]> git.proxmox.com Git - mirror_zfs.git/blob - cmd/ztest/ztest.c
Avoid dladdr() in ztest
[mirror_zfs.git] / cmd / ztest / ztest.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2013 Steven Hartland. All rights reserved.
26 */
27
28 /*
29 * The objective of this program is to provide a DMU/ZAP/SPA stress test
30 * that runs entirely in userland, is easy to use, and easy to extend.
31 *
32 * The overall design of the ztest program is as follows:
33 *
34 * (1) For each major functional area (e.g. adding vdevs to a pool,
35 * creating and destroying datasets, reading and writing objects, etc)
36 * we have a simple routine to test that functionality. These
37 * individual routines do not have to do anything "stressful".
38 *
39 * (2) We turn these simple functionality tests into a stress test by
40 * running them all in parallel, with as many threads as desired,
41 * and spread across as many datasets, objects, and vdevs as desired.
42 *
43 * (3) While all this is happening, we inject faults into the pool to
44 * verify that self-healing data really works.
45 *
46 * (4) Every time we open a dataset, we change its checksum and compression
47 * functions. Thus even individual objects vary from block to block
48 * in which checksum they use and whether they're compressed.
49 *
50 * (5) To verify that we never lose on-disk consistency after a crash,
51 * we run the entire test in a child of the main process.
52 * At random times, the child self-immolates with a SIGKILL.
53 * This is the software equivalent of pulling the power cord.
54 * The parent then runs the test again, using the existing
55 * storage pool, as many times as desired. If backwards compatibility
56 * testing is enabled ztest will sometimes run the "older" version
57 * of ztest after a SIGKILL.
58 *
59 * (6) To verify that we don't have future leaks or temporal incursions,
60 * many of the functional tests record the transaction group number
61 * as part of their data. When reading old data, they verify that
62 * the transaction group number is less than the current, open txg.
63 * If you add a new test, please do this if applicable.
64 *
65 * (7) Threads are created with a reduced stack size, for sanity checking.
66 * Therefore, it's important not to allocate huge buffers on the stack.
67 *
68 * When run with no arguments, ztest runs for about five minutes and
69 * produces no output if successful. To get a little bit of information,
70 * specify -V. To get more information, specify -VV, and so on.
71 *
72 * To turn this into an overnight stress test, use -T to specify run time.
73 *
74 * You can ask more more vdevs [-v], datasets [-d], or threads [-t]
75 * to increase the pool capacity, fanout, and overall stress level.
76 *
77 * Use the -k option to set the desired frequency of kills.
78 *
79 * When ztest invokes itself it passes all relevant information through a
80 * temporary file which is mmap-ed in the child process. This allows shared
81 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
82 * stored at offset 0 of this file and contains information on the size and
83 * number of shared structures in the file. The information stored in this file
84 * must remain backwards compatible with older versions of ztest so that
85 * ztest can invoke them during backwards compatibility testing (-B).
86 */
87
88 #include <sys/zfs_context.h>
89 #include <sys/spa.h>
90 #include <sys/dmu.h>
91 #include <sys/txg.h>
92 #include <sys/dbuf.h>
93 #include <sys/zap.h>
94 #include <sys/dmu_objset.h>
95 #include <sys/poll.h>
96 #include <sys/stat.h>
97 #include <sys/time.h>
98 #include <sys/wait.h>
99 #include <sys/mman.h>
100 #include <sys/resource.h>
101 #include <sys/zio.h>
102 #include <sys/zil.h>
103 #include <sys/zil_impl.h>
104 #include <sys/vdev_impl.h>
105 #include <sys/vdev_file.h>
106 #include <sys/spa_impl.h>
107 #include <sys/metaslab_impl.h>
108 #include <sys/dsl_prop.h>
109 #include <sys/dsl_dataset.h>
110 #include <sys/dsl_destroy.h>
111 #include <sys/dsl_scan.h>
112 #include <sys/zio_checksum.h>
113 #include <sys/refcount.h>
114 #include <sys/zfeature.h>
115 #include <sys/dsl_userhold.h>
116 #include <stdio.h>
117 #include <stdio_ext.h>
118 #include <stdlib.h>
119 #include <unistd.h>
120 #include <signal.h>
121 #include <umem.h>
122 #include <ctype.h>
123 #include <math.h>
124 #include <sys/fs/zfs.h>
125 #include <libnvpair.h>
126 #ifdef __GNUC__
127 #include <execinfo.h> /* for backtrace() */
128 #endif
129
130 static int ztest_fd_data = -1;
131 static int ztest_fd_rand = -1;
132
133 typedef struct ztest_shared_hdr {
134 uint64_t zh_hdr_size;
135 uint64_t zh_opts_size;
136 uint64_t zh_size;
137 uint64_t zh_stats_size;
138 uint64_t zh_stats_count;
139 uint64_t zh_ds_size;
140 uint64_t zh_ds_count;
141 } ztest_shared_hdr_t;
142
143 static ztest_shared_hdr_t *ztest_shared_hdr;
144
145 typedef struct ztest_shared_opts {
146 char zo_pool[MAXNAMELEN];
147 char zo_dir[MAXNAMELEN];
148 char zo_alt_ztest[MAXNAMELEN];
149 char zo_alt_libpath[MAXNAMELEN];
150 uint64_t zo_vdevs;
151 uint64_t zo_vdevtime;
152 size_t zo_vdev_size;
153 int zo_ashift;
154 int zo_mirrors;
155 int zo_raidz;
156 int zo_raidz_parity;
157 int zo_datasets;
158 int zo_threads;
159 uint64_t zo_passtime;
160 uint64_t zo_killrate;
161 int zo_verbose;
162 int zo_init;
163 uint64_t zo_time;
164 uint64_t zo_maxloops;
165 uint64_t zo_metaslab_gang_bang;
166 } ztest_shared_opts_t;
167
168 static const ztest_shared_opts_t ztest_opts_defaults = {
169 .zo_pool = { 'z', 't', 'e', 's', 't', '\0' },
170 .zo_dir = { '/', 't', 'm', 'p', '\0' },
171 .zo_alt_ztest = { '\0' },
172 .zo_alt_libpath = { '\0' },
173 .zo_vdevs = 5,
174 .zo_ashift = SPA_MINBLOCKSHIFT,
175 .zo_mirrors = 2,
176 .zo_raidz = 4,
177 .zo_raidz_parity = 1,
178 .zo_vdev_size = SPA_MINDEVSIZE,
179 .zo_datasets = 7,
180 .zo_threads = 23,
181 .zo_passtime = 60, /* 60 seconds */
182 .zo_killrate = 70, /* 70% kill rate */
183 .zo_verbose = 0,
184 .zo_init = 1,
185 .zo_time = 300, /* 5 minutes */
186 .zo_maxloops = 50, /* max loops during spa_freeze() */
187 .zo_metaslab_gang_bang = 32 << 10
188 };
189
190 extern uint64_t metaslab_gang_bang;
191 extern uint64_t metaslab_df_alloc_threshold;
192 extern int metaslab_preload_limit;
193
194 static ztest_shared_opts_t *ztest_shared_opts;
195 static ztest_shared_opts_t ztest_opts;
196
197 typedef struct ztest_shared_ds {
198 uint64_t zd_seq;
199 } ztest_shared_ds_t;
200
201 static ztest_shared_ds_t *ztest_shared_ds;
202 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
203
204 #define BT_MAGIC 0x123456789abcdefULL
205 #define MAXFAULTS() \
206 (MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1)
207
208 enum ztest_io_type {
209 ZTEST_IO_WRITE_TAG,
210 ZTEST_IO_WRITE_PATTERN,
211 ZTEST_IO_WRITE_ZEROES,
212 ZTEST_IO_TRUNCATE,
213 ZTEST_IO_SETATTR,
214 ZTEST_IO_REWRITE,
215 ZTEST_IO_TYPES
216 };
217
218 typedef struct ztest_block_tag {
219 uint64_t bt_magic;
220 uint64_t bt_objset;
221 uint64_t bt_object;
222 uint64_t bt_offset;
223 uint64_t bt_gen;
224 uint64_t bt_txg;
225 uint64_t bt_crtxg;
226 } ztest_block_tag_t;
227
228 typedef struct bufwad {
229 uint64_t bw_index;
230 uint64_t bw_txg;
231 uint64_t bw_data;
232 } bufwad_t;
233
234 /*
235 * XXX -- fix zfs range locks to be generic so we can use them here.
236 */
237 typedef enum {
238 RL_READER,
239 RL_WRITER,
240 RL_APPEND
241 } rl_type_t;
242
243 typedef struct rll {
244 void *rll_writer;
245 int rll_readers;
246 kmutex_t rll_lock;
247 kcondvar_t rll_cv;
248 } rll_t;
249
250 typedef struct rl {
251 uint64_t rl_object;
252 uint64_t rl_offset;
253 uint64_t rl_size;
254 rll_t *rl_lock;
255 } rl_t;
256
257 #define ZTEST_RANGE_LOCKS 64
258 #define ZTEST_OBJECT_LOCKS 64
259
260 /*
261 * Object descriptor. Used as a template for object lookup/create/remove.
262 */
263 typedef struct ztest_od {
264 uint64_t od_dir;
265 uint64_t od_object;
266 dmu_object_type_t od_type;
267 dmu_object_type_t od_crtype;
268 uint64_t od_blocksize;
269 uint64_t od_crblocksize;
270 uint64_t od_gen;
271 uint64_t od_crgen;
272 char od_name[MAXNAMELEN];
273 } ztest_od_t;
274
275 /*
276 * Per-dataset state.
277 */
278 typedef struct ztest_ds {
279 ztest_shared_ds_t *zd_shared;
280 objset_t *zd_os;
281 rwlock_t zd_zilog_lock;
282 zilog_t *zd_zilog;
283 ztest_od_t *zd_od; /* debugging aid */
284 char zd_name[MAXNAMELEN];
285 kmutex_t zd_dirobj_lock;
286 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS];
287 rll_t zd_range_lock[ZTEST_RANGE_LOCKS];
288 } ztest_ds_t;
289
290 /*
291 * Per-iteration state.
292 */
293 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
294
295 typedef struct ztest_info {
296 ztest_func_t *zi_func; /* test function */
297 uint64_t zi_iters; /* iterations per execution */
298 uint64_t *zi_interval; /* execute every <interval> seconds */
299 const char *zi_funcname; /* name of test function */
300 } ztest_info_t;
301
302 typedef struct ztest_shared_callstate {
303 uint64_t zc_count; /* per-pass count */
304 uint64_t zc_time; /* per-pass time */
305 uint64_t zc_next; /* next time to call this function */
306 } ztest_shared_callstate_t;
307
308 static ztest_shared_callstate_t *ztest_shared_callstate;
309 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
310
311 ztest_func_t ztest_dmu_read_write;
312 ztest_func_t ztest_dmu_write_parallel;
313 ztest_func_t ztest_dmu_object_alloc_free;
314 ztest_func_t ztest_dmu_commit_callbacks;
315 ztest_func_t ztest_zap;
316 ztest_func_t ztest_zap_parallel;
317 ztest_func_t ztest_zil_commit;
318 ztest_func_t ztest_zil_remount;
319 ztest_func_t ztest_dmu_read_write_zcopy;
320 ztest_func_t ztest_dmu_objset_create_destroy;
321 ztest_func_t ztest_dmu_prealloc;
322 ztest_func_t ztest_fzap;
323 ztest_func_t ztest_dmu_snapshot_create_destroy;
324 ztest_func_t ztest_dsl_prop_get_set;
325 ztest_func_t ztest_spa_prop_get_set;
326 ztest_func_t ztest_spa_create_destroy;
327 ztest_func_t ztest_fault_inject;
328 ztest_func_t ztest_ddt_repair;
329 ztest_func_t ztest_dmu_snapshot_hold;
330 ztest_func_t ztest_spa_rename;
331 ztest_func_t ztest_scrub;
332 ztest_func_t ztest_dsl_dataset_promote_busy;
333 ztest_func_t ztest_vdev_attach_detach;
334 ztest_func_t ztest_vdev_LUN_growth;
335 ztest_func_t ztest_vdev_add_remove;
336 ztest_func_t ztest_vdev_aux_add_remove;
337 ztest_func_t ztest_split_pool;
338 ztest_func_t ztest_reguid;
339 ztest_func_t ztest_spa_upgrade;
340
341 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */
342 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */
343 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */
344 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */
345 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */
346
347 #define ZTI_INIT(func, iters, interval) \
348 { .zi_func = (func), \
349 .zi_iters = (iters), \
350 .zi_interval = (interval), \
351 .zi_funcname = # func }
352
353 ztest_info_t ztest_info[] = {
354 ZTI_INIT(ztest_dmu_read_write, 1, &zopt_always),
355 ZTI_INIT(ztest_dmu_write_parallel, 10, &zopt_always),
356 ZTI_INIT(ztest_dmu_object_alloc_free, 1, &zopt_always),
357 ZTI_INIT(ztest_dmu_commit_callbacks, 1, &zopt_always),
358 ZTI_INIT(ztest_zap, 30, &zopt_always),
359 ZTI_INIT(ztest_zap_parallel, 100, &zopt_always),
360 ZTI_INIT(ztest_split_pool, 1, &zopt_always),
361 ZTI_INIT(ztest_zil_commit, 1, &zopt_incessant),
362 ZTI_INIT(ztest_zil_remount, 1, &zopt_sometimes),
363 ZTI_INIT(ztest_dmu_read_write_zcopy, 1, &zopt_often),
364 ZTI_INIT(ztest_dmu_objset_create_destroy, 1, &zopt_often),
365 ZTI_INIT(ztest_dsl_prop_get_set, 1, &zopt_often),
366 ZTI_INIT(ztest_spa_prop_get_set, 1, &zopt_sometimes),
367 #if 0
368 ZTI_INIT(ztest_dmu_prealloc, 1, &zopt_sometimes),
369 #endif
370 ZTI_INIT(ztest_fzap, 1, &zopt_sometimes),
371 ZTI_INIT(ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes),
372 ZTI_INIT(ztest_spa_create_destroy, 1, &zopt_sometimes),
373 ZTI_INIT(ztest_fault_inject, 1, &zopt_sometimes),
374 ZTI_INIT(ztest_ddt_repair, 1, &zopt_sometimes),
375 ZTI_INIT(ztest_dmu_snapshot_hold, 1, &zopt_sometimes),
376 ZTI_INIT(ztest_reguid, 1, &zopt_rarely),
377 ZTI_INIT(ztest_spa_rename, 1, &zopt_rarely),
378 ZTI_INIT(ztest_scrub, 1, &zopt_rarely),
379 ZTI_INIT(ztest_spa_upgrade, 1, &zopt_rarely),
380 ZTI_INIT(ztest_dsl_dataset_promote_busy, 1, &zopt_rarely),
381 ZTI_INIT(ztest_vdev_attach_detach, 1, &zopt_sometimes),
382 ZTI_INIT(ztest_vdev_LUN_growth, 1, &zopt_rarely),
383 ZTI_INIT(ztest_vdev_add_remove, 1, &ztest_opts.zo_vdevtime),
384 ZTI_INIT(ztest_vdev_aux_add_remove, 1, &ztest_opts.zo_vdevtime),
385 };
386
387 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t))
388
389 /*
390 * The following struct is used to hold a list of uncalled commit callbacks.
391 * The callbacks are ordered by txg number.
392 */
393 typedef struct ztest_cb_list {
394 kmutex_t zcl_callbacks_lock;
395 list_t zcl_callbacks;
396 } ztest_cb_list_t;
397
398 /*
399 * Stuff we need to share writably between parent and child.
400 */
401 typedef struct ztest_shared {
402 boolean_t zs_do_init;
403 hrtime_t zs_proc_start;
404 hrtime_t zs_proc_stop;
405 hrtime_t zs_thread_start;
406 hrtime_t zs_thread_stop;
407 hrtime_t zs_thread_kill;
408 uint64_t zs_enospc_count;
409 uint64_t zs_vdev_next_leaf;
410 uint64_t zs_vdev_aux;
411 uint64_t zs_alloc;
412 uint64_t zs_space;
413 uint64_t zs_splits;
414 uint64_t zs_mirrors;
415 uint64_t zs_metaslab_sz;
416 uint64_t zs_metaslab_df_alloc_threshold;
417 uint64_t zs_guid;
418 } ztest_shared_t;
419
420 #define ID_PARALLEL -1ULL
421
422 static char ztest_dev_template[] = "%s/%s.%llua";
423 static char ztest_aux_template[] = "%s/%s.%s.%llu";
424 ztest_shared_t *ztest_shared;
425
426 static spa_t *ztest_spa = NULL;
427 static ztest_ds_t *ztest_ds;
428
429 static kmutex_t ztest_vdev_lock;
430
431 /*
432 * The ztest_name_lock protects the pool and dataset namespace used by
433 * the individual tests. To modify the namespace, consumers must grab
434 * this lock as writer. Grabbing the lock as reader will ensure that the
435 * namespace does not change while the lock is held.
436 */
437 static rwlock_t ztest_name_lock;
438
439 static boolean_t ztest_dump_core = B_TRUE;
440 static boolean_t ztest_exiting;
441
442 /* Global commit callback list */
443 static ztest_cb_list_t zcl;
444 /* Commit cb delay */
445 static uint64_t zc_min_txg_delay = UINT64_MAX;
446 static int zc_cb_counter = 0;
447
448 /*
449 * Minimum number of commit callbacks that need to be registered for us to check
450 * whether the minimum txg delay is acceptable.
451 */
452 #define ZTEST_COMMIT_CB_MIN_REG 100
453
454 /*
455 * If a number of txgs equal to this threshold have been created after a commit
456 * callback has been registered but not called, then we assume there is an
457 * implementation bug.
458 */
459 #define ZTEST_COMMIT_CB_THRESH (TXG_CONCURRENT_STATES + 1000)
460
461 extern uint64_t metaslab_gang_bang;
462 extern uint64_t metaslab_df_alloc_threshold;
463
464 enum ztest_object {
465 ZTEST_META_DNODE = 0,
466 ZTEST_DIROBJ,
467 ZTEST_OBJECTS
468 };
469
470 static void usage(boolean_t) __NORETURN;
471
472 /*
473 * These libumem hooks provide a reasonable set of defaults for the allocator's
474 * debugging facilities.
475 */
476 const char *
477 _umem_debug_init(void)
478 {
479 return ("default,verbose"); /* $UMEM_DEBUG setting */
480 }
481
482 const char *
483 _umem_logging_init(void)
484 {
485 return ("fail,contents"); /* $UMEM_LOGGING setting */
486 }
487
488 #define BACKTRACE_SZ 100
489
490 static void sig_handler(int signo)
491 {
492 struct sigaction action;
493 #ifdef __GNUC__ /* backtrace() is a GNU extension */
494 int nptrs;
495 void *buffer[BACKTRACE_SZ];
496
497 nptrs = backtrace(buffer, BACKTRACE_SZ);
498 backtrace_symbols_fd(buffer, nptrs, STDERR_FILENO);
499 #endif
500
501 /*
502 * Restore default action and re-raise signal so SIGSEGV and
503 * SIGABRT can trigger a core dump.
504 */
505 action.sa_handler = SIG_DFL;
506 sigemptyset(&action.sa_mask);
507 action.sa_flags = 0;
508 (void) sigaction(signo, &action, NULL);
509 raise(signo);
510 }
511
512 #define FATAL_MSG_SZ 1024
513
514 char *fatal_msg;
515
516 static void
517 fatal(int do_perror, char *message, ...)
518 {
519 va_list args;
520 int save_errno = errno;
521 char *buf;
522
523 (void) fflush(stdout);
524 buf = umem_alloc(FATAL_MSG_SZ, UMEM_NOFAIL);
525
526 va_start(args, message);
527 (void) sprintf(buf, "ztest: ");
528 /* LINTED */
529 (void) vsprintf(buf + strlen(buf), message, args);
530 va_end(args);
531 if (do_perror) {
532 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
533 ": %s", strerror(save_errno));
534 }
535 (void) fprintf(stderr, "%s\n", buf);
536 fatal_msg = buf; /* to ease debugging */
537 if (ztest_dump_core)
538 abort();
539 exit(3);
540 }
541
542 static int
543 str2shift(const char *buf)
544 {
545 const char *ends = "BKMGTPEZ";
546 int i;
547
548 if (buf[0] == '\0')
549 return (0);
550 for (i = 0; i < strlen(ends); i++) {
551 if (toupper(buf[0]) == ends[i])
552 break;
553 }
554 if (i == strlen(ends)) {
555 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
556 buf);
557 usage(B_FALSE);
558 }
559 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
560 return (10*i);
561 }
562 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
563 usage(B_FALSE);
564 /* NOTREACHED */
565 }
566
567 static uint64_t
568 nicenumtoull(const char *buf)
569 {
570 char *end;
571 uint64_t val;
572
573 val = strtoull(buf, &end, 0);
574 if (end == buf) {
575 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
576 usage(B_FALSE);
577 } else if (end[0] == '.') {
578 double fval = strtod(buf, &end);
579 fval *= pow(2, str2shift(end));
580 if (fval > UINT64_MAX) {
581 (void) fprintf(stderr, "ztest: value too large: %s\n",
582 buf);
583 usage(B_FALSE);
584 }
585 val = (uint64_t)fval;
586 } else {
587 int shift = str2shift(end);
588 if (shift >= 64 || (val << shift) >> shift != val) {
589 (void) fprintf(stderr, "ztest: value too large: %s\n",
590 buf);
591 usage(B_FALSE);
592 }
593 val <<= shift;
594 }
595 return (val);
596 }
597
598 static void
599 usage(boolean_t requested)
600 {
601 const ztest_shared_opts_t *zo = &ztest_opts_defaults;
602
603 char nice_vdev_size[10];
604 char nice_gang_bang[10];
605 FILE *fp = requested ? stdout : stderr;
606
607 nicenum(zo->zo_vdev_size, nice_vdev_size);
608 nicenum(zo->zo_metaslab_gang_bang, nice_gang_bang);
609
610 (void) fprintf(fp, "Usage: %s\n"
611 "\t[-v vdevs (default: %llu)]\n"
612 "\t[-s size_of_each_vdev (default: %s)]\n"
613 "\t[-a alignment_shift (default: %d)] use 0 for random\n"
614 "\t[-m mirror_copies (default: %d)]\n"
615 "\t[-r raidz_disks (default: %d)]\n"
616 "\t[-R raidz_parity (default: %d)]\n"
617 "\t[-d datasets (default: %d)]\n"
618 "\t[-t threads (default: %d)]\n"
619 "\t[-g gang_block_threshold (default: %s)]\n"
620 "\t[-i init_count (default: %d)] initialize pool i times\n"
621 "\t[-k kill_percentage (default: %llu%%)]\n"
622 "\t[-p pool_name (default: %s)]\n"
623 "\t[-f dir (default: %s)] file directory for vdev files\n"
624 "\t[-V] verbose (use multiple times for ever more blather)\n"
625 "\t[-E] use existing pool instead of creating new one\n"
626 "\t[-T time (default: %llu sec)] total run time\n"
627 "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n"
628 "\t[-P passtime (default: %llu sec)] time per pass\n"
629 "\t[-B alt_ztest (default: <none>)] alternate ztest path\n"
630 "\t[-h] (print help)\n"
631 "",
632 zo->zo_pool,
633 (u_longlong_t)zo->zo_vdevs, /* -v */
634 nice_vdev_size, /* -s */
635 zo->zo_ashift, /* -a */
636 zo->zo_mirrors, /* -m */
637 zo->zo_raidz, /* -r */
638 zo->zo_raidz_parity, /* -R */
639 zo->zo_datasets, /* -d */
640 zo->zo_threads, /* -t */
641 nice_gang_bang, /* -g */
642 zo->zo_init, /* -i */
643 (u_longlong_t)zo->zo_killrate, /* -k */
644 zo->zo_pool, /* -p */
645 zo->zo_dir, /* -f */
646 (u_longlong_t)zo->zo_time, /* -T */
647 (u_longlong_t)zo->zo_maxloops, /* -F */
648 (u_longlong_t)zo->zo_passtime);
649 exit(requested ? 0 : 1);
650 }
651
652 static void
653 process_options(int argc, char **argv)
654 {
655 char *path;
656 ztest_shared_opts_t *zo = &ztest_opts;
657
658 int opt;
659 uint64_t value;
660 char altdir[MAXNAMELEN] = { 0 };
661
662 bcopy(&ztest_opts_defaults, zo, sizeof (*zo));
663
664 while ((opt = getopt(argc, argv,
665 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:B:")) != EOF) {
666 value = 0;
667 switch (opt) {
668 case 'v':
669 case 's':
670 case 'a':
671 case 'm':
672 case 'r':
673 case 'R':
674 case 'd':
675 case 't':
676 case 'g':
677 case 'i':
678 case 'k':
679 case 'T':
680 case 'P':
681 case 'F':
682 value = nicenumtoull(optarg);
683 }
684 switch (opt) {
685 case 'v':
686 zo->zo_vdevs = value;
687 break;
688 case 's':
689 zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value);
690 break;
691 case 'a':
692 zo->zo_ashift = value;
693 break;
694 case 'm':
695 zo->zo_mirrors = value;
696 break;
697 case 'r':
698 zo->zo_raidz = MAX(1, value);
699 break;
700 case 'R':
701 zo->zo_raidz_parity = MIN(MAX(value, 1), 3);
702 break;
703 case 'd':
704 zo->zo_datasets = MAX(1, value);
705 break;
706 case 't':
707 zo->zo_threads = MAX(1, value);
708 break;
709 case 'g':
710 zo->zo_metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1,
711 value);
712 break;
713 case 'i':
714 zo->zo_init = value;
715 break;
716 case 'k':
717 zo->zo_killrate = value;
718 break;
719 case 'p':
720 (void) strlcpy(zo->zo_pool, optarg,
721 sizeof (zo->zo_pool));
722 break;
723 case 'f':
724 path = realpath(optarg, NULL);
725 if (path == NULL) {
726 (void) fprintf(stderr, "error: %s: %s\n",
727 optarg, strerror(errno));
728 usage(B_FALSE);
729 } else {
730 (void) strlcpy(zo->zo_dir, path,
731 sizeof (zo->zo_dir));
732 }
733 break;
734 case 'V':
735 zo->zo_verbose++;
736 break;
737 case 'E':
738 zo->zo_init = 0;
739 break;
740 case 'T':
741 zo->zo_time = value;
742 break;
743 case 'P':
744 zo->zo_passtime = MAX(1, value);
745 break;
746 case 'F':
747 zo->zo_maxloops = MAX(1, value);
748 break;
749 case 'B':
750 (void) strlcpy(altdir, optarg, sizeof (altdir));
751 break;
752 case 'h':
753 usage(B_TRUE);
754 break;
755 case '?':
756 default:
757 usage(B_FALSE);
758 break;
759 }
760 }
761
762 zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1);
763
764 zo->zo_vdevtime =
765 (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs :
766 UINT64_MAX >> 2);
767
768 if (strlen(altdir) > 0) {
769 char *cmd;
770 char *realaltdir;
771 char *bin;
772 char *ztest;
773 char *isa;
774 int isalen;
775
776 cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
777 realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
778
779 VERIFY(NULL != realpath(getexecname(), cmd));
780 if (0 != access(altdir, F_OK)) {
781 ztest_dump_core = B_FALSE;
782 fatal(B_TRUE, "invalid alternate ztest path: %s",
783 altdir);
784 }
785 VERIFY(NULL != realpath(altdir, realaltdir));
786
787 /*
788 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest".
789 * We want to extract <isa> to determine if we should use
790 * 32 or 64 bit binaries.
791 */
792 bin = strstr(cmd, "/usr/bin/");
793 ztest = strstr(bin, "/ztest");
794 isa = bin + 9;
795 isalen = ztest - isa;
796 (void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest),
797 "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa);
798 (void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath),
799 "%s/usr/lib/%.*s", realaltdir, isalen, isa);
800
801 if (0 != access(zo->zo_alt_ztest, X_OK)) {
802 ztest_dump_core = B_FALSE;
803 fatal(B_TRUE, "invalid alternate ztest: %s",
804 zo->zo_alt_ztest);
805 } else if (0 != access(zo->zo_alt_libpath, X_OK)) {
806 ztest_dump_core = B_FALSE;
807 fatal(B_TRUE, "invalid alternate lib directory %s",
808 zo->zo_alt_libpath);
809 }
810
811 umem_free(cmd, MAXPATHLEN);
812 umem_free(realaltdir, MAXPATHLEN);
813 }
814 }
815
816 static void
817 ztest_kill(ztest_shared_t *zs)
818 {
819 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa));
820 zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa));
821
822 /*
823 * Before we kill off ztest, make sure that the config is updated.
824 * See comment above spa_config_sync().
825 */
826 mutex_enter(&spa_namespace_lock);
827 spa_config_sync(ztest_spa, B_FALSE, B_FALSE);
828 mutex_exit(&spa_namespace_lock);
829
830 if (ztest_opts.zo_verbose >= 3)
831 zfs_dbgmsg_print(FTAG);
832
833 (void) kill(getpid(), SIGKILL);
834 }
835
836 static uint64_t
837 ztest_random(uint64_t range)
838 {
839 uint64_t r;
840
841 ASSERT3S(ztest_fd_rand, >=, 0);
842
843 if (range == 0)
844 return (0);
845
846 if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r))
847 fatal(1, "short read from /dev/urandom");
848
849 return (r % range);
850 }
851
852 /* ARGSUSED */
853 static void
854 ztest_record_enospc(const char *s)
855 {
856 ztest_shared->zs_enospc_count++;
857 }
858
859 static uint64_t
860 ztest_get_ashift(void)
861 {
862 if (ztest_opts.zo_ashift == 0)
863 return (SPA_MINBLOCKSHIFT + ztest_random(5));
864 return (ztest_opts.zo_ashift);
865 }
866
867 static nvlist_t *
868 make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift)
869 {
870 char *pathbuf;
871 uint64_t vdev;
872 nvlist_t *file;
873
874 pathbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
875
876 if (ashift == 0)
877 ashift = ztest_get_ashift();
878
879 if (path == NULL) {
880 path = pathbuf;
881
882 if (aux != NULL) {
883 vdev = ztest_shared->zs_vdev_aux;
884 (void) snprintf(path, MAXPATHLEN,
885 ztest_aux_template, ztest_opts.zo_dir,
886 pool == NULL ? ztest_opts.zo_pool : pool,
887 aux, vdev);
888 } else {
889 vdev = ztest_shared->zs_vdev_next_leaf++;
890 (void) snprintf(path, MAXPATHLEN,
891 ztest_dev_template, ztest_opts.zo_dir,
892 pool == NULL ? ztest_opts.zo_pool : pool, vdev);
893 }
894 }
895
896 if (size != 0) {
897 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
898 if (fd == -1)
899 fatal(1, "can't open %s", path);
900 if (ftruncate(fd, size) != 0)
901 fatal(1, "can't ftruncate %s", path);
902 (void) close(fd);
903 }
904
905 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0);
906 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0);
907 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0);
908 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0);
909 umem_free(pathbuf, MAXPATHLEN);
910
911 return (file);
912 }
913
914 static nvlist_t *
915 make_vdev_raidz(char *path, char *aux, char *pool, size_t size,
916 uint64_t ashift, int r)
917 {
918 nvlist_t *raidz, **child;
919 int c;
920
921 if (r < 2)
922 return (make_vdev_file(path, aux, pool, size, ashift));
923 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
924
925 for (c = 0; c < r; c++)
926 child[c] = make_vdev_file(path, aux, pool, size, ashift);
927
928 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0);
929 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE,
930 VDEV_TYPE_RAIDZ) == 0);
931 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY,
932 ztest_opts.zo_raidz_parity) == 0);
933 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN,
934 child, r) == 0);
935
936 for (c = 0; c < r; c++)
937 nvlist_free(child[c]);
938
939 umem_free(child, r * sizeof (nvlist_t *));
940
941 return (raidz);
942 }
943
944 static nvlist_t *
945 make_vdev_mirror(char *path, char *aux, char *pool, size_t size,
946 uint64_t ashift, int r, int m)
947 {
948 nvlist_t *mirror, **child;
949 int c;
950
951 if (m < 1)
952 return (make_vdev_raidz(path, aux, pool, size, ashift, r));
953
954 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
955
956 for (c = 0; c < m; c++)
957 child[c] = make_vdev_raidz(path, aux, pool, size, ashift, r);
958
959 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0);
960 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE,
961 VDEV_TYPE_MIRROR) == 0);
962 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
963 child, m) == 0);
964
965 for (c = 0; c < m; c++)
966 nvlist_free(child[c]);
967
968 umem_free(child, m * sizeof (nvlist_t *));
969
970 return (mirror);
971 }
972
973 static nvlist_t *
974 make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift,
975 int log, int r, int m, int t)
976 {
977 nvlist_t *root, **child;
978 int c;
979
980 ASSERT(t > 0);
981
982 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
983
984 for (c = 0; c < t; c++) {
985 child[c] = make_vdev_mirror(path, aux, pool, size, ashift,
986 r, m);
987 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG,
988 log) == 0);
989 }
990
991 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0);
992 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0);
993 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
994 child, t) == 0);
995
996 for (c = 0; c < t; c++)
997 nvlist_free(child[c]);
998
999 umem_free(child, t * sizeof (nvlist_t *));
1000
1001 return (root);
1002 }
1003
1004 /*
1005 * Find a random spa version. Returns back a random spa version in the
1006 * range [initial_version, SPA_VERSION_FEATURES].
1007 */
1008 static uint64_t
1009 ztest_random_spa_version(uint64_t initial_version)
1010 {
1011 uint64_t version = initial_version;
1012
1013 if (version <= SPA_VERSION_BEFORE_FEATURES) {
1014 version = version +
1015 ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1);
1016 }
1017
1018 if (version > SPA_VERSION_BEFORE_FEATURES)
1019 version = SPA_VERSION_FEATURES;
1020
1021 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
1022 return (version);
1023 }
1024
1025 /*
1026 * Find the largest ashift used
1027 */
1028 static uint64_t
1029 ztest_spa_get_ashift(void) {
1030 uint64_t i;
1031 uint64_t ashift = SPA_MINBLOCKSHIFT;
1032 vdev_t *rvd = ztest_spa->spa_root_vdev;
1033
1034 for (i = 0; i < rvd->vdev_children; i++) {
1035 ashift = MAX(ashift, rvd->vdev_child[i]->vdev_ashift);
1036 }
1037 return (ashift);
1038 }
1039
1040 static int
1041 ztest_random_blocksize(void)
1042 {
1043 // Choose a block size >= the ashift.
1044 uint64_t block_shift =
1045 ztest_random(SPA_MAXBLOCKSHIFT - ztest_spa_get_ashift() + 1);
1046 return (1 << (SPA_MINBLOCKSHIFT + block_shift));
1047 }
1048
1049 static int
1050 ztest_random_ibshift(void)
1051 {
1052 return (DN_MIN_INDBLKSHIFT +
1053 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
1054 }
1055
1056 static uint64_t
1057 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
1058 {
1059 uint64_t top;
1060 vdev_t *rvd = spa->spa_root_vdev;
1061 vdev_t *tvd;
1062
1063 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1064
1065 do {
1066 top = ztest_random(rvd->vdev_children);
1067 tvd = rvd->vdev_child[top];
1068 } while (tvd->vdev_ishole || (tvd->vdev_islog && !log_ok) ||
1069 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
1070
1071 return (top);
1072 }
1073
1074 static uint64_t
1075 ztest_random_dsl_prop(zfs_prop_t prop)
1076 {
1077 uint64_t value;
1078
1079 do {
1080 value = zfs_prop_random_value(prop, ztest_random(-1ULL));
1081 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
1082
1083 return (value);
1084 }
1085
1086 static int
1087 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
1088 boolean_t inherit)
1089 {
1090 const char *propname = zfs_prop_to_name(prop);
1091 const char *valname;
1092 char *setpoint;
1093 uint64_t curval;
1094 int error;
1095
1096 error = dsl_prop_set_int(osname, propname,
1097 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value);
1098
1099 if (error == ENOSPC) {
1100 ztest_record_enospc(FTAG);
1101 return (error);
1102 }
1103 ASSERT0(error);
1104
1105 setpoint = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1106 VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint));
1107
1108 if (ztest_opts.zo_verbose >= 6) {
1109 VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0);
1110 (void) printf("%s %s = %s at '%s'\n",
1111 osname, propname, valname, setpoint);
1112 }
1113 umem_free(setpoint, MAXPATHLEN);
1114
1115 return (error);
1116 }
1117
1118 static int
1119 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value)
1120 {
1121 spa_t *spa = ztest_spa;
1122 nvlist_t *props = NULL;
1123 int error;
1124
1125 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
1126 VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0);
1127
1128 error = spa_prop_set(spa, props);
1129
1130 nvlist_free(props);
1131
1132 if (error == ENOSPC) {
1133 ztest_record_enospc(FTAG);
1134 return (error);
1135 }
1136 ASSERT0(error);
1137
1138 return (error);
1139 }
1140
1141 static void
1142 ztest_rll_init(rll_t *rll)
1143 {
1144 rll->rll_writer = NULL;
1145 rll->rll_readers = 0;
1146 mutex_init(&rll->rll_lock, NULL, MUTEX_DEFAULT, NULL);
1147 cv_init(&rll->rll_cv, NULL, CV_DEFAULT, NULL);
1148 }
1149
1150 static void
1151 ztest_rll_destroy(rll_t *rll)
1152 {
1153 ASSERT(rll->rll_writer == NULL);
1154 ASSERT(rll->rll_readers == 0);
1155 mutex_destroy(&rll->rll_lock);
1156 cv_destroy(&rll->rll_cv);
1157 }
1158
1159 static void
1160 ztest_rll_lock(rll_t *rll, rl_type_t type)
1161 {
1162 mutex_enter(&rll->rll_lock);
1163
1164 if (type == RL_READER) {
1165 while (rll->rll_writer != NULL)
1166 (void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1167 rll->rll_readers++;
1168 } else {
1169 while (rll->rll_writer != NULL || rll->rll_readers)
1170 (void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1171 rll->rll_writer = curthread;
1172 }
1173
1174 mutex_exit(&rll->rll_lock);
1175 }
1176
1177 static void
1178 ztest_rll_unlock(rll_t *rll)
1179 {
1180 mutex_enter(&rll->rll_lock);
1181
1182 if (rll->rll_writer) {
1183 ASSERT(rll->rll_readers == 0);
1184 rll->rll_writer = NULL;
1185 } else {
1186 ASSERT(rll->rll_readers != 0);
1187 ASSERT(rll->rll_writer == NULL);
1188 rll->rll_readers--;
1189 }
1190
1191 if (rll->rll_writer == NULL && rll->rll_readers == 0)
1192 cv_broadcast(&rll->rll_cv);
1193
1194 mutex_exit(&rll->rll_lock);
1195 }
1196
1197 static void
1198 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
1199 {
1200 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1201
1202 ztest_rll_lock(rll, type);
1203 }
1204
1205 static void
1206 ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
1207 {
1208 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1209
1210 ztest_rll_unlock(rll);
1211 }
1212
1213 static rl_t *
1214 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
1215 uint64_t size, rl_type_t type)
1216 {
1217 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1));
1218 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)];
1219 rl_t *rl;
1220
1221 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL);
1222 rl->rl_object = object;
1223 rl->rl_offset = offset;
1224 rl->rl_size = size;
1225 rl->rl_lock = rll;
1226
1227 ztest_rll_lock(rll, type);
1228
1229 return (rl);
1230 }
1231
1232 static void
1233 ztest_range_unlock(rl_t *rl)
1234 {
1235 rll_t *rll = rl->rl_lock;
1236
1237 ztest_rll_unlock(rll);
1238
1239 umem_free(rl, sizeof (*rl));
1240 }
1241
1242 static void
1243 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os)
1244 {
1245 zd->zd_os = os;
1246 zd->zd_zilog = dmu_objset_zil(os);
1247 zd->zd_shared = szd;
1248 dmu_objset_name(os, zd->zd_name);
1249 int l;
1250
1251 if (zd->zd_shared != NULL)
1252 zd->zd_shared->zd_seq = 0;
1253
1254 VERIFY(rwlock_init(&zd->zd_zilog_lock, USYNC_THREAD, NULL) == 0);
1255 mutex_init(&zd->zd_dirobj_lock, NULL, MUTEX_DEFAULT, NULL);
1256
1257 for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1258 ztest_rll_init(&zd->zd_object_lock[l]);
1259
1260 for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1261 ztest_rll_init(&zd->zd_range_lock[l]);
1262 }
1263
1264 static void
1265 ztest_zd_fini(ztest_ds_t *zd)
1266 {
1267 int l;
1268
1269 mutex_destroy(&zd->zd_dirobj_lock);
1270 (void) rwlock_destroy(&zd->zd_zilog_lock);
1271
1272 for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1273 ztest_rll_destroy(&zd->zd_object_lock[l]);
1274
1275 for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1276 ztest_rll_destroy(&zd->zd_range_lock[l]);
1277 }
1278
1279 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
1280
1281 static uint64_t
1282 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag)
1283 {
1284 uint64_t txg;
1285 int error;
1286
1287 /*
1288 * Attempt to assign tx to some transaction group.
1289 */
1290 error = dmu_tx_assign(tx, txg_how);
1291 if (error) {
1292 if (error == ERESTART) {
1293 ASSERT(txg_how == TXG_NOWAIT);
1294 dmu_tx_wait(tx);
1295 } else {
1296 ASSERT3U(error, ==, ENOSPC);
1297 ztest_record_enospc(tag);
1298 }
1299 dmu_tx_abort(tx);
1300 return (0);
1301 }
1302 txg = dmu_tx_get_txg(tx);
1303 ASSERT(txg != 0);
1304 return (txg);
1305 }
1306
1307 static void
1308 ztest_pattern_set(void *buf, uint64_t size, uint64_t value)
1309 {
1310 uint64_t *ip = buf;
1311 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1312
1313 while (ip < ip_end)
1314 *ip++ = value;
1315 }
1316
1317 #ifndef NDEBUG
1318 static boolean_t
1319 ztest_pattern_match(void *buf, uint64_t size, uint64_t value)
1320 {
1321 uint64_t *ip = buf;
1322 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1323 uint64_t diff = 0;
1324
1325 while (ip < ip_end)
1326 diff |= (value - *ip++);
1327
1328 return (diff == 0);
1329 }
1330 #endif
1331
1332 static void
1333 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1334 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg)
1335 {
1336 bt->bt_magic = BT_MAGIC;
1337 bt->bt_objset = dmu_objset_id(os);
1338 bt->bt_object = object;
1339 bt->bt_offset = offset;
1340 bt->bt_gen = gen;
1341 bt->bt_txg = txg;
1342 bt->bt_crtxg = crtxg;
1343 }
1344
1345 static void
1346 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1347 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg)
1348 {
1349 ASSERT3U(bt->bt_magic, ==, BT_MAGIC);
1350 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os));
1351 ASSERT3U(bt->bt_object, ==, object);
1352 ASSERT3U(bt->bt_offset, ==, offset);
1353 ASSERT3U(bt->bt_gen, <=, gen);
1354 ASSERT3U(bt->bt_txg, <=, txg);
1355 ASSERT3U(bt->bt_crtxg, ==, crtxg);
1356 }
1357
1358 static ztest_block_tag_t *
1359 ztest_bt_bonus(dmu_buf_t *db)
1360 {
1361 dmu_object_info_t doi;
1362 ztest_block_tag_t *bt;
1363
1364 dmu_object_info_from_db(db, &doi);
1365 ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
1366 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
1367 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
1368
1369 return (bt);
1370 }
1371
1372 /*
1373 * ZIL logging ops
1374 */
1375
1376 #define lrz_type lr_mode
1377 #define lrz_blocksize lr_uid
1378 #define lrz_ibshift lr_gid
1379 #define lrz_bonustype lr_rdev
1380 #define lrz_bonuslen lr_crtime[1]
1381
1382 static void
1383 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
1384 {
1385 char *name = (void *)(lr + 1); /* name follows lr */
1386 size_t namesize = strlen(name) + 1;
1387 itx_t *itx;
1388
1389 if (zil_replaying(zd->zd_zilog, tx))
1390 return;
1391
1392 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
1393 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1394 sizeof (*lr) + namesize - sizeof (lr_t));
1395
1396 zil_itx_assign(zd->zd_zilog, itx, tx);
1397 }
1398
1399 static void
1400 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object)
1401 {
1402 char *name = (void *)(lr + 1); /* name follows lr */
1403 size_t namesize = strlen(name) + 1;
1404 itx_t *itx;
1405
1406 if (zil_replaying(zd->zd_zilog, tx))
1407 return;
1408
1409 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
1410 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1411 sizeof (*lr) + namesize - sizeof (lr_t));
1412
1413 itx->itx_oid = object;
1414 zil_itx_assign(zd->zd_zilog, itx, tx);
1415 }
1416
1417 static void
1418 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
1419 {
1420 itx_t *itx;
1421 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
1422
1423 if (zil_replaying(zd->zd_zilog, tx))
1424 return;
1425
1426 if (lr->lr_length > ZIL_MAX_LOG_DATA)
1427 write_state = WR_INDIRECT;
1428
1429 itx = zil_itx_create(TX_WRITE,
1430 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
1431
1432 if (write_state == WR_COPIED &&
1433 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
1434 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) {
1435 zil_itx_destroy(itx);
1436 itx = zil_itx_create(TX_WRITE, sizeof (*lr));
1437 write_state = WR_NEED_COPY;
1438 }
1439 itx->itx_private = zd;
1440 itx->itx_wr_state = write_state;
1441 itx->itx_sync = (ztest_random(8) == 0);
1442 itx->itx_sod += (write_state == WR_NEED_COPY ? lr->lr_length : 0);
1443
1444 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1445 sizeof (*lr) - sizeof (lr_t));
1446
1447 zil_itx_assign(zd->zd_zilog, itx, tx);
1448 }
1449
1450 static void
1451 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
1452 {
1453 itx_t *itx;
1454
1455 if (zil_replaying(zd->zd_zilog, tx))
1456 return;
1457
1458 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
1459 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1460 sizeof (*lr) - sizeof (lr_t));
1461
1462 itx->itx_sync = B_FALSE;
1463 zil_itx_assign(zd->zd_zilog, itx, tx);
1464 }
1465
1466 static void
1467 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
1468 {
1469 itx_t *itx;
1470
1471 if (zil_replaying(zd->zd_zilog, tx))
1472 return;
1473
1474 itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
1475 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1476 sizeof (*lr) - sizeof (lr_t));
1477
1478 itx->itx_sync = B_FALSE;
1479 zil_itx_assign(zd->zd_zilog, itx, tx);
1480 }
1481
1482 /*
1483 * ZIL replay ops
1484 */
1485 static int
1486 ztest_replay_create(ztest_ds_t *zd, lr_create_t *lr, boolean_t byteswap)
1487 {
1488 char *name = (void *)(lr + 1); /* name follows lr */
1489 objset_t *os = zd->zd_os;
1490 ztest_block_tag_t *bbt;
1491 dmu_buf_t *db;
1492 dmu_tx_t *tx;
1493 uint64_t txg;
1494 int error = 0;
1495
1496 if (byteswap)
1497 byteswap_uint64_array(lr, sizeof (*lr));
1498
1499 ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1500 ASSERT(name[0] != '\0');
1501
1502 tx = dmu_tx_create(os);
1503
1504 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
1505
1506 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1507 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1508 } else {
1509 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1510 }
1511
1512 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1513 if (txg == 0)
1514 return (ENOSPC);
1515
1516 ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid);
1517
1518 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1519 if (lr->lr_foid == 0) {
1520 lr->lr_foid = zap_create(os,
1521 lr->lrz_type, lr->lrz_bonustype,
1522 lr->lrz_bonuslen, tx);
1523 } else {
1524 error = zap_create_claim(os, lr->lr_foid,
1525 lr->lrz_type, lr->lrz_bonustype,
1526 lr->lrz_bonuslen, tx);
1527 }
1528 } else {
1529 if (lr->lr_foid == 0) {
1530 lr->lr_foid = dmu_object_alloc(os,
1531 lr->lrz_type, 0, lr->lrz_bonustype,
1532 lr->lrz_bonuslen, tx);
1533 } else {
1534 error = dmu_object_claim(os, lr->lr_foid,
1535 lr->lrz_type, 0, lr->lrz_bonustype,
1536 lr->lrz_bonuslen, tx);
1537 }
1538 }
1539
1540 if (error) {
1541 ASSERT3U(error, ==, EEXIST);
1542 ASSERT(zd->zd_zilog->zl_replay);
1543 dmu_tx_commit(tx);
1544 return (error);
1545 }
1546
1547 ASSERT(lr->lr_foid != 0);
1548
1549 if (lr->lrz_type != DMU_OT_ZAP_OTHER)
1550 VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid,
1551 lr->lrz_blocksize, lr->lrz_ibshift, tx));
1552
1553 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1554 bbt = ztest_bt_bonus(db);
1555 dmu_buf_will_dirty(db, tx);
1556 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg);
1557 dmu_buf_rele(db, FTAG);
1558
1559 VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
1560 &lr->lr_foid, tx));
1561
1562 (void) ztest_log_create(zd, tx, lr);
1563
1564 dmu_tx_commit(tx);
1565
1566 return (0);
1567 }
1568
1569 static int
1570 ztest_replay_remove(ztest_ds_t *zd, lr_remove_t *lr, boolean_t byteswap)
1571 {
1572 char *name = (void *)(lr + 1); /* name follows lr */
1573 objset_t *os = zd->zd_os;
1574 dmu_object_info_t doi;
1575 dmu_tx_t *tx;
1576 uint64_t object, txg;
1577
1578 if (byteswap)
1579 byteswap_uint64_array(lr, sizeof (*lr));
1580
1581 ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1582 ASSERT(name[0] != '\0');
1583
1584 VERIFY3U(0, ==,
1585 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
1586 ASSERT(object != 0);
1587
1588 ztest_object_lock(zd, object, RL_WRITER);
1589
1590 VERIFY3U(0, ==, dmu_object_info(os, object, &doi));
1591
1592 tx = dmu_tx_create(os);
1593
1594 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
1595 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
1596
1597 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1598 if (txg == 0) {
1599 ztest_object_unlock(zd, object);
1600 return (ENOSPC);
1601 }
1602
1603 if (doi.doi_type == DMU_OT_ZAP_OTHER) {
1604 VERIFY3U(0, ==, zap_destroy(os, object, tx));
1605 } else {
1606 VERIFY3U(0, ==, dmu_object_free(os, object, tx));
1607 }
1608
1609 VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx));
1610
1611 (void) ztest_log_remove(zd, tx, lr, object);
1612
1613 dmu_tx_commit(tx);
1614
1615 ztest_object_unlock(zd, object);
1616
1617 return (0);
1618 }
1619
1620 static int
1621 ztest_replay_write(ztest_ds_t *zd, lr_write_t *lr, boolean_t byteswap)
1622 {
1623 objset_t *os = zd->zd_os;
1624 void *data = lr + 1; /* data follows lr */
1625 uint64_t offset, length;
1626 ztest_block_tag_t *bt = data;
1627 ztest_block_tag_t *bbt;
1628 uint64_t gen, txg, lrtxg, crtxg;
1629 dmu_object_info_t doi;
1630 dmu_tx_t *tx;
1631 dmu_buf_t *db;
1632 arc_buf_t *abuf = NULL;
1633 rl_t *rl;
1634
1635 if (byteswap)
1636 byteswap_uint64_array(lr, sizeof (*lr));
1637
1638 offset = lr->lr_offset;
1639 length = lr->lr_length;
1640
1641 /* If it's a dmu_sync() block, write the whole block */
1642 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
1643 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
1644 if (length < blocksize) {
1645 offset -= offset % blocksize;
1646 length = blocksize;
1647 }
1648 }
1649
1650 if (bt->bt_magic == BSWAP_64(BT_MAGIC))
1651 byteswap_uint64_array(bt, sizeof (*bt));
1652
1653 if (bt->bt_magic != BT_MAGIC)
1654 bt = NULL;
1655
1656 ztest_object_lock(zd, lr->lr_foid, RL_READER);
1657 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER);
1658
1659 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1660
1661 dmu_object_info_from_db(db, &doi);
1662
1663 bbt = ztest_bt_bonus(db);
1664 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1665 gen = bbt->bt_gen;
1666 crtxg = bbt->bt_crtxg;
1667 lrtxg = lr->lr_common.lrc_txg;
1668
1669 tx = dmu_tx_create(os);
1670
1671 dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
1672
1673 if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
1674 P2PHASE(offset, length) == 0)
1675 abuf = dmu_request_arcbuf(db, length);
1676
1677 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1678 if (txg == 0) {
1679 if (abuf != NULL)
1680 dmu_return_arcbuf(abuf);
1681 dmu_buf_rele(db, FTAG);
1682 ztest_range_unlock(rl);
1683 ztest_object_unlock(zd, lr->lr_foid);
1684 return (ENOSPC);
1685 }
1686
1687 if (bt != NULL) {
1688 /*
1689 * Usually, verify the old data before writing new data --
1690 * but not always, because we also want to verify correct
1691 * behavior when the data was not recently read into cache.
1692 */
1693 ASSERT(offset % doi.doi_data_block_size == 0);
1694 if (ztest_random(4) != 0) {
1695 int prefetch = ztest_random(2) ?
1696 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
1697 ztest_block_tag_t rbt;
1698
1699 VERIFY(dmu_read(os, lr->lr_foid, offset,
1700 sizeof (rbt), &rbt, prefetch) == 0);
1701 if (rbt.bt_magic == BT_MAGIC) {
1702 ztest_bt_verify(&rbt, os, lr->lr_foid,
1703 offset, gen, txg, crtxg);
1704 }
1705 }
1706
1707 /*
1708 * Writes can appear to be newer than the bonus buffer because
1709 * the ztest_get_data() callback does a dmu_read() of the
1710 * open-context data, which may be different than the data
1711 * as it was when the write was generated.
1712 */
1713 if (zd->zd_zilog->zl_replay) {
1714 ztest_bt_verify(bt, os, lr->lr_foid, offset,
1715 MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
1716 bt->bt_crtxg);
1717 }
1718
1719 /*
1720 * Set the bt's gen/txg to the bonus buffer's gen/txg
1721 * so that all of the usual ASSERTs will work.
1722 */
1723 ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg);
1724 }
1725
1726 if (abuf == NULL) {
1727 dmu_write(os, lr->lr_foid, offset, length, data, tx);
1728 } else {
1729 bcopy(data, abuf->b_data, length);
1730 dmu_assign_arcbuf(db, offset, abuf, tx);
1731 }
1732
1733 (void) ztest_log_write(zd, tx, lr);
1734
1735 dmu_buf_rele(db, FTAG);
1736
1737 dmu_tx_commit(tx);
1738
1739 ztest_range_unlock(rl);
1740 ztest_object_unlock(zd, lr->lr_foid);
1741
1742 return (0);
1743 }
1744
1745 static int
1746 ztest_replay_truncate(ztest_ds_t *zd, lr_truncate_t *lr, boolean_t byteswap)
1747 {
1748 objset_t *os = zd->zd_os;
1749 dmu_tx_t *tx;
1750 uint64_t txg;
1751 rl_t *rl;
1752
1753 if (byteswap)
1754 byteswap_uint64_array(lr, sizeof (*lr));
1755
1756 ztest_object_lock(zd, lr->lr_foid, RL_READER);
1757 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
1758 RL_WRITER);
1759
1760 tx = dmu_tx_create(os);
1761
1762 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
1763
1764 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1765 if (txg == 0) {
1766 ztest_range_unlock(rl);
1767 ztest_object_unlock(zd, lr->lr_foid);
1768 return (ENOSPC);
1769 }
1770
1771 VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
1772 lr->lr_length, tx) == 0);
1773
1774 (void) ztest_log_truncate(zd, tx, lr);
1775
1776 dmu_tx_commit(tx);
1777
1778 ztest_range_unlock(rl);
1779 ztest_object_unlock(zd, lr->lr_foid);
1780
1781 return (0);
1782 }
1783
1784 static int
1785 ztest_replay_setattr(ztest_ds_t *zd, lr_setattr_t *lr, boolean_t byteswap)
1786 {
1787 objset_t *os = zd->zd_os;
1788 dmu_tx_t *tx;
1789 dmu_buf_t *db;
1790 ztest_block_tag_t *bbt;
1791 uint64_t txg, lrtxg, crtxg;
1792
1793 if (byteswap)
1794 byteswap_uint64_array(lr, sizeof (*lr));
1795
1796 ztest_object_lock(zd, lr->lr_foid, RL_WRITER);
1797
1798 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1799
1800 tx = dmu_tx_create(os);
1801 dmu_tx_hold_bonus(tx, lr->lr_foid);
1802
1803 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1804 if (txg == 0) {
1805 dmu_buf_rele(db, FTAG);
1806 ztest_object_unlock(zd, lr->lr_foid);
1807 return (ENOSPC);
1808 }
1809
1810 bbt = ztest_bt_bonus(db);
1811 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1812 crtxg = bbt->bt_crtxg;
1813 lrtxg = lr->lr_common.lrc_txg;
1814
1815 if (zd->zd_zilog->zl_replay) {
1816 ASSERT(lr->lr_size != 0);
1817 ASSERT(lr->lr_mode != 0);
1818 ASSERT(lrtxg != 0);
1819 } else {
1820 /*
1821 * Randomly change the size and increment the generation.
1822 */
1823 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
1824 sizeof (*bbt);
1825 lr->lr_mode = bbt->bt_gen + 1;
1826 ASSERT(lrtxg == 0);
1827 }
1828
1829 /*
1830 * Verify that the current bonus buffer is not newer than our txg.
1831 */
1832 ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode,
1833 MAX(txg, lrtxg), crtxg);
1834
1835 dmu_buf_will_dirty(db, tx);
1836
1837 ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
1838 ASSERT3U(lr->lr_size, <=, db->db_size);
1839 VERIFY0(dmu_set_bonus(db, lr->lr_size, tx));
1840 bbt = ztest_bt_bonus(db);
1841
1842 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg);
1843
1844 dmu_buf_rele(db, FTAG);
1845
1846 (void) ztest_log_setattr(zd, tx, lr);
1847
1848 dmu_tx_commit(tx);
1849
1850 ztest_object_unlock(zd, lr->lr_foid);
1851
1852 return (0);
1853 }
1854
1855 zil_replay_func_t ztest_replay_vector[TX_MAX_TYPE] = {
1856 NULL, /* 0 no such transaction type */
1857 (zil_replay_func_t)ztest_replay_create, /* TX_CREATE */
1858 NULL, /* TX_MKDIR */
1859 NULL, /* TX_MKXATTR */
1860 NULL, /* TX_SYMLINK */
1861 (zil_replay_func_t)ztest_replay_remove, /* TX_REMOVE */
1862 NULL, /* TX_RMDIR */
1863 NULL, /* TX_LINK */
1864 NULL, /* TX_RENAME */
1865 (zil_replay_func_t)ztest_replay_write, /* TX_WRITE */
1866 (zil_replay_func_t)ztest_replay_truncate, /* TX_TRUNCATE */
1867 (zil_replay_func_t)ztest_replay_setattr, /* TX_SETATTR */
1868 NULL, /* TX_ACL */
1869 NULL, /* TX_CREATE_ACL */
1870 NULL, /* TX_CREATE_ATTR */
1871 NULL, /* TX_CREATE_ACL_ATTR */
1872 NULL, /* TX_MKDIR_ACL */
1873 NULL, /* TX_MKDIR_ATTR */
1874 NULL, /* TX_MKDIR_ACL_ATTR */
1875 NULL, /* TX_WRITE2 */
1876 };
1877
1878 /*
1879 * ZIL get_data callbacks
1880 */
1881
1882 static void
1883 ztest_get_done(zgd_t *zgd, int error)
1884 {
1885 ztest_ds_t *zd = zgd->zgd_private;
1886 uint64_t object = zgd->zgd_rl->rl_object;
1887
1888 if (zgd->zgd_db)
1889 dmu_buf_rele(zgd->zgd_db, zgd);
1890
1891 ztest_range_unlock(zgd->zgd_rl);
1892 ztest_object_unlock(zd, object);
1893
1894 if (error == 0 && zgd->zgd_bp)
1895 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
1896
1897 umem_free(zgd, sizeof (*zgd));
1898 }
1899
1900 static int
1901 ztest_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
1902 {
1903 ztest_ds_t *zd = arg;
1904 objset_t *os = zd->zd_os;
1905 uint64_t object = lr->lr_foid;
1906 uint64_t offset = lr->lr_offset;
1907 uint64_t size = lr->lr_length;
1908 blkptr_t *bp = &lr->lr_blkptr;
1909 uint64_t txg = lr->lr_common.lrc_txg;
1910 uint64_t crtxg;
1911 dmu_object_info_t doi;
1912 dmu_buf_t *db;
1913 zgd_t *zgd;
1914 int error;
1915
1916 ztest_object_lock(zd, object, RL_READER);
1917 error = dmu_bonus_hold(os, object, FTAG, &db);
1918 if (error) {
1919 ztest_object_unlock(zd, object);
1920 return (error);
1921 }
1922
1923 crtxg = ztest_bt_bonus(db)->bt_crtxg;
1924
1925 if (crtxg == 0 || crtxg > txg) {
1926 dmu_buf_rele(db, FTAG);
1927 ztest_object_unlock(zd, object);
1928 return (ENOENT);
1929 }
1930
1931 dmu_object_info_from_db(db, &doi);
1932 dmu_buf_rele(db, FTAG);
1933 db = NULL;
1934
1935 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
1936 zgd->zgd_zilog = zd->zd_zilog;
1937 zgd->zgd_private = zd;
1938
1939 if (buf != NULL) { /* immediate write */
1940 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size,
1941 RL_READER);
1942
1943 error = dmu_read(os, object, offset, size, buf,
1944 DMU_READ_NO_PREFETCH);
1945 ASSERT(error == 0);
1946 } else {
1947 size = doi.doi_data_block_size;
1948 if (ISP2(size)) {
1949 offset = P2ALIGN(offset, size);
1950 } else {
1951 ASSERT(offset < size);
1952 offset = 0;
1953 }
1954
1955 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size,
1956 RL_READER);
1957
1958 error = dmu_buf_hold(os, object, offset, zgd, &db,
1959 DMU_READ_NO_PREFETCH);
1960
1961 if (error == 0) {
1962 blkptr_t *obp = dmu_buf_get_blkptr(db);
1963 if (obp) {
1964 ASSERT(BP_IS_HOLE(bp));
1965 *bp = *obp;
1966 }
1967
1968 zgd->zgd_db = db;
1969 zgd->zgd_bp = bp;
1970
1971 ASSERT(db->db_offset == offset);
1972 ASSERT(db->db_size == size);
1973
1974 error = dmu_sync(zio, lr->lr_common.lrc_txg,
1975 ztest_get_done, zgd);
1976
1977 if (error == 0)
1978 return (0);
1979 }
1980 }
1981
1982 ztest_get_done(zgd, error);
1983
1984 return (error);
1985 }
1986
1987 static void *
1988 ztest_lr_alloc(size_t lrsize, char *name)
1989 {
1990 char *lr;
1991 size_t namesize = name ? strlen(name) + 1 : 0;
1992
1993 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
1994
1995 if (name)
1996 bcopy(name, lr + lrsize, namesize);
1997
1998 return (lr);
1999 }
2000
2001 void
2002 ztest_lr_free(void *lr, size_t lrsize, char *name)
2003 {
2004 size_t namesize = name ? strlen(name) + 1 : 0;
2005
2006 umem_free(lr, lrsize + namesize);
2007 }
2008
2009 /*
2010 * Lookup a bunch of objects. Returns the number of objects not found.
2011 */
2012 static int
2013 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
2014 {
2015 int missing = 0;
2016 int error;
2017 int i;
2018
2019 ASSERT(mutex_held(&zd->zd_dirobj_lock));
2020
2021 for (i = 0; i < count; i++, od++) {
2022 od->od_object = 0;
2023 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
2024 sizeof (uint64_t), 1, &od->od_object);
2025 if (error) {
2026 ASSERT(error == ENOENT);
2027 ASSERT(od->od_object == 0);
2028 missing++;
2029 } else {
2030 dmu_buf_t *db;
2031 ztest_block_tag_t *bbt;
2032 dmu_object_info_t doi;
2033
2034 ASSERT(od->od_object != 0);
2035 ASSERT(missing == 0); /* there should be no gaps */
2036
2037 ztest_object_lock(zd, od->od_object, RL_READER);
2038 VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os,
2039 od->od_object, FTAG, &db));
2040 dmu_object_info_from_db(db, &doi);
2041 bbt = ztest_bt_bonus(db);
2042 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2043 od->od_type = doi.doi_type;
2044 od->od_blocksize = doi.doi_data_block_size;
2045 od->od_gen = bbt->bt_gen;
2046 dmu_buf_rele(db, FTAG);
2047 ztest_object_unlock(zd, od->od_object);
2048 }
2049 }
2050
2051 return (missing);
2052 }
2053
2054 static int
2055 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
2056 {
2057 int missing = 0;
2058 int i;
2059
2060 ASSERT(mutex_held(&zd->zd_dirobj_lock));
2061
2062 for (i = 0; i < count; i++, od++) {
2063 if (missing) {
2064 od->od_object = 0;
2065 missing++;
2066 continue;
2067 }
2068
2069 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2070
2071 lr->lr_doid = od->od_dir;
2072 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */
2073 lr->lrz_type = od->od_crtype;
2074 lr->lrz_blocksize = od->od_crblocksize;
2075 lr->lrz_ibshift = ztest_random_ibshift();
2076 lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
2077 lr->lrz_bonuslen = dmu_bonus_max();
2078 lr->lr_gen = od->od_crgen;
2079 lr->lr_crtime[0] = time(NULL);
2080
2081 if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
2082 ASSERT(missing == 0);
2083 od->od_object = 0;
2084 missing++;
2085 } else {
2086 od->od_object = lr->lr_foid;
2087 od->od_type = od->od_crtype;
2088 od->od_blocksize = od->od_crblocksize;
2089 od->od_gen = od->od_crgen;
2090 ASSERT(od->od_object != 0);
2091 }
2092
2093 ztest_lr_free(lr, sizeof (*lr), od->od_name);
2094 }
2095
2096 return (missing);
2097 }
2098
2099 static int
2100 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
2101 {
2102 int missing = 0;
2103 int error;
2104 int i;
2105
2106 ASSERT(mutex_held(&zd->zd_dirobj_lock));
2107
2108 od += count - 1;
2109
2110 for (i = count - 1; i >= 0; i--, od--) {
2111 if (missing) {
2112 missing++;
2113 continue;
2114 }
2115
2116 /*
2117 * No object was found.
2118 */
2119 if (od->od_object == 0)
2120 continue;
2121
2122 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2123
2124 lr->lr_doid = od->od_dir;
2125
2126 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
2127 ASSERT3U(error, ==, ENOSPC);
2128 missing++;
2129 } else {
2130 od->od_object = 0;
2131 }
2132 ztest_lr_free(lr, sizeof (*lr), od->od_name);
2133 }
2134
2135 return (missing);
2136 }
2137
2138 static int
2139 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
2140 void *data)
2141 {
2142 lr_write_t *lr;
2143 int error;
2144
2145 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
2146
2147 lr->lr_foid = object;
2148 lr->lr_offset = offset;
2149 lr->lr_length = size;
2150 lr->lr_blkoff = 0;
2151 BP_ZERO(&lr->lr_blkptr);
2152
2153 bcopy(data, lr + 1, size);
2154
2155 error = ztest_replay_write(zd, lr, B_FALSE);
2156
2157 ztest_lr_free(lr, sizeof (*lr) + size, NULL);
2158
2159 return (error);
2160 }
2161
2162 static int
2163 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2164 {
2165 lr_truncate_t *lr;
2166 int error;
2167
2168 lr = ztest_lr_alloc(sizeof (*lr), NULL);
2169
2170 lr->lr_foid = object;
2171 lr->lr_offset = offset;
2172 lr->lr_length = size;
2173
2174 error = ztest_replay_truncate(zd, lr, B_FALSE);
2175
2176 ztest_lr_free(lr, sizeof (*lr), NULL);
2177
2178 return (error);
2179 }
2180
2181 static int
2182 ztest_setattr(ztest_ds_t *zd, uint64_t object)
2183 {
2184 lr_setattr_t *lr;
2185 int error;
2186
2187 lr = ztest_lr_alloc(sizeof (*lr), NULL);
2188
2189 lr->lr_foid = object;
2190 lr->lr_size = 0;
2191 lr->lr_mode = 0;
2192
2193 error = ztest_replay_setattr(zd, lr, B_FALSE);
2194
2195 ztest_lr_free(lr, sizeof (*lr), NULL);
2196
2197 return (error);
2198 }
2199
2200 static void
2201 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2202 {
2203 objset_t *os = zd->zd_os;
2204 dmu_tx_t *tx;
2205 uint64_t txg;
2206 rl_t *rl;
2207
2208 txg_wait_synced(dmu_objset_pool(os), 0);
2209
2210 ztest_object_lock(zd, object, RL_READER);
2211 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER);
2212
2213 tx = dmu_tx_create(os);
2214
2215 dmu_tx_hold_write(tx, object, offset, size);
2216
2217 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2218
2219 if (txg != 0) {
2220 dmu_prealloc(os, object, offset, size, tx);
2221 dmu_tx_commit(tx);
2222 txg_wait_synced(dmu_objset_pool(os), txg);
2223 } else {
2224 (void) dmu_free_long_range(os, object, offset, size);
2225 }
2226
2227 ztest_range_unlock(rl);
2228 ztest_object_unlock(zd, object);
2229 }
2230
2231 static void
2232 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
2233 {
2234 int err;
2235 ztest_block_tag_t wbt;
2236 dmu_object_info_t doi;
2237 enum ztest_io_type io_type;
2238 uint64_t blocksize;
2239 void *data;
2240
2241 VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0);
2242 blocksize = doi.doi_data_block_size;
2243 data = umem_alloc(blocksize, UMEM_NOFAIL);
2244
2245 /*
2246 * Pick an i/o type at random, biased toward writing block tags.
2247 */
2248 io_type = ztest_random(ZTEST_IO_TYPES);
2249 if (ztest_random(2) == 0)
2250 io_type = ZTEST_IO_WRITE_TAG;
2251
2252 (void) rw_rdlock(&zd->zd_zilog_lock);
2253
2254 switch (io_type) {
2255
2256 case ZTEST_IO_WRITE_TAG:
2257 ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0);
2258 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
2259 break;
2260
2261 case ZTEST_IO_WRITE_PATTERN:
2262 (void) memset(data, 'a' + (object + offset) % 5, blocksize);
2263 if (ztest_random(2) == 0) {
2264 /*
2265 * Induce fletcher2 collisions to ensure that
2266 * zio_ddt_collision() detects and resolves them
2267 * when using fletcher2-verify for deduplication.
2268 */
2269 ((uint64_t *)data)[0] ^= 1ULL << 63;
2270 ((uint64_t *)data)[4] ^= 1ULL << 63;
2271 }
2272 (void) ztest_write(zd, object, offset, blocksize, data);
2273 break;
2274
2275 case ZTEST_IO_WRITE_ZEROES:
2276 bzero(data, blocksize);
2277 (void) ztest_write(zd, object, offset, blocksize, data);
2278 break;
2279
2280 case ZTEST_IO_TRUNCATE:
2281 (void) ztest_truncate(zd, object, offset, blocksize);
2282 break;
2283
2284 case ZTEST_IO_SETATTR:
2285 (void) ztest_setattr(zd, object);
2286 break;
2287 default:
2288 break;
2289
2290 case ZTEST_IO_REWRITE:
2291 (void) rw_rdlock(&ztest_name_lock);
2292 err = ztest_dsl_prop_set_uint64(zd->zd_name,
2293 ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa),
2294 B_FALSE);
2295 VERIFY(err == 0 || err == ENOSPC);
2296 err = ztest_dsl_prop_set_uint64(zd->zd_name,
2297 ZFS_PROP_COMPRESSION,
2298 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION),
2299 B_FALSE);
2300 VERIFY(err == 0 || err == ENOSPC);
2301 (void) rw_unlock(&ztest_name_lock);
2302
2303 VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data,
2304 DMU_READ_NO_PREFETCH));
2305
2306 (void) ztest_write(zd, object, offset, blocksize, data);
2307 break;
2308 }
2309
2310 (void) rw_unlock(&zd->zd_zilog_lock);
2311
2312 umem_free(data, blocksize);
2313 }
2314
2315 /*
2316 * Initialize an object description template.
2317 */
2318 static void
2319 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index,
2320 dmu_object_type_t type, uint64_t blocksize, uint64_t gen)
2321 {
2322 od->od_dir = ZTEST_DIROBJ;
2323 od->od_object = 0;
2324
2325 od->od_crtype = type;
2326 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
2327 od->od_crgen = gen;
2328
2329 od->od_type = DMU_OT_NONE;
2330 od->od_blocksize = 0;
2331 od->od_gen = 0;
2332
2333 (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]",
2334 tag, (longlong_t)id, (u_longlong_t)index);
2335 }
2336
2337 /*
2338 * Lookup or create the objects for a test using the od template.
2339 * If the objects do not all exist, or if 'remove' is specified,
2340 * remove any existing objects and create new ones. Otherwise,
2341 * use the existing objects.
2342 */
2343 static int
2344 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
2345 {
2346 int count = size / sizeof (*od);
2347 int rv = 0;
2348
2349 mutex_enter(&zd->zd_dirobj_lock);
2350 if ((ztest_lookup(zd, od, count) != 0 || remove) &&
2351 (ztest_remove(zd, od, count) != 0 ||
2352 ztest_create(zd, od, count) != 0))
2353 rv = -1;
2354 zd->zd_od = od;
2355 mutex_exit(&zd->zd_dirobj_lock);
2356
2357 return (rv);
2358 }
2359
2360 /* ARGSUSED */
2361 void
2362 ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
2363 {
2364 zilog_t *zilog = zd->zd_zilog;
2365
2366 (void) rw_rdlock(&zd->zd_zilog_lock);
2367
2368 zil_commit(zilog, ztest_random(ZTEST_OBJECTS));
2369
2370 /*
2371 * Remember the committed values in zd, which is in parent/child
2372 * shared memory. If we die, the next iteration of ztest_run()
2373 * will verify that the log really does contain this record.
2374 */
2375 mutex_enter(&zilog->zl_lock);
2376 ASSERT(zd->zd_shared != NULL);
2377 ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq);
2378 zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq;
2379 mutex_exit(&zilog->zl_lock);
2380
2381 (void) rw_unlock(&zd->zd_zilog_lock);
2382 }
2383
2384 /*
2385 * This function is designed to simulate the operations that occur during a
2386 * mount/unmount operation. We hold the dataset across these operations in an
2387 * attempt to expose any implicit assumptions about ZIL management.
2388 */
2389 /* ARGSUSED */
2390 void
2391 ztest_zil_remount(ztest_ds_t *zd, uint64_t id)
2392 {
2393 objset_t *os = zd->zd_os;
2394
2395 /*
2396 * We grab the zd_dirobj_lock to ensure that no other thread is
2397 * updating the zil (i.e. adding in-memory log records) and the
2398 * zd_zilog_lock to block any I/O.
2399 */
2400 mutex_enter(&zd->zd_dirobj_lock);
2401 (void) rw_wrlock(&zd->zd_zilog_lock);
2402
2403 /* zfs_sb_teardown() */
2404 zil_close(zd->zd_zilog);
2405
2406 /* zfsvfs_setup() */
2407 VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog);
2408 zil_replay(os, zd, ztest_replay_vector);
2409
2410 (void) rw_unlock(&zd->zd_zilog_lock);
2411 mutex_exit(&zd->zd_dirobj_lock);
2412 }
2413
2414 /*
2415 * Verify that we can't destroy an active pool, create an existing pool,
2416 * or create a pool with a bad vdev spec.
2417 */
2418 /* ARGSUSED */
2419 void
2420 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
2421 {
2422 ztest_shared_opts_t *zo = &ztest_opts;
2423 spa_t *spa;
2424 nvlist_t *nvroot;
2425
2426 /*
2427 * Attempt to create using a bad file.
2428 */
2429 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1);
2430 VERIFY3U(ENOENT, ==,
2431 spa_create("ztest_bad_file", nvroot, NULL, NULL));
2432 nvlist_free(nvroot);
2433
2434 /*
2435 * Attempt to create using a bad mirror.
2436 */
2437 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 2, 1);
2438 VERIFY3U(ENOENT, ==,
2439 spa_create("ztest_bad_mirror", nvroot, NULL, NULL));
2440 nvlist_free(nvroot);
2441
2442 /*
2443 * Attempt to create an existing pool. It shouldn't matter
2444 * what's in the nvroot; we should fail with EEXIST.
2445 */
2446 (void) rw_rdlock(&ztest_name_lock);
2447 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1);
2448 VERIFY3U(EEXIST, ==, spa_create(zo->zo_pool, nvroot, NULL, NULL));
2449 nvlist_free(nvroot);
2450 VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG));
2451 VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool));
2452 spa_close(spa, FTAG);
2453
2454 (void) rw_unlock(&ztest_name_lock);
2455 }
2456
2457 /* ARGSUSED */
2458 void
2459 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id)
2460 {
2461 spa_t *spa;
2462 uint64_t initial_version = SPA_VERSION_INITIAL;
2463 uint64_t version, newversion;
2464 nvlist_t *nvroot, *props;
2465 char *name;
2466
2467 mutex_enter(&ztest_vdev_lock);
2468 name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool);
2469
2470 /*
2471 * Clean up from previous runs.
2472 */
2473 (void) spa_destroy(name);
2474
2475 nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0,
2476 0, ztest_opts.zo_raidz, ztest_opts.zo_mirrors, 1);
2477
2478 /*
2479 * If we're configuring a RAIDZ device then make sure that the
2480 * the initial version is capable of supporting that feature.
2481 */
2482 switch (ztest_opts.zo_raidz_parity) {
2483 case 0:
2484 case 1:
2485 initial_version = SPA_VERSION_INITIAL;
2486 break;
2487 case 2:
2488 initial_version = SPA_VERSION_RAIDZ2;
2489 break;
2490 case 3:
2491 initial_version = SPA_VERSION_RAIDZ3;
2492 break;
2493 }
2494
2495 /*
2496 * Create a pool with a spa version that can be upgraded. Pick
2497 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
2498 */
2499 do {
2500 version = ztest_random_spa_version(initial_version);
2501 } while (version > SPA_VERSION_BEFORE_FEATURES);
2502
2503 props = fnvlist_alloc();
2504 fnvlist_add_uint64(props,
2505 zpool_prop_to_name(ZPOOL_PROP_VERSION), version);
2506 VERIFY3S(spa_create(name, nvroot, props, NULL), ==, 0);
2507 fnvlist_free(nvroot);
2508 fnvlist_free(props);
2509
2510 VERIFY3S(spa_open(name, &spa, FTAG), ==, 0);
2511 VERIFY3U(spa_version(spa), ==, version);
2512 newversion = ztest_random_spa_version(version + 1);
2513
2514 if (ztest_opts.zo_verbose >= 4) {
2515 (void) printf("upgrading spa version from %llu to %llu\n",
2516 (u_longlong_t)version, (u_longlong_t)newversion);
2517 }
2518
2519 spa_upgrade(spa, newversion);
2520 VERIFY3U(spa_version(spa), >, version);
2521 VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config,
2522 zpool_prop_to_name(ZPOOL_PROP_VERSION)));
2523 spa_close(spa, FTAG);
2524
2525 strfree(name);
2526 mutex_exit(&ztest_vdev_lock);
2527 }
2528
2529 static vdev_t *
2530 vdev_lookup_by_path(vdev_t *vd, const char *path)
2531 {
2532 vdev_t *mvd;
2533 int c;
2534
2535 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
2536 return (vd);
2537
2538 for (c = 0; c < vd->vdev_children; c++)
2539 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
2540 NULL)
2541 return (mvd);
2542
2543 return (NULL);
2544 }
2545
2546 /*
2547 * Find the first available hole which can be used as a top-level.
2548 */
2549 int
2550 find_vdev_hole(spa_t *spa)
2551 {
2552 vdev_t *rvd = spa->spa_root_vdev;
2553 int c;
2554
2555 ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV);
2556
2557 for (c = 0; c < rvd->vdev_children; c++) {
2558 vdev_t *cvd = rvd->vdev_child[c];
2559
2560 if (cvd->vdev_ishole)
2561 break;
2562 }
2563 return (c);
2564 }
2565
2566 /*
2567 * Verify that vdev_add() works as expected.
2568 */
2569 /* ARGSUSED */
2570 void
2571 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
2572 {
2573 ztest_shared_t *zs = ztest_shared;
2574 spa_t *spa = ztest_spa;
2575 uint64_t leaves;
2576 uint64_t guid;
2577 nvlist_t *nvroot;
2578 int error;
2579
2580 mutex_enter(&ztest_vdev_lock);
2581 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz;
2582
2583 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2584
2585 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves;
2586
2587 /*
2588 * If we have slogs then remove them 1/4 of the time.
2589 */
2590 if (spa_has_slogs(spa) && ztest_random(4) == 0) {
2591 /*
2592 * Grab the guid from the head of the log class rotor.
2593 */
2594 guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid;
2595
2596 spa_config_exit(spa, SCL_VDEV, FTAG);
2597
2598 /*
2599 * We have to grab the zs_name_lock as writer to
2600 * prevent a race between removing a slog (dmu_objset_find)
2601 * and destroying a dataset. Removing the slog will
2602 * grab a reference on the dataset which may cause
2603 * dsl_destroy_head() to fail with EBUSY thus
2604 * leaving the dataset in an inconsistent state.
2605 */
2606 rw_wrlock(&ztest_name_lock);
2607 error = spa_vdev_remove(spa, guid, B_FALSE);
2608 rw_unlock(&ztest_name_lock);
2609
2610 if (error && error != EEXIST)
2611 fatal(0, "spa_vdev_remove() = %d", error);
2612 } else {
2613 spa_config_exit(spa, SCL_VDEV, FTAG);
2614
2615 /*
2616 * Make 1/4 of the devices be log devices.
2617 */
2618 nvroot = make_vdev_root(NULL, NULL, NULL,
2619 ztest_opts.zo_vdev_size, 0,
2620 ztest_random(4) == 0, ztest_opts.zo_raidz,
2621 zs->zs_mirrors, 1);
2622
2623 error = spa_vdev_add(spa, nvroot);
2624 nvlist_free(nvroot);
2625
2626 if (error == ENOSPC)
2627 ztest_record_enospc("spa_vdev_add");
2628 else if (error != 0)
2629 fatal(0, "spa_vdev_add() = %d", error);
2630 }
2631
2632 mutex_exit(&ztest_vdev_lock);
2633 }
2634
2635 /*
2636 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
2637 */
2638 /* ARGSUSED */
2639 void
2640 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
2641 {
2642 ztest_shared_t *zs = ztest_shared;
2643 spa_t *spa = ztest_spa;
2644 vdev_t *rvd = spa->spa_root_vdev;
2645 spa_aux_vdev_t *sav;
2646 char *aux;
2647 char *path;
2648 uint64_t guid = 0;
2649 int error;
2650
2651 path = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
2652
2653 if (ztest_random(2) == 0) {
2654 sav = &spa->spa_spares;
2655 aux = ZPOOL_CONFIG_SPARES;
2656 } else {
2657 sav = &spa->spa_l2cache;
2658 aux = ZPOOL_CONFIG_L2CACHE;
2659 }
2660
2661 mutex_enter(&ztest_vdev_lock);
2662
2663 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2664
2665 if (sav->sav_count != 0 && ztest_random(4) == 0) {
2666 /*
2667 * Pick a random device to remove.
2668 */
2669 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid;
2670 } else {
2671 /*
2672 * Find an unused device we can add.
2673 */
2674 zs->zs_vdev_aux = 0;
2675 for (;;) {
2676 int c;
2677 (void) snprintf(path, MAXPATHLEN, ztest_aux_template,
2678 ztest_opts.zo_dir, ztest_opts.zo_pool, aux,
2679 zs->zs_vdev_aux);
2680 for (c = 0; c < sav->sav_count; c++)
2681 if (strcmp(sav->sav_vdevs[c]->vdev_path,
2682 path) == 0)
2683 break;
2684 if (c == sav->sav_count &&
2685 vdev_lookup_by_path(rvd, path) == NULL)
2686 break;
2687 zs->zs_vdev_aux++;
2688 }
2689 }
2690
2691 spa_config_exit(spa, SCL_VDEV, FTAG);
2692
2693 if (guid == 0) {
2694 /*
2695 * Add a new device.
2696 */
2697 nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL,
2698 (ztest_opts.zo_vdev_size * 5) / 4, 0, 0, 0, 0, 1);
2699 error = spa_vdev_add(spa, nvroot);
2700 if (error != 0)
2701 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error);
2702 nvlist_free(nvroot);
2703 } else {
2704 /*
2705 * Remove an existing device. Sometimes, dirty its
2706 * vdev state first to make sure we handle removal
2707 * of devices that have pending state changes.
2708 */
2709 if (ztest_random(2) == 0)
2710 (void) vdev_online(spa, guid, 0, NULL);
2711
2712 error = spa_vdev_remove(spa, guid, B_FALSE);
2713 if (error != 0 && error != EBUSY)
2714 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error);
2715 }
2716
2717 mutex_exit(&ztest_vdev_lock);
2718
2719 umem_free(path, MAXPATHLEN);
2720 }
2721
2722 /*
2723 * split a pool if it has mirror tlvdevs
2724 */
2725 /* ARGSUSED */
2726 void
2727 ztest_split_pool(ztest_ds_t *zd, uint64_t id)
2728 {
2729 ztest_shared_t *zs = ztest_shared;
2730 spa_t *spa = ztest_spa;
2731 vdev_t *rvd = spa->spa_root_vdev;
2732 nvlist_t *tree, **child, *config, *split, **schild;
2733 uint_t c, children, schildren = 0, lastlogid = 0;
2734 int error = 0;
2735
2736 mutex_enter(&ztest_vdev_lock);
2737
2738 /* ensure we have a useable config; mirrors of raidz aren't supported */
2739 if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) {
2740 mutex_exit(&ztest_vdev_lock);
2741 return;
2742 }
2743
2744 /* clean up the old pool, if any */
2745 (void) spa_destroy("splitp");
2746
2747 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2748
2749 /* generate a config from the existing config */
2750 mutex_enter(&spa->spa_props_lock);
2751 VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE,
2752 &tree) == 0);
2753 mutex_exit(&spa->spa_props_lock);
2754
2755 VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child,
2756 &children) == 0);
2757
2758 schild = malloc(rvd->vdev_children * sizeof (nvlist_t *));
2759 for (c = 0; c < children; c++) {
2760 vdev_t *tvd = rvd->vdev_child[c];
2761 nvlist_t **mchild;
2762 uint_t mchildren;
2763
2764 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
2765 VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME,
2766 0) == 0);
2767 VERIFY(nvlist_add_string(schild[schildren],
2768 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0);
2769 VERIFY(nvlist_add_uint64(schild[schildren],
2770 ZPOOL_CONFIG_IS_HOLE, 1) == 0);
2771 if (lastlogid == 0)
2772 lastlogid = schildren;
2773 ++schildren;
2774 continue;
2775 }
2776 lastlogid = 0;
2777 VERIFY(nvlist_lookup_nvlist_array(child[c],
2778 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0);
2779 VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0);
2780 }
2781
2782 /* OK, create a config that can be used to split */
2783 VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0);
2784 VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE,
2785 VDEV_TYPE_ROOT) == 0);
2786 VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild,
2787 lastlogid != 0 ? lastlogid : schildren) == 0);
2788
2789 VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0);
2790 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0);
2791
2792 for (c = 0; c < schildren; c++)
2793 nvlist_free(schild[c]);
2794 free(schild);
2795 nvlist_free(split);
2796
2797 spa_config_exit(spa, SCL_VDEV, FTAG);
2798
2799 (void) rw_wrlock(&ztest_name_lock);
2800 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
2801 (void) rw_unlock(&ztest_name_lock);
2802
2803 nvlist_free(config);
2804
2805 if (error == 0) {
2806 (void) printf("successful split - results:\n");
2807 mutex_enter(&spa_namespace_lock);
2808 show_pool_stats(spa);
2809 show_pool_stats(spa_lookup("splitp"));
2810 mutex_exit(&spa_namespace_lock);
2811 ++zs->zs_splits;
2812 --zs->zs_mirrors;
2813 }
2814 mutex_exit(&ztest_vdev_lock);
2815
2816 }
2817
2818 /*
2819 * Verify that we can attach and detach devices.
2820 */
2821 /* ARGSUSED */
2822 void
2823 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
2824 {
2825 ztest_shared_t *zs = ztest_shared;
2826 spa_t *spa = ztest_spa;
2827 spa_aux_vdev_t *sav = &spa->spa_spares;
2828 vdev_t *rvd = spa->spa_root_vdev;
2829 vdev_t *oldvd, *newvd, *pvd;
2830 nvlist_t *root;
2831 uint64_t leaves;
2832 uint64_t leaf, top;
2833 uint64_t ashift = ztest_get_ashift();
2834 uint64_t oldguid, pguid;
2835 uint64_t oldsize, newsize;
2836 char *oldpath, *newpath;
2837 int replacing;
2838 int oldvd_has_siblings = B_FALSE;
2839 int newvd_is_spare = B_FALSE;
2840 int oldvd_is_log;
2841 int error, expected_error;
2842
2843 oldpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
2844 newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
2845
2846 mutex_enter(&ztest_vdev_lock);
2847 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
2848
2849 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2850
2851 /*
2852 * Decide whether to do an attach or a replace.
2853 */
2854 replacing = ztest_random(2);
2855
2856 /*
2857 * Pick a random top-level vdev.
2858 */
2859 top = ztest_random_vdev_top(spa, B_TRUE);
2860
2861 /*
2862 * Pick a random leaf within it.
2863 */
2864 leaf = ztest_random(leaves);
2865
2866 /*
2867 * Locate this vdev.
2868 */
2869 oldvd = rvd->vdev_child[top];
2870 if (zs->zs_mirrors >= 1) {
2871 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops);
2872 ASSERT(oldvd->vdev_children >= zs->zs_mirrors);
2873 oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz];
2874 }
2875 if (ztest_opts.zo_raidz > 1) {
2876 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops);
2877 ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz);
2878 oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz];
2879 }
2880
2881 /*
2882 * If we're already doing an attach or replace, oldvd may be a
2883 * mirror vdev -- in which case, pick a random child.
2884 */
2885 while (oldvd->vdev_children != 0) {
2886 oldvd_has_siblings = B_TRUE;
2887 ASSERT(oldvd->vdev_children >= 2);
2888 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
2889 }
2890
2891 oldguid = oldvd->vdev_guid;
2892 oldsize = vdev_get_min_asize(oldvd);
2893 oldvd_is_log = oldvd->vdev_top->vdev_islog;
2894 (void) strcpy(oldpath, oldvd->vdev_path);
2895 pvd = oldvd->vdev_parent;
2896 pguid = pvd->vdev_guid;
2897
2898 /*
2899 * If oldvd has siblings, then half of the time, detach it.
2900 */
2901 if (oldvd_has_siblings && ztest_random(2) == 0) {
2902 spa_config_exit(spa, SCL_VDEV, FTAG);
2903 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
2904 if (error != 0 && error != ENODEV && error != EBUSY &&
2905 error != ENOTSUP)
2906 fatal(0, "detach (%s) returned %d", oldpath, error);
2907 goto out;
2908 }
2909
2910 /*
2911 * For the new vdev, choose with equal probability between the two
2912 * standard paths (ending in either 'a' or 'b') or a random hot spare.
2913 */
2914 if (sav->sav_count != 0 && ztest_random(3) == 0) {
2915 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
2916 newvd_is_spare = B_TRUE;
2917 (void) strcpy(newpath, newvd->vdev_path);
2918 } else {
2919 (void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
2920 ztest_opts.zo_dir, ztest_opts.zo_pool,
2921 top * leaves + leaf);
2922 if (ztest_random(2) == 0)
2923 newpath[strlen(newpath) - 1] = 'b';
2924 newvd = vdev_lookup_by_path(rvd, newpath);
2925 }
2926
2927 if (newvd) {
2928 newsize = vdev_get_min_asize(newvd);
2929 } else {
2930 /*
2931 * Make newsize a little bigger or smaller than oldsize.
2932 * If it's smaller, the attach should fail.
2933 * If it's larger, and we're doing a replace,
2934 * we should get dynamic LUN growth when we're done.
2935 */
2936 newsize = 10 * oldsize / (9 + ztest_random(3));
2937 }
2938
2939 /*
2940 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
2941 * unless it's a replace; in that case any non-replacing parent is OK.
2942 *
2943 * If newvd is already part of the pool, it should fail with EBUSY.
2944 *
2945 * If newvd is too small, it should fail with EOVERFLOW.
2946 */
2947 if (pvd->vdev_ops != &vdev_mirror_ops &&
2948 pvd->vdev_ops != &vdev_root_ops && (!replacing ||
2949 pvd->vdev_ops == &vdev_replacing_ops ||
2950 pvd->vdev_ops == &vdev_spare_ops))
2951 expected_error = ENOTSUP;
2952 else if (newvd_is_spare && (!replacing || oldvd_is_log))
2953 expected_error = ENOTSUP;
2954 else if (newvd == oldvd)
2955 expected_error = replacing ? 0 : EBUSY;
2956 else if (vdev_lookup_by_path(rvd, newpath) != NULL)
2957 expected_error = EBUSY;
2958 else if (newsize < oldsize)
2959 expected_error = EOVERFLOW;
2960 else if (ashift > oldvd->vdev_top->vdev_ashift)
2961 expected_error = EDOM;
2962 else
2963 expected_error = 0;
2964
2965 spa_config_exit(spa, SCL_VDEV, FTAG);
2966
2967 /*
2968 * Build the nvlist describing newpath.
2969 */
2970 root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0,
2971 ashift, 0, 0, 0, 1);
2972
2973 error = spa_vdev_attach(spa, oldguid, root, replacing);
2974
2975 nvlist_free(root);
2976
2977 /*
2978 * If our parent was the replacing vdev, but the replace completed,
2979 * then instead of failing with ENOTSUP we may either succeed,
2980 * fail with ENODEV, or fail with EOVERFLOW.
2981 */
2982 if (expected_error == ENOTSUP &&
2983 (error == 0 || error == ENODEV || error == EOVERFLOW))
2984 expected_error = error;
2985
2986 /*
2987 * If someone grew the LUN, the replacement may be too small.
2988 */
2989 if (error == EOVERFLOW || error == EBUSY)
2990 expected_error = error;
2991
2992 /* XXX workaround 6690467 */
2993 if (error != expected_error && expected_error != EBUSY) {
2994 fatal(0, "attach (%s %llu, %s %llu, %d) "
2995 "returned %d, expected %d",
2996 oldpath, oldsize, newpath,
2997 newsize, replacing, error, expected_error);
2998 }
2999 out:
3000 mutex_exit(&ztest_vdev_lock);
3001
3002 umem_free(oldpath, MAXPATHLEN);
3003 umem_free(newpath, MAXPATHLEN);
3004 }
3005
3006 /*
3007 * Callback function which expands the physical size of the vdev.
3008 */
3009 vdev_t *
3010 grow_vdev(vdev_t *vd, void *arg)
3011 {
3012 ASSERTV(spa_t *spa = vd->vdev_spa);
3013 size_t *newsize = arg;
3014 size_t fsize;
3015 int fd;
3016
3017 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
3018 ASSERT(vd->vdev_ops->vdev_op_leaf);
3019
3020 if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
3021 return (vd);
3022
3023 fsize = lseek(fd, 0, SEEK_END);
3024 VERIFY(ftruncate(fd, *newsize) == 0);
3025
3026 if (ztest_opts.zo_verbose >= 6) {
3027 (void) printf("%s grew from %lu to %lu bytes\n",
3028 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
3029 }
3030 (void) close(fd);
3031 return (NULL);
3032 }
3033
3034 /*
3035 * Callback function which expands a given vdev by calling vdev_online().
3036 */
3037 /* ARGSUSED */
3038 vdev_t *
3039 online_vdev(vdev_t *vd, void *arg)
3040 {
3041 spa_t *spa = vd->vdev_spa;
3042 vdev_t *tvd = vd->vdev_top;
3043 uint64_t guid = vd->vdev_guid;
3044 uint64_t generation = spa->spa_config_generation + 1;
3045 vdev_state_t newstate = VDEV_STATE_UNKNOWN;
3046 int error;
3047
3048 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
3049 ASSERT(vd->vdev_ops->vdev_op_leaf);
3050
3051 /* Calling vdev_online will initialize the new metaslabs */
3052 spa_config_exit(spa, SCL_STATE, spa);
3053 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
3054 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3055
3056 /*
3057 * If vdev_online returned an error or the underlying vdev_open
3058 * failed then we abort the expand. The only way to know that
3059 * vdev_open fails is by checking the returned newstate.
3060 */
3061 if (error || newstate != VDEV_STATE_HEALTHY) {
3062 if (ztest_opts.zo_verbose >= 5) {
3063 (void) printf("Unable to expand vdev, state %llu, "
3064 "error %d\n", (u_longlong_t)newstate, error);
3065 }
3066 return (vd);
3067 }
3068 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
3069
3070 /*
3071 * Since we dropped the lock we need to ensure that we're
3072 * still talking to the original vdev. It's possible this
3073 * vdev may have been detached/replaced while we were
3074 * trying to online it.
3075 */
3076 if (generation != spa->spa_config_generation) {
3077 if (ztest_opts.zo_verbose >= 5) {
3078 (void) printf("vdev configuration has changed, "
3079 "guid %llu, state %llu, expected gen %llu, "
3080 "got gen %llu\n",
3081 (u_longlong_t)guid,
3082 (u_longlong_t)tvd->vdev_state,
3083 (u_longlong_t)generation,
3084 (u_longlong_t)spa->spa_config_generation);
3085 }
3086 return (vd);
3087 }
3088 return (NULL);
3089 }
3090
3091 /*
3092 * Traverse the vdev tree calling the supplied function.
3093 * We continue to walk the tree until we either have walked all
3094 * children or we receive a non-NULL return from the callback.
3095 * If a NULL callback is passed, then we just return back the first
3096 * leaf vdev we encounter.
3097 */
3098 vdev_t *
3099 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
3100 {
3101 uint_t c;
3102
3103 if (vd->vdev_ops->vdev_op_leaf) {
3104 if (func == NULL)
3105 return (vd);
3106 else
3107 return (func(vd, arg));
3108 }
3109
3110 for (c = 0; c < vd->vdev_children; c++) {
3111 vdev_t *cvd = vd->vdev_child[c];
3112 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
3113 return (cvd);
3114 }
3115 return (NULL);
3116 }
3117
3118 /*
3119 * Verify that dynamic LUN growth works as expected.
3120 */
3121 /* ARGSUSED */
3122 void
3123 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
3124 {
3125 spa_t *spa = ztest_spa;
3126 vdev_t *vd, *tvd;
3127 metaslab_class_t *mc;
3128 metaslab_group_t *mg;
3129 size_t psize, newsize;
3130 uint64_t top;
3131 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
3132
3133 mutex_enter(&ztest_vdev_lock);
3134 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3135
3136 top = ztest_random_vdev_top(spa, B_TRUE);
3137
3138 tvd = spa->spa_root_vdev->vdev_child[top];
3139 mg = tvd->vdev_mg;
3140 mc = mg->mg_class;
3141 old_ms_count = tvd->vdev_ms_count;
3142 old_class_space = metaslab_class_get_space(mc);
3143
3144 /*
3145 * Determine the size of the first leaf vdev associated with
3146 * our top-level device.
3147 */
3148 vd = vdev_walk_tree(tvd, NULL, NULL);
3149 ASSERT3P(vd, !=, NULL);
3150 ASSERT(vd->vdev_ops->vdev_op_leaf);
3151
3152 psize = vd->vdev_psize;
3153
3154 /*
3155 * We only try to expand the vdev if it's healthy, less than 4x its
3156 * original size, and it has a valid psize.
3157 */
3158 if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
3159 psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) {
3160 spa_config_exit(spa, SCL_STATE, spa);
3161 mutex_exit(&ztest_vdev_lock);
3162 return;
3163 }
3164 ASSERT(psize > 0);
3165 newsize = psize + psize / 8;
3166 ASSERT3U(newsize, >, psize);
3167
3168 if (ztest_opts.zo_verbose >= 6) {
3169 (void) printf("Expanding LUN %s from %lu to %lu\n",
3170 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
3171 }
3172
3173 /*
3174 * Growing the vdev is a two step process:
3175 * 1). expand the physical size (i.e. relabel)
3176 * 2). online the vdev to create the new metaslabs
3177 */
3178 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
3179 vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
3180 tvd->vdev_state != VDEV_STATE_HEALTHY) {
3181 if (ztest_opts.zo_verbose >= 5) {
3182 (void) printf("Could not expand LUN because "
3183 "the vdev configuration changed.\n");
3184 }
3185 spa_config_exit(spa, SCL_STATE, spa);
3186 mutex_exit(&ztest_vdev_lock);
3187 return;
3188 }
3189
3190 spa_config_exit(spa, SCL_STATE, spa);
3191
3192 /*
3193 * Expanding the LUN will update the config asynchronously,
3194 * thus we must wait for the async thread to complete any
3195 * pending tasks before proceeding.
3196 */
3197 for (;;) {
3198 boolean_t done;
3199 mutex_enter(&spa->spa_async_lock);
3200 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
3201 mutex_exit(&spa->spa_async_lock);
3202 if (done)
3203 break;
3204 txg_wait_synced(spa_get_dsl(spa), 0);
3205 (void) poll(NULL, 0, 100);
3206 }
3207
3208 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3209
3210 tvd = spa->spa_root_vdev->vdev_child[top];
3211 new_ms_count = tvd->vdev_ms_count;
3212 new_class_space = metaslab_class_get_space(mc);
3213
3214 if (tvd->vdev_mg != mg || mg->mg_class != mc) {
3215 if (ztest_opts.zo_verbose >= 5) {
3216 (void) printf("Could not verify LUN expansion due to "
3217 "intervening vdev offline or remove.\n");
3218 }
3219 spa_config_exit(spa, SCL_STATE, spa);
3220 mutex_exit(&ztest_vdev_lock);
3221 return;
3222 }
3223
3224 /*
3225 * Make sure we were able to grow the vdev.
3226 */
3227 if (new_ms_count <= old_ms_count)
3228 fatal(0, "LUN expansion failed: ms_count %llu <= %llu\n",
3229 old_ms_count, new_ms_count);
3230
3231 /*
3232 * Make sure we were able to grow the pool.
3233 */
3234 if (new_class_space <= old_class_space)
3235 fatal(0, "LUN expansion failed: class_space %llu <= %llu\n",
3236 old_class_space, new_class_space);
3237
3238 if (ztest_opts.zo_verbose >= 5) {
3239 char oldnumbuf[6], newnumbuf[6];
3240
3241 nicenum(old_class_space, oldnumbuf);
3242 nicenum(new_class_space, newnumbuf);
3243 (void) printf("%s grew from %s to %s\n",
3244 spa->spa_name, oldnumbuf, newnumbuf);
3245 }
3246
3247 spa_config_exit(spa, SCL_STATE, spa);
3248 mutex_exit(&ztest_vdev_lock);
3249 }
3250
3251 /*
3252 * Verify that dmu_objset_{create,destroy,open,close} work as expected.
3253 */
3254 /* ARGSUSED */
3255 static void
3256 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
3257 {
3258 /*
3259 * Create the objects common to all ztest datasets.
3260 */
3261 VERIFY(zap_create_claim(os, ZTEST_DIROBJ,
3262 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0);
3263 }
3264
3265 static int
3266 ztest_dataset_create(char *dsname)
3267 {
3268 uint64_t zilset = ztest_random(100);
3269 int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0,
3270 ztest_objset_create_cb, NULL);
3271
3272 if (err || zilset < 80)
3273 return (err);
3274
3275 if (ztest_opts.zo_verbose >= 5)
3276 (void) printf("Setting dataset %s to sync always\n", dsname);
3277 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
3278 ZFS_SYNC_ALWAYS, B_FALSE));
3279 }
3280
3281 /* ARGSUSED */
3282 static int
3283 ztest_objset_destroy_cb(const char *name, void *arg)
3284 {
3285 objset_t *os;
3286 dmu_object_info_t doi;
3287 int error;
3288
3289 /*
3290 * Verify that the dataset contains a directory object.
3291 */
3292 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, FTAG, &os));
3293 error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
3294 if (error != ENOENT) {
3295 /* We could have crashed in the middle of destroying it */
3296 ASSERT0(error);
3297 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
3298 ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
3299 }
3300 dmu_objset_disown(os, FTAG);
3301
3302 /*
3303 * Destroy the dataset.
3304 */
3305 if (strchr(name, '@') != NULL) {
3306 VERIFY0(dsl_destroy_snapshot(name, B_FALSE));
3307 } else {
3308 VERIFY0(dsl_destroy_head(name));
3309 }
3310 return (0);
3311 }
3312
3313 static boolean_t
3314 ztest_snapshot_create(char *osname, uint64_t id)
3315 {
3316 char snapname[MAXNAMELEN];
3317 int error;
3318
3319 (void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id);
3320
3321 error = dmu_objset_snapshot_one(osname, snapname);
3322 if (error == ENOSPC) {
3323 ztest_record_enospc(FTAG);
3324 return (B_FALSE);
3325 }
3326 if (error != 0 && error != EEXIST) {
3327 fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname,
3328 snapname, error);
3329 }
3330 return (B_TRUE);
3331 }
3332
3333 static boolean_t
3334 ztest_snapshot_destroy(char *osname, uint64_t id)
3335 {
3336 char snapname[MAXNAMELEN];
3337 int error;
3338
3339 (void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname,
3340 (u_longlong_t)id);
3341
3342 error = dsl_destroy_snapshot(snapname, B_FALSE);
3343 if (error != 0 && error != ENOENT)
3344 fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error);
3345 return (B_TRUE);
3346 }
3347
3348 /* ARGSUSED */
3349 void
3350 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
3351 {
3352 ztest_ds_t *zdtmp;
3353 int iters;
3354 int error;
3355 objset_t *os, *os2;
3356 char *name;
3357 zilog_t *zilog;
3358 int i;
3359
3360 zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
3361 name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3362
3363 (void) rw_rdlock(&ztest_name_lock);
3364
3365 (void) snprintf(name, MAXNAMELEN, "%s/temp_%llu",
3366 ztest_opts.zo_pool, (u_longlong_t)id);
3367
3368 /*
3369 * If this dataset exists from a previous run, process its replay log
3370 * half of the time. If we don't replay it, then dsl_destroy_head()
3371 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
3372 */
3373 if (ztest_random(2) == 0 &&
3374 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) {
3375 ztest_zd_init(zdtmp, NULL, os);
3376 zil_replay(os, zdtmp, ztest_replay_vector);
3377 ztest_zd_fini(zdtmp);
3378 dmu_objset_disown(os, FTAG);
3379 }
3380
3381 /*
3382 * There may be an old instance of the dataset we're about to
3383 * create lying around from a previous run. If so, destroy it
3384 * and all of its snapshots.
3385 */
3386 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
3387 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
3388
3389 /*
3390 * Verify that the destroyed dataset is no longer in the namespace.
3391 */
3392 VERIFY3U(ENOENT, ==, dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
3393 FTAG, &os));
3394
3395 /*
3396 * Verify that we can create a new dataset.
3397 */
3398 error = ztest_dataset_create(name);
3399 if (error) {
3400 if (error == ENOSPC) {
3401 ztest_record_enospc(FTAG);
3402 goto out;
3403 }
3404 fatal(0, "dmu_objset_create(%s) = %d", name, error);
3405 }
3406
3407 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os));
3408
3409 ztest_zd_init(zdtmp, NULL, os);
3410
3411 /*
3412 * Open the intent log for it.
3413 */
3414 zilog = zil_open(os, ztest_get_data);
3415
3416 /*
3417 * Put some objects in there, do a little I/O to them,
3418 * and randomly take a couple of snapshots along the way.
3419 */
3420 iters = ztest_random(5);
3421 for (i = 0; i < iters; i++) {
3422 ztest_dmu_object_alloc_free(zdtmp, id);
3423 if (ztest_random(iters) == 0)
3424 (void) ztest_snapshot_create(name, i);
3425 }
3426
3427 /*
3428 * Verify that we cannot create an existing dataset.
3429 */
3430 VERIFY3U(EEXIST, ==,
3431 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL));
3432
3433 /*
3434 * Verify that we can hold an objset that is also owned.
3435 */
3436 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2));
3437 dmu_objset_rele(os2, FTAG);
3438
3439 /*
3440 * Verify that we cannot own an objset that is already owned.
3441 */
3442 VERIFY3U(EBUSY, ==,
3443 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2));
3444
3445 zil_close(zilog);
3446 dmu_objset_disown(os, FTAG);
3447 ztest_zd_fini(zdtmp);
3448 out:
3449 (void) rw_unlock(&ztest_name_lock);
3450
3451 umem_free(name, MAXNAMELEN);
3452 umem_free(zdtmp, sizeof (ztest_ds_t));
3453 }
3454
3455 /*
3456 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
3457 */
3458 void
3459 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
3460 {
3461 (void) rw_rdlock(&ztest_name_lock);
3462 (void) ztest_snapshot_destroy(zd->zd_name, id);
3463 (void) ztest_snapshot_create(zd->zd_name, id);
3464 (void) rw_unlock(&ztest_name_lock);
3465 }
3466
3467 /*
3468 * Cleanup non-standard snapshots and clones.
3469 */
3470 void
3471 ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
3472 {
3473 char *snap1name;
3474 char *clone1name;
3475 char *snap2name;
3476 char *clone2name;
3477 char *snap3name;
3478 int error;
3479
3480 snap1name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3481 clone1name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3482 snap2name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3483 clone2name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3484 snap3name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3485
3486 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu",
3487 osname, (u_longlong_t)id);
3488 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu",
3489 osname, (u_longlong_t)id);
3490 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu",
3491 clone1name, (u_longlong_t)id);
3492 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu",
3493 osname, (u_longlong_t)id);
3494 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu",
3495 clone1name, (u_longlong_t)id);
3496
3497 error = dsl_destroy_head(clone2name);
3498 if (error && error != ENOENT)
3499 fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error);
3500 error = dsl_destroy_snapshot(snap3name, B_FALSE);
3501 if (error && error != ENOENT)
3502 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error);
3503 error = dsl_destroy_snapshot(snap2name, B_FALSE);
3504 if (error && error != ENOENT)
3505 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error);
3506 error = dsl_destroy_head(clone1name);
3507 if (error && error != ENOENT)
3508 fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error);
3509 error = dsl_destroy_snapshot(snap1name, B_FALSE);
3510 if (error && error != ENOENT)
3511 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error);
3512
3513 umem_free(snap1name, MAXNAMELEN);
3514 umem_free(clone1name, MAXNAMELEN);
3515 umem_free(snap2name, MAXNAMELEN);
3516 umem_free(clone2name, MAXNAMELEN);
3517 umem_free(snap3name, MAXNAMELEN);
3518 }
3519
3520 /*
3521 * Verify dsl_dataset_promote handles EBUSY
3522 */
3523 void
3524 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
3525 {
3526 objset_t *os;
3527 char *snap1name;
3528 char *clone1name;
3529 char *snap2name;
3530 char *clone2name;
3531 char *snap3name;
3532 char *osname = zd->zd_name;
3533 int error;
3534
3535 snap1name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3536 clone1name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3537 snap2name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3538 clone2name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3539 snap3name = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
3540
3541 (void) rw_rdlock(&ztest_name_lock);
3542
3543 ztest_dsl_dataset_cleanup(osname, id);
3544
3545 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu",
3546 osname, (u_longlong_t)id);
3547 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu",
3548 osname, (u_longlong_t)id);
3549 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu",
3550 clone1name, (u_longlong_t)id);
3551 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu",
3552 osname, (u_longlong_t)id);
3553 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu",
3554 clone1name, (u_longlong_t)id);
3555
3556 error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1);
3557 if (error && error != EEXIST) {
3558 if (error == ENOSPC) {
3559 ztest_record_enospc(FTAG);
3560 goto out;
3561 }
3562 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error);
3563 }
3564
3565 error = dmu_objset_clone(clone1name, snap1name);
3566 if (error) {
3567 if (error == ENOSPC) {
3568 ztest_record_enospc(FTAG);
3569 goto out;
3570 }
3571 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error);
3572 }
3573
3574 error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1);
3575 if (error && error != EEXIST) {
3576 if (error == ENOSPC) {
3577 ztest_record_enospc(FTAG);
3578 goto out;
3579 }
3580 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error);
3581 }
3582
3583 error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1);
3584 if (error && error != EEXIST) {
3585 if (error == ENOSPC) {
3586 ztest_record_enospc(FTAG);
3587 goto out;
3588 }
3589 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error);
3590 }
3591
3592 error = dmu_objset_clone(clone2name, snap3name);
3593 if (error) {
3594 if (error == ENOSPC) {
3595 ztest_record_enospc(FTAG);
3596 goto out;
3597 }
3598 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error);
3599 }
3600
3601 error = dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, FTAG, &os);
3602 if (error)
3603 fatal(0, "dmu_objset_own(%s) = %d", snap2name, error);
3604 error = dsl_dataset_promote(clone2name, NULL);
3605 if (error == ENOSPC) {
3606 dmu_objset_disown(os, FTAG);
3607 ztest_record_enospc(FTAG);
3608 goto out;
3609 }
3610 if (error != EBUSY)
3611 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name,
3612 error);
3613 dmu_objset_disown(os, FTAG);
3614
3615 out:
3616 ztest_dsl_dataset_cleanup(osname, id);
3617
3618 (void) rw_unlock(&ztest_name_lock);
3619
3620 umem_free(snap1name, MAXNAMELEN);
3621 umem_free(clone1name, MAXNAMELEN);
3622 umem_free(snap2name, MAXNAMELEN);
3623 umem_free(clone2name, MAXNAMELEN);
3624 umem_free(snap3name, MAXNAMELEN);
3625 }
3626
3627 #undef OD_ARRAY_SIZE
3628 #define OD_ARRAY_SIZE 4
3629
3630 /*
3631 * Verify that dmu_object_{alloc,free} work as expected.
3632 */
3633 void
3634 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
3635 {
3636 ztest_od_t *od;
3637 int batchsize;
3638 int size;
3639 int b;
3640
3641 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
3642 od = umem_alloc(size, UMEM_NOFAIL);
3643 batchsize = OD_ARRAY_SIZE;
3644
3645 for (b = 0; b < batchsize; b++)
3646 ztest_od_init(od + b, id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0);
3647
3648 /*
3649 * Destroy the previous batch of objects, create a new batch,
3650 * and do some I/O on the new objects.
3651 */
3652 if (ztest_object_init(zd, od, size, B_TRUE) != 0)
3653 return;
3654
3655 while (ztest_random(4 * batchsize) != 0)
3656 ztest_io(zd, od[ztest_random(batchsize)].od_object,
3657 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
3658
3659 umem_free(od, size);
3660 }
3661
3662 #undef OD_ARRAY_SIZE
3663 #define OD_ARRAY_SIZE 2
3664
3665 /*
3666 * Verify that dmu_{read,write} work as expected.
3667 */
3668 void
3669 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
3670 {
3671 int size;
3672 ztest_od_t *od;
3673
3674 objset_t *os = zd->zd_os;
3675 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
3676 od = umem_alloc(size, UMEM_NOFAIL);
3677 dmu_tx_t *tx;
3678 int i, freeit, error;
3679 uint64_t n, s, txg;
3680 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
3681 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
3682 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
3683 uint64_t regions = 997;
3684 uint64_t stride = 123456789ULL;
3685 uint64_t width = 40;
3686 int free_percent = 5;
3687
3688 /*
3689 * This test uses two objects, packobj and bigobj, that are always
3690 * updated together (i.e. in the same tx) so that their contents are
3691 * in sync and can be compared. Their contents relate to each other
3692 * in a simple way: packobj is a dense array of 'bufwad' structures,
3693 * while bigobj is a sparse array of the same bufwads. Specifically,
3694 * for any index n, there are three bufwads that should be identical:
3695 *
3696 * packobj, at offset n * sizeof (bufwad_t)
3697 * bigobj, at the head of the nth chunk
3698 * bigobj, at the tail of the nth chunk
3699 *
3700 * The chunk size is arbitrary. It doesn't have to be a power of two,
3701 * and it doesn't have any relation to the object blocksize.
3702 * The only requirement is that it can hold at least two bufwads.
3703 *
3704 * Normally, we write the bufwad to each of these locations.
3705 * However, free_percent of the time we instead write zeroes to
3706 * packobj and perform a dmu_free_range() on bigobj. By comparing
3707 * bigobj to packobj, we can verify that the DMU is correctly
3708 * tracking which parts of an object are allocated and free,
3709 * and that the contents of the allocated blocks are correct.
3710 */
3711
3712 /*
3713 * Read the directory info. If it's the first time, set things up.
3714 */
3715 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize);
3716 ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize);
3717
3718 if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
3719 umem_free(od, size);
3720 return;
3721 }
3722
3723 bigobj = od[0].od_object;
3724 packobj = od[1].od_object;
3725 chunksize = od[0].od_gen;
3726 ASSERT(chunksize == od[1].od_gen);
3727
3728 /*
3729 * Prefetch a random chunk of the big object.
3730 * Our aim here is to get some async reads in flight
3731 * for blocks that we may free below; the DMU should
3732 * handle this race correctly.
3733 */
3734 n = ztest_random(regions) * stride + ztest_random(width);
3735 s = 1 + ztest_random(2 * width - 1);
3736 dmu_prefetch(os, bigobj, n * chunksize, s * chunksize);
3737
3738 /*
3739 * Pick a random index and compute the offsets into packobj and bigobj.
3740 */
3741 n = ztest_random(regions) * stride + ztest_random(width);
3742 s = 1 + ztest_random(width - 1);
3743
3744 packoff = n * sizeof (bufwad_t);
3745 packsize = s * sizeof (bufwad_t);
3746
3747 bigoff = n * chunksize;
3748 bigsize = s * chunksize;
3749
3750 packbuf = umem_alloc(packsize, UMEM_NOFAIL);
3751 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
3752
3753 /*
3754 * free_percent of the time, free a range of bigobj rather than
3755 * overwriting it.
3756 */
3757 freeit = (ztest_random(100) < free_percent);
3758
3759 /*
3760 * Read the current contents of our objects.
3761 */
3762 error = dmu_read(os, packobj, packoff, packsize, packbuf,
3763 DMU_READ_PREFETCH);
3764 ASSERT0(error);
3765 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
3766 DMU_READ_PREFETCH);
3767 ASSERT0(error);
3768
3769 /*
3770 * Get a tx for the mods to both packobj and bigobj.
3771 */
3772 tx = dmu_tx_create(os);
3773
3774 dmu_tx_hold_write(tx, packobj, packoff, packsize);
3775
3776 if (freeit)
3777 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
3778 else
3779 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
3780
3781 /* This accounts for setting the checksum/compression. */
3782 dmu_tx_hold_bonus(tx, bigobj);
3783
3784 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3785 if (txg == 0) {
3786 umem_free(packbuf, packsize);
3787 umem_free(bigbuf, bigsize);
3788 umem_free(od, size);
3789 return;
3790 }
3791
3792 enum zio_checksum cksum;
3793 do {
3794 cksum = (enum zio_checksum)
3795 ztest_random_dsl_prop(ZFS_PROP_CHECKSUM);
3796 } while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS);
3797 dmu_object_set_checksum(os, bigobj, cksum, tx);
3798
3799 enum zio_compress comp;
3800 do {
3801 comp = (enum zio_compress)
3802 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION);
3803 } while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS);
3804 dmu_object_set_compress(os, bigobj, comp, tx);
3805
3806 /*
3807 * For each index from n to n + s, verify that the existing bufwad
3808 * in packobj matches the bufwads at the head and tail of the
3809 * corresponding chunk in bigobj. Then update all three bufwads
3810 * with the new values we want to write out.
3811 */
3812 for (i = 0; i < s; i++) {
3813 /* LINTED */
3814 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
3815 /* LINTED */
3816 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
3817 /* LINTED */
3818 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
3819
3820 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
3821 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
3822
3823 if (pack->bw_txg > txg)
3824 fatal(0, "future leak: got %llx, open txg is %llx",
3825 pack->bw_txg, txg);
3826
3827 if (pack->bw_data != 0 && pack->bw_index != n + i)
3828 fatal(0, "wrong index: got %llx, wanted %llx+%llx",
3829 pack->bw_index, n, i);
3830
3831 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
3832 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
3833
3834 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
3835 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
3836
3837 if (freeit) {
3838 bzero(pack, sizeof (bufwad_t));
3839 } else {
3840 pack->bw_index = n + i;
3841 pack->bw_txg = txg;
3842 pack->bw_data = 1 + ztest_random(-2ULL);
3843 }
3844 *bigH = *pack;
3845 *bigT = *pack;
3846 }
3847
3848 /*
3849 * We've verified all the old bufwads, and made new ones.
3850 * Now write them out.
3851 */
3852 dmu_write(os, packobj, packoff, packsize, packbuf, tx);
3853
3854 if (freeit) {
3855 if (ztest_opts.zo_verbose >= 7) {
3856 (void) printf("freeing offset %llx size %llx"
3857 " txg %llx\n",
3858 (u_longlong_t)bigoff,
3859 (u_longlong_t)bigsize,
3860 (u_longlong_t)txg);
3861 }
3862 VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx));
3863 } else {
3864 if (ztest_opts.zo_verbose >= 7) {
3865 (void) printf("writing offset %llx size %llx"
3866 " txg %llx\n",
3867 (u_longlong_t)bigoff,
3868 (u_longlong_t)bigsize,
3869 (u_longlong_t)txg);
3870 }
3871 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);
3872 }
3873
3874 dmu_tx_commit(tx);
3875
3876 /*
3877 * Sanity check the stuff we just wrote.
3878 */
3879 {
3880 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
3881 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
3882
3883 VERIFY(0 == dmu_read(os, packobj, packoff,
3884 packsize, packcheck, DMU_READ_PREFETCH));
3885 VERIFY(0 == dmu_read(os, bigobj, bigoff,
3886 bigsize, bigcheck, DMU_READ_PREFETCH));
3887
3888 ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
3889 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
3890
3891 umem_free(packcheck, packsize);
3892 umem_free(bigcheck, bigsize);
3893 }
3894
3895 umem_free(packbuf, packsize);
3896 umem_free(bigbuf, bigsize);
3897 umem_free(od, size);
3898 }
3899
3900 void
3901 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
3902 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
3903 {
3904 uint64_t i;
3905 bufwad_t *pack;
3906 bufwad_t *bigH;
3907 bufwad_t *bigT;
3908
3909 /*
3910 * For each index from n to n + s, verify that the existing bufwad
3911 * in packobj matches the bufwads at the head and tail of the
3912 * corresponding chunk in bigobj. Then update all three bufwads
3913 * with the new values we want to write out.
3914 */
3915 for (i = 0; i < s; i++) {
3916 /* LINTED */
3917 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
3918 /* LINTED */
3919 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
3920 /* LINTED */
3921 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
3922
3923 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
3924 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
3925
3926 if (pack->bw_txg > txg)
3927 fatal(0, "future leak: got %llx, open txg is %llx",
3928 pack->bw_txg, txg);
3929
3930 if (pack->bw_data != 0 && pack->bw_index != n + i)
3931 fatal(0, "wrong index: got %llx, wanted %llx+%llx",
3932 pack->bw_index, n, i);
3933
3934 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
3935 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
3936
3937 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
3938 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
3939
3940 pack->bw_index = n + i;
3941 pack->bw_txg = txg;
3942 pack->bw_data = 1 + ztest_random(-2ULL);
3943
3944 *bigH = *pack;
3945 *bigT = *pack;
3946 }
3947 }
3948
3949 #undef OD_ARRAY_SIZE
3950 #define OD_ARRAY_SIZE 2
3951
3952 void
3953 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
3954 {
3955 objset_t *os = zd->zd_os;
3956 ztest_od_t *od;
3957 dmu_tx_t *tx;
3958 uint64_t i;
3959 int error;
3960 int size;
3961 uint64_t n, s, txg;
3962 bufwad_t *packbuf, *bigbuf;
3963 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
3964 uint64_t blocksize = ztest_random_blocksize();
3965 uint64_t chunksize = blocksize;
3966 uint64_t regions = 997;
3967 uint64_t stride = 123456789ULL;
3968 uint64_t width = 9;
3969 dmu_buf_t *bonus_db;
3970 arc_buf_t **bigbuf_arcbufs;
3971 dmu_object_info_t doi;
3972
3973 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
3974 od = umem_alloc(size, UMEM_NOFAIL);
3975
3976 /*
3977 * This test uses two objects, packobj and bigobj, that are always
3978 * updated together (i.e. in the same tx) so that their contents are
3979 * in sync and can be compared. Their contents relate to each other
3980 * in a simple way: packobj is a dense array of 'bufwad' structures,
3981 * while bigobj is a sparse array of the same bufwads. Specifically,
3982 * for any index n, there are three bufwads that should be identical:
3983 *
3984 * packobj, at offset n * sizeof (bufwad_t)
3985 * bigobj, at the head of the nth chunk
3986 * bigobj, at the tail of the nth chunk
3987 *
3988 * The chunk size is set equal to bigobj block size so that
3989 * dmu_assign_arcbuf() can be tested for object updates.
3990 */
3991
3992 /*
3993 * Read the directory info. If it's the first time, set things up.
3994 */
3995 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
3996 ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize);
3997
3998
3999 if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
4000 umem_free(od, size);
4001 return;
4002 }
4003
4004 bigobj = od[0].od_object;
4005 packobj = od[1].od_object;
4006 blocksize = od[0].od_blocksize;
4007 chunksize = blocksize;
4008 ASSERT(chunksize == od[1].od_gen);
4009
4010 VERIFY(dmu_object_info(os, bigobj, &doi) == 0);
4011 VERIFY(ISP2(doi.doi_data_block_size));
4012 VERIFY(chunksize == doi.doi_data_block_size);
4013 VERIFY(chunksize >= 2 * sizeof (bufwad_t));
4014
4015 /*
4016 * Pick a random index and compute the offsets into packobj and bigobj.
4017 */
4018 n = ztest_random(regions) * stride + ztest_random(width);
4019 s = 1 + ztest_random(width - 1);
4020
4021 packoff = n * sizeof (bufwad_t);
4022 packsize = s * sizeof (bufwad_t);
4023
4024 bigoff = n * chunksize;
4025 bigsize = s * chunksize;
4026
4027 packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
4028 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
4029
4030 VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
4031
4032 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
4033
4034 /*
4035 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
4036 * Iteration 1 test zcopy to already referenced dbufs.
4037 * Iteration 2 test zcopy to dirty dbuf in the same txg.
4038 * Iteration 3 test zcopy to dbuf dirty in previous txg.
4039 * Iteration 4 test zcopy when dbuf is no longer dirty.
4040 * Iteration 5 test zcopy when it can't be done.
4041 * Iteration 6 one more zcopy write.
4042 */
4043 for (i = 0; i < 7; i++) {
4044 uint64_t j;
4045 uint64_t off;
4046
4047 /*
4048 * In iteration 5 (i == 5) use arcbufs
4049 * that don't match bigobj blksz to test
4050 * dmu_assign_arcbuf() when it can't directly
4051 * assign an arcbuf to a dbuf.
4052 */
4053 for (j = 0; j < s; j++) {
4054 if (i != 5) {
4055 bigbuf_arcbufs[j] =
4056 dmu_request_arcbuf(bonus_db, chunksize);
4057 } else {
4058 bigbuf_arcbufs[2 * j] =
4059 dmu_request_arcbuf(bonus_db, chunksize / 2);
4060 bigbuf_arcbufs[2 * j + 1] =
4061 dmu_request_arcbuf(bonus_db, chunksize / 2);
4062 }
4063 }
4064
4065 /*
4066 * Get a tx for the mods to both packobj and bigobj.
4067 */
4068 tx = dmu_tx_create(os);
4069
4070 dmu_tx_hold_write(tx, packobj, packoff, packsize);
4071 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
4072
4073 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4074 if (txg == 0) {
4075 umem_free(packbuf, packsize);
4076 umem_free(bigbuf, bigsize);
4077 for (j = 0; j < s; j++) {
4078 if (i != 5) {
4079 dmu_return_arcbuf(bigbuf_arcbufs[j]);
4080 } else {
4081 dmu_return_arcbuf(
4082 bigbuf_arcbufs[2 * j]);
4083 dmu_return_arcbuf(
4084 bigbuf_arcbufs[2 * j + 1]);
4085 }
4086 }
4087 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
4088 umem_free(od, size);
4089 dmu_buf_rele(bonus_db, FTAG);
4090 return;
4091 }
4092
4093 /*
4094 * 50% of the time don't read objects in the 1st iteration to
4095 * test dmu_assign_arcbuf() for the case when there're no
4096 * existing dbufs for the specified offsets.
4097 */
4098 if (i != 0 || ztest_random(2) != 0) {
4099 error = dmu_read(os, packobj, packoff,
4100 packsize, packbuf, DMU_READ_PREFETCH);
4101 ASSERT0(error);
4102 error = dmu_read(os, bigobj, bigoff, bigsize,
4103 bigbuf, DMU_READ_PREFETCH);
4104 ASSERT0(error);
4105 }
4106 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
4107 n, chunksize, txg);
4108
4109 /*
4110 * We've verified all the old bufwads, and made new ones.
4111 * Now write them out.
4112 */
4113 dmu_write(os, packobj, packoff, packsize, packbuf, tx);
4114 if (ztest_opts.zo_verbose >= 7) {
4115 (void) printf("writing offset %llx size %llx"
4116 " txg %llx\n",
4117 (u_longlong_t)bigoff,
4118 (u_longlong_t)bigsize,
4119 (u_longlong_t)txg);
4120 }
4121 for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
4122 dmu_buf_t *dbt;
4123 if (i != 5) {
4124 bcopy((caddr_t)bigbuf + (off - bigoff),
4125 bigbuf_arcbufs[j]->b_data, chunksize);
4126 } else {
4127 bcopy((caddr_t)bigbuf + (off - bigoff),
4128 bigbuf_arcbufs[2 * j]->b_data,
4129 chunksize / 2);
4130 bcopy((caddr_t)bigbuf + (off - bigoff) +
4131 chunksize / 2,
4132 bigbuf_arcbufs[2 * j + 1]->b_data,
4133 chunksize / 2);
4134 }
4135
4136 if (i == 1) {
4137 VERIFY(dmu_buf_hold(os, bigobj, off,
4138 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0);
4139 }
4140 if (i != 5) {
4141 dmu_assign_arcbuf(bonus_db, off,
4142 bigbuf_arcbufs[j], tx);
4143 } else {
4144 dmu_assign_arcbuf(bonus_db, off,
4145 bigbuf_arcbufs[2 * j], tx);
4146 dmu_assign_arcbuf(bonus_db,
4147 off + chunksize / 2,
4148 bigbuf_arcbufs[2 * j + 1], tx);
4149 }
4150 if (i == 1) {
4151 dmu_buf_rele(dbt, FTAG);
4152 }
4153 }
4154 dmu_tx_commit(tx);
4155
4156 /*
4157 * Sanity check the stuff we just wrote.
4158 */
4159 {
4160 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
4161 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
4162
4163 VERIFY(0 == dmu_read(os, packobj, packoff,
4164 packsize, packcheck, DMU_READ_PREFETCH));
4165 VERIFY(0 == dmu_read(os, bigobj, bigoff,
4166 bigsize, bigcheck, DMU_READ_PREFETCH));
4167
4168 ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
4169 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
4170
4171 umem_free(packcheck, packsize);
4172 umem_free(bigcheck, bigsize);
4173 }
4174 if (i == 2) {
4175 txg_wait_open(dmu_objset_pool(os), 0);
4176 } else if (i == 3) {
4177 txg_wait_synced(dmu_objset_pool(os), 0);
4178 }
4179 }
4180
4181 dmu_buf_rele(bonus_db, FTAG);
4182 umem_free(packbuf, packsize);
4183 umem_free(bigbuf, bigsize);
4184 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
4185 umem_free(od, size);
4186 }
4187
4188 /* ARGSUSED */
4189 void
4190 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
4191 {
4192 ztest_od_t *od;
4193
4194 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
4195 uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
4196 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4197
4198 /*
4199 * Have multiple threads write to large offsets in an object
4200 * to verify that parallel writes to an object -- even to the
4201 * same blocks within the object -- doesn't cause any trouble.
4202 */
4203 ztest_od_init(od, ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
4204
4205 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0)
4206 return;
4207
4208 while (ztest_random(10) != 0)
4209 ztest_io(zd, od->od_object, offset);
4210
4211 umem_free(od, sizeof (ztest_od_t));
4212 }
4213
4214 void
4215 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
4216 {
4217 ztest_od_t *od;
4218 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
4219 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4220 uint64_t count = ztest_random(20) + 1;
4221 uint64_t blocksize = ztest_random_blocksize();
4222 void *data;
4223
4224 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
4225
4226 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
4227
4228 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
4229 !ztest_random(2)) != 0) {
4230 umem_free(od, sizeof (ztest_od_t));
4231 return;
4232 }
4233
4234 if (ztest_truncate(zd, od->od_object, offset, count * blocksize) != 0) {
4235 umem_free(od, sizeof (ztest_od_t));
4236 return;
4237 }
4238
4239 ztest_prealloc(zd, od->od_object, offset, count * blocksize);
4240
4241 data = umem_zalloc(blocksize, UMEM_NOFAIL);
4242
4243 while (ztest_random(count) != 0) {
4244 uint64_t randoff = offset + (ztest_random(count) * blocksize);
4245 if (ztest_write(zd, od->od_object, randoff, blocksize,
4246 data) != 0)
4247 break;
4248 while (ztest_random(4) != 0)
4249 ztest_io(zd, od->od_object, randoff);
4250 }
4251
4252 umem_free(data, blocksize);
4253 umem_free(od, sizeof (ztest_od_t));
4254 }
4255
4256 /*
4257 * Verify that zap_{create,destroy,add,remove,update} work as expected.
4258 */
4259 #define ZTEST_ZAP_MIN_INTS 1
4260 #define ZTEST_ZAP_MAX_INTS 4
4261 #define ZTEST_ZAP_MAX_PROPS 1000
4262
4263 void
4264 ztest_zap(ztest_ds_t *zd, uint64_t id)
4265 {
4266 objset_t *os = zd->zd_os;
4267 ztest_od_t *od;
4268 uint64_t object;
4269 uint64_t txg, last_txg;
4270 uint64_t value[ZTEST_ZAP_MAX_INTS];
4271 uint64_t zl_ints, zl_intsize, prop;
4272 int i, ints;
4273 dmu_tx_t *tx;
4274 char propname[100], txgname[100];
4275 int error;
4276 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
4277
4278 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
4279 ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0);
4280
4281 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
4282 !ztest_random(2)) != 0)
4283 goto out;
4284
4285 object = od->od_object;
4286
4287 /*
4288 * Generate a known hash collision, and verify that
4289 * we can lookup and remove both entries.
4290 */
4291 tx = dmu_tx_create(os);
4292 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4293 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4294 if (txg == 0)
4295 goto out;
4296 for (i = 0; i < 2; i++) {
4297 value[i] = i;
4298 VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t),
4299 1, &value[i], tx));
4300 }
4301 for (i = 0; i < 2; i++) {
4302 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
4303 sizeof (uint64_t), 1, &value[i], tx));
4304 VERIFY3U(0, ==,
4305 zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
4306 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4307 ASSERT3U(zl_ints, ==, 1);
4308 }
4309 for (i = 0; i < 2; i++) {
4310 VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx));
4311 }
4312 dmu_tx_commit(tx);
4313
4314 /*
4315 * Generate a buch of random entries.
4316 */
4317 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
4318
4319 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
4320 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
4321 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
4322 bzero(value, sizeof (value));
4323 last_txg = 0;
4324
4325 /*
4326 * If these zap entries already exist, validate their contents.
4327 */
4328 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
4329 if (error == 0) {
4330 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4331 ASSERT3U(zl_ints, ==, 1);
4332
4333 VERIFY(zap_lookup(os, object, txgname, zl_intsize,
4334 zl_ints, &last_txg) == 0);
4335
4336 VERIFY(zap_length(os, object, propname, &zl_intsize,
4337 &zl_ints) == 0);
4338
4339 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4340 ASSERT3U(zl_ints, ==, ints);
4341
4342 VERIFY(zap_lookup(os, object, propname, zl_intsize,
4343 zl_ints, value) == 0);
4344
4345 for (i = 0; i < ints; i++) {
4346 ASSERT3U(value[i], ==, last_txg + object + i);
4347 }
4348 } else {
4349 ASSERT3U(error, ==, ENOENT);
4350 }
4351
4352 /*
4353 * Atomically update two entries in our zap object.
4354 * The first is named txg_%llu, and contains the txg
4355 * in which the property was last updated. The second
4356 * is named prop_%llu, and the nth element of its value
4357 * should be txg + object + n.
4358 */
4359 tx = dmu_tx_create(os);
4360 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4361 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4362 if (txg == 0)
4363 goto out;
4364
4365 if (last_txg > txg)
4366 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg);
4367
4368 for (i = 0; i < ints; i++)
4369 value[i] = txg + object + i;
4370
4371 VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t),
4372 1, &txg, tx));
4373 VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t),
4374 ints, value, tx));
4375
4376 dmu_tx_commit(tx);
4377
4378 /*
4379 * Remove a random pair of entries.
4380 */
4381 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
4382 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
4383 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
4384
4385 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
4386
4387 if (error == ENOENT)
4388 goto out;
4389
4390 ASSERT0(error);
4391
4392 tx = dmu_tx_create(os);
4393 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4394 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4395 if (txg == 0)
4396 goto out;
4397 VERIFY3U(0, ==, zap_remove(os, object, txgname, tx));
4398 VERIFY3U(0, ==, zap_remove(os, object, propname, tx));
4399 dmu_tx_commit(tx);
4400 out:
4401 umem_free(od, sizeof (ztest_od_t));
4402 }
4403
4404 /*
4405 * Testcase to test the upgrading of a microzap to fatzap.
4406 */
4407 void
4408 ztest_fzap(ztest_ds_t *zd, uint64_t id)
4409 {
4410 objset_t *os = zd->zd_os;
4411 ztest_od_t *od;
4412 uint64_t object, txg;
4413 int i;
4414
4415 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
4416 ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0);
4417
4418 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
4419 !ztest_random(2)) != 0)
4420 goto out;
4421 object = od->od_object;
4422
4423 /*
4424 * Add entries to this ZAP and make sure it spills over
4425 * and gets upgraded to a fatzap. Also, since we are adding
4426 * 2050 entries we should see ptrtbl growth and leaf-block split.
4427 */
4428 for (i = 0; i < 2050; i++) {
4429 char name[MAXNAMELEN];
4430 uint64_t value = i;
4431 dmu_tx_t *tx;
4432 int error;
4433
4434 (void) snprintf(name, sizeof (name), "fzap-%llu-%llu",
4435 (u_longlong_t)id, (u_longlong_t)value);
4436
4437 tx = dmu_tx_create(os);
4438 dmu_tx_hold_zap(tx, object, B_TRUE, name);
4439 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4440 if (txg == 0)
4441 goto out;
4442 error = zap_add(os, object, name, sizeof (uint64_t), 1,
4443 &value, tx);
4444 ASSERT(error == 0 || error == EEXIST);
4445 dmu_tx_commit(tx);
4446 }
4447 out:
4448 umem_free(od, sizeof (ztest_od_t));
4449 }
4450
4451 /* ARGSUSED */
4452 void
4453 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
4454 {
4455 objset_t *os = zd->zd_os;
4456 ztest_od_t *od;
4457 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
4458 dmu_tx_t *tx;
4459 int i, namelen, error;
4460 int micro = ztest_random(2);
4461 char name[20], string_value[20];
4462 void *data;
4463
4464 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
4465 ztest_od_init(od, ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0);
4466
4467 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
4468 umem_free(od, sizeof (ztest_od_t));
4469 return;
4470 }
4471
4472 object = od->od_object;
4473
4474 /*
4475 * Generate a random name of the form 'xxx.....' where each
4476 * x is a random printable character and the dots are dots.
4477 * There are 94 such characters, and the name length goes from
4478 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
4479 */
4480 namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
4481
4482 for (i = 0; i < 3; i++)
4483 name[i] = '!' + ztest_random('~' - '!' + 1);
4484 for (; i < namelen - 1; i++)
4485 name[i] = '.';
4486 name[i] = '\0';
4487
4488 if ((namelen & 1) || micro) {
4489 wsize = sizeof (txg);
4490 wc = 1;
4491 data = &txg;
4492 } else {
4493 wsize = 1;
4494 wc = namelen;
4495 data = string_value;
4496 }
4497
4498 count = -1ULL;
4499 VERIFY0(zap_count(os, object, &count));
4500 ASSERT(count != -1ULL);
4501
4502 /*
4503 * Select an operation: length, lookup, add, update, remove.
4504 */
4505 i = ztest_random(5);
4506
4507 if (i >= 2) {
4508 tx = dmu_tx_create(os);
4509 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4510 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4511 if (txg == 0)
4512 return;
4513 bcopy(name, string_value, namelen);
4514 } else {
4515 tx = NULL;
4516 txg = 0;
4517 bzero(string_value, namelen);
4518 }
4519
4520 switch (i) {
4521
4522 case 0:
4523 error = zap_length(os, object, name, &zl_wsize, &zl_wc);
4524 if (error == 0) {
4525 ASSERT3U(wsize, ==, zl_wsize);
4526 ASSERT3U(wc, ==, zl_wc);
4527 } else {
4528 ASSERT3U(error, ==, ENOENT);
4529 }
4530 break;
4531
4532 case 1:
4533 error = zap_lookup(os, object, name, wsize, wc, data);
4534 if (error == 0) {
4535 if (data == string_value &&
4536 bcmp(name, data, namelen) != 0)
4537 fatal(0, "name '%s' != val '%s' len %d",
4538 name, data, namelen);
4539 } else {
4540 ASSERT3U(error, ==, ENOENT);
4541 }
4542 break;
4543
4544 case 2:
4545 error = zap_add(os, object, name, wsize, wc, data, tx);
4546 ASSERT(error == 0 || error == EEXIST);
4547 break;
4548
4549 case 3:
4550 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0);
4551 break;
4552
4553 case 4:
4554 error = zap_remove(os, object, name, tx);
4555 ASSERT(error == 0 || error == ENOENT);
4556 break;
4557 }
4558
4559 if (tx != NULL)
4560 dmu_tx_commit(tx);
4561
4562 umem_free(od, sizeof (ztest_od_t));
4563 }
4564
4565 /*
4566 * Commit callback data.
4567 */
4568 typedef struct ztest_cb_data {
4569 list_node_t zcd_node;
4570 uint64_t zcd_txg;
4571 int zcd_expected_err;
4572 boolean_t zcd_added;
4573 boolean_t zcd_called;
4574 spa_t *zcd_spa;
4575 } ztest_cb_data_t;
4576
4577 /* This is the actual commit callback function */
4578 static void
4579 ztest_commit_callback(void *arg, int error)
4580 {
4581 ztest_cb_data_t *data = arg;
4582 uint64_t synced_txg;
4583
4584 VERIFY(data != NULL);
4585 VERIFY3S(data->zcd_expected_err, ==, error);
4586 VERIFY(!data->zcd_called);
4587
4588 synced_txg = spa_last_synced_txg(data->zcd_spa);
4589 if (data->zcd_txg > synced_txg)
4590 fatal(0, "commit callback of txg %" PRIu64 " called prematurely"
4591 ", last synced txg = %" PRIu64 "\n", data->zcd_txg,
4592 synced_txg);
4593
4594 data->zcd_called = B_TRUE;
4595
4596 if (error == ECANCELED) {
4597 ASSERT0(data->zcd_txg);
4598 ASSERT(!data->zcd_added);
4599
4600 /*
4601 * The private callback data should be destroyed here, but
4602 * since we are going to check the zcd_called field after
4603 * dmu_tx_abort(), we will destroy it there.
4604 */
4605 return;
4606 }
4607
4608 ASSERT(data->zcd_added);
4609 ASSERT3U(data->zcd_txg, !=, 0);
4610
4611 (void) mutex_enter(&zcl.zcl_callbacks_lock);
4612
4613 /* See if this cb was called more quickly */
4614 if ((synced_txg - data->zcd_txg) < zc_min_txg_delay)
4615 zc_min_txg_delay = synced_txg - data->zcd_txg;
4616
4617 /* Remove our callback from the list */
4618 list_remove(&zcl.zcl_callbacks, data);
4619
4620 (void) mutex_exit(&zcl.zcl_callbacks_lock);
4621
4622 umem_free(data, sizeof (ztest_cb_data_t));
4623 }
4624
4625 /* Allocate and initialize callback data structure */
4626 static ztest_cb_data_t *
4627 ztest_create_cb_data(objset_t *os, uint64_t txg)
4628 {
4629 ztest_cb_data_t *cb_data;
4630
4631 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
4632
4633 cb_data->zcd_txg = txg;
4634 cb_data->zcd_spa = dmu_objset_spa(os);
4635 list_link_init(&cb_data->zcd_node);
4636
4637 return (cb_data);
4638 }
4639
4640 /*
4641 * Commit callback test.
4642 */
4643 void
4644 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
4645 {
4646 objset_t *os = zd->zd_os;
4647 ztest_od_t *od;
4648 dmu_tx_t *tx;
4649 ztest_cb_data_t *cb_data[3], *tmp_cb;
4650 uint64_t old_txg, txg;
4651 int i, error = 0;
4652
4653 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
4654 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
4655
4656 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
4657 umem_free(od, sizeof (ztest_od_t));
4658 return;
4659 }
4660
4661 tx = dmu_tx_create(os);
4662
4663 cb_data[0] = ztest_create_cb_data(os, 0);
4664 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
4665
4666 dmu_tx_hold_write(tx, od->od_object, 0, sizeof (uint64_t));
4667
4668 /* Every once in a while, abort the transaction on purpose */
4669 if (ztest_random(100) == 0)
4670 error = -1;
4671
4672 if (!error)
4673 error = dmu_tx_assign(tx, TXG_NOWAIT);
4674
4675 txg = error ? 0 : dmu_tx_get_txg(tx);
4676
4677 cb_data[0]->zcd_txg = txg;
4678 cb_data[1] = ztest_create_cb_data(os, txg);
4679 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
4680
4681 if (error) {
4682 /*
4683 * It's not a strict requirement to call the registered
4684 * callbacks from inside dmu_tx_abort(), but that's what
4685 * it's supposed to happen in the current implementation
4686 * so we will check for that.
4687 */
4688 for (i = 0; i < 2; i++) {
4689 cb_data[i]->zcd_expected_err = ECANCELED;
4690 VERIFY(!cb_data[i]->zcd_called);
4691 }
4692
4693 dmu_tx_abort(tx);
4694
4695 for (i = 0; i < 2; i++) {
4696 VERIFY(cb_data[i]->zcd_called);
4697 umem_free(cb_data[i], sizeof (ztest_cb_data_t));
4698 }
4699
4700 umem_free(od, sizeof (ztest_od_t));
4701 return;
4702 }
4703
4704 cb_data[2] = ztest_create_cb_data(os, txg);
4705 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
4706
4707 /*
4708 * Read existing data to make sure there isn't a future leak.
4709 */
4710 VERIFY(0 == dmu_read(os, od->od_object, 0, sizeof (uint64_t),
4711 &old_txg, DMU_READ_PREFETCH));
4712
4713 if (old_txg > txg)
4714 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64,
4715 old_txg, txg);
4716
4717 dmu_write(os, od->od_object, 0, sizeof (uint64_t), &txg, tx);
4718
4719 (void) mutex_enter(&zcl.zcl_callbacks_lock);
4720
4721 /*
4722 * Since commit callbacks don't have any ordering requirement and since
4723 * it is theoretically possible for a commit callback to be called
4724 * after an arbitrary amount of time has elapsed since its txg has been
4725 * synced, it is difficult to reliably determine whether a commit
4726 * callback hasn't been called due to high load or due to a flawed
4727 * implementation.
4728 *
4729 * In practice, we will assume that if after a certain number of txgs a
4730 * commit callback hasn't been called, then most likely there's an
4731 * implementation bug..
4732 */
4733 tmp_cb = list_head(&zcl.zcl_callbacks);
4734 if (tmp_cb != NULL &&
4735 tmp_cb->zcd_txg + ZTEST_COMMIT_CB_THRESH < txg) {
4736 fatal(0, "Commit callback threshold exceeded, oldest txg: %"
4737 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg);
4738 }
4739
4740 /*
4741 * Let's find the place to insert our callbacks.
4742 *
4743 * Even though the list is ordered by txg, it is possible for the
4744 * insertion point to not be the end because our txg may already be
4745 * quiescing at this point and other callbacks in the open txg
4746 * (from other objsets) may have sneaked in.
4747 */
4748 tmp_cb = list_tail(&zcl.zcl_callbacks);
4749 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
4750 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
4751
4752 /* Add the 3 callbacks to the list */
4753 for (i = 0; i < 3; i++) {
4754 if (tmp_cb == NULL)
4755 list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
4756 else
4757 list_insert_after(&zcl.zcl_callbacks, tmp_cb,
4758 cb_data[i]);
4759
4760 cb_data[i]->zcd_added = B_TRUE;
4761 VERIFY(!cb_data[i]->zcd_called);
4762
4763 tmp_cb = cb_data[i];
4764 }
4765
4766 zc_cb_counter += 3;
4767
4768 (void) mutex_exit(&zcl.zcl_callbacks_lock);
4769
4770 dmu_tx_commit(tx);
4771
4772 umem_free(od, sizeof (ztest_od_t));
4773 }
4774
4775 /* ARGSUSED */
4776 void
4777 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
4778 {
4779 zfs_prop_t proplist[] = {
4780 ZFS_PROP_CHECKSUM,
4781 ZFS_PROP_COMPRESSION,
4782 ZFS_PROP_COPIES,
4783 ZFS_PROP_DEDUP
4784 };
4785 int p;
4786
4787 (void) rw_rdlock(&ztest_name_lock);
4788
4789 for (p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++)
4790 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
4791 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
4792
4793 (void) rw_unlock(&ztest_name_lock);
4794 }
4795
4796 /* ARGSUSED */
4797 void
4798 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
4799 {
4800 nvlist_t *props = NULL;
4801
4802 (void) rw_rdlock(&ztest_name_lock);
4803
4804 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO,
4805 ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN));
4806
4807 VERIFY0(spa_prop_get(ztest_spa, &props));
4808
4809 if (ztest_opts.zo_verbose >= 6)
4810 dump_nvlist(props, 4);
4811
4812 nvlist_free(props);
4813
4814 (void) rw_unlock(&ztest_name_lock);
4815 }
4816
4817 static int
4818 user_release_one(const char *snapname, const char *holdname)
4819 {
4820 nvlist_t *snaps, *holds;
4821 int error;
4822
4823 snaps = fnvlist_alloc();
4824 holds = fnvlist_alloc();
4825 fnvlist_add_boolean(holds, holdname);
4826 fnvlist_add_nvlist(snaps, snapname, holds);
4827 fnvlist_free(holds);
4828 error = dsl_dataset_user_release(snaps, NULL);
4829 fnvlist_free(snaps);
4830 return (error);
4831 }
4832
4833 /*
4834 * Test snapshot hold/release and deferred destroy.
4835 */
4836 void
4837 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
4838 {
4839 int error;
4840 objset_t *os = zd->zd_os;
4841 objset_t *origin;
4842 char snapname[100];
4843 char fullname[100];
4844 char clonename[100];
4845 char tag[100];
4846 char osname[MAXNAMELEN];
4847 nvlist_t *holds;
4848
4849 (void) rw_rdlock(&ztest_name_lock);
4850
4851 dmu_objset_name(os, osname);
4852
4853 (void) snprintf(snapname, sizeof (snapname), "sh1_%llu",
4854 (u_longlong_t)id);
4855 (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname);
4856 (void) snprintf(clonename, sizeof (clonename),
4857 "%s/ch1_%llu", osname, (u_longlong_t)id);
4858 (void) snprintf(tag, sizeof (tag), "tag_%llu", (u_longlong_t)id);
4859
4860 /*
4861 * Clean up from any previous run.
4862 */
4863 error = dsl_destroy_head(clonename);
4864 if (error != ENOENT)
4865 ASSERT0(error);
4866 error = user_release_one(fullname, tag);
4867 if (error != ESRCH && error != ENOENT)
4868 ASSERT0(error);
4869 error = dsl_destroy_snapshot(fullname, B_FALSE);
4870 if (error != ENOENT)
4871 ASSERT0(error);
4872
4873 /*
4874 * Create snapshot, clone it, mark snap for deferred destroy,
4875 * destroy clone, verify snap was also destroyed.
4876 */
4877 error = dmu_objset_snapshot_one(osname, snapname);
4878 if (error) {
4879 if (error == ENOSPC) {
4880 ztest_record_enospc("dmu_objset_snapshot");
4881 goto out;
4882 }
4883 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
4884 }
4885
4886 error = dmu_objset_clone(clonename, fullname);
4887 if (error) {
4888 if (error == ENOSPC) {
4889 ztest_record_enospc("dmu_objset_clone");
4890 goto out;
4891 }
4892 fatal(0, "dmu_objset_clone(%s) = %d", clonename, error);
4893 }
4894
4895 error = dsl_destroy_snapshot(fullname, B_TRUE);
4896 if (error) {
4897 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
4898 fullname, error);
4899 }
4900
4901 error = dsl_destroy_head(clonename);
4902 if (error)
4903 fatal(0, "dsl_destroy_head(%s) = %d", clonename, error);
4904
4905 error = dmu_objset_hold(fullname, FTAG, &origin);
4906 if (error != ENOENT)
4907 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error);
4908
4909 /*
4910 * Create snapshot, add temporary hold, verify that we can't
4911 * destroy a held snapshot, mark for deferred destroy,
4912 * release hold, verify snapshot was destroyed.
4913 */
4914 error = dmu_objset_snapshot_one(osname, snapname);
4915 if (error) {
4916 if (error == ENOSPC) {
4917 ztest_record_enospc("dmu_objset_snapshot");
4918 goto out;
4919 }
4920 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
4921 }
4922
4923 holds = fnvlist_alloc();
4924 fnvlist_add_string(holds, fullname, tag);
4925 error = dsl_dataset_user_hold(holds, 0, NULL);
4926 fnvlist_free(holds);
4927
4928 if (error == ENOSPC) {
4929 ztest_record_enospc("dsl_dataset_user_hold");
4930 goto out;
4931 } else if (error) {
4932 fatal(0, "dsl_dataset_user_hold(%s, %s) = %u",
4933 fullname, tag, error);
4934 }
4935
4936 error = dsl_destroy_snapshot(fullname, B_FALSE);
4937 if (error != EBUSY) {
4938 fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
4939 fullname, error);
4940 }
4941
4942 error = dsl_destroy_snapshot(fullname, B_TRUE);
4943 if (error) {
4944 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
4945 fullname, error);
4946 }
4947
4948 error = user_release_one(fullname, tag);
4949 if (error)
4950 fatal(0, "user_release_one(%s, %s) = %d", fullname, tag, error);
4951
4952 VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT);
4953
4954 out:
4955 (void) rw_unlock(&ztest_name_lock);
4956 }
4957
4958 /*
4959 * Inject random faults into the on-disk data.
4960 */
4961 /* ARGSUSED */
4962 void
4963 ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
4964 {
4965 ztest_shared_t *zs = ztest_shared;
4966 spa_t *spa = ztest_spa;
4967 int fd;
4968 uint64_t offset;
4969 uint64_t leaves;
4970 uint64_t bad = 0x1990c0ffeedecadeull;
4971 uint64_t top, leaf;
4972 char *path0;
4973 char *pathrand;
4974 size_t fsize;
4975 int bshift = SPA_MAXBLOCKSHIFT + 2; /* don't scrog all labels */
4976 int iters = 1000;
4977 int maxfaults;
4978 int mirror_save;
4979 vdev_t *vd0 = NULL;
4980 uint64_t guid0 = 0;
4981 boolean_t islog = B_FALSE;
4982
4983 path0 = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
4984 pathrand = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
4985
4986 mutex_enter(&ztest_vdev_lock);
4987 maxfaults = MAXFAULTS();
4988 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
4989 mirror_save = zs->zs_mirrors;
4990 mutex_exit(&ztest_vdev_lock);
4991
4992 ASSERT(leaves >= 1);
4993
4994 /*
4995 * Grab the name lock as reader. There are some operations
4996 * which don't like to have their vdevs changed while
4997 * they are in progress (i.e. spa_change_guid). Those
4998 * operations will have grabbed the name lock as writer.
4999 */
5000 (void) rw_rdlock(&ztest_name_lock);
5001
5002 /*
5003 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
5004 */
5005 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5006
5007 if (ztest_random(2) == 0) {
5008 /*
5009 * Inject errors on a normal data device or slog device.
5010 */
5011 top = ztest_random_vdev_top(spa, B_TRUE);
5012 leaf = ztest_random(leaves) + zs->zs_splits;
5013
5014 /*
5015 * Generate paths to the first leaf in this top-level vdev,
5016 * and to the random leaf we selected. We'll induce transient
5017 * write failures and random online/offline activity on leaf 0,
5018 * and we'll write random garbage to the randomly chosen leaf.
5019 */
5020 (void) snprintf(path0, MAXPATHLEN, ztest_dev_template,
5021 ztest_opts.zo_dir, ztest_opts.zo_pool,
5022 top * leaves + zs->zs_splits);
5023 (void) snprintf(pathrand, MAXPATHLEN, ztest_dev_template,
5024 ztest_opts.zo_dir, ztest_opts.zo_pool,
5025 top * leaves + leaf);
5026
5027 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
5028 if (vd0 != NULL && vd0->vdev_top->vdev_islog)
5029 islog = B_TRUE;
5030
5031 /*
5032 * If the top-level vdev needs to be resilvered
5033 * then we only allow faults on the device that is
5034 * resilvering.
5035 */
5036 if (vd0 != NULL && maxfaults != 1 &&
5037 (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) ||
5038 vd0->vdev_resilver_txg != 0)) {
5039 /*
5040 * Make vd0 explicitly claim to be unreadable,
5041 * or unwriteable, or reach behind its back
5042 * and close the underlying fd. We can do this if
5043 * maxfaults == 0 because we'll fail and reexecute,
5044 * and we can do it if maxfaults >= 2 because we'll
5045 * have enough redundancy. If maxfaults == 1, the
5046 * combination of this with injection of random data
5047 * corruption below exceeds the pool's fault tolerance.
5048 */
5049 vdev_file_t *vf = vd0->vdev_tsd;
5050
5051 if (vf != NULL && ztest_random(3) == 0) {
5052 (void) close(vf->vf_vnode->v_fd);
5053 vf->vf_vnode->v_fd = -1;
5054 } else if (ztest_random(2) == 0) {
5055 vd0->vdev_cant_read = B_TRUE;
5056 } else {
5057 vd0->vdev_cant_write = B_TRUE;
5058 }
5059 guid0 = vd0->vdev_guid;
5060 }
5061 } else {
5062 /*
5063 * Inject errors on an l2cache device.
5064 */
5065 spa_aux_vdev_t *sav = &spa->spa_l2cache;
5066
5067 if (sav->sav_count == 0) {
5068 spa_config_exit(spa, SCL_STATE, FTAG);
5069 (void) rw_unlock(&ztest_name_lock);
5070 goto out;
5071 }
5072 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
5073 guid0 = vd0->vdev_guid;
5074 (void) strcpy(path0, vd0->vdev_path);
5075 (void) strcpy(pathrand, vd0->vdev_path);
5076
5077 leaf = 0;
5078 leaves = 1;
5079 maxfaults = INT_MAX; /* no limit on cache devices */
5080 }
5081
5082 spa_config_exit(spa, SCL_STATE, FTAG);
5083 (void) rw_unlock(&ztest_name_lock);
5084
5085 /*
5086 * If we can tolerate two or more faults, or we're dealing
5087 * with a slog, randomly online/offline vd0.
5088 */
5089 if ((maxfaults >= 2 || islog) && guid0 != 0) {
5090 if (ztest_random(10) < 6) {
5091 int flags = (ztest_random(2) == 0 ?
5092 ZFS_OFFLINE_TEMPORARY : 0);
5093
5094 /*
5095 * We have to grab the zs_name_lock as writer to
5096 * prevent a race between offlining a slog and
5097 * destroying a dataset. Offlining the slog will
5098 * grab a reference on the dataset which may cause
5099 * dsl_destroy_head() to fail with EBUSY thus
5100 * leaving the dataset in an inconsistent state.
5101 */
5102 if (islog)
5103 (void) rw_wrlock(&ztest_name_lock);
5104
5105 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY);
5106
5107 if (islog)
5108 (void) rw_unlock(&ztest_name_lock);
5109 } else {
5110 /*
5111 * Ideally we would like to be able to randomly
5112 * call vdev_[on|off]line without holding locks
5113 * to force unpredictable failures but the side
5114 * effects of vdev_[on|off]line prevent us from
5115 * doing so. We grab the ztest_vdev_lock here to
5116 * prevent a race between injection testing and
5117 * aux_vdev removal.
5118 */
5119 mutex_enter(&ztest_vdev_lock);
5120 (void) vdev_online(spa, guid0, 0, NULL);
5121 mutex_exit(&ztest_vdev_lock);
5122 }
5123 }
5124
5125 if (maxfaults == 0)
5126 goto out;
5127
5128 /*
5129 * We have at least single-fault tolerance, so inject data corruption.
5130 */
5131 fd = open(pathrand, O_RDWR);
5132
5133 if (fd == -1) /* we hit a gap in the device namespace */
5134 goto out;
5135
5136 fsize = lseek(fd, 0, SEEK_END);
5137
5138 while (--iters != 0) {
5139 offset = ztest_random(fsize / (leaves << bshift)) *
5140 (leaves << bshift) + (leaf << bshift) +
5141 (ztest_random(1ULL << (bshift - 1)) & -8ULL);
5142
5143 if (offset >= fsize)
5144 continue;
5145
5146 mutex_enter(&ztest_vdev_lock);
5147 if (mirror_save != zs->zs_mirrors) {
5148 mutex_exit(&ztest_vdev_lock);
5149 (void) close(fd);
5150 goto out;
5151 }
5152
5153 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
5154 fatal(1, "can't inject bad word at 0x%llx in %s",
5155 offset, pathrand);
5156
5157 mutex_exit(&ztest_vdev_lock);
5158
5159 if (ztest_opts.zo_verbose >= 7)
5160 (void) printf("injected bad word into %s,"
5161 " offset 0x%llx\n", pathrand, (u_longlong_t)offset);
5162 }
5163
5164 (void) close(fd);
5165 out:
5166 umem_free(path0, MAXPATHLEN);
5167 umem_free(pathrand, MAXPATHLEN);
5168 }
5169
5170 /*
5171 * Verify that DDT repair works as expected.
5172 */
5173 void
5174 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id)
5175 {
5176 ztest_shared_t *zs = ztest_shared;
5177 spa_t *spa = ztest_spa;
5178 objset_t *os = zd->zd_os;
5179 ztest_od_t *od;
5180 uint64_t object, blocksize, txg, pattern, psize;
5181 enum zio_checksum checksum = spa_dedup_checksum(spa);
5182 dmu_buf_t *db;
5183 dmu_tx_t *tx;
5184 void *buf;
5185 blkptr_t blk;
5186 int copies = 2 * ZIO_DEDUPDITTO_MIN;
5187 int i;
5188
5189 blocksize = ztest_random_blocksize();
5190 blocksize = MIN(blocksize, 2048); /* because we write so many */
5191
5192 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5193 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
5194
5195 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
5196 umem_free(od, sizeof (ztest_od_t));
5197 return;
5198 }
5199
5200 /*
5201 * Take the name lock as writer to prevent anyone else from changing
5202 * the pool and dataset properies we need to maintain during this test.
5203 */
5204 (void) rw_wrlock(&ztest_name_lock);
5205
5206 if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum,
5207 B_FALSE) != 0 ||
5208 ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1,
5209 B_FALSE) != 0) {
5210 (void) rw_unlock(&ztest_name_lock);
5211 umem_free(od, sizeof (ztest_od_t));
5212 return;
5213 }
5214
5215 object = od[0].od_object;
5216 blocksize = od[0].od_blocksize;
5217 pattern = zs->zs_guid ^ dmu_objset_fsid_guid(os);
5218
5219 ASSERT(object != 0);
5220
5221 tx = dmu_tx_create(os);
5222 dmu_tx_hold_write(tx, object, 0, copies * blocksize);
5223 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
5224 if (txg == 0) {
5225 (void) rw_unlock(&ztest_name_lock);
5226 umem_free(od, sizeof (ztest_od_t));
5227 return;
5228 }
5229
5230 /*
5231 * Write all the copies of our block.
5232 */
5233 for (i = 0; i < copies; i++) {
5234 uint64_t offset = i * blocksize;
5235 int error = dmu_buf_hold(os, object, offset, FTAG, &db,
5236 DMU_READ_NO_PREFETCH);
5237 if (error != 0) {
5238 fatal(B_FALSE, "dmu_buf_hold(%p, %llu, %llu) = %u",
5239 os, (long long)object, (long long) offset, error);
5240 }
5241 ASSERT(db->db_offset == offset);
5242 ASSERT(db->db_size == blocksize);
5243 ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) ||
5244 ztest_pattern_match(db->db_data, db->db_size, 0ULL));
5245 dmu_buf_will_fill(db, tx);
5246 ztest_pattern_set(db->db_data, db->db_size, pattern);
5247 dmu_buf_rele(db, FTAG);
5248 }
5249
5250 dmu_tx_commit(tx);
5251 txg_wait_synced(spa_get_dsl(spa), txg);
5252
5253 /*
5254 * Find out what block we got.
5255 */
5256 VERIFY0(dmu_buf_hold(os, object, 0, FTAG, &db,
5257 DMU_READ_NO_PREFETCH));
5258 blk = *((dmu_buf_impl_t *)db)->db_blkptr;
5259 dmu_buf_rele(db, FTAG);
5260
5261 /*
5262 * Damage the block. Dedup-ditto will save us when we read it later.
5263 */
5264 psize = BP_GET_PSIZE(&blk);
5265 buf = zio_buf_alloc(psize);
5266 ztest_pattern_set(buf, psize, ~pattern);
5267
5268 (void) zio_wait(zio_rewrite(NULL, spa, 0, &blk,
5269 buf, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE,
5270 ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL));
5271
5272 zio_buf_free(buf, psize);
5273
5274 (void) rw_unlock(&ztest_name_lock);
5275 umem_free(od, sizeof (ztest_od_t));
5276 }
5277
5278 /*
5279 * Scrub the pool.
5280 */
5281 /* ARGSUSED */
5282 void
5283 ztest_scrub(ztest_ds_t *zd, uint64_t id)
5284 {
5285 spa_t *spa = ztest_spa;
5286
5287 (void) spa_scan(spa, POOL_SCAN_SCRUB);
5288 (void) poll(NULL, 0, 100); /* wait a moment, then force a restart */
5289 (void) spa_scan(spa, POOL_SCAN_SCRUB);
5290 }
5291
5292 /*
5293 * Change the guid for the pool.
5294 */
5295 /* ARGSUSED */
5296 void
5297 ztest_reguid(ztest_ds_t *zd, uint64_t id)
5298 {
5299 spa_t *spa = ztest_spa;
5300 uint64_t orig, load;
5301 int error;
5302
5303 orig = spa_guid(spa);
5304 load = spa_load_guid(spa);
5305
5306 (void) rw_wrlock(&ztest_name_lock);
5307 error = spa_change_guid(spa);
5308 (void) rw_unlock(&ztest_name_lock);
5309
5310 if (error != 0)
5311 return;
5312
5313 if (ztest_opts.zo_verbose >= 4) {
5314 (void) printf("Changed guid old %llu -> %llu\n",
5315 (u_longlong_t)orig, (u_longlong_t)spa_guid(spa));
5316 }
5317
5318 VERIFY3U(orig, !=, spa_guid(spa));
5319 VERIFY3U(load, ==, spa_load_guid(spa));
5320 }
5321
5322 /*
5323 * Rename the pool to a different name and then rename it back.
5324 */
5325 /* ARGSUSED */
5326 void
5327 ztest_spa_rename(ztest_ds_t *zd, uint64_t id)
5328 {
5329 char *oldname, *newname;
5330 spa_t *spa;
5331
5332 (void) rw_wrlock(&ztest_name_lock);
5333
5334 oldname = ztest_opts.zo_pool;
5335 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL);
5336 (void) strcpy(newname, oldname);
5337 (void) strcat(newname, "_tmp");
5338
5339 /*
5340 * Do the rename
5341 */
5342 VERIFY3U(0, ==, spa_rename(oldname, newname));
5343
5344 /*
5345 * Try to open it under the old name, which shouldn't exist
5346 */
5347 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
5348
5349 /*
5350 * Open it under the new name and make sure it's still the same spa_t.
5351 */
5352 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
5353
5354 ASSERT(spa == ztest_spa);
5355 spa_close(spa, FTAG);
5356
5357 /*
5358 * Rename it back to the original
5359 */
5360 VERIFY3U(0, ==, spa_rename(newname, oldname));
5361
5362 /*
5363 * Make sure it can still be opened
5364 */
5365 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
5366
5367 ASSERT(spa == ztest_spa);
5368 spa_close(spa, FTAG);
5369
5370 umem_free(newname, strlen(newname) + 1);
5371
5372 (void) rw_unlock(&ztest_name_lock);
5373 }
5374
5375 /*
5376 * Verify pool integrity by running zdb.
5377 */
5378 static void
5379 ztest_run_zdb(char *pool)
5380 {
5381 int status;
5382 char *bin;
5383 char *zdb;
5384 char *zbuf;
5385 FILE *fp;
5386
5387 bin = umem_alloc(MAXPATHLEN + MAXNAMELEN + 20, UMEM_NOFAIL);
5388 zdb = umem_alloc(MAXPATHLEN + MAXNAMELEN + 20, UMEM_NOFAIL);
5389 zbuf = umem_alloc(1024, UMEM_NOFAIL);
5390
5391 VERIFY(realpath(getexecname(), bin) != NULL);
5392 if (strncmp(bin, "/usr/sbin/ztest", 15) == 0) {
5393 strcpy(bin, "/usr/sbin/zdb"); /* Installed */
5394 } else if (strncmp(bin, "/sbin/ztest", 11) == 0) {
5395 strcpy(bin, "/sbin/zdb"); /* Installed */
5396 } else {
5397 strstr(bin, "/ztest/")[0] = '\0'; /* In-tree */
5398 strcat(bin, "/zdb/zdb");
5399 }
5400
5401 (void) sprintf(zdb,
5402 "%s -bcc%s%s -d -U %s %s",
5403 bin,
5404 ztest_opts.zo_verbose >= 3 ? "s" : "",
5405 ztest_opts.zo_verbose >= 4 ? "v" : "",
5406 spa_config_path,
5407 pool);
5408
5409 if (ztest_opts.zo_verbose >= 5)
5410 (void) printf("Executing %s\n", strstr(zdb, "zdb "));
5411
5412 fp = popen(zdb, "r");
5413
5414 while (fgets(zbuf, 1024, fp) != NULL)
5415 if (ztest_opts.zo_verbose >= 3)
5416 (void) printf("%s", zbuf);
5417
5418 status = pclose(fp);
5419
5420 if (status == 0)
5421 goto out;
5422
5423 ztest_dump_core = 0;
5424 if (WIFEXITED(status))
5425 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status));
5426 else
5427 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status));
5428 out:
5429 umem_free(bin, MAXPATHLEN + MAXNAMELEN + 20);
5430 umem_free(zdb, MAXPATHLEN + MAXNAMELEN + 20);
5431 umem_free(zbuf, 1024);
5432 }
5433
5434 static void
5435 ztest_walk_pool_directory(char *header)
5436 {
5437 spa_t *spa = NULL;
5438
5439 if (ztest_opts.zo_verbose >= 6)
5440 (void) printf("%s\n", header);
5441
5442 mutex_enter(&spa_namespace_lock);
5443 while ((spa = spa_next(spa)) != NULL)
5444 if (ztest_opts.zo_verbose >= 6)
5445 (void) printf("\t%s\n", spa_name(spa));
5446 mutex_exit(&spa_namespace_lock);
5447 }
5448
5449 static void
5450 ztest_spa_import_export(char *oldname, char *newname)
5451 {
5452 nvlist_t *config, *newconfig;
5453 uint64_t pool_guid;
5454 spa_t *spa;
5455 int error;
5456
5457 if (ztest_opts.zo_verbose >= 4) {
5458 (void) printf("import/export: old = %s, new = %s\n",
5459 oldname, newname);
5460 }
5461
5462 /*
5463 * Clean up from previous runs.
5464 */
5465 (void) spa_destroy(newname);
5466
5467 /*
5468 * Get the pool's configuration and guid.
5469 */
5470 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
5471
5472 /*
5473 * Kick off a scrub to tickle scrub/export races.
5474 */
5475 if (ztest_random(2) == 0)
5476 (void) spa_scan(spa, POOL_SCAN_SCRUB);
5477
5478 pool_guid = spa_guid(spa);
5479 spa_close(spa, FTAG);
5480
5481 ztest_walk_pool_directory("pools before export");
5482
5483 /*
5484 * Export it.
5485 */
5486 VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE));
5487
5488 ztest_walk_pool_directory("pools after export");
5489
5490 /*
5491 * Try to import it.
5492 */
5493 newconfig = spa_tryimport(config);
5494 ASSERT(newconfig != NULL);
5495 nvlist_free(newconfig);
5496
5497 /*
5498 * Import it under the new name.
5499 */
5500 error = spa_import(newname, config, NULL, 0);
5501 if (error != 0) {
5502 dump_nvlist(config, 0);
5503 fatal(B_FALSE, "couldn't import pool %s as %s: error %u",
5504 oldname, newname, error);
5505 }
5506
5507 ztest_walk_pool_directory("pools after import");
5508
5509 /*
5510 * Try to import it again -- should fail with EEXIST.
5511 */
5512 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0));
5513
5514 /*
5515 * Try to import it under a different name -- should fail with EEXIST.
5516 */
5517 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0));
5518
5519 /*
5520 * Verify that the pool is no longer visible under the old name.
5521 */
5522 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
5523
5524 /*
5525 * Verify that we can open and close the pool using the new name.
5526 */
5527 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
5528 ASSERT(pool_guid == spa_guid(spa));
5529 spa_close(spa, FTAG);
5530
5531 nvlist_free(config);
5532 }
5533
5534 static void
5535 ztest_resume(spa_t *spa)
5536 {
5537 if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6)
5538 (void) printf("resuming from suspended state\n");
5539 spa_vdev_state_enter(spa, SCL_NONE);
5540 vdev_clear(spa, NULL);
5541 (void) spa_vdev_state_exit(spa, NULL, 0);
5542 (void) zio_resume(spa);
5543 }
5544
5545 static void *
5546 ztest_resume_thread(void *arg)
5547 {
5548 spa_t *spa = arg;
5549
5550 while (!ztest_exiting) {
5551 if (spa_suspended(spa))
5552 ztest_resume(spa);
5553 (void) poll(NULL, 0, 100);
5554 }
5555
5556 thread_exit();
5557
5558 return (NULL);
5559 }
5560
5561 #define GRACE 300
5562
5563 #if 0
5564 static void
5565 ztest_deadman_alarm(int sig)
5566 {
5567 fatal(0, "failed to complete within %d seconds of deadline", GRACE);
5568 }
5569 #endif
5570
5571 static void
5572 ztest_execute(int test, ztest_info_t *zi, uint64_t id)
5573 {
5574 ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets];
5575 ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test);
5576 hrtime_t functime = gethrtime();
5577 int i;
5578
5579 for (i = 0; i < zi->zi_iters; i++)
5580 zi->zi_func(zd, id);
5581
5582 functime = gethrtime() - functime;
5583
5584 atomic_add_64(&zc->zc_count, 1);
5585 atomic_add_64(&zc->zc_time, functime);
5586
5587 if (ztest_opts.zo_verbose >= 4)
5588 (void) printf("%6.2f sec in %s\n",
5589 (double)functime / NANOSEC, zi->zi_funcname);
5590 }
5591
5592 static void *
5593 ztest_thread(void *arg)
5594 {
5595 int rand;
5596 uint64_t id = (uintptr_t)arg;
5597 ztest_shared_t *zs = ztest_shared;
5598 uint64_t call_next;
5599 hrtime_t now;
5600 ztest_info_t *zi;
5601 ztest_shared_callstate_t *zc;
5602
5603 while ((now = gethrtime()) < zs->zs_thread_stop) {
5604 /*
5605 * See if it's time to force a crash.
5606 */
5607 if (now > zs->zs_thread_kill)
5608 ztest_kill(zs);
5609
5610 /*
5611 * If we're getting ENOSPC with some regularity, stop.
5612 */
5613 if (zs->zs_enospc_count > 10)
5614 break;
5615
5616 /*
5617 * Pick a random function to execute.
5618 */
5619 rand = ztest_random(ZTEST_FUNCS);
5620 zi = &ztest_info[rand];
5621 zc = ZTEST_GET_SHARED_CALLSTATE(rand);
5622 call_next = zc->zc_next;
5623
5624 if (now >= call_next &&
5625 atomic_cas_64(&zc->zc_next, call_next, call_next +
5626 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) {
5627 ztest_execute(rand, zi, id);
5628 }
5629 }
5630
5631 thread_exit();
5632
5633 return (NULL);
5634 }
5635
5636 static void
5637 ztest_dataset_name(char *dsname, char *pool, int d)
5638 {
5639 (void) snprintf(dsname, MAXNAMELEN, "%s/ds_%d", pool, d);
5640 }
5641
5642 static void
5643 ztest_dataset_destroy(int d)
5644 {
5645 char name[MAXNAMELEN];
5646 int t;
5647
5648 ztest_dataset_name(name, ztest_opts.zo_pool, d);
5649
5650 if (ztest_opts.zo_verbose >= 3)
5651 (void) printf("Destroying %s to free up space\n", name);
5652
5653 /*
5654 * Cleanup any non-standard clones and snapshots. In general,
5655 * ztest thread t operates on dataset (t % zopt_datasets),
5656 * so there may be more than one thing to clean up.
5657 */
5658 for (t = d; t < ztest_opts.zo_threads;
5659 t += ztest_opts.zo_datasets)
5660 ztest_dsl_dataset_cleanup(name, t);
5661
5662 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
5663 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
5664 }
5665
5666 static void
5667 ztest_dataset_dirobj_verify(ztest_ds_t *zd)
5668 {
5669 uint64_t usedobjs, dirobjs, scratch;
5670
5671 /*
5672 * ZTEST_DIROBJ is the object directory for the entire dataset.
5673 * Therefore, the number of objects in use should equal the
5674 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
5675 * If not, we have an object leak.
5676 *
5677 * Note that we can only check this in ztest_dataset_open(),
5678 * when the open-context and syncing-context values agree.
5679 * That's because zap_count() returns the open-context value,
5680 * while dmu_objset_space() returns the rootbp fill count.
5681 */
5682 VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
5683 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
5684 ASSERT3U(dirobjs + 1, ==, usedobjs);
5685 }
5686
5687 static int
5688 ztest_dataset_open(int d)
5689 {
5690 ztest_ds_t *zd = &ztest_ds[d];
5691 uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq;
5692 objset_t *os;
5693 zilog_t *zilog;
5694 char name[MAXNAMELEN];
5695 int error;
5696
5697 ztest_dataset_name(name, ztest_opts.zo_pool, d);
5698
5699 (void) rw_rdlock(&ztest_name_lock);
5700
5701 error = ztest_dataset_create(name);
5702 if (error == ENOSPC) {
5703 (void) rw_unlock(&ztest_name_lock);
5704 ztest_record_enospc(FTAG);
5705 return (error);
5706 }
5707 ASSERT(error == 0 || error == EEXIST);
5708
5709 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, zd, &os));
5710 (void) rw_unlock(&ztest_name_lock);
5711
5712 ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os);
5713
5714 zilog = zd->zd_zilog;
5715
5716 if (zilog->zl_header->zh_claim_lr_seq != 0 &&
5717 zilog->zl_header->zh_claim_lr_seq < committed_seq)
5718 fatal(0, "missing log records: claimed %llu < committed %llu",
5719 zilog->zl_header->zh_claim_lr_seq, committed_seq);
5720
5721 ztest_dataset_dirobj_verify(zd);
5722
5723 zil_replay(os, zd, ztest_replay_vector);
5724
5725 ztest_dataset_dirobj_verify(zd);
5726
5727 if (ztest_opts.zo_verbose >= 6)
5728 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n",
5729 zd->zd_name,
5730 (u_longlong_t)zilog->zl_parse_blk_count,
5731 (u_longlong_t)zilog->zl_parse_lr_count,
5732 (u_longlong_t)zilog->zl_replaying_seq);
5733
5734 zilog = zil_open(os, ztest_get_data);
5735
5736 if (zilog->zl_replaying_seq != 0 &&
5737 zilog->zl_replaying_seq < committed_seq)
5738 fatal(0, "missing log records: replayed %llu < committed %llu",
5739 zilog->zl_replaying_seq, committed_seq);
5740
5741 return (0);
5742 }
5743
5744 static void
5745 ztest_dataset_close(int d)
5746 {
5747 ztest_ds_t *zd = &ztest_ds[d];
5748
5749 zil_close(zd->zd_zilog);
5750 dmu_objset_disown(zd->zd_os, zd);
5751
5752 ztest_zd_fini(zd);
5753 }
5754
5755 /*
5756 * Kick off threads to run tests on all datasets in parallel.
5757 */
5758 static void
5759 ztest_run(ztest_shared_t *zs)
5760 {
5761 kt_did_t *tid;
5762 spa_t *spa;
5763 objset_t *os;
5764 kthread_t *resume_thread;
5765 uint64_t object;
5766 int error;
5767 int t, d;
5768
5769 ztest_exiting = B_FALSE;
5770
5771 /*
5772 * Initialize parent/child shared state.
5773 */
5774 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
5775 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0);
5776
5777 zs->zs_thread_start = gethrtime();
5778 zs->zs_thread_stop =
5779 zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC;
5780 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
5781 zs->zs_thread_kill = zs->zs_thread_stop;
5782 if (ztest_random(100) < ztest_opts.zo_killrate) {
5783 zs->zs_thread_kill -=
5784 ztest_random(ztest_opts.zo_passtime * NANOSEC);
5785 }
5786
5787 mutex_init(&zcl.zcl_callbacks_lock, NULL, MUTEX_DEFAULT, NULL);
5788
5789 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
5790 offsetof(ztest_cb_data_t, zcd_node));
5791
5792 /*
5793 * Open our pool.
5794 */
5795 kernel_init(FREAD | FWRITE);
5796 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
5797 spa->spa_debug = B_TRUE;
5798 metaslab_preload_limit = ztest_random(20) + 1;
5799 ztest_spa = spa;
5800
5801 VERIFY0(dmu_objset_own(ztest_opts.zo_pool,
5802 DMU_OST_ANY, B_TRUE, FTAG, &os));
5803 zs->zs_guid = dmu_objset_fsid_guid(os);
5804 dmu_objset_disown(os, FTAG);
5805
5806 spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN;
5807
5808 /*
5809 * We don't expect the pool to suspend unless maxfaults == 0,
5810 * in which case ztest_fault_inject() temporarily takes away
5811 * the only valid replica.
5812 */
5813 if (MAXFAULTS() == 0)
5814 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT;
5815 else
5816 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC;
5817
5818 /*
5819 * Create a thread to periodically resume suspended I/O.
5820 */
5821 VERIFY3P((resume_thread = zk_thread_create(NULL, 0,
5822 (thread_func_t)ztest_resume_thread, spa, TS_RUN, NULL, 0, 0,
5823 PTHREAD_CREATE_JOINABLE)), !=, NULL);
5824
5825 #if 0
5826 /*
5827 * Set a deadman alarm to abort() if we hang.
5828 */
5829 signal(SIGALRM, ztest_deadman_alarm);
5830 alarm((zs->zs_thread_stop - zs->zs_thread_start) / NANOSEC + GRACE);
5831 #endif
5832
5833 /*
5834 * Verify that we can safely inquire about about any object,
5835 * whether it's allocated or not. To make it interesting,
5836 * we probe a 5-wide window around each power of two.
5837 * This hits all edge cases, including zero and the max.
5838 */
5839 for (t = 0; t < 64; t++) {
5840 for (d = -5; d <= 5; d++) {
5841 error = dmu_object_info(spa->spa_meta_objset,
5842 (1ULL << t) + d, NULL);
5843 ASSERT(error == 0 || error == ENOENT ||
5844 error == EINVAL);
5845 }
5846 }
5847
5848 /*
5849 * If we got any ENOSPC errors on the previous run, destroy something.
5850 */
5851 if (zs->zs_enospc_count != 0) {
5852 int d = ztest_random(ztest_opts.zo_datasets);
5853 ztest_dataset_destroy(d);
5854 }
5855 zs->zs_enospc_count = 0;
5856
5857 tid = umem_zalloc(ztest_opts.zo_threads * sizeof (kt_did_t),
5858 UMEM_NOFAIL);
5859
5860 if (ztest_opts.zo_verbose >= 4)
5861 (void) printf("starting main threads...\n");
5862
5863 /*
5864 * Kick off all the tests that run in parallel.
5865 */
5866 for (t = 0; t < ztest_opts.zo_threads; t++) {
5867 kthread_t *thread;
5868
5869 if (t < ztest_opts.zo_datasets &&
5870 ztest_dataset_open(t) != 0)
5871 return;
5872
5873 VERIFY3P(thread = zk_thread_create(NULL, 0,
5874 (thread_func_t)ztest_thread,
5875 (void *)(uintptr_t)t, TS_RUN, NULL, 0, 0,
5876 PTHREAD_CREATE_JOINABLE), !=, NULL);
5877 tid[t] = thread->t_tid;
5878 }
5879
5880 /*
5881 * Wait for all of the tests to complete. We go in reverse order
5882 * so we don't close datasets while threads are still using them.
5883 */
5884 for (t = ztest_opts.zo_threads - 1; t >= 0; t--) {
5885 thread_join(tid[t]);
5886 if (t < ztest_opts.zo_datasets)
5887 ztest_dataset_close(t);
5888 }
5889
5890 txg_wait_synced(spa_get_dsl(spa), 0);
5891
5892 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
5893 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
5894
5895 if (ztest_opts.zo_verbose >= 3)
5896 zfs_dbgmsg_print(FTAG);
5897
5898 umem_free(tid, ztest_opts.zo_threads * sizeof (kt_did_t));
5899
5900 /* Kill the resume thread */
5901 ztest_exiting = B_TRUE;
5902 thread_join(resume_thread->t_tid);
5903 ztest_resume(spa);
5904
5905 /*
5906 * Right before closing the pool, kick off a bunch of async I/O;
5907 * spa_close() should wait for it to complete.
5908 */
5909 for (object = 1; object < 50; object++)
5910 dmu_prefetch(spa->spa_meta_objset, object, 0, 1ULL << 20);
5911
5912 /* Verify that at least one commit cb was called in a timely fashion */
5913 if (zc_cb_counter >= ZTEST_COMMIT_CB_MIN_REG)
5914 VERIFY0(zc_min_txg_delay);
5915
5916 spa_close(spa, FTAG);
5917
5918 /*
5919 * Verify that we can loop over all pools.
5920 */
5921 mutex_enter(&spa_namespace_lock);
5922 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
5923 if (ztest_opts.zo_verbose > 3)
5924 (void) printf("spa_next: found %s\n", spa_name(spa));
5925 mutex_exit(&spa_namespace_lock);
5926
5927 /*
5928 * Verify that we can export the pool and reimport it under a
5929 * different name.
5930 */
5931 if (ztest_random(2) == 0) {
5932 char name[MAXNAMELEN];
5933 (void) snprintf(name, MAXNAMELEN, "%s_import",
5934 ztest_opts.zo_pool);
5935 ztest_spa_import_export(ztest_opts.zo_pool, name);
5936 ztest_spa_import_export(name, ztest_opts.zo_pool);
5937 }
5938
5939 kernel_fini();
5940
5941 list_destroy(&zcl.zcl_callbacks);
5942 mutex_destroy(&zcl.zcl_callbacks_lock);
5943 (void) rwlock_destroy(&ztest_name_lock);
5944 mutex_destroy(&ztest_vdev_lock);
5945 }
5946
5947 static void
5948 ztest_freeze(void)
5949 {
5950 ztest_ds_t *zd = &ztest_ds[0];
5951 spa_t *spa;
5952 int numloops = 0;
5953
5954 if (ztest_opts.zo_verbose >= 3)
5955 (void) printf("testing spa_freeze()...\n");
5956
5957 kernel_init(FREAD | FWRITE);
5958 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
5959 VERIFY3U(0, ==, ztest_dataset_open(0));
5960 spa->spa_debug = B_TRUE;
5961 ztest_spa = spa;
5962
5963 /*
5964 * Force the first log block to be transactionally allocated.
5965 * We have to do this before we freeze the pool -- otherwise
5966 * the log chain won't be anchored.
5967 */
5968 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
5969 ztest_dmu_object_alloc_free(zd, 0);
5970 zil_commit(zd->zd_zilog, 0);
5971 }
5972
5973 txg_wait_synced(spa_get_dsl(spa), 0);
5974
5975 /*
5976 * Freeze the pool. This stops spa_sync() from doing anything,
5977 * so that the only way to record changes from now on is the ZIL.
5978 */
5979 spa_freeze(spa);
5980
5981 /*
5982 * Because it is hard to predict how much space a write will actually
5983 * require beforehand, we leave ourselves some fudge space to write over
5984 * capacity.
5985 */
5986 uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2;
5987
5988 /*
5989 * Run tests that generate log records but don't alter the pool config
5990 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
5991 * We do a txg_wait_synced() after each iteration to force the txg
5992 * to increase well beyond the last synced value in the uberblock.
5993 * The ZIL should be OK with that.
5994 *
5995 * Run a random number of times less than zo_maxloops and ensure we do
5996 * not run out of space on the pool.
5997 */
5998 while (ztest_random(10) != 0 &&
5999 numloops++ < ztest_opts.zo_maxloops &&
6000 metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) {
6001 ztest_od_t od;
6002 ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
6003 VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE));
6004 ztest_io(zd, od.od_object,
6005 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
6006 txg_wait_synced(spa_get_dsl(spa), 0);
6007 }
6008
6009 /*
6010 * Commit all of the changes we just generated.
6011 */
6012 zil_commit(zd->zd_zilog, 0);
6013 txg_wait_synced(spa_get_dsl(spa), 0);
6014
6015 /*
6016 * Close our dataset and close the pool.
6017 */
6018 ztest_dataset_close(0);
6019 spa_close(spa, FTAG);
6020 kernel_fini();
6021
6022 /*
6023 * Open and close the pool and dataset to induce log replay.
6024 */
6025 kernel_init(FREAD | FWRITE);
6026 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
6027 ASSERT(spa_freeze_txg(spa) == UINT64_MAX);
6028 VERIFY3U(0, ==, ztest_dataset_open(0));
6029 ztest_dataset_close(0);
6030
6031 spa->spa_debug = B_TRUE;
6032 ztest_spa = spa;
6033 txg_wait_synced(spa_get_dsl(spa), 0);
6034 ztest_reguid(NULL, 0);
6035
6036 spa_close(spa, FTAG);
6037 kernel_fini();
6038 }
6039
6040 void
6041 print_time(hrtime_t t, char *timebuf)
6042 {
6043 hrtime_t s = t / NANOSEC;
6044 hrtime_t m = s / 60;
6045 hrtime_t h = m / 60;
6046 hrtime_t d = h / 24;
6047
6048 s -= m * 60;
6049 m -= h * 60;
6050 h -= d * 24;
6051
6052 timebuf[0] = '\0';
6053
6054 if (d)
6055 (void) sprintf(timebuf,
6056 "%llud%02lluh%02llum%02llus", d, h, m, s);
6057 else if (h)
6058 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
6059 else if (m)
6060 (void) sprintf(timebuf, "%llum%02llus", m, s);
6061 else
6062 (void) sprintf(timebuf, "%llus", s);
6063 }
6064
6065 static nvlist_t *
6066 make_random_props(void)
6067 {
6068 nvlist_t *props;
6069
6070 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
6071 if (ztest_random(2) == 0)
6072 return (props);
6073 VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0);
6074
6075 return (props);
6076 }
6077
6078 /*
6079 * Create a storage pool with the given name and initial vdev size.
6080 * Then test spa_freeze() functionality.
6081 */
6082 static void
6083 ztest_init(ztest_shared_t *zs)
6084 {
6085 spa_t *spa;
6086 nvlist_t *nvroot, *props;
6087 int i;
6088
6089 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
6090 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0);
6091
6092 kernel_init(FREAD | FWRITE);
6093
6094 /*
6095 * Create the storage pool.
6096 */
6097 (void) spa_destroy(ztest_opts.zo_pool);
6098 ztest_shared->zs_vdev_next_leaf = 0;
6099 zs->zs_splits = 0;
6100 zs->zs_mirrors = ztest_opts.zo_mirrors;
6101 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
6102 0, ztest_opts.zo_raidz, zs->zs_mirrors, 1);
6103 props = make_random_props();
6104 for (i = 0; i < SPA_FEATURES; i++) {
6105 char *buf;
6106 VERIFY3S(-1, !=, asprintf(&buf, "feature@%s",
6107 spa_feature_table[i].fi_uname));
6108 VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0));
6109 free(buf);
6110 }
6111 VERIFY3U(0, ==, spa_create(ztest_opts.zo_pool, nvroot, props, NULL));
6112 nvlist_free(nvroot);
6113 nvlist_free(props);
6114
6115 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
6116 zs->zs_metaslab_sz =
6117 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
6118 spa_close(spa, FTAG);
6119
6120 kernel_fini();
6121
6122 ztest_run_zdb(ztest_opts.zo_pool);
6123
6124 ztest_freeze();
6125
6126 ztest_run_zdb(ztest_opts.zo_pool);
6127
6128 (void) rwlock_destroy(&ztest_name_lock);
6129 mutex_destroy(&ztest_vdev_lock);
6130 }
6131
6132 static void
6133 setup_data_fd(void)
6134 {
6135 static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX";
6136
6137 ztest_fd_data = mkstemp(ztest_name_data);
6138 ASSERT3S(ztest_fd_data, >=, 0);
6139 (void) unlink(ztest_name_data);
6140 }
6141
6142 static int
6143 shared_data_size(ztest_shared_hdr_t *hdr)
6144 {
6145 int size;
6146
6147 size = hdr->zh_hdr_size;
6148 size += hdr->zh_opts_size;
6149 size += hdr->zh_size;
6150 size += hdr->zh_stats_size * hdr->zh_stats_count;
6151 size += hdr->zh_ds_size * hdr->zh_ds_count;
6152
6153 return (size);
6154 }
6155
6156 static void
6157 setup_hdr(void)
6158 {
6159 int size;
6160 ztest_shared_hdr_t *hdr;
6161
6162 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
6163 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
6164 VERIFY3P(hdr, !=, MAP_FAILED);
6165
6166 VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t)));
6167
6168 hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t);
6169 hdr->zh_opts_size = sizeof (ztest_shared_opts_t);
6170 hdr->zh_size = sizeof (ztest_shared_t);
6171 hdr->zh_stats_size = sizeof (ztest_shared_callstate_t);
6172 hdr->zh_stats_count = ZTEST_FUNCS;
6173 hdr->zh_ds_size = sizeof (ztest_shared_ds_t);
6174 hdr->zh_ds_count = ztest_opts.zo_datasets;
6175
6176 size = shared_data_size(hdr);
6177 VERIFY3U(0, ==, ftruncate(ztest_fd_data, size));
6178
6179 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
6180 }
6181
6182 static void
6183 setup_data(void)
6184 {
6185 int size, offset;
6186 ztest_shared_hdr_t *hdr;
6187 uint8_t *buf;
6188
6189 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
6190 PROT_READ, MAP_SHARED, ztest_fd_data, 0);
6191 VERIFY3P(hdr, !=, MAP_FAILED);
6192
6193 size = shared_data_size(hdr);
6194
6195 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
6196 hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()),
6197 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
6198 VERIFY3P(hdr, !=, MAP_FAILED);
6199 buf = (uint8_t *)hdr;
6200
6201 offset = hdr->zh_hdr_size;
6202 ztest_shared_opts = (void *)&buf[offset];
6203 offset += hdr->zh_opts_size;
6204 ztest_shared = (void *)&buf[offset];
6205 offset += hdr->zh_size;
6206 ztest_shared_callstate = (void *)&buf[offset];
6207 offset += hdr->zh_stats_size * hdr->zh_stats_count;
6208 ztest_shared_ds = (void *)&buf[offset];
6209 }
6210
6211 static boolean_t
6212 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp)
6213 {
6214 pid_t pid;
6215 int status;
6216 char *cmdbuf = NULL;
6217
6218 pid = fork();
6219
6220 if (cmd == NULL) {
6221 cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6222 (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN);
6223 cmd = cmdbuf;
6224 }
6225
6226 if (pid == -1)
6227 fatal(1, "fork failed");
6228
6229 if (pid == 0) { /* child */
6230 char *emptyargv[2] = { cmd, NULL };
6231 char fd_data_str[12];
6232
6233 struct rlimit rl = { 1024, 1024 };
6234 (void) setrlimit(RLIMIT_NOFILE, &rl);
6235
6236 (void) close(ztest_fd_rand);
6237 VERIFY(11 >= snprintf(fd_data_str, 12, "%d", ztest_fd_data));
6238 VERIFY(0 == setenv("ZTEST_FD_DATA", fd_data_str, 1));
6239
6240 (void) enable_extended_FILE_stdio(-1, -1);
6241 if (libpath != NULL)
6242 VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1));
6243 (void) execv(cmd, emptyargv);
6244 ztest_dump_core = B_FALSE;
6245 fatal(B_TRUE, "exec failed: %s", cmd);
6246 }
6247
6248 if (cmdbuf != NULL) {
6249 umem_free(cmdbuf, MAXPATHLEN);
6250 cmd = NULL;
6251 }
6252
6253 while (waitpid(pid, &status, 0) != pid)
6254 continue;
6255 if (statusp != NULL)
6256 *statusp = status;
6257
6258 if (WIFEXITED(status)) {
6259 if (WEXITSTATUS(status) != 0) {
6260 (void) fprintf(stderr, "child exited with code %d\n",
6261 WEXITSTATUS(status));
6262 exit(2);
6263 }
6264 return (B_FALSE);
6265 } else if (WIFSIGNALED(status)) {
6266 if (!ignorekill || WTERMSIG(status) != SIGKILL) {
6267 (void) fprintf(stderr, "child died with signal %d\n",
6268 WTERMSIG(status));
6269 exit(3);
6270 }
6271 return (B_TRUE);
6272 } else {
6273 (void) fprintf(stderr, "something strange happened to child\n");
6274 exit(4);
6275 /* NOTREACHED */
6276 }
6277 }
6278
6279 static void
6280 ztest_run_init(void)
6281 {
6282 int i;
6283
6284 ztest_shared_t *zs = ztest_shared;
6285
6286 ASSERT(ztest_opts.zo_init != 0);
6287
6288 /*
6289 * Blow away any existing copy of zpool.cache
6290 */
6291 (void) remove(spa_config_path);
6292
6293 /*
6294 * Create and initialize our storage pool.
6295 */
6296 for (i = 1; i <= ztest_opts.zo_init; i++) {
6297 bzero(zs, sizeof (ztest_shared_t));
6298 if (ztest_opts.zo_verbose >= 3 &&
6299 ztest_opts.zo_init != 1) {
6300 (void) printf("ztest_init(), pass %d\n", i);
6301 }
6302 ztest_init(zs);
6303 }
6304 }
6305
6306 int
6307 main(int argc, char **argv)
6308 {
6309 int kills = 0;
6310 int iters = 0;
6311 int older = 0;
6312 int newer = 0;
6313 ztest_shared_t *zs;
6314 ztest_info_t *zi;
6315 ztest_shared_callstate_t *zc;
6316 char timebuf[100];
6317 char numbuf[6];
6318 spa_t *spa;
6319 char *cmd;
6320 boolean_t hasalt;
6321 int f;
6322 char *fd_data_str = getenv("ZTEST_FD_DATA");
6323 struct sigaction action;
6324
6325 (void) setvbuf(stdout, NULL, _IOLBF, 0);
6326
6327 dprintf_setup(&argc, argv);
6328
6329 action.sa_handler = sig_handler;
6330 sigemptyset(&action.sa_mask);
6331 action.sa_flags = 0;
6332
6333 if (sigaction(SIGSEGV, &action, NULL) < 0) {
6334 (void) fprintf(stderr, "ztest: cannot catch SIGSEGV: %s.\n",
6335 strerror(errno));
6336 exit(EXIT_FAILURE);
6337 }
6338
6339 if (sigaction(SIGABRT, &action, NULL) < 0) {
6340 (void) fprintf(stderr, "ztest: cannot catch SIGABRT: %s.\n",
6341 strerror(errno));
6342 exit(EXIT_FAILURE);
6343 }
6344
6345 ztest_fd_rand = open("/dev/urandom", O_RDONLY);
6346 ASSERT3S(ztest_fd_rand, >=, 0);
6347
6348 if (!fd_data_str) {
6349 process_options(argc, argv);
6350
6351 setup_data_fd();
6352 setup_hdr();
6353 setup_data();
6354 bcopy(&ztest_opts, ztest_shared_opts,
6355 sizeof (*ztest_shared_opts));
6356 } else {
6357 ztest_fd_data = atoi(fd_data_str);
6358 setup_data();
6359 bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts));
6360 }
6361 ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count);
6362
6363 /* Override location of zpool.cache */
6364 VERIFY(asprintf((char **)&spa_config_path, "%s/zpool.cache",
6365 ztest_opts.zo_dir) != -1);
6366
6367 ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t),
6368 UMEM_NOFAIL);
6369 zs = ztest_shared;
6370
6371 if (fd_data_str) {
6372 metaslab_gang_bang = ztest_opts.zo_metaslab_gang_bang;
6373 metaslab_df_alloc_threshold =
6374 zs->zs_metaslab_df_alloc_threshold;
6375
6376 if (zs->zs_do_init)
6377 ztest_run_init();
6378 else
6379 ztest_run(zs);
6380 exit(0);
6381 }
6382
6383 hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0);
6384
6385 if (ztest_opts.zo_verbose >= 1) {
6386 (void) printf("%llu vdevs, %d datasets, %d threads,"
6387 " %llu seconds...\n",
6388 (u_longlong_t)ztest_opts.zo_vdevs,
6389 ztest_opts.zo_datasets,
6390 ztest_opts.zo_threads,
6391 (u_longlong_t)ztest_opts.zo_time);
6392 }
6393
6394 cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
6395 (void) strlcpy(cmd, getexecname(), MAXNAMELEN);
6396
6397 zs->zs_do_init = B_TRUE;
6398 if (strlen(ztest_opts.zo_alt_ztest) != 0) {
6399 if (ztest_opts.zo_verbose >= 1) {
6400 (void) printf("Executing older ztest for "
6401 "initialization: %s\n", ztest_opts.zo_alt_ztest);
6402 }
6403 VERIFY(!exec_child(ztest_opts.zo_alt_ztest,
6404 ztest_opts.zo_alt_libpath, B_FALSE, NULL));
6405 } else {
6406 VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL));
6407 }
6408 zs->zs_do_init = B_FALSE;
6409
6410 zs->zs_proc_start = gethrtime();
6411 zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC;
6412
6413 for (f = 0; f < ZTEST_FUNCS; f++) {
6414 zi = &ztest_info[f];
6415 zc = ZTEST_GET_SHARED_CALLSTATE(f);
6416 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
6417 zc->zc_next = UINT64_MAX;
6418 else
6419 zc->zc_next = zs->zs_proc_start +
6420 ztest_random(2 * zi->zi_interval[0] + 1);
6421 }
6422
6423 /*
6424 * Run the tests in a loop. These tests include fault injection
6425 * to verify that self-healing data works, and forced crashes
6426 * to verify that we never lose on-disk consistency.
6427 */
6428 while (gethrtime() < zs->zs_proc_stop) {
6429 int status;
6430 boolean_t killed;
6431
6432 /*
6433 * Initialize the workload counters for each function.
6434 */
6435 for (f = 0; f < ZTEST_FUNCS; f++) {
6436 zc = ZTEST_GET_SHARED_CALLSTATE(f);
6437 zc->zc_count = 0;
6438 zc->zc_time = 0;
6439 }
6440
6441 /* Set the allocation switch size */
6442 zs->zs_metaslab_df_alloc_threshold =
6443 ztest_random(zs->zs_metaslab_sz / 4) + 1;
6444
6445 if (!hasalt || ztest_random(2) == 0) {
6446 if (hasalt && ztest_opts.zo_verbose >= 1) {
6447 (void) printf("Executing newer ztest: %s\n",
6448 cmd);
6449 }
6450 newer++;
6451 killed = exec_child(cmd, NULL, B_TRUE, &status);
6452 } else {
6453 if (hasalt && ztest_opts.zo_verbose >= 1) {
6454 (void) printf("Executing older ztest: %s\n",
6455 ztest_opts.zo_alt_ztest);
6456 }
6457 older++;
6458 killed = exec_child(ztest_opts.zo_alt_ztest,
6459 ztest_opts.zo_alt_libpath, B_TRUE, &status);
6460 }
6461
6462 if (killed)
6463 kills++;
6464 iters++;
6465
6466 if (ztest_opts.zo_verbose >= 1) {
6467 hrtime_t now = gethrtime();
6468
6469 now = MIN(now, zs->zs_proc_stop);
6470 print_time(zs->zs_proc_stop - now, timebuf);
6471 nicenum(zs->zs_space, numbuf);
6472
6473 (void) printf("Pass %3d, %8s, %3llu ENOSPC, "
6474 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
6475 iters,
6476 WIFEXITED(status) ? "Complete" : "SIGKILL",
6477 (u_longlong_t)zs->zs_enospc_count,
6478 100.0 * zs->zs_alloc / zs->zs_space,
6479 numbuf,
6480 100.0 * (now - zs->zs_proc_start) /
6481 (ztest_opts.zo_time * NANOSEC), timebuf);
6482 }
6483
6484 if (ztest_opts.zo_verbose >= 2) {
6485 (void) printf("\nWorkload summary:\n\n");
6486 (void) printf("%7s %9s %s\n",
6487 "Calls", "Time", "Function");
6488 (void) printf("%7s %9s %s\n",
6489 "-----", "----", "--------");
6490 for (f = 0; f < ZTEST_FUNCS; f++) {
6491 zi = &ztest_info[f];
6492 zc = ZTEST_GET_SHARED_CALLSTATE(f);
6493 print_time(zc->zc_time, timebuf);
6494 (void) printf("%7llu %9s %s\n",
6495 (u_longlong_t)zc->zc_count, timebuf,
6496 zi->zi_funcname);
6497 }
6498 (void) printf("\n");
6499 }
6500
6501 /*
6502 * It's possible that we killed a child during a rename test,
6503 * in which case we'll have a 'ztest_tmp' pool lying around
6504 * instead of 'ztest'. Do a blind rename in case this happened.
6505 */
6506 kernel_init(FREAD);
6507 if (spa_open(ztest_opts.zo_pool, &spa, FTAG) == 0) {
6508 spa_close(spa, FTAG);
6509 } else {
6510 char tmpname[MAXNAMELEN];
6511 kernel_fini();
6512 kernel_init(FREAD | FWRITE);
6513 (void) snprintf(tmpname, sizeof (tmpname), "%s_tmp",
6514 ztest_opts.zo_pool);
6515 (void) spa_rename(tmpname, ztest_opts.zo_pool);
6516 }
6517 kernel_fini();
6518
6519 ztest_run_zdb(ztest_opts.zo_pool);
6520 }
6521
6522 if (ztest_opts.zo_verbose >= 1) {
6523 if (hasalt) {
6524 (void) printf("%d runs of older ztest: %s\n", older,
6525 ztest_opts.zo_alt_ztest);
6526 (void) printf("%d runs of newer ztest: %s\n", newer,
6527 cmd);
6528 }
6529 (void) printf("%d killed, %d completed, %.0f%% kill rate\n",
6530 kills, iters - kills, (100.0 * kills) / MAX(1, iters));
6531 }
6532
6533 umem_free(cmd, MAXNAMELEN);
6534
6535 return (0);
6536 }