 ztest_lr_free(lr, sizeof (*lr) + size, NULL);
2416
2417 return (error);
2418 }
2419
2420 static int
2421 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2422 {
2423 lr_truncate_t *lr;
2424 int error;
2425
2426 lr = ztest_lr_alloc(sizeof (*lr), NULL);
2427
2428 lr->lr_foid = object;
2429 lr->lr_offset = offset;
2430 lr->lr_length = size;
2431
2432 error = ztest_replay_truncate(zd, lr, B_FALSE);
2433
2434 ztest_lr_free(lr, sizeof (*lr), NULL);
2435
2436 return (error);
2437 }
2438
2439 static int
2440 ztest_setattr(ztest_ds_t *zd, uint64_t object)
2441 {
2442 lr_setattr_t *lr;
2443 int error;
2444
2445 lr = ztest_lr_alloc(sizeof (*lr), NULL);
2446
2447 lr->lr_foid = object;
2448 lr->lr_size = 0;
2449 lr->lr_mode = 0;
2450
2451 error = ztest_replay_setattr(zd, lr, B_FALSE);
2452
2453 ztest_lr_free(lr, sizeof (*lr), NULL);
2454
2455 return (error);
2456 }
2457
2458 static void
2459 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2460 {
2461 objset_t *os = zd->zd_os;
2462 dmu_tx_t *tx;
2463 uint64_t txg;
2464 rl_t *rl;
2465
2466 txg_wait_synced(dmu_objset_pool(os), 0);
2467
2468 ztest_object_lock(zd, object, RL_READER);
2469 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER);
2470
2471 tx = dmu_tx_create(os);
2472
2473 dmu_tx_hold_write(tx, object, offset, size);
2474
2475 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2476
2477 if (txg != 0) {
2478 dmu_prealloc(os, object, offset, size, tx);
2479 dmu_tx_commit(tx);
2480 txg_wait_synced(dmu_objset_pool(os), txg);
2481 } else {
2482 (void) dmu_free_long_range(os, object, offset, size);
2483 }
2484
2485 ztest_range_unlock(rl);
2486 ztest_object_unlock(zd, object);
2487 }
2488
2489 static void
2490 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
2491 {
2492 int err;
2493 ztest_block_tag_t wbt;
2494 dmu_object_info_t doi;
2495 enum ztest_io_type io_type;
2496 uint64_t blocksize;
2497 void *data;
2498
2499 VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0);
2500 blocksize = doi.doi_data_block_size;
2501 data = umem_alloc(blocksize, UMEM_NOFAIL);
2502
2503 /*
2504 * Pick an i/o type at random, biased toward writing block tags.
2505 */
2506 io_type = ztest_random(ZTEST_IO_TYPES);
2507 if (ztest_random(2) == 0)
2508 io_type = ZTEST_IO_WRITE_TAG;
2509
2510 (void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
2511
2512 switch (io_type) {
2513
2514 case ZTEST_IO_WRITE_TAG:
2515 ztest_bt_generate(&wbt, zd->zd_os, object, doi.doi_dnodesize,
2516 offset, 0, 0, 0);
2517 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
2518 break;
2519
2520 case ZTEST_IO_WRITE_PATTERN:
2521 (void) memset(data, 'a' + (object + offset) % 5, blocksize);
2522 if (ztest_random(2) == 0) {
2523 /*
2524 * Induce fletcher2 collisions to ensure that
2525 * zio_ddt_collision() detects and resolves them
2526 * when using fletcher2-verify for deduplication.
2527 */
2528 ((uint64_t *)data)[0] ^= 1ULL << 63;
2529 ((uint64_t *)data)[4] ^= 1ULL << 63;
2530 }
2531 (void) ztest_write(zd, object, offset, blocksize, data);
2532 break;
2533
2534 case ZTEST_IO_WRITE_ZEROES:
2535 bzero(data, blocksize);
2536 (void) ztest_write(zd, object, offset, blocksize, data);
2537 break;
2538
2539 case ZTEST_IO_TRUNCATE:
2540 (void) ztest_truncate(zd, object, offset, blocksize);
2541 break;
2542
2543 case ZTEST_IO_SETATTR:
2544 (void) ztest_setattr(zd, object);
2545 break;
2546 default:
2547 break;
2548
2549 case ZTEST_IO_REWRITE:
2550 (void) pthread_rwlock_rdlock(&ztest_name_lock);
2551 err = ztest_dsl_prop_set_uint64(zd->zd_name,
2552 ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa),
2553 B_FALSE);
2554 VERIFY(err == 0 || err == ENOSPC);
2555 err = ztest_dsl_prop_set_uint64(zd->zd_name,
2556 ZFS_PROP_COMPRESSION,
2557 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION),
2558 B_FALSE);
2559 VERIFY(err == 0 || err == ENOSPC);
2560 (void) pthread_rwlock_unlock(&ztest_name_lock);
2561
2562 VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data,
2563 DMU_READ_NO_PREFETCH));
2564
2565 (void) ztest_write(zd, object, offset, blocksize, data);
2566 break;
2567 }
2568
2569 (void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2570
2571 umem_free(data, blocksize);
2572 }
2573
2574 /*
2575 * Initialize an object description template.
2576 */
2577 static void
2578 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index,
2579 dmu_object_type_t type, uint64_t blocksize, uint64_t dnodesize,
2580 uint64_t gen)
2581 {
2582 od->od_dir = ZTEST_DIROBJ;
2583 od->od_object = 0;
2584
2585 od->od_crtype = type;
2586 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
2587 od->od_crdnodesize = dnodesize ? dnodesize : ztest_random_dnodesize();
2588 od->od_crgen = gen;
2589
2590 od->od_type = DMU_OT_NONE;
2591 od->od_blocksize = 0;
2592 od->od_gen = 0;
2593
2594 (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]",
2595 tag, (longlong_t)id, (u_longlong_t)index);
2596 }
2597
2598 /*
2599 * Lookup or create the objects for a test using the od template.
2600 * If the objects do not all exist, or if 'remove' is specified,
2601 * remove any existing objects and create new ones. Otherwise,
2602 * use the existing objects.
2603 */
2604 static int
2605 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
2606 {
2607 int count = size / sizeof (*od);
2608 int rv = 0;
2609
2610 mutex_enter(&zd->zd_dirobj_lock);
2611 if ((ztest_lookup(zd, od, count) != 0 || remove) &&
2612 (ztest_remove(zd, od, count) != 0 ||
2613 ztest_create(zd, od, count) != 0))
2614 rv = -1;
2615 zd->zd_od = od;
2616 mutex_exit(&zd->zd_dirobj_lock);
2617
2618 return (rv);
2619 }
2620
2621 /* ARGSUSED */
2622 void
2623 ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
2624 {
2625 zilog_t *zilog = zd->zd_zilog;
2626
2627 (void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
2628
2629 zil_commit(zilog, ztest_random(ZTEST_OBJECTS));
2630
2631 /*
2632 * Remember the committed values in zd, which is in parent/child
2633 * shared memory. If we die, the next iteration of ztest_run()
2634 * will verify that the log really does contain this record.
2635 */
2636 mutex_enter(&zilog->zl_lock);
2637 ASSERT(zd->zd_shared != NULL);
2638 ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq);
2639 zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq;
2640 mutex_exit(&zilog->zl_lock);
2641
2642 (void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2643 }
2644
2645 /*
2646 * This function is designed to simulate the operations that occur during a
2647 * mount/unmount operation. We hold the dataset across these operations in an
2648 * attempt to expose any implicit assumptions about ZIL management.
2649 */
2650 /* ARGSUSED */
2651 void
2652 ztest_zil_remount(ztest_ds_t *zd, uint64_t id)
2653 {
2654 objset_t *os = zd->zd_os;
2655
2656 /*
2657 * We grab the zd_dirobj_lock to ensure that no other thread is
2658 * updating the zil (i.e. adding in-memory log records) and the
2659 * zd_zilog_lock to block any I/O.
2660 */
2661 mutex_enter(&zd->zd_dirobj_lock);
2662 (void) pthread_rwlock_wrlock(&zd->zd_zilog_lock);
2663
2664 /* zfsvfs_teardown() */
2665 zil_close(zd->zd_zilog);
2666
2667 /* zfsvfs_setup() */
2668 VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog);
2669 zil_replay(os, zd, ztest_replay_vector);
2670
2671 (void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2672 mutex_exit(&zd->zd_dirobj_lock);
2673 }
2674
2675 /*
2676 * Verify that we can't destroy an active pool, create an existing pool,
2677 * or create a pool with a bad vdev spec.
2678 */
2679 /* ARGSUSED */
2680 void
2681 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
2682 {
2683 ztest_shared_opts_t *zo = &ztest_opts;
2684 spa_t *spa;
2685 nvlist_t *nvroot;
2686
2687 if (zo->zo_mmp_test)
2688 return;
2689
2690 /*
2691 * Attempt to create using a bad file.
2692 */
2693 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
2694 VERIFY3U(ENOENT, ==,
2695 spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL));
2696 nvlist_free(nvroot);
2697
2698 /*
2699 * Attempt to create using a bad mirror.
2700 */
2701 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 2, 1);
2702 VERIFY3U(ENOENT, ==,
2703 spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL));
2704 nvlist_free(nvroot);
2705
2706 /*
2707 * Attempt to create an existing pool. It shouldn't matter
2708 * what's in the nvroot; we should fail with EEXIST.
2709 */
2710 (void) pthread_rwlock_rdlock(&ztest_name_lock);
2711 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
2712 VERIFY3U(EEXIST, ==,
2713 spa_create(zo->zo_pool, nvroot, NULL, NULL, NULL));
2714 nvlist_free(nvroot);
2715 VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG));
2716 VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool));
2717 spa_close(spa, FTAG);
2718
2719 (void) pthread_rwlock_unlock(&ztest_name_lock);
2720 }
2721
2722 /*
2723 * Start and then stop the MMP threads to ensure the startup and shutdown code
2724 * works properly. Actual protection and property-related code tested via ZTS.
2725 */
2726 /* ARGSUSED */
2727 void
2728 ztest_mmp_enable_disable(ztest_ds_t *zd, uint64_t id)
2729 {
2730 ztest_shared_opts_t *zo = &ztest_opts;
2731 spa_t *spa = ztest_spa;
2732
2733 if (zo->zo_mmp_test)
2734 return;
2735
2736 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
2737 mutex_enter(&spa->spa_props_lock);
2738
2739 zfs_multihost_fail_intervals = 0;
2740
2741 if (!spa_multihost(spa)) {
2742 spa->spa_multihost = B_TRUE;
2743 mmp_thread_start(spa);
2744 }
2745
2746 mutex_exit(&spa->spa_props_lock);
2747 spa_config_exit(spa, SCL_CONFIG, FTAG);
2748
2749 txg_wait_synced(spa_get_dsl(spa), 0);
2750 mmp_signal_all_threads();
2751 txg_wait_synced(spa_get_dsl(spa), 0);
2752
2753 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
2754 mutex_enter(&spa->spa_props_lock);
2755
2756 if (spa_multihost(spa)) {
2757 mmp_thread_stop(spa);
2758 spa->spa_multihost = B_FALSE;
2759 }
2760
2761 mutex_exit(&spa->spa_props_lock);
2762 spa_config_exit(spa, SCL_CONFIG, FTAG);
2763 }
2764
2765 /* ARGSUSED */
2766 void
2767 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id)
2768 {
2769 spa_t *spa;
2770 uint64_t initial_version = SPA_VERSION_INITIAL;
2771 uint64_t version, newversion;
2772 nvlist_t *nvroot, *props;
2773 char *name;
2774
2775 if (ztest_opts.zo_mmp_test)
2776 return;
2777
2778 mutex_enter(&ztest_vdev_lock);
2779 name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool);
2780
2781 /*
2782 * Clean up from previous runs.
2783 */
2784 (void) spa_destroy(name);
2785
2786 nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0,
2787 NULL, ztest_opts.zo_raidz, ztest_opts.zo_mirrors, 1);
2788
2789 /*
2790 * If we're configuring a RAIDZ device then make sure that the
2791 * the initial version is capable of supporting that feature.
2792 */
2793 switch (ztest_opts.zo_raidz_parity) {
2794 case 0:
2795 case 1:
2796 initial_version = SPA_VERSION_INITIAL;
2797 break;
2798 case 2:
2799 initial_version = SPA_VERSION_RAIDZ2;
2800 break;
2801 case 3:
2802 initial_version = SPA_VERSION_RAIDZ3;
2803 break;
2804 }
2805
2806 /*
2807 * Create a pool with a spa version that can be upgraded. Pick
2808 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
2809 */
2810 do {
2811 version = ztest_random_spa_version(initial_version);
2812 } while (version > SPA_VERSION_BEFORE_FEATURES);
2813
2814 props = fnvlist_alloc();
2815 fnvlist_add_uint64(props,
2816 zpool_prop_to_name(ZPOOL_PROP_VERSION), version);
2817 VERIFY3S(spa_create(name, nvroot, props, NULL, NULL), ==, 0);
2818 fnvlist_free(nvroot);
2819 fnvlist_free(props);
2820
2821 VERIFY3S(spa_open(name, &spa, FTAG), ==, 0);
2822 VERIFY3U(spa_version(spa), ==, version);
2823 newversion = ztest_random_spa_version(version + 1);
2824
2825 if (ztest_opts.zo_verbose >= 4) {
2826 (void) printf("upgrading spa version from %llu to %llu\n",
2827 (u_longlong_t)version, (u_longlong_t)newversion);
2828 }
2829
2830 spa_upgrade(spa, newversion);
2831 VERIFY3U(spa_version(spa), >, version);
2832 VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config,
2833 zpool_prop_to_name(ZPOOL_PROP_VERSION)));
2834 spa_close(spa, FTAG);
2835
2836 strfree(name);
2837 mutex_exit(&ztest_vdev_lock);
2838 }
2839
2840 static void
2841 ztest_spa_checkpoint(spa_t *spa)
2842 {
2843 ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
2844
2845 int error = spa_checkpoint(spa->spa_name);
2846
2847 switch (error) {
2848 case 0:
2849 case ZFS_ERR_DEVRM_IN_PROGRESS:
2850 case ZFS_ERR_DISCARDING_CHECKPOINT:
2851 case ZFS_ERR_CHECKPOINT_EXISTS:
2852 break;
2853 case ENOSPC:
2854 ztest_record_enospc(FTAG);
2855 break;
2856 default:
2857 fatal(0, "spa_checkpoint(%s) = %d", spa->spa_name, error);
2858 }
2859 }
2860
2861 static void
2862 ztest_spa_discard_checkpoint(spa_t *spa)
2863 {
2864 ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
2865
2866 int error = spa_checkpoint_discard(spa->spa_name);
2867
2868 switch (error) {
2869 case 0:
2870 case ZFS_ERR_DISCARDING_CHECKPOINT:
2871 case ZFS_ERR_NO_CHECKPOINT:
2872 break;
2873 default:
2874 fatal(0, "spa_discard_checkpoint(%s) = %d",
2875 spa->spa_name, error);
2876 }
2877
2878 }
2879
2880 /* ARGSUSED */
2881 void
2882 ztest_spa_checkpoint_create_discard(ztest_ds_t *zd, uint64_t id)
2883 {
2884 spa_t *spa = ztest_spa;
2885
2886 mutex_enter(&ztest_checkpoint_lock);
2887 if (ztest_random(2) == 0) {
2888 ztest_spa_checkpoint(spa);
2889 } else {
2890 ztest_spa_discard_checkpoint(spa);
2891 }
2892 mutex_exit(&ztest_checkpoint_lock);
2893 }
2894
2895
2896 static vdev_t *
2897 vdev_lookup_by_path(vdev_t *vd, const char *path)
2898 {
2899 vdev_t *mvd;
2900 int c;
2901
2902 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
2903 return (vd);
2904
2905 for (c = 0; c < vd->vdev_children; c++)
2906 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
2907 NULL)
2908 return (mvd);
2909
2910 return (NULL);
2911 }
2912
2913 /*
2914 * Find the first available hole which can be used as a top-level.
2915 */
2916 int
2917 find_vdev_hole(spa_t *spa)
2918 {
2919 vdev_t *rvd = spa->spa_root_vdev;
2920 int c;
2921
2922 ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV);
2923
2924 for (c = 0; c < rvd->vdev_children; c++) {
2925 vdev_t *cvd = rvd->vdev_child[c];
2926
2927 if (cvd->vdev_ishole)
2928 break;
2929 }
2930 return (c);
2931 }
2932
2933 /*
2934 * Verify that vdev_add() works as expected.
2935 */
2936 /* ARGSUSED */
2937 void
2938 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
2939 {
2940 ztest_shared_t *zs = ztest_shared;
2941 spa_t *spa = ztest_spa;
2942 uint64_t leaves;
2943 uint64_t guid;
2944 nvlist_t *nvroot;
2945 int error;
2946
2947 if (ztest_opts.zo_mmp_test)
2948 return;
2949
2950 mutex_enter(&ztest_vdev_lock);
2951 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz;
2952
2953 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2954
2955 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves;
2956
2957 /*
2958 * If we have slogs then remove them 1/4 of the time.
2959 */
2960 if (spa_has_slogs(spa) && ztest_random(4) == 0) {
2961 metaslab_group_t *mg;
2962
2963 /*
2964 * find the first real slog in log allocation class
2965 */
2966 mg = spa_log_class(spa)->mc_rotor;
2967 while (!mg->mg_vd->vdev_islog)
2968 mg = mg->mg_next;
2969
2970 guid = mg->mg_vd->vdev_guid;
2971
2972 spa_config_exit(spa, SCL_VDEV, FTAG);
2973
2974 /*
2975 * We have to grab the zs_name_lock as writer to
2976 * prevent a race between removing a slog (dmu_objset_find)
2977 * and destroying a dataset. Removing the slog will
2978 * grab a reference on the dataset which may cause
2979 * dsl_destroy_head() to fail with EBUSY thus
2980 * leaving the dataset in an inconsistent state.
2981 */
2982 pthread_rwlock_wrlock(&ztest_name_lock);
2983 error = spa_vdev_remove(spa, guid, B_FALSE);
2984 pthread_rwlock_unlock(&ztest_name_lock);
2985
2986 switch (error) {
2987 case 0:
2988 case EEXIST: /* Generic zil_reset() error */
2989 case EBUSY: /* Replay required */
2990 case EACCES: /* Crypto key not loaded */
2991 case ZFS_ERR_CHECKPOINT_EXISTS:
2992 case ZFS_ERR_DISCARDING_CHECKPOINT:
2993 break;
2994 default:
2995 fatal(0, "spa_vdev_remove() = %d", error);
2996 }
2997 } else {
2998 spa_config_exit(spa, SCL_VDEV, FTAG);
2999
3000 /*
3001 * Make 1/4 of the devices be log devices
3002 */
3003 nvroot = make_vdev_root(NULL, NULL, NULL,
3004 ztest_opts.zo_vdev_size, 0, (ztest_random(4) == 0) ?
3005 "log" : NULL, ztest_opts.zo_raidz, zs->zs_mirrors, 1);
3006
3007 error = spa_vdev_add(spa, nvroot);
3008 nvlist_free(nvroot);
3009
3010 switch (error) {
3011 case 0:
3012 break;
3013 case ENOSPC:
3014 ztest_record_enospc("spa_vdev_add");
3015 break;
3016 default:
3017 fatal(0, "spa_vdev_add() = %d", error);
3018 }
3019 }
3020
3021 mutex_exit(&ztest_vdev_lock);
3022 }
3023
3024 /* ARGSUSED */
3025 void
3026 ztest_vdev_class_add(ztest_ds_t *zd, uint64_t id)
3027 {
3028 ztest_shared_t *zs = ztest_shared;
3029 spa_t *spa = ztest_spa;
3030 uint64_t leaves;
3031 nvlist_t *nvroot;
3032 const char *class = (ztest_random(2) == 0) ?
3033 VDEV_ALLOC_BIAS_SPECIAL : VDEV_ALLOC_BIAS_DEDUP;
3034 int error;
3035
3036 /*
3037 * By default add a special vdev 50% of the time
3038 */
3039 if ((ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_OFF) ||
3040 (ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_RND &&
3041 ztest_random(2) == 0)) {
3042 return;
3043 }
3044
3045 mutex_enter(&ztest_vdev_lock);
3046
3047 /* Only test with mirrors */
3048 if (zs->zs_mirrors < 2) {
3049 mutex_exit(&ztest_vdev_lock);
3050 return;
3051 }
3052
3053 /* requires feature@allocation_classes */
3054 if (!spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)) {
3055 mutex_exit(&ztest_vdev_lock);
3056 return;
3057 }
3058
3059 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz;
3060
3061 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3062 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves;
3063 spa_config_exit(spa, SCL_VDEV, FTAG);
3064
3065 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
3066 class, ztest_opts.zo_raidz, zs->zs_mirrors, 1);
3067
3068 error = spa_vdev_add(spa, nvroot);
3069 nvlist_free(nvroot);
3070
3071 if (error == ENOSPC)
3072 ztest_record_enospc("spa_vdev_add");
3073 else if (error != 0)
3074 fatal(0, "spa_vdev_add() = %d", error);
3075
3076 /*
3077 * 50% of the time allow small blocks in the special class
3078 */
3079 if (error == 0 &&
3080 spa_special_class(spa)->mc_groups == 1 && ztest_random(2) == 0) {
3081 if (ztest_opts.zo_verbose >= 3)
3082 (void) printf("Enabling special VDEV small blocks\n");
3083 (void) ztest_dsl_prop_set_uint64(zd->zd_name,
3084 ZFS_PROP_SPECIAL_SMALL_BLOCKS, 32768, B_FALSE);
3085 }
3086
3087 mutex_exit(&ztest_vdev_lock);
3088
3089 if (ztest_opts.zo_verbose >= 3) {
3090 metaslab_class_t *mc;
3091
3092 if (strcmp(class, VDEV_ALLOC_BIAS_SPECIAL) == 0)
3093 mc = spa_special_class(spa);
3094 else
3095 mc = spa_dedup_class(spa);
3096 (void) printf("Added a %s mirrored vdev (of %d)\n",
3097 class, (int)mc->mc_groups);
3098 }
3099 }
3100
3101 /*
3102 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
3103 */
3104 /* ARGSUSED */
3105 void
3106 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
3107 {
3108 ztest_shared_t *zs = ztest_shared;
3109 spa_t *spa = ztest_spa;
3110 vdev_t *rvd = spa->spa_root_vdev;
3111 spa_aux_vdev_t *sav;
3112 char *aux;
3113 char *path;
3114 uint64_t guid = 0;
3115 int error;
3116
3117 if (ztest_opts.zo_mmp_test)
3118 return;
3119
3120 path = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3121
3122 if (ztest_random(2) == 0) {
3123 sav = &spa->spa_spares;
3124 aux = ZPOOL_CONFIG_SPARES;
3125 } else {
3126 sav = &spa->spa_l2cache;
3127 aux = ZPOOL_CONFIG_L2CACHE;
3128 }
3129
3130 mutex_enter(&ztest_vdev_lock);
3131
3132 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3133
3134 if (sav->sav_count != 0 && ztest_random(4) == 0) {
3135 /*
3136 * Pick a random device to remove.
3137 */
3138 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid;
3139 } else {
3140 /*
3141 * Find an unused device we can add.
3142 */
3143 zs->zs_vdev_aux = 0;
3144 for (;;) {
3145 int c;
3146 (void) snprintf(path, MAXPATHLEN, ztest_aux_template,
3147 ztest_opts.zo_dir, ztest_opts.zo_pool, aux,
3148 zs->zs_vdev_aux);
3149 for (c = 0; c < sav->sav_count; c++)
3150 if (strcmp(sav->sav_vdevs[c]->vdev_path,
3151 path) == 0)
3152 break;
3153 if (c == sav->sav_count &&
3154 vdev_lookup_by_path(rvd, path) == NULL)
3155 break;
3156 zs->zs_vdev_aux++;
3157 }
3158 }
3159
3160 spa_config_exit(spa, SCL_VDEV, FTAG);
3161
3162 if (guid == 0) {
3163 /*
3164 * Add a new device.
3165 */
3166 nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL,
3167 (ztest_opts.zo_vdev_size * 5) / 4, 0, NULL, 0, 0, 1);
3168 error = spa_vdev_add(spa, nvroot);
3169
3170 switch (error) {
3171 case 0:
3172 break;
3173 default:
3174 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error);
3175 }
3176 nvlist_free(nvroot);
3177 } else {
3178 /*
3179 * Remove an existing device. Sometimes, dirty its
3180 * vdev state first to make sure we handle removal
3181 * of devices that have pending state changes.
3182 */
3183 if (ztest_random(2) == 0)
3184 (void) vdev_online(spa, guid, 0, NULL);
3185
3186 error = spa_vdev_remove(spa, guid, B_FALSE);
3187
3188 switch (error) {
3189 case 0:
3190 case EBUSY:
3191 case ZFS_ERR_CHECKPOINT_EXISTS:
3192 case ZFS_ERR_DISCARDING_CHECKPOINT:
3193 break;
3194 default:
3195 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error);
3196 }
3197 }
3198
3199 mutex_exit(&ztest_vdev_lock);
3200
3201 umem_free(path, MAXPATHLEN);
3202 }
3203
3204 /*
3205 * split a pool if it has mirror tlvdevs
3206 */
3207 /* ARGSUSED */
3208 void
3209 ztest_split_pool(ztest_ds_t *zd, uint64_t id)
3210 {
3211 ztest_shared_t *zs = ztest_shared;
3212 spa_t *spa = ztest_spa;
3213 vdev_t *rvd = spa->spa_root_vdev;
3214 nvlist_t *tree, **child, *config, *split, **schild;
3215 uint_t c, children, schildren = 0, lastlogid = 0;
3216 int error = 0;
3217
3218 if (ztest_opts.zo_mmp_test)
3219 return;
3220
3221 mutex_enter(&ztest_vdev_lock);
3222
3223 /* ensure we have a useable config; mirrors of raidz aren't supported */
3224 if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) {
3225 mutex_exit(&ztest_vdev_lock);
3226 return;
3227 }
3228
3229 /* clean up the old pool, if any */
3230 (void) spa_destroy("splitp");
3231
3232 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3233
3234 /* generate a config from the existing config */
3235 mutex_enter(&spa->spa_props_lock);
3236 VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE,
3237 &tree) == 0);
3238 mutex_exit(&spa->spa_props_lock);
3239
3240 VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child,
3241 &children) == 0);
3242
3243 schild = malloc(rvd->vdev_children * sizeof (nvlist_t *));
3244 for (c = 0; c < children; c++) {
3245 vdev_t *tvd = rvd->vdev_child[c];
3246 nvlist_t **mchild;
3247 uint_t mchildren;
3248
3249 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
3250 VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME,
3251 0) == 0);
3252 VERIFY(nvlist_add_string(schild[schildren],
3253 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0);
3254 VERIFY(nvlist_add_uint64(schild[schildren],
3255 ZPOOL_CONFIG_IS_HOLE, 1) == 0);
3256 if (lastlogid == 0)
3257 lastlogid = schildren;
3258 ++schildren;
3259 continue;
3260 }
3261 lastlogid = 0;
3262 VERIFY(nvlist_lookup_nvlist_array(child[c],
3263 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0);
3264 VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0);
3265 }
3266
3267 /* OK, create a config that can be used to split */
3268 VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0);
3269 VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE,
3270 VDEV_TYPE_ROOT) == 0);
3271 VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild,
3272 lastlogid != 0 ? lastlogid : schildren) == 0);
3273
3274 VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0);
3275 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0);
3276
3277 for (c = 0; c < schildren; c++)
3278 nvlist_free(schild[c]);
3279 free(schild);
3280 nvlist_free(split);
3281
3282 spa_config_exit(spa, SCL_VDEV, FTAG);
3283
3284 (void) pthread_rwlock_wrlock(&ztest_name_lock);
3285 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
3286 (void) pthread_rwlock_unlock(&ztest_name_lock);
3287
3288 nvlist_free(config);
3289
3290 if (error == 0) {
3291 (void) printf("successful split - results:\n");
3292 mutex_enter(&spa_namespace_lock);
3293 show_pool_stats(spa);
3294 show_pool_stats(spa_lookup("splitp"));
3295 mutex_exit(&spa_namespace_lock);
3296 ++zs->zs_splits;
3297 --zs->zs_mirrors;
3298 }
3299 mutex_exit(&ztest_vdev_lock);
3300 }
3301
3302 /*
3303 * Verify that we can attach and detach devices.
3304 */
3305 /* ARGSUSED */
3306 void
3307 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
3308 {
3309 ztest_shared_t *zs = ztest_shared;
3310 spa_t *spa = ztest_spa;
3311 spa_aux_vdev_t *sav = &spa->spa_spares;
3312 vdev_t *rvd = spa->spa_root_vdev;
3313 vdev_t *oldvd, *newvd, *pvd;
3314 nvlist_t *root;
3315 uint64_t leaves;
3316 uint64_t leaf, top;
3317 uint64_t ashift = ztest_get_ashift();
3318 uint64_t oldguid, pguid;
3319 uint64_t oldsize, newsize;
3320 char *oldpath, *newpath;
3321 int replacing;
3322 int oldvd_has_siblings = B_FALSE;
3323 int newvd_is_spare = B_FALSE;
3324 int oldvd_is_log;
3325 int error, expected_error;
3326
3327 if (ztest_opts.zo_mmp_test)
3328 return;
3329
3330 oldpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3331 newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3332
3333 mutex_enter(&ztest_vdev_lock);
3334 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
3335
3336 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3337
3338 /*
3339 * If a vdev is in the process of being removed, its removal may
3340 * finish while we are in progress, leading to an unexpected error
3341 * value. Don't bother trying to attach while we are in the middle
3342 * of removal.
3343 */
3344 if (ztest_device_removal_active) {
3345 spa_config_exit(spa, SCL_ALL, FTAG);
3346 mutex_exit(&ztest_vdev_lock);
3347 return;
3348 }
3349
3350 /*
3351 * Decide whether to do an attach or a replace.
3352 */
3353 replacing = ztest_random(2);
3354
3355 /*
3356 * Pick a random top-level vdev.
3357 */
3358 top = ztest_random_vdev_top(spa, B_TRUE);
3359
3360 /*
3361 * Pick a random leaf within it.
3362 */
3363 leaf = ztest_random(leaves);
3364
3365 /*
3366 * Locate this vdev.
3367 */
3368 oldvd = rvd->vdev_child[top];
3369
3370 /* pick a child from the mirror */
3371 if (zs->zs_mirrors >= 1) {
3372 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops);
3373 ASSERT(oldvd->vdev_children >= zs->zs_mirrors);
3374 oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz];
3375 }
3376
3377 /* pick a child out of the raidz group */
3378 if (ztest_opts.zo_raidz > 1) {
3379 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops);
3380 ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz);
3381 oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz];
3382 }
3383
3384 /*
3385 * If we're already doing an attach or replace, oldvd may be a
3386 * mirror vdev -- in which case, pick a random child.
3387 */
3388 while (oldvd->vdev_children != 0) {
3389 oldvd_has_siblings = B_TRUE;
3390 ASSERT(oldvd->vdev_children >= 2);
3391 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
3392 }
3393
3394 oldguid = oldvd->vdev_guid;
3395 oldsize = vdev_get_min_asize(oldvd);
3396 oldvd_is_log = oldvd->vdev_top->vdev_islog;
3397 (void) strcpy(oldpath, oldvd->vdev_path);
3398 pvd = oldvd->vdev_parent;
3399 pguid = pvd->vdev_guid;
3400
3401 /*
3402 * If oldvd has siblings, then half of the time, detach it.
3403 */
3404 if (oldvd_has_siblings && ztest_random(2) == 0) {
3405 spa_config_exit(spa, SCL_ALL, FTAG);
3406 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
3407 if (error != 0 && error != ENODEV && error != EBUSY &&
3408 error != ENOTSUP && error != ZFS_ERR_CHECKPOINT_EXISTS &&
3409 error != ZFS_ERR_DISCARDING_CHECKPOINT)
3410 fatal(0, "detach (%s) returned %d", oldpath, error);
3411 goto out;
3412 }
3413
3414 /*
3415 * For the new vdev, choose with equal probability between the two
3416 * standard paths (ending in either 'a' or 'b') or a random hot spare.
3417 */
3418 if (sav->sav_count != 0 && ztest_random(3) == 0) {
3419 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
3420 newvd_is_spare = B_TRUE;
3421 (void) strcpy(newpath, newvd->vdev_path);
3422 } else {
3423 (void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
3424 ztest_opts.zo_dir, ztest_opts.zo_pool,
3425 top * leaves + leaf);
3426 if (ztest_random(2) == 0)
3427 newpath[strlen(newpath) - 1] = 'b';
3428 newvd = vdev_lookup_by_path(rvd, newpath);
3429 }
3430
3431 if (newvd) {
3432 /*
3433 * Reopen to ensure the vdev's asize field isn't stale.
3434 */
3435 vdev_reopen(newvd);
3436 newsize = vdev_get_min_asize(newvd);
3437 } else {
3438 /*
3439 * Make newsize a little bigger or smaller than oldsize.
3440 * If it's smaller, the attach should fail.
3441 * If it's larger, and we're doing a replace,
3442 * we should get dynamic LUN growth when we're done.
3443 */
3444 newsize = 10 * oldsize / (9 + ztest_random(3));
3445 }
3446
3447 /*
3448 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
3449 * unless it's a replace; in that case any non-replacing parent is OK.
3450 *
3451 * If newvd is already part of the pool, it should fail with EBUSY.
3452 *
3453 * If newvd is too small, it should fail with EOVERFLOW.
3454 */
3455 if (pvd->vdev_ops != &vdev_mirror_ops &&
3456 pvd->vdev_ops != &vdev_root_ops && (!replacing ||
3457 pvd->vdev_ops == &vdev_replacing_ops ||
3458 pvd->vdev_ops == &vdev_spare_ops))
3459 expected_error = ENOTSUP;
3460 else if (newvd_is_spare && (!replacing || oldvd_is_log))
3461 expected_error = ENOTSUP;
3462 else if (newvd == oldvd)
3463 expected_error = replacing ? 0 : EBUSY;
3464 else if (vdev_lookup_by_path(rvd, newpath) != NULL)
3465 expected_error = EBUSY;
3466 else if (newsize < oldsize)
3467 expected_error = EOVERFLOW;
3468 else if (ashift > oldvd->vdev_top->vdev_ashift)
3469 expected_error = EDOM;
3470 else
3471 expected_error = 0;
3472
3473 spa_config_exit(spa, SCL_ALL, FTAG);
3474
3475 /*
3476 * Build the nvlist describing newpath.
3477 */
3478 root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0,
3479 ashift, NULL, 0, 0, 1);
3480
3481 error = spa_vdev_attach(spa, oldguid, root, replacing);
3482
3483 nvlist_free(root);
3484
3485 /*
3486 * If our parent was the replacing vdev, but the replace completed,
3487 * then instead of failing with ENOTSUP we may either succeed,
3488 * fail with ENODEV, or fail with EOVERFLOW.
3489 */
3490 if (expected_error == ENOTSUP &&
3491 (error == 0 || error == ENODEV || error == EOVERFLOW))
3492 expected_error = error;
3493
3494 /*
3495 * If someone grew the LUN, the replacement may be too small.
3496 */
3497 if (error == EOVERFLOW || error == EBUSY)
3498 expected_error = error;
3499
3500 if (error == ZFS_ERR_CHECKPOINT_EXISTS ||
3501 error == ZFS_ERR_DISCARDING_CHECKPOINT)
3502 expected_error = error;
3503
3504 /* XXX workaround 6690467 */
3505 if (error != expected_error && expected_error != EBUSY) {
3506 fatal(0, "attach (%s %llu, %s %llu, %d) "
3507 "returned %d, expected %d",
3508 oldpath, oldsize, newpath,
3509 newsize, replacing, error, expected_error);
3510 }
3511 out:
3512 mutex_exit(&ztest_vdev_lock);
3513
3514 umem_free(oldpath, MAXPATHLEN);
3515 umem_free(newpath, MAXPATHLEN);
3516 }
3517
3518 /* ARGSUSED */
3519 void
3520 ztest_device_removal(ztest_ds_t *zd, uint64_t id)
3521 {
3522 spa_t *spa = ztest_spa;
3523 vdev_t *vd;
3524 uint64_t guid;
3525 int error;
3526
3527 mutex_enter(&ztest_vdev_lock);
3528
3529 if (ztest_device_removal_active) {
3530 mutex_exit(&ztest_vdev_lock);
3531 return;
3532 }
3533
3534 /*
3535 * Remove a random top-level vdev and wait for removal to finish.
3536 */
3537 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3538 vd = vdev_lookup_top(spa, ztest_random_vdev_top(spa, B_FALSE));
3539 guid = vd->vdev_guid;
3540 spa_config_exit(spa, SCL_VDEV, FTAG);
3541
3542 error = spa_vdev_remove(spa, guid, B_FALSE);
3543 if (error == 0) {
3544 ztest_device_removal_active = B_TRUE;
3545 mutex_exit(&ztest_vdev_lock);
3546
3547 while (spa->spa_vdev_removal != NULL)
3548 txg_wait_synced(spa_get_dsl(spa), 0);
3549 } else {
3550 mutex_exit(&ztest_vdev_lock);
3551 return;
3552 }
3553
3554 /*
3555 * The pool needs to be scrubbed after completing device removal.
3556 * Failure to do so may result in checksum errors due to the
3557 * strategy employed by ztest_fault_inject() when selecting which
3558 * offset are redundant and can be damaged.
3559 */
3560 error = spa_scan(spa, POOL_SCAN_SCRUB);
3561 if (error == 0) {
3562 while (dsl_scan_scrubbing(spa_get_dsl(spa)))
3563 txg_wait_synced(spa_get_dsl(spa), 0);
3564 }
3565
3566 mutex_enter(&ztest_vdev_lock);
3567 ztest_device_removal_active = B_FALSE;
3568 mutex_exit(&ztest_vdev_lock);
3569 }
3570
3571 /*
3572 * Callback function which expands the physical size of the vdev.
3573 */
3574 vdev_t *
3575 grow_vdev(vdev_t *vd, void *arg)
3576 {
3577 ASSERTV(spa_t *spa = vd->vdev_spa);
3578 size_t *newsize = arg;
3579 size_t fsize;
3580 int fd;
3581
3582 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
3583 ASSERT(vd->vdev_ops->vdev_op_leaf);
3584
3585 if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
3586 return (vd);
3587
3588 fsize = lseek(fd, 0, SEEK_END);
3589 VERIFY(ftruncate(fd, *newsize) == 0);
3590
3591 if (ztest_opts.zo_verbose >= 6) {
3592 (void) printf("%s grew from %lu to %lu bytes\n",
3593 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
3594 }
3595 (void) close(fd);
3596 return (NULL);
3597 }
3598
3599 /*
3600 * Callback function which expands a given vdev by calling vdev_online().
3601 */
3602 /* ARGSUSED */
3603 vdev_t *
3604 online_vdev(vdev_t *vd, void *arg)
3605 {
3606 spa_t *spa = vd->vdev_spa;
3607 vdev_t *tvd = vd->vdev_top;
3608 uint64_t guid = vd->vdev_guid;
3609 uint64_t generation = spa->spa_config_generation + 1;
3610 vdev_state_t newstate = VDEV_STATE_UNKNOWN;
3611 int error;
3612
3613 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
3614 ASSERT(vd->vdev_ops->vdev_op_leaf);
3615
3616 /* Calling vdev_online will initialize the new metaslabs */
3617 spa_config_exit(spa, SCL_STATE, spa);
3618 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
3619 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3620
3621 /*
3622 * If vdev_online returned an error or the underlying vdev_open
3623 * failed then we abort the expand. The only way to know that
3624 * vdev_open fails is by checking the returned newstate.
3625 */
3626 if (error || newstate != VDEV_STATE_HEALTHY) {
3627 if (ztest_opts.zo_verbose >= 5) {
3628 (void) printf("Unable to expand vdev, state %llu, "
3629 "error %d\n", (u_longlong_t)newstate, error);
3630 }
3631 return (vd);
3632 }
3633 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
3634
3635 /*
3636 * Since we dropped the lock we need to ensure that we're
3637 * still talking to the original vdev. It's possible this
3638 * vdev may have been detached/replaced while we were
3639 * trying to online it.
3640 */
3641 if (generation != spa->spa_config_generation) {
3642 if (ztest_opts.zo_verbose >= 5) {
3643 (void) printf("vdev configuration has changed, "
3644 "guid %llu, state %llu, expected gen %llu, "
3645 "got gen %llu\n",
3646 (u_longlong_t)guid,
3647 (u_longlong_t)tvd->vdev_state,
3648 (u_longlong_t)generation,
3649 (u_longlong_t)spa->spa_config_generation);
3650 }
3651 return (vd);
3652 }
3653 return (NULL);
3654 }
3655
3656 /*
3657 * Traverse the vdev tree calling the supplied function.
3658 * We continue to walk the tree until we either have walked all
3659 * children or we receive a non-NULL return from the callback.
3660 * If a NULL callback is passed, then we just return back the first
3661 * leaf vdev we encounter.
3662 */
3663 vdev_t *
3664 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
3665 {
3666 uint_t c;
3667
3668 if (vd->vdev_ops->vdev_op_leaf) {
3669 if (func == NULL)
3670 return (vd);
3671 else
3672 return (func(vd, arg));
3673 }
3674
3675 for (c = 0; c < vd->vdev_children; c++) {
3676 vdev_t *cvd = vd->vdev_child[c];
3677 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
3678 return (cvd);
3679 }
3680 return (NULL);
3681 }
3682
3683 /*
3684 * Verify that dynamic LUN growth works as expected.
3685 */
3686 /* ARGSUSED */
3687 void
3688 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
3689 {
3690 spa_t *spa = ztest_spa;
3691 vdev_t *vd, *tvd;
3692 metaslab_class_t *mc;
3693 metaslab_group_t *mg;
3694 size_t psize, newsize;
3695 uint64_t top;
3696 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
3697
3698 mutex_enter(&ztest_checkpoint_lock);
3699 mutex_enter(&ztest_vdev_lock);
3700 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3701
3702 /*
3703 * If there is a vdev removal in progress, it could complete while
3704 * we are running, in which case we would not be able to verify
3705 * that the metaslab_class space increased (because it decreases
3706 * when the device removal completes).
3707 */
3708 if (ztest_device_removal_active) {
3709 spa_config_exit(spa, SCL_STATE, spa);
3710 mutex_exit(&ztest_vdev_lock);
3711 mutex_exit(&ztest_checkpoint_lock);
3712 return;
3713 }
3714
3715 top = ztest_random_vdev_top(spa, B_TRUE);
3716
3717 tvd = spa->spa_root_vdev->vdev_child[top];
3718 mg = tvd->vdev_mg;
3719 mc = mg->mg_class;
3720 old_ms_count = tvd->vdev_ms_count;
3721 old_class_space = metaslab_class_get_space(mc);
3722
3723 /*
3724 * Determine the size of the first leaf vdev associated with
3725 * our top-level device.
3726 */
3727 vd = vdev_walk_tree(tvd, NULL, NULL);
3728 ASSERT3P(vd, !=, NULL);
3729 ASSERT(vd->vdev_ops->vdev_op_leaf);
3730
3731 psize = vd->vdev_psize;
3732
3733 /*
3734 * We only try to expand the vdev if it's healthy, less than 4x its
3735 * original size, and it has a valid psize.
3736 */
3737 if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
3738 psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) {
3739 spa_config_exit(spa, SCL_STATE, spa);
3740 mutex_exit(&ztest_vdev_lock);
3741 mutex_exit(&ztest_checkpoint_lock);
3742 return;
3743 }
3744 ASSERT(psize > 0);
3745 newsize = psize + MAX(psize / 8, SPA_MAXBLOCKSIZE);
3746 ASSERT3U(newsize, >, psize);
3747
3748 if (ztest_opts.zo_verbose >= 6) {
3749 (void) printf("Expanding LUN %s from %lu to %lu\n",
3750 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
3751 }
3752
3753 /*
3754 * Growing the vdev is a two step process:
3755 * 1). expand the physical size (i.e. relabel)
3756 * 2). online the vdev to create the new metaslabs
3757 */
3758 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
3759 vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
3760 tvd->vdev_state != VDEV_STATE_HEALTHY) {
3761 if (ztest_opts.zo_verbose >= 5) {
3762 (void) printf("Could not expand LUN because "
3763 "the vdev configuration changed.\n");
3764 }
3765 spa_config_exit(spa, SCL_STATE, spa);
3766 mutex_exit(&ztest_vdev_lock);
3767 mutex_exit(&ztest_checkpoint_lock);
3768 return;
3769 }
3770
3771 spa_config_exit(spa, SCL_STATE, spa);
3772
3773 /*
3774 * Expanding the LUN will update the config asynchronously,
3775 * thus we must wait for the async thread to complete any
3776 * pending tasks before proceeding.
3777 */
3778 for (;;) {
3779 boolean_t done;
3780 mutex_enter(&spa->spa_async_lock);
3781 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
3782 mutex_exit(&spa->spa_async_lock);
3783 if (done)
3784 break;
3785 txg_wait_synced(spa_get_dsl(spa), 0);
3786 (void) poll(NULL, 0, 100);
3787 }
3788
3789 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3790
3791 tvd = spa->spa_root_vdev->vdev_child[top];
3792 new_ms_count = tvd->vdev_ms_count;
3793 new_class_space = metaslab_class_get_space(mc);
3794
3795 if (tvd->vdev_mg != mg || mg->mg_class != mc) {
3796 if (ztest_opts.zo_verbose >= 5) {
3797 (void) printf("Could not verify LUN expansion due to "
3798 "intervening vdev offline or remove.\n");
3799 }
3800 spa_config_exit(spa, SCL_STATE, spa);
3801 mutex_exit(&ztest_vdev_lock);
3802 mutex_exit(&ztest_checkpoint_lock);
3803 return;
3804 }
3805
3806 /*
3807 * Make sure we were able to grow the vdev.
3808 */
3809 if (new_ms_count <= old_ms_count) {
3810 fatal(0, "LUN expansion failed: ms_count %llu < %llu\n",
3811 old_ms_count, new_ms_count);
3812 }
3813
3814 /*
3815 * Make sure we were able to grow the pool.
3816 */
3817 if (new_class_space <= old_class_space) {
3818 fatal(0, "LUN expansion failed: class_space %llu < %llu\n",
3819 old_class_space, new_class_space);
3820 }
3821
3822 if (ztest_opts.zo_verbose >= 5) {
3823 char oldnumbuf[NN_NUMBUF_SZ], newnumbuf[NN_NUMBUF_SZ];
3824
3825 nicenum(old_class_space, oldnumbuf, sizeof (oldnumbuf));
3826 nicenum(new_class_space, newnumbuf, sizeof (newnumbuf));
3827 (void) printf("%s grew from %s to %s\n",
3828 spa->spa_name, oldnumbuf, newnumbuf);
3829 }
3830
3831 spa_config_exit(spa, SCL_STATE, spa);
3832 mutex_exit(&ztest_vdev_lock);
3833 mutex_exit(&ztest_checkpoint_lock);
3834 }
3835
3836 /*
3837 * Verify that dmu_objset_{create,destroy,open,close} work as expected.
3838 */
3839 /* ARGSUSED */
3840 static void
3841 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
3842 {
3843 /*
3844 * Create the objects common to all ztest datasets.
3845 */
3846 VERIFY(zap_create_claim(os, ZTEST_DIROBJ,
3847 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0);
3848 }
3849
3850 static int
3851 ztest_dataset_create(char *dsname)
3852 {
3853 int err;
3854 uint64_t rand;
3855 dsl_crypto_params_t *dcp = NULL;
3856
3857 /*
3858 * 50% of the time, we create encrypted datasets
3859 * using a random cipher suite and a hard-coded
3860 * wrapping key.
3861 */
3862 rand = ztest_random(2);
3863 if (rand != 0) {
3864 nvlist_t *crypto_args = fnvlist_alloc();
3865 nvlist_t *props = fnvlist_alloc();
3866
3867 /* slight bias towards the default cipher suite */
3868 rand = ztest_random(ZIO_CRYPT_FUNCTIONS);
3869 if (rand < ZIO_CRYPT_AES_128_CCM)
3870 rand = ZIO_CRYPT_ON;
3871
3872 fnvlist_add_uint64(props,
3873 zfs_prop_to_name(ZFS_PROP_ENCRYPTION), rand);
3874 fnvlist_add_uint8_array(crypto_args, "wkeydata",
3875 (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
3876
3877 /*
3878 * These parameters aren't really used by the kernel. They
3879 * are simply stored so that userspace knows how to load
3880 * the wrapping key.
3881 */
3882 fnvlist_add_uint64(props,
3883 zfs_prop_to_name(ZFS_PROP_KEYFORMAT), ZFS_KEYFORMAT_RAW);
3884 fnvlist_add_string(props,
3885 zfs_prop_to_name(ZFS_PROP_KEYLOCATION), "prompt");
3886 fnvlist_add_uint64(props,
3887 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 0ULL);
3888 fnvlist_add_uint64(props,
3889 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 0ULL);
3890
3891 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, props,
3892 crypto_args, &dcp));
3893
3894 /*
3895 * Cycle through all available encryption implementations
3896 * to verify interoperability.
3897 */
3898 VERIFY0(gcm_impl_set("cycle"));
3899 VERIFY0(aes_impl_set("cycle"));
3900
3901 fnvlist_free(crypto_args);
3902 fnvlist_free(props);
3903 }
3904
3905 err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, dcp,
3906 ztest_objset_create_cb, NULL);
3907 dsl_crypto_params_free(dcp, !!err);
3908
3909 rand = ztest_random(100);
3910 if (err || rand < 80)
3911 return (err);
3912
3913 if (ztest_opts.zo_verbose >= 5)
3914 (void) printf("Setting dataset %s to sync always\n", dsname);
3915 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
3916 ZFS_SYNC_ALWAYS, B_FALSE));
3917 }
3918
3919 /* ARGSUSED */
3920 static int
3921 ztest_objset_destroy_cb(const char *name, void *arg)
3922 {
3923 objset_t *os;
3924 dmu_object_info_t doi;
3925 int error;
3926
3927 /*
3928 * Verify that the dataset contains a directory object.
3929 */
3930 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
3931 B_TRUE, FTAG, &os));
3932 error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
3933 if (error != ENOENT) {
3934 /* We could have crashed in the middle of destroying it */
3935 ASSERT0(error);
3936 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
3937 ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
3938 }
3939 dmu_objset_disown(os, B_TRUE, FTAG);
3940
3941 /*
3942 * Destroy the dataset.
3943 */
3944 if (strchr(name, '@') != NULL) {
3945 VERIFY0(dsl_destroy_snapshot(name, B_TRUE));
3946 } else {
3947 error = dsl_destroy_head(name);
3948 /* There could be a hold on this dataset */
3949 if (error != EBUSY)
3950 ASSERT0(error);
3951 }
3952 return (0);
3953 }
3954
3955 static boolean_t
3956 ztest_snapshot_create(char *osname, uint64_t id)
3957 {
3958 char snapname[ZFS_MAX_DATASET_NAME_LEN];
3959 int error;
3960
3961 (void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id);
3962
3963 error = dmu_objset_snapshot_one(osname, snapname);
3964 if (error == ENOSPC) {
3965 ztest_record_enospc(FTAG);
3966 return (B_FALSE);
3967 }
3968 if (error != 0 && error != EEXIST) {
3969 fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname,
3970 snapname, error);
3971 }
3972 return (B_TRUE);
3973 }
3974
3975 static boolean_t
3976 ztest_snapshot_destroy(char *osname, uint64_t id)
3977 {
3978 char snapname[ZFS_MAX_DATASET_NAME_LEN];
3979 int error;
3980
3981 (void) snprintf(snapname, sizeof (snapname), "%s@%llu", osname,
3982 (u_longlong_t)id);
3983
3984 error = dsl_destroy_snapshot(snapname, B_FALSE);
3985 if (error != 0 && error != ENOENT)
3986 fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error);
3987 return (B_TRUE);
3988 }
3989
3990 /* ARGSUSED */
3991 void
3992 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
3993 {
3994 ztest_ds_t *zdtmp;
3995 int iters;
3996 int error;
3997 objset_t *os, *os2;
3998 char name[ZFS_MAX_DATASET_NAME_LEN];
3999 zilog_t *zilog;
4000 int i;
4001
4002 zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
4003
4004 (void) pthread_rwlock_rdlock(&ztest_name_lock);
4005
4006 (void) snprintf(name, sizeof (name), "%s/temp_%llu",
4007 ztest_opts.zo_pool, (u_longlong_t)id);
4008
4009 /*
4010 * If this dataset exists from a previous run, process its replay log
4011 * half of the time. If we don't replay it, then dsl_destroy_head()
4012 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
4013 */
4014 if (ztest_random(2) == 0 &&
4015 ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
4016 B_TRUE, FTAG, &os) == 0) {
4017 ztest_zd_init(zdtmp, NULL, os);
4018 zil_replay(os, zdtmp, ztest_replay_vector);
4019 ztest_zd_fini(zdtmp);
4020 dmu_objset_disown(os, B_TRUE, FTAG);
4021 }
4022
4023 /*
4024 * There may be an old instance of the dataset we're about to
4025 * create lying around from a previous run. If so, destroy it
4026 * and all of its snapshots.
4027 */
4028 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
4029 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
4030
4031 /*
4032 * Verify that the destroyed dataset is no longer in the namespace.
4033 */
4034 VERIFY3U(ENOENT, ==, ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
4035 B_TRUE, FTAG, &os));
4036
4037 /*
4038 * Verify that we can create a new dataset.
4039 */
4040 error = ztest_dataset_create(name);
4041 if (error) {
4042 if (error == ENOSPC) {
4043 ztest_record_enospc(FTAG);
4044 goto out;
4045 }
4046 fatal(0, "dmu_objset_create(%s) = %d", name, error);
4047 }
4048
4049 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, B_TRUE,
4050 FTAG, &os));
4051
4052 ztest_zd_init(zdtmp, NULL, os);
4053
4054 /*
4055 * Open the intent log for it.
4056 */
4057 zilog = zil_open(os, ztest_get_data);
4058
4059 /*
4060 * Put some objects in there, do a little I/O to them,
4061 * and randomly take a couple of snapshots along the way.
4062 */
4063 iters = ztest_random(5);
4064 for (i = 0; i < iters; i++) {
4065 ztest_dmu_object_alloc_free(zdtmp, id);
4066 if (ztest_random(iters) == 0)
4067 (void) ztest_snapshot_create(name, i);
4068 }
4069
4070 /*
4071 * Verify that we cannot create an existing dataset.
4072 */
4073 VERIFY3U(EEXIST, ==,
4074 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL, NULL));
4075
4076 /*
4077 * Verify that we can hold an objset that is also owned.
4078 */
4079 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2));
4080 dmu_objset_rele(os2, FTAG);
4081
4082 /*
4083 * Verify that we cannot own an objset that is already owned.
4084 */
4085 VERIFY3U(EBUSY, ==, ztest_dmu_objset_own(name, DMU_OST_OTHER,
4086 B_FALSE, B_TRUE, FTAG, &os2));
4087
4088 zil_close(zilog);
4089 dmu_objset_disown(os, B_TRUE, FTAG);
4090 ztest_zd_fini(zdtmp);
4091 out:
4092 (void) pthread_rwlock_unlock(&ztest_name_lock);
4093
4094 umem_free(zdtmp, sizeof (ztest_ds_t));
4095 }
4096
4097 /*
4098 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
4099 */
4100 void
4101 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
4102 {
4103 (void) pthread_rwlock_rdlock(&ztest_name_lock);
4104 (void) ztest_snapshot_destroy(zd->zd_name, id);
4105 (void) ztest_snapshot_create(zd->zd_name, id);
4106 (void) pthread_rwlock_unlock(&ztest_name_lock);
4107 }
4108
4109 /*
4110 * Cleanup non-standard snapshots and clones.
4111 */
4112 void
4113 ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
4114 {
4115 char *snap1name;
4116 char *clone1name;
4117 char *snap2name;
4118 char *clone2name;
4119 char *snap3name;
4120 int error;
4121
4122 snap1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4123 clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4124 snap2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4125 clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4126 snap3name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4127
4128 (void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN,
4129 "%s@s1_%llu", osname, (u_longlong_t)id);
4130 (void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN,
4131 "%s/c1_%llu", osname, (u_longlong_t)id);
4132 (void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN,
4133 "%s@s2_%llu", clone1name, (u_longlong_t)id);
4134 (void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN,
4135 "%s/c2_%llu", osname, (u_longlong_t)id);
4136 (void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN,
4137 "%s@s3_%llu", clone1name, (u_longlong_t)id);
4138
4139 error = dsl_destroy_head(clone2name);
4140 if (error && error != ENOENT)
4141 fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error);
4142 error = dsl_destroy_snapshot(snap3name, B_FALSE);
4143 if (error && error != ENOENT)
4144 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error);
4145 error = dsl_destroy_snapshot(snap2name, B_FALSE);
4146 if (error && error != ENOENT)
4147 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error);
4148 error = dsl_destroy_head(clone1name);
4149 if (error && error != ENOENT)
4150 fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error);
4151 error = dsl_destroy_snapshot(snap1name, B_FALSE);
4152 if (error && error != ENOENT)
4153 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error);
4154
4155 umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
4156 umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
4157 umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
4158 umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
4159 umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
4160 }
4161
4162 /*
4163 * Verify dsl_dataset_promote handles EBUSY
4164 */
4165 void
4166 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
4167 {
4168 objset_t *os;
4169 char *snap1name;
4170 char *clone1name;
4171 char *snap2name;
4172 char *clone2name;
4173 char *snap3name;
4174 char *osname = zd->zd_name;
4175 int error;
4176
4177 snap1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4178 clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4179 snap2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4180 clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4181 snap3name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4182
4183 (void) pthread_rwlock_rdlock(&ztest_name_lock);
4184
4185 ztest_dsl_dataset_cleanup(osname, id);
4186
4187 (void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN,
4188 "%s@s1_%llu", osname, (u_longlong_t)id);
4189 (void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN,
4190 "%s/c1_%llu", osname, (u_longlong_t)id);
4191 (void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN,
4192 "%s@s2_%llu", clone1name, (u_longlong_t)id);
4193 (void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN,
4194 "%s/c2_%llu", osname, (u_longlong_t)id);
4195 (void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN,
4196 "%s@s3_%llu", clone1name, (u_longlong_t)id);
4197
4198 error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1);
4199 if (error && error != EEXIST) {
4200 if (error == ENOSPC) {
4201 ztest_record_enospc(FTAG);
4202 goto out;
4203 }
4204 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error);
4205 }
4206
4207 error = dmu_objset_clone(clone1name, snap1name);
4208 if (error) {
4209 if (error == ENOSPC) {
4210 ztest_record_enospc(FTAG);
4211 goto out;
4212 }
4213 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error);
4214 }
4215
4216 error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1);
4217 if (error && error != EEXIST) {
4218 if (error == ENOSPC) {
4219 ztest_record_enospc(FTAG);
4220 goto out;
4221 }
4222 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error);
4223 }
4224
4225 error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1);
4226 if (error && error != EEXIST) {
4227 if (error == ENOSPC) {
4228 ztest_record_enospc(FTAG);
4229 goto out;
4230 }
4231 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error);
4232 }
4233
4234 error = dmu_objset_clone(clone2name, snap3name);
4235 if (error) {
4236 if (error == ENOSPC) {
4237 ztest_record_enospc(FTAG);
4238 goto out;
4239 }
4240 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error);
4241 }
4242
4243 error = ztest_dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, B_TRUE,
4244 FTAG, &os);
4245 if (error)
4246 fatal(0, "dmu_objset_own(%s) = %d", snap2name, error);
4247 error = dsl_dataset_promote(clone2name, NULL);
4248 if (error == ENOSPC) {
4249 dmu_objset_disown(os, B_TRUE, FTAG);
4250 ztest_record_enospc(FTAG);
4251 goto out;
4252 }
4253 if (error != EBUSY)
4254 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name,
4255 error);
4256 dmu_objset_disown(os, B_TRUE, FTAG);
4257
4258 out:
4259 ztest_dsl_dataset_cleanup(osname, id);
4260
4261 (void) pthread_rwlock_unlock(&ztest_name_lock);
4262
4263 umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
4264 umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
4265 umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
4266 umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
4267 umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
4268 }
4269
4270 #undef OD_ARRAY_SIZE
4271 #define OD_ARRAY_SIZE 4
4272
4273 /*
4274 * Verify that dmu_object_{alloc,free} work as expected.
4275 */
4276 void
4277 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
4278 {
4279 ztest_od_t *od;
4280 int batchsize;
4281 int size;
4282 int b;
4283
4284 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
4285 od = umem_alloc(size, UMEM_NOFAIL);
4286 batchsize = OD_ARRAY_SIZE;
4287
4288 for (b = 0; b < batchsize; b++)
4289 ztest_od_init(od + b, id, FTAG, b, DMU_OT_UINT64_OTHER,
4290 0, 0, 0);
4291
4292 /*
4293 * Destroy the previous batch of objects, create a new batch,
4294 * and do some I/O on the new objects.
4295 */
4296 if (ztest_object_init(zd, od, size, B_TRUE) != 0)
4297 return;
4298
4299 while (ztest_random(4 * batchsize) != 0)
4300 ztest_io(zd, od[ztest_random(batchsize)].od_object,
4301 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4302
4303 umem_free(od, size);
4304 }
4305
4306 /*
4307 * Rewind the global allocator to verify object allocation backfilling.
4308 */
4309 void
4310 ztest_dmu_object_next_chunk(ztest_ds_t *zd, uint64_t id)
4311 {
4312 objset_t *os = zd->zd_os;
4313 int dnodes_per_chunk = 1 << dmu_object_alloc_chunk_shift;
4314 uint64_t object;
4315
4316 /*
4317 * Rewind the global allocator randomly back to a lower object number
4318 * to force backfilling and reclamation of recently freed dnodes.
4319 */
4320 mutex_enter(&os->os_obj_lock);
4321 object = ztest_random(os->os_obj_next_chunk);
4322 os->os_obj_next_chunk = P2ALIGN(object, dnodes_per_chunk);
4323 mutex_exit(&os->os_obj_lock);
4324 }
4325
4326 #undef OD_ARRAY_SIZE
4327 #define OD_ARRAY_SIZE 2
4328
4329 /*
4330 * Verify that dmu_{read,write} work as expected.
4331 */
4332 void
4333 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
4334 {
4335 int size;
4336 ztest_od_t *od;
4337
4338 objset_t *os = zd->zd_os;
4339 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
4340 od = umem_alloc(size, UMEM_NOFAIL);
4341 dmu_tx_t *tx;
4342 int i, freeit, error;
4343 uint64_t n, s, txg;
4344 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
4345 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
4346 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
4347 uint64_t regions = 997;
4348 uint64_t stride = 123456789ULL;
4349 uint64_t width = 40;
4350 int free_percent = 5;
4351
4352 /*
4353 * This test uses two objects, packobj and bigobj, that are always
4354 * updated together (i.e. in the same tx) so that their contents are
4355 * in sync and can be compared. Their contents relate to each other
4356 * in a simple way: packobj is a dense array of 'bufwad' structures,
4357 * while bigobj is a sparse array of the same bufwads. Specifically,
4358 * for any index n, there are three bufwads that should be identical:
4359 *
4360 * packobj, at offset n * sizeof (bufwad_t)
4361 * bigobj, at the head of the nth chunk
4362 * bigobj, at the tail of the nth chunk
4363 *
4364 * The chunk size is arbitrary. It doesn't have to be a power of two,
4365 * and it doesn't have any relation to the object blocksize.
4366 * The only requirement is that it can hold at least two bufwads.
4367 *
4368 * Normally, we write the bufwad to each of these locations.
4369 * However, free_percent of the time we instead write zeroes to
4370 * packobj and perform a dmu_free_range() on bigobj. By comparing
4371 * bigobj to packobj, we can verify that the DMU is correctly
4372 * tracking which parts of an object are allocated and free,
4373 * and that the contents of the allocated blocks are correct.
4374 */
4375
4376 /*
4377 * Read the directory info. If it's the first time, set things up.
4378 */
4379 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, chunksize);
4380 ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
4381 chunksize);
4382
4383 if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
4384 umem_free(od, size);
4385 return;
4386 }
4387
4388 bigobj = od[0].od_object;
4389 packobj = od[1].od_object;
4390 chunksize = od[0].od_gen;
4391 ASSERT(chunksize == od[1].od_gen);
4392
4393 /*
4394 * Prefetch a random chunk of the big object.
4395 * Our aim here is to get some async reads in flight
4396 * for blocks that we may free below; the DMU should
4397 * handle this race correctly.
4398 */
4399 n = ztest_random(regions) * stride + ztest_random(width);
4400 s = 1 + ztest_random(2 * width - 1);
4401 dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize,
4402 ZIO_PRIORITY_SYNC_READ);
4403
4404 /*
4405 * Pick a random index and compute the offsets into packobj and bigobj.
4406 */
4407 n = ztest_random(regions) * stride + ztest_random(width);
4408 s = 1 + ztest_random(width - 1);
4409
4410 packoff = n * sizeof (bufwad_t);
4411 packsize = s * sizeof (bufwad_t);
4412
4413 bigoff = n * chunksize;
4414 bigsize = s * chunksize;
4415
4416 packbuf = umem_alloc(packsize, UMEM_NOFAIL);
4417 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
4418
4419 /*
4420 * free_percent of the time, free a range of bigobj rather than
4421 * overwriting it.
4422 */
4423 freeit = (ztest_random(100) < free_percent);
4424
4425 /*
4426 * Read the current contents of our objects.
4427 */
4428 error = dmu_read(os, packobj, packoff, packsize, packbuf,
4429 DMU_READ_PREFETCH);
4430 ASSERT0(error);
4431 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
4432 DMU_READ_PREFETCH);
4433 ASSERT0(error);
4434
4435 /*
4436 * Get a tx for the mods to both packobj and bigobj.
4437 */
4438 tx = dmu_tx_create(os);
4439
4440 dmu_tx_hold_write(tx, packobj, packoff, packsize);
4441
4442 if (freeit)
4443 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
4444 else
4445 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
4446
4447 /* This accounts for setting the checksum/compression. */
4448 dmu_tx_hold_bonus(tx, bigobj);
4449
4450 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4451 if (txg == 0) {
4452 umem_free(packbuf, packsize);
4453 umem_free(bigbuf, bigsize);
4454 umem_free(od, size);
4455 return;
4456 }
4457
4458 enum zio_checksum cksum;
4459 do {
4460 cksum = (enum zio_checksum)
4461 ztest_random_dsl_prop(ZFS_PROP_CHECKSUM);
4462 } while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS);
4463 dmu_object_set_checksum(os, bigobj, cksum, tx);
4464
4465 enum zio_compress comp;
4466 do {
4467 comp = (enum zio_compress)
4468 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION);
4469 } while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS);
4470 dmu_object_set_compress(os, bigobj, comp, tx);
4471
4472 /*
4473 * For each index from n to n + s, verify that the existing bufwad
4474 * in packobj matches the bufwads at the head and tail of the
4475 * corresponding chunk in bigobj. Then update all three bufwads
4476 * with the new values we want to write out.
4477 */
4478 for (i = 0; i < s; i++) {
4479 /* LINTED */
4480 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
4481 /* LINTED */
4482 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
4483 /* LINTED */
4484 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
4485
4486 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
4487 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
4488
4489 if (pack->bw_txg > txg)
4490 fatal(0, "future leak: got %llx, open txg is %llx",
4491 pack->bw_txg, txg);
4492
4493 if (pack->bw_data != 0 && pack->bw_index != n + i)
4494 fatal(0, "wrong index: got %llx, wanted %llx+%llx",
4495 pack->bw_index, n, i);
4496
4497 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
4498 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
4499
4500 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
4501 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
4502
4503 if (freeit) {
4504 bzero(pack, sizeof (bufwad_t));
4505 } else {
4506 pack->bw_index = n + i;
4507 pack->bw_txg = txg;
4508 pack->bw_data = 1 + ztest_random(-2ULL);
4509 }
4510 *bigH = *pack;
4511 *bigT = *pack;
4512 }
4513
4514 /*
4515 * We've verified all the old bufwads, and made new ones.
4516 * Now write them out.
4517 */
4518 dmu_write(os, packobj, packoff, packsize, packbuf, tx);
4519
4520 if (freeit) {
4521 if (ztest_opts.zo_verbose >= 7) {
4522 (void) printf("freeing offset %llx size %llx"
4523 " txg %llx\n",
4524 (u_longlong_t)bigoff,
4525 (u_longlong_t)bigsize,
4526 (u_longlong_t)txg);
4527 }
4528 VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx));
4529 } else {
4530 if (ztest_opts.zo_verbose >= 7) {
4531 (void) printf("writing offset %llx size %llx"
4532 " txg %llx\n",
4533 (u_longlong_t)bigoff,
4534 (u_longlong_t)bigsize,
4535 (u_longlong_t)txg);
4536 }
4537 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);
4538 }
4539
4540 dmu_tx_commit(tx);
4541
4542 /*
4543 * Sanity check the stuff we just wrote.
4544 */
4545 {
4546 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
4547 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
4548
4549 VERIFY(0 == dmu_read(os, packobj, packoff,
4550 packsize, packcheck, DMU_READ_PREFETCH));
4551 VERIFY(0 == dmu_read(os, bigobj, bigoff,
4552 bigsize, bigcheck, DMU_READ_PREFETCH));
4553
4554 ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
4555 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
4556
4557 umem_free(packcheck, packsize);
4558 umem_free(bigcheck, bigsize);
4559 }
4560
4561 umem_free(packbuf, packsize);
4562 umem_free(bigbuf, bigsize);
4563 umem_free(od, size);
4564 }
4565
4566 void
4567 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
4568 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
4569 {
4570 uint64_t i;
4571 bufwad_t *pack;
4572 bufwad_t *bigH;
4573 bufwad_t *bigT;
4574
4575 /*
4576 * For each index from n to n + s, verify that the existing bufwad
4577 * in packobj matches the bufwads at the head and tail of the
4578 * corresponding chunk in bigobj. Then update all three bufwads
4579 * with the new values we want to write out.
4580 */
4581 for (i = 0; i < s; i++) {
4582 /* LINTED */
4583 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
4584 /* LINTED */
4585 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
4586 /* LINTED */
4587 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
4588
4589 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
4590 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
4591
4592 if (pack->bw_txg > txg)
4593 fatal(0, "future leak: got %llx, open txg is %llx",
4594 pack->bw_txg, txg);
4595
4596 if (pack->bw_data != 0 && pack->bw_index != n + i)
4597 fatal(0, "wrong index: got %llx, wanted %llx+%llx",
4598 pack->bw_index, n, i);
4599
4600 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
4601 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
4602
4603 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
4604 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
4605
4606 pack->bw_index = n + i;
4607 pack->bw_txg = txg;
4608 pack->bw_data = 1 + ztest_random(-2ULL);
4609
4610 *bigH = *pack;
4611 *bigT = *pack;
4612 }
4613 }
4614
4615 #undef OD_ARRAY_SIZE
4616 #define OD_ARRAY_SIZE 2
4617
4618 void
4619 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
4620 {
4621 objset_t *os = zd->zd_os;
4622 ztest_od_t *od;
4623 dmu_tx_t *tx;
4624 uint64_t i;
4625 int error;
4626 int size;
4627 uint64_t n, s, txg;
4628 bufwad_t *packbuf, *bigbuf;
4629 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
4630 uint64_t blocksize = ztest_random_blocksize();
4631 uint64_t chunksize = blocksize;
4632 uint64_t regions = 997;
4633 uint64_t stride = 123456789ULL;
4634 uint64_t width = 9;
4635 dmu_buf_t *bonus_db;
4636 arc_buf_t **bigbuf_arcbufs;
4637 dmu_object_info_t doi;
4638
4639 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
4640 od = umem_alloc(size, UMEM_NOFAIL);
4641
4642 /*
4643 * This test uses two objects, packobj and bigobj, that are always
4644 * updated together (i.e. in the same tx) so that their contents are
4645 * in sync and can be compared. Their contents relate to each other
4646 * in a simple way: packobj is a dense array of 'bufwad' structures,
4647 * while bigobj is a sparse array of the same bufwads. Specifically,
4648 * for any index n, there are three bufwads that should be identical:
4649 *
4650 * packobj, at offset n * sizeof (bufwad_t)
4651 * bigobj, at the head of the nth chunk
4652 * bigobj, at the tail of the nth chunk
4653 *
4654 * The chunk size is set equal to bigobj block size so that
4655 * dmu_assign_arcbuf_by_dbuf() can be tested for object updates.
4656 */
4657
4658 /*
4659 * Read the directory info. If it's the first time, set things up.
4660 */
4661 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
4662 ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
4663 chunksize);
4664
4665
4666 if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
4667 umem_free(od, size);
4668 return;
4669 }
4670
4671 bigobj = od[0].od_object;
4672 packobj = od[1].od_object;
4673 blocksize = od[0].od_blocksize;
4674 chunksize = blocksize;
4675 ASSERT(chunksize == od[1].od_gen);
4676
4677 VERIFY(dmu_object_info(os, bigobj, &doi) == 0);
4678 VERIFY(ISP2(doi.doi_data_block_size));
4679 VERIFY(chunksize == doi.doi_data_block_size);
4680 VERIFY(chunksize >= 2 * sizeof (bufwad_t));
4681
4682 /*
4683 * Pick a random index and compute the offsets into packobj and bigobj.
4684 */
4685 n = ztest_random(regions) * stride + ztest_random(width);
4686 s = 1 + ztest_random(width - 1);
4687
4688 packoff = n * sizeof (bufwad_t);
4689 packsize = s * sizeof (bufwad_t);
4690
4691 bigoff = n * chunksize;
4692 bigsize = s * chunksize;
4693
4694 packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
4695 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
4696
4697 VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
4698
4699 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
4700
4701 /*
4702 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
4703 * Iteration 1 test zcopy to already referenced dbufs.
4704 * Iteration 2 test zcopy to dirty dbuf in the same txg.
4705 * Iteration 3 test zcopy to dbuf dirty in previous txg.
4706 * Iteration 4 test zcopy when dbuf is no longer dirty.
4707 * Iteration 5 test zcopy when it can't be done.
4708 * Iteration 6 one more zcopy write.
4709 */
4710 for (i = 0; i < 7; i++) {
4711 uint64_t j;
4712 uint64_t off;
4713
4714 /*
4715 * In iteration 5 (i == 5) use arcbufs
4716 * that don't match bigobj blksz to test
4717 * dmu_assign_arcbuf_by_dbuf() when it can't directly
4718 * assign an arcbuf to a dbuf.
4719 */
4720 for (j = 0; j < s; j++) {
4721 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
4722 bigbuf_arcbufs[j] =
4723 dmu_request_arcbuf(bonus_db, chunksize);
4724 } else {
4725 bigbuf_arcbufs[2 * j] =
4726 dmu_request_arcbuf(bonus_db, chunksize / 2);
4727 bigbuf_arcbufs[2 * j + 1] =
4728 dmu_request_arcbuf(bonus_db, chunksize / 2);
4729 }
4730 }
4731
4732 /*
4733 * Get a tx for the mods to both packobj and bigobj.
4734 */
4735 tx = dmu_tx_create(os);
4736
4737 dmu_tx_hold_write(tx, packobj, packoff, packsize);
4738 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
4739
4740 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4741 if (txg == 0) {
4742 umem_free(packbuf, packsize);
4743 umem_free(bigbuf, bigsize);
4744 for (j = 0; j < s; j++) {
4745 if (i != 5 ||
4746 chunksize < (SPA_MINBLOCKSIZE * 2)) {
4747 dmu_return_arcbuf(bigbuf_arcbufs[j]);
4748 } else {
4749 dmu_return_arcbuf(
4750 bigbuf_arcbufs[2 * j]);
4751 dmu_return_arcbuf(
4752 bigbuf_arcbufs[2 * j + 1]);
4753 }
4754 }
4755 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
4756 umem_free(od, size);
4757 dmu_buf_rele(bonus_db, FTAG);
4758 return;
4759 }
4760
4761 /*
4762 * 50% of the time don't read objects in the 1st iteration to
4763 * test dmu_assign_arcbuf_by_dbuf() for the case when there are
4764 * no existing dbufs for the specified offsets.
4765 */
4766 if (i != 0 || ztest_random(2) != 0) {
4767 error = dmu_read(os, packobj, packoff,
4768 packsize, packbuf, DMU_READ_PREFETCH);
4769 ASSERT0(error);
4770 error = dmu_read(os, bigobj, bigoff, bigsize,
4771 bigbuf, DMU_READ_PREFETCH);
4772 ASSERT0(error);
4773 }
4774 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
4775 n, chunksize, txg);
4776
4777 /*
4778 * We've verified all the old bufwads, and made new ones.
4779 * Now write them out.
4780 */
4781 dmu_write(os, packobj, packoff, packsize, packbuf, tx);
4782 if (ztest_opts.zo_verbose >= 7) {
4783 (void) printf("writing offset %llx size %llx"
4784 " txg %llx\n",
4785 (u_longlong_t)bigoff,
4786 (u_longlong_t)bigsize,
4787 (u_longlong_t)txg);
4788 }
4789 for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
4790 dmu_buf_t *dbt;
4791 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
4792 bcopy((caddr_t)bigbuf + (off - bigoff),
4793 bigbuf_arcbufs[j]->b_data, chunksize);
4794 } else {
4795 bcopy((caddr_t)bigbuf + (off - bigoff),
4796 bigbuf_arcbufs[2 * j]->b_data,
4797 chunksize / 2);
4798 bcopy((caddr_t)bigbuf + (off - bigoff) +
4799 chunksize / 2,
4800 bigbuf_arcbufs[2 * j + 1]->b_data,
4801 chunksize / 2);
4802 }
4803
4804 if (i == 1) {
4805 VERIFY(dmu_buf_hold(os, bigobj, off,
4806 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0);
4807 }
4808 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
4809 dmu_assign_arcbuf_by_dbuf(bonus_db, off,
4810 bigbuf_arcbufs[j], tx);
4811 } else {
4812 dmu_assign_arcbuf_by_dbuf(bonus_db, off,
4813 bigbuf_arcbufs[2 * j], tx);
4814 dmu_assign_arcbuf_by_dbuf(bonus_db,
4815 off + chunksize / 2,
4816 bigbuf_arcbufs[2 * j + 1], tx);
4817 }
4818 if (i == 1) {
4819 dmu_buf_rele(dbt, FTAG);
4820 }
4821 }
4822 dmu_tx_commit(tx);
4823
4824 /*
4825 * Sanity check the stuff we just wrote.
4826 */
4827 {
4828 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
4829 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
4830
4831 VERIFY(0 == dmu_read(os, packobj, packoff,
4832 packsize, packcheck, DMU_READ_PREFETCH));
4833 VERIFY(0 == dmu_read(os, bigobj, bigoff,
4834 bigsize, bigcheck, DMU_READ_PREFETCH));
4835
4836 ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
4837 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
4838
4839 umem_free(packcheck, packsize);
4840 umem_free(bigcheck, bigsize);
4841 }
4842 if (i == 2) {
4843 txg_wait_open(dmu_objset_pool(os), 0);
4844 } else if (i == 3) {
4845 txg_wait_synced(dmu_objset_pool(os), 0);
4846 }
4847 }
4848
4849 dmu_buf_rele(bonus_db, FTAG);
4850 umem_free(packbuf, packsize);
4851 umem_free(bigbuf, bigsize);
4852 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
4853 umem_free(od, size);
4854 }
4855
4856 /* ARGSUSED */
4857 void
4858 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
4859 {
4860 ztest_od_t *od;
4861
4862 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
4863 uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
4864 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4865
4866 /*
4867 * Have multiple threads write to large offsets in an object
4868 * to verify that parallel writes to an object -- even to the
4869 * same blocks within the object -- doesn't cause any trouble.
4870 */
4871 ztest_od_init(od, ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
4872
4873 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0)
4874 return;
4875
4876 while (ztest_random(10) != 0)
4877 ztest_io(zd, od->od_object, offset);
4878
4879 umem_free(od, sizeof (ztest_od_t));
4880 }
4881
4882 void
4883 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
4884 {
4885 ztest_od_t *od;
4886 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
4887 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4888 uint64_t count = ztest_random(20) + 1;
4889 uint64_t blocksize = ztest_random_blocksize();
4890 void *data;
4891
4892 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
4893
4894 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
4895
4896 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
4897 !ztest_random(2)) != 0) {
4898 umem_free(od, sizeof (ztest_od_t));
4899 return;
4900 }
4901
4902 if (ztest_truncate(zd, od->od_object, offset, count * blocksize) != 0) {
4903 umem_free(od, sizeof (ztest_od_t));
4904 return;
4905 }
4906
4907 ztest_prealloc(zd, od->od_object, offset, count * blocksize);
4908
4909 data = umem_zalloc(blocksize, UMEM_NOFAIL);
4910
4911 while (ztest_random(count) != 0) {
4912 uint64_t randoff = offset + (ztest_random(count) * blocksize);
4913 if (ztest_write(zd, od->od_object, randoff, blocksize,
4914 data) != 0)
4915 break;
4916 while (ztest_random(4) != 0)
4917 ztest_io(zd, od->od_object, randoff);
4918 }
4919
4920 umem_free(data, blocksize);
4921 umem_free(od, sizeof (ztest_od_t));
4922 }
4923
4924 /*
4925 * Verify that zap_{create,destroy,add,remove,update} work as expected.
4926 */
4927 #define ZTEST_ZAP_MIN_INTS 1
4928 #define ZTEST_ZAP_MAX_INTS 4
4929 #define ZTEST_ZAP_MAX_PROPS 1000
4930
4931 void
4932 ztest_zap(ztest_ds_t *zd, uint64_t id)
4933 {
4934 objset_t *os = zd->zd_os;
4935 ztest_od_t *od;
4936 uint64_t object;
4937 uint64_t txg, last_txg;
4938 uint64_t value[ZTEST_ZAP_MAX_INTS];
4939 uint64_t zl_ints, zl_intsize, prop;
4940 int i, ints;
4941 dmu_tx_t *tx;
4942 char propname[100], txgname[100];
4943 int error;
4944 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
4945
4946 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
4947 ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
4948
4949 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
4950 !ztest_random(2)) != 0)
4951 goto out;
4952
4953 object = od->od_object;
4954
4955 /*
4956 * Generate a known hash collision, and verify that
4957 * we can lookup and remove both entries.
4958 */
4959 tx = dmu_tx_create(os);
4960 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4961 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4962 if (txg == 0)
4963 goto out;
4964 for (i = 0; i < 2; i++) {
4965 value[i] = i;
4966 VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t),
4967 1, &value[i], tx));
4968 }
4969 for (i = 0; i < 2; i++) {
4970 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
4971 sizeof (uint64_t), 1, &value[i], tx));
4972 VERIFY3U(0, ==,
4973 zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
4974 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4975 ASSERT3U(zl_ints, ==, 1);
4976 }
4977 for (i = 0; i < 2; i++) {
4978 VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx));
4979 }
4980 dmu_tx_commit(tx);
4981
4982 /*
4983 * Generate a buch of random entries.
4984 */
4985 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
4986
4987 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
4988 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
4989 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
4990 bzero(value, sizeof (value));
4991 last_txg = 0;
4992
4993 /*
4994 * If these zap entries already exist, validate their contents.
4995 */
4996 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
4997 if (error == 0) {
4998 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4999 ASSERT3U(zl_ints, ==, 1);
5000
5001 VERIFY(zap_lookup(os, object, txgname, zl_intsize,
5002 zl_ints, &last_txg) == 0);
5003
5004 VERIFY(zap_length(os, object, propname, &zl_intsize,
5005 &zl_ints) == 0);
5006
5007 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5008 ASSERT3U(zl_ints, ==, ints);
5009
5010 VERIFY(zap_lookup(os, object, propname, zl_intsize,
5011 zl_ints, value) == 0);
5012
5013 for (i = 0; i < ints; i++) {
5014 ASSERT3U(value[i], ==, last_txg + object + i);
5015 }
5016 } else {
5017 ASSERT3U(error, ==, ENOENT);
5018 }
5019
5020 /*
5021 * Atomically update two entries in our zap object.
5022 * The first is named txg_%llu, and contains the txg
5023 * in which the property was last updated. The second
5024 * is named prop_%llu, and the nth element of its value
5025 * should be txg + object + n.
5026 */
5027 tx = dmu_tx_create(os);
5028 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5029 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5030 if (txg == 0)
5031 goto out;
5032
5033 if (last_txg > txg)
5034 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg);
5035
5036 for (i = 0; i < ints; i++)
5037 value[i] = txg + object + i;
5038
5039 VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t),
5040 1, &txg, tx));
5041 VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t),
5042 ints, value, tx));
5043
5044 dmu_tx_commit(tx);
5045
5046 /*
5047 * Remove a random pair of entries.
5048 */
5049 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
5050 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
5051 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
5052
5053 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
5054
5055 if (error == ENOENT)
5056 goto out;
5057
5058 ASSERT0(error);
5059
5060 tx = dmu_tx_create(os);
5061 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5062 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5063 if (txg == 0)
5064 goto out;
5065 VERIFY3U(0, ==, zap_remove(os, object, txgname, tx));
5066 VERIFY3U(0, ==, zap_remove(os, object, propname, tx));
5067 dmu_tx_commit(tx);
5068 out:
5069 umem_free(od, sizeof (ztest_od_t));
5070 }
5071
5072 /*
5073 * Testcase to test the upgrading of a microzap to fatzap.
5074 */
5075 void
5076 ztest_fzap(ztest_ds_t *zd, uint64_t id)
5077 {
5078 objset_t *os = zd->zd_os;
5079 ztest_od_t *od;
5080 uint64_t object, txg;
5081 int i;
5082
5083 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5084 ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
5085
5086 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5087 !ztest_random(2)) != 0)
5088 goto out;
5089 object = od->od_object;
5090
5091 /*
5092 * Add entries to this ZAP and make sure it spills over
5093 * and gets upgraded to a fatzap. Also, since we are adding
5094 * 2050 entries we should see ptrtbl growth and leaf-block split.
5095 */
5096 for (i = 0; i < 2050; i++) {
5097 char name[ZFS_MAX_DATASET_NAME_LEN];
5098 uint64_t value = i;
5099 dmu_tx_t *tx;
5100 int error;
5101
5102 (void) snprintf(name, sizeof (name), "fzap-%llu-%llu",
5103 (u_longlong_t)id, (u_longlong_t)value);
5104
5105 tx = dmu_tx_create(os);
5106 dmu_tx_hold_zap(tx, object, B_TRUE, name);
5107 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5108 if (txg == 0)
5109 goto out;
5110 error = zap_add(os, object, name, sizeof (uint64_t), 1,
5111 &value, tx);
5112 ASSERT(error == 0 || error == EEXIST);
5113 dmu_tx_commit(tx);
5114 }
5115 out:
5116 umem_free(od, sizeof (ztest_od_t));
5117 }
5118
5119 /* ARGSUSED */
5120 void
5121 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
5122 {
5123 objset_t *os = zd->zd_os;
5124 ztest_od_t *od;
5125 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
5126 dmu_tx_t *tx;
5127 int i, namelen, error;
5128 int micro = ztest_random(2);
5129 char name[20], string_value[20];
5130 void *data;
5131
5132 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5133 ztest_od_init(od, ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0, 0);
5134
5135 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
5136 umem_free(od, sizeof (ztest_od_t));
5137 return;
5138 }
5139
5140 object = od->od_object;
5141
5142 /*
5143 * Generate a random name of the form 'xxx.....' where each
5144 * x is a random printable character and the dots are dots.
5145 * There are 94 such characters, and the name length goes from
5146 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
5147 */
5148 namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
5149
5150 for (i = 0; i < 3; i++)
5151 name[i] = '!' + ztest_random('~' - '!' + 1);
5152 for (; i < namelen - 1; i++)
5153 name[i] = '.';
5154 name[i] = '\0';
5155
5156 if ((namelen & 1) || micro) {
5157 wsize = sizeof (txg);
5158 wc = 1;
5159 data = &txg;
5160 } else {
5161 wsize = 1;
5162 wc = namelen;
5163 data = string_value;
5164 }
5165
5166 count = -1ULL;
5167 VERIFY0(zap_count(os, object, &count));
5168 ASSERT(count != -1ULL);
5169
5170 /*
5171 * Select an operation: length, lookup, add, update, remove.
5172 */
5173 i = ztest_random(5);
5174
5175 if (i >= 2) {
5176 tx = dmu_tx_create(os);
5177 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5178 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5179 if (txg == 0) {
5180 umem_free(od, sizeof (ztest_od_t));
5181 return;
5182 }
5183 bcopy(name, string_value, namelen);
5184 } else {
5185 tx = NULL;
5186 txg = 0;
5187 bzero(string_value, namelen);
5188 }
5189
5190 switch (i) {
5191
5192 case 0:
5193 error = zap_length(os, object, name, &zl_wsize, &zl_wc);
5194 if (error == 0) {
5195 ASSERT3U(wsize, ==, zl_wsize);
5196 ASSERT3U(wc, ==, zl_wc);
5197 } else {
5198 ASSERT3U(error, ==, ENOENT);
5199 }
5200 break;
5201
5202 case 1:
5203 error = zap_lookup(os, object, name, wsize, wc, data);
5204 if (error == 0) {
5205 if (data == string_value &&
5206 bcmp(name, data, namelen) != 0)
5207 fatal(0, "name '%s' != val '%s' len %d",
5208 name, data, namelen);
5209 } else {
5210 ASSERT3U(error, ==, ENOENT);
5211 }
5212 break;
5213
5214 case 2:
5215 error = zap_add(os, object, name, wsize, wc, data, tx);
5216 ASSERT(error == 0 || error == EEXIST);
5217 break;
5218
5219 case 3:
5220 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0);
5221 break;
5222
5223 case 4:
5224 error = zap_remove(os, object, name, tx);
5225 ASSERT(error == 0 || error == ENOENT);
5226 break;
5227 }
5228
5229 if (tx != NULL)
5230 dmu_tx_commit(tx);
5231
5232 umem_free(od, sizeof (ztest_od_t));
5233 }
5234
5235 /*
5236 * Commit callback data.
5237 */
5238 typedef struct ztest_cb_data {
5239 list_node_t zcd_node;
5240 uint64_t zcd_txg;
5241 int zcd_expected_err;
5242 boolean_t zcd_added;
5243 boolean_t zcd_called;
5244 spa_t *zcd_spa;
5245 } ztest_cb_data_t;
5246
5247 /* This is the actual commit callback function */
5248 static void
5249 ztest_commit_callback(void *arg, int error)
5250 {
5251 ztest_cb_data_t *data = arg;
5252 uint64_t synced_txg;
5253
5254 VERIFY(data != NULL);
5255 VERIFY3S(data->zcd_expected_err, ==, error);
5256 VERIFY(!data->zcd_called);
5257
5258 synced_txg = spa_last_synced_txg(data->zcd_spa);
5259 if (data->zcd_txg > synced_txg)
5260 fatal(0, "commit callback of txg %" PRIu64 " called prematurely"
5261 ", last synced txg = %" PRIu64 "\n", data->zcd_txg,
5262 synced_txg);
5263
5264 data->zcd_called = B_TRUE;
5265
5266 if (error == ECANCELED) {
5267 ASSERT0(data->zcd_txg);
5268 ASSERT(!data->zcd_added);
5269
5270 /*
5271 * The private callback data should be destroyed here, but
5272 * since we are going to check the zcd_called field after
5273 * dmu_tx_abort(), we will destroy it there.
5274 */
5275 return;
5276 }
5277
5278 ASSERT(data->zcd_added);
5279 ASSERT3U(data->zcd_txg, !=, 0);
5280
5281 (void) mutex_enter(&zcl.zcl_callbacks_lock);
5282
5283 /* See if this cb was called more quickly */
5284 if ((synced_txg - data->zcd_txg) < zc_min_txg_delay)
5285 zc_min_txg_delay = synced_txg - data->zcd_txg;
5286
5287 /* Remove our callback from the list */
5288 list_remove(&zcl.zcl_callbacks, data);
5289
5290 (void) mutex_exit(&zcl.zcl_callbacks_lock);
5291
5292 umem_free(data, sizeof (ztest_cb_data_t));
5293 }
5294
5295 /* Allocate and initialize callback data structure */
5296 static ztest_cb_data_t *
5297 ztest_create_cb_data(objset_t *os, uint64_t txg)
5298 {
5299 ztest_cb_data_t *cb_data;
5300
5301 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
5302
5303 cb_data->zcd_txg = txg;
5304 cb_data->zcd_spa = dmu_objset_spa(os);
5305 list_link_init(&cb_data->zcd_node);
5306
5307 return (cb_data);
5308 }
5309
5310 /*
5311 * Commit callback test.
5312 */
5313 void
5314 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
5315 {
5316 objset_t *os = zd->zd_os;
5317 ztest_od_t *od;
5318 dmu_tx_t *tx;
5319 ztest_cb_data_t *cb_data[3], *tmp_cb;
5320 uint64_t old_txg, txg;
5321 int i, error = 0;
5322
5323 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5324 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
5325
5326 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
5327 umem_free(od, sizeof (ztest_od_t));
5328 return;
5329 }
5330
5331 tx = dmu_tx_create(os);
5332
5333 cb_data[0] = ztest_create_cb_data(os, 0);
5334 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
5335
5336 dmu_tx_hold_write(tx, od->od_object, 0, sizeof (uint64_t));
5337
5338 /* Every once in a while, abort the transaction on purpose */
5339 if (ztest_random(100) == 0)
5340 error = -1;
5341
5342 if (!error)
5343 error = dmu_tx_assign(tx, TXG_NOWAIT);
5344
5345 txg = error ? 0 : dmu_tx_get_txg(tx);
5346
5347 cb_data[0]->zcd_txg = txg;
5348 cb_data[1] = ztest_create_cb_data(os, txg);
5349 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
5350
5351 if (error) {
5352 /*
5353 * It's not a strict requirement to call the registered
5354 * callbacks from inside dmu_tx_abort(), but that's what
5355 * it's supposed to happen in the current implementation
5356 * so we will check for that.
5357 */
5358 for (i = 0; i < 2; i++) {
5359 cb_data[i]->zcd_expected_err = ECANCELED;
5360 VERIFY(!cb_data[i]->zcd_called);
5361 }
5362
5363 dmu_tx_abort(tx);
5364
5365 for (i = 0; i < 2; i++) {
5366 VERIFY(cb_data[i]->zcd_called);
5367 umem_free(cb_data[i], sizeof (ztest_cb_data_t));
5368 }
5369
5370 umem_free(od, sizeof (ztest_od_t));
5371 return;
5372 }
5373
5374 cb_data[2] = ztest_create_cb_data(os, txg);
5375 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
5376
5377 /*
5378 * Read existing data to make sure there isn't a future leak.
5379 */
5380 VERIFY(0 == dmu_read(os, od->od_object, 0, sizeof (uint64_t),
5381 &old_txg, DMU_READ_PREFETCH));
5382
5383 if (old_txg > txg)
5384 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64,
5385 old_txg, txg);
5386
5387 dmu_write(os, od->od_object, 0, sizeof (uint64_t), &txg, tx);
5388
5389 (void) mutex_enter(&zcl.zcl_callbacks_lock);
5390
5391 /*
5392 * Since commit callbacks don't have any ordering requirement and since
5393 * it is theoretically possible for a commit callback to be called
5394 * after an arbitrary amount of time has elapsed since its txg has been
5395 * synced, it is difficult to reliably determine whether a commit
5396 * callback hasn't been called due to high load or due to a flawed
5397 * implementation.
5398 *
5399 * In practice, we will assume that if after a certain number of txgs a
5400 * commit callback hasn't been called, then most likely there's an
5401 * implementation bug..
5402 */
5403 tmp_cb = list_head(&zcl.zcl_callbacks);
5404 if (tmp_cb != NULL &&
5405 tmp_cb->zcd_txg + ZTEST_COMMIT_CB_THRESH < txg) {
5406 fatal(0, "Commit callback threshold exceeded, oldest txg: %"
5407 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg);
5408 }
5409
5410 /*
5411 * Let's find the place to insert our callbacks.
5412 *
5413 * Even though the list is ordered by txg, it is possible for the
5414 * insertion point to not be the end because our txg may already be
5415 * quiescing at this point and other callbacks in the open txg
5416 * (from other objsets) may have sneaked in.
5417 */
5418 tmp_cb = list_tail(&zcl.zcl_callbacks);
5419 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
5420 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
5421
5422 /* Add the 3 callbacks to the list */
5423 for (i = 0; i < 3; i++) {
5424 if (tmp_cb == NULL)
5425 list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
5426 else
5427 list_insert_after(&zcl.zcl_callbacks, tmp_cb,
5428 cb_data[i]);
5429
5430 cb_data[i]->zcd_added = B_TRUE;
5431 VERIFY(!cb_data[i]->zcd_called);
5432
5433 tmp_cb = cb_data[i];
5434 }
5435
5436 zc_cb_counter += 3;
5437
5438 (void) mutex_exit(&zcl.zcl_callbacks_lock);
5439
5440 dmu_tx_commit(tx);
5441
5442 umem_free(od, sizeof (ztest_od_t));
5443 }
5444
5445 /*
5446 * Visit each object in the dataset. Verify that its properties
5447 * are consistent what was stored in the block tag when it was created,
5448 * and that its unused bonus buffer space has not been overwritten.
5449 */
5450 /* ARGSUSED */
5451 void
5452 ztest_verify_dnode_bt(ztest_ds_t *zd, uint64_t id)
5453 {
5454 objset_t *os = zd->zd_os;
5455 uint64_t obj;
5456 int err = 0;
5457
5458 for (obj = 0; err == 0; err = dmu_object_next(os, &obj, FALSE, 0)) {
5459 ztest_block_tag_t *bt = NULL;
5460 dmu_object_info_t doi;
5461 dmu_buf_t *db;
5462
5463 ztest_object_lock(zd, obj, RL_READER);
5464 if (dmu_bonus_hold(os, obj, FTAG, &db) != 0) {
5465 ztest_object_unlock(zd, obj);
5466 continue;
5467 }
5468
5469 dmu_object_info_from_db(db, &doi);
5470 if (doi.doi_bonus_size >= sizeof (*bt))
5471 bt = ztest_bt_bonus(db);
5472
5473 if (bt && bt->bt_magic == BT_MAGIC) {
5474 ztest_bt_verify(bt, os, obj, doi.doi_dnodesize,
5475 bt->bt_offset, bt->bt_gen, bt->bt_txg,
5476 bt->bt_crtxg);
5477 ztest_verify_unused_bonus(db, bt, obj, os, bt->bt_gen);
5478 }
5479
5480 dmu_buf_rele(db, FTAG);
5481 ztest_object_unlock(zd, obj);
5482 }
5483 }
5484
5485 /* ARGSUSED */
5486 void
5487 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
5488 {
5489 zfs_prop_t proplist[] = {
5490 ZFS_PROP_CHECKSUM,
5491 ZFS_PROP_COMPRESSION,
5492 ZFS_PROP_COPIES,
5493 ZFS_PROP_DEDUP
5494 };
5495 int p;
5496
5497 (void) pthread_rwlock_rdlock(&ztest_name_lock);
5498
5499 for (p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++)
5500 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
5501 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
5502
5503 VERIFY0(ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_RECORDSIZE,
5504 ztest_random_blocksize(), (int)ztest_random(2)));
5505
5506 (void) pthread_rwlock_unlock(&ztest_name_lock);
5507 }
5508
5509 /* ARGSUSED */
5510 void
5511 ztest_remap_blocks(ztest_ds_t *zd, uint64_t id)
5512 {
5513 (void) pthread_rwlock_rdlock(&ztest_name_lock);
5514
5515 int error = dmu_objset_remap_indirects(zd->zd_name);
5516 if (error == ENOSPC)
5517 error = 0;
5518 ASSERT0(error);
5519
5520 (void) pthread_rwlock_unlock(&ztest_name_lock);
5521 }
5522
5523 /* ARGSUSED */
5524 void
5525 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
5526 {
5527 nvlist_t *props = NULL;
5528
5529 (void) pthread_rwlock_rdlock(&ztest_name_lock);
5530
5531 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO,
5532 ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN));
5533
5534 VERIFY0(spa_prop_get(ztest_spa, &props));
5535
5536 if (ztest_opts.zo_verbose >= 6)
5537 dump_nvlist(props, 4);
5538
5539 nvlist_free(props);
5540
5541 (void) pthread_rwlock_unlock(&ztest_name_lock);
5542 }
5543
5544 static int
5545 user_release_one(const char *snapname, const char *holdname)
5546 {
5547 nvlist_t *snaps, *holds;
5548 int error;
5549
5550 snaps = fnvlist_alloc();
5551 holds = fnvlist_alloc();
5552 fnvlist_add_boolean(holds, holdname);
5553 fnvlist_add_nvlist(snaps, snapname, holds);
5554 fnvlist_free(holds);
5555 error = dsl_dataset_user_release(snaps, NULL);
5556 fnvlist_free(snaps);
5557 return (error);
5558 }
5559
5560 /*
5561 * Test snapshot hold/release and deferred destroy.
5562 */
5563 void
5564 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
5565 {
5566 int error;
5567 objset_t *os = zd->zd_os;
5568 objset_t *origin;
5569 char snapname[100];
5570 char fullname[100];
5571 char clonename[100];
5572 char tag[100];
5573 char osname[ZFS_MAX_DATASET_NAME_LEN];
5574 nvlist_t *holds;
5575
5576 (void) pthread_rwlock_rdlock(&ztest_name_lock);
5577
5578 dmu_objset_name(os, osname);
5579
5580 (void) snprintf(snapname, sizeof (snapname), "sh1_%llu",
5581 (u_longlong_t)id);
5582 (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname);
5583 (void) snprintf(clonename, sizeof (clonename),
5584 "%s/ch1_%llu", osname, (u_longlong_t)id);
5585 (void) snprintf(tag, sizeof (tag), "tag_%llu", (u_longlong_t)id);
5586
5587 /*
5588 * Clean up from any previous run.
5589 */
5590 error = dsl_destroy_head(clonename);
5591 if (error != ENOENT)
5592 ASSERT0(error);
5593 error = user_release_one(fullname, tag);
5594 if (error != ESRCH && error != ENOENT)
5595 ASSERT0(error);
5596 error = dsl_destroy_snapshot(fullname, B_FALSE);
5597 if (error != ENOENT)
5598 ASSERT0(error);
5599
5600 /*
5601 * Create snapshot, clone it, mark snap for deferred destroy,
5602 * destroy clone, verify snap was also destroyed.
5603 */
5604 error = dmu_objset_snapshot_one(osname, snapname);
5605 if (error) {
5606 if (error == ENOSPC) {
5607 ztest_record_enospc("dmu_objset_snapshot");
5608 goto out;
5609 }
5610 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
5611 }
5612
5613 error = dmu_objset_clone(clonename, fullname);
5614 if (error) {
5615 if (error == ENOSPC) {
5616 ztest_record_enospc("dmu_objset_clone");
5617 goto out;
5618 }
5619 fatal(0, "dmu_objset_clone(%s) = %d", clonename, error);
5620 }
5621
5622 error = dsl_destroy_snapshot(fullname, B_TRUE);
5623 if (error) {
5624 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
5625 fullname, error);
5626 }
5627
5628 error = dsl_destroy_head(clonename);
5629 if (error)
5630 fatal(0, "dsl_destroy_head(%s) = %d", clonename, error);
5631
5632 error = dmu_objset_hold(fullname, FTAG, &origin);
5633 if (error != ENOENT)
5634 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error);
5635
5636 /*
5637 * Create snapshot, add temporary hold, verify that we can't
5638 * destroy a held snapshot, mark for deferred destroy,
5639 * release hold, verify snapshot was destroyed.
5640 */
5641 error = dmu_objset_snapshot_one(osname, snapname);
5642 if (error) {
5643 if (error == ENOSPC) {
5644 ztest_record_enospc("dmu_objset_snapshot");
5645 goto out;
5646 }
5647 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
5648 }
5649
5650 holds = fnvlist_alloc();
5651 fnvlist_add_string(holds, fullname, tag);
5652 error = dsl_dataset_user_hold(holds, 0, NULL);
5653 fnvlist_free(holds);
5654
5655 if (error == ENOSPC) {
5656 ztest_record_enospc("dsl_dataset_user_hold");
5657 goto out;
5658 } else if (error) {
5659 fatal(0, "dsl_dataset_user_hold(%s, %s) = %u",
5660 fullname, tag, error);
5661 }
5662
5663 error = dsl_destroy_snapshot(fullname, B_FALSE);
5664 if (error != EBUSY) {
5665 fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
5666 fullname, error);
5667 }
5668
5669 error = dsl_destroy_snapshot(fullname, B_TRUE);
5670 if (error) {
5671 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
5672 fullname, error);
5673 }
5674
5675 error = user_release_one(fullname, tag);
5676 if (error)
5677 fatal(0, "user_release_one(%s, %s) = %d", fullname, tag, error);
5678
5679 VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT);
5680
5681 out:
5682 (void) pthread_rwlock_unlock(&ztest_name_lock);
5683 }
5684
5685 /*
5686 * Inject random faults into the on-disk data.
5687 */
5688 /* ARGSUSED */
5689 void
5690 ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
5691 {
5692 ztest_shared_t *zs = ztest_shared;
5693 spa_t *spa = ztest_spa;
5694 int fd;
5695 uint64_t offset;
5696 uint64_t leaves;
5697 uint64_t bad = 0x1990c0ffeedecadeull;
5698 uint64_t top, leaf;
5699 char *path0;
5700 char *pathrand;
5701 size_t fsize;
5702 int bshift = SPA_MAXBLOCKSHIFT + 2;
5703 int iters = 1000;
5704 int maxfaults;
5705 int mirror_save;
5706 vdev_t *vd0 = NULL;
5707 uint64_t guid0 = 0;
5708 boolean_t islog = B_FALSE;
5709
5710 path0 = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
5711 pathrand = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
5712
5713 mutex_enter(&ztest_vdev_lock);
5714
5715 /*
5716 * Device removal is in progress, fault injection must be disabled
5717 * until it completes and the pool is scrubbed. The fault injection
5718 * strategy for damaging blocks does not take in to account evacuated
5719 * blocks which may have already been damaged.
5720 */
5721 if (ztest_device_removal_active) {
5722 mutex_exit(&ztest_vdev_lock);
5723 goto out;
5724 }
5725
5726 maxfaults = MAXFAULTS(zs);
5727 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
5728 mirror_save = zs->zs_mirrors;
5729 mutex_exit(&ztest_vdev_lock);
5730
5731 ASSERT(leaves >= 1);
5732
5733 /*
5734 * Grab the name lock as reader. There are some operations
5735 * which don't like to have their vdevs changed while
5736 * they are in progress (i.e. spa_change_guid). Those
5737 * operations will have grabbed the name lock as writer.
5738 */
5739 (void) pthread_rwlock_rdlock(&ztest_name_lock);
5740
5741 /*
5742 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
5743 */
5744 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5745
5746 if (ztest_random(2) == 0) {
5747 /*
5748 * Inject errors on a normal data device or slog device.
5749 */
5750 top = ztest_random_vdev_top(spa, B_TRUE);
5751 leaf = ztest_random(leaves) + zs->zs_splits;
5752
5753 /*
5754 * Generate paths to the first leaf in this top-level vdev,
5755 * and to the random leaf we selected. We'll induce transient
5756 * write failures and random online/offline activity on leaf 0,
5757 * and we'll write random garbage to the randomly chosen leaf.
5758 */
5759 (void) snprintf(path0, MAXPATHLEN, ztest_dev_template,
5760 ztest_opts.zo_dir, ztest_opts.zo_pool,
5761 top * leaves + zs->zs_splits);
5762 (void) snprintf(pathrand, MAXPATHLEN, ztest_dev_template,
5763 ztest_opts.zo_dir, ztest_opts.zo_pool,
5764 top * leaves + leaf);
5765
5766 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
5767 if (vd0 != NULL && vd0->vdev_top->vdev_islog)
5768 islog = B_TRUE;
5769
5770 /*
5771 * If the top-level vdev needs to be resilvered
5772 * then we only allow faults on the device that is
5773 * resilvering.
5774 */
5775 if (vd0 != NULL && maxfaults != 1 &&
5776 (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) ||
5777 vd0->vdev_resilver_txg != 0)) {
5778 /*
5779 * Make vd0 explicitly claim to be unreadable,
5780 * or unwriteable, or reach behind its back
5781 * and close the underlying fd. We can do this if
5782 * maxfaults == 0 because we'll fail and reexecute,
5783 * and we can do it if maxfaults >= 2 because we'll
5784 * have enough redundancy. If maxfaults == 1, the
5785 * combination of this with injection of random data
5786 * corruption below exceeds the pool's fault tolerance.
5787 */
5788 vdev_file_t *vf = vd0->vdev_tsd;
5789
5790 zfs_dbgmsg("injecting fault to vdev %llu; maxfaults=%d",
5791 (long long)vd0->vdev_id, (int)maxfaults);
5792
5793 if (vf != NULL && ztest_random(3) == 0) {
5794 (void) close(vf->vf_vnode->v_fd);
5795 vf->vf_vnode->v_fd = -1;
5796 } else if (ztest_random(2) == 0) {
5797 vd0->vdev_cant_read = B_TRUE;
5798 } else {
5799 vd0->vdev_cant_write = B_TRUE;
5800 }
5801 guid0 = vd0->vdev_guid;
5802 }
5803 } else {
5804 /*
5805 * Inject errors on an l2cache device.
5806 */
5807 spa_aux_vdev_t *sav = &spa->spa_l2cache;
5808
5809 if (sav->sav_count == 0) {
5810 spa_config_exit(spa, SCL_STATE, FTAG);
5811 (void) pthread_rwlock_unlock(&ztest_name_lock);
5812 goto out;
5813 }
5814 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
5815 guid0 = vd0->vdev_guid;
5816 (void) strcpy(path0, vd0->vdev_path);
5817 (void) strcpy(pathrand, vd0->vdev_path);
5818
5819 leaf = 0;
5820 leaves = 1;
5821 maxfaults = INT_MAX; /* no limit on cache devices */
5822 }
5823
5824 spa_config_exit(spa, SCL_STATE, FTAG);
5825 (void) pthread_rwlock_unlock(&ztest_name_lock);
5826
5827 /*
5828 * If we can tolerate two or more faults, or we're dealing
5829 * with a slog, randomly online/offline vd0.
5830 */
5831 if ((maxfaults >= 2 || islog) && guid0 != 0) {
5832 if (ztest_random(10) < 6) {
5833 int flags = (ztest_random(2) == 0 ?
5834 ZFS_OFFLINE_TEMPORARY : 0);
5835
5836 /*
5837 * We have to grab the zs_name_lock as writer to
5838 * prevent a race between offlining a slog and
5839 * destroying a dataset. Offlining the slog will
5840 * grab a reference on the dataset which may cause
5841 * dsl_destroy_head() to fail with EBUSY thus
5842 * leaving the dataset in an inconsistent state.
5843 */
5844 if (islog)
5845 (void) pthread_rwlock_wrlock(&ztest_name_lock);
5846
5847 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY);
5848
5849 if (islog)
5850 (void) pthread_rwlock_unlock(&ztest_name_lock);
5851 } else {
5852 /*
5853 * Ideally we would like to be able to randomly
5854 * call vdev_[on|off]line without holding locks
5855 * to force unpredictable failures but the side
5856 * effects of vdev_[on|off]line prevent us from
5857 * doing so. We grab the ztest_vdev_lock here to
5858 * prevent a race between injection testing and
5859 * aux_vdev removal.
5860 */
5861 mutex_enter(&ztest_vdev_lock);
5862 (void) vdev_online(spa, guid0, 0, NULL);
5863 mutex_exit(&ztest_vdev_lock);
5864 }
5865 }
5866
5867 if (maxfaults == 0)
5868 goto out;
5869
5870 /*
5871 * We have at least single-fault tolerance, so inject data corruption.
5872 */
5873 fd = open(pathrand, O_RDWR);
5874
5875 if (fd == -1) /* we hit a gap in the device namespace */
5876 goto out;
5877
5878 fsize = lseek(fd, 0, SEEK_END);
5879
5880 while (--iters != 0) {
5881 /*
5882 * The offset must be chosen carefully to ensure that
5883 * we do not inject a given logical block with errors
5884 * on two different leaf devices, because ZFS can not
5885 * tolerate that (if maxfaults==1).
5886 *
5887 * We divide each leaf into chunks of size
5888 * (# leaves * SPA_MAXBLOCKSIZE * 4). Within each chunk
5889 * there is a series of ranges to which we can inject errors.
5890 * Each range can accept errors on only a single leaf vdev.
5891 * The error injection ranges are separated by ranges
5892 * which we will not inject errors on any device (DMZs).
5893 * Each DMZ must be large enough such that a single block
5894 * can not straddle it, so that a single block can not be
5895 * a target in two different injection ranges (on different
5896 * leaf vdevs).
5897 *
5898 * For example, with 3 leaves, each chunk looks like:
5899 * 0 to 32M: injection range for leaf 0
5900 * 32M to 64M: DMZ - no injection allowed
5901 * 64M to 96M: injection range for leaf 1
5902 * 96M to 128M: DMZ - no injection allowed
5903 * 128M to 160M: injection range for leaf 2
5904 * 160M to 192M: DMZ - no injection allowed
5905 */
5906 offset = ztest_random(fsize / (leaves << bshift)) *
5907 (leaves << bshift) + (leaf << bshift) +
5908 (ztest_random(1ULL << (bshift - 1)) & -8ULL);
5909
5910 /*
5911 * Only allow damage to the labels at one end of the vdev.
5912 *
5913 * If all labels are damaged, the device will be totally
5914 * inaccessible, which will result in loss of data,
5915 * because we also damage (parts of) the other side of
5916 * the mirror/raidz.
5917 *
5918 * Additionally, we will always have both an even and an
5919 * odd label, so that we can handle crashes in the
5920 * middle of vdev_config_sync().
5921 */
5922 if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE)
5923 continue;
5924
5925 /*
5926 * The two end labels are stored at the "end" of the disk, but
5927 * the end of the disk (vdev_psize) is aligned to
5928 * sizeof (vdev_label_t).
5929 */
5930 uint64_t psize = P2ALIGN(fsize, sizeof (vdev_label_t));
5931 if ((leaf & 1) == 1 &&
5932 offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE)
5933 continue;
5934
5935 mutex_enter(&ztest_vdev_lock);
5936 if (mirror_save != zs->zs_mirrors) {
5937 mutex_exit(&ztest_vdev_lock);
5938 (void) close(fd);
5939 goto out;
5940 }
5941
5942 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
5943 fatal(1, "can't inject bad word at 0x%llx in %s",
5944 offset, pathrand);
5945
5946 mutex_exit(&ztest_vdev_lock);
5947
5948 if (ztest_opts.zo_verbose >= 7)
5949 (void) printf("injected bad word into %s,"
5950 " offset 0x%llx\n", pathrand, (u_longlong_t)offset);
5951 }
5952
5953 (void) close(fd);
5954 out:
5955 umem_free(path0, MAXPATHLEN);
5956 umem_free(pathrand, MAXPATHLEN);
5957 }
5958
5959 /*
5960 * Verify that DDT repair works as expected.
5961 */
5962 void
5963 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id)
5964 {
5965 ztest_shared_t *zs = ztest_shared;
5966 spa_t *spa = ztest_spa;
5967 objset_t *os = zd->zd_os;
5968 ztest_od_t *od;
5969 uint64_t object, blocksize, txg, pattern, psize;
5970 enum zio_checksum checksum = spa_dedup_checksum(spa);
5971 dmu_buf_t *db;
5972 dmu_tx_t *tx;
5973 abd_t *abd;
5974 blkptr_t blk;
5975 int copies = 2 * ZIO_DEDUPDITTO_MIN;
5976 int i;
5977
5978 blocksize = ztest_random_blocksize();
5979 blocksize = MIN(blocksize, 2048); /* because we write so many */
5980
5981 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5982 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
5983
5984 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
5985 umem_free(od, sizeof (ztest_od_t));
5986 return;
5987 }
5988
5989 /*
5990 * Take the name lock as writer to prevent anyone else from changing
5991 * the pool and dataset properies we need to maintain during this test.
5992 */
5993 (void) pthread_rwlock_wrlock(&ztest_name_lock);
5994
5995 if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum,
5996 B_FALSE) != 0 ||
5997 ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1,
5998 B_FALSE) != 0) {
5999 (void) pthread_rwlock_unlock(&ztest_name_lock);
6000 umem_free(od, sizeof (ztest_od_t));
6001 return;
6002 }
6003
6004 dmu_objset_stats_t dds;
6005 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
6006 dmu_objset_fast_stat(os, &dds);
6007 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
6008
6009 object = od[0].od_object;
6010 blocksize = od[0].od_blocksize;
6011 pattern = zs->zs_guid ^ dds.dds_guid;
6012
6013 ASSERT(object != 0);
6014
6015 tx = dmu_tx_create(os);
6016 dmu_tx_hold_write(tx, object, 0, copies * blocksize);
6017 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
6018 if (txg == 0) {
6019 (void) pthread_rwlock_unlock(&ztest_name_lock);
6020 umem_free(od, sizeof (ztest_od_t));
6021 return;
6022 }
6023
6024 /*
6025 * Write all the copies of our block.
6026 */
6027 for (i = 0; i < copies; i++) {
6028 uint64_t offset = i * blocksize;
6029 int error = dmu_buf_hold(os, object, offset, FTAG, &db,
6030 DMU_READ_NO_PREFETCH);
6031 if (error != 0) {
6032 fatal(B_FALSE, "dmu_buf_hold(%p, %llu, %llu) = %u",
6033 os, (long long)object, (long long) offset, error);
6034 }
6035 ASSERT(db->db_offset == offset);
6036 ASSERT(db->db_size == blocksize);
6037 ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) ||
6038 ztest_pattern_match(db->db_data, db->db_size, 0ULL));
6039 dmu_buf_will_fill(db, tx);
6040 ztest_pattern_set(db->db_data, db->db_size, pattern);
6041 dmu_buf_rele(db, FTAG);
6042 }
6043
6044 dmu_tx_commit(tx);
6045 txg_wait_synced(spa_get_dsl(spa), txg);
6046
6047 /*
6048 * Find out what block we got.
6049 */
6050 VERIFY0(dmu_buf_hold(os, object, 0, FTAG, &db,
6051 DMU_READ_NO_PREFETCH));
6052 blk = *((dmu_buf_impl_t *)db)->db_blkptr;
6053 dmu_buf_rele(db, FTAG);
6054
6055 /*
6056 * Damage the block. Dedup-ditto will save us when we read it later.
6057 */
6058 psize = BP_GET_PSIZE(&blk);
6059 abd = abd_alloc_linear(psize, B_TRUE);
6060 ztest_pattern_set(abd_to_buf(abd), psize, ~pattern);
6061
6062 (void) zio_wait(zio_rewrite(NULL, spa, 0, &blk,
6063 abd, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE,
6064 ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL));
6065
6066 abd_free(abd);
6067
6068 (void) pthread_rwlock_unlock(&ztest_name_lock);
6069 umem_free(od, sizeof (ztest_od_t));
6070 }
6071
6072 /*
6073 * Scrub the pool.
6074 */
6075 /* ARGSUSED */
6076 void
6077 ztest_scrub(ztest_ds_t *zd, uint64_t id)
6078 {
6079 spa_t *spa = ztest_spa;
6080
6081 /*
6082 * Scrub in progress by device removal.
6083 */
6084 if (ztest_device_removal_active)
6085 return;
6086
6087 (void) spa_scan(spa, POOL_SCAN_SCRUB);
6088 (void) poll(NULL, 0, 100); /* wait a moment, then force a restart */
6089 (void) spa_scan(spa, POOL_SCAN_SCRUB);
6090 }
6091
6092 /*
6093 * Change the guid for the pool.
6094 */
6095 /* ARGSUSED */
6096 void
6097 ztest_reguid(ztest_ds_t *zd, uint64_t id)
6098 {
6099 spa_t *spa = ztest_spa;
6100 uint64_t orig, load;
6101 int error;
6102
6103 if (ztest_opts.zo_mmp_test)
6104 return;
6105
6106 orig = spa_guid(spa);
6107 load = spa_load_guid(spa);
6108
6109 (void) pthread_rwlock_wrlock(&ztest_name_lock);
6110 error = spa_change_guid(spa);
6111 (void) pthread_rwlock_unlock(&ztest_name_lock);
6112
6113 if (error != 0)
6114 return;
6115
6116 if (ztest_opts.zo_verbose >= 4) {
6117 (void) printf("Changed guid old %llu -> %llu\n",
6118 (u_longlong_t)orig, (u_longlong_t)spa_guid(spa));
6119 }
6120
6121 VERIFY3U(orig, !=, spa_guid(spa));
6122 VERIFY3U(load, ==, spa_load_guid(spa));
6123 }
6124
6125 /*
6126 * Rename the pool to a different name and then rename it back.
6127 */
6128 /* ARGSUSED */
6129 void
6130 ztest_spa_rename(ztest_ds_t *zd, uint64_t id)
6131 {
6132 char *oldname, *newname;
6133 spa_t *spa;
6134
6135 if (ztest_opts.zo_mmp_test)
6136 return;
6137
6138 (void) pthread_rwlock_wrlock(&ztest_name_lock);
6139
6140 oldname = ztest_opts.zo_pool;
6141 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL);
6142 (void) strcpy(newname, oldname);
6143 (void) strcat(newname, "_tmp");
6144
6145 /*
6146 * Do the rename
6147 */
6148 VERIFY3U(0, ==, spa_rename(oldname, newname));
6149
6150 /*
6151 * Try to open it under the old name, which shouldn't exist
6152 */
6153 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
6154
6155 /*
6156 * Open it under the new name and make sure it's still the same spa_t.
6157 */
6158 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
6159
6160 ASSERT(spa == ztest_spa);
6161 spa_close(spa, FTAG);
6162
6163 /*
6164 * Rename it back to the original
6165 */
6166 VERIFY3U(0, ==, spa_rename(newname, oldname));
6167
6168 /*
6169 * Make sure it can still be opened
6170 */
6171 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
6172
6173 ASSERT(spa == ztest_spa);
6174 spa_close(spa, FTAG);
6175
6176 umem_free(newname, strlen(newname) + 1);
6177
6178 (void) pthread_rwlock_unlock(&ztest_name_lock);
6179 }
6180
6181 void
6182 ztest_fletcher(ztest_ds_t *zd, uint64_t id)
6183 {
6184 hrtime_t end = gethrtime() + NANOSEC;
6185
6186 while (gethrtime() <= end) {
6187 int run_count = 100;
6188 void *buf;
6189 struct abd *abd_data, *abd_meta;
6190 uint32_t size;
6191 int *ptr;
6192 int i;
6193 zio_cksum_t zc_ref;
6194 zio_cksum_t zc_ref_byteswap;
6195
6196 size = ztest_random_blocksize();
6197
6198 buf = umem_alloc(size, UMEM_NOFAIL);
6199 abd_data = abd_alloc(size, B_FALSE);
6200 abd_meta = abd_alloc(size, B_TRUE);
6201
6202 for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6203 *ptr = ztest_random(UINT_MAX);
6204
6205 abd_copy_from_buf_off(abd_data, buf, 0, size);
6206 abd_copy_from_buf_off(abd_meta, buf, 0, size);
6207
6208 VERIFY0(fletcher_4_impl_set("scalar"));
6209 fletcher_4_native(buf, size, NULL, &zc_ref);
6210 fletcher_4_byteswap(buf, size, NULL, &zc_ref_byteswap);
6211
6212 VERIFY0(fletcher_4_impl_set("cycle"));
6213 while (run_count-- > 0) {
6214 zio_cksum_t zc;
6215 zio_cksum_t zc_byteswap;
6216
6217 fletcher_4_byteswap(buf, size, NULL, &zc_byteswap);
6218 fletcher_4_native(buf, size, NULL, &zc);
6219
6220 VERIFY0(bcmp(&zc, &zc_ref, sizeof (zc)));
6221 VERIFY0(bcmp(&zc_byteswap, &zc_ref_byteswap,
6222 sizeof (zc_byteswap)));
6223
6224 /* Test ABD - data */
6225 abd_fletcher_4_byteswap(abd_data, size, NULL,
6226 &zc_byteswap);
6227 abd_fletcher_4_native(abd_data, size, NULL, &zc);
6228
6229 VERIFY0(bcmp(&zc, &zc_ref, sizeof (zc)));
6230 VERIFY0(bcmp(&zc_byteswap, &zc_ref_byteswap,
6231 sizeof (zc_byteswap)));
6232
6233 /* Test ABD - metadata */
6234 abd_fletcher_4_byteswap(abd_meta, size, NULL,
6235 &zc_byteswap);
6236 abd_fletcher_4_native(abd_meta, size, NULL, &zc);
6237
6238 VERIFY0(bcmp(&zc, &zc_ref, sizeof (zc)));
6239 VERIFY0(bcmp(&zc_byteswap, &zc_ref_byteswap,
6240 sizeof (zc_byteswap)));
6241
6242 }
6243
6244 umem_free(buf, size);
6245 abd_free(abd_data);
6246 abd_free(abd_meta);
6247 }
6248 }
6249
6250 void
6251 ztest_fletcher_incr(ztest_ds_t *zd, uint64_t id)
6252 {
6253 void *buf;
6254 size_t size;
6255 int *ptr;
6256 int i;
6257 zio_cksum_t zc_ref;
6258 zio_cksum_t zc_ref_bswap;
6259
6260 hrtime_t end = gethrtime() + NANOSEC;
6261
6262 while (gethrtime() <= end) {
6263 int run_count = 100;
6264
6265 size = ztest_random_blocksize();
6266 buf = umem_alloc(size, UMEM_NOFAIL);
6267
6268 for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6269 *ptr = ztest_random(UINT_MAX);
6270
6271 VERIFY0(fletcher_4_impl_set("scalar"));
6272 fletcher_4_native(buf, size, NULL, &zc_ref);
6273 fletcher_4_byteswap(buf, size, NULL, &zc_ref_bswap);
6274
6275 VERIFY0(fletcher_4_impl_set("cycle"));
6276
6277 while (run_count-- > 0) {
6278 zio_cksum_t zc;
6279 zio_cksum_t zc_bswap;
6280 size_t pos = 0;
6281
6282 ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
6283 ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
6284
6285 while (pos < size) {
6286 size_t inc = 64 * ztest_random(size / 67);
6287 /* sometimes add few bytes to test non-simd */
6288 if (ztest_random(100) < 10)
6289 inc += P2ALIGN(ztest_random(64),
6290 sizeof (uint32_t));
6291
6292 if (inc > (size - pos))
6293 inc = size - pos;
6294
6295 fletcher_4_incremental_native(buf + pos, inc,
6296 &zc);
6297 fletcher_4_incremental_byteswap(buf + pos, inc,
6298 &zc_bswap);
6299
6300 pos += inc;
6301 }
6302
6303 VERIFY3U(pos, ==, size);
6304
6305 VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
6306 VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
6307
6308 /*
6309 * verify if incremental on the whole buffer is
6310 * equivalent to non-incremental version
6311 */
6312 ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
6313 ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
6314
6315 fletcher_4_incremental_native(buf, size, &zc);
6316 fletcher_4_incremental_byteswap(buf, size, &zc_bswap);
6317
6318 VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
6319 VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
6320 }
6321
6322 umem_free(buf, size);
6323 }
6324 }
6325
6326 static int
6327 ztest_check_path(char *path)
6328 {
6329 struct stat s;
6330 /* return true on success */
6331 return (!stat(path, &s));
6332 }
6333
6334 static void
6335 ztest_get_zdb_bin(char *bin, int len)
6336 {
6337 char *zdb_path;
6338 /*
6339 * Try to use ZDB_PATH and in-tree zdb path. If not successful, just
6340 * let popen to search through PATH.
6341 */
6342 if ((zdb_path = getenv("ZDB_PATH"))) {
6343 strlcpy(bin, zdb_path, len); /* In env */
6344 if (!ztest_check_path(bin)) {
6345 ztest_dump_core = 0;
6346 fatal(1, "invalid ZDB_PATH '%s'", bin);
6347 }
6348 return;
6349 }
6350
6351 VERIFY(realpath(getexecname(), bin) != NULL);
6352 if (strstr(bin, "/ztest/")) {
6353 strstr(bin, "/ztest/")[0] = '\0'; /* In-tree */
6354 strcat(bin, "/zdb/zdb");
6355 if (ztest_check_path(bin))
6356 return;
6357 }
6358 strcpy(bin, "zdb");
6359 }
6360
6361 /*
6362 * Verify pool integrity by running zdb.
6363 */
6364 static void
6365 ztest_run_zdb(char *pool)
6366 {
6367 int status;
6368 char *bin;
6369 char *zdb;
6370 char *zbuf;
6371 const int len = MAXPATHLEN + MAXNAMELEN + 20;
6372 FILE *fp;
6373
6374 bin = umem_alloc(len, UMEM_NOFAIL);
6375 zdb = umem_alloc(len, UMEM_NOFAIL);
6376 zbuf = umem_alloc(1024, UMEM_NOFAIL);
6377
6378 ztest_get_zdb_bin(bin, len);
6379
6380 (void) sprintf(zdb,
6381 "%s -bcc%s%s -G -d -U %s "
6382 "-o zfs_reconstruct_indirect_combinations_max=65536 %s",
6383 bin,
6384 ztest_opts.zo_verbose >= 3 ? "s" : "",
6385 ztest_opts.zo_verbose >= 4 ? "v" : "",
6386 spa_config_path,
6387 pool);
6388
6389 if (ztest_opts.zo_verbose >= 5)
6390 (void) printf("Executing %s\n", strstr(zdb, "zdb "));
6391
6392 fp = popen(zdb, "r");
6393
6394 while (fgets(zbuf, 1024, fp) != NULL)
6395 if (ztest_opts.zo_verbose >= 3)
6396 (void) printf("%s", zbuf);
6397
6398 status = pclose(fp);
6399
6400 if (status == 0)
6401 goto out;
6402
6403 ztest_dump_core = 0;
6404 if (WIFEXITED(status))
6405 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status));
6406 else
6407 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status));
6408 out:
6409 umem_free(bin, len);
6410 umem_free(zdb, len);
6411 umem_free(zbuf, 1024);
6412 }
6413
6414 static void
6415 ztest_walk_pool_directory(char *header)
6416 {
6417 spa_t *spa = NULL;
6418
6419 if (ztest_opts.zo_verbose >= 6)
6420 (void) printf("%s\n", header);
6421
6422 mutex_enter(&spa_namespace_lock);
6423 while ((spa = spa_next(spa)) != NULL)
6424 if (ztest_opts.zo_verbose >= 6)
6425 (void) printf("\t%s\n", spa_name(spa));
6426 mutex_exit(&spa_namespace_lock);
6427 }
6428
6429 static void
6430 ztest_spa_import_export(char *oldname, char *newname)
6431 {
6432 nvlist_t *config, *newconfig;
6433 uint64_t pool_guid;
6434 spa_t *spa;
6435 int error;
6436
6437 if (ztest_opts.zo_verbose >= 4) {
6438 (void) printf("import/export: old = %s, new = %s\n",
6439 oldname, newname);
6440 }
6441
6442 /*
6443 * Clean up from previous runs.
6444 */
6445 (void) spa_destroy(newname);
6446
6447 /*
6448 * Get the pool's configuration and guid.
6449 */
6450 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
6451
6452 /*
6453 * Kick off a scrub to tickle scrub/export races.
6454 */
6455 if (ztest_random(2) == 0)
6456 (void) spa_scan(spa, POOL_SCAN_SCRUB);
6457
6458 pool_guid = spa_guid(spa);
6459 spa_close(spa, FTAG);
6460
6461 ztest_walk_pool_directory("pools before export");
6462
6463 /*
6464 * Export it.
6465 */
6466 VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE));
6467
6468 ztest_walk_pool_directory("pools after export");
6469
6470 /*
6471 * Try to import it.
6472 */
6473 newconfig = spa_tryimport(config);
6474 ASSERT(newconfig != NULL);
6475 nvlist_free(newconfig);
6476
6477 /*
6478 * Import it under the new name.
6479 */
6480 error = spa_import(newname, config, NULL, 0);
6481 if (error != 0) {
6482 dump_nvlist(config, 0);
6483 fatal(B_FALSE, "couldn't import pool %s as %s: error %u",
6484 oldname, newname, error);
6485 }
6486
6487 ztest_walk_pool_directory("pools after import");
6488
6489 /*
6490 * Try to import it again -- should fail with EEXIST.
6491 */
6492 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0));
6493
6494 /*
6495 * Try to import it under a different name -- should fail with EEXIST.
6496 */
6497 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0));
6498
6499 /*
6500 * Verify that the pool is no longer visible under the old name.
6501 */
6502 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
6503
6504 /*
6505 * Verify that we can open and close the pool using the new name.
6506 */
6507 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
6508 ASSERT(pool_guid == spa_guid(spa));
6509 spa_close(spa, FTAG);
6510
6511 nvlist_free(config);
6512 }
6513
6514 static void
6515 ztest_resume(spa_t *spa)
6516 {
6517 if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6)
6518 (void) printf("resuming from suspended state\n");
6519 spa_vdev_state_enter(spa, SCL_NONE);
6520 vdev_clear(spa, NULL);
6521 (void) spa_vdev_state_exit(spa, NULL, 0);
6522 (void) zio_resume(spa);
6523 }
6524
6525 static void
6526 ztest_resume_thread(void *arg)
6527 {
6528 spa_t *spa = arg;
6529
6530 while (!ztest_exiting) {
6531 if (spa_suspended(spa))
6532 ztest_resume(spa);
6533 (void) poll(NULL, 0, 100);
6534
6535 /*
6536 * Periodically change the zfs_compressed_arc_enabled setting.
6537 */
6538 if (ztest_random(10) == 0)
6539 zfs_compressed_arc_enabled = ztest_random(2);
6540
6541 /*
6542 * Periodically change the zfs_abd_scatter_enabled setting.
6543 */
6544 if (ztest_random(10) == 0)
6545 zfs_abd_scatter_enabled = ztest_random(2);
6546 }
6547
6548 thread_exit();
6549 }
6550
6551 static void
6552 ztest_deadman_thread(void *arg)
6553 {
6554 ztest_shared_t *zs = arg;
6555 spa_t *spa = ztest_spa;
6556 hrtime_t delta, overdue, total = 0;
6557
6558 for (;;) {
6559 delta = zs->zs_thread_stop - zs->zs_thread_start +
6560 MSEC2NSEC(zfs_deadman_synctime_ms);
6561
6562 (void) poll(NULL, 0, (int)NSEC2MSEC(delta));
6563
6564 /*
6565 * If the pool is suspended then fail immediately. Otherwise,
6566 * check to see if the pool is making any progress. If
6567 * vdev_deadman() discovers that there hasn't been any recent
6568 * I/Os then it will end up aborting the tests.
6569 */
6570 if (spa_suspended(spa) || spa->spa_root_vdev == NULL) {
6571 fatal(0, "aborting test after %llu seconds because "
6572 "pool has transitioned to a suspended state.",
6573 zfs_deadman_synctime_ms / 1000);
6574 }
6575 vdev_deadman(spa->spa_root_vdev, FTAG);
6576
6577 /*
6578 * If the process doesn't complete within a grace period of
6579 * zfs_deadman_synctime_ms over the expected finish time,
6580 * then it may be hung and is terminated.
6581 */
6582 overdue = zs->zs_proc_stop + MSEC2NSEC(zfs_deadman_synctime_ms);
6583 total += zfs_deadman_synctime_ms / 1000;
6584 if (gethrtime() > overdue) {
6585 fatal(0, "aborting test after %llu seconds because "
6586 "the process is overdue for termination.", total);
6587 }
6588
6589 (void) printf("ztest has been running for %lld seconds\n",
6590 total);
6591 }
6592 }
6593
6594 static void
6595 ztest_execute(int test, ztest_info_t *zi, uint64_t id)
6596 {
6597 ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets];
6598 ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test);
6599 hrtime_t functime = gethrtime();
6600 int i;
6601
6602 for (i = 0; i < zi->zi_iters; i++)
6603 zi->zi_func(zd, id);
6604
6605 functime = gethrtime() - functime;
6606
6607 atomic_add_64(&zc->zc_count, 1);
6608 atomic_add_64(&zc->zc_time, functime);
6609
6610 if (ztest_opts.zo_verbose >= 4)
6611 (void) printf("%6.2f sec in %s\n",
6612 (double)functime / NANOSEC, zi->zi_funcname);
6613 }
6614
6615 static void
6616 ztest_thread(void *arg)
6617 {
6618 int rand;
6619 uint64_t id = (uintptr_t)arg;
6620 ztest_shared_t *zs = ztest_shared;
6621 uint64_t call_next;
6622 hrtime_t now;
6623 ztest_info_t *zi;
6624 ztest_shared_callstate_t *zc;
6625
6626 while ((now = gethrtime()) < zs->zs_thread_stop) {
6627 /*
6628 * See if it's time to force a crash.
6629 */
6630 if (now > zs->zs_thread_kill)
6631 ztest_kill(zs);
6632
6633 /*
6634 * If we're getting ENOSPC with some regularity, stop.
6635 */
6636 if (zs->zs_enospc_count > 10)
6637 break;
6638
6639 /*
6640 * Pick a random function to execute.
6641 */
6642 rand = ztest_random(ZTEST_FUNCS);
6643 zi = &ztest_info[rand];
6644 zc = ZTEST_GET_SHARED_CALLSTATE(rand);
6645 call_next = zc->zc_next;
6646
6647 if (now >= call_next &&
6648 atomic_cas_64(&zc->zc_next, call_next, call_next +
6649 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) {
6650 ztest_execute(rand, zi, id);
6651 }
6652 }
6653
6654 thread_exit();
6655 }
6656
6657 static void
6658 ztest_dataset_name(char *dsname, char *pool, int d)
6659 {
6660 (void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d);
6661 }
6662
6663 static void
6664 ztest_dataset_destroy(int d)
6665 {
6666 char name[ZFS_MAX_DATASET_NAME_LEN];
6667 int t;
6668
6669 ztest_dataset_name(name, ztest_opts.zo_pool, d);
6670
6671 if (ztest_opts.zo_verbose >= 3)
6672 (void) printf("Destroying %s to free up space\n", name);
6673
6674 /*
6675 * Cleanup any non-standard clones and snapshots. In general,
6676 * ztest thread t operates on dataset (t % zopt_datasets),
6677 * so there may be more than one thing to clean up.
6678 */
6679 for (t = d; t < ztest_opts.zo_threads;
6680 t += ztest_opts.zo_datasets)
6681 ztest_dsl_dataset_cleanup(name, t);
6682
6683 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
6684 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
6685 }
6686
6687 static void
6688 ztest_dataset_dirobj_verify(ztest_ds_t *zd)
6689 {
6690 uint64_t usedobjs, dirobjs, scratch;
6691
6692 /*
6693 * ZTEST_DIROBJ is the object directory for the entire dataset.
6694 * Therefore, the number of objects in use should equal the
6695 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
6696 * If not, we have an object leak.
6697 *
6698 * Note that we can only check this in ztest_dataset_open(),
6699 * when the open-context and syncing-context values agree.
6700 * That's because zap_count() returns the open-context value,
6701 * while dmu_objset_space() returns the rootbp fill count.
6702 */
6703 VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
6704 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
6705 ASSERT3U(dirobjs + 1, ==, usedobjs);
6706 }
6707
6708 static int
6709 ztest_dataset_open(int d)
6710 {
6711 ztest_ds_t *zd = &ztest_ds[d];
6712 uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq;
6713 objset_t *os;
6714 zilog_t *zilog;
6715 char name[ZFS_MAX_DATASET_NAME_LEN];
6716 int error;
6717
6718 ztest_dataset_name(name, ztest_opts.zo_pool, d);
6719
6720 (void) pthread_rwlock_rdlock(&ztest_name_lock);
6721
6722 error = ztest_dataset_create(name);
6723 if (error == ENOSPC) {
6724 (void) pthread_rwlock_unlock(&ztest_name_lock);
6725 ztest_record_enospc(FTAG);
6726 return (error);
6727 }
6728 ASSERT(error == 0 || error == EEXIST);
6729
6730 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
6731 B_TRUE, zd, &os));
6732 (void) pthread_rwlock_unlock(&ztest_name_lock);
6733
6734 ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os);
6735
6736 zilog = zd->zd_zilog;
6737
6738 if (zilog->zl_header->zh_claim_lr_seq != 0 &&
6739 zilog->zl_header->zh_claim_lr_seq < committed_seq)
6740 fatal(0, "missing log records: claimed %llu < committed %llu",
6741 zilog->zl_header->zh_claim_lr_seq, committed_seq);
6742
6743 ztest_dataset_dirobj_verify(zd);
6744
6745 zil_replay(os, zd, ztest_replay_vector);
6746
6747 ztest_dataset_dirobj_verify(zd);
6748
6749 if (ztest_opts.zo_verbose >= 6)
6750 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n",
6751 zd->zd_name,
6752 (u_longlong_t)zilog->zl_parse_blk_count,
6753 (u_longlong_t)zilog->zl_parse_lr_count,
6754 (u_longlong_t)zilog->zl_replaying_seq);
6755
6756 zilog = zil_open(os, ztest_get_data);
6757
6758 if (zilog->zl_replaying_seq != 0 &&
6759 zilog->zl_replaying_seq < committed_seq)
6760 fatal(0, "missing log records: replayed %llu < committed %llu",
6761 zilog->zl_replaying_seq, committed_seq);
6762
6763 return (0);
6764 }
6765
6766 static void
6767 ztest_dataset_close(int d)
6768 {
6769 ztest_ds_t *zd = &ztest_ds[d];
6770
6771 zil_close(zd->zd_zilog);
6772 dmu_objset_disown(zd->zd_os, B_TRUE, zd);
6773
6774 ztest_zd_fini(zd);
6775 }
6776
6777 /*
6778 * Kick off threads to run tests on all datasets in parallel.
6779 */
6780 static void
6781 ztest_run(ztest_shared_t *zs)
6782 {
6783 spa_t *spa;
6784 objset_t *os;
6785 kthread_t *resume_thread;
6786 kthread_t **run_threads;
6787 uint64_t object;
6788 int error;
6789 int t, d;
6790
6791 ztest_exiting = B_FALSE;
6792
6793 /*
6794 * Initialize parent/child shared state.
6795 */
6796 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
6797 mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
6798 VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
6799
6800 zs->zs_thread_start = gethrtime();
6801 zs->zs_thread_stop =
6802 zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC;
6803 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
6804 zs->zs_thread_kill = zs->zs_thread_stop;
6805 if (ztest_random(100) < ztest_opts.zo_killrate) {
6806 zs->zs_thread_kill -=
6807 ztest_random(ztest_opts.zo_passtime * NANOSEC);
6808 }
6809
6810 mutex_init(&zcl.zcl_callbacks_lock, NULL, MUTEX_DEFAULT, NULL);
6811
6812 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
6813 offsetof(ztest_cb_data_t, zcd_node));
6814
6815 /*
6816 * Open our pool.
6817 */
6818 kernel_init(FREAD | FWRITE);
6819 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
6820 metaslab_preload_limit = ztest_random(20) + 1;
6821 ztest_spa = spa;
6822
6823 dmu_objset_stats_t dds;
6824 VERIFY0(ztest_dmu_objset_own(ztest_opts.zo_pool,
6825 DMU_OST_ANY, B_TRUE, B_TRUE, FTAG, &os));
6826 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
6827 dmu_objset_fast_stat(os, &dds);
6828 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
6829 zs->zs_guid = dds.dds_guid;
6830 dmu_objset_disown(os, B_TRUE, FTAG);
6831
6832 spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN;
6833
6834 /*
6835 * Create a thread to periodically resume suspended I/O.
6836 */
6837 resume_thread = thread_create(NULL, 0, ztest_resume_thread,
6838 spa, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
6839
6840 /*
6841 * Create a deadman thread and set to panic if we hang.
6842 */
6843 (void) thread_create(NULL, 0, ztest_deadman_thread,
6844 zs, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
6845
6846 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
6847
6848 /*
6849 * Verify that we can safely inquire about any object,
6850 * whether it's allocated or not. To make it interesting,
6851 * we probe a 5-wide window around each power of two.
6852 * This hits all edge cases, including zero and the max.
6853 */
6854 for (t = 0; t < 64; t++) {
6855 for (d = -5; d <= 5; d++) {
6856 error = dmu_object_info(spa->spa_meta_objset,
6857 (1ULL << t) + d, NULL);
6858 ASSERT(error == 0 || error == ENOENT ||
6859 error == EINVAL);
6860 }
6861 }
6862
6863 /*
6864 * If we got any ENOSPC errors on the previous run, destroy something.
6865 */
6866 if (zs->zs_enospc_count != 0) {
6867 int d = ztest_random(ztest_opts.zo_datasets);
6868 ztest_dataset_destroy(d);
6869 }
6870 zs->zs_enospc_count = 0;
6871
6872 run_threads = umem_zalloc(ztest_opts.zo_threads * sizeof (kthread_t *),
6873 UMEM_NOFAIL);
6874
6875 if (ztest_opts.zo_verbose >= 4)
6876 (void) printf("starting main threads...\n");
6877
6878 /*
6879 * Kick off all the tests that run in parallel.
6880 */
6881 for (t = 0; t < ztest_opts.zo_threads; t++) {
6882 if (t < ztest_opts.zo_datasets && ztest_dataset_open(t) != 0) {
6883 umem_free(run_threads, ztest_opts.zo_threads *
6884 sizeof (kthread_t *));
6885 return;
6886 }
6887
6888 run_threads[t] = thread_create(NULL, 0, ztest_thread,
6889 (void *)(uintptr_t)t, 0, NULL, TS_RUN | TS_JOINABLE,
6890 defclsyspri);
6891 }
6892
6893 /*
6894 * Wait for all of the tests to complete. We go in reverse order
6895 * so we don't close datasets while threads are still using them.
6896 */
6897 for (t = ztest_opts.zo_threads - 1; t >= 0; t--) {
6898 VERIFY0(thread_join(run_threads[t]));
6899 if (t < ztest_opts.zo_datasets)
6900 ztest_dataset_close(t);
6901 }
6902
6903 txg_wait_synced(spa_get_dsl(spa), 0);
6904
6905 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
6906 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
6907
6908 umem_free(run_threads, ztest_opts.zo_threads * sizeof (kthread_t *));
6909
6910 /* Kill the resume thread */
6911 ztest_exiting = B_TRUE;
6912 VERIFY0(thread_join(resume_thread));
6913 ztest_resume(spa);
6914
6915 /*
6916 * Right before closing the pool, kick off a bunch of async I/O;
6917 * spa_close() should wait for it to complete.
6918 */
6919 for (object = 1; object < 50; object++) {
6920 dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20,
6921 ZIO_PRIORITY_SYNC_READ);
6922 }
6923
6924 /* Verify that at least one commit cb was called in a timely fashion */
6925 if (zc_cb_counter >= ZTEST_COMMIT_CB_MIN_REG)
6926 VERIFY0(zc_min_txg_delay);
6927
6928 spa_close(spa, FTAG);
6929
6930 /*
6931 * Verify that we can loop over all pools.
6932 */
6933 mutex_enter(&spa_namespace_lock);
6934 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
6935 if (ztest_opts.zo_verbose > 3)
6936 (void) printf("spa_next: found %s\n", spa_name(spa));
6937 mutex_exit(&spa_namespace_lock);
6938
6939 /*
6940 * Verify that we can export the pool and reimport it under a
6941 * different name.
6942 */
6943 if ((ztest_random(2) == 0) && !ztest_opts.zo_mmp_test) {
6944 char name[ZFS_MAX_DATASET_NAME_LEN];
6945 (void) snprintf(name, sizeof (name), "%s_import",
6946 ztest_opts.zo_pool);
6947 ztest_spa_import_export(ztest_opts.zo_pool, name);
6948 ztest_spa_import_export(name, ztest_opts.zo_pool);
6949 }
6950
6951 kernel_fini();
6952
6953 list_destroy(&zcl.zcl_callbacks);
6954 mutex_destroy(&zcl.zcl_callbacks_lock);
6955 (void) pthread_rwlock_destroy(&ztest_name_lock);
6956 mutex_destroy(&ztest_vdev_lock);
6957 mutex_destroy(&ztest_checkpoint_lock);
6958 }
6959
6960 static void
6961 ztest_freeze(void)
6962 {
6963 ztest_ds_t *zd = &ztest_ds[0];
6964 spa_t *spa;
6965 int numloops = 0;
6966
6967 if (ztest_opts.zo_verbose >= 3)
6968 (void) printf("testing spa_freeze()...\n");
6969
6970 kernel_init(FREAD | FWRITE);
6971 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
6972 VERIFY3U(0, ==, ztest_dataset_open(0));
6973 ztest_spa = spa;
6974
6975 /*
6976 * Force the first log block to be transactionally allocated.
6977 * We have to do this before we freeze the pool -- otherwise
6978 * the log chain won't be anchored.
6979 */
6980 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
6981 ztest_dmu_object_alloc_free(zd, 0);
6982 zil_commit(zd->zd_zilog, 0);
6983 }
6984
6985 txg_wait_synced(spa_get_dsl(spa), 0);
6986
6987 /*
6988 * Freeze the pool. This stops spa_sync() from doing anything,
6989 * so that the only way to record changes from now on is the ZIL.
6990 */
6991 spa_freeze(spa);
6992
6993 /*
6994 * Because it is hard to predict how much space a write will actually
6995 * require beforehand, we leave ourselves some fudge space to write over
6996 * capacity.
6997 */
6998 uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2;
6999
7000 /*
7001 * Run tests that generate log records but don't alter the pool config
7002 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
7003 * We do a txg_wait_synced() after each iteration to force the txg
7004 * to increase well beyond the last synced value in the uberblock.
7005 * The ZIL should be OK with that.
7006 *
7007 * Run a random number of times less than zo_maxloops and ensure we do
7008 * not run out of space on the pool.
7009 */
7010 while (ztest_random(10) != 0 &&
7011 numloops++ < ztest_opts.zo_maxloops &&
7012 metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) {
7013 ztest_od_t od;
7014 ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
7015 VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE));
7016 ztest_io(zd, od.od_object,
7017 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
7018 txg_wait_synced(spa_get_dsl(spa), 0);
7019 }
7020
7021 /*
7022 * Commit all of the changes we just generated.
7023 */
7024 zil_commit(zd->zd_zilog, 0);
7025 txg_wait_synced(spa_get_dsl(spa), 0);
7026
7027 /*
7028 * Close our dataset and close the pool.
7029 */
7030 ztest_dataset_close(0);
7031 spa_close(spa, FTAG);
7032 kernel_fini();
7033
7034 /*
7035 * Open and close the pool and dataset to induce log replay.
7036 */
7037 kernel_init(FREAD | FWRITE);
7038 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
7039 ASSERT(spa_freeze_txg(spa) == UINT64_MAX);
7040 VERIFY3U(0, ==, ztest_dataset_open(0));
7041 ztest_spa = spa;
7042 txg_wait_synced(spa_get_dsl(spa), 0);
7043 ztest_dataset_close(0);
7044 ztest_reguid(NULL, 0);
7045
7046 spa_close(spa, FTAG);
7047 kernel_fini();
7048 }
7049
7050 void
7051 print_time(hrtime_t t, char *timebuf)
7052 {
7053 hrtime_t s = t / NANOSEC;
7054 hrtime_t m = s / 60;
7055 hrtime_t h = m / 60;
7056 hrtime_t d = h / 24;
7057
7058 s -= m * 60;
7059 m -= h * 60;
7060 h -= d * 24;
7061
7062 timebuf[0] = '\0';
7063
7064 if (d)
7065 (void) sprintf(timebuf,
7066 "%llud%02lluh%02llum%02llus", d, h, m, s);
7067 else if (h)
7068 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
7069 else if (m)
7070 (void) sprintf(timebuf, "%llum%02llus", m, s);
7071 else
7072 (void) sprintf(timebuf, "%llus", s);
7073 }
7074
7075 static nvlist_t *
7076 make_random_props(void)
7077 {
7078 nvlist_t *props;
7079
7080 VERIFY0(nvlist_alloc(&props, NV_UNIQUE_NAME, 0));
7081
7082 if (ztest_random(2) == 0)
7083 return (props);
7084
7085 VERIFY0(nvlist_add_uint64(props,
7086 zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE), 1));
7087
7088 return (props);
7089 }
7090
7091 /*
7092 * Import a storage pool with the given name.
7093 */
7094 static void
7095 ztest_import(ztest_shared_t *zs)
7096 {
7097 libzfs_handle_t *hdl;
7098 importargs_t args = { 0 };
7099 spa_t *spa;
7100 nvlist_t *cfg = NULL;
7101 int nsearch = 1;
7102 char *searchdirs[nsearch];
7103 char *name = ztest_opts.zo_pool;
7104 int flags = ZFS_IMPORT_MISSING_LOG;
7105 int error;
7106
7107 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
7108 mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
7109 VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
7110
7111 kernel_init(FREAD | FWRITE);
7112 hdl = libzfs_init();
7113
7114 searchdirs[0] = ztest_opts.zo_dir;
7115 args.paths = nsearch;
7116 args.path = searchdirs;
7117 args.can_be_active = B_FALSE;
7118
7119 error = zpool_tryimport(hdl, name, &cfg, &args);
7120 if (error)
7121 (void) fatal(0, "No pools found\n");
7122
7123 VERIFY0(spa_import(name, cfg, NULL, flags));
7124 VERIFY0(spa_open(name, &spa, FTAG));
7125 zs->zs_metaslab_sz =
7126 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
7127 spa_close(spa, FTAG);
7128
7129 libzfs_fini(hdl);
7130 kernel_fini();
7131
7132 if (!ztest_opts.zo_mmp_test) {
7133 ztest_run_zdb(ztest_opts.zo_pool);
7134 ztest_freeze();
7135 ztest_run_zdb(ztest_opts.zo_pool);
7136 }
7137
7138 (void) pthread_rwlock_destroy(&ztest_name_lock);
7139 mutex_destroy(&ztest_vdev_lock);
7140 mutex_destroy(&ztest_checkpoint_lock);
7141 }
7142
7143 /*
7144 * Create a storage pool with the given name and initial vdev size.
7145 * Then test spa_freeze() functionality.
7146 */
7147 static void
7148 ztest_init(ztest_shared_t *zs)
7149 {
7150 spa_t *spa;
7151 nvlist_t *nvroot, *props;
7152 int i;
7153
7154 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
7155 mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
7156 VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
7157
7158 kernel_init(FREAD | FWRITE);
7159
7160 /*
7161 * Create the storage pool.
7162 */
7163 (void) spa_destroy(ztest_opts.zo_pool);
7164 ztest_shared->zs_vdev_next_leaf = 0;
7165 zs->zs_splits = 0;
7166 zs->zs_mirrors = ztest_opts.zo_mirrors;
7167 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
7168 NULL, ztest_opts.zo_raidz, zs->zs_mirrors, 1);
7169 props = make_random_props();
7170
7171 /*
7172 * We don't expect the pool to suspend unless maxfaults == 0,
7173 * in which case ztest_fault_inject() temporarily takes away
7174 * the only valid replica.
7175 */
7176 VERIFY0(nvlist_add_uint64(props,
7177 zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
7178 MAXFAULTS(zs) ? ZIO_FAILURE_MODE_PANIC : ZIO_FAILURE_MODE_WAIT));
7179
7180 for (i = 0; i < SPA_FEATURES; i++) {
7181 char *buf;
7182 VERIFY3S(-1, !=, asprintf(&buf, "feature@%s",
7183 spa_feature_table[i].fi_uname));
7184 VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0));
7185 free(buf);
7186 }
7187
7188 VERIFY0(spa_create(ztest_opts.zo_pool, nvroot, props, NULL, NULL));
7189 nvlist_free(nvroot);
7190 nvlist_free(props);
7191
7192 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
7193 zs->zs_metaslab_sz =
7194 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
7195 spa_close(spa, FTAG);
7196
7197 kernel_fini();
7198
7199 if (!ztest_opts.zo_mmp_test) {
7200 ztest_run_zdb(ztest_opts.zo_pool);
7201 ztest_freeze();
7202 ztest_run_zdb(ztest_opts.zo_pool);
7203 }
7204
7205 (void) pthread_rwlock_destroy(&ztest_name_lock);
7206 mutex_destroy(&ztest_vdev_lock);
7207 mutex_destroy(&ztest_checkpoint_lock);
7208 }
7209
7210 static void
7211 setup_data_fd(void)
7212 {
7213 static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX";
7214
7215 ztest_fd_data = mkstemp(ztest_name_data);
7216 ASSERT3S(ztest_fd_data, >=, 0);
7217 (void) unlink(ztest_name_data);
7218 }
7219
7220 static int
7221 shared_data_size(ztest_shared_hdr_t *hdr)
7222 {
7223 int size;
7224
7225 size = hdr->zh_hdr_size;
7226 size += hdr->zh_opts_size;
7227 size += hdr->zh_size;
7228 size += hdr->zh_stats_size * hdr->zh_stats_count;
7229 size += hdr->zh_ds_size * hdr->zh_ds_count;
7230
7231 return (size);
7232 }
7233
7234 static void
7235 setup_hdr(void)
7236 {
7237 int size;
7238 ztest_shared_hdr_t *hdr;
7239
7240 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
7241 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
7242 ASSERT(hdr != MAP_FAILED);
7243
7244 VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t)));
7245
7246 hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t);
7247 hdr->zh_opts_size = sizeof (ztest_shared_opts_t);
7248 hdr->zh_size = sizeof (ztest_shared_t);
7249 hdr->zh_stats_size = sizeof (ztest_shared_callstate_t);
7250 hdr->zh_stats_count = ZTEST_FUNCS;
7251 hdr->zh_ds_size = sizeof (ztest_shared_ds_t);
7252 hdr->zh_ds_count = ztest_opts.zo_datasets;
7253
7254 size = shared_data_size(hdr);
7255 VERIFY3U(0, ==, ftruncate(ztest_fd_data, size));
7256
7257 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
7258 }
7259
7260 static void
7261 setup_data(void)
7262 {
7263 int size, offset;
7264 ztest_shared_hdr_t *hdr;
7265 uint8_t *buf;
7266
7267 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
7268 PROT_READ, MAP_SHARED, ztest_fd_data, 0);
7269 ASSERT(hdr != MAP_FAILED);
7270
7271 size = shared_data_size(hdr);
7272
7273 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
7274 hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()),
7275 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
7276 ASSERT(hdr != MAP_FAILED);
7277 buf = (uint8_t *)hdr;
7278
7279 offset = hdr->zh_hdr_size;
7280 ztest_shared_opts = (void *)&buf[offset];
7281 offset += hdr->zh_opts_size;
7282 ztest_shared = (void *)&buf[offset];
7283 offset += hdr->zh_size;
7284 ztest_shared_callstate = (void *)&buf[offset];
7285 offset += hdr->zh_stats_size * hdr->zh_stats_count;
7286 ztest_shared_ds = (void *)&buf[offset];
7287 }
7288
7289 static boolean_t
7290 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp)
7291 {
7292 pid_t pid;
7293 int status;
7294 char *cmdbuf = NULL;
7295
7296 pid = fork();
7297
7298 if (cmd == NULL) {
7299 cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
7300 (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN);
7301 cmd = cmdbuf;
7302 }
7303
7304 if (pid == -1)
7305 fatal(1, "fork failed");
7306
7307 if (pid == 0) { /* child */
7308 char *emptyargv[2] = { cmd, NULL };
7309 char fd_data_str[12];
7310
7311 struct rlimit rl = { 1024, 1024 };
7312 (void) setrlimit(RLIMIT_NOFILE, &rl);
7313
7314 (void) close(ztest_fd_rand);
7315 VERIFY(11 >= snprintf(fd_data_str, 12, "%d", ztest_fd_data));
7316 VERIFY(0 == setenv("ZTEST_FD_DATA", fd_data_str, 1));
7317
7318 (void) enable_extended_FILE_stdio(-1, -1);
7319 if (libpath != NULL)
7320 VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1));
7321 (void) execv(cmd, emptyargv);
7322 ztest_dump_core = B_FALSE;
7323 fatal(B_TRUE, "exec failed: %s", cmd);
7324 }
7325
7326 if (cmdbuf != NULL) {
7327 umem_free(cmdbuf, MAXPATHLEN);
7328 cmd = NULL;
7329 }
7330
7331 while (waitpid(pid, &status, 0) != pid)
7332 continue;
7333 if (statusp != NULL)
7334 *statusp = status;
7335
7336 if (WIFEXITED(status)) {
7337 if (WEXITSTATUS(status) != 0) {
7338 (void) fprintf(stderr, "child exited with code %d\n",
7339 WEXITSTATUS(status));
7340 exit(2);
7341 }
7342 return (B_FALSE);
7343 } else if (WIFSIGNALED(status)) {
7344 if (!ignorekill || WTERMSIG(status) != SIGKILL) {
7345 (void) fprintf(stderr, "child died with signal %d\n",
7346 WTERMSIG(status));
7347 exit(3);
7348 }
7349 return (B_TRUE);
7350 } else {
7351 (void) fprintf(stderr, "something strange happened to child\n");
7352 exit(4);
7353 /* NOTREACHED */
7354 }
7355 }
7356
7357 static void
7358 ztest_run_init(void)
7359 {
7360 int i;
7361
7362 ztest_shared_t *zs = ztest_shared;
7363
7364 /*
7365 * Blow away any existing copy of zpool.cache
7366 */
7367 (void) remove(spa_config_path);
7368
7369 if (ztest_opts.zo_init == 0) {
7370 if (ztest_opts.zo_verbose >= 1)
7371 (void) printf("Importing pool %s\n",
7372 ztest_opts.zo_pool);
7373 ztest_import(zs);
7374 return;
7375 }
7376
7377 /*
7378 * Create and initialize our storage pool.
7379 */
7380 for (i = 1; i <= ztest_opts.zo_init; i++) {
7381 bzero(zs, sizeof (ztest_shared_t));
7382 if (ztest_opts.zo_verbose >= 3 &&
7383 ztest_opts.zo_init != 1) {
7384 (void) printf("ztest_init(), pass %d\n", i);
7385 }
7386 ztest_init(zs);
7387 }
7388 }
7389
7390 int
7391 main(int argc, char **argv)
7392 {
7393 int kills = 0;
7394 int iters = 0;
7395 int older = 0;
7396 int newer = 0;
7397 ztest_shared_t *zs;
7398 ztest_info_t *zi;
7399 ztest_shared_callstate_t *zc;
7400 char timebuf[100];
7401 char numbuf[NN_NUMBUF_SZ];
7402 spa_t *spa;
7403 char *cmd;
7404 boolean_t hasalt;
7405 int f;
7406 char *fd_data_str = getenv("ZTEST_FD_DATA");
7407 struct sigaction action;
7408
7409 (void) setvbuf(stdout, NULL, _IOLBF, 0);
7410
7411 dprintf_setup(&argc, argv);
7412 zfs_deadman_synctime_ms = 300000;
7413 /*
7414 * As two-word space map entries may not come up often (especially
7415 * if pool and vdev sizes are small) we want to force at least some
7416 * of them so the feature get tested.
7417 */
7418 zfs_force_some_double_word_sm_entries = B_TRUE;
7419
7420 /*
7421 * Verify that even extensively damaged split blocks with many
7422 * segments can be reconstructed in a reasonable amount of time
7423 * when reconstruction is known to be possible.
7424 */
7425 zfs_reconstruct_indirect_damage_fraction = 4;
7426
7427 action.sa_handler = sig_handler;
7428 sigemptyset(&action.sa_mask);
7429 action.sa_flags = 0;
7430
7431 if (sigaction(SIGSEGV, &action, NULL) < 0) {
7432 (void) fprintf(stderr, "ztest: cannot catch SIGSEGV: %s.\n",
7433 strerror(errno));
7434 exit(EXIT_FAILURE);
7435 }
7436
7437 if (sigaction(SIGABRT, &action, NULL) < 0) {
7438 (void) fprintf(stderr, "ztest: cannot catch SIGABRT: %s.\n",
7439 strerror(errno));
7440 exit(EXIT_FAILURE);
7441 }
7442
7443 /*
7444 * Force random_get_bytes() to use /dev/urandom in order to prevent
7445 * ztest from needlessly depleting the system entropy pool.
7446 */
7447 random_path = "/dev/urandom";
7448 ztest_fd_rand = open(random_path, O_RDONLY);
7449 ASSERT3S(ztest_fd_rand, >=, 0);
7450
7451 if (!fd_data_str) {
7452 process_options(argc, argv);
7453
7454 setup_data_fd();
7455 setup_hdr();
7456 setup_data();
7457 bcopy(&ztest_opts, ztest_shared_opts,
7458 sizeof (*ztest_shared_opts));
7459 } else {
7460 ztest_fd_data = atoi(fd_data_str);
7461 setup_data();
7462 bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts));
7463 }
7464 ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count);
7465
7466 /* Override location of zpool.cache */
7467 VERIFY(asprintf((char **)&spa_config_path, "%s/zpool.cache",
7468 ztest_opts.zo_dir) != -1);
7469
7470 ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t),
7471 UMEM_NOFAIL);
7472 zs = ztest_shared;
7473
7474 if (fd_data_str) {
7475 metaslab_force_ganging = ztest_opts.zo_metaslab_force_ganging;
7476 metaslab_df_alloc_threshold =
7477 zs->zs_metaslab_df_alloc_threshold;
7478
7479 if (zs->zs_do_init)
7480 ztest_run_init();
7481 else
7482 ztest_run(zs);
7483 exit(0);
7484 }
7485
7486 hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0);
7487
7488 if (ztest_opts.zo_verbose >= 1) {
7489 (void) printf("%llu vdevs, %d datasets, %d threads,"
7490 " %llu seconds...\n",
7491 (u_longlong_t)ztest_opts.zo_vdevs,
7492 ztest_opts.zo_datasets,
7493 ztest_opts.zo_threads,
7494 (u_longlong_t)ztest_opts.zo_time);
7495 }
7496
7497 cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
7498 (void) strlcpy(cmd, getexecname(), MAXNAMELEN);
7499
7500 zs->zs_do_init = B_TRUE;
7501 if (strlen(ztest_opts.zo_alt_ztest) != 0) {
7502 if (ztest_opts.zo_verbose >= 1) {
7503 (void) printf("Executing older ztest for "
7504 "initialization: %s\n", ztest_opts.zo_alt_ztest);
7505 }
7506 VERIFY(!exec_child(ztest_opts.zo_alt_ztest,
7507 ztest_opts.zo_alt_libpath, B_FALSE, NULL));
7508 } else {
7509 VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL));
7510 }
7511 zs->zs_do_init = B_FALSE;
7512
7513 zs->zs_proc_start = gethrtime();
7514 zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC;
7515
7516 for (f = 0; f < ZTEST_FUNCS; f++) {
7517 zi = &ztest_info[f];
7518 zc = ZTEST_GET_SHARED_CALLSTATE(f);
7519 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
7520 zc->zc_next = UINT64_MAX;
7521 else
7522 zc->zc_next = zs->zs_proc_start +
7523 ztest_random(2 * zi->zi_interval[0] + 1);
7524 }
7525
7526 /*
7527 * Run the tests in a loop. These tests include fault injection
7528 * to verify that self-healing data works, and forced crashes
7529 * to verify that we never lose on-disk consistency.
7530 */
7531 while (gethrtime() < zs->zs_proc_stop) {
7532 int status;
7533 boolean_t killed;
7534
7535 /*
7536 * Initialize the workload counters for each function.
7537 */
7538 for (f = 0; f < ZTEST_FUNCS; f++) {
7539 zc = ZTEST_GET_SHARED_CALLSTATE(f);
7540 zc->zc_count = 0;
7541 zc->zc_time = 0;
7542 }
7543
7544 /* Set the allocation switch size */
7545 zs->zs_metaslab_df_alloc_threshold =
7546 ztest_random(zs->zs_metaslab_sz / 4) + 1;
7547
7548 if (!hasalt || ztest_random(2) == 0) {
7549 if (hasalt && ztest_opts.zo_verbose >= 1) {
7550 (void) printf("Executing newer ztest: %s\n",
7551 cmd);
7552 }
7553 newer++;
7554 killed = exec_child(cmd, NULL, B_TRUE, &status);
7555 } else {
7556 if (hasalt && ztest_opts.zo_verbose >= 1) {
7557 (void) printf("Executing older ztest: %s\n",
7558 ztest_opts.zo_alt_ztest);
7559 }
7560 older++;
7561 killed = exec_child(ztest_opts.zo_alt_ztest,
7562 ztest_opts.zo_alt_libpath, B_TRUE, &status);
7563 }
7564
7565 if (killed)
7566 kills++;
7567 iters++;
7568
7569 if (ztest_opts.zo_verbose >= 1) {
7570 hrtime_t now = gethrtime();
7571
7572 now = MIN(now, zs->zs_proc_stop);
7573 print_time(zs->zs_proc_stop - now, timebuf);
7574 nicenum(zs->zs_space, numbuf, sizeof (numbuf));
7575
7576 (void) printf("Pass %3d, %8s, %3llu ENOSPC, "
7577 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
7578 iters,
7579 WIFEXITED(status) ? "Complete" : "SIGKILL",
7580 (u_longlong_t)zs->zs_enospc_count,
7581 100.0 * zs->zs_alloc / zs->zs_space,
7582 numbuf,
7583 100.0 * (now - zs->zs_proc_start) /
7584 (ztest_opts.zo_time * NANOSEC), timebuf);
7585 }
7586
7587 if (ztest_opts.zo_verbose >= 2) {
7588 (void) printf("\nWorkload summary:\n\n");
7589 (void) printf("%7s %9s %s\n",
7590 "Calls", "Time", "Function");
7591 (void) printf("%7s %9s %s\n",
7592 "-----", "----", "--------");
7593 for (f = 0; f < ZTEST_FUNCS; f++) {
7594 zi = &ztest_info[f];
7595 zc = ZTEST_GET_SHARED_CALLSTATE(f);
7596 print_time(zc->zc_time, timebuf);
7597 (void) printf("%7llu %9s %s\n",
7598 (u_longlong_t)zc->zc_count, timebuf,
7599 zi->zi_funcname);
7600 }
7601 (void) printf("\n");
7602 }
7603
7604 /*
7605 * It's possible that we killed a child during a rename test,
7606 * in which case we'll have a 'ztest_tmp' pool lying around
7607 * instead of 'ztest'. Do a blind rename in case this happened.
7608 */
7609 kernel_init(FREAD);
7610 if (spa_open(ztest_opts.zo_pool, &spa, FTAG) == 0) {
7611 spa_close(spa, FTAG);
7612 } else {
7613 char tmpname[ZFS_MAX_DATASET_NAME_LEN];
7614 kernel_fini();
7615 kernel_init(FREAD | FWRITE);
7616 (void) snprintf(tmpname, sizeof (tmpname), "%s_tmp",
7617 ztest_opts.zo_pool);
7618 (void) spa_rename(tmpname, ztest_opts.zo_pool);
7619 }
7620 kernel_fini();
7621
7622 if (!ztest_opts.zo_mmp_test)
7623 ztest_run_zdb(ztest_opts.zo_pool);
7624 }
7625
7626 if (ztest_opts.zo_verbose >= 1) {
7627 if (hasalt) {
7628 (void) printf("%d runs of older ztest: %s\n", older,
7629 ztest_opts.zo_alt_ztest);
7630 (void) printf("%d runs of newer ztest: %s\n", newer,
7631 cmd);
7632 }
7633 (void) printf("%d killed, %d completed, %.0f%% kill rate\n",
7634 kills, iters - kills, (100.0 * kills) / MAX(1, iters));
7635 }
7636
7637 umem_free(cmd, MAXNAMELEN);
7638
7639 return (0);
7640 }