]> git.proxmox.com Git - mirror_zfs.git/blob - cmd/ztest/ztest.c
Illumos 4757, 4913
[mirror_zfs.git] / cmd / ztest / ztest.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2013 Steven Hartland. All rights reserved.
26 */
27
28 /*
29 * The objective of this program is to provide a DMU/ZAP/SPA stress test
30 * that runs entirely in userland, is easy to use, and easy to extend.
31 *
32 * The overall design of the ztest program is as follows:
33 *
34 * (1) For each major functional area (e.g. adding vdevs to a pool,
35 * creating and destroying datasets, reading and writing objects, etc)
36 * we have a simple routine to test that functionality. These
37 * individual routines do not have to do anything "stressful".
38 *
39 * (2) We turn these simple functionality tests into a stress test by
40 * running them all in parallel, with as many threads as desired,
41 * and spread across as many datasets, objects, and vdevs as desired.
42 *
43 * (3) While all this is happening, we inject faults into the pool to
44 * verify that self-healing data really works.
45 *
46 * (4) Every time we open a dataset, we change its checksum and compression
47 * functions. Thus even individual objects vary from block to block
48 * in which checksum they use and whether they're compressed.
49 *
50 * (5) To verify that we never lose on-disk consistency after a crash,
51 * we run the entire test in a child of the main process.
52 * At random times, the child self-immolates with a SIGKILL.
53 * This is the software equivalent of pulling the power cord.
54 * The parent then runs the test again, using the existing
55 * storage pool, as many times as desired. If backwards compatibility
56 * testing is enabled ztest will sometimes run the "older" version
57 * of ztest after a SIGKILL.
58 *
59 * (6) To verify that we don't have future leaks or temporal incursions,
60 * many of the functional tests record the transaction group number
61 * as part of their data. When reading old data, they verify that
62 * the transaction group number is less than the current, open txg.
63 * If you add a new test, please do this if applicable.
64 *
65 * (7) Threads are created with a reduced stack size, for sanity checking.
66 * Therefore, it's important not to allocate huge buffers on the stack.
67 *
68 * When run with no arguments, ztest runs for about five minutes and
69 * produces no output if successful. To get a little bit of information,
70 * specify -V. To get more information, specify -VV, and so on.
71 *
72 * To turn this into an overnight stress test, use -T to specify run time.
73 *
74 * You can ask more more vdevs [-v], datasets [-d], or threads [-t]
75 * to increase the pool capacity, fanout, and overall stress level.
76 *
77 * Use the -k option to set the desired frequency of kills.
78 *
79 * When ztest invokes itself it passes all relevant information through a
80 * temporary file which is mmap-ed in the child process. This allows shared
81 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
82 * stored at offset 0 of this file and contains information on the size and
83 * number of shared structures in the file. The information stored in this file
84 * must remain backwards compatible with older versions of ztest so that
85 * ztest can invoke them during backwards compatibility testing (-B).
86 */
87
88 #include <sys/zfs_context.h>
89 #include <sys/spa.h>
90 #include <sys/dmu.h>
91 #include <sys/txg.h>
92 #include <sys/dbuf.h>
93 #include <sys/zap.h>
94 #include <sys/dmu_objset.h>
95 #include <sys/poll.h>
96 #include <sys/stat.h>
97 #include <sys/time.h>
98 #include <sys/wait.h>
99 #include <sys/mman.h>
100 #include <sys/resource.h>
101 #include <sys/zio.h>
102 #include <sys/zil.h>
103 #include <sys/zil_impl.h>
104 #include <sys/vdev_impl.h>
105 #include <sys/vdev_file.h>
106 #include <sys/spa_impl.h>
107 #include <sys/metaslab_impl.h>
108 #include <sys/dsl_prop.h>
109 #include <sys/dsl_dataset.h>
110 #include <sys/dsl_destroy.h>
111 #include <sys/dsl_scan.h>
112 #include <sys/zio_checksum.h>
113 #include <sys/refcount.h>
114 #include <sys/zfeature.h>
115 #include <sys/dsl_userhold.h>
116 #include <stdio.h>
117 #include <stdio_ext.h>
118 #include <stdlib.h>
119 #include <unistd.h>
120 #include <signal.h>
121 #include <umem.h>
122 #include <dlfcn.h>
123 #include <ctype.h>
124 #include <math.h>
125 #include <sys/fs/zfs.h>
126 #include <libnvpair.h>
127
128 static int ztest_fd_data = -1;
129 static int ztest_fd_rand = -1;
130
131 typedef struct ztest_shared_hdr {
132 uint64_t zh_hdr_size;
133 uint64_t zh_opts_size;
134 uint64_t zh_size;
135 uint64_t zh_stats_size;
136 uint64_t zh_stats_count;
137 uint64_t zh_ds_size;
138 uint64_t zh_ds_count;
139 } ztest_shared_hdr_t;
140
141 static ztest_shared_hdr_t *ztest_shared_hdr;
142
143 typedef struct ztest_shared_opts {
144 char zo_pool[MAXNAMELEN];
145 char zo_dir[MAXNAMELEN];
146 char zo_alt_ztest[MAXNAMELEN];
147 char zo_alt_libpath[MAXNAMELEN];
148 uint64_t zo_vdevs;
149 uint64_t zo_vdevtime;
150 size_t zo_vdev_size;
151 int zo_ashift;
152 int zo_mirrors;
153 int zo_raidz;
154 int zo_raidz_parity;
155 int zo_datasets;
156 int zo_threads;
157 uint64_t zo_passtime;
158 uint64_t zo_killrate;
159 int zo_verbose;
160 int zo_init;
161 uint64_t zo_time;
162 uint64_t zo_maxloops;
163 uint64_t zo_metaslab_gang_bang;
164 } ztest_shared_opts_t;
165
166 static const ztest_shared_opts_t ztest_opts_defaults = {
167 .zo_pool = { 'z', 't', 'e', 's', 't', '\0' },
168 .zo_dir = { '/', 't', 'm', 'p', '\0' },
169 .zo_alt_ztest = { '\0' },
170 .zo_alt_libpath = { '\0' },
171 .zo_vdevs = 5,
172 .zo_ashift = SPA_MINBLOCKSHIFT,
173 .zo_mirrors = 2,
174 .zo_raidz = 4,
175 .zo_raidz_parity = 1,
176 .zo_vdev_size = SPA_MINDEVSIZE,
177 .zo_datasets = 7,
178 .zo_threads = 23,
179 .zo_passtime = 60, /* 60 seconds */
180 .zo_killrate = 70, /* 70% kill rate */
181 .zo_verbose = 0,
182 .zo_init = 1,
183 .zo_time = 300, /* 5 minutes */
184 .zo_maxloops = 50, /* max loops during spa_freeze() */
185 .zo_metaslab_gang_bang = 32 << 10
186 };
187
188 extern uint64_t metaslab_gang_bang;
189 extern uint64_t metaslab_df_alloc_threshold;
190 extern int metaslab_preload_limit;
191
192 static ztest_shared_opts_t *ztest_shared_opts;
193 static ztest_shared_opts_t ztest_opts;
194
195 typedef struct ztest_shared_ds {
196 uint64_t zd_seq;
197 } ztest_shared_ds_t;
198
199 static ztest_shared_ds_t *ztest_shared_ds;
200 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
201
202 #define BT_MAGIC 0x123456789abcdefULL
203 #define MAXFAULTS() \
204 (MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1)
205
206 enum ztest_io_type {
207 ZTEST_IO_WRITE_TAG,
208 ZTEST_IO_WRITE_PATTERN,
209 ZTEST_IO_WRITE_ZEROES,
210 ZTEST_IO_TRUNCATE,
211 ZTEST_IO_SETATTR,
212 ZTEST_IO_REWRITE,
213 ZTEST_IO_TYPES
214 };
215
216 typedef struct ztest_block_tag {
217 uint64_t bt_magic;
218 uint64_t bt_objset;
219 uint64_t bt_object;
220 uint64_t bt_offset;
221 uint64_t bt_gen;
222 uint64_t bt_txg;
223 uint64_t bt_crtxg;
224 } ztest_block_tag_t;
225
226 typedef struct bufwad {
227 uint64_t bw_index;
228 uint64_t bw_txg;
229 uint64_t bw_data;
230 } bufwad_t;
231
232 /*
233 * XXX -- fix zfs range locks to be generic so we can use them here.
234 */
235 typedef enum {
236 RL_READER,
237 RL_WRITER,
238 RL_APPEND
239 } rl_type_t;
240
241 typedef struct rll {
242 void *rll_writer;
243 int rll_readers;
244 kmutex_t rll_lock;
245 kcondvar_t rll_cv;
246 } rll_t;
247
248 typedef struct rl {
249 uint64_t rl_object;
250 uint64_t rl_offset;
251 uint64_t rl_size;
252 rll_t *rl_lock;
253 } rl_t;
254
255 #define ZTEST_RANGE_LOCKS 64
256 #define ZTEST_OBJECT_LOCKS 64
257
258 /*
259 * Object descriptor. Used as a template for object lookup/create/remove.
260 */
261 typedef struct ztest_od {
262 uint64_t od_dir;
263 uint64_t od_object;
264 dmu_object_type_t od_type;
265 dmu_object_type_t od_crtype;
266 uint64_t od_blocksize;
267 uint64_t od_crblocksize;
268 uint64_t od_gen;
269 uint64_t od_crgen;
270 char od_name[MAXNAMELEN];
271 } ztest_od_t;
272
273 /*
274 * Per-dataset state.
275 */
276 typedef struct ztest_ds {
277 ztest_shared_ds_t *zd_shared;
278 objset_t *zd_os;
279 rwlock_t zd_zilog_lock;
280 zilog_t *zd_zilog;
281 ztest_od_t *zd_od; /* debugging aid */
282 char zd_name[MAXNAMELEN];
283 kmutex_t zd_dirobj_lock;
284 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS];
285 rll_t zd_range_lock[ZTEST_RANGE_LOCKS];
286 } ztest_ds_t;
287
288 /*
289 * Per-iteration state.
290 */
291 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
292
293 typedef struct ztest_info {
294 ztest_func_t *zi_func; /* test function */
295 uint64_t zi_iters; /* iterations per execution */
296 uint64_t *zi_interval; /* execute every <interval> seconds */
297 } ztest_info_t;
298
299 typedef struct ztest_shared_callstate {
300 uint64_t zc_count; /* per-pass count */
301 uint64_t zc_time; /* per-pass time */
302 uint64_t zc_next; /* next time to call this function */
303 } ztest_shared_callstate_t;
304
305 static ztest_shared_callstate_t *ztest_shared_callstate;
306 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
307
308 /*
309 * Note: these aren't static because we want dladdr() to work.
310 */
311 ztest_func_t ztest_dmu_read_write;
312 ztest_func_t ztest_dmu_write_parallel;
313 ztest_func_t ztest_dmu_object_alloc_free;
314 ztest_func_t ztest_dmu_commit_callbacks;
315 ztest_func_t ztest_zap;
316 ztest_func_t ztest_zap_parallel;
317 ztest_func_t ztest_zil_commit;
318 ztest_func_t ztest_zil_remount;
319 ztest_func_t ztest_dmu_read_write_zcopy;
320 ztest_func_t ztest_dmu_objset_create_destroy;
321 ztest_func_t ztest_dmu_prealloc;
322 ztest_func_t ztest_fzap;
323 ztest_func_t ztest_dmu_snapshot_create_destroy;
324 ztest_func_t ztest_dsl_prop_get_set;
325 ztest_func_t ztest_spa_prop_get_set;
326 ztest_func_t ztest_spa_create_destroy;
327 ztest_func_t ztest_fault_inject;
328 ztest_func_t ztest_ddt_repair;
329 ztest_func_t ztest_dmu_snapshot_hold;
330 ztest_func_t ztest_spa_rename;
331 ztest_func_t ztest_scrub;
332 ztest_func_t ztest_dsl_dataset_promote_busy;
333 ztest_func_t ztest_vdev_attach_detach;
334 ztest_func_t ztest_vdev_LUN_growth;
335 ztest_func_t ztest_vdev_add_remove;
336 ztest_func_t ztest_vdev_aux_add_remove;
337 ztest_func_t ztest_split_pool;
338 ztest_func_t ztest_reguid;
339 ztest_func_t ztest_spa_upgrade;
340
341 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */
342 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */
343 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */
344 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */
345 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */
346
347 ztest_info_t ztest_info[] = {
348 { ztest_dmu_read_write, 1, &zopt_always },
349 { ztest_dmu_write_parallel, 10, &zopt_always },
350 { ztest_dmu_object_alloc_free, 1, &zopt_always },
351 { ztest_dmu_commit_callbacks, 1, &zopt_always },
352 { ztest_zap, 30, &zopt_always },
353 { ztest_zap_parallel, 100, &zopt_always },
354 { ztest_split_pool, 1, &zopt_always },
355 { ztest_zil_commit, 1, &zopt_incessant },
356 { ztest_zil_remount, 1, &zopt_sometimes },
357 { ztest_dmu_read_write_zcopy, 1, &zopt_often },
358 { ztest_dmu_objset_create_destroy, 1, &zopt_often },
359 { ztest_dsl_prop_get_set, 1, &zopt_often },
360 { ztest_spa_prop_get_set, 1, &zopt_sometimes },
361 #if 0
362 { ztest_dmu_prealloc, 1, &zopt_sometimes },
363 #endif
364 { ztest_fzap, 1, &zopt_sometimes },
365 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes },
366 { ztest_spa_create_destroy, 1, &zopt_sometimes },
367 { ztest_fault_inject, 1, &zopt_sometimes },
368 { ztest_ddt_repair, 1, &zopt_sometimes },
369 { ztest_dmu_snapshot_hold, 1, &zopt_sometimes },
370 { ztest_reguid, 1, &zopt_rarely },
371 { ztest_spa_rename, 1, &zopt_rarely },
372 { ztest_scrub, 1, &zopt_rarely },
373 { ztest_spa_upgrade, 1, &zopt_rarely },
374 { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely },
375 { ztest_vdev_attach_detach, 1, &zopt_sometimes },
376 { ztest_vdev_LUN_growth, 1, &zopt_rarely },
377 { ztest_vdev_add_remove, 1,
378 &ztest_opts.zo_vdevtime },
379 { ztest_vdev_aux_add_remove, 1,
380 &ztest_opts.zo_vdevtime },
381 };
382
383 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t))
384
385 /*
386 * The following struct is used to hold a list of uncalled commit callbacks.
387 * The callbacks are ordered by txg number.
388 */
389 typedef struct ztest_cb_list {
390 kmutex_t zcl_callbacks_lock;
391 list_t zcl_callbacks;
392 } ztest_cb_list_t;
393
394 /*
395 * Stuff we need to share writably between parent and child.
396 */
397 typedef struct ztest_shared {
398 boolean_t zs_do_init;
399 hrtime_t zs_proc_start;
400 hrtime_t zs_proc_stop;
401 hrtime_t zs_thread_start;
402 hrtime_t zs_thread_stop;
403 hrtime_t zs_thread_kill;
404 uint64_t zs_enospc_count;
405 uint64_t zs_vdev_next_leaf;
406 uint64_t zs_vdev_aux;
407 uint64_t zs_alloc;
408 uint64_t zs_space;
409 uint64_t zs_splits;
410 uint64_t zs_mirrors;
411 uint64_t zs_metaslab_sz;
412 uint64_t zs_metaslab_df_alloc_threshold;
413 uint64_t zs_guid;
414 } ztest_shared_t;
415
416 #define ID_PARALLEL -1ULL
417
418 static char ztest_dev_template[] = "%s/%s.%llua";
419 static char ztest_aux_template[] = "%s/%s.%s.%llu";
420 ztest_shared_t *ztest_shared;
421
422 static spa_t *ztest_spa = NULL;
423 static ztest_ds_t *ztest_ds;
424
425 static kmutex_t ztest_vdev_lock;
426
427 /*
428 * The ztest_name_lock protects the pool and dataset namespace used by
429 * the individual tests. To modify the namespace, consumers must grab
430 * this lock as writer. Grabbing the lock as reader will ensure that the
431 * namespace does not change while the lock is held.
432 */
433 static rwlock_t ztest_name_lock;
434
435 static boolean_t ztest_dump_core = B_TRUE;
436 static boolean_t ztest_exiting;
437
438 /* Global commit callback list */
439 static ztest_cb_list_t zcl;
440 /* Commit cb delay */
441 static uint64_t zc_min_txg_delay = UINT64_MAX;
442 static int zc_cb_counter = 0;
443
444 /*
445 * Minimum number of commit callbacks that need to be registered for us to check
446 * whether the minimum txg delay is acceptable.
447 */
448 #define ZTEST_COMMIT_CB_MIN_REG 100
449
450 /*
451 * If a number of txgs equal to this threshold have been created after a commit
452 * callback has been registered but not called, then we assume there is an
453 * implementation bug.
454 */
455 #define ZTEST_COMMIT_CB_THRESH (TXG_CONCURRENT_STATES + 1000)
456
457 extern uint64_t metaslab_gang_bang;
458 extern uint64_t metaslab_df_alloc_threshold;
459
460 enum ztest_object {
461 ZTEST_META_DNODE = 0,
462 ZTEST_DIROBJ,
463 ZTEST_OBJECTS
464 };
465
466 static void usage(boolean_t) __NORETURN;
467
468 /*
469 * These libumem hooks provide a reasonable set of defaults for the allocator's
470 * debugging facilities.
471 */
472 const char *
473 _umem_debug_init(void)
474 {
475 return ("default,verbose"); /* $UMEM_DEBUG setting */
476 }
477
478 const char *
479 _umem_logging_init(void)
480 {
481 return ("fail,contents"); /* $UMEM_LOGGING setting */
482 }
483
484 #define FATAL_MSG_SZ 1024
485
486 char *fatal_msg;
487
488 static void
489 fatal(int do_perror, char *message, ...)
490 {
491 va_list args;
492 int save_errno = errno;
493 char *buf;
494
495 (void) fflush(stdout);
496 buf = umem_alloc(FATAL_MSG_SZ, UMEM_NOFAIL);
497
498 va_start(args, message);
499 (void) sprintf(buf, "ztest: ");
500 /* LINTED */
501 (void) vsprintf(buf + strlen(buf), message, args);
502 va_end(args);
503 if (do_perror) {
504 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
505 ": %s", strerror(save_errno));
506 }
507 (void) fprintf(stderr, "%s\n", buf);
508 fatal_msg = buf; /* to ease debugging */
509 if (ztest_dump_core)
510 abort();
511 exit(3);
512 }
513
514 static int
515 str2shift(const char *buf)
516 {
517 const char *ends = "BKMGTPEZ";
518 int i;
519
520 if (buf[0] == '\0')
521 return (0);
522 for (i = 0; i < strlen(ends); i++) {
523 if (toupper(buf[0]) == ends[i])
524 break;
525 }
526 if (i == strlen(ends)) {
527 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
528 buf);
529 usage(B_FALSE);
530 }
531 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
532 return (10*i);
533 }
534 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
535 usage(B_FALSE);
536 /* NOTREACHED */
537 }
538
539 static uint64_t
540 nicenumtoull(const char *buf)
541 {
542 char *end;
543 uint64_t val;
544
545 val = strtoull(buf, &end, 0);
546 if (end == buf) {
547 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
548 usage(B_FALSE);
549 } else if (end[0] == '.') {
550 double fval = strtod(buf, &end);
551 fval *= pow(2, str2shift(end));
552 if (fval > UINT64_MAX) {
553 (void) fprintf(stderr, "ztest: value too large: %s\n",
554 buf);
555 usage(B_FALSE);
556 }
557 val = (uint64_t)fval;
558 } else {
559 int shift = str2shift(end);
560 if (shift >= 64 || (val << shift) >> shift != val) {
561 (void) fprintf(stderr, "ztest: value too large: %s\n",
562 buf);
563 usage(B_FALSE);
564 }
565 val <<= shift;
566 }
567 return (val);
568 }
569
570 static void
571 usage(boolean_t requested)
572 {
573 const ztest_shared_opts_t *zo = &ztest_opts_defaults;
574
575 char nice_vdev_size[10];
576 char nice_gang_bang[10];
577 FILE *fp = requested ? stdout : stderr;
578
579 nicenum(zo->zo_vdev_size, nice_vdev_size);
580 nicenum(zo->zo_metaslab_gang_bang, nice_gang_bang);
581
582 (void) fprintf(fp, "Usage: %s\n"
583 "\t[-v vdevs (default: %llu)]\n"
584 "\t[-s size_of_each_vdev (default: %s)]\n"
585 "\t[-a alignment_shift (default: %d)] use 0 for random\n"
586 "\t[-m mirror_copies (default: %d)]\n"
587 "\t[-r raidz_disks (default: %d)]\n"
588 "\t[-R raidz_parity (default: %d)]\n"
589 "\t[-d datasets (default: %d)]\n"
590 "\t[-t threads (default: %d)]\n"
591 "\t[-g gang_block_threshold (default: %s)]\n"
592 "\t[-i init_count (default: %d)] initialize pool i times\n"
593 "\t[-k kill_percentage (default: %llu%%)]\n"
594 "\t[-p pool_name (default: %s)]\n"
595 "\t[-f dir (default: %s)] file directory for vdev files\n"
596 "\t[-V] verbose (use multiple times for ever more blather)\n"
597 "\t[-E] use existing pool instead of creating new one\n"
598 "\t[-T time (default: %llu sec)] total run time\n"
599 "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n"
600 "\t[-P passtime (default: %llu sec)] time per pass\n"
601 "\t[-B alt_ztest (default: <none>)] alternate ztest path\n"
602 "\t[-h] (print help)\n"
603 "",
604 zo->zo_pool,
605 (u_longlong_t)zo->zo_vdevs, /* -v */
606 nice_vdev_size, /* -s */
607 zo->zo_ashift, /* -a */
608 zo->zo_mirrors, /* -m */
609 zo->zo_raidz, /* -r */
610 zo->zo_raidz_parity, /* -R */
611 zo->zo_datasets, /* -d */
612 zo->zo_threads, /* -t */
613 nice_gang_bang, /* -g */
614 zo->zo_init, /* -i */
615 (u_longlong_t)zo->zo_killrate, /* -k */
616 zo->zo_pool, /* -p */
617 zo->zo_dir, /* -f */
618 (u_longlong_t)zo->zo_time, /* -T */
619 (u_longlong_t)zo->zo_maxloops, /* -F */
620 (u_longlong_t)zo->zo_passtime);
621 exit(requested ? 0 : 1);
622 }
623
624 static void
625 process_options(int argc, char **argv)
626 {
627 char *path;
628 ztest_shared_opts_t *zo = &ztest_opts;
629
630 int opt;
631 uint64_t value;
632 char altdir[MAXNAMELEN] = { 0 };
633
634 bcopy(&ztest_opts_defaults, zo, sizeof (*zo));
635
636 while ((opt = getopt(argc, argv,
637 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:B:")) != EOF) {
638 value = 0;
639 switch (opt) {
640 case 'v':
641 case 's':
642 case 'a':
643 case 'm':
644 case 'r':
645 case 'R':
646 case 'd':
647 case 't':
648 case 'g':
649 case 'i':
650 case 'k':
651 case 'T':
652 case 'P':
653 case 'F':
654 value = nicenumtoull(optarg);
655 }
656 switch (opt) {
657 case 'v':
658 zo->zo_vdevs = value;
659 break;
660 case 's':
661 zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value);
662 break;
663 case 'a':
664 zo->zo_ashift = value;
665 break;
666 case 'm':
667 zo->zo_mirrors = value;
668 break;
669 case 'r':
670 zo->zo_raidz = MAX(1, value);
671 break;
672 case 'R':
673 zo->zo_raidz_parity = MIN(MAX(value, 1), 3);
674 break;
675 case 'd':
676 zo->zo_datasets = MAX(1, value);
677 break;
678 case 't':
679 zo->zo_threads = MAX(1, value);
680 break;
681 case 'g':
682 zo->zo_metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1,
683 value);
684 break;
685 case 'i':
686 zo->zo_init = value;
687 break;
688 case 'k':
689 zo->zo_killrate = value;
690 break;
691 case 'p':
692 (void) strlcpy(zo->zo_pool, optarg,
693 sizeof (zo->zo_pool));
694 break;
695 case 'f':
696 path = realpath(optarg, NULL);
697 if (path == NULL) {
698 (void) fprintf(stderr, "error: %s: %s\n",
699 optarg, strerror(errno));
700 usage(B_FALSE);
701 } else {
702 (void) strlcpy(zo->zo_dir, path,
703 sizeof (zo->zo_dir));
704 }
705 break;
706 case 'V':
707 zo->zo_verbose++;
708 break;
709 case 'E':
710 zo->zo_init = 0;
711 break;
712 case 'T':
713 zo->zo_time = value;
714 break;
715 case 'P':
716 zo->zo_passtime = MAX(1, value);
717 break;
718 case 'F':
719 zo->zo_maxloops = MAX(1, value);
720 break;
721 case 'B':
722 (void) strlcpy(altdir, optarg, sizeof (altdir));
723 break;
724 case 'h':
725 usage(B_TRUE);
726 break;
727 case '?':
728 default:
729 usage(B_FALSE);
730 break;
731 }
732 }
733
734 zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1);
735
736 zo->zo_vdevtime =
737 (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs :
738 UINT64_MAX >> 2);
739
740 if (strlen(altdir) > 0) {
741 char *cmd;
742 char *realaltdir;
743 char *bin;
744 char *ztest;
745 char *isa;
746 int isalen;
747
748 cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
749 realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
750
751 VERIFY(NULL != realpath(getexecname(), cmd));
752 if (0 != access(altdir, F_OK)) {
753 ztest_dump_core = B_FALSE;
754 fatal(B_TRUE, "invalid alternate ztest path: %s",
755 altdir);
756 }
757 VERIFY(NULL != realpath(altdir, realaltdir));
758
759 /*
760 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest".
761 * We want to extract <isa> to determine if we should use
762 * 32 or 64 bit binaries.
763 */
764 bin = strstr(cmd, "/usr/bin/");
765 ztest = strstr(bin, "/ztest");
766 isa = bin + 9;
767 isalen = ztest - isa;
768 (void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest),
769 "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa);
770 (void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath),
771 "%s/usr/lib/%.*s", realaltdir, isalen, isa);
772
773 if (0 != access(zo->zo_alt_ztest, X_OK)) {
774 ztest_dump_core = B_FALSE;
775 fatal(B_TRUE, "invalid alternate ztest: %s",
776 zo->zo_alt_ztest);
777 } else if (0 != access(zo->zo_alt_libpath, X_OK)) {
778 ztest_dump_core = B_FALSE;
779 fatal(B_TRUE, "invalid alternate lib directory %s",
780 zo->zo_alt_libpath);
781 }
782
783 umem_free(cmd, MAXPATHLEN);
784 umem_free(realaltdir, MAXPATHLEN);
785 }
786 }
787
788 static void
789 ztest_kill(ztest_shared_t *zs)
790 {
791 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa));
792 zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa));
793
794 /*
795 * Before we kill off ztest, make sure that the config is updated.
796 * See comment above spa_config_sync().
797 */
798 mutex_enter(&spa_namespace_lock);
799 spa_config_sync(ztest_spa, B_FALSE, B_FALSE);
800 mutex_exit(&spa_namespace_lock);
801
802 if (ztest_opts.zo_verbose >= 3)
803 zfs_dbgmsg_print(FTAG);
804
805 (void) kill(getpid(), SIGKILL);
806 }
807
808 static uint64_t
809 ztest_random(uint64_t range)
810 {
811 uint64_t r;
812
813 ASSERT3S(ztest_fd_rand, >=, 0);
814
815 if (range == 0)
816 return (0);
817
818 if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r))
819 fatal(1, "short read from /dev/urandom");
820
821 return (r % range);
822 }
823
824 /* ARGSUSED */
825 static void
826 ztest_record_enospc(const char *s)
827 {
828 ztest_shared->zs_enospc_count++;
829 }
830
831 static uint64_t
832 ztest_get_ashift(void)
833 {
834 if (ztest_opts.zo_ashift == 0)
835 return (SPA_MINBLOCKSHIFT + ztest_random(3));
836 return (ztest_opts.zo_ashift);
837 }
838
839 static nvlist_t *
840 make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift)
841 {
842 char *pathbuf;
843 uint64_t vdev;
844 nvlist_t *file;
845
846 pathbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
847
848 if (ashift == 0)
849 ashift = ztest_get_ashift();
850
851 if (path == NULL) {
852 path = pathbuf;
853
854 if (aux != NULL) {
855 vdev = ztest_shared->zs_vdev_aux;
856 (void) snprintf(path, MAXPATHLEN,
857 ztest_aux_template, ztest_opts.zo_dir,
858 pool == NULL ? ztest_opts.zo_pool : pool,
859 aux, vdev);
860 } else {
861 vdev = ztest_shared->zs_vdev_next_leaf++;
862 (void) snprintf(path, MAXPATHLEN,
863 ztest_dev_template, ztest_opts.zo_dir,
864 pool == NULL ? ztest_opts.zo_pool : pool, vdev);
865 }
866 }
867
868 if (size != 0) {
869 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
870 if (fd == -1)
871 fatal(1, "can't open %s", path);
872 if (ftruncate(fd, size) != 0)
873 fatal(1, "can't ftruncate %s", path);
874 (void) close(fd);
875 }
876
877 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0);
878 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0);
879 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0);
880 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0);
881 umem_free(pathbuf, MAXPATHLEN);
882
883 return (file);
884 }
885
886 static nvlist_t *
887 make_vdev_raidz(char *path, char *aux, char *pool, size_t size,
888 uint64_t ashift, int r)
889 {
890 nvlist_t *raidz, **child;
891 int c;
892
893 if (r < 2)
894 return (make_vdev_file(path, aux, pool, size, ashift));
895 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
896
897 for (c = 0; c < r; c++)
898 child[c] = make_vdev_file(path, aux, pool, size, ashift);
899
900 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0);
901 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE,
902 VDEV_TYPE_RAIDZ) == 0);
903 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY,
904 ztest_opts.zo_raidz_parity) == 0);
905 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN,
906 child, r) == 0);
907
908 for (c = 0; c < r; c++)
909 nvlist_free(child[c]);
910
911 umem_free(child, r * sizeof (nvlist_t *));
912
913 return (raidz);
914 }
915
916 static nvlist_t *
917 make_vdev_mirror(char *path, char *aux, char *pool, size_t size,
918 uint64_t ashift, int r, int m)
919 {
920 nvlist_t *mirror, **child;
921 int c;
922
923 if (m < 1)
924 return (make_vdev_raidz(path, aux, pool, size, ashift, r));
925
926 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
927
928 for (c = 0; c < m; c++)
929 child[c] = make_vdev_raidz(path, aux, pool, size, ashift, r);
930
931 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0);
932 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE,
933 VDEV_TYPE_MIRROR) == 0);
934 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
935 child, m) == 0);
936
937 for (c = 0; c < m; c++)
938 nvlist_free(child[c]);
939
940 umem_free(child, m * sizeof (nvlist_t *));
941
942 return (mirror);
943 }
944
945 static nvlist_t *
946 make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift,
947 int log, int r, int m, int t)
948 {
949 nvlist_t *root, **child;
950 int c;
951
952 ASSERT(t > 0);
953
954 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
955
956 for (c = 0; c < t; c++) {
957 child[c] = make_vdev_mirror(path, aux, pool, size, ashift,
958 r, m);
959 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG,
960 log) == 0);
961 }
962
963 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0);
964 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0);
965 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
966 child, t) == 0);
967
968 for (c = 0; c < t; c++)
969 nvlist_free(child[c]);
970
971 umem_free(child, t * sizeof (nvlist_t *));
972
973 return (root);
974 }
975
976 /*
977 * Find a random spa version. Returns back a random spa version in the
978 * range [initial_version, SPA_VERSION_FEATURES].
979 */
980 static uint64_t
981 ztest_random_spa_version(uint64_t initial_version)
982 {
983 uint64_t version = initial_version;
984
985 if (version <= SPA_VERSION_BEFORE_FEATURES) {
986 version = version +
987 ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1);
988 }
989
990 if (version > SPA_VERSION_BEFORE_FEATURES)
991 version = SPA_VERSION_FEATURES;
992
993 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
994 return (version);
995 }
996
997 static int
998 ztest_random_blocksize(void)
999 {
1000 return (1 << (SPA_MINBLOCKSHIFT +
1001 ztest_random(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1)));
1002 }
1003
1004 static int
1005 ztest_random_ibshift(void)
1006 {
1007 return (DN_MIN_INDBLKSHIFT +
1008 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
1009 }
1010
1011 static uint64_t
1012 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
1013 {
1014 uint64_t top;
1015 vdev_t *rvd = spa->spa_root_vdev;
1016 vdev_t *tvd;
1017
1018 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1019
1020 do {
1021 top = ztest_random(rvd->vdev_children);
1022 tvd = rvd->vdev_child[top];
1023 } while (tvd->vdev_ishole || (tvd->vdev_islog && !log_ok) ||
1024 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
1025
1026 return (top);
1027 }
1028
1029 static uint64_t
1030 ztest_random_dsl_prop(zfs_prop_t prop)
1031 {
1032 uint64_t value;
1033
1034 do {
1035 value = zfs_prop_random_value(prop, ztest_random(-1ULL));
1036 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
1037
1038 return (value);
1039 }
1040
1041 static int
1042 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
1043 boolean_t inherit)
1044 {
1045 const char *propname = zfs_prop_to_name(prop);
1046 const char *valname;
1047 char *setpoint;
1048 uint64_t curval;
1049 int error;
1050
1051 error = dsl_prop_set_int(osname, propname,
1052 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value);
1053
1054 if (error == ENOSPC) {
1055 ztest_record_enospc(FTAG);
1056 return (error);
1057 }
1058 ASSERT0(error);
1059
1060 setpoint = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1061 VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint));
1062
1063 if (ztest_opts.zo_verbose >= 6) {
1064 VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0);
1065 (void) printf("%s %s = %s at '%s'\n",
1066 osname, propname, valname, setpoint);
1067 }
1068 umem_free(setpoint, MAXPATHLEN);
1069
1070 return (error);
1071 }
1072
1073 static int
1074 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value)
1075 {
1076 spa_t *spa = ztest_spa;
1077 nvlist_t *props = NULL;
1078 int error;
1079
1080 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
1081 VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0);
1082
1083 error = spa_prop_set(spa, props);
1084
1085 nvlist_free(props);
1086
1087 if (error == ENOSPC) {
1088 ztest_record_enospc(FTAG);
1089 return (error);
1090 }
1091 ASSERT0(error);
1092
1093 return (error);
1094 }
1095
1096 static void
1097 ztest_rll_init(rll_t *rll)
1098 {
1099 rll->rll_writer = NULL;
1100 rll->rll_readers = 0;
1101 mutex_init(&rll->rll_lock, NULL, MUTEX_DEFAULT, NULL);
1102 cv_init(&rll->rll_cv, NULL, CV_DEFAULT, NULL);
1103 }
1104
1105 static void
1106 ztest_rll_destroy(rll_t *rll)
1107 {
1108 ASSERT(rll->rll_writer == NULL);
1109 ASSERT(rll->rll_readers == 0);
1110 mutex_destroy(&rll->rll_lock);
1111 cv_destroy(&rll->rll_cv);
1112 }
1113
1114 static void
1115 ztest_rll_lock(rll_t *rll, rl_type_t type)
1116 {
1117 mutex_enter(&rll->rll_lock);
1118
1119 if (type == RL_READER) {
1120 while (rll->rll_writer != NULL)
1121 (void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1122 rll->rll_readers++;
1123 } else {
1124 while (rll->rll_writer != NULL || rll->rll_readers)
1125 (void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1126 rll->rll_writer = curthread;
1127 }
1128
1129 mutex_exit(&rll->rll_lock);
1130 }
1131
1132 static void
1133 ztest_rll_unlock(rll_t *rll)
1134 {
1135 mutex_enter(&rll->rll_lock);
1136
1137 if (rll->rll_writer) {
1138 ASSERT(rll->rll_readers == 0);
1139 rll->rll_writer = NULL;
1140 } else {
1141 ASSERT(rll->rll_readers != 0);
1142 ASSERT(rll->rll_writer == NULL);
1143 rll->rll_readers--;
1144 }
1145
1146 if (rll->rll_writer == NULL && rll->rll_readers == 0)
1147 cv_broadcast(&rll->rll_cv);
1148
1149 mutex_exit(&rll->rll_lock);
1150 }
1151
1152 static void
1153 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
1154 {
1155 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1156
1157 ztest_rll_lock(rll, type);
1158 }
1159
1160 static void
1161 ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
1162 {
1163 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1164
1165 ztest_rll_unlock(rll);
1166 }
1167
1168 static rl_t *
1169 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
1170 uint64_t size, rl_type_t type)
1171 {
1172 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1));
1173 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)];
1174 rl_t *rl;
1175
1176 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL);
1177 rl->rl_object = object;
1178 rl->rl_offset = offset;
1179 rl->rl_size = size;
1180 rl->rl_lock = rll;
1181
1182 ztest_rll_lock(rll, type);
1183
1184 return (rl);
1185 }
1186
1187 static void
1188 ztest_range_unlock(rl_t *rl)
1189 {
1190 rll_t *rll = rl->rl_lock;
1191
1192 ztest_rll_unlock(rll);
1193
1194 umem_free(rl, sizeof (*rl));
1195 }
1196
1197 static void
1198 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os)
1199 {
1200 zd->zd_os = os;
1201 zd->zd_zilog = dmu_objset_zil(os);
1202 zd->zd_shared = szd;
1203 dmu_objset_name(os, zd->zd_name);
1204 int l;
1205
1206 if (zd->zd_shared != NULL)
1207 zd->zd_shared->zd_seq = 0;
1208
1209 VERIFY(rwlock_init(&zd->zd_zilog_lock, USYNC_THREAD, NULL) == 0);
1210 mutex_init(&zd->zd_dirobj_lock, NULL, MUTEX_DEFAULT, NULL);
1211
1212 for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1213 ztest_rll_init(&zd->zd_object_lock[l]);
1214
1215 for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1216 ztest_rll_init(&zd->zd_range_lock[l]);
1217 }
1218
1219 static void
1220 ztest_zd_fini(ztest_ds_t *zd)
1221 {
1222 int l;
1223
1224 mutex_destroy(&zd->zd_dirobj_lock);
1225 (void) rwlock_destroy(&zd->zd_zilog_lock);
1226
1227 for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1228 ztest_rll_destroy(&zd->zd_object_lock[l]);
1229
1230 for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1231 ztest_rll_destroy(&zd->zd_range_lock[l]);
1232 }
1233
1234 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
1235
1236 static uint64_t
1237 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag)
1238 {
1239 uint64_t txg;
1240 int error;
1241
1242 /*
1243 * Attempt to assign tx to some transaction group.
1244 */
1245 error = dmu_tx_assign(tx, txg_how);
1246 if (error) {
1247 if (error == ERESTART) {
1248 ASSERT(txg_how == TXG_NOWAIT);
1249 dmu_tx_wait(tx);
1250 } else {
1251 ASSERT3U(error, ==, ENOSPC);
1252 ztest_record_enospc(tag);
1253 }
1254 dmu_tx_abort(tx);
1255 return (0);
1256 }
1257 txg = dmu_tx_get_txg(tx);
1258 ASSERT(txg != 0);
1259 return (txg);
1260 }
1261
1262 static void
1263 ztest_pattern_set(void *buf, uint64_t size, uint64_t value)
1264 {
1265 uint64_t *ip = buf;
1266 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1267
1268 while (ip < ip_end)
1269 *ip++ = value;
1270 }
1271
1272 #ifndef NDEBUG
1273 static boolean_t
1274 ztest_pattern_match(void *buf, uint64_t size, uint64_t value)
1275 {
1276 uint64_t *ip = buf;
1277 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1278 uint64_t diff = 0;
1279
1280 while (ip < ip_end)
1281 diff |= (value - *ip++);
1282
1283 return (diff == 0);
1284 }
1285 #endif
1286
1287 static void
1288 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1289 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg)
1290 {
1291 bt->bt_magic = BT_MAGIC;
1292 bt->bt_objset = dmu_objset_id(os);
1293 bt->bt_object = object;
1294 bt->bt_offset = offset;
1295 bt->bt_gen = gen;
1296 bt->bt_txg = txg;
1297 bt->bt_crtxg = crtxg;
1298 }
1299
1300 static void
1301 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1302 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg)
1303 {
1304 ASSERT3U(bt->bt_magic, ==, BT_MAGIC);
1305 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os));
1306 ASSERT3U(bt->bt_object, ==, object);
1307 ASSERT3U(bt->bt_offset, ==, offset);
1308 ASSERT3U(bt->bt_gen, <=, gen);
1309 ASSERT3U(bt->bt_txg, <=, txg);
1310 ASSERT3U(bt->bt_crtxg, ==, crtxg);
1311 }
1312
1313 static ztest_block_tag_t *
1314 ztest_bt_bonus(dmu_buf_t *db)
1315 {
1316 dmu_object_info_t doi;
1317 ztest_block_tag_t *bt;
1318
1319 dmu_object_info_from_db(db, &doi);
1320 ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
1321 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
1322 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
1323
1324 return (bt);
1325 }
1326
1327 /*
1328 * ZIL logging ops
1329 */
1330
1331 #define lrz_type lr_mode
1332 #define lrz_blocksize lr_uid
1333 #define lrz_ibshift lr_gid
1334 #define lrz_bonustype lr_rdev
1335 #define lrz_bonuslen lr_crtime[1]
1336
1337 static void
1338 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
1339 {
1340 char *name = (void *)(lr + 1); /* name follows lr */
1341 size_t namesize = strlen(name) + 1;
1342 itx_t *itx;
1343
1344 if (zil_replaying(zd->zd_zilog, tx))
1345 return;
1346
1347 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
1348 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1349 sizeof (*lr) + namesize - sizeof (lr_t));
1350
1351 zil_itx_assign(zd->zd_zilog, itx, tx);
1352 }
1353
1354 static void
1355 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object)
1356 {
1357 char *name = (void *)(lr + 1); /* name follows lr */
1358 size_t namesize = strlen(name) + 1;
1359 itx_t *itx;
1360
1361 if (zil_replaying(zd->zd_zilog, tx))
1362 return;
1363
1364 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
1365 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1366 sizeof (*lr) + namesize - sizeof (lr_t));
1367
1368 itx->itx_oid = object;
1369 zil_itx_assign(zd->zd_zilog, itx, tx);
1370 }
1371
1372 static void
1373 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
1374 {
1375 itx_t *itx;
1376 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
1377
1378 if (zil_replaying(zd->zd_zilog, tx))
1379 return;
1380
1381 if (lr->lr_length > ZIL_MAX_LOG_DATA)
1382 write_state = WR_INDIRECT;
1383
1384 itx = zil_itx_create(TX_WRITE,
1385 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
1386
1387 if (write_state == WR_COPIED &&
1388 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
1389 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) {
1390 zil_itx_destroy(itx);
1391 itx = zil_itx_create(TX_WRITE, sizeof (*lr));
1392 write_state = WR_NEED_COPY;
1393 }
1394 itx->itx_private = zd;
1395 itx->itx_wr_state = write_state;
1396 itx->itx_sync = (ztest_random(8) == 0);
1397 itx->itx_sod += (write_state == WR_NEED_COPY ? lr->lr_length : 0);
1398
1399 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1400 sizeof (*lr) - sizeof (lr_t));
1401
1402 zil_itx_assign(zd->zd_zilog, itx, tx);
1403 }
1404
1405 static void
1406 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
1407 {
1408 itx_t *itx;
1409
1410 if (zil_replaying(zd->zd_zilog, tx))
1411 return;
1412
1413 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
1414 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1415 sizeof (*lr) - sizeof (lr_t));
1416
1417 itx->itx_sync = B_FALSE;
1418 zil_itx_assign(zd->zd_zilog, itx, tx);
1419 }
1420
1421 static void
1422 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
1423 {
1424 itx_t *itx;
1425
1426 if (zil_replaying(zd->zd_zilog, tx))
1427 return;
1428
1429 itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
1430 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1431 sizeof (*lr) - sizeof (lr_t));
1432
1433 itx->itx_sync = B_FALSE;
1434 zil_itx_assign(zd->zd_zilog, itx, tx);
1435 }
1436
1437 /*
1438 * ZIL replay ops
1439 */
1440 static int
1441 ztest_replay_create(ztest_ds_t *zd, lr_create_t *lr, boolean_t byteswap)
1442 {
1443 char *name = (void *)(lr + 1); /* name follows lr */
1444 objset_t *os = zd->zd_os;
1445 ztest_block_tag_t *bbt;
1446 dmu_buf_t *db;
1447 dmu_tx_t *tx;
1448 uint64_t txg;
1449 int error = 0;
1450
1451 if (byteswap)
1452 byteswap_uint64_array(lr, sizeof (*lr));
1453
1454 ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1455 ASSERT(name[0] != '\0');
1456
1457 tx = dmu_tx_create(os);
1458
1459 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
1460
1461 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1462 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1463 } else {
1464 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1465 }
1466
1467 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1468 if (txg == 0)
1469 return (ENOSPC);
1470
1471 ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid);
1472
1473 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1474 if (lr->lr_foid == 0) {
1475 lr->lr_foid = zap_create(os,
1476 lr->lrz_type, lr->lrz_bonustype,
1477 lr->lrz_bonuslen, tx);
1478 } else {
1479 error = zap_create_claim(os, lr->lr_foid,
1480 lr->lrz_type, lr->lrz_bonustype,
1481 lr->lrz_bonuslen, tx);
1482 }
1483 } else {
1484 if (lr->lr_foid == 0) {
1485 lr->lr_foid = dmu_object_alloc(os,
1486 lr->lrz_type, 0, lr->lrz_bonustype,
1487 lr->lrz_bonuslen, tx);
1488 } else {
1489 error = dmu_object_claim(os, lr->lr_foid,
1490 lr->lrz_type, 0, lr->lrz_bonustype,
1491 lr->lrz_bonuslen, tx);
1492 }
1493 }
1494
1495 if (error) {
1496 ASSERT3U(error, ==, EEXIST);
1497 ASSERT(zd->zd_zilog->zl_replay);
1498 dmu_tx_commit(tx);
1499 return (error);
1500 }
1501
1502 ASSERT(lr->lr_foid != 0);
1503
1504 if (lr->lrz_type != DMU_OT_ZAP_OTHER)
1505 VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid,
1506 lr->lrz_blocksize, lr->lrz_ibshift, tx));
1507
1508 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1509 bbt = ztest_bt_bonus(db);
1510 dmu_buf_will_dirty(db, tx);
1511 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg);
1512 dmu_buf_rele(db, FTAG);
1513
1514 VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
1515 &lr->lr_foid, tx));
1516
1517 (void) ztest_log_create(zd, tx, lr);
1518
1519 dmu_tx_commit(tx);
1520
1521 return (0);
1522 }
1523
1524 static int
1525 ztest_replay_remove(ztest_ds_t *zd, lr_remove_t *lr, boolean_t byteswap)
1526 {
1527 char *name = (void *)(lr + 1); /* name follows lr */
1528 objset_t *os = zd->zd_os;
1529 dmu_object_info_t doi;
1530 dmu_tx_t *tx;
1531 uint64_t object, txg;
1532
1533 if (byteswap)
1534 byteswap_uint64_array(lr, sizeof (*lr));
1535
1536 ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1537 ASSERT(name[0] != '\0');
1538
1539 VERIFY3U(0, ==,
1540 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
1541 ASSERT(object != 0);
1542
1543 ztest_object_lock(zd, object, RL_WRITER);
1544
1545 VERIFY3U(0, ==, dmu_object_info(os, object, &doi));
1546
1547 tx = dmu_tx_create(os);
1548
1549 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
1550 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
1551
1552 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1553 if (txg == 0) {
1554 ztest_object_unlock(zd, object);
1555 return (ENOSPC);
1556 }
1557
1558 if (doi.doi_type == DMU_OT_ZAP_OTHER) {
1559 VERIFY3U(0, ==, zap_destroy(os, object, tx));
1560 } else {
1561 VERIFY3U(0, ==, dmu_object_free(os, object, tx));
1562 }
1563
1564 VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx));
1565
1566 (void) ztest_log_remove(zd, tx, lr, object);
1567
1568 dmu_tx_commit(tx);
1569
1570 ztest_object_unlock(zd, object);
1571
1572 return (0);
1573 }
1574
1575 static int
1576 ztest_replay_write(ztest_ds_t *zd, lr_write_t *lr, boolean_t byteswap)
1577 {
1578 objset_t *os = zd->zd_os;
1579 void *data = lr + 1; /* data follows lr */
1580 uint64_t offset, length;
1581 ztest_block_tag_t *bt = data;
1582 ztest_block_tag_t *bbt;
1583 uint64_t gen, txg, lrtxg, crtxg;
1584 dmu_object_info_t doi;
1585 dmu_tx_t *tx;
1586 dmu_buf_t *db;
1587 arc_buf_t *abuf = NULL;
1588 rl_t *rl;
1589
1590 if (byteswap)
1591 byteswap_uint64_array(lr, sizeof (*lr));
1592
1593 offset = lr->lr_offset;
1594 length = lr->lr_length;
1595
1596 /* If it's a dmu_sync() block, write the whole block */
1597 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
1598 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
1599 if (length < blocksize) {
1600 offset -= offset % blocksize;
1601 length = blocksize;
1602 }
1603 }
1604
1605 if (bt->bt_magic == BSWAP_64(BT_MAGIC))
1606 byteswap_uint64_array(bt, sizeof (*bt));
1607
1608 if (bt->bt_magic != BT_MAGIC)
1609 bt = NULL;
1610
1611 ztest_object_lock(zd, lr->lr_foid, RL_READER);
1612 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER);
1613
1614 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1615
1616 dmu_object_info_from_db(db, &doi);
1617
1618 bbt = ztest_bt_bonus(db);
1619 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1620 gen = bbt->bt_gen;
1621 crtxg = bbt->bt_crtxg;
1622 lrtxg = lr->lr_common.lrc_txg;
1623
1624 tx = dmu_tx_create(os);
1625
1626 dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
1627
1628 if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
1629 P2PHASE(offset, length) == 0)
1630 abuf = dmu_request_arcbuf(db, length);
1631
1632 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1633 if (txg == 0) {
1634 if (abuf != NULL)
1635 dmu_return_arcbuf(abuf);
1636 dmu_buf_rele(db, FTAG);
1637 ztest_range_unlock(rl);
1638 ztest_object_unlock(zd, lr->lr_foid);
1639 return (ENOSPC);
1640 }
1641
1642 if (bt != NULL) {
1643 /*
1644 * Usually, verify the old data before writing new data --
1645 * but not always, because we also want to verify correct
1646 * behavior when the data was not recently read into cache.
1647 */
1648 ASSERT(offset % doi.doi_data_block_size == 0);
1649 if (ztest_random(4) != 0) {
1650 int prefetch = ztest_random(2) ?
1651 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
1652 ztest_block_tag_t rbt;
1653
1654 VERIFY(dmu_read(os, lr->lr_foid, offset,
1655 sizeof (rbt), &rbt, prefetch) == 0);
1656 if (rbt.bt_magic == BT_MAGIC) {
1657 ztest_bt_verify(&rbt, os, lr->lr_foid,
1658 offset, gen, txg, crtxg);
1659 }
1660 }
1661
1662 /*
1663 * Writes can appear to be newer than the bonus buffer because
1664 * the ztest_get_data() callback does a dmu_read() of the
1665 * open-context data, which may be different than the data
1666 * as it was when the write was generated.
1667 */
1668 if (zd->zd_zilog->zl_replay) {
1669 ztest_bt_verify(bt, os, lr->lr_foid, offset,
1670 MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
1671 bt->bt_crtxg);
1672 }
1673
1674 /*
1675 * Set the bt's gen/txg to the bonus buffer's gen/txg
1676 * so that all of the usual ASSERTs will work.
1677 */
1678 ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg);
1679 }
1680
1681 if (abuf == NULL) {
1682 dmu_write(os, lr->lr_foid, offset, length, data, tx);
1683 } else {
1684 bcopy(data, abuf->b_data, length);
1685 dmu_assign_arcbuf(db, offset, abuf, tx);
1686 }
1687
1688 (void) ztest_log_write(zd, tx, lr);
1689
1690 dmu_buf_rele(db, FTAG);
1691
1692 dmu_tx_commit(tx);
1693
1694 ztest_range_unlock(rl);
1695 ztest_object_unlock(zd, lr->lr_foid);
1696
1697 return (0);
1698 }
1699
1700 static int
1701 ztest_replay_truncate(ztest_ds_t *zd, lr_truncate_t *lr, boolean_t byteswap)
1702 {
1703 objset_t *os = zd->zd_os;
1704 dmu_tx_t *tx;
1705 uint64_t txg;
1706 rl_t *rl;
1707
1708 if (byteswap)
1709 byteswap_uint64_array(lr, sizeof (*lr));
1710
1711 ztest_object_lock(zd, lr->lr_foid, RL_READER);
1712 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
1713 RL_WRITER);
1714
1715 tx = dmu_tx_create(os);
1716
1717 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
1718
1719 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1720 if (txg == 0) {
1721 ztest_range_unlock(rl);
1722 ztest_object_unlock(zd, lr->lr_foid);
1723 return (ENOSPC);
1724 }
1725
1726 VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
1727 lr->lr_length, tx) == 0);
1728
1729 (void) ztest_log_truncate(zd, tx, lr);
1730
1731 dmu_tx_commit(tx);
1732
1733 ztest_range_unlock(rl);
1734 ztest_object_unlock(zd, lr->lr_foid);
1735
1736 return (0);
1737 }
1738
1739 static int
1740 ztest_replay_setattr(ztest_ds_t *zd, lr_setattr_t *lr, boolean_t byteswap)
1741 {
1742 objset_t *os = zd->zd_os;
1743 dmu_tx_t *tx;
1744 dmu_buf_t *db;
1745 ztest_block_tag_t *bbt;
1746 uint64_t txg, lrtxg, crtxg;
1747
1748 if (byteswap)
1749 byteswap_uint64_array(lr, sizeof (*lr));
1750
1751 ztest_object_lock(zd, lr->lr_foid, RL_WRITER);
1752
1753 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1754
1755 tx = dmu_tx_create(os);
1756 dmu_tx_hold_bonus(tx, lr->lr_foid);
1757
1758 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1759 if (txg == 0) {
1760 dmu_buf_rele(db, FTAG);
1761 ztest_object_unlock(zd, lr->lr_foid);
1762 return (ENOSPC);
1763 }
1764
1765 bbt = ztest_bt_bonus(db);
1766 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1767 crtxg = bbt->bt_crtxg;
1768 lrtxg = lr->lr_common.lrc_txg;
1769
1770 if (zd->zd_zilog->zl_replay) {
1771 ASSERT(lr->lr_size != 0);
1772 ASSERT(lr->lr_mode != 0);
1773 ASSERT(lrtxg != 0);
1774 } else {
1775 /*
1776 * Randomly change the size and increment the generation.
1777 */
1778 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
1779 sizeof (*bbt);
1780 lr->lr_mode = bbt->bt_gen + 1;
1781 ASSERT(lrtxg == 0);
1782 }
1783
1784 /*
1785 * Verify that the current bonus buffer is not newer than our txg.
1786 */
1787 ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode,
1788 MAX(txg, lrtxg), crtxg);
1789
1790 dmu_buf_will_dirty(db, tx);
1791
1792 ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
1793 ASSERT3U(lr->lr_size, <=, db->db_size);
1794 VERIFY0(dmu_set_bonus(db, lr->lr_size, tx));
1795 bbt = ztest_bt_bonus(db);
1796
1797 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg);
1798
1799 dmu_buf_rele(db, FTAG);
1800
1801 (void) ztest_log_setattr(zd, tx, lr);
1802
1803 dmu_tx_commit(tx);
1804
1805 ztest_object_unlock(zd, lr->lr_foid);
1806
1807 return (0);
1808 }
1809
1810 zil_replay_func_t ztest_replay_vector[TX_MAX_TYPE] = {
1811 NULL, /* 0 no such transaction type */
1812 (zil_replay_func_t)ztest_replay_create, /* TX_CREATE */
1813 NULL, /* TX_MKDIR */
1814 NULL, /* TX_MKXATTR */
1815 NULL, /* TX_SYMLINK */
1816 (zil_replay_func_t)ztest_replay_remove, /* TX_REMOVE */
1817 NULL, /* TX_RMDIR */
1818 NULL, /* TX_LINK */
1819 NULL, /* TX_RENAME */
1820 (zil_replay_func_t)ztest_replay_write, /* TX_WRITE */
1821 (zil_replay_func_t)ztest_replay_truncate, /* TX_TRUNCATE */
1822 (zil_replay_func_t)ztest_replay_setattr, /* TX_SETATTR */
1823 NULL, /* TX_ACL */
1824 NULL, /* TX_CREATE_ACL */
1825 NULL, /* TX_CREATE_ATTR */
1826 NULL, /* TX_CREATE_ACL_ATTR */
1827 NULL, /* TX_MKDIR_ACL */
1828 NULL, /* TX_MKDIR_ATTR */
1829 NULL, /* TX_MKDIR_ACL_ATTR */
1830 NULL, /* TX_WRITE2 */
1831 };
1832
1833 /*
1834 * ZIL get_data callbacks
1835 */
1836
1837 static void
1838 ztest_get_done(zgd_t *zgd, int error)
1839 {
1840 ztest_ds_t *zd = zgd->zgd_private;
1841 uint64_t object = zgd->zgd_rl->rl_object;
1842
1843 if (zgd->zgd_db)
1844 dmu_buf_rele(zgd->zgd_db, zgd);
1845
1846 ztest_range_unlock(zgd->zgd_rl);
1847 ztest_object_unlock(zd, object);
1848
1849 if (error == 0 && zgd->zgd_bp)
1850 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
1851
1852 umem_free(zgd, sizeof (*zgd));
1853 }
1854
1855 static int
1856 ztest_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
1857 {
1858 ztest_ds_t *zd = arg;
1859 objset_t *os = zd->zd_os;
1860 uint64_t object = lr->lr_foid;
1861 uint64_t offset = lr->lr_offset;
1862 uint64_t size = lr->lr_length;
1863 blkptr_t *bp = &lr->lr_blkptr;
1864 uint64_t txg = lr->lr_common.lrc_txg;
1865 uint64_t crtxg;
1866 dmu_object_info_t doi;
1867 dmu_buf_t *db;
1868 zgd_t *zgd;
1869 int error;
1870
1871 ztest_object_lock(zd, object, RL_READER);
1872 error = dmu_bonus_hold(os, object, FTAG, &db);
1873 if (error) {
1874 ztest_object_unlock(zd, object);
1875 return (error);
1876 }
1877
1878 crtxg = ztest_bt_bonus(db)->bt_crtxg;
1879
1880 if (crtxg == 0 || crtxg > txg) {
1881 dmu_buf_rele(db, FTAG);
1882 ztest_object_unlock(zd, object);
1883 return (ENOENT);
1884 }
1885
1886 dmu_object_info_from_db(db, &doi);
1887 dmu_buf_rele(db, FTAG);
1888 db = NULL;
1889
1890 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
1891 zgd->zgd_zilog = zd->zd_zilog;
1892 zgd->zgd_private = zd;
1893
1894 if (buf != NULL) { /* immediate write */
1895 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size,
1896 RL_READER);
1897
1898 error = dmu_read(os, object, offset, size, buf,
1899 DMU_READ_NO_PREFETCH);
1900 ASSERT(error == 0);
1901 } else {
1902 size = doi.doi_data_block_size;
1903 if (ISP2(size)) {
1904 offset = P2ALIGN(offset, size);
1905 } else {
1906 ASSERT(offset < size);
1907 offset = 0;
1908 }
1909
1910 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size,
1911 RL_READER);
1912
1913 error = dmu_buf_hold(os, object, offset, zgd, &db,
1914 DMU_READ_NO_PREFETCH);
1915
1916 if (error == 0) {
1917 blkptr_t *obp = dmu_buf_get_blkptr(db);
1918 if (obp) {
1919 ASSERT(BP_IS_HOLE(bp));
1920 *bp = *obp;
1921 }
1922
1923 zgd->zgd_db = db;
1924 zgd->zgd_bp = bp;
1925
1926 ASSERT(db->db_offset == offset);
1927 ASSERT(db->db_size == size);
1928
1929 error = dmu_sync(zio, lr->lr_common.lrc_txg,
1930 ztest_get_done, zgd);
1931
1932 if (error == 0)
1933 return (0);
1934 }
1935 }
1936
1937 ztest_get_done(zgd, error);
1938
1939 return (error);
1940 }
1941
1942 static void *
1943 ztest_lr_alloc(size_t lrsize, char *name)
1944 {
1945 char *lr;
1946 size_t namesize = name ? strlen(name) + 1 : 0;
1947
1948 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
1949
1950 if (name)
1951 bcopy(name, lr + lrsize, namesize);
1952
1953 return (lr);
1954 }
1955
1956 void
1957 ztest_lr_free(void *lr, size_t lrsize, char *name)
1958 {
1959 size_t namesize = name ? strlen(name) + 1 : 0;
1960
1961 umem_free(lr, lrsize + namesize);
1962 }
1963
1964 /*
1965 * Lookup a bunch of objects. Returns the number of objects not found.
1966 */
1967 static int
1968 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
1969 {
1970 int missing = 0;
1971 int error;
1972 int i;
1973
1974 ASSERT(mutex_held(&zd->zd_dirobj_lock));
1975
1976 for (i = 0; i < count; i++, od++) {
1977 od->od_object = 0;
1978 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
1979 sizeof (uint64_t), 1, &od->od_object);
1980 if (error) {
1981 ASSERT(error == ENOENT);
1982 ASSERT(od->od_object == 0);
1983 missing++;
1984 } else {
1985 dmu_buf_t *db;
1986 ztest_block_tag_t *bbt;
1987 dmu_object_info_t doi;
1988
1989 ASSERT(od->od_object != 0);
1990 ASSERT(missing == 0); /* there should be no gaps */
1991
1992 ztest_object_lock(zd, od->od_object, RL_READER);
1993 VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os,
1994 od->od_object, FTAG, &db));
1995 dmu_object_info_from_db(db, &doi);
1996 bbt = ztest_bt_bonus(db);
1997 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1998 od->od_type = doi.doi_type;
1999 od->od_blocksize = doi.doi_data_block_size;
2000 od->od_gen = bbt->bt_gen;
2001 dmu_buf_rele(db, FTAG);
2002 ztest_object_unlock(zd, od->od_object);
2003 }
2004 }
2005
2006 return (missing);
2007 }
2008
2009 static int
2010 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
2011 {
2012 int missing = 0;
2013 int i;
2014
2015 ASSERT(mutex_held(&zd->zd_dirobj_lock));
2016
2017 for (i = 0; i < count; i++, od++) {
2018 if (missing) {
2019 od->od_object = 0;
2020 missing++;
2021 continue;
2022 }
2023
2024 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2025
2026 lr->lr_doid = od->od_dir;
2027 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */
2028 lr->lrz_type = od->od_crtype;
2029 lr->lrz_blocksize = od->od_crblocksize;
2030 lr->lrz_ibshift = ztest_random_ibshift();
2031 lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
2032 lr->lrz_bonuslen = dmu_bonus_max();
2033 lr->lr_gen = od->od_crgen;
2034 lr->lr_crtime[0] = time(NULL);
2035
2036 if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
2037 ASSERT(missing == 0);
2038 od->od_object = 0;
2039 missing++;
2040 } else {
2041 od->od_object = lr->lr_foid;
2042 od->od_type = od->od_crtype;
2043 od->od_blocksize = od->od_crblocksize;
2044 od->od_gen = od->od_crgen;
2045 ASSERT(od->od_object != 0);
2046 }
2047
2048 ztest_lr_free(lr, sizeof (*lr), od->od_name);
2049 }
2050
2051 return (missing);
2052 }
2053
2054 static int
2055 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
2056 {
2057 int missing = 0;
2058 int error;
2059 int i;
2060
2061 ASSERT(mutex_held(&zd->zd_dirobj_lock));
2062
2063 od += count - 1;
2064
2065 for (i = count - 1; i >= 0; i--, od--) {
2066 if (missing) {
2067 missing++;
2068 continue;
2069 }
2070
2071 /*
2072 * No object was found.
2073 */
2074 if (od->od_object == 0)
2075 continue;
2076
2077 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2078
2079 lr->lr_doid = od->od_dir;
2080
2081 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
2082 ASSERT3U(error, ==, ENOSPC);
2083 missing++;
2084 } else {
2085 od->od_object = 0;
2086 }
2087 ztest_lr_free(lr, sizeof (*lr), od->od_name);
2088 }
2089
2090 return (missing);
2091 }
2092
2093 static int
2094 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
2095 void *data)
2096 {
2097 lr_write_t *lr;
2098 int error;
2099
2100 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
2101
2102 lr->lr_foid = object;
2103 lr->lr_offset = offset;
2104 lr->lr_length = size;
2105 lr->lr_blkoff = 0;
2106 BP_ZERO(&lr->lr_blkptr);
2107
2108 bcopy(data, lr + 1, size);
2109
2110 error = ztest_replay_write(zd, lr, B_FALSE);
2111
2112 ztest_lr_free(lr, sizeof (*lr) + size, NULL);
2113
2114 return (error);
2115 }
2116
2117 static int
2118 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2119 {
2120 lr_truncate_t *lr;
2121 int error;
2122
2123 lr = ztest_lr_alloc(sizeof (*lr), NULL);
2124
2125 lr->lr_foid = object;
2126 lr->lr_offset = offset;
2127 lr->lr_length = size;
2128
2129 error = ztest_replay_truncate(zd, lr, B_FALSE);
2130
2131 ztest_lr_free(lr, sizeof (*lr), NULL);
2132
2133 return (error);
2134 }
2135
2136 static int
2137 ztest_setattr(ztest_ds_t *zd, uint64_t object)
2138 {
2139 lr_setattr_t *lr;
2140 int error;
2141
2142 lr = ztest_lr_alloc(sizeof (*lr), NULL);
2143
2144 lr->lr_foid = object;
2145 lr->lr_size = 0;
2146 lr->lr_mode = 0;
2147
2148 error = ztest_replay_setattr(zd, lr, B_FALSE);
2149
2150 ztest_lr_free(lr, sizeof (*lr), NULL);
2151
2152 return (error);
2153 }
2154
2155 static void
2156 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2157 {
2158 objset_t *os = zd->zd_os;
2159 dmu_tx_t *tx;
2160 uint64_t txg;
2161 rl_t *rl;
2162
2163 txg_wait_synced(dmu_objset_pool(os), 0);
2164
2165 ztest_object_lock(zd, object, RL_READER);
2166 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER);
2167
2168 tx = dmu_tx_create(os);
2169
2170 dmu_tx_hold_write(tx, object, offset, size);
2171
2172 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2173
2174 if (txg != 0) {
2175 dmu_prealloc(os, object, offset, size, tx);
2176 dmu_tx_commit(tx);
2177 txg_wait_synced(dmu_objset_pool(os), txg);
2178 } else {
2179 (void) dmu_free_long_range(os, object, offset, size);
2180 }
2181
2182 ztest_range_unlock(rl);
2183 ztest_object_unlock(zd, object);
2184 }
2185
2186 static void
2187 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
2188 {
2189 int err;
2190 ztest_block_tag_t wbt;
2191 dmu_object_info_t doi;
2192 enum ztest_io_type io_type;
2193 uint64_t blocksize;
2194 void *data;
2195
2196 VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0);
2197 blocksize = doi.doi_data_block_size;
2198 data = umem_alloc(blocksize, UMEM_NOFAIL);
2199
2200 /*
2201 * Pick an i/o type at random, biased toward writing block tags.
2202 */
2203 io_type = ztest_random(ZTEST_IO_TYPES);
2204 if (ztest_random(2) == 0)
2205 io_type = ZTEST_IO_WRITE_TAG;
2206
2207 (void) rw_rdlock(&zd->zd_zilog_lock);
2208
2209 switch (io_type) {
2210
2211 case ZTEST_IO_WRITE_TAG:
2212 ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0);
2213 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
2214 break;
2215
2216 case ZTEST_IO_WRITE_PATTERN:
2217 (void) memset(data, 'a' + (object + offset) % 5, blocksize);
2218 if (ztest_random(2) == 0) {
2219 /*
2220 * Induce fletcher2 collisions to ensure that
2221 * zio_ddt_collision() detects and resolves them
2222 * when using fletcher2-verify for deduplication.
2223 */
2224 ((uint64_t *)data)[0] ^= 1ULL << 63;
2225 ((uint64_t *)data)[4] ^= 1ULL << 63;
2226 }
2227 (void) ztest_write(zd, object, offset, blocksize, data);
2228 break;
2229
2230 case ZTEST_IO_WRITE_ZEROES:
2231 bzero(data, blocksize);
2232 (void) ztest_write(zd, object, offset, blocksize, data);
2233 break;
2234
2235 case ZTEST_IO_TRUNCATE:
2236 (void) ztest_truncate(zd, object, offset, blocksize);
2237 break;
2238
2239 case ZTEST_IO_SETATTR:
2240 (void) ztest_setattr(zd, object);
2241 break;
2242 default:
2243 break;
2244
2245 case ZTEST_IO_REWRITE:
2246 (void) rw_rdlock(&ztest_name_lock);
2247 err = ztest_dsl_prop_set_uint64(zd->zd_name,
2248 ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa),
2249 B_FALSE);
2250 VERIFY(err == 0 || err == ENOSPC);
2251 err = ztest_dsl_prop_set_uint64(zd->zd_name,
2252 ZFS_PROP_COMPRESSION,
2253 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION),
2254 B_FALSE);
2255 VERIFY(err == 0 || err == ENOSPC);
2256 (void) rw_unlock(&ztest_name_lock);
2257
2258 VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data,
2259 DMU_READ_NO_PREFETCH));
2260
2261 (void) ztest_write(zd, object, offset, blocksize, data);
2262 break;
2263 }
2264
2265 (void) rw_unlock(&zd->zd_zilog_lock);
2266
2267 umem_free(data, blocksize);
2268 }
2269
2270 /*
2271 * Initialize an object description template.
2272 */
2273 static void
2274 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index,
2275 dmu_object_type_t type, uint64_t blocksize, uint64_t gen)
2276 {
2277 od->od_dir = ZTEST_DIROBJ;
2278 od->od_object = 0;
2279
2280 od->od_crtype = type;
2281 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
2282 od->od_crgen = gen;
2283
2284 od->od_type = DMU_OT_NONE;
2285 od->od_blocksize = 0;
2286 od->od_gen = 0;
2287
2288 (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]",
2289 tag, (longlong_t)id, (u_longlong_t)index);
2290 }
2291
2292 /*
2293 * Lookup or create the objects for a test using the od template.
2294 * If the objects do not all exist, or if 'remove' is specified,
2295 * remove any existing objects and create new ones. Otherwise,
2296 * use the existing objects.
2297 */
2298 static int
2299 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
2300 {
2301 int count = size / sizeof (*od);
2302 int rv = 0;
2303
2304 mutex_enter(&zd->zd_dirobj_lock);
2305 if ((ztest_lookup(zd, od, count) != 0 || remove) &&
2306 (ztest_remove(zd, od, count) != 0 ||
2307 ztest_create(zd, od, count) != 0))
2308 rv = -1;
2309 zd->zd_od = od;
2310 mutex_exit(&zd->zd_dirobj_lock);
2311
2312 return (rv);
2313 }
2314
2315 /* ARGSUSED */
2316 void
2317 ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
2318 {
2319 zilog_t *zilog = zd->zd_zilog;
2320
2321 (void) rw_rdlock(&zd->zd_zilog_lock);
2322
2323 zil_commit(zilog, ztest_random(ZTEST_OBJECTS));
2324
2325 /*
2326 * Remember the committed values in zd, which is in parent/child
2327 * shared memory. If we die, the next iteration of ztest_run()
2328 * will verify that the log really does contain this record.
2329 */
2330 mutex_enter(&zilog->zl_lock);
2331 ASSERT(zd->zd_shared != NULL);
2332 ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq);
2333 zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq;
2334 mutex_exit(&zilog->zl_lock);
2335
2336 (void) rw_unlock(&zd->zd_zilog_lock);
2337 }
2338
2339 /*
2340 * This function is designed to simulate the operations that occur during a
2341 * mount/unmount operation. We hold the dataset across these operations in an
2342 * attempt to expose any implicit assumptions about ZIL management.
2343 */
2344 /* ARGSUSED */
2345 void
2346 ztest_zil_remount(ztest_ds_t *zd, uint64_t id)
2347 {
2348 objset_t *os = zd->zd_os;
2349
2350 /*
2351 * We grab the zd_dirobj_lock to ensure that no other thread is
2352 * updating the zil (i.e. adding in-memory log records) and the
2353 * zd_zilog_lock to block any I/O.
2354 */
2355 mutex_enter(&zd->zd_dirobj_lock);
2356 (void) rw_wrlock(&zd->zd_zilog_lock);
2357
2358 /* zfs_sb_teardown() */
2359 zil_close(zd->zd_zilog);
2360
2361 /* zfsvfs_setup() */
2362 VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog);
2363 zil_replay(os, zd, ztest_replay_vector);
2364
2365 (void) rw_unlock(&zd->zd_zilog_lock);
2366 mutex_exit(&zd->zd_dirobj_lock);
2367 }
2368
2369 /*
2370 * Verify that we can't destroy an active pool, create an existing pool,
2371 * or create a pool with a bad vdev spec.
2372 */
2373 /* ARGSUSED */
2374 void
2375 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
2376 {
2377 ztest_shared_opts_t *zo = &ztest_opts;
2378 spa_t *spa;
2379 nvlist_t *nvroot;
2380
2381 /*
2382 * Attempt to create using a bad file.
2383 */
2384 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1);
2385 VERIFY3U(ENOENT, ==,
2386 spa_create("ztest_bad_file", nvroot, NULL, NULL));
2387 nvlist_free(nvroot);
2388
2389 /*
2390 * Attempt to create using a bad mirror.
2391 */
2392 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 2, 1);
2393 VERIFY3U(ENOENT, ==,
2394 spa_create("ztest_bad_mirror", nvroot, NULL, NULL));
2395 nvlist_free(nvroot);
2396
2397 /*
2398 * Attempt to create an existing pool. It shouldn't matter
2399 * what's in the nvroot; we should fail with EEXIST.
2400 */
2401 (void) rw_rdlock(&ztest_name_lock);
2402 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1);
2403 VERIFY3U(EEXIST, ==, spa_create(zo->zo_pool, nvroot, NULL, NULL));
2404 nvlist_free(nvroot);
2405 VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG));
2406 VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool));
2407 spa_close(spa, FTAG);
2408
2409 (void) rw_unlock(&ztest_name_lock);
2410 }
2411
2412 /* ARGSUSED */
2413 void
2414 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id)
2415 {
2416 spa_t *spa;
2417 uint64_t initial_version = SPA_VERSION_INITIAL;
2418 uint64_t version, newversion;
2419 nvlist_t *nvroot, *props;
2420 char *name;
2421
2422 mutex_enter(&ztest_vdev_lock);
2423 name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool);
2424
2425 /*
2426 * Clean up from previous runs.
2427 */
2428 (void) spa_destroy(name);
2429
2430 nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0,
2431 0, ztest_opts.zo_raidz, ztest_opts.zo_mirrors, 1);
2432
2433 /*
2434 * If we're configuring a RAIDZ device then make sure that the
2435 * the initial version is capable of supporting that feature.
2436 */
2437 switch (ztest_opts.zo_raidz_parity) {
2438 case 0:
2439 case 1:
2440 initial_version = SPA_VERSION_INITIAL;
2441 break;
2442 case 2:
2443 initial_version = SPA_VERSION_RAIDZ2;
2444 break;
2445 case 3:
2446 initial_version = SPA_VERSION_RAIDZ3;
2447 break;
2448 }
2449
2450 /*
2451 * Create a pool with a spa version that can be upgraded. Pick
2452 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
2453 */
2454 do {
2455 version = ztest_random_spa_version(initial_version);
2456 } while (version > SPA_VERSION_BEFORE_FEATURES);
2457
2458 props = fnvlist_alloc();
2459 fnvlist_add_uint64(props,
2460 zpool_prop_to_name(ZPOOL_PROP_VERSION), version);
2461 VERIFY3S(spa_create(name, nvroot, props, NULL), ==, 0);
2462 fnvlist_free(nvroot);
2463 fnvlist_free(props);
2464
2465 VERIFY3S(spa_open(name, &spa, FTAG), ==, 0);
2466 VERIFY3U(spa_version(spa), ==, version);
2467 newversion = ztest_random_spa_version(version + 1);
2468
2469 if (ztest_opts.zo_verbose >= 4) {
2470 (void) printf("upgrading spa version from %llu to %llu\n",
2471 (u_longlong_t)version, (u_longlong_t)newversion);
2472 }
2473
2474 spa_upgrade(spa, newversion);
2475 VERIFY3U(spa_version(spa), >, version);
2476 VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config,
2477 zpool_prop_to_name(ZPOOL_PROP_VERSION)));
2478 spa_close(spa, FTAG);
2479
2480 strfree(name);
2481 mutex_exit(&ztest_vdev_lock);
2482 }
2483
2484 static vdev_t *
2485 vdev_lookup_by_path(vdev_t *vd, const char *path)
2486 {
2487 vdev_t *mvd;
2488 int c;
2489
2490 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
2491 return (vd);
2492
2493 for (c = 0; c < vd->vdev_children; c++)
2494 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
2495 NULL)
2496 return (mvd);
2497
2498 return (NULL);
2499 }
2500
2501 /*
2502 * Find the first available hole which can be used as a top-level.
2503 */
2504 int
2505 find_vdev_hole(spa_t *spa)
2506 {
2507 vdev_t *rvd = spa->spa_root_vdev;
2508 int c;
2509
2510 ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV);
2511
2512 for (c = 0; c < rvd->vdev_children; c++) {
2513 vdev_t *cvd = rvd->vdev_child[c];
2514
2515 if (cvd->vdev_ishole)
2516 break;
2517 }
2518 return (c);
2519 }
2520
2521 /*
2522 * Verify that vdev_add() works as expected.
2523 */
2524 /* ARGSUSED */
2525 void
2526 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
2527 {
2528 ztest_shared_t *zs = ztest_shared;
2529 spa_t *spa = ztest_spa;
2530 uint64_t leaves;
2531 uint64_t guid;
2532 nvlist_t *nvroot;
2533 int error;
2534
2535 mutex_enter(&ztest_vdev_lock);
2536 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz;
2537
2538 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2539
2540 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves;
2541
2542 /*
2543 * If we have slogs then remove them 1/4 of the time.
2544 */
2545 if (spa_has_slogs(spa) && ztest_random(4) == 0) {
2546 /*
2547 * Grab the guid from the head of the log class rotor.
2548 */
2549 guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid;
2550
2551 spa_config_exit(spa, SCL_VDEV, FTAG);
2552
2553 /*
2554 * We have to grab the zs_name_lock as writer to
2555 * prevent a race between removing a slog (dmu_objset_find)
2556 * and destroying a dataset. Removing the slog will
2557 * grab a reference on the dataset which may cause
2558 * dsl_destroy_head() to fail with EBUSY thus
2559 * leaving the dataset in an inconsistent state.
2560 */
2561 rw_wrlock(&ztest_name_lock);
2562 error = spa_vdev_remove(spa, guid, B_FALSE);
2563 rw_unlock(&ztest_name_lock);
2564
2565 if (error && error != EEXIST)
2566 fatal(0, "spa_vdev_remove() = %d", error);
2567 } else {
2568 spa_config_exit(spa, SCL_VDEV, FTAG);
2569
2570 /*
2571 * Make 1/4 of the devices be log devices.
2572 */
2573 nvroot = make_vdev_root(NULL, NULL, NULL,
2574 ztest_opts.zo_vdev_size, 0,
2575 ztest_random(4) == 0, ztest_opts.zo_raidz,
2576 zs->zs_mirrors, 1);
2577
2578 error = spa_vdev_add(spa, nvroot);
2579 nvlist_free(nvroot);
2580
2581 if (error == ENOSPC)
2582 ztest_record_enospc("spa_vdev_add");
2583 else if (error != 0)
2584 fatal(0, "spa_vdev_add() = %d", error);
2585 }
2586
2587 mutex_exit(&ztest_vdev_lock);
2588 }
2589
2590 /*
2591 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
2592 */
2593 /* ARGSUSED */
2594 void
2595 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
2596 {
2597 ztest_shared_t *zs = ztest_shared;
2598 spa_t *spa = ztest_spa;
2599 vdev_t *rvd = spa->spa_root_vdev;
2600 spa_aux_vdev_t *sav;
2601 char *aux;
2602 char *path;
2603 uint64_t guid = 0;
2604 int error;
2605
2606 path = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
2607
2608 if (ztest_random(2) == 0) {
2609 sav = &spa->spa_spares;
2610 aux = ZPOOL_CONFIG_SPARES;
2611 } else {
2612 sav = &spa->spa_l2cache;
2613 aux = ZPOOL_CONFIG_L2CACHE;
2614 }
2615
2616 mutex_enter(&ztest_vdev_lock);
2617
2618 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2619
2620 if (sav->sav_count != 0 && ztest_random(4) == 0) {
2621 /*
2622 * Pick a random device to remove.
2623 */
2624 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid;
2625 } else {
2626 /*
2627 * Find an unused device we can add.
2628 */
2629 zs->zs_vdev_aux = 0;
2630 for (;;) {
2631 int c;
2632 (void) snprintf(path, MAXPATHLEN, ztest_aux_template,
2633 ztest_opts.zo_dir, ztest_opts.zo_pool, aux,
2634 zs->zs_vdev_aux);
2635 for (c = 0; c < sav->sav_count; c++)
2636 if (strcmp(sav->sav_vdevs[c]->vdev_path,
2637 path) == 0)
2638 break;
2639 if (c == sav->sav_count &&
2640 vdev_lookup_by_path(rvd, path) == NULL)
2641 break;
2642 zs->zs_vdev_aux++;
2643 }
2644 }
2645
2646 spa_config_exit(spa, SCL_VDEV, FTAG);
2647
2648 if (guid == 0) {
2649 /*
2650 * Add a new device.
2651 */
2652 nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL,
2653 (ztest_opts.zo_vdev_size * 5) / 4, 0, 0, 0, 0, 1);
2654 error = spa_vdev_add(spa, nvroot);
2655 if (error != 0)
2656 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error);
2657 nvlist_free(nvroot);
2658 } else {
2659 /*
2660 * Remove an existing device. Sometimes, dirty its
2661 * vdev state first to make sure we handle removal
2662 * of devices that have pending state changes.
2663 */
2664 if (ztest_random(2) == 0)
2665 (void) vdev_online(spa, guid, 0, NULL);
2666
2667 error = spa_vdev_remove(spa, guid, B_FALSE);
2668 if (error != 0 && error != EBUSY)
2669 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error);
2670 }
2671
2672 mutex_exit(&ztest_vdev_lock);
2673
2674 umem_free(path, MAXPATHLEN);
2675 }
2676
2677 /*
2678 * split a pool if it has mirror tlvdevs
2679 */
2680 /* ARGSUSED */
2681 void
2682 ztest_split_pool(ztest_ds_t *zd, uint64_t id)
2683 {
2684 ztest_shared_t *zs = ztest_shared;
2685 spa_t *spa = ztest_spa;
2686 vdev_t *rvd = spa->spa_root_vdev;
2687 nvlist_t *tree, **child, *config, *split, **schild;
2688 uint_t c, children, schildren = 0, lastlogid = 0;
2689 int error = 0;
2690
2691 mutex_enter(&ztest_vdev_lock);
2692
2693 /* ensure we have a useable config; mirrors of raidz aren't supported */
2694 if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) {
2695 mutex_exit(&ztest_vdev_lock);
2696 return;
2697 }
2698
2699 /* clean up the old pool, if any */
2700 (void) spa_destroy("splitp");
2701
2702 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2703
2704 /* generate a config from the existing config */
2705 mutex_enter(&spa->spa_props_lock);
2706 VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE,
2707 &tree) == 0);
2708 mutex_exit(&spa->spa_props_lock);
2709
2710 VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child,
2711 &children) == 0);
2712
2713 schild = malloc(rvd->vdev_children * sizeof (nvlist_t *));
2714 for (c = 0; c < children; c++) {
2715 vdev_t *tvd = rvd->vdev_child[c];
2716 nvlist_t **mchild;
2717 uint_t mchildren;
2718
2719 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
2720 VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME,
2721 0) == 0);
2722 VERIFY(nvlist_add_string(schild[schildren],
2723 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0);
2724 VERIFY(nvlist_add_uint64(schild[schildren],
2725 ZPOOL_CONFIG_IS_HOLE, 1) == 0);
2726 if (lastlogid == 0)
2727 lastlogid = schildren;
2728 ++schildren;
2729 continue;
2730 }
2731 lastlogid = 0;
2732 VERIFY(nvlist_lookup_nvlist_array(child[c],
2733 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0);
2734 VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0);
2735 }
2736
2737 /* OK, create a config that can be used to split */
2738 VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0);
2739 VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE,
2740 VDEV_TYPE_ROOT) == 0);
2741 VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild,
2742 lastlogid != 0 ? lastlogid : schildren) == 0);
2743
2744 VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0);
2745 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0);
2746
2747 for (c = 0; c < schildren; c++)
2748 nvlist_free(schild[c]);
2749 free(schild);
2750 nvlist_free(split);
2751
2752 spa_config_exit(spa, SCL_VDEV, FTAG);
2753
2754 (void) rw_wrlock(&ztest_name_lock);
2755 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
2756 (void) rw_unlock(&ztest_name_lock);
2757
2758 nvlist_free(config);
2759
2760 if (error == 0) {
2761 (void) printf("successful split - results:\n");
2762 mutex_enter(&spa_namespace_lock);
2763 show_pool_stats(spa);
2764 show_pool_stats(spa_lookup("splitp"));
2765 mutex_exit(&spa_namespace_lock);
2766 ++zs->zs_splits;
2767 --zs->zs_mirrors;
2768 }
2769 mutex_exit(&ztest_vdev_lock);
2770
2771 }
2772
2773 /*
2774 * Verify that we can attach and detach devices.
2775 */
2776 /* ARGSUSED */
2777 void
2778 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
2779 {
2780 ztest_shared_t *zs = ztest_shared;
2781 spa_t *spa = ztest_spa;
2782 spa_aux_vdev_t *sav = &spa->spa_spares;
2783 vdev_t *rvd = spa->spa_root_vdev;
2784 vdev_t *oldvd, *newvd, *pvd;
2785 nvlist_t *root;
2786 uint64_t leaves;
2787 uint64_t leaf, top;
2788 uint64_t ashift = ztest_get_ashift();
2789 uint64_t oldguid, pguid;
2790 uint64_t oldsize, newsize;
2791 char *oldpath, *newpath;
2792 int replacing;
2793 int oldvd_has_siblings = B_FALSE;
2794 int newvd_is_spare = B_FALSE;
2795 int oldvd_is_log;
2796 int error, expected_error;
2797
2798 oldpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
2799 newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
2800
2801 mutex_enter(&ztest_vdev_lock);
2802 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
2803
2804 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2805
2806 /*
2807 * Decide whether to do an attach or a replace.
2808 */
2809 replacing = ztest_random(2);
2810
2811 /*
2812 * Pick a random top-level vdev.
2813 */
2814 top = ztest_random_vdev_top(spa, B_TRUE);
2815
2816 /*
2817 * Pick a random leaf within it.
2818 */
2819 leaf = ztest_random(leaves);
2820
2821 /*
2822 * Locate this vdev.
2823 */
2824 oldvd = rvd->vdev_child[top];
2825 if (zs->zs_mirrors >= 1) {
2826 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops);
2827 ASSERT(oldvd->vdev_children >= zs->zs_mirrors);
2828 oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz];
2829 }
2830 if (ztest_opts.zo_raidz > 1) {
2831 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops);
2832 ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz);
2833 oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz];
2834 }
2835
2836 /*
2837 * If we're already doing an attach or replace, oldvd may be a
2838 * mirror vdev -- in which case, pick a random child.
2839 */
2840 while (oldvd->vdev_children != 0) {
2841 oldvd_has_siblings = B_TRUE;
2842 ASSERT(oldvd->vdev_children >= 2);
2843 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
2844 }
2845
2846 oldguid = oldvd->vdev_guid;
2847 oldsize = vdev_get_min_asize(oldvd);
2848 oldvd_is_log = oldvd->vdev_top->vdev_islog;
2849 (void) strcpy(oldpath, oldvd->vdev_path);
2850 pvd = oldvd->vdev_parent;
2851 pguid = pvd->vdev_guid;
2852
2853 /*
2854 * If oldvd has siblings, then half of the time, detach it.
2855 */
2856 if (oldvd_has_siblings && ztest_random(2) == 0) {
2857 spa_config_exit(spa, SCL_VDEV, FTAG);
2858 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
2859 if (error != 0 && error != ENODEV && error != EBUSY &&
2860 error != ENOTSUP)
2861 fatal(0, "detach (%s) returned %d", oldpath, error);
2862 goto out;
2863 }
2864
2865 /*
2866 * For the new vdev, choose with equal probability between the two
2867 * standard paths (ending in either 'a' or 'b') or a random hot spare.
2868 */
2869 if (sav->sav_count != 0 && ztest_random(3) == 0) {
2870 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
2871 newvd_is_spare = B_TRUE;
2872 (void) strcpy(newpath, newvd->vdev_path);
2873 } else {
2874 (void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
2875 ztest_opts.zo_dir, ztest_opts.zo_pool,
2876 top * leaves + leaf);
2877 if (ztest_random(2) == 0)
2878 newpath[strlen(newpath) - 1] = 'b';
2879 newvd = vdev_lookup_by_path(rvd, newpath);
2880 }
2881
2882 if (newvd) {
2883 newsize = vdev_get_min_asize(newvd);
2884 } else {
2885 /*
2886 * Make newsize a little bigger or smaller than oldsize.
2887 * If it's smaller, the attach should fail.
2888 * If it's larger, and we're doing a replace,
2889 * we should get dynamic LUN growth when we're done.
2890 */
2891 newsize = 10 * oldsize / (9 + ztest_random(3));
2892 }
2893
2894 /*
2895 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
2896 * unless it's a replace; in that case any non-replacing parent is OK.
2897 *
2898 * If newvd is already part of the pool, it should fail with EBUSY.
2899 *
2900 * If newvd is too small, it should fail with EOVERFLOW.
2901 */
2902 if (pvd->vdev_ops != &vdev_mirror_ops &&
2903 pvd->vdev_ops != &vdev_root_ops && (!replacing ||
2904 pvd->vdev_ops == &vdev_replacing_ops ||
2905 pvd->vdev_ops == &vdev_spare_ops))
2906 expected_error = ENOTSUP;
2907 else if (newvd_is_spare && (!replacing || oldvd_is_log))
2908 expected_error = ENOTSUP;
2909 else if (newvd == oldvd)
2910 expected_error = replacing ? 0 : EBUSY;
2911 else if (vdev_lookup_by_path(rvd, newpath) != NULL)
2912 expected_error = EBUSY;
2913 else if (newsize < oldsize)
2914 expected_error = EOVERFLOW;
2915 else if (ashift > oldvd->vdev_top->vdev_ashift)
2916 expected_error = EDOM;
2917 else
2918 expected_error = 0;
2919
2920 spa_config_exit(spa, SCL_VDEV, FTAG);
2921
2922 /*
2923 * Build the nvlist describing newpath.
2924 */
2925 root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0,
2926 ashift, 0, 0, 0, 1);
2927
2928 error = spa_vdev_attach(spa, oldguid, root, replacing);
2929
2930 nvlist_free(root);
2931
2932 /*
2933 * If our parent was the replacing vdev, but the replace completed,
2934 * then instead of failing with ENOTSUP we may either succeed,
2935 * fail with ENODEV, or fail with EOVERFLOW.
2936 */
2937 if (expected_error == ENOTSUP &&
2938 (error == 0 || error == ENODEV || error == EOVERFLOW))
2939 expected_error = error;
2940
2941 /*
2942 * If someone grew the LUN, the replacement may be too small.
2943 */
2944 if (error == EOVERFLOW || error == EBUSY)
2945 expected_error = error;
2946
2947 /* XXX workaround 6690467 */
2948 if (error != expected_error && expected_error != EBUSY) {
2949 fatal(0, "attach (%s %llu, %s %llu, %d) "
2950 "returned %d, expected %d",
2951 oldpath, oldsize, newpath,
2952 newsize, replacing, error, expected_error);
2953 }
2954 out:
2955 mutex_exit(&ztest_vdev_lock);
2956
2957 umem_free(oldpath, MAXPATHLEN);
2958 umem_free(newpath, MAXPATHLEN);
2959 }
2960
2961 /*
2962 * Callback function which expands the physical size of the vdev.
2963 */
2964 vdev_t *
2965 grow_vdev(vdev_t *vd, void *arg)
2966 {
2967 ASSERTV(spa_t *spa = vd->vdev_spa);
2968 size_t *newsize = arg;
2969 size_t fsize;
2970 int fd;
2971
2972 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
2973 ASSERT(vd->vdev_ops->vdev_op_leaf);
2974
2975 if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
2976 return (vd);
2977
2978 fsize = lseek(fd, 0, SEEK_END);
2979 VERIFY(ftruncate(fd, *newsize) == 0);
2980
2981 if (ztest_opts.zo_verbose >= 6) {
2982 (void) printf("%s grew from %lu to %lu bytes\n",
2983 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
2984 }
2985 (void) close(fd);
2986 return (NULL);
2987 }
2988
2989 /*
2990 * Callback function which expands a given vdev by calling vdev_online().
2991 */
2992 /* ARGSUSED */
2993 vdev_t *
2994 online_vdev(vdev_t *vd, void *arg)
2995 {
2996 spa_t *spa = vd->vdev_spa;
2997 vdev_t *tvd = vd->vdev_top;
2998 uint64_t guid = vd->vdev_guid;
2999 uint64_t generation = spa->spa_config_generation + 1;
3000 vdev_state_t newstate = VDEV_STATE_UNKNOWN;
3001 int error;
3002
3003 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
3004 ASSERT(vd->vdev_ops->vdev_op_leaf);
3005
3006 /* Calling vdev_online will initialize the new metaslabs */
3007 spa_config_exit(spa, SCL_STATE, spa);
3008 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
3009 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3010
3011 /*
3012 * If vdev_online returned an error or the underlying vdev_open
3013 * failed then we abort the expand. The only way to know that
3014 * vdev_open fails is by checking the returned newstate.
3015 */
3016 if (error || newstate != VDEV_STATE_HEALTHY) {
3017 if (ztest_opts.zo_verbose >= 5) {
3018 (void) printf("Unable to expand vdev, state %llu, "
3019 "error %d\n", (u_longlong_t)newstate, error);
3020 }
3021 return (vd);
3022 }
3023 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
3024
3025 /*
3026 * Since we dropped the lock we need to ensure that we're
3027 * still talking to the original vdev. It's possible this
3028 * vdev may have been detached/replaced while we were
3029 * trying to online it.
3030 */
3031 if (generation != spa->spa_config_generation) {
3032 if (ztest_opts.zo_verbose >= 5) {
3033 (void) printf("vdev configuration has changed, "
3034 "guid %llu, state %llu, expected gen %llu, "
3035 "got gen %llu\n",
3036 (u_longlong_t)guid,
3037 (u_longlong_t)tvd->vdev_state,
3038 (u_longlong_t)generation,
3039 (u_longlong_t)spa->spa_config_generation);
3040 }
3041 return (vd);
3042 }
3043 return (NULL);
3044 }
3045
3046 /*
3047 * Traverse the vdev tree calling the supplied function.
3048 * We continue to walk the tree until we either have walked all
3049 * children or we receive a non-NULL return from the callback.
3050 * If a NULL callback is passed, then we just return back the first
3051 * leaf vdev we encounter.
3052 */
3053 vdev_t *
3054 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
3055 {
3056 uint_t c;
3057
3058 if (vd->vdev_ops->vdev_op_leaf) {
3059 if (func == NULL)
3060 return (vd);
3061 else
3062 return (func(vd, arg));
3063 }
3064
3065 for (c = 0; c < vd->vdev_children; c++) {
3066 vdev_t *cvd = vd->vdev_child[c];
3067 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
3068 return (cvd);
3069 }
3070 return (NULL);
3071 }
3072
3073 /*
3074 * Verify that dynamic LUN growth works as expected.
3075 */
3076 /* ARGSUSED */
3077 void
3078 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
3079 {
3080 spa_t *spa = ztest_spa;
3081 vdev_t *vd, *tvd;
3082 metaslab_class_t *mc;
3083 metaslab_group_t *mg;
3084 size_t psize, newsize;
3085 uint64_t top;
3086 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
3087
3088 mutex_enter(&ztest_vdev_lock);
3089 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3090
3091 top = ztest_random_vdev_top(spa, B_TRUE);
3092
3093 tvd = spa->spa_root_vdev->vdev_child[top];
3094 mg = tvd->vdev_mg;
3095 mc = mg->mg_class;
3096 old_ms_count = tvd->vdev_ms_count;
3097 old_class_space = metaslab_class_get_space(mc);
3098
3099 /*
3100 * Determine the size of the first leaf vdev associated with
3101 * our top-level device.
3102 */
3103 vd = vdev_walk_tree(tvd, NULL, NULL);
3104 ASSERT3P(vd, !=, NULL);
3105 ASSERT(vd->vdev_ops->vdev_op_leaf);
3106
3107 psize = vd->vdev_psize;
3108
3109 /*
3110 * We only try to expand the vdev if it's healthy, less than 4x its
3111 * original size, and it has a valid psize.
3112 */
3113 if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
3114 psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) {
3115 spa_config_exit(spa, SCL_STATE, spa);
3116 mutex_exit(&ztest_vdev_lock);
3117 return;
3118 }
3119 ASSERT(psize > 0);
3120 newsize = psize + psize / 8;
3121 ASSERT3U(newsize, >, psize);
3122
3123 if (ztest_opts.zo_verbose >= 6) {
3124 (void) printf("Expanding LUN %s from %lu to %lu\n",
3125 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
3126 }
3127
3128 /*
3129 * Growing the vdev is a two step process:
3130 * 1). expand the physical size (i.e. relabel)
3131 * 2). online the vdev to create the new metaslabs
3132 */
3133 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
3134 vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
3135 tvd->vdev_state != VDEV_STATE_HEALTHY) {
3136 if (ztest_opts.zo_verbose >= 5) {
3137 (void) printf("Could not expand LUN because "
3138 "the vdev configuration changed.\n");
3139 }
3140 spa_config_exit(spa, SCL_STATE, spa);
3141 mutex_exit(&ztest_vdev_lock);
3142 return;
3143 }
3144
3145 spa_config_exit(spa, SCL_STATE, spa);
3146
3147 /*
3148 * Expanding the LUN will update the config asynchronously,
3149 * thus we must wait for the async thread to complete any
3150 * pending tasks before proceeding.
3151 */
3152 for (;;) {
3153 boolean_t done;
3154 mutex_enter(&spa->spa_async_lock);
3155 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
3156 mutex_exit(&spa->spa_async_lock);
3157 if (done)
3158 break;
3159 txg_wait_synced(spa_get_dsl(spa), 0);
3160 (void) poll(NULL, 0, 100);
3161 }
3162
3163 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3164
3165 tvd = spa->spa_root_vdev->vdev_child[top];
3166 new_ms_count = tvd->vdev_ms_count;
3167 new_class_space = metaslab_class_get_space(mc);
3168
3169 if (tvd->vdev_mg != mg || mg->mg_class != mc) {
3170 if (ztest_opts.zo_verbose >= 5) {
3171 (void) printf("Could not verify LUN expansion due to "
3172 "intervening vdev offline or remove.\n");
3173 }
3174 spa_config_exit(spa, SCL_STATE, spa);
3175 mutex_exit(&ztest_vdev_lock);
3176 return;
3177 }
3178
3179 /*
3180 * Make sure we were able to grow the vdev.
3181 */
3182 if (new_ms_count <= old_ms_count)
3183 fatal(0, "LUN expansion failed: ms_count %llu <= %llu\n",
3184 old_ms_count, new_ms_count);
3185
3186 /*
3187 * Make sure we were able to grow the pool.
3188 */
3189 if (new_class_space <= old_class_space)
3190 fatal(0, "LUN expansion failed: class_space %llu <= %llu\n",
3191 old_class_space, new_class_space);
3192
3193 if (ztest_opts.zo_verbose >= 5) {
3194 char oldnumbuf[6], newnumbuf[6];
3195
3196 nicenum(old_class_space, oldnumbuf);
3197 nicenum(new_class_space, newnumbuf);
3198 (void) printf("%s grew from %s to %s\n",
3199 spa->spa_name, oldnumbuf, newnumbuf);
3200 }
3201
3202 spa_config_exit(spa, SCL_STATE, spa);
3203 mutex_exit(&ztest_vdev_lock);
3204 }
3205
3206 /*
3207 * Verify that dmu_objset_{create,destroy,open,close} work as expected.
3208 */
3209 /* ARGSUSED */
3210 static void
3211 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
3212 {
3213 /*
3214 * Create the objects common to all ztest datasets.
3215 */
3216 VERIFY(zap_create_claim(os, ZTEST_DIROBJ,
3217 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0);
3218 }
3219
3220 static int
3221 ztest_dataset_create(char *dsname)
3222 {
3223 uint64_t zilset = ztest_random(100);
3224 int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0,
3225 ztest_objset_create_cb, NULL);
3226
3227 if (err || zilset < 80)
3228 return (err);
3229
3230 if (ztest_opts.zo_verbose >= 5)
3231 (void) printf("Setting dataset %s to sync always\n", dsname);
3232 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
3233 ZFS_SYNC_ALWAYS, B_FALSE));
3234 }
3235
3236 /* ARGSUSED */
3237 static int
3238 ztest_objset_destroy_cb(const char *name, void *arg)
3239 {
3240 objset_t *os;
3241 dmu_object_info_t doi;
3242 int error;
3243
3244 /*
3245 * Verify that the dataset contains a directory object.
3246 */
3247 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, FTAG, &os));
3248 error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
3249 if (error != ENOENT) {
3250 /* We could have crashed in the middle of destroying it */
3251 ASSERT0(error);
3252 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
3253 ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
3254 }
3255 dmu_objset_disown(os, FTAG);
3256
3257 /*
3258 * Destroy the dataset.
3259 */
3260 if (strchr(name, '@') != NULL) {
3261 VERIFY0(dsl_destroy_snapshot(name, B_FALSE));
3262 } else {
3263 VERIFY0(dsl_destroy_head(name));
3264 }
3265 return (0);
3266 }
3267
3268 static boolean_t
3269 ztest_snapshot_create(char *osname, uint64_t id)
3270 {
3271 char snapname[MAXNAMELEN];
3272 int error;
3273
3274 (void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id);
3275
3276 error = dmu_objset_snapshot_one(osname, snapname);
3277 if (error == ENOSPC) {
3278 ztest_record_enospc(FTAG);
3279 return (B_FALSE);
3280 }
3281 if (error != 0 && error != EEXIST) {
3282 fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname,
3283 snapname, error);
3284 }
3285 return (B_TRUE);
3286 }
3287
3288 static boolean_t
3289 ztest_snapshot_destroy(char *osname, uint64_t id)
3290 {
3291 char snapname[MAXNAMELEN];
3292 int error;
3293
3294 (void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname,
3295 (u_longlong_t)id);
3296
3297 error = dsl_destroy_snapshot(snapname, B_FALSE);
3298 if (error != 0 && error != ENOENT)
3299 fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error);
3300 return (B_TRUE);
3301 }
3302
3303 /* ARGSUSED */
3304 void
3305 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
3306 {
3307 ztest_ds_t *zdtmp;
3308 int iters;
3309 int error;
3310 objset_t *os, *os2;
3311 char *name;
3312 zilog_t *zilog;
3313 int i;
3314
3315 zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
3316 name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3317
3318 (void) rw_rdlock(&ztest_name_lock);
3319
3320 (void) snprintf(name, MAXNAMELEN, "%s/temp_%llu",
3321 ztest_opts.zo_pool, (u_longlong_t)id);
3322
3323 /*
3324 * If this dataset exists from a previous run, process its replay log
3325 * half of the time. If we don't replay it, then dsl_destroy_head()
3326 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
3327 */
3328 if (ztest_random(2) == 0 &&
3329 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) {
3330 ztest_zd_init(zdtmp, NULL, os);
3331 zil_replay(os, zdtmp, ztest_replay_vector);
3332 ztest_zd_fini(zdtmp);
3333 dmu_objset_disown(os, FTAG);
3334 }
3335
3336 /*
3337 * There may be an old instance of the dataset we're about to
3338 * create lying around from a previous run. If so, destroy it
3339 * and all of its snapshots.
3340 */
3341 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
3342 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
3343
3344 /*
3345 * Verify that the destroyed dataset is no longer in the namespace.
3346 */
3347 VERIFY3U(ENOENT, ==, dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
3348 FTAG, &os));
3349
3350 /*
3351 * Verify that we can create a new dataset.
3352 */
3353 error = ztest_dataset_create(name);
3354 if (error) {
3355 if (error == ENOSPC) {
3356 ztest_record_enospc(FTAG);
3357 goto out;
3358 }
3359 fatal(0, "dmu_objset_create(%s) = %d", name, error);
3360 }
3361
3362 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os));
3363
3364 ztest_zd_init(zdtmp, NULL, os);
3365
3366 /*
3367 * Open the intent log for it.
3368 */
3369 zilog = zil_open(os, ztest_get_data);
3370
3371 /*
3372 * Put some objects in there, do a little I/O to them,
3373 * and randomly take a couple of snapshots along the way.
3374 */
3375 iters = ztest_random(5);
3376 for (i = 0; i < iters; i++) {
3377 ztest_dmu_object_alloc_free(zdtmp, id);
3378 if (ztest_random(iters) == 0)
3379 (void) ztest_snapshot_create(name, i);
3380 }
3381
3382 /*
3383 * Verify that we cannot create an existing dataset.
3384 */
3385 VERIFY3U(EEXIST, ==,
3386 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL));
3387
3388 /*
3389 * Verify that we can hold an objset that is also owned.
3390 */
3391 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2));
3392 dmu_objset_rele(os2, FTAG);
3393
3394 /*
3395 * Verify that we cannot own an objset that is already owned.
3396 */
3397 VERIFY3U(EBUSY, ==,
3398 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2));
3399
3400 zil_close(zilog);
3401 dmu_objset_disown(os, FTAG);
3402 ztest_zd_fini(zdtmp);
3403 out:
3404 (void) rw_unlock(&ztest_name_lock);
3405
3406 umem_free(name, MAXNAMELEN);
3407 umem_free(zdtmp, sizeof (ztest_ds_t));
3408 }
3409
3410 /*
3411 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
3412 */
3413 void
3414 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
3415 {
3416 (void) rw_rdlock(&ztest_name_lock);
3417 (void) ztest_snapshot_destroy(zd->zd_name, id);
3418 (void) ztest_snapshot_create(zd->zd_name, id);
3419 (void) rw_unlock(&ztest_name_lock);
3420 }
3421
3422 /*
3423 * Cleanup non-standard snapshots and clones.
3424 */
3425 void
3426 ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
3427 {
3428 char *snap1name;
3429 char *clone1name;
3430 char *snap2name;
3431 char *clone2name;
3432 char *snap3name;
3433 int error;
3434
3435 snap1name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3436 clone1name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3437 snap2name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3438 clone2name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3439 snap3name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3440
3441 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu",
3442 osname, (u_longlong_t)id);
3443 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu",
3444 osname, (u_longlong_t)id);
3445 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu",
3446 clone1name, (u_longlong_t)id);
3447 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu",
3448 osname, (u_longlong_t)id);
3449 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu",
3450 clone1name, (u_longlong_t)id);
3451
3452 error = dsl_destroy_head(clone2name);
3453 if (error && error != ENOENT)
3454 fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error);
3455 error = dsl_destroy_snapshot(snap3name, B_FALSE);
3456 if (error && error != ENOENT)
3457 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error);
3458 error = dsl_destroy_snapshot(snap2name, B_FALSE);
3459 if (error && error != ENOENT)
3460 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error);
3461 error = dsl_destroy_head(clone1name);
3462 if (error && error != ENOENT)
3463 fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error);
3464 error = dsl_destroy_snapshot(snap1name, B_FALSE);
3465 if (error && error != ENOENT)
3466 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error);
3467
3468 umem_free(snap1name, MAXNAMELEN);
3469 umem_free(clone1name, MAXNAMELEN);
3470 umem_free(snap2name, MAXNAMELEN);
3471 umem_free(clone2name, MAXNAMELEN);
3472 umem_free(snap3name, MAXNAMELEN);
3473 }
3474
3475 /*
3476 * Verify dsl_dataset_promote handles EBUSY
3477 */
3478 void
3479 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
3480 {
3481 objset_t *os;
3482 char *snap1name;
3483 char *clone1name;
3484 char *snap2name;
3485 char *clone2name;
3486 char *snap3name;
3487 char *osname = zd->zd_name;
3488 int error;
3489
3490 snap1name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3491 clone1name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3492 snap2name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3493 clone2name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3494 snap3name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3495
3496 (void) rw_rdlock(&ztest_name_lock);
3497
3498 ztest_dsl_dataset_cleanup(osname, id);
3499
3500 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu",
3501 osname, (u_longlong_t)id);
3502 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu",
3503 osname, (u_longlong_t)id);
3504 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu",
3505 clone1name, (u_longlong_t)id);
3506 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu",
3507 osname, (u_longlong_t)id);
3508 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu",
3509 clone1name, (u_longlong_t)id);
3510
3511 error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1);
3512 if (error && error != EEXIST) {
3513 if (error == ENOSPC) {
3514 ztest_record_enospc(FTAG);
3515 goto out;
3516 }
3517 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error);
3518 }
3519
3520 error = dmu_objset_clone(clone1name, snap1name);
3521 if (error) {
3522 if (error == ENOSPC) {
3523 ztest_record_enospc(FTAG);
3524 goto out;
3525 }
3526 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error);
3527 }
3528
3529 error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1);
3530 if (error && error != EEXIST) {
3531 if (error == ENOSPC) {
3532 ztest_record_enospc(FTAG);
3533 goto out;
3534 }
3535 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error);
3536 }
3537
3538 error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1);
3539 if (error && error != EEXIST) {
3540 if (error == ENOSPC) {
3541 ztest_record_enospc(FTAG);
3542 goto out;
3543 }
3544 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error);
3545 }
3546
3547 error = dmu_objset_clone(clone2name, snap3name);
3548 if (error) {
3549 if (error == ENOSPC) {
3550 ztest_record_enospc(FTAG);
3551 goto out;
3552 }
3553 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error);
3554 }
3555
3556 error = dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, FTAG, &os);
3557 if (error)
3558 fatal(0, "dmu_objset_own(%s) = %d", snap2name, error);
3559 error = dsl_dataset_promote(clone2name, NULL);
3560 if (error == ENOSPC) {
3561 dmu_objset_disown(os, FTAG);
3562 ztest_record_enospc(FTAG);
3563 goto out;
3564 }
3565 if (error != EBUSY)
3566 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name,
3567 error);
3568 dmu_objset_disown(os, FTAG);
3569
3570 out:
3571 ztest_dsl_dataset_cleanup(osname, id);
3572
3573 (void) rw_unlock(&ztest_name_lock);
3574
3575 umem_free(snap1name, MAXNAMELEN);
3576 umem_free(clone1name, MAXNAMELEN);
3577 umem_free(snap2name, MAXNAMELEN);
3578 umem_free(clone2name, MAXNAMELEN);
3579 umem_free(snap3name, MAXNAMELEN);
3580 }
3581
3582 #undef OD_ARRAY_SIZE
3583 #define OD_ARRAY_SIZE 4
3584
3585 /*
3586 * Verify that dmu_object_{alloc,free} work as expected.
3587 */
3588 void
3589 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
3590 {
3591 ztest_od_t *od;
3592 int batchsize;
3593 int size;
3594 int b;
3595
3596 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
3597 od = umem_alloc(size, UMEM_NOFAIL);
3598 batchsize = OD_ARRAY_SIZE;
3599
3600 for (b = 0; b < batchsize; b++)
3601 ztest_od_init(od + b, id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0);
3602
3603 /*
3604 * Destroy the previous batch of objects, create a new batch,
3605 * and do some I/O on the new objects.
3606 */
3607 if (ztest_object_init(zd, od, size, B_TRUE) != 0)
3608 return;
3609
3610 while (ztest_random(4 * batchsize) != 0)
3611 ztest_io(zd, od[ztest_random(batchsize)].od_object,
3612 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
3613
3614 umem_free(od, size);
3615 }
3616
3617 #undef OD_ARRAY_SIZE
3618 #define OD_ARRAY_SIZE 2
3619
3620 /*
3621 * Verify that dmu_{read,write} work as expected.
3622 */
3623 void
3624 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
3625 {
3626 int size;
3627 ztest_od_t *od;
3628
3629 objset_t *os = zd->zd_os;
3630 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
3631 od = umem_alloc(size, UMEM_NOFAIL);
3632 dmu_tx_t *tx;
3633 int i, freeit, error;
3634 uint64_t n, s, txg;
3635 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
3636 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
3637 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
3638 uint64_t regions = 997;
3639 uint64_t stride = 123456789ULL;
3640 uint64_t width = 40;
3641 int free_percent = 5;
3642
3643 /*
3644 * This test uses two objects, packobj and bigobj, that are always
3645 * updated together (i.e. in the same tx) so that their contents are
3646 * in sync and can be compared. Their contents relate to each other
3647 * in a simple way: packobj is a dense array of 'bufwad' structures,
3648 * while bigobj is a sparse array of the same bufwads. Specifically,
3649 * for any index n, there are three bufwads that should be identical:
3650 *
3651 * packobj, at offset n * sizeof (bufwad_t)
3652 * bigobj, at the head of the nth chunk
3653 * bigobj, at the tail of the nth chunk
3654 *
3655 * The chunk size is arbitrary. It doesn't have to be a power of two,
3656 * and it doesn't have any relation to the object blocksize.
3657 * The only requirement is that it can hold at least two bufwads.
3658 *
3659 * Normally, we write the bufwad to each of these locations.
3660 * However, free_percent of the time we instead write zeroes to
3661 * packobj and perform a dmu_free_range() on bigobj. By comparing
3662 * bigobj to packobj, we can verify that the DMU is correctly
3663 * tracking which parts of an object are allocated and free,
3664 * and that the contents of the allocated blocks are correct.
3665 */
3666
3667 /*
3668 * Read the directory info. If it's the first time, set things up.
3669 */
3670 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize);
3671 ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize);
3672
3673 if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
3674 umem_free(od, size);
3675 return;
3676 }
3677
3678 bigobj = od[0].od_object;
3679 packobj = od[1].od_object;
3680 chunksize = od[0].od_gen;
3681 ASSERT(chunksize == od[1].od_gen);
3682
3683 /*
3684 * Prefetch a random chunk of the big object.
3685 * Our aim here is to get some async reads in flight
3686 * for blocks that we may free below; the DMU should
3687 * handle this race correctly.
3688 */
3689 n = ztest_random(regions) * stride + ztest_random(width);
3690 s = 1 + ztest_random(2 * width - 1);
3691 dmu_prefetch(os, bigobj, n * chunksize, s * chunksize);
3692
3693 /*
3694 * Pick a random index and compute the offsets into packobj and bigobj.
3695 */
3696 n = ztest_random(regions) * stride + ztest_random(width);
3697 s = 1 + ztest_random(width - 1);
3698
3699 packoff = n * sizeof (bufwad_t);
3700 packsize = s * sizeof (bufwad_t);
3701
3702 bigoff = n * chunksize;
3703 bigsize = s * chunksize;
3704
3705 packbuf = umem_alloc(packsize, UMEM_NOFAIL);
3706 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
3707
3708 /*
3709 * free_percent of the time, free a range of bigobj rather than
3710 * overwriting it.
3711 */
3712 freeit = (ztest_random(100) < free_percent);
3713
3714 /*
3715 * Read the current contents of our objects.
3716 */
3717 error = dmu_read(os, packobj, packoff, packsize, packbuf,
3718 DMU_READ_PREFETCH);
3719 ASSERT0(error);
3720 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
3721 DMU_READ_PREFETCH);
3722 ASSERT0(error);
3723
3724 /*
3725 * Get a tx for the mods to both packobj and bigobj.
3726 */
3727 tx = dmu_tx_create(os);
3728
3729 dmu_tx_hold_write(tx, packobj, packoff, packsize);
3730
3731 if (freeit)
3732 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
3733 else
3734 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
3735
3736 /* This accounts for setting the checksum/compression. */
3737 dmu_tx_hold_bonus(tx, bigobj);
3738
3739 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3740 if (txg == 0) {
3741 umem_free(packbuf, packsize);
3742 umem_free(bigbuf, bigsize);
3743 umem_free(od, size);
3744 return;
3745 }
3746
3747 enum zio_checksum cksum;
3748 do {
3749 cksum = (enum zio_checksum)
3750 ztest_random_dsl_prop(ZFS_PROP_CHECKSUM);
3751 } while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS);
3752 dmu_object_set_checksum(os, bigobj, cksum, tx);
3753
3754 enum zio_compress comp;
3755 do {
3756 comp = (enum zio_compress)
3757 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION);
3758 } while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS);
3759 dmu_object_set_compress(os, bigobj, comp, tx);
3760
3761 /*
3762 * For each index from n to n + s, verify that the existing bufwad
3763 * in packobj matches the bufwads at the head and tail of the
3764 * corresponding chunk in bigobj. Then update all three bufwads
3765 * with the new values we want to write out.
3766 */
3767 for (i = 0; i < s; i++) {
3768 /* LINTED */
3769 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
3770 /* LINTED */
3771 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
3772 /* LINTED */
3773 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
3774
3775 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
3776 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
3777
3778 if (pack->bw_txg > txg)
3779 fatal(0, "future leak: got %llx, open txg is %llx",
3780 pack->bw_txg, txg);
3781
3782 if (pack->bw_data != 0 && pack->bw_index != n + i)
3783 fatal(0, "wrong index: got %llx, wanted %llx+%llx",
3784 pack->bw_index, n, i);
3785
3786 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
3787 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
3788
3789 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
3790 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
3791
3792 if (freeit) {
3793 bzero(pack, sizeof (bufwad_t));
3794 } else {
3795 pack->bw_index = n + i;
3796 pack->bw_txg = txg;
3797 pack->bw_data = 1 + ztest_random(-2ULL);
3798 }
3799 *bigH = *pack;
3800 *bigT = *pack;
3801 }
3802
3803 /*
3804 * We've verified all the old bufwads, and made new ones.
3805 * Now write them out.
3806 */
3807 dmu_write(os, packobj, packoff, packsize, packbuf, tx);
3808
3809 if (freeit) {
3810 if (ztest_opts.zo_verbose >= 7) {
3811 (void) printf("freeing offset %llx size %llx"
3812 " txg %llx\n",
3813 (u_longlong_t)bigoff,
3814 (u_longlong_t)bigsize,
3815 (u_longlong_t)txg);
3816 }
3817 VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx));
3818 } else {
3819 if (ztest_opts.zo_verbose >= 7) {
3820 (void) printf("writing offset %llx size %llx"
3821 " txg %llx\n",
3822 (u_longlong_t)bigoff,
3823 (u_longlong_t)bigsize,
3824 (u_longlong_t)txg);
3825 }
3826 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);
3827 }
3828
3829 dmu_tx_commit(tx);
3830
3831 /*
3832 * Sanity check the stuff we just wrote.
3833 */
3834 {
3835 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
3836 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
3837
3838 VERIFY(0 == dmu_read(os, packobj, packoff,
3839 packsize, packcheck, DMU_READ_PREFETCH));
3840 VERIFY(0 == dmu_read(os, bigobj, bigoff,
3841 bigsize, bigcheck, DMU_READ_PREFETCH));
3842
3843 ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
3844 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
3845
3846 umem_free(packcheck, packsize);
3847 umem_free(bigcheck, bigsize);
3848 }
3849
3850 umem_free(packbuf, packsize);
3851 umem_free(bigbuf, bigsize);
3852 umem_free(od, size);
3853 }
3854
3855 void
3856 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
3857 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
3858 {
3859 uint64_t i;
3860 bufwad_t *pack;
3861 bufwad_t *bigH;
3862 bufwad_t *bigT;
3863
3864 /*
3865 * For each index from n to n + s, verify that the existing bufwad
3866 * in packobj matches the bufwads at the head and tail of the
3867 * corresponding chunk in bigobj. Then update all three bufwads
3868 * with the new values we want to write out.
3869 */
3870 for (i = 0; i < s; i++) {
3871 /* LINTED */
3872 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
3873 /* LINTED */
3874 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
3875 /* LINTED */
3876 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
3877
3878 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
3879 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
3880
3881 if (pack->bw_txg > txg)
3882 fatal(0, "future leak: got %llx, open txg is %llx",
3883 pack->bw_txg, txg);
3884
3885 if (pack->bw_data != 0 && pack->bw_index != n + i)
3886 fatal(0, "wrong index: got %llx, wanted %llx+%llx",
3887 pack->bw_index, n, i);
3888
3889 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
3890 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
3891
3892 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
3893 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
3894
3895 pack->bw_index = n + i;
3896 pack->bw_txg = txg;
3897 pack->bw_data = 1 + ztest_random(-2ULL);
3898
3899 *bigH = *pack;
3900 *bigT = *pack;
3901 }
3902 }
3903
3904 #undef OD_ARRAY_SIZE
3905 #define OD_ARRAY_SIZE 2
3906
3907 void
3908 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
3909 {
3910 objset_t *os = zd->zd_os;
3911 ztest_od_t *od;
3912 dmu_tx_t *tx;
3913 uint64_t i;
3914 int error;
3915 int size;
3916 uint64_t n, s, txg;
3917 bufwad_t *packbuf, *bigbuf;
3918 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
3919 uint64_t blocksize = ztest_random_blocksize();
3920 uint64_t chunksize = blocksize;
3921 uint64_t regions = 997;
3922 uint64_t stride = 123456789ULL;
3923 uint64_t width = 9;
3924 dmu_buf_t *bonus_db;
3925 arc_buf_t **bigbuf_arcbufs;
3926 dmu_object_info_t doi;
3927
3928 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
3929 od = umem_alloc(size, UMEM_NOFAIL);
3930
3931 /*
3932 * This test uses two objects, packobj and bigobj, that are always
3933 * updated together (i.e. in the same tx) so that their contents are
3934 * in sync and can be compared. Their contents relate to each other
3935 * in a simple way: packobj is a dense array of 'bufwad' structures,
3936 * while bigobj is a sparse array of the same bufwads. Specifically,
3937 * for any index n, there are three bufwads that should be identical:
3938 *
3939 * packobj, at offset n * sizeof (bufwad_t)
3940 * bigobj, at the head of the nth chunk
3941 * bigobj, at the tail of the nth chunk
3942 *
3943 * The chunk size is set equal to bigobj block size so that
3944 * dmu_assign_arcbuf() can be tested for object updates.
3945 */
3946
3947 /*
3948 * Read the directory info. If it's the first time, set things up.
3949 */
3950 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
3951 ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize);
3952
3953
3954 if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
3955 umem_free(od, size);
3956 return;
3957 }
3958
3959 bigobj = od[0].od_object;
3960 packobj = od[1].od_object;
3961 blocksize = od[0].od_blocksize;
3962 chunksize = blocksize;
3963 ASSERT(chunksize == od[1].od_gen);
3964
3965 VERIFY(dmu_object_info(os, bigobj, &doi) == 0);
3966 VERIFY(ISP2(doi.doi_data_block_size));
3967 VERIFY(chunksize == doi.doi_data_block_size);
3968 VERIFY(chunksize >= 2 * sizeof (bufwad_t));
3969
3970 /*
3971 * Pick a random index and compute the offsets into packobj and bigobj.
3972 */
3973 n = ztest_random(regions) * stride + ztest_random(width);
3974 s = 1 + ztest_random(width - 1);
3975
3976 packoff = n * sizeof (bufwad_t);
3977 packsize = s * sizeof (bufwad_t);
3978
3979 bigoff = n * chunksize;
3980 bigsize = s * chunksize;
3981
3982 packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
3983 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
3984
3985 VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
3986
3987 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
3988
3989 /*
3990 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
3991 * Iteration 1 test zcopy to already referenced dbufs.
3992 * Iteration 2 test zcopy to dirty dbuf in the same txg.
3993 * Iteration 3 test zcopy to dbuf dirty in previous txg.
3994 * Iteration 4 test zcopy when dbuf is no longer dirty.
3995 * Iteration 5 test zcopy when it can't be done.
3996 * Iteration 6 one more zcopy write.
3997 */
3998 for (i = 0; i < 7; i++) {
3999 uint64_t j;
4000 uint64_t off;
4001
4002 /*
4003 * In iteration 5 (i == 5) use arcbufs
4004 * that don't match bigobj blksz to test
4005 * dmu_assign_arcbuf() when it can't directly
4006 * assign an arcbuf to a dbuf.
4007 */
4008 for (j = 0; j < s; j++) {
4009 if (i != 5) {
4010 bigbuf_arcbufs[j] =
4011 dmu_request_arcbuf(bonus_db, chunksize);
4012 } else {
4013 bigbuf_arcbufs[2 * j] =
4014 dmu_request_arcbuf(bonus_db, chunksize / 2);
4015 bigbuf_arcbufs[2 * j + 1] =
4016 dmu_request_arcbuf(bonus_db, chunksize / 2);
4017 }
4018 }
4019
4020 /*
4021 * Get a tx for the mods to both packobj and bigobj.
4022 */
4023 tx = dmu_tx_create(os);
4024
4025 dmu_tx_hold_write(tx, packobj, packoff, packsize);
4026 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
4027
4028 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4029 if (txg == 0) {
4030 umem_free(packbuf, packsize);
4031 umem_free(bigbuf, bigsize);
4032 for (j = 0; j < s; j++) {
4033 if (i != 5) {
4034 dmu_return_arcbuf(bigbuf_arcbufs[j]);
4035 } else {
4036 dmu_return_arcbuf(
4037 bigbuf_arcbufs[2 * j]);
4038 dmu_return_arcbuf(
4039 bigbuf_arcbufs[2 * j + 1]);
4040 }
4041 }
4042 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
4043 umem_free(od, size);
4044 dmu_buf_rele(bonus_db, FTAG);
4045 return;
4046 }
4047
4048 /*
4049 * 50% of the time don't read objects in the 1st iteration to
4050 * test dmu_assign_arcbuf() for the case when there're no
4051 * existing dbufs for the specified offsets.
4052 */
4053 if (i != 0 || ztest_random(2) != 0) {
4054 error = dmu_read(os, packobj, packoff,
4055 packsize, packbuf, DMU_READ_PREFETCH);
4056 ASSERT0(error);
4057 error = dmu_read(os, bigobj, bigoff, bigsize,
4058 bigbuf, DMU_READ_PREFETCH);
4059 ASSERT0(error);
4060 }
4061 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
4062 n, chunksize, txg);
4063
4064 /*
4065 * We've verified all the old bufwads, and made new ones.
4066 * Now write them out.
4067 */
4068 dmu_write(os, packobj, packoff, packsize, packbuf, tx);
4069 if (ztest_opts.zo_verbose >= 7) {
4070 (void) printf("writing offset %llx size %llx"
4071 " txg %llx\n",
4072 (u_longlong_t)bigoff,
4073 (u_longlong_t)bigsize,
4074 (u_longlong_t)txg);
4075 }
4076 for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
4077 dmu_buf_t *dbt;
4078 if (i != 5) {
4079 bcopy((caddr_t)bigbuf + (off - bigoff),
4080 bigbuf_arcbufs[j]->b_data, chunksize);
4081 } else {
4082 bcopy((caddr_t)bigbuf + (off - bigoff),
4083 bigbuf_arcbufs[2 * j]->b_data,
4084 chunksize / 2);
4085 bcopy((caddr_t)bigbuf + (off - bigoff) +
4086 chunksize / 2,
4087 bigbuf_arcbufs[2 * j + 1]->b_data,
4088 chunksize / 2);
4089 }
4090
4091 if (i == 1) {
4092 VERIFY(dmu_buf_hold(os, bigobj, off,
4093 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0);
4094 }
4095 if (i != 5) {
4096 dmu_assign_arcbuf(bonus_db, off,
4097 bigbuf_arcbufs[j], tx);
4098 } else {
4099 dmu_assign_arcbuf(bonus_db, off,
4100 bigbuf_arcbufs[2 * j], tx);
4101 dmu_assign_arcbuf(bonus_db,
4102 off + chunksize / 2,
4103 bigbuf_arcbufs[2 * j + 1], tx);
4104 }
4105 if (i == 1) {
4106 dmu_buf_rele(dbt, FTAG);
4107 }
4108 }
4109 dmu_tx_commit(tx);
4110
4111 /*
4112 * Sanity check the stuff we just wrote.
4113 */
4114 {
4115 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
4116 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
4117
4118 VERIFY(0 == dmu_read(os, packobj, packoff,
4119 packsize, packcheck, DMU_READ_PREFETCH));
4120 VERIFY(0 == dmu_read(os, bigobj, bigoff,
4121 bigsize, bigcheck, DMU_READ_PREFETCH));
4122
4123 ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
4124 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
4125
4126 umem_free(packcheck, packsize);
4127 umem_free(bigcheck, bigsize);
4128 }
4129 if (i == 2) {
4130 txg_wait_open(dmu_objset_pool(os), 0);
4131 } else if (i == 3) {
4132 txg_wait_synced(dmu_objset_pool(os), 0);
4133 }
4134 }
4135
4136 dmu_buf_rele(bonus_db, FTAG);
4137 umem_free(packbuf, packsize);
4138 umem_free(bigbuf, bigsize);
4139 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
4140 umem_free(od, size);
4141 }
4142
4143 /* ARGSUSED */
4144 void
4145 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
4146 {
4147 ztest_od_t *od;
4148
4149 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
4150 uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
4151 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4152
4153 /*
4154 * Have multiple threads write to large offsets in an object
4155 * to verify that parallel writes to an object -- even to the
4156 * same blocks within the object -- doesn't cause any trouble.
4157 */
4158 ztest_od_init(od, ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
4159
4160 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0)
4161 return;
4162
4163 while (ztest_random(10) != 0)
4164 ztest_io(zd, od->od_object, offset);
4165
4166 umem_free(od, sizeof (ztest_od_t));
4167 }
4168
4169 void
4170 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
4171 {
4172 ztest_od_t *od;
4173 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
4174 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4175 uint64_t count = ztest_random(20) + 1;
4176 uint64_t blocksize = ztest_random_blocksize();
4177 void *data;
4178
4179 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
4180
4181 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
4182
4183 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
4184 !ztest_random(2)) != 0) {
4185 umem_free(od, sizeof (ztest_od_t));
4186 return;
4187 }
4188
4189 if (ztest_truncate(zd, od->od_object, offset, count * blocksize) != 0) {
4190 umem_free(od, sizeof (ztest_od_t));
4191 return;
4192 }
4193
4194 ztest_prealloc(zd, od->od_object, offset, count * blocksize);
4195
4196 data = umem_zalloc(blocksize, UMEM_NOFAIL);
4197
4198 while (ztest_random(count) != 0) {
4199 uint64_t randoff = offset + (ztest_random(count) * blocksize);
4200 if (ztest_write(zd, od->od_object, randoff, blocksize,
4201 data) != 0)
4202 break;
4203 while (ztest_random(4) != 0)
4204 ztest_io(zd, od->od_object, randoff);
4205 }
4206
4207 umem_free(data, blocksize);
4208 umem_free(od, sizeof (ztest_od_t));
4209 }
4210
4211 /*
4212 * Verify that zap_{create,destroy,add,remove,update} work as expected.
4213 */
4214 #define ZTEST_ZAP_MIN_INTS 1
4215 #define ZTEST_ZAP_MAX_INTS 4
4216 #define ZTEST_ZAP_MAX_PROPS 1000
4217
4218 void
4219 ztest_zap(ztest_ds_t *zd, uint64_t id)
4220 {
4221 objset_t *os = zd->zd_os;
4222 ztest_od_t *od;
4223 uint64_t object;
4224 uint64_t txg, last_txg;
4225 uint64_t value[ZTEST_ZAP_MAX_INTS];
4226 uint64_t zl_ints, zl_intsize, prop;
4227 int i, ints;
4228 dmu_tx_t *tx;
4229 char propname[100], txgname[100];
4230 int error;
4231 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
4232
4233 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
4234 ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0);
4235
4236 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
4237 !ztest_random(2)) != 0)
4238 goto out;
4239
4240 object = od->od_object;
4241
4242 /*
4243 * Generate a known hash collision, and verify that
4244 * we can lookup and remove both entries.
4245 */
4246 tx = dmu_tx_create(os);
4247 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4248 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4249 if (txg == 0)
4250 goto out;
4251 for (i = 0; i < 2; i++) {
4252 value[i] = i;
4253 VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t),
4254 1, &value[i], tx));
4255 }
4256 for (i = 0; i < 2; i++) {
4257 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
4258 sizeof (uint64_t), 1, &value[i], tx));
4259 VERIFY3U(0, ==,
4260 zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
4261 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4262 ASSERT3U(zl_ints, ==, 1);
4263 }
4264 for (i = 0; i < 2; i++) {
4265 VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx));
4266 }
4267 dmu_tx_commit(tx);
4268
4269 /*
4270 * Generate a buch of random entries.
4271 */
4272 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
4273
4274 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
4275 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
4276 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
4277 bzero(value, sizeof (value));
4278 last_txg = 0;
4279
4280 /*
4281 * If these zap entries already exist, validate their contents.
4282 */
4283 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
4284 if (error == 0) {
4285 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4286 ASSERT3U(zl_ints, ==, 1);
4287
4288 VERIFY(zap_lookup(os, object, txgname, zl_intsize,
4289 zl_ints, &last_txg) == 0);
4290
4291 VERIFY(zap_length(os, object, propname, &zl_intsize,
4292 &zl_ints) == 0);
4293
4294 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4295 ASSERT3U(zl_ints, ==, ints);
4296
4297 VERIFY(zap_lookup(os, object, propname, zl_intsize,
4298 zl_ints, value) == 0);
4299
4300 for (i = 0; i < ints; i++) {
4301 ASSERT3U(value[i], ==, last_txg + object + i);
4302 }
4303 } else {
4304 ASSERT3U(error, ==, ENOENT);
4305 }
4306
4307 /*
4308 * Atomically update two entries in our zap object.
4309 * The first is named txg_%llu, and contains the txg
4310 * in which the property was last updated. The second
4311 * is named prop_%llu, and the nth element of its value
4312 * should be txg + object + n.
4313 */
4314 tx = dmu_tx_create(os);
4315 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4316 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4317 if (txg == 0)
4318 goto out;
4319
4320 if (last_txg > txg)
4321 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg);
4322
4323 for (i = 0; i < ints; i++)
4324 value[i] = txg + object + i;
4325
4326 VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t),
4327 1, &txg, tx));
4328 VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t),
4329 ints, value, tx));
4330
4331 dmu_tx_commit(tx);
4332
4333 /*
4334 * Remove a random pair of entries.
4335 */
4336 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
4337 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
4338 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
4339
4340 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
4341
4342 if (error == ENOENT)
4343 goto out;
4344
4345 ASSERT0(error);
4346
4347 tx = dmu_tx_create(os);
4348 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4349 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4350 if (txg == 0)
4351 goto out;
4352 VERIFY3U(0, ==, zap_remove(os, object, txgname, tx));
4353 VERIFY3U(0, ==, zap_remove(os, object, propname, tx));
4354 dmu_tx_commit(tx);
4355 out:
4356 umem_free(od, sizeof (ztest_od_t));
4357 }
4358
4359 /*
4360 * Testcase to test the upgrading of a microzap to fatzap.
4361 */
4362 void
4363 ztest_fzap(ztest_ds_t *zd, uint64_t id)
4364 {
4365 objset_t *os = zd->zd_os;
4366 ztest_od_t *od;
4367 uint64_t object, txg;
4368 int i;
4369
4370 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
4371 ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0);
4372
4373 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
4374 !ztest_random(2)) != 0)
4375 goto out;
4376 object = od->od_object;
4377
4378 /*
4379 * Add entries to this ZAP and make sure it spills over
4380 * and gets upgraded to a fatzap. Also, since we are adding
4381 * 2050 entries we should see ptrtbl growth and leaf-block split.
4382 */
4383 for (i = 0; i < 2050; i++) {
4384 char name[MAXNAMELEN];
4385 uint64_t value = i;
4386 dmu_tx_t *tx;
4387 int error;
4388
4389 (void) snprintf(name, sizeof (name), "fzap-%llu-%llu",
4390 (u_longlong_t)id, (u_longlong_t)value);
4391
4392 tx = dmu_tx_create(os);
4393 dmu_tx_hold_zap(tx, object, B_TRUE, name);
4394 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4395 if (txg == 0)
4396 goto out;
4397 error = zap_add(os, object, name, sizeof (uint64_t), 1,
4398 &value, tx);
4399 ASSERT(error == 0 || error == EEXIST);
4400 dmu_tx_commit(tx);
4401 }
4402 out:
4403 umem_free(od, sizeof (ztest_od_t));
4404 }
4405
4406 /* ARGSUSED */
4407 void
4408 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
4409 {
4410 objset_t *os = zd->zd_os;
4411 ztest_od_t *od;
4412 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
4413 dmu_tx_t *tx;
4414 int i, namelen, error;
4415 int micro = ztest_random(2);
4416 char name[20], string_value[20];
4417 void *data;
4418
4419 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
4420 ztest_od_init(od, ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0);
4421
4422 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
4423 umem_free(od, sizeof (ztest_od_t));
4424 return;
4425 }
4426
4427 object = od->od_object;
4428
4429 /*
4430 * Generate a random name of the form 'xxx.....' where each
4431 * x is a random printable character and the dots are dots.
4432 * There are 94 such characters, and the name length goes from
4433 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
4434 */
4435 namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
4436
4437 for (i = 0; i < 3; i++)
4438 name[i] = '!' + ztest_random('~' - '!' + 1);
4439 for (; i < namelen - 1; i++)
4440 name[i] = '.';
4441 name[i] = '\0';
4442
4443 if ((namelen & 1) || micro) {
4444 wsize = sizeof (txg);
4445 wc = 1;
4446 data = &txg;
4447 } else {
4448 wsize = 1;
4449 wc = namelen;
4450 data = string_value;
4451 }
4452
4453 count = -1ULL;
4454 VERIFY0(zap_count(os, object, &count));
4455 ASSERT(count != -1ULL);
4456
4457 /*
4458 * Select an operation: length, lookup, add, update, remove.
4459 */
4460 i = ztest_random(5);
4461
4462 if (i >= 2) {
4463 tx = dmu_tx_create(os);
4464 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4465 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4466 if (txg == 0)
4467 return;
4468 bcopy(name, string_value, namelen);
4469 } else {
4470 tx = NULL;
4471 txg = 0;
4472 bzero(string_value, namelen);
4473 }
4474
4475 switch (i) {
4476
4477 case 0:
4478 error = zap_length(os, object, name, &zl_wsize, &zl_wc);
4479 if (error == 0) {
4480 ASSERT3U(wsize, ==, zl_wsize);
4481 ASSERT3U(wc, ==, zl_wc);
4482 } else {
4483 ASSERT3U(error, ==, ENOENT);
4484 }
4485 break;
4486
4487 case 1:
4488 error = zap_lookup(os, object, name, wsize, wc, data);
4489 if (error == 0) {
4490 if (data == string_value &&
4491 bcmp(name, data, namelen) != 0)
4492 fatal(0, "name '%s' != val '%s' len %d",
4493 name, data, namelen);
4494 } else {
4495 ASSERT3U(error, ==, ENOENT);
4496 }
4497 break;
4498
4499 case 2:
4500 error = zap_add(os, object, name, wsize, wc, data, tx);
4501 ASSERT(error == 0 || error == EEXIST);
4502 break;
4503
4504 case 3:
4505 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0);
4506 break;
4507
4508 case 4:
4509 error = zap_remove(os, object, name, tx);
4510 ASSERT(error == 0 || error == ENOENT);
4511 break;
4512 }
4513
4514 if (tx != NULL)
4515 dmu_tx_commit(tx);
4516
4517 umem_free(od, sizeof (ztest_od_t));
4518 }
4519
4520 /*
4521 * Commit callback data.
4522 */
4523 typedef struct ztest_cb_data {
4524 list_node_t zcd_node;
4525 uint64_t zcd_txg;
4526 int zcd_expected_err;
4527 boolean_t zcd_added;
4528 boolean_t zcd_called;
4529 spa_t *zcd_spa;
4530 } ztest_cb_data_t;
4531
4532 /* This is the actual commit callback function */
4533 static void
4534 ztest_commit_callback(void *arg, int error)
4535 {
4536 ztest_cb_data_t *data = arg;
4537 uint64_t synced_txg;
4538
4539 VERIFY(data != NULL);
4540 VERIFY3S(data->zcd_expected_err, ==, error);
4541 VERIFY(!data->zcd_called);
4542
4543 synced_txg = spa_last_synced_txg(data->zcd_spa);
4544 if (data->zcd_txg > synced_txg)
4545 fatal(0, "commit callback of txg %" PRIu64 " called prematurely"
4546 ", last synced txg = %" PRIu64 "\n", data->zcd_txg,
4547 synced_txg);
4548
4549 data->zcd_called = B_TRUE;
4550
4551 if (error == ECANCELED) {
4552 ASSERT0(data->zcd_txg);
4553 ASSERT(!data->zcd_added);
4554
4555 /*
4556 * The private callback data should be destroyed here, but
4557 * since we are going to check the zcd_called field after
4558 * dmu_tx_abort(), we will destroy it there.
4559 */
4560 return;
4561 }
4562
4563 ASSERT(data->zcd_added);
4564 ASSERT3U(data->zcd_txg, !=, 0);
4565
4566 (void) mutex_enter(&zcl.zcl_callbacks_lock);
4567
4568 /* See if this cb was called more quickly */
4569 if ((synced_txg - data->zcd_txg) < zc_min_txg_delay)
4570 zc_min_txg_delay = synced_txg - data->zcd_txg;
4571
4572 /* Remove our callback from the list */
4573 list_remove(&zcl.zcl_callbacks, data);
4574
4575 (void) mutex_exit(&zcl.zcl_callbacks_lock);
4576
4577 umem_free(data, sizeof (ztest_cb_data_t));
4578 }
4579
4580 /* Allocate and initialize callback data structure */
4581 static ztest_cb_data_t *
4582 ztest_create_cb_data(objset_t *os, uint64_t txg)
4583 {
4584 ztest_cb_data_t *cb_data;
4585
4586 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
4587
4588 cb_data->zcd_txg = txg;
4589 cb_data->zcd_spa = dmu_objset_spa(os);
4590 list_link_init(&cb_data->zcd_node);
4591
4592 return (cb_data);
4593 }
4594
4595 /*
4596 * Commit callback test.
4597 */
4598 void
4599 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
4600 {
4601 objset_t *os = zd->zd_os;
4602 ztest_od_t *od;
4603 dmu_tx_t *tx;
4604 ztest_cb_data_t *cb_data[3], *tmp_cb;
4605 uint64_t old_txg, txg;
4606 int i, error = 0;
4607
4608 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
4609 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
4610
4611 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
4612 umem_free(od, sizeof (ztest_od_t));
4613 return;
4614 }
4615
4616 tx = dmu_tx_create(os);
4617
4618 cb_data[0] = ztest_create_cb_data(os, 0);
4619 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
4620
4621 dmu_tx_hold_write(tx, od->od_object, 0, sizeof (uint64_t));
4622
4623 /* Every once in a while, abort the transaction on purpose */
4624 if (ztest_random(100) == 0)
4625 error = -1;
4626
4627 if (!error)
4628 error = dmu_tx_assign(tx, TXG_NOWAIT);
4629
4630 txg = error ? 0 : dmu_tx_get_txg(tx);
4631
4632 cb_data[0]->zcd_txg = txg;
4633 cb_data[1] = ztest_create_cb_data(os, txg);
4634 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
4635
4636 if (error) {
4637 /*
4638 * It's not a strict requirement to call the registered
4639 * callbacks from inside dmu_tx_abort(), but that's what
4640 * it's supposed to happen in the current implementation
4641 * so we will check for that.
4642 */
4643 for (i = 0; i < 2; i++) {
4644 cb_data[i]->zcd_expected_err = ECANCELED;
4645 VERIFY(!cb_data[i]->zcd_called);
4646 }
4647
4648 dmu_tx_abort(tx);
4649
4650 for (i = 0; i < 2; i++) {
4651 VERIFY(cb_data[i]->zcd_called);
4652 umem_free(cb_data[i], sizeof (ztest_cb_data_t));
4653 }
4654
4655 umem_free(od, sizeof (ztest_od_t));
4656 return;
4657 }
4658
4659 cb_data[2] = ztest_create_cb_data(os, txg);
4660 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
4661
4662 /*
4663 * Read existing data to make sure there isn't a future leak.
4664 */
4665 VERIFY(0 == dmu_read(os, od->od_object, 0, sizeof (uint64_t),
4666 &old_txg, DMU_READ_PREFETCH));
4667
4668 if (old_txg > txg)
4669 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64,
4670 old_txg, txg);
4671
4672 dmu_write(os, od->od_object, 0, sizeof (uint64_t), &txg, tx);
4673
4674 (void) mutex_enter(&zcl.zcl_callbacks_lock);
4675
4676 /*
4677 * Since commit callbacks don't have any ordering requirement and since
4678 * it is theoretically possible for a commit callback to be called
4679 * after an arbitrary amount of time has elapsed since its txg has been
4680 * synced, it is difficult to reliably determine whether a commit
4681 * callback hasn't been called due to high load or due to a flawed
4682 * implementation.
4683 *
4684 * In practice, we will assume that if after a certain number of txgs a
4685 * commit callback hasn't been called, then most likely there's an
4686 * implementation bug..
4687 */
4688 tmp_cb = list_head(&zcl.zcl_callbacks);
4689 if (tmp_cb != NULL &&
4690 tmp_cb->zcd_txg + ZTEST_COMMIT_CB_THRESH < txg) {
4691 fatal(0, "Commit callback threshold exceeded, oldest txg: %"
4692 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg);
4693 }
4694
4695 /*
4696 * Let's find the place to insert our callbacks.
4697 *
4698 * Even though the list is ordered by txg, it is possible for the
4699 * insertion point to not be the end because our txg may already be
4700 * quiescing at this point and other callbacks in the open txg
4701 * (from other objsets) may have sneaked in.
4702 */
4703 tmp_cb = list_tail(&zcl.zcl_callbacks);
4704 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
4705 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
4706
4707 /* Add the 3 callbacks to the list */
4708 for (i = 0; i < 3; i++) {
4709 if (tmp_cb == NULL)
4710 list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
4711 else
4712 list_insert_after(&zcl.zcl_callbacks, tmp_cb,
4713 cb_data[i]);
4714
4715 cb_data[i]->zcd_added = B_TRUE;
4716 VERIFY(!cb_data[i]->zcd_called);
4717
4718 tmp_cb = cb_data[i];
4719 }
4720
4721 zc_cb_counter += 3;
4722
4723 (void) mutex_exit(&zcl.zcl_callbacks_lock);
4724
4725 dmu_tx_commit(tx);
4726
4727 umem_free(od, sizeof (ztest_od_t));
4728 }
4729
4730 /* ARGSUSED */
4731 void
4732 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
4733 {
4734 zfs_prop_t proplist[] = {
4735 ZFS_PROP_CHECKSUM,
4736 ZFS_PROP_COMPRESSION,
4737 ZFS_PROP_COPIES,
4738 ZFS_PROP_DEDUP
4739 };
4740 int p;
4741
4742 (void) rw_rdlock(&ztest_name_lock);
4743
4744 for (p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++)
4745 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
4746 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
4747
4748 (void) rw_unlock(&ztest_name_lock);
4749 }
4750
4751 /* ARGSUSED */
4752 void
4753 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
4754 {
4755 nvlist_t *props = NULL;
4756
4757 (void) rw_rdlock(&ztest_name_lock);
4758
4759 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO,
4760 ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN));
4761
4762 VERIFY0(spa_prop_get(ztest_spa, &props));
4763
4764 if (ztest_opts.zo_verbose >= 6)
4765 dump_nvlist(props, 4);
4766
4767 nvlist_free(props);
4768
4769 (void) rw_unlock(&ztest_name_lock);
4770 }
4771
4772 static int
4773 user_release_one(const char *snapname, const char *holdname)
4774 {
4775 nvlist_t *snaps, *holds;
4776 int error;
4777
4778 snaps = fnvlist_alloc();
4779 holds = fnvlist_alloc();
4780 fnvlist_add_boolean(holds, holdname);
4781 fnvlist_add_nvlist(snaps, snapname, holds);
4782 fnvlist_free(holds);
4783 error = dsl_dataset_user_release(snaps, NULL);
4784 fnvlist_free(snaps);
4785 return (error);
4786 }
4787
4788 /*
4789 * Test snapshot hold/release and deferred destroy.
4790 */
4791 void
4792 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
4793 {
4794 int error;
4795 objset_t *os = zd->zd_os;
4796 objset_t *origin;
4797 char snapname[100];
4798 char fullname[100];
4799 char clonename[100];
4800 char tag[100];
4801 char osname[MAXNAMELEN];
4802 nvlist_t *holds;
4803
4804 (void) rw_rdlock(&ztest_name_lock);
4805
4806 dmu_objset_name(os, osname);
4807
4808 (void) snprintf(snapname, sizeof (snapname), "sh1_%llu",
4809 (u_longlong_t)id);
4810 (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname);
4811 (void) snprintf(clonename, sizeof (clonename),
4812 "%s/ch1_%llu", osname, (u_longlong_t)id);
4813 (void) snprintf(tag, sizeof (tag), "tag_%llu", (u_longlong_t)id);
4814
4815 /*
4816 * Clean up from any previous run.
4817 */
4818 error = dsl_destroy_head(clonename);
4819 if (error != ENOENT)
4820 ASSERT0(error);
4821 error = user_release_one(fullname, tag);
4822 if (error != ESRCH && error != ENOENT)
4823 ASSERT0(error);
4824 error = dsl_destroy_snapshot(fullname, B_FALSE);
4825 if (error != ENOENT)
4826 ASSERT0(error);
4827
4828 /*
4829 * Create snapshot, clone it, mark snap for deferred destroy,
4830 * destroy clone, verify snap was also destroyed.
4831 */
4832 error = dmu_objset_snapshot_one(osname, snapname);
4833 if (error) {
4834 if (error == ENOSPC) {
4835 ztest_record_enospc("dmu_objset_snapshot");
4836 goto out;
4837 }
4838 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
4839 }
4840
4841 error = dmu_objset_clone(clonename, fullname);
4842 if (error) {
4843 if (error == ENOSPC) {
4844 ztest_record_enospc("dmu_objset_clone");
4845 goto out;
4846 }
4847 fatal(0, "dmu_objset_clone(%s) = %d", clonename, error);
4848 }
4849
4850 error = dsl_destroy_snapshot(fullname, B_TRUE);
4851 if (error) {
4852 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
4853 fullname, error);
4854 }
4855
4856 error = dsl_destroy_head(clonename);
4857 if (error)
4858 fatal(0, "dsl_destroy_head(%s) = %d", clonename, error);
4859
4860 error = dmu_objset_hold(fullname, FTAG, &origin);
4861 if (error != ENOENT)
4862 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error);
4863
4864 /*
4865 * Create snapshot, add temporary hold, verify that we can't
4866 * destroy a held snapshot, mark for deferred destroy,
4867 * release hold, verify snapshot was destroyed.
4868 */
4869 error = dmu_objset_snapshot_one(osname, snapname);
4870 if (error) {
4871 if (error == ENOSPC) {
4872 ztest_record_enospc("dmu_objset_snapshot");
4873 goto out;
4874 }
4875 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
4876 }
4877
4878 holds = fnvlist_alloc();
4879 fnvlist_add_string(holds, fullname, tag);
4880 error = dsl_dataset_user_hold(holds, 0, NULL);
4881 fnvlist_free(holds);
4882
4883 if (error == ENOSPC) {
4884 ztest_record_enospc("dsl_dataset_user_hold");
4885 goto out;
4886 } else if (error) {
4887 fatal(0, "dsl_dataset_user_hold(%s, %s) = %u",
4888 fullname, tag, error);
4889 }
4890
4891 error = dsl_destroy_snapshot(fullname, B_FALSE);
4892 if (error != EBUSY) {
4893 fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
4894 fullname, error);
4895 }
4896
4897 error = dsl_destroy_snapshot(fullname, B_TRUE);
4898 if (error) {
4899 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
4900 fullname, error);
4901 }
4902
4903 error = user_release_one(fullname, tag);
4904 if (error)
4905 fatal(0, "user_release_one(%s, %s) = %d", fullname, tag, error);
4906
4907 VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT);
4908
4909 out:
4910 (void) rw_unlock(&ztest_name_lock);
4911 }
4912
4913 /*
4914 * Inject random faults into the on-disk data.
4915 */
4916 /* ARGSUSED */
4917 void
4918 ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
4919 {
4920 ztest_shared_t *zs = ztest_shared;
4921 spa_t *spa = ztest_spa;
4922 int fd;
4923 uint64_t offset;
4924 uint64_t leaves;
4925 uint64_t bad = 0x1990c0ffeedecadeull;
4926 uint64_t top, leaf;
4927 char *path0;
4928 char *pathrand;
4929 size_t fsize;
4930 int bshift = SPA_MAXBLOCKSHIFT + 2; /* don't scrog all labels */
4931 int iters = 1000;
4932 int maxfaults;
4933 int mirror_save;
4934 vdev_t *vd0 = NULL;
4935 uint64_t guid0 = 0;
4936 boolean_t islog = B_FALSE;
4937
4938 path0 = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
4939 pathrand = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
4940
4941 mutex_enter(&ztest_vdev_lock);
4942 maxfaults = MAXFAULTS();
4943 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
4944 mirror_save = zs->zs_mirrors;
4945 mutex_exit(&ztest_vdev_lock);
4946
4947 ASSERT(leaves >= 1);
4948
4949 /*
4950 * Grab the name lock as reader. There are some operations
4951 * which don't like to have their vdevs changed while
4952 * they are in progress (i.e. spa_change_guid). Those
4953 * operations will have grabbed the name lock as writer.
4954 */
4955 (void) rw_rdlock(&ztest_name_lock);
4956
4957 /*
4958 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
4959 */
4960 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4961
4962 if (ztest_random(2) == 0) {
4963 /*
4964 * Inject errors on a normal data device or slog device.
4965 */
4966 top = ztest_random_vdev_top(spa, B_TRUE);
4967 leaf = ztest_random(leaves) + zs->zs_splits;
4968
4969 /*
4970 * Generate paths to the first leaf in this top-level vdev,
4971 * and to the random leaf we selected. We'll induce transient
4972 * write failures and random online/offline activity on leaf 0,
4973 * and we'll write random garbage to the randomly chosen leaf.
4974 */
4975 (void) snprintf(path0, MAXPATHLEN, ztest_dev_template,
4976 ztest_opts.zo_dir, ztest_opts.zo_pool,
4977 top * leaves + zs->zs_splits);
4978 (void) snprintf(pathrand, MAXPATHLEN, ztest_dev_template,
4979 ztest_opts.zo_dir, ztest_opts.zo_pool,
4980 top * leaves + leaf);
4981
4982 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
4983 if (vd0 != NULL && vd0->vdev_top->vdev_islog)
4984 islog = B_TRUE;
4985
4986 /*
4987 * If the top-level vdev needs to be resilvered
4988 * then we only allow faults on the device that is
4989 * resilvering.
4990 */
4991 if (vd0 != NULL && maxfaults != 1 &&
4992 (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) ||
4993 vd0->vdev_resilver_txg != 0)) {
4994 /*
4995 * Make vd0 explicitly claim to be unreadable,
4996 * or unwriteable, or reach behind its back
4997 * and close the underlying fd. We can do this if
4998 * maxfaults == 0 because we'll fail and reexecute,
4999 * and we can do it if maxfaults >= 2 because we'll
5000 * have enough redundancy. If maxfaults == 1, the
5001 * combination of this with injection of random data
5002 * corruption below exceeds the pool's fault tolerance.
5003 */
5004 vdev_file_t *vf = vd0->vdev_tsd;
5005
5006 if (vf != NULL && ztest_random(3) == 0) {
5007 (void) close(vf->vf_vnode->v_fd);
5008 vf->vf_vnode->v_fd = -1;
5009 } else if (ztest_random(2) == 0) {
5010 vd0->vdev_cant_read = B_TRUE;
5011 } else {
5012 vd0->vdev_cant_write = B_TRUE;
5013 }
5014 guid0 = vd0->vdev_guid;
5015 }
5016 } else {
5017 /*
5018 * Inject errors on an l2cache device.
5019 */
5020 spa_aux_vdev_t *sav = &spa->spa_l2cache;
5021
5022 if (sav->sav_count == 0) {
5023 spa_config_exit(spa, SCL_STATE, FTAG);
5024 (void) rw_unlock(&ztest_name_lock);
5025 goto out;
5026 }
5027 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
5028 guid0 = vd0->vdev_guid;
5029 (void) strcpy(path0, vd0->vdev_path);
5030 (void) strcpy(pathrand, vd0->vdev_path);
5031
5032 leaf = 0;
5033 leaves = 1;
5034 maxfaults = INT_MAX; /* no limit on cache devices */
5035 }
5036
5037 spa_config_exit(spa, SCL_STATE, FTAG);
5038 (void) rw_unlock(&ztest_name_lock);
5039
5040 /*
5041 * If we can tolerate two or more faults, or we're dealing
5042 * with a slog, randomly online/offline vd0.
5043 */
5044 if ((maxfaults >= 2 || islog) && guid0 != 0) {
5045 if (ztest_random(10) < 6) {
5046 int flags = (ztest_random(2) == 0 ?
5047 ZFS_OFFLINE_TEMPORARY : 0);
5048
5049 /*
5050 * We have to grab the zs_name_lock as writer to
5051 * prevent a race between offlining a slog and
5052 * destroying a dataset. Offlining the slog will
5053 * grab a reference on the dataset which may cause
5054 * dsl_destroy_head() to fail with EBUSY thus
5055 * leaving the dataset in an inconsistent state.
5056 */
5057 if (islog)
5058 (void) rw_wrlock(&ztest_name_lock);
5059
5060 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY);
5061
5062 if (islog)
5063 (void) rw_unlock(&ztest_name_lock);
5064 } else {
5065 /*
5066 * Ideally we would like to be able to randomly
5067 * call vdev_[on|off]line without holding locks
5068 * to force unpredictable failures but the side
5069 * effects of vdev_[on|off]line prevent us from
5070 * doing so. We grab the ztest_vdev_lock here to
5071 * prevent a race between injection testing and
5072 * aux_vdev removal.
5073 */
5074 mutex_enter(&ztest_vdev_lock);
5075 (void) vdev_online(spa, guid0, 0, NULL);
5076 mutex_exit(&ztest_vdev_lock);
5077 }
5078 }
5079
5080 if (maxfaults == 0)
5081 goto out;
5082
5083 /*
5084 * We have at least single-fault tolerance, so inject data corruption.
5085 */
5086 fd = open(pathrand, O_RDWR);
5087
5088 if (fd == -1) /* we hit a gap in the device namespace */
5089 goto out;
5090
5091 fsize = lseek(fd, 0, SEEK_END);
5092
5093 while (--iters != 0) {
5094 offset = ztest_random(fsize / (leaves << bshift)) *
5095 (leaves << bshift) + (leaf << bshift) +
5096 (ztest_random(1ULL << (bshift - 1)) & -8ULL);
5097
5098 if (offset >= fsize)
5099 continue;
5100
5101 mutex_enter(&ztest_vdev_lock);
5102 if (mirror_save != zs->zs_mirrors) {
5103 mutex_exit(&ztest_vdev_lock);
5104 (void) close(fd);
5105 goto out;
5106 }
5107
5108 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
5109 fatal(1, "can't inject bad word at 0x%llx in %s",
5110 offset, pathrand);
5111
5112 mutex_exit(&ztest_vdev_lock);
5113
5114 if (ztest_opts.zo_verbose >= 7)
5115 (void) printf("injected bad word into %s,"
5116 " offset 0x%llx\n", pathrand, (u_longlong_t)offset);
5117 }
5118
5119 (void) close(fd);
5120 out:
5121 umem_free(path0, MAXPATHLEN);
5122 umem_free(pathrand, MAXPATHLEN);
5123 }
5124
5125 /*
5126 * Verify that DDT repair works as expected.
5127 */
5128 void
5129 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id)
5130 {
5131 ztest_shared_t *zs = ztest_shared;
5132 spa_t *spa = ztest_spa;
5133 objset_t *os = zd->zd_os;
5134 ztest_od_t *od;
5135 uint64_t object, blocksize, txg, pattern, psize;
5136 enum zio_checksum checksum = spa_dedup_checksum(spa);
5137 dmu_buf_t *db;
5138 dmu_tx_t *tx;
5139 void *buf;
5140 blkptr_t blk;
5141 int copies = 2 * ZIO_DEDUPDITTO_MIN;
5142 int i;
5143
5144 blocksize = ztest_random_blocksize();
5145 blocksize = MIN(blocksize, 2048); /* because we write so many */
5146
5147 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5148 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
5149
5150 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
5151 umem_free(od, sizeof (ztest_od_t));
5152 return;
5153 }
5154
5155 /*
5156 * Take the name lock as writer to prevent anyone else from changing
5157 * the pool and dataset properies we need to maintain during this test.
5158 */
5159 (void) rw_wrlock(&ztest_name_lock);
5160
5161 if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum,
5162 B_FALSE) != 0 ||
5163 ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1,
5164 B_FALSE) != 0) {
5165 (void) rw_unlock(&ztest_name_lock);
5166 umem_free(od, sizeof (ztest_od_t));
5167 return;
5168 }
5169
5170 object = od[0].od_object;
5171 blocksize = od[0].od_blocksize;
5172 pattern = zs->zs_guid ^ dmu_objset_fsid_guid(os);
5173
5174 ASSERT(object != 0);
5175
5176 tx = dmu_tx_create(os);
5177 dmu_tx_hold_write(tx, object, 0, copies * blocksize);
5178 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
5179 if (txg == 0) {
5180 (void) rw_unlock(&ztest_name_lock);
5181 umem_free(od, sizeof (ztest_od_t));
5182 return;
5183 }
5184
5185 /*
5186 * Write all the copies of our block.
5187 */
5188 for (i = 0; i < copies; i++) {
5189 uint64_t offset = i * blocksize;
5190 int error = dmu_buf_hold(os, object, offset, FTAG, &db,
5191 DMU_READ_NO_PREFETCH);
5192 if (error != 0) {
5193 fatal(B_FALSE, "dmu_buf_hold(%p, %llu, %llu) = %u",
5194 os, (long long)object, (long long) offset, error);
5195 }
5196 ASSERT(db->db_offset == offset);
5197 ASSERT(db->db_size == blocksize);
5198 ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) ||
5199 ztest_pattern_match(db->db_data, db->db_size, 0ULL));
5200 dmu_buf_will_fill(db, tx);
5201 ztest_pattern_set(db->db_data, db->db_size, pattern);
5202 dmu_buf_rele(db, FTAG);
5203 }
5204
5205 dmu_tx_commit(tx);
5206 txg_wait_synced(spa_get_dsl(spa), txg);
5207
5208 /*
5209 * Find out what block we got.
5210 */
5211 VERIFY0(dmu_buf_hold(os, object, 0, FTAG, &db,
5212 DMU_READ_NO_PREFETCH));
5213 blk = *((dmu_buf_impl_t *)db)->db_blkptr;
5214 dmu_buf_rele(db, FTAG);
5215
5216 /*
5217 * Damage the block. Dedup-ditto will save us when we read it later.
5218 */
5219 psize = BP_GET_PSIZE(&blk);
5220 buf = zio_buf_alloc(psize);
5221 ztest_pattern_set(buf, psize, ~pattern);
5222
5223 (void) zio_wait(zio_rewrite(NULL, spa, 0, &blk,
5224 buf, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE,
5225 ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL));
5226
5227 zio_buf_free(buf, psize);
5228
5229 (void) rw_unlock(&ztest_name_lock);
5230 umem_free(od, sizeof (ztest_od_t));
5231 }
5232
5233 /*
5234 * Scrub the pool.
5235 */
5236 /* ARGSUSED */
5237 void
5238 ztest_scrub(ztest_ds_t *zd, uint64_t id)
5239 {
5240 spa_t *spa = ztest_spa;
5241
5242 (void) spa_scan(spa, POOL_SCAN_SCRUB);
5243 (void) poll(NULL, 0, 100); /* wait a moment, then force a restart */
5244 (void) spa_scan(spa, POOL_SCAN_SCRUB);
5245 }
5246
5247 /*
5248 * Change the guid for the pool.
5249 */
5250 /* ARGSUSED */
5251 void
5252 ztest_reguid(ztest_ds_t *zd, uint64_t id)
5253 {
5254 spa_t *spa = ztest_spa;
5255 uint64_t orig, load;
5256 int error;
5257
5258 orig = spa_guid(spa);
5259 load = spa_load_guid(spa);
5260
5261 (void) rw_wrlock(&ztest_name_lock);
5262 error = spa_change_guid(spa);
5263 (void) rw_unlock(&ztest_name_lock);
5264
5265 if (error != 0)
5266 return;
5267
5268 if (ztest_opts.zo_verbose >= 4) {
5269 (void) printf("Changed guid old %llu -> %llu\n",
5270 (u_longlong_t)orig, (u_longlong_t)spa_guid(spa));
5271 }
5272
5273 VERIFY3U(orig, !=, spa_guid(spa));
5274 VERIFY3U(load, ==, spa_load_guid(spa));
5275 }
5276
5277 /*
5278 * Rename the pool to a different name and then rename it back.
5279 */
5280 /* ARGSUSED */
5281 void
5282 ztest_spa_rename(ztest_ds_t *zd, uint64_t id)
5283 {
5284 char *oldname, *newname;
5285 spa_t *spa;
5286
5287 (void) rw_wrlock(&ztest_name_lock);
5288
5289 oldname = ztest_opts.zo_pool;
5290 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL);
5291 (void) strcpy(newname, oldname);
5292 (void) strcat(newname, "_tmp");
5293
5294 /*
5295 * Do the rename
5296 */
5297 VERIFY3U(0, ==, spa_rename(oldname, newname));
5298
5299 /*
5300 * Try to open it under the old name, which shouldn't exist
5301 */
5302 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
5303
5304 /*
5305 * Open it under the new name and make sure it's still the same spa_t.
5306 */
5307 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
5308
5309 ASSERT(spa == ztest_spa);
5310 spa_close(spa, FTAG);
5311
5312 /*
5313 * Rename it back to the original
5314 */
5315 VERIFY3U(0, ==, spa_rename(newname, oldname));
5316
5317 /*
5318 * Make sure it can still be opened
5319 */
5320 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
5321
5322 ASSERT(spa == ztest_spa);
5323 spa_close(spa, FTAG);
5324
5325 umem_free(newname, strlen(newname) + 1);
5326
5327 (void) rw_unlock(&ztest_name_lock);
5328 }
5329
5330 /*
5331 * Verify pool integrity by running zdb.
5332 */
5333 static void
5334 ztest_run_zdb(char *pool)
5335 {
5336 int status;
5337 char *bin;
5338 char *zdb;
5339 char *zbuf;
5340 FILE *fp;
5341
5342 bin = umem_alloc(MAXPATHLEN + MAXNAMELEN + 20, UMEM_NOFAIL);
5343 zdb = umem_alloc(MAXPATHLEN + MAXNAMELEN + 20, UMEM_NOFAIL);
5344 zbuf = umem_alloc(1024, UMEM_NOFAIL);
5345
5346 VERIFY(realpath(getexecname(), bin) != NULL);
5347 if (strncmp(bin, "/usr/sbin/ztest", 15) == 0) {
5348 strcpy(bin, "/usr/sbin/zdb"); /* Installed */
5349 } else if (strncmp(bin, "/sbin/ztest", 11) == 0) {
5350 strcpy(bin, "/sbin/zdb"); /* Installed */
5351 } else {
5352 strstr(bin, "/ztest/")[0] = '\0'; /* In-tree */
5353 strcat(bin, "/zdb/zdb");
5354 }
5355
5356 (void) sprintf(zdb,
5357 "%s -bcc%s%s -d -U %s %s",
5358 bin,
5359 ztest_opts.zo_verbose >= 3 ? "s" : "",
5360 ztest_opts.zo_verbose >= 4 ? "v" : "",
5361 spa_config_path,
5362 pool);
5363
5364 if (ztest_opts.zo_verbose >= 5)
5365 (void) printf("Executing %s\n", strstr(zdb, "zdb "));
5366
5367 fp = popen(zdb, "r");
5368
5369 while (fgets(zbuf, 1024, fp) != NULL)
5370 if (ztest_opts.zo_verbose >= 3)
5371 (void) printf("%s", zbuf);
5372
5373 status = pclose(fp);
5374
5375 if (status == 0)
5376 goto out;
5377
5378 ztest_dump_core = 0;
5379 if (WIFEXITED(status))
5380 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status));
5381 else
5382 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status));
5383 out:
5384 umem_free(bin, MAXPATHLEN + MAXNAMELEN + 20);
5385 umem_free(zdb, MAXPATHLEN + MAXNAMELEN + 20);
5386 umem_free(zbuf, 1024);
5387 }
5388
5389 static void
5390 ztest_walk_pool_directory(char *header)
5391 {
5392 spa_t *spa = NULL;
5393
5394 if (ztest_opts.zo_verbose >= 6)
5395 (void) printf("%s\n", header);
5396
5397 mutex_enter(&spa_namespace_lock);
5398 while ((spa = spa_next(spa)) != NULL)
5399 if (ztest_opts.zo_verbose >= 6)
5400 (void) printf("\t%s\n", spa_name(spa));
5401 mutex_exit(&spa_namespace_lock);
5402 }
5403
5404 static void
5405 ztest_spa_import_export(char *oldname, char *newname)
5406 {
5407 nvlist_t *config, *newconfig;
5408 uint64_t pool_guid;
5409 spa_t *spa;
5410 int error;
5411
5412 if (ztest_opts.zo_verbose >= 4) {
5413 (void) printf("import/export: old = %s, new = %s\n",
5414 oldname, newname);
5415 }
5416
5417 /*
5418 * Clean up from previous runs.
5419 */
5420 (void) spa_destroy(newname);
5421
5422 /*
5423 * Get the pool's configuration and guid.
5424 */
5425 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
5426
5427 /*
5428 * Kick off a scrub to tickle scrub/export races.
5429 */
5430 if (ztest_random(2) == 0)
5431 (void) spa_scan(spa, POOL_SCAN_SCRUB);
5432
5433 pool_guid = spa_guid(spa);
5434 spa_close(spa, FTAG);
5435
5436 ztest_walk_pool_directory("pools before export");
5437
5438 /*
5439 * Export it.
5440 */
5441 VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE));
5442
5443 ztest_walk_pool_directory("pools after export");
5444
5445 /*
5446 * Try to import it.
5447 */
5448 newconfig = spa_tryimport(config);
5449 ASSERT(newconfig != NULL);
5450 nvlist_free(newconfig);
5451
5452 /*
5453 * Import it under the new name.
5454 */
5455 error = spa_import(newname, config, NULL, 0);
5456 if (error != 0) {
5457 dump_nvlist(config, 0);
5458 fatal(B_FALSE, "couldn't import pool %s as %s: error %u",
5459 oldname, newname, error);
5460 }
5461
5462 ztest_walk_pool_directory("pools after import");
5463
5464 /*
5465 * Try to import it again -- should fail with EEXIST.
5466 */
5467 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0));
5468
5469 /*
5470 * Try to import it under a different name -- should fail with EEXIST.
5471 */
5472 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0));
5473
5474 /*
5475 * Verify that the pool is no longer visible under the old name.
5476 */
5477 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
5478
5479 /*
5480 * Verify that we can open and close the pool using the new name.
5481 */
5482 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
5483 ASSERT(pool_guid == spa_guid(spa));
5484 spa_close(spa, FTAG);
5485
5486 nvlist_free(config);
5487 }
5488
5489 static void
5490 ztest_resume(spa_t *spa)
5491 {
5492 if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6)
5493 (void) printf("resuming from suspended state\n");
5494 spa_vdev_state_enter(spa, SCL_NONE);
5495 vdev_clear(spa, NULL);
5496 (void) spa_vdev_state_exit(spa, NULL, 0);
5497 (void) zio_resume(spa);
5498 }
5499
5500 static void *
5501 ztest_resume_thread(void *arg)
5502 {
5503 spa_t *spa = arg;
5504
5505 while (!ztest_exiting) {
5506 if (spa_suspended(spa))
5507 ztest_resume(spa);
5508 (void) poll(NULL, 0, 100);
5509 }
5510
5511 thread_exit();
5512
5513 return (NULL);
5514 }
5515
5516 #define GRACE 300
5517
5518 #if 0
5519 static void
5520 ztest_deadman_alarm(int sig)
5521 {
5522 fatal(0, "failed to complete within %d seconds of deadline", GRACE);
5523 }
5524 #endif
5525
5526 static void
5527 ztest_execute(int test, ztest_info_t *zi, uint64_t id)
5528 {
5529 ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets];
5530 ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test);
5531 hrtime_t functime = gethrtime();
5532 int i;
5533
5534 for (i = 0; i < zi->zi_iters; i++)
5535 zi->zi_func(zd, id);
5536
5537 functime = gethrtime() - functime;
5538
5539 atomic_add_64(&zc->zc_count, 1);
5540 atomic_add_64(&zc->zc_time, functime);
5541
5542 if (ztest_opts.zo_verbose >= 4) {
5543 Dl_info dli;
5544 (void) dladdr((void *)zi->zi_func, &dli);
5545 (void) printf("%6.2f sec in %s\n",
5546 (double)functime / NANOSEC, dli.dli_sname);
5547 }
5548 }
5549
5550 static void *
5551 ztest_thread(void *arg)
5552 {
5553 int rand;
5554 uint64_t id = (uintptr_t)arg;
5555 ztest_shared_t *zs = ztest_shared;
5556 uint64_t call_next;
5557 hrtime_t now;
5558 ztest_info_t *zi;
5559 ztest_shared_callstate_t *zc;
5560
5561 while ((now = gethrtime()) < zs->zs_thread_stop) {
5562 /*
5563 * See if it's time to force a crash.
5564 */
5565 if (now > zs->zs_thread_kill)
5566 ztest_kill(zs);
5567
5568 /*
5569 * If we're getting ENOSPC with some regularity, stop.
5570 */
5571 if (zs->zs_enospc_count > 10)
5572 break;
5573
5574 /*
5575 * Pick a random function to execute.
5576 */
5577 rand = ztest_random(ZTEST_FUNCS);
5578 zi = &ztest_info[rand];
5579 zc = ZTEST_GET_SHARED_CALLSTATE(rand);
5580 call_next = zc->zc_next;
5581
5582 if (now >= call_next &&
5583 atomic_cas_64(&zc->zc_next, call_next, call_next +
5584 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) {
5585 ztest_execute(rand, zi, id);
5586 }
5587 }
5588
5589 thread_exit();
5590
5591 return (NULL);
5592 }
5593
5594 static void
5595 ztest_dataset_name(char *dsname, char *pool, int d)
5596 {
5597 (void) snprintf(dsname, MAXNAMELEN, "%s/ds_%d", pool, d);
5598 }
5599
5600 static void
5601 ztest_dataset_destroy(int d)
5602 {
5603 char name[MAXNAMELEN];
5604 int t;
5605
5606 ztest_dataset_name(name, ztest_opts.zo_pool, d);
5607
5608 if (ztest_opts.zo_verbose >= 3)
5609 (void) printf("Destroying %s to free up space\n", name);
5610
5611 /*
5612 * Cleanup any non-standard clones and snapshots. In general,
5613 * ztest thread t operates on dataset (t % zopt_datasets),
5614 * so there may be more than one thing to clean up.
5615 */
5616 for (t = d; t < ztest_opts.zo_threads;
5617 t += ztest_opts.zo_datasets)
5618 ztest_dsl_dataset_cleanup(name, t);
5619
5620 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
5621 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
5622 }
5623
5624 static void
5625 ztest_dataset_dirobj_verify(ztest_ds_t *zd)
5626 {
5627 uint64_t usedobjs, dirobjs, scratch;
5628
5629 /*
5630 * ZTEST_DIROBJ is the object directory for the entire dataset.
5631 * Therefore, the number of objects in use should equal the
5632 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
5633 * If not, we have an object leak.
5634 *
5635 * Note that we can only check this in ztest_dataset_open(),
5636 * when the open-context and syncing-context values agree.
5637 * That's because zap_count() returns the open-context value,
5638 * while dmu_objset_space() returns the rootbp fill count.
5639 */
5640 VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
5641 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
5642 ASSERT3U(dirobjs + 1, ==, usedobjs);
5643 }
5644
5645 static int
5646 ztest_dataset_open(int d)
5647 {
5648 ztest_ds_t *zd = &ztest_ds[d];
5649 uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq;
5650 objset_t *os;
5651 zilog_t *zilog;
5652 char name[MAXNAMELEN];
5653 int error;
5654
5655 ztest_dataset_name(name, ztest_opts.zo_pool, d);
5656
5657 (void) rw_rdlock(&ztest_name_lock);
5658
5659 error = ztest_dataset_create(name);
5660 if (error == ENOSPC) {
5661 (void) rw_unlock(&ztest_name_lock);
5662 ztest_record_enospc(FTAG);
5663 return (error);
5664 }
5665 ASSERT(error == 0 || error == EEXIST);
5666
5667 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, zd, &os));
5668 (void) rw_unlock(&ztest_name_lock);
5669
5670 ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os);
5671
5672 zilog = zd->zd_zilog;
5673
5674 if (zilog->zl_header->zh_claim_lr_seq != 0 &&
5675 zilog->zl_header->zh_claim_lr_seq < committed_seq)
5676 fatal(0, "missing log records: claimed %llu < committed %llu",
5677 zilog->zl_header->zh_claim_lr_seq, committed_seq);
5678
5679 ztest_dataset_dirobj_verify(zd);
5680
5681 zil_replay(os, zd, ztest_replay_vector);
5682
5683 ztest_dataset_dirobj_verify(zd);
5684
5685 if (ztest_opts.zo_verbose >= 6)
5686 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n",
5687 zd->zd_name,
5688 (u_longlong_t)zilog->zl_parse_blk_count,
5689 (u_longlong_t)zilog->zl_parse_lr_count,
5690 (u_longlong_t)zilog->zl_replaying_seq);
5691
5692 zilog = zil_open(os, ztest_get_data);
5693
5694 if (zilog->zl_replaying_seq != 0 &&
5695 zilog->zl_replaying_seq < committed_seq)
5696 fatal(0, "missing log records: replayed %llu < committed %llu",
5697 zilog->zl_replaying_seq, committed_seq);
5698
5699 return (0);
5700 }
5701
5702 static void
5703 ztest_dataset_close(int d)
5704 {
5705 ztest_ds_t *zd = &ztest_ds[d];
5706
5707 zil_close(zd->zd_zilog);
5708 dmu_objset_disown(zd->zd_os, zd);
5709
5710 ztest_zd_fini(zd);
5711 }
5712
5713 /*
5714 * Kick off threads to run tests on all datasets in parallel.
5715 */
5716 static void
5717 ztest_run(ztest_shared_t *zs)
5718 {
5719 kt_did_t *tid;
5720 spa_t *spa;
5721 objset_t *os;
5722 kthread_t *resume_thread;
5723 uint64_t object;
5724 int error;
5725 int t, d;
5726
5727 ztest_exiting = B_FALSE;
5728
5729 /*
5730 * Initialize parent/child shared state.
5731 */
5732 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
5733 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0);
5734
5735 zs->zs_thread_start = gethrtime();
5736 zs->zs_thread_stop =
5737 zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC;
5738 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
5739 zs->zs_thread_kill = zs->zs_thread_stop;
5740 if (ztest_random(100) < ztest_opts.zo_killrate) {
5741 zs->zs_thread_kill -=
5742 ztest_random(ztest_opts.zo_passtime * NANOSEC);
5743 }
5744
5745 mutex_init(&zcl.zcl_callbacks_lock, NULL, MUTEX_DEFAULT, NULL);
5746
5747 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
5748 offsetof(ztest_cb_data_t, zcd_node));
5749
5750 /*
5751 * Open our pool.
5752 */
5753 kernel_init(FREAD | FWRITE);
5754 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
5755 spa->spa_debug = B_TRUE;
5756 metaslab_preload_limit = ztest_random(20) + 1;
5757 ztest_spa = spa;
5758
5759 VERIFY0(dmu_objset_own(ztest_opts.zo_pool,
5760 DMU_OST_ANY, B_TRUE, FTAG, &os));
5761 zs->zs_guid = dmu_objset_fsid_guid(os);
5762 dmu_objset_disown(os, FTAG);
5763
5764 spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN;
5765
5766 /*
5767 * We don't expect the pool to suspend unless maxfaults == 0,
5768 * in which case ztest_fault_inject() temporarily takes away
5769 * the only valid replica.
5770 */
5771 if (MAXFAULTS() == 0)
5772 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT;
5773 else
5774 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC;
5775
5776 /*
5777 * Create a thread to periodically resume suspended I/O.
5778 */
5779 VERIFY3P((resume_thread = zk_thread_create(NULL, 0,
5780 (thread_func_t)ztest_resume_thread, spa, TS_RUN, NULL, 0, 0,
5781 PTHREAD_CREATE_JOINABLE)), !=, NULL);
5782
5783 #if 0
5784 /*
5785 * Set a deadman alarm to abort() if we hang.
5786 */
5787 signal(SIGALRM, ztest_deadman_alarm);
5788 alarm((zs->zs_thread_stop - zs->zs_thread_start) / NANOSEC + GRACE);
5789 #endif
5790
5791 /*
5792 * Verify that we can safely inquire about about any object,
5793 * whether it's allocated or not. To make it interesting,
5794 * we probe a 5-wide window around each power of two.
5795 * This hits all edge cases, including zero and the max.
5796 */
5797 for (t = 0; t < 64; t++) {
5798 for (d = -5; d <= 5; d++) {
5799 error = dmu_object_info(spa->spa_meta_objset,
5800 (1ULL << t) + d, NULL);
5801 ASSERT(error == 0 || error == ENOENT ||
5802 error == EINVAL);
5803 }
5804 }
5805
5806 /*
5807 * If we got any ENOSPC errors on the previous run, destroy something.
5808 */
5809 if (zs->zs_enospc_count != 0) {
5810 int d = ztest_random(ztest_opts.zo_datasets);
5811 ztest_dataset_destroy(d);
5812 }
5813 zs->zs_enospc_count = 0;
5814
5815 tid = umem_zalloc(ztest_opts.zo_threads * sizeof (kt_did_t),
5816 UMEM_NOFAIL);
5817
5818 if (ztest_opts.zo_verbose >= 4)
5819 (void) printf("starting main threads...\n");
5820
5821 /*
5822 * Kick off all the tests that run in parallel.
5823 */
5824 for (t = 0; t < ztest_opts.zo_threads; t++) {
5825 kthread_t *thread;
5826
5827 if (t < ztest_opts.zo_datasets &&
5828 ztest_dataset_open(t) != 0)
5829 return;
5830
5831 VERIFY3P(thread = zk_thread_create(NULL, 0,
5832 (thread_func_t)ztest_thread,
5833 (void *)(uintptr_t)t, TS_RUN, NULL, 0, 0,
5834 PTHREAD_CREATE_JOINABLE), !=, NULL);
5835 tid[t] = thread->t_tid;
5836 }
5837
5838 /*
5839 * Wait for all of the tests to complete. We go in reverse order
5840 * so we don't close datasets while threads are still using them.
5841 */
5842 for (t = ztest_opts.zo_threads - 1; t >= 0; t--) {
5843 thread_join(tid[t]);
5844 if (t < ztest_opts.zo_datasets)
5845 ztest_dataset_close(t);
5846 }
5847
5848 txg_wait_synced(spa_get_dsl(spa), 0);
5849
5850 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
5851 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
5852
5853 if (ztest_opts.zo_verbose >= 3)
5854 zfs_dbgmsg_print(FTAG);
5855
5856 umem_free(tid, ztest_opts.zo_threads * sizeof (kt_did_t));
5857
5858 /* Kill the resume thread */
5859 ztest_exiting = B_TRUE;
5860 thread_join(resume_thread->t_tid);
5861 ztest_resume(spa);
5862
5863 /*
5864 * Right before closing the pool, kick off a bunch of async I/O;
5865 * spa_close() should wait for it to complete.
5866 */
5867 for (object = 1; object < 50; object++)
5868 dmu_prefetch(spa->spa_meta_objset, object, 0, 1ULL << 20);
5869
5870 /* Verify that at least one commit cb was called in a timely fashion */
5871 if (zc_cb_counter >= ZTEST_COMMIT_CB_MIN_REG)
5872 VERIFY0(zc_min_txg_delay);
5873
5874 spa_close(spa, FTAG);
5875
5876 /*
5877 * Verify that we can loop over all pools.
5878 */
5879 mutex_enter(&spa_namespace_lock);
5880 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
5881 if (ztest_opts.zo_verbose > 3)
5882 (void) printf("spa_next: found %s\n", spa_name(spa));
5883 mutex_exit(&spa_namespace_lock);
5884
5885 /*
5886 * Verify that we can export the pool and reimport it under a
5887 * different name.
5888 */
5889 if (ztest_random(2) == 0) {
5890 char name[MAXNAMELEN];
5891 (void) snprintf(name, MAXNAMELEN, "%s_import",
5892 ztest_opts.zo_pool);
5893 ztest_spa_import_export(ztest_opts.zo_pool, name);
5894 ztest_spa_import_export(name, ztest_opts.zo_pool);
5895 }
5896
5897 kernel_fini();
5898
5899 list_destroy(&zcl.zcl_callbacks);
5900 mutex_destroy(&zcl.zcl_callbacks_lock);
5901 (void) rwlock_destroy(&ztest_name_lock);
5902 mutex_destroy(&ztest_vdev_lock);
5903 }
5904
5905 static void
5906 ztest_freeze(void)
5907 {
5908 ztest_ds_t *zd = &ztest_ds[0];
5909 spa_t *spa;
5910 int numloops = 0;
5911
5912 if (ztest_opts.zo_verbose >= 3)
5913 (void) printf("testing spa_freeze()...\n");
5914
5915 kernel_init(FREAD | FWRITE);
5916 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
5917 VERIFY3U(0, ==, ztest_dataset_open(0));
5918 spa->spa_debug = B_TRUE;
5919 ztest_spa = spa;
5920
5921 /*
5922 * Force the first log block to be transactionally allocated.
5923 * We have to do this before we freeze the pool -- otherwise
5924 * the log chain won't be anchored.
5925 */
5926 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
5927 ztest_dmu_object_alloc_free(zd, 0);
5928 zil_commit(zd->zd_zilog, 0);
5929 }
5930
5931 txg_wait_synced(spa_get_dsl(spa), 0);
5932
5933 /*
5934 * Freeze the pool. This stops spa_sync() from doing anything,
5935 * so that the only way to record changes from now on is the ZIL.
5936 */
5937 spa_freeze(spa);
5938
5939 /*
5940 * Run tests that generate log records but don't alter the pool config
5941 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
5942 * We do a txg_wait_synced() after each iteration to force the txg
5943 * to increase well beyond the last synced value in the uberblock.
5944 * The ZIL should be OK with that.
5945 */
5946 while (ztest_random(10) != 0 &&
5947 numloops++ < ztest_opts.zo_maxloops) {
5948 ztest_dmu_write_parallel(zd, 0);
5949 ztest_dmu_object_alloc_free(zd, 0);
5950 txg_wait_synced(spa_get_dsl(spa), 0);
5951 }
5952
5953 /*
5954 * Commit all of the changes we just generated.
5955 */
5956 zil_commit(zd->zd_zilog, 0);
5957 txg_wait_synced(spa_get_dsl(spa), 0);
5958
5959 /*
5960 * Close our dataset and close the pool.
5961 */
5962 ztest_dataset_close(0);
5963 spa_close(spa, FTAG);
5964 kernel_fini();
5965
5966 /*
5967 * Open and close the pool and dataset to induce log replay.
5968 */
5969 kernel_init(FREAD | FWRITE);
5970 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
5971 ASSERT(spa_freeze_txg(spa) == UINT64_MAX);
5972 VERIFY3U(0, ==, ztest_dataset_open(0));
5973 ztest_dataset_close(0);
5974
5975 spa->spa_debug = B_TRUE;
5976 ztest_spa = spa;
5977 txg_wait_synced(spa_get_dsl(spa), 0);
5978 ztest_reguid(NULL, 0);
5979
5980 spa_close(spa, FTAG);
5981 kernel_fini();
5982 }
5983
5984 void
5985 print_time(hrtime_t t, char *timebuf)
5986 {
5987 hrtime_t s = t / NANOSEC;
5988 hrtime_t m = s / 60;
5989 hrtime_t h = m / 60;
5990 hrtime_t d = h / 24;
5991
5992 s -= m * 60;
5993 m -= h * 60;
5994 h -= d * 24;
5995
5996 timebuf[0] = '\0';
5997
5998 if (d)
5999 (void) sprintf(timebuf,
6000 "%llud%02lluh%02llum%02llus", d, h, m, s);
6001 else if (h)
6002 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
6003 else if (m)
6004 (void) sprintf(timebuf, "%llum%02llus", m, s);
6005 else
6006 (void) sprintf(timebuf, "%llus", s);
6007 }
6008
6009 static nvlist_t *
6010 make_random_props(void)
6011 {
6012 nvlist_t *props;
6013
6014 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
6015 if (ztest_random(2) == 0)
6016 return (props);
6017 VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0);
6018
6019 return (props);
6020 }
6021
6022 /*
6023 * Create a storage pool with the given name and initial vdev size.
6024 * Then test spa_freeze() functionality.
6025 */
6026 static void
6027 ztest_init(ztest_shared_t *zs)
6028 {
6029 spa_t *spa;
6030 nvlist_t *nvroot, *props;
6031 int i;
6032
6033 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
6034 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0);
6035
6036 kernel_init(FREAD | FWRITE);
6037
6038 /*
6039 * Create the storage pool.
6040 */
6041 (void) spa_destroy(ztest_opts.zo_pool);
6042 ztest_shared->zs_vdev_next_leaf = 0;
6043 zs->zs_splits = 0;
6044 zs->zs_mirrors = ztest_opts.zo_mirrors;
6045 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
6046 0, ztest_opts.zo_raidz, zs->zs_mirrors, 1);
6047 props = make_random_props();
6048 for (i = 0; i < SPA_FEATURES; i++) {
6049 char *buf;
6050 VERIFY3S(-1, !=, asprintf(&buf, "feature@%s",
6051 spa_feature_table[i].fi_uname));
6052 VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0));
6053 free(buf);
6054 }
6055 VERIFY3U(0, ==, spa_create(ztest_opts.zo_pool, nvroot, props, NULL));
6056 nvlist_free(nvroot);
6057 nvlist_free(props);
6058
6059 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
6060 zs->zs_metaslab_sz =
6061 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
6062 spa_close(spa, FTAG);
6063
6064 kernel_fini();
6065
6066 ztest_run_zdb(ztest_opts.zo_pool);
6067
6068 ztest_freeze();
6069
6070 ztest_run_zdb(ztest_opts.zo_pool);
6071
6072 (void) rwlock_destroy(&ztest_name_lock);
6073 mutex_destroy(&ztest_vdev_lock);
6074 }
6075
6076 static void
6077 setup_data_fd(void)
6078 {
6079 static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX";
6080
6081 ztest_fd_data = mkstemp(ztest_name_data);
6082 ASSERT3S(ztest_fd_data, >=, 0);
6083 (void) unlink(ztest_name_data);
6084 }
6085
6086 static int
6087 shared_data_size(ztest_shared_hdr_t *hdr)
6088 {
6089 int size;
6090
6091 size = hdr->zh_hdr_size;
6092 size += hdr->zh_opts_size;
6093 size += hdr->zh_size;
6094 size += hdr->zh_stats_size * hdr->zh_stats_count;
6095 size += hdr->zh_ds_size * hdr->zh_ds_count;
6096
6097 return (size);
6098 }
6099
6100 static void
6101 setup_hdr(void)
6102 {
6103 int size;
6104 ztest_shared_hdr_t *hdr;
6105
6106 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
6107 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
6108 VERIFY3P(hdr, !=, MAP_FAILED);
6109
6110 VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t)));
6111
6112 hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t);
6113 hdr->zh_opts_size = sizeof (ztest_shared_opts_t);
6114 hdr->zh_size = sizeof (ztest_shared_t);
6115 hdr->zh_stats_size = sizeof (ztest_shared_callstate_t);
6116 hdr->zh_stats_count = ZTEST_FUNCS;
6117 hdr->zh_ds_size = sizeof (ztest_shared_ds_t);
6118 hdr->zh_ds_count = ztest_opts.zo_datasets;
6119
6120 size = shared_data_size(hdr);
6121 VERIFY3U(0, ==, ftruncate(ztest_fd_data, size));
6122
6123 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
6124 }
6125
6126 static void
6127 setup_data(void)
6128 {
6129 int size, offset;
6130 ztest_shared_hdr_t *hdr;
6131 uint8_t *buf;
6132
6133 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
6134 PROT_READ, MAP_SHARED, ztest_fd_data, 0);
6135 VERIFY3P(hdr, !=, MAP_FAILED);
6136
6137 size = shared_data_size(hdr);
6138
6139 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
6140 hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()),
6141 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
6142 VERIFY3P(hdr, !=, MAP_FAILED);
6143 buf = (uint8_t *)hdr;
6144
6145 offset = hdr->zh_hdr_size;
6146 ztest_shared_opts = (void *)&buf[offset];
6147 offset += hdr->zh_opts_size;
6148 ztest_shared = (void *)&buf[offset];
6149 offset += hdr->zh_size;
6150 ztest_shared_callstate = (void *)&buf[offset];
6151 offset += hdr->zh_stats_size * hdr->zh_stats_count;
6152 ztest_shared_ds = (void *)&buf[offset];
6153 }
6154
6155 static boolean_t
6156 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp)
6157 {
6158 pid_t pid;
6159 int status;
6160 char *cmdbuf = NULL;
6161
6162 pid = fork();
6163
6164 if (cmd == NULL) {
6165 cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6166 (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN);
6167 cmd = cmdbuf;
6168 }
6169
6170 if (pid == -1)
6171 fatal(1, "fork failed");
6172
6173 if (pid == 0) { /* child */
6174 char *emptyargv[2] = { cmd, NULL };
6175 char fd_data_str[12];
6176
6177 struct rlimit rl = { 1024, 1024 };
6178 (void) setrlimit(RLIMIT_NOFILE, &rl);
6179
6180 (void) close(ztest_fd_rand);
6181 VERIFY(11 >= snprintf(fd_data_str, 12, "%d", ztest_fd_data));
6182 VERIFY(0 == setenv("ZTEST_FD_DATA", fd_data_str, 1));
6183
6184 (void) enable_extended_FILE_stdio(-1, -1);
6185 if (libpath != NULL)
6186 VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1));
6187 (void) execv(cmd, emptyargv);
6188 ztest_dump_core = B_FALSE;
6189 fatal(B_TRUE, "exec failed: %s", cmd);
6190 }
6191
6192 if (cmdbuf != NULL) {
6193 umem_free(cmdbuf, MAXPATHLEN);
6194 cmd = NULL;
6195 }
6196
6197 while (waitpid(pid, &status, 0) != pid)
6198 continue;
6199 if (statusp != NULL)
6200 *statusp = status;
6201
6202 if (WIFEXITED(status)) {
6203 if (WEXITSTATUS(status) != 0) {
6204 (void) fprintf(stderr, "child exited with code %d\n",
6205 WEXITSTATUS(status));
6206 exit(2);
6207 }
6208 return (B_FALSE);
6209 } else if (WIFSIGNALED(status)) {
6210 if (!ignorekill || WTERMSIG(status) != SIGKILL) {
6211 (void) fprintf(stderr, "child died with signal %d\n",
6212 WTERMSIG(status));
6213 exit(3);
6214 }
6215 return (B_TRUE);
6216 } else {
6217 (void) fprintf(stderr, "something strange happened to child\n");
6218 exit(4);
6219 /* NOTREACHED */
6220 }
6221 }
6222
6223 static void
6224 ztest_run_init(void)
6225 {
6226 int i;
6227
6228 ztest_shared_t *zs = ztest_shared;
6229
6230 ASSERT(ztest_opts.zo_init != 0);
6231
6232 /*
6233 * Blow away any existing copy of zpool.cache
6234 */
6235 (void) remove(spa_config_path);
6236
6237 /*
6238 * Create and initialize our storage pool.
6239 */
6240 for (i = 1; i <= ztest_opts.zo_init; i++) {
6241 bzero(zs, sizeof (ztest_shared_t));
6242 if (ztest_opts.zo_verbose >= 3 &&
6243 ztest_opts.zo_init != 1) {
6244 (void) printf("ztest_init(), pass %d\n", i);
6245 }
6246 ztest_init(zs);
6247 }
6248 }
6249
6250 int
6251 main(int argc, char **argv)
6252 {
6253 int kills = 0;
6254 int iters = 0;
6255 int older = 0;
6256 int newer = 0;
6257 ztest_shared_t *zs;
6258 ztest_info_t *zi;
6259 ztest_shared_callstate_t *zc;
6260 char timebuf[100];
6261 char numbuf[6];
6262 spa_t *spa;
6263 char *cmd;
6264 boolean_t hasalt;
6265 int f;
6266 char *fd_data_str = getenv("ZTEST_FD_DATA");
6267
6268 (void) setvbuf(stdout, NULL, _IOLBF, 0);
6269
6270 dprintf_setup(&argc, argv);
6271
6272 ztest_fd_rand = open("/dev/urandom", O_RDONLY);
6273 ASSERT3S(ztest_fd_rand, >=, 0);
6274
6275 if (!fd_data_str) {
6276 process_options(argc, argv);
6277
6278 setup_data_fd();
6279 setup_hdr();
6280 setup_data();
6281 bcopy(&ztest_opts, ztest_shared_opts,
6282 sizeof (*ztest_shared_opts));
6283 } else {
6284 ztest_fd_data = atoi(fd_data_str);
6285 setup_data();
6286 bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts));
6287 }
6288 ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count);
6289
6290 /* Override location of zpool.cache */
6291 VERIFY(asprintf((char **)&spa_config_path, "%s/zpool.cache",
6292 ztest_opts.zo_dir) != -1);
6293
6294 ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t),
6295 UMEM_NOFAIL);
6296 zs = ztest_shared;
6297
6298 if (fd_data_str) {
6299 metaslab_gang_bang = ztest_opts.zo_metaslab_gang_bang;
6300 metaslab_df_alloc_threshold =
6301 zs->zs_metaslab_df_alloc_threshold;
6302
6303 if (zs->zs_do_init)
6304 ztest_run_init();
6305 else
6306 ztest_run(zs);
6307 exit(0);
6308 }
6309
6310 hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0);
6311
6312 if (ztest_opts.zo_verbose >= 1) {
6313 (void) printf("%llu vdevs, %d datasets, %d threads,"
6314 " %llu seconds...\n",
6315 (u_longlong_t)ztest_opts.zo_vdevs,
6316 ztest_opts.zo_datasets,
6317 ztest_opts.zo_threads,
6318 (u_longlong_t)ztest_opts.zo_time);
6319 }
6320
6321 cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
6322 (void) strlcpy(cmd, getexecname(), MAXNAMELEN);
6323
6324 zs->zs_do_init = B_TRUE;
6325 if (strlen(ztest_opts.zo_alt_ztest) != 0) {
6326 if (ztest_opts.zo_verbose >= 1) {
6327 (void) printf("Executing older ztest for "
6328 "initialization: %s\n", ztest_opts.zo_alt_ztest);
6329 }
6330 VERIFY(!exec_child(ztest_opts.zo_alt_ztest,
6331 ztest_opts.zo_alt_libpath, B_FALSE, NULL));
6332 } else {
6333 VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL));
6334 }
6335 zs->zs_do_init = B_FALSE;
6336
6337 zs->zs_proc_start = gethrtime();
6338 zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC;
6339
6340 for (f = 0; f < ZTEST_FUNCS; f++) {
6341 zi = &ztest_info[f];
6342 zc = ZTEST_GET_SHARED_CALLSTATE(f);
6343 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
6344 zc->zc_next = UINT64_MAX;
6345 else
6346 zc->zc_next = zs->zs_proc_start +
6347 ztest_random(2 * zi->zi_interval[0] + 1);
6348 }
6349
6350 /*
6351 * Run the tests in a loop. These tests include fault injection
6352 * to verify that self-healing data works, and forced crashes
6353 * to verify that we never lose on-disk consistency.
6354 */
6355 while (gethrtime() < zs->zs_proc_stop) {
6356 int status;
6357 boolean_t killed;
6358
6359 /*
6360 * Initialize the workload counters for each function.
6361 */
6362 for (f = 0; f < ZTEST_FUNCS; f++) {
6363 zc = ZTEST_GET_SHARED_CALLSTATE(f);
6364 zc->zc_count = 0;
6365 zc->zc_time = 0;
6366 }
6367
6368 /* Set the allocation switch size */
6369 zs->zs_metaslab_df_alloc_threshold =
6370 ztest_random(zs->zs_metaslab_sz / 4) + 1;
6371
6372 if (!hasalt || ztest_random(2) == 0) {
6373 if (hasalt && ztest_opts.zo_verbose >= 1) {
6374 (void) printf("Executing newer ztest: %s\n",
6375 cmd);
6376 }
6377 newer++;
6378 killed = exec_child(cmd, NULL, B_TRUE, &status);
6379 } else {
6380 if (hasalt && ztest_opts.zo_verbose >= 1) {
6381 (void) printf("Executing older ztest: %s\n",
6382 ztest_opts.zo_alt_ztest);
6383 }
6384 older++;
6385 killed = exec_child(ztest_opts.zo_alt_ztest,
6386 ztest_opts.zo_alt_libpath, B_TRUE, &status);
6387 }
6388
6389 if (killed)
6390 kills++;
6391 iters++;
6392
6393 if (ztest_opts.zo_verbose >= 1) {
6394 hrtime_t now = gethrtime();
6395
6396 now = MIN(now, zs->zs_proc_stop);
6397 print_time(zs->zs_proc_stop - now, timebuf);
6398 nicenum(zs->zs_space, numbuf);
6399
6400 (void) printf("Pass %3d, %8s, %3llu ENOSPC, "
6401 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
6402 iters,
6403 WIFEXITED(status) ? "Complete" : "SIGKILL",
6404 (u_longlong_t)zs->zs_enospc_count,
6405 100.0 * zs->zs_alloc / zs->zs_space,
6406 numbuf,
6407 100.0 * (now - zs->zs_proc_start) /
6408 (ztest_opts.zo_time * NANOSEC), timebuf);
6409 }
6410
6411 if (ztest_opts.zo_verbose >= 2) {
6412 (void) printf("\nWorkload summary:\n\n");
6413 (void) printf("%7s %9s %s\n",
6414 "Calls", "Time", "Function");
6415 (void) printf("%7s %9s %s\n",
6416 "-----", "----", "--------");
6417 for (f = 0; f < ZTEST_FUNCS; f++) {
6418 Dl_info dli;
6419
6420 zi = &ztest_info[f];
6421 zc = ZTEST_GET_SHARED_CALLSTATE(f);
6422 print_time(zc->zc_time, timebuf);
6423 (void) dladdr((void *)zi->zi_func, &dli);
6424 (void) printf("%7llu %9s %s\n",
6425 (u_longlong_t)zc->zc_count, timebuf,
6426 dli.dli_sname);
6427 }
6428 (void) printf("\n");
6429 }
6430
6431 /*
6432 * It's possible that we killed a child during a rename test,
6433 * in which case we'll have a 'ztest_tmp' pool lying around
6434 * instead of 'ztest'. Do a blind rename in case this happened.
6435 */
6436 kernel_init(FREAD);
6437 if (spa_open(ztest_opts.zo_pool, &spa, FTAG) == 0) {
6438 spa_close(spa, FTAG);
6439 } else {
6440 char tmpname[MAXNAMELEN];
6441 kernel_fini();
6442 kernel_init(FREAD | FWRITE);
6443 (void) snprintf(tmpname, sizeof (tmpname), "%s_tmp",
6444 ztest_opts.zo_pool);
6445 (void) spa_rename(tmpname, ztest_opts.zo_pool);
6446 }
6447 kernel_fini();
6448
6449 ztest_run_zdb(ztest_opts.zo_pool);
6450 }
6451
6452 if (ztest_opts.zo_verbose >= 1) {
6453 if (hasalt) {
6454 (void) printf("%d runs of older ztest: %s\n", older,
6455 ztest_opts.zo_alt_ztest);
6456 (void) printf("%d runs of newer ztest: %s\n", newer,
6457 cmd);
6458 }
6459 (void) printf("%d killed, %d completed, %.0f%% kill rate\n",
6460 kills, iters - kills, (100.0 * kills) / MAX(1, iters));
6461 }
6462
6463 umem_free(cmd, MAXNAMELEN);
6464
6465 return (0);
6466 }