]> git.proxmox.com Git - mirror_zfs.git/blob - cmd/ztest.c
Revert "Reduce dbuf_find() lock contention"
[mirror_zfs.git] / cmd / ztest.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2013 Steven Hartland. All rights reserved.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2017 Joyent, Inc.
28 * Copyright (c) 2017, Intel Corporation.
29 */
30
31 /*
32 * The objective of this program is to provide a DMU/ZAP/SPA stress test
33 * that runs entirely in userland, is easy to use, and easy to extend.
34 *
35 * The overall design of the ztest program is as follows:
36 *
37 * (1) For each major functional area (e.g. adding vdevs to a pool,
38 * creating and destroying datasets, reading and writing objects, etc)
39 * we have a simple routine to test that functionality. These
40 * individual routines do not have to do anything "stressful".
41 *
42 * (2) We turn these simple functionality tests into a stress test by
43 * running them all in parallel, with as many threads as desired,
44 * and spread across as many datasets, objects, and vdevs as desired.
45 *
46 * (3) While all this is happening, we inject faults into the pool to
47 * verify that self-healing data really works.
48 *
49 * (4) Every time we open a dataset, we change its checksum and compression
50 * functions. Thus even individual objects vary from block to block
51 * in which checksum they use and whether they're compressed.
52 *
53 * (5) To verify that we never lose on-disk consistency after a crash,
54 * we run the entire test in a child of the main process.
55 * At random times, the child self-immolates with a SIGKILL.
56 * This is the software equivalent of pulling the power cord.
57 * The parent then runs the test again, using the existing
58 * storage pool, as many times as desired. If backwards compatibility
59 * testing is enabled ztest will sometimes run the "older" version
60 * of ztest after a SIGKILL.
61 *
62 * (6) To verify that we don't have future leaks or temporal incursions,
63 * many of the functional tests record the transaction group number
64 * as part of their data. When reading old data, they verify that
65 * the transaction group number is less than the current, open txg.
66 * If you add a new test, please do this if applicable.
67 *
68 * (7) Threads are created with a reduced stack size, for sanity checking.
69 * Therefore, it's important not to allocate huge buffers on the stack.
70 *
71 * When run with no arguments, ztest runs for about five minutes and
72 * produces no output if successful. To get a little bit of information,
73 * specify -V. To get more information, specify -VV, and so on.
74 *
75 * To turn this into an overnight stress test, use -T to specify run time.
76 *
77 * You can ask more vdevs [-v], datasets [-d], or threads [-t]
78 * to increase the pool capacity, fanout, and overall stress level.
79 *
80 * Use the -k option to set the desired frequency of kills.
81 *
82 * When ztest invokes itself it passes all relevant information through a
83 * temporary file which is mmap-ed in the child process. This allows shared
84 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
85 * stored at offset 0 of this file and contains information on the size and
86 * number of shared structures in the file. The information stored in this file
87 * must remain backwards compatible with older versions of ztest so that
88 * ztest can invoke them during backwards compatibility testing (-B).
89 */
90
91 #include <sys/zfs_context.h>
92 #include <sys/spa.h>
93 #include <sys/dmu.h>
94 #include <sys/txg.h>
95 #include <sys/dbuf.h>
96 #include <sys/zap.h>
97 #include <sys/dmu_objset.h>
98 #include <sys/poll.h>
99 #include <sys/stat.h>
100 #include <sys/time.h>
101 #include <sys/wait.h>
102 #include <sys/mman.h>
103 #include <sys/resource.h>
104 #include <sys/zio.h>
105 #include <sys/zil.h>
106 #include <sys/zil_impl.h>
107 #include <sys/vdev_draid.h>
108 #include <sys/vdev_impl.h>
109 #include <sys/vdev_file.h>
110 #include <sys/vdev_initialize.h>
111 #include <sys/vdev_raidz.h>
112 #include <sys/vdev_trim.h>
113 #include <sys/spa_impl.h>
114 #include <sys/metaslab_impl.h>
115 #include <sys/dsl_prop.h>
116 #include <sys/dsl_dataset.h>
117 #include <sys/dsl_destroy.h>
118 #include <sys/dsl_scan.h>
119 #include <sys/zio_checksum.h>
120 #include <sys/zfs_refcount.h>
121 #include <sys/zfeature.h>
122 #include <sys/dsl_userhold.h>
123 #include <sys/abd.h>
124 #include <sys/blake3.h>
125 #include <stdio.h>
126 #include <stdlib.h>
127 #include <unistd.h>
128 #include <getopt.h>
129 #include <signal.h>
130 #include <umem.h>
131 #include <ctype.h>
132 #include <math.h>
133 #include <sys/fs/zfs.h>
134 #include <zfs_fletcher.h>
135 #include <libnvpair.h>
136 #include <libzutil.h>
137 #include <sys/crypto/icp.h>
138 #if (__GLIBC__ && !__UCLIBC__)
139 #include <execinfo.h> /* for backtrace() */
140 #endif
141
142 static int ztest_fd_data = -1;
143 static int ztest_fd_rand = -1;
144
145 typedef struct ztest_shared_hdr {
146 uint64_t zh_hdr_size;
147 uint64_t zh_opts_size;
148 uint64_t zh_size;
149 uint64_t zh_stats_size;
150 uint64_t zh_stats_count;
151 uint64_t zh_ds_size;
152 uint64_t zh_ds_count;
153 } ztest_shared_hdr_t;
154
155 static ztest_shared_hdr_t *ztest_shared_hdr;
156
157 enum ztest_class_state {
158 ZTEST_VDEV_CLASS_OFF,
159 ZTEST_VDEV_CLASS_ON,
160 ZTEST_VDEV_CLASS_RND
161 };
162
163 #define ZO_GVARS_MAX_ARGLEN ((size_t)64)
164 #define ZO_GVARS_MAX_COUNT ((size_t)10)
165
166 typedef struct ztest_shared_opts {
167 char zo_pool[ZFS_MAX_DATASET_NAME_LEN];
168 char zo_dir[ZFS_MAX_DATASET_NAME_LEN];
169 char zo_alt_ztest[MAXNAMELEN];
170 char zo_alt_libpath[MAXNAMELEN];
171 uint64_t zo_vdevs;
172 uint64_t zo_vdevtime;
173 size_t zo_vdev_size;
174 int zo_ashift;
175 int zo_mirrors;
176 int zo_raid_children;
177 int zo_raid_parity;
178 char zo_raid_type[8];
179 int zo_draid_data;
180 int zo_draid_spares;
181 int zo_datasets;
182 int zo_threads;
183 uint64_t zo_passtime;
184 uint64_t zo_killrate;
185 int zo_verbose;
186 int zo_init;
187 uint64_t zo_time;
188 uint64_t zo_maxloops;
189 uint64_t zo_metaslab_force_ganging;
190 int zo_mmp_test;
191 int zo_special_vdevs;
192 int zo_dump_dbgmsg;
193 int zo_gvars_count;
194 char zo_gvars[ZO_GVARS_MAX_COUNT][ZO_GVARS_MAX_ARGLEN];
195 } ztest_shared_opts_t;
196
197 /* Default values for command line options. */
198 #define DEFAULT_POOL "ztest"
199 #define DEFAULT_VDEV_DIR "/tmp"
200 #define DEFAULT_VDEV_COUNT 5
201 #define DEFAULT_VDEV_SIZE (SPA_MINDEVSIZE * 4) /* 256m default size */
202 #define DEFAULT_VDEV_SIZE_STR "256M"
203 #define DEFAULT_ASHIFT SPA_MINBLOCKSHIFT
204 #define DEFAULT_MIRRORS 2
205 #define DEFAULT_RAID_CHILDREN 4
206 #define DEFAULT_RAID_PARITY 1
207 #define DEFAULT_DRAID_DATA 4
208 #define DEFAULT_DRAID_SPARES 1
209 #define DEFAULT_DATASETS_COUNT 7
210 #define DEFAULT_THREADS 23
211 #define DEFAULT_RUN_TIME 300 /* 300 seconds */
212 #define DEFAULT_RUN_TIME_STR "300 sec"
213 #define DEFAULT_PASS_TIME 60 /* 60 seconds */
214 #define DEFAULT_PASS_TIME_STR "60 sec"
215 #define DEFAULT_KILL_RATE 70 /* 70% kill rate */
216 #define DEFAULT_KILLRATE_STR "70%"
217 #define DEFAULT_INITS 1
218 #define DEFAULT_MAX_LOOPS 50 /* 5 minutes */
219 #define DEFAULT_FORCE_GANGING (64 << 10)
220 #define DEFAULT_FORCE_GANGING_STR "64K"
221
222 /* Simplifying assumption: -1 is not a valid default. */
223 #define NO_DEFAULT -1
224
225 static const ztest_shared_opts_t ztest_opts_defaults = {
226 .zo_pool = DEFAULT_POOL,
227 .zo_dir = DEFAULT_VDEV_DIR,
228 .zo_alt_ztest = { '\0' },
229 .zo_alt_libpath = { '\0' },
230 .zo_vdevs = DEFAULT_VDEV_COUNT,
231 .zo_ashift = DEFAULT_ASHIFT,
232 .zo_mirrors = DEFAULT_MIRRORS,
233 .zo_raid_children = DEFAULT_RAID_CHILDREN,
234 .zo_raid_parity = DEFAULT_RAID_PARITY,
235 .zo_raid_type = VDEV_TYPE_RAIDZ,
236 .zo_vdev_size = DEFAULT_VDEV_SIZE,
237 .zo_draid_data = DEFAULT_DRAID_DATA, /* data drives */
238 .zo_draid_spares = DEFAULT_DRAID_SPARES, /* distributed spares */
239 .zo_datasets = DEFAULT_DATASETS_COUNT,
240 .zo_threads = DEFAULT_THREADS,
241 .zo_passtime = DEFAULT_PASS_TIME,
242 .zo_killrate = DEFAULT_KILL_RATE,
243 .zo_verbose = 0,
244 .zo_mmp_test = 0,
245 .zo_init = DEFAULT_INITS,
246 .zo_time = DEFAULT_RUN_TIME,
247 .zo_maxloops = DEFAULT_MAX_LOOPS, /* max loops during spa_freeze() */
248 .zo_metaslab_force_ganging = DEFAULT_FORCE_GANGING,
249 .zo_special_vdevs = ZTEST_VDEV_CLASS_RND,
250 .zo_gvars_count = 0,
251 };
252
253 extern uint64_t metaslab_force_ganging;
254 extern uint64_t metaslab_df_alloc_threshold;
255 extern unsigned long zfs_deadman_synctime_ms;
256 extern int metaslab_preload_limit;
257 extern int zfs_compressed_arc_enabled;
258 extern int zfs_abd_scatter_enabled;
259 extern int dmu_object_alloc_chunk_shift;
260 extern boolean_t zfs_force_some_double_word_sm_entries;
261 extern unsigned long zio_decompress_fail_fraction;
262 extern unsigned long zfs_reconstruct_indirect_damage_fraction;
263
264
265 static ztest_shared_opts_t *ztest_shared_opts;
266 static ztest_shared_opts_t ztest_opts;
267 static const char *const ztest_wkeydata = "abcdefghijklmnopqrstuvwxyz012345";
268
269 typedef struct ztest_shared_ds {
270 uint64_t zd_seq;
271 } ztest_shared_ds_t;
272
273 static ztest_shared_ds_t *ztest_shared_ds;
274 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
275
276 #define BT_MAGIC 0x123456789abcdefULL
277 #define MAXFAULTS(zs) \
278 (MAX((zs)->zs_mirrors, 1) * (ztest_opts.zo_raid_parity + 1) - 1)
279
280 enum ztest_io_type {
281 ZTEST_IO_WRITE_TAG,
282 ZTEST_IO_WRITE_PATTERN,
283 ZTEST_IO_WRITE_ZEROES,
284 ZTEST_IO_TRUNCATE,
285 ZTEST_IO_SETATTR,
286 ZTEST_IO_REWRITE,
287 ZTEST_IO_TYPES
288 };
289
290 typedef struct ztest_block_tag {
291 uint64_t bt_magic;
292 uint64_t bt_objset;
293 uint64_t bt_object;
294 uint64_t bt_dnodesize;
295 uint64_t bt_offset;
296 uint64_t bt_gen;
297 uint64_t bt_txg;
298 uint64_t bt_crtxg;
299 } ztest_block_tag_t;
300
301 typedef struct bufwad {
302 uint64_t bw_index;
303 uint64_t bw_txg;
304 uint64_t bw_data;
305 } bufwad_t;
306
307 /*
308 * It would be better to use a rangelock_t per object. Unfortunately
309 * the rangelock_t is not a drop-in replacement for rl_t, because we
310 * still need to map from object ID to rangelock_t.
311 */
312 typedef enum {
313 RL_READER,
314 RL_WRITER,
315 RL_APPEND
316 } rl_type_t;
317
318 typedef struct rll {
319 void *rll_writer;
320 int rll_readers;
321 kmutex_t rll_lock;
322 kcondvar_t rll_cv;
323 } rll_t;
324
325 typedef struct rl {
326 uint64_t rl_object;
327 uint64_t rl_offset;
328 uint64_t rl_size;
329 rll_t *rl_lock;
330 } rl_t;
331
332 #define ZTEST_RANGE_LOCKS 64
333 #define ZTEST_OBJECT_LOCKS 64
334
335 /*
336 * Object descriptor. Used as a template for object lookup/create/remove.
337 */
338 typedef struct ztest_od {
339 uint64_t od_dir;
340 uint64_t od_object;
341 dmu_object_type_t od_type;
342 dmu_object_type_t od_crtype;
343 uint64_t od_blocksize;
344 uint64_t od_crblocksize;
345 uint64_t od_crdnodesize;
346 uint64_t od_gen;
347 uint64_t od_crgen;
348 char od_name[ZFS_MAX_DATASET_NAME_LEN];
349 } ztest_od_t;
350
351 /*
352 * Per-dataset state.
353 */
354 typedef struct ztest_ds {
355 ztest_shared_ds_t *zd_shared;
356 objset_t *zd_os;
357 pthread_rwlock_t zd_zilog_lock;
358 zilog_t *zd_zilog;
359 ztest_od_t *zd_od; /* debugging aid */
360 char zd_name[ZFS_MAX_DATASET_NAME_LEN];
361 kmutex_t zd_dirobj_lock;
362 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS];
363 rll_t zd_range_lock[ZTEST_RANGE_LOCKS];
364 } ztest_ds_t;
365
366 /*
367 * Per-iteration state.
368 */
369 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
370
371 typedef struct ztest_info {
372 ztest_func_t *zi_func; /* test function */
373 uint64_t zi_iters; /* iterations per execution */
374 uint64_t *zi_interval; /* execute every <interval> seconds */
375 const char *zi_funcname; /* name of test function */
376 } ztest_info_t;
377
378 typedef struct ztest_shared_callstate {
379 uint64_t zc_count; /* per-pass count */
380 uint64_t zc_time; /* per-pass time */
381 uint64_t zc_next; /* next time to call this function */
382 } ztest_shared_callstate_t;
383
384 static ztest_shared_callstate_t *ztest_shared_callstate;
385 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
386
387 ztest_func_t ztest_dmu_read_write;
388 ztest_func_t ztest_dmu_write_parallel;
389 ztest_func_t ztest_dmu_object_alloc_free;
390 ztest_func_t ztest_dmu_object_next_chunk;
391 ztest_func_t ztest_dmu_commit_callbacks;
392 ztest_func_t ztest_zap;
393 ztest_func_t ztest_zap_parallel;
394 ztest_func_t ztest_zil_commit;
395 ztest_func_t ztest_zil_remount;
396 ztest_func_t ztest_dmu_read_write_zcopy;
397 ztest_func_t ztest_dmu_objset_create_destroy;
398 ztest_func_t ztest_dmu_prealloc;
399 ztest_func_t ztest_fzap;
400 ztest_func_t ztest_dmu_snapshot_create_destroy;
401 ztest_func_t ztest_dsl_prop_get_set;
402 ztest_func_t ztest_spa_prop_get_set;
403 ztest_func_t ztest_spa_create_destroy;
404 ztest_func_t ztest_fault_inject;
405 ztest_func_t ztest_dmu_snapshot_hold;
406 ztest_func_t ztest_mmp_enable_disable;
407 ztest_func_t ztest_scrub;
408 ztest_func_t ztest_dsl_dataset_promote_busy;
409 ztest_func_t ztest_vdev_attach_detach;
410 ztest_func_t ztest_vdev_LUN_growth;
411 ztest_func_t ztest_vdev_add_remove;
412 ztest_func_t ztest_vdev_class_add;
413 ztest_func_t ztest_vdev_aux_add_remove;
414 ztest_func_t ztest_split_pool;
415 ztest_func_t ztest_reguid;
416 ztest_func_t ztest_spa_upgrade;
417 ztest_func_t ztest_device_removal;
418 ztest_func_t ztest_spa_checkpoint_create_discard;
419 ztest_func_t ztest_initialize;
420 ztest_func_t ztest_trim;
421 ztest_func_t ztest_blake3;
422 ztest_func_t ztest_fletcher;
423 ztest_func_t ztest_fletcher_incr;
424 ztest_func_t ztest_verify_dnode_bt;
425
426 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */
427 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */
428 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */
429 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */
430 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */
431
432 #define ZTI_INIT(func, iters, interval) \
433 { .zi_func = (func), \
434 .zi_iters = (iters), \
435 .zi_interval = (interval), \
436 .zi_funcname = # func }
437
438 ztest_info_t ztest_info[] = {
439 ZTI_INIT(ztest_dmu_read_write, 1, &zopt_always),
440 ZTI_INIT(ztest_dmu_write_parallel, 10, &zopt_always),
441 ZTI_INIT(ztest_dmu_object_alloc_free, 1, &zopt_always),
442 ZTI_INIT(ztest_dmu_object_next_chunk, 1, &zopt_sometimes),
443 ZTI_INIT(ztest_dmu_commit_callbacks, 1, &zopt_always),
444 ZTI_INIT(ztest_zap, 30, &zopt_always),
445 ZTI_INIT(ztest_zap_parallel, 100, &zopt_always),
446 ZTI_INIT(ztest_split_pool, 1, &zopt_always),
447 ZTI_INIT(ztest_zil_commit, 1, &zopt_incessant),
448 ZTI_INIT(ztest_zil_remount, 1, &zopt_sometimes),
449 ZTI_INIT(ztest_dmu_read_write_zcopy, 1, &zopt_often),
450 ZTI_INIT(ztest_dmu_objset_create_destroy, 1, &zopt_often),
451 ZTI_INIT(ztest_dsl_prop_get_set, 1, &zopt_often),
452 ZTI_INIT(ztest_spa_prop_get_set, 1, &zopt_sometimes),
453 #if 0
454 ZTI_INIT(ztest_dmu_prealloc, 1, &zopt_sometimes),
455 #endif
456 ZTI_INIT(ztest_fzap, 1, &zopt_sometimes),
457 ZTI_INIT(ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes),
458 ZTI_INIT(ztest_spa_create_destroy, 1, &zopt_sometimes),
459 ZTI_INIT(ztest_fault_inject, 1, &zopt_sometimes),
460 ZTI_INIT(ztest_dmu_snapshot_hold, 1, &zopt_sometimes),
461 ZTI_INIT(ztest_mmp_enable_disable, 1, &zopt_sometimes),
462 ZTI_INIT(ztest_reguid, 1, &zopt_rarely),
463 ZTI_INIT(ztest_scrub, 1, &zopt_rarely),
464 ZTI_INIT(ztest_spa_upgrade, 1, &zopt_rarely),
465 ZTI_INIT(ztest_dsl_dataset_promote_busy, 1, &zopt_rarely),
466 ZTI_INIT(ztest_vdev_attach_detach, 1, &zopt_sometimes),
467 ZTI_INIT(ztest_vdev_LUN_growth, 1, &zopt_rarely),
468 ZTI_INIT(ztest_vdev_add_remove, 1, &ztest_opts.zo_vdevtime),
469 ZTI_INIT(ztest_vdev_class_add, 1, &ztest_opts.zo_vdevtime),
470 ZTI_INIT(ztest_vdev_aux_add_remove, 1, &ztest_opts.zo_vdevtime),
471 ZTI_INIT(ztest_device_removal, 1, &zopt_sometimes),
472 ZTI_INIT(ztest_spa_checkpoint_create_discard, 1, &zopt_rarely),
473 ZTI_INIT(ztest_initialize, 1, &zopt_sometimes),
474 ZTI_INIT(ztest_trim, 1, &zopt_sometimes),
475 ZTI_INIT(ztest_blake3, 1, &zopt_rarely),
476 ZTI_INIT(ztest_fletcher, 1, &zopt_rarely),
477 ZTI_INIT(ztest_fletcher_incr, 1, &zopt_rarely),
478 ZTI_INIT(ztest_verify_dnode_bt, 1, &zopt_sometimes),
479 };
480
481 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t))
482
483 /*
484 * The following struct is used to hold a list of uncalled commit callbacks.
485 * The callbacks are ordered by txg number.
486 */
487 typedef struct ztest_cb_list {
488 kmutex_t zcl_callbacks_lock;
489 list_t zcl_callbacks;
490 } ztest_cb_list_t;
491
492 /*
493 * Stuff we need to share writably between parent and child.
494 */
495 typedef struct ztest_shared {
496 boolean_t zs_do_init;
497 hrtime_t zs_proc_start;
498 hrtime_t zs_proc_stop;
499 hrtime_t zs_thread_start;
500 hrtime_t zs_thread_stop;
501 hrtime_t zs_thread_kill;
502 uint64_t zs_enospc_count;
503 uint64_t zs_vdev_next_leaf;
504 uint64_t zs_vdev_aux;
505 uint64_t zs_alloc;
506 uint64_t zs_space;
507 uint64_t zs_splits;
508 uint64_t zs_mirrors;
509 uint64_t zs_metaslab_sz;
510 uint64_t zs_metaslab_df_alloc_threshold;
511 uint64_t zs_guid;
512 } ztest_shared_t;
513
514 #define ID_PARALLEL -1ULL
515
516 static char ztest_dev_template[] = "%s/%s.%llua";
517 static char ztest_aux_template[] = "%s/%s.%s.%llu";
518 ztest_shared_t *ztest_shared;
519
520 static spa_t *ztest_spa = NULL;
521 static ztest_ds_t *ztest_ds;
522
523 static kmutex_t ztest_vdev_lock;
524 static boolean_t ztest_device_removal_active = B_FALSE;
525 static boolean_t ztest_pool_scrubbed = B_FALSE;
526 static kmutex_t ztest_checkpoint_lock;
527
528 /*
529 * The ztest_name_lock protects the pool and dataset namespace used by
530 * the individual tests. To modify the namespace, consumers must grab
531 * this lock as writer. Grabbing the lock as reader will ensure that the
532 * namespace does not change while the lock is held.
533 */
534 static pthread_rwlock_t ztest_name_lock;
535
536 static boolean_t ztest_dump_core = B_TRUE;
537 static boolean_t ztest_exiting;
538
539 /* Global commit callback list */
540 static ztest_cb_list_t zcl;
541 /* Commit cb delay */
542 static uint64_t zc_min_txg_delay = UINT64_MAX;
543 static int zc_cb_counter = 0;
544
545 /*
546 * Minimum number of commit callbacks that need to be registered for us to check
547 * whether the minimum txg delay is acceptable.
548 */
549 #define ZTEST_COMMIT_CB_MIN_REG 100
550
551 /*
552 * If a number of txgs equal to this threshold have been created after a commit
553 * callback has been registered but not called, then we assume there is an
554 * implementation bug.
555 */
556 #define ZTEST_COMMIT_CB_THRESH (TXG_CONCURRENT_STATES + 1000)
557
558 enum ztest_object {
559 ZTEST_META_DNODE = 0,
560 ZTEST_DIROBJ,
561 ZTEST_OBJECTS
562 };
563
564 static __attribute__((noreturn)) void usage(boolean_t requested);
565 static int ztest_scrub_impl(spa_t *spa);
566
567 /*
568 * These libumem hooks provide a reasonable set of defaults for the allocator's
569 * debugging facilities.
570 */
571 const char *
572 _umem_debug_init(void)
573 {
574 return ("default,verbose"); /* $UMEM_DEBUG setting */
575 }
576
577 const char *
578 _umem_logging_init(void)
579 {
580 return ("fail,contents"); /* $UMEM_LOGGING setting */
581 }
582
583 static void
584 dump_debug_buffer(void)
585 {
586 ssize_t ret __attribute__((unused));
587
588 if (!ztest_opts.zo_dump_dbgmsg)
589 return;
590
591 /*
592 * We use write() instead of printf() so that this function
593 * is safe to call from a signal handler.
594 */
595 ret = write(STDOUT_FILENO, "\n", 1);
596 zfs_dbgmsg_print("ztest");
597 }
598
599 #define BACKTRACE_SZ 100
600
601 static void sig_handler(int signo)
602 {
603 struct sigaction action;
604 #if (__GLIBC__ && !__UCLIBC__) /* backtrace() is a GNU extension */
605 int nptrs;
606 void *buffer[BACKTRACE_SZ];
607
608 nptrs = backtrace(buffer, BACKTRACE_SZ);
609 backtrace_symbols_fd(buffer, nptrs, STDERR_FILENO);
610 #endif
611 dump_debug_buffer();
612
613 /*
614 * Restore default action and re-raise signal so SIGSEGV and
615 * SIGABRT can trigger a core dump.
616 */
617 action.sa_handler = SIG_DFL;
618 sigemptyset(&action.sa_mask);
619 action.sa_flags = 0;
620 (void) sigaction(signo, &action, NULL);
621 raise(signo);
622 }
623
624 #define FATAL_MSG_SZ 1024
625
626 static const char *fatal_msg;
627
628 static __attribute__((format(printf, 2, 3))) __attribute__((noreturn)) void
629 fatal(int do_perror, const char *message, ...)
630 {
631 va_list args;
632 int save_errno = errno;
633 char *buf;
634
635 (void) fflush(stdout);
636 buf = umem_alloc(FATAL_MSG_SZ, UMEM_NOFAIL);
637 if (buf == NULL)
638 goto out;
639
640 va_start(args, message);
641 (void) sprintf(buf, "ztest: ");
642 /* LINTED */
643 (void) vsprintf(buf + strlen(buf), message, args);
644 va_end(args);
645 if (do_perror) {
646 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
647 ": %s", strerror(save_errno));
648 }
649 (void) fprintf(stderr, "%s\n", buf);
650 fatal_msg = buf; /* to ease debugging */
651
652 out:
653 if (ztest_dump_core)
654 abort();
655 else
656 dump_debug_buffer();
657
658 exit(3);
659 }
660
661 static int
662 str2shift(const char *buf)
663 {
664 const char *ends = "BKMGTPEZ";
665 int i;
666
667 if (buf[0] == '\0')
668 return (0);
669 for (i = 0; i < strlen(ends); i++) {
670 if (toupper(buf[0]) == ends[i])
671 break;
672 }
673 if (i == strlen(ends)) {
674 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
675 buf);
676 usage(B_FALSE);
677 }
678 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
679 return (10*i);
680 }
681 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
682 usage(B_FALSE);
683 }
684
685 static uint64_t
686 nicenumtoull(const char *buf)
687 {
688 char *end;
689 uint64_t val;
690
691 val = strtoull(buf, &end, 0);
692 if (end == buf) {
693 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
694 usage(B_FALSE);
695 } else if (end[0] == '.') {
696 double fval = strtod(buf, &end);
697 fval *= pow(2, str2shift(end));
698 /*
699 * UINT64_MAX is not exactly representable as a double.
700 * The closest representation is UINT64_MAX + 1, so we
701 * use a >= comparison instead of > for the bounds check.
702 */
703 if (fval >= (double)UINT64_MAX) {
704 (void) fprintf(stderr, "ztest: value too large: %s\n",
705 buf);
706 usage(B_FALSE);
707 }
708 val = (uint64_t)fval;
709 } else {
710 int shift = str2shift(end);
711 if (shift >= 64 || (val << shift) >> shift != val) {
712 (void) fprintf(stderr, "ztest: value too large: %s\n",
713 buf);
714 usage(B_FALSE);
715 }
716 val <<= shift;
717 }
718 return (val);
719 }
720
721 typedef struct ztest_option {
722 const char short_opt;
723 const char *long_opt;
724 const char *long_opt_param;
725 const char *comment;
726 unsigned int default_int;
727 const char *default_str;
728 } ztest_option_t;
729
730 /*
731 * The following option_table is used for generating the usage info as well as
732 * the long and short option information for calling getopt_long().
733 */
734 static ztest_option_t option_table[] = {
735 { 'v', "vdevs", "INTEGER", "Number of vdevs", DEFAULT_VDEV_COUNT,
736 NULL},
737 { 's', "vdev-size", "INTEGER", "Size of each vdev",
738 NO_DEFAULT, DEFAULT_VDEV_SIZE_STR},
739 { 'a', "alignment-shift", "INTEGER",
740 "Alignment shift; use 0 for random", DEFAULT_ASHIFT, NULL},
741 { 'm', "mirror-copies", "INTEGER", "Number of mirror copies",
742 DEFAULT_MIRRORS, NULL},
743 { 'r', "raid-disks", "INTEGER", "Number of raidz/draid disks",
744 DEFAULT_RAID_CHILDREN, NULL},
745 { 'R', "raid-parity", "INTEGER", "Raid parity",
746 DEFAULT_RAID_PARITY, NULL},
747 { 'K', "raid-kind", "raidz|draid|random", "Raid kind",
748 NO_DEFAULT, "random"},
749 { 'D', "draid-data", "INTEGER", "Number of draid data drives",
750 DEFAULT_DRAID_DATA, NULL},
751 { 'S', "draid-spares", "INTEGER", "Number of draid spares",
752 DEFAULT_DRAID_SPARES, NULL},
753 { 'd', "datasets", "INTEGER", "Number of datasets",
754 DEFAULT_DATASETS_COUNT, NULL},
755 { 't', "threads", "INTEGER", "Number of ztest threads",
756 DEFAULT_THREADS, NULL},
757 { 'g', "gang-block-threshold", "INTEGER",
758 "Metaslab gang block threshold",
759 NO_DEFAULT, DEFAULT_FORCE_GANGING_STR},
760 { 'i', "init-count", "INTEGER", "Number of times to initialize pool",
761 DEFAULT_INITS, NULL},
762 { 'k', "kill-percentage", "INTEGER", "Kill percentage",
763 NO_DEFAULT, DEFAULT_KILLRATE_STR},
764 { 'p', "pool-name", "STRING", "Pool name",
765 NO_DEFAULT, DEFAULT_POOL},
766 { 'f', "vdev-file-directory", "PATH", "File directory for vdev files",
767 NO_DEFAULT, DEFAULT_VDEV_DIR},
768 { 'M', "multi-host", NULL,
769 "Multi-host; simulate pool imported on remote host",
770 NO_DEFAULT, NULL},
771 { 'E', "use-existing-pool", NULL,
772 "Use existing pool instead of creating new one", NO_DEFAULT, NULL},
773 { 'T', "run-time", "INTEGER", "Total run time",
774 NO_DEFAULT, DEFAULT_RUN_TIME_STR},
775 { 'P', "pass-time", "INTEGER", "Time per pass",
776 NO_DEFAULT, DEFAULT_PASS_TIME_STR},
777 { 'F', "freeze-loops", "INTEGER", "Max loops in spa_freeze()",
778 DEFAULT_MAX_LOOPS, NULL},
779 { 'B', "alt-ztest", "PATH", "Alternate ztest path",
780 NO_DEFAULT, NULL},
781 { 'C', "vdev-class-state", "on|off|random", "vdev class state",
782 NO_DEFAULT, "random"},
783 { 'o', "option", "\"OPTION=INTEGER\"",
784 "Set global variable to an unsigned 32-bit integer value",
785 NO_DEFAULT, NULL},
786 { 'G', "dump-debug-msg", NULL,
787 "Dump zfs_dbgmsg buffer before exiting due to an error",
788 NO_DEFAULT, NULL},
789 { 'V', "verbose", NULL,
790 "Verbose (use multiple times for ever more verbosity)",
791 NO_DEFAULT, NULL},
792 { 'h', "help", NULL, "Show this help",
793 NO_DEFAULT, NULL},
794 {0, 0, 0, 0, 0, 0}
795 };
796
797 static struct option *long_opts = NULL;
798 static char *short_opts = NULL;
799
800 static void
801 init_options(void)
802 {
803 ASSERT3P(long_opts, ==, NULL);
804 ASSERT3P(short_opts, ==, NULL);
805
806 int count = sizeof (option_table) / sizeof (option_table[0]);
807 long_opts = umem_alloc(sizeof (struct option) * count, UMEM_NOFAIL);
808
809 short_opts = umem_alloc(sizeof (char) * 2 * count, UMEM_NOFAIL);
810 int short_opt_index = 0;
811
812 for (int i = 0; i < count; i++) {
813 long_opts[i].val = option_table[i].short_opt;
814 long_opts[i].name = option_table[i].long_opt;
815 long_opts[i].has_arg = option_table[i].long_opt_param != NULL
816 ? required_argument : no_argument;
817 long_opts[i].flag = NULL;
818 short_opts[short_opt_index++] = option_table[i].short_opt;
819 if (option_table[i].long_opt_param != NULL) {
820 short_opts[short_opt_index++] = ':';
821 }
822 }
823 }
824
825 static void
826 fini_options(void)
827 {
828 int count = sizeof (option_table) / sizeof (option_table[0]);
829
830 umem_free(long_opts, sizeof (struct option) * count);
831 umem_free(short_opts, sizeof (char) * 2 * count);
832
833 long_opts = NULL;
834 short_opts = NULL;
835 }
836
837 static __attribute__((noreturn)) void
838 usage(boolean_t requested)
839 {
840 char option[80];
841 FILE *fp = requested ? stdout : stderr;
842
843 (void) fprintf(fp, "Usage: %s [OPTIONS...]\n", DEFAULT_POOL);
844 for (int i = 0; option_table[i].short_opt != 0; i++) {
845 if (option_table[i].long_opt_param != NULL) {
846 (void) sprintf(option, " -%c --%s=%s",
847 option_table[i].short_opt,
848 option_table[i].long_opt,
849 option_table[i].long_opt_param);
850 } else {
851 (void) sprintf(option, " -%c --%s",
852 option_table[i].short_opt,
853 option_table[i].long_opt);
854 }
855 (void) fprintf(fp, " %-40s%s", option,
856 option_table[i].comment);
857
858 if (option_table[i].long_opt_param != NULL) {
859 if (option_table[i].default_str != NULL) {
860 (void) fprintf(fp, " (default: %s)",
861 option_table[i].default_str);
862 } else if (option_table[i].default_int != NO_DEFAULT) {
863 (void) fprintf(fp, " (default: %u)",
864 option_table[i].default_int);
865 }
866 }
867 (void) fprintf(fp, "\n");
868 }
869 exit(requested ? 0 : 1);
870 }
871
872 static uint64_t
873 ztest_random(uint64_t range)
874 {
875 uint64_t r;
876
877 ASSERT3S(ztest_fd_rand, >=, 0);
878
879 if (range == 0)
880 return (0);
881
882 if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r))
883 fatal(B_TRUE, "short read from /dev/urandom");
884
885 return (r % range);
886 }
887
888 static void
889 ztest_parse_name_value(const char *input, ztest_shared_opts_t *zo)
890 {
891 char name[32];
892 char *value;
893 int state = ZTEST_VDEV_CLASS_RND;
894
895 (void) strlcpy(name, input, sizeof (name));
896
897 value = strchr(name, '=');
898 if (value == NULL) {
899 (void) fprintf(stderr, "missing value in property=value "
900 "'-C' argument (%s)\n", input);
901 usage(B_FALSE);
902 }
903 *(value) = '\0';
904 value++;
905
906 if (strcmp(value, "on") == 0) {
907 state = ZTEST_VDEV_CLASS_ON;
908 } else if (strcmp(value, "off") == 0) {
909 state = ZTEST_VDEV_CLASS_OFF;
910 } else if (strcmp(value, "random") == 0) {
911 state = ZTEST_VDEV_CLASS_RND;
912 } else {
913 (void) fprintf(stderr, "invalid property value '%s'\n", value);
914 usage(B_FALSE);
915 }
916
917 if (strcmp(name, "special") == 0) {
918 zo->zo_special_vdevs = state;
919 } else {
920 (void) fprintf(stderr, "invalid property name '%s'\n", name);
921 usage(B_FALSE);
922 }
923 if (zo->zo_verbose >= 3)
924 (void) printf("%s vdev state is '%s'\n", name, value);
925 }
926
927 static void
928 process_options(int argc, char **argv)
929 {
930 char *path;
931 ztest_shared_opts_t *zo = &ztest_opts;
932
933 int opt;
934 uint64_t value;
935 const char *raid_kind = "random";
936
937 memcpy(zo, &ztest_opts_defaults, sizeof (*zo));
938
939 init_options();
940
941 while ((opt = getopt_long(argc, argv, short_opts, long_opts,
942 NULL)) != EOF) {
943 value = 0;
944 switch (opt) {
945 case 'v':
946 case 's':
947 case 'a':
948 case 'm':
949 case 'r':
950 case 'R':
951 case 'D':
952 case 'S':
953 case 'd':
954 case 't':
955 case 'g':
956 case 'i':
957 case 'k':
958 case 'T':
959 case 'P':
960 case 'F':
961 value = nicenumtoull(optarg);
962 }
963 switch (opt) {
964 case 'v':
965 zo->zo_vdevs = value;
966 break;
967 case 's':
968 zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value);
969 break;
970 case 'a':
971 zo->zo_ashift = value;
972 break;
973 case 'm':
974 zo->zo_mirrors = value;
975 break;
976 case 'r':
977 zo->zo_raid_children = MAX(1, value);
978 break;
979 case 'R':
980 zo->zo_raid_parity = MIN(MAX(value, 1), 3);
981 break;
982 case 'K':
983 raid_kind = optarg;
984 break;
985 case 'D':
986 zo->zo_draid_data = MAX(1, value);
987 break;
988 case 'S':
989 zo->zo_draid_spares = MAX(1, value);
990 break;
991 case 'd':
992 zo->zo_datasets = MAX(1, value);
993 break;
994 case 't':
995 zo->zo_threads = MAX(1, value);
996 break;
997 case 'g':
998 zo->zo_metaslab_force_ganging =
999 MAX(SPA_MINBLOCKSIZE << 1, value);
1000 break;
1001 case 'i':
1002 zo->zo_init = value;
1003 break;
1004 case 'k':
1005 zo->zo_killrate = value;
1006 break;
1007 case 'p':
1008 (void) strlcpy(zo->zo_pool, optarg,
1009 sizeof (zo->zo_pool));
1010 break;
1011 case 'f':
1012 path = realpath(optarg, NULL);
1013 if (path == NULL) {
1014 (void) fprintf(stderr, "error: %s: %s\n",
1015 optarg, strerror(errno));
1016 usage(B_FALSE);
1017 } else {
1018 (void) strlcpy(zo->zo_dir, path,
1019 sizeof (zo->zo_dir));
1020 free(path);
1021 }
1022 break;
1023 case 'M':
1024 zo->zo_mmp_test = 1;
1025 break;
1026 case 'V':
1027 zo->zo_verbose++;
1028 break;
1029 case 'E':
1030 zo->zo_init = 0;
1031 break;
1032 case 'T':
1033 zo->zo_time = value;
1034 break;
1035 case 'P':
1036 zo->zo_passtime = MAX(1, value);
1037 break;
1038 case 'F':
1039 zo->zo_maxloops = MAX(1, value);
1040 break;
1041 case 'B':
1042 (void) strlcpy(zo->zo_alt_ztest, optarg,
1043 sizeof (zo->zo_alt_ztest));
1044 break;
1045 case 'C':
1046 ztest_parse_name_value(optarg, zo);
1047 break;
1048 case 'o':
1049 if (zo->zo_gvars_count >= ZO_GVARS_MAX_COUNT) {
1050 (void) fprintf(stderr,
1051 "max global var count (%zu) exceeded\n",
1052 ZO_GVARS_MAX_COUNT);
1053 usage(B_FALSE);
1054 }
1055 char *v = zo->zo_gvars[zo->zo_gvars_count];
1056 if (strlcpy(v, optarg, ZO_GVARS_MAX_ARGLEN) >=
1057 ZO_GVARS_MAX_ARGLEN) {
1058 (void) fprintf(stderr,
1059 "global var option '%s' is too long\n",
1060 optarg);
1061 usage(B_FALSE);
1062 }
1063 zo->zo_gvars_count++;
1064 break;
1065 case 'G':
1066 zo->zo_dump_dbgmsg = 1;
1067 break;
1068 case 'h':
1069 usage(B_TRUE);
1070 break;
1071 case '?':
1072 default:
1073 usage(B_FALSE);
1074 break;
1075 }
1076 }
1077
1078 fini_options();
1079
1080 /* When raid choice is 'random' add a draid pool 50% of the time */
1081 if (strcmp(raid_kind, "random") == 0) {
1082 raid_kind = (ztest_random(2) == 0) ? "draid" : "raidz";
1083
1084 if (ztest_opts.zo_verbose >= 3)
1085 (void) printf("choosing RAID type '%s'\n", raid_kind);
1086 }
1087
1088 if (strcmp(raid_kind, "draid") == 0) {
1089 uint64_t min_devsize;
1090
1091 /* With fewer disk use 256M, otherwise 128M is OK */
1092 min_devsize = (ztest_opts.zo_raid_children < 16) ?
1093 (256ULL << 20) : (128ULL << 20);
1094
1095 /* No top-level mirrors with dRAID for now */
1096 zo->zo_mirrors = 0;
1097
1098 /* Use more appropriate defaults for dRAID */
1099 if (zo->zo_vdevs == ztest_opts_defaults.zo_vdevs)
1100 zo->zo_vdevs = 1;
1101 if (zo->zo_raid_children ==
1102 ztest_opts_defaults.zo_raid_children)
1103 zo->zo_raid_children = 16;
1104 if (zo->zo_ashift < 12)
1105 zo->zo_ashift = 12;
1106 if (zo->zo_vdev_size < min_devsize)
1107 zo->zo_vdev_size = min_devsize;
1108
1109 if (zo->zo_draid_data + zo->zo_raid_parity >
1110 zo->zo_raid_children - zo->zo_draid_spares) {
1111 (void) fprintf(stderr, "error: too few draid "
1112 "children (%d) for stripe width (%d)\n",
1113 zo->zo_raid_children,
1114 zo->zo_draid_data + zo->zo_raid_parity);
1115 usage(B_FALSE);
1116 }
1117
1118 (void) strlcpy(zo->zo_raid_type, VDEV_TYPE_DRAID,
1119 sizeof (zo->zo_raid_type));
1120
1121 } else /* using raidz */ {
1122 ASSERT0(strcmp(raid_kind, "raidz"));
1123
1124 zo->zo_raid_parity = MIN(zo->zo_raid_parity,
1125 zo->zo_raid_children - 1);
1126 }
1127
1128 zo->zo_vdevtime =
1129 (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs :
1130 UINT64_MAX >> 2);
1131
1132 if (*zo->zo_alt_ztest) {
1133 const char *invalid_what = "ztest";
1134 char *val = zo->zo_alt_ztest;
1135 if (0 != access(val, X_OK) ||
1136 (strrchr(val, '/') == NULL && (errno = EINVAL)))
1137 goto invalid;
1138
1139 int dirlen = strrchr(val, '/') - val;
1140 strncpy(zo->zo_alt_libpath, val, dirlen);
1141 invalid_what = "library path", val = zo->zo_alt_libpath;
1142 if (strrchr(val, '/') == NULL && (errno = EINVAL))
1143 goto invalid;
1144 *strrchr(val, '/') = '\0';
1145 strlcat(val, "/lib", sizeof (zo->zo_alt_libpath));
1146
1147 if (0 != access(zo->zo_alt_libpath, X_OK))
1148 goto invalid;
1149 return;
1150
1151 invalid:
1152 ztest_dump_core = B_FALSE;
1153 fatal(B_TRUE, "invalid alternate %s %s", invalid_what, val);
1154 }
1155 }
1156
1157 static void
1158 ztest_kill(ztest_shared_t *zs)
1159 {
1160 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa));
1161 zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa));
1162
1163 /*
1164 * Before we kill ourselves, make sure that the config is updated.
1165 * See comment above spa_write_cachefile().
1166 */
1167 mutex_enter(&spa_namespace_lock);
1168 spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE);
1169 mutex_exit(&spa_namespace_lock);
1170
1171 (void) raise(SIGKILL);
1172 }
1173
1174 static void
1175 ztest_record_enospc(const char *s)
1176 {
1177 (void) s;
1178 ztest_shared->zs_enospc_count++;
1179 }
1180
1181 static uint64_t
1182 ztest_get_ashift(void)
1183 {
1184 if (ztest_opts.zo_ashift == 0)
1185 return (SPA_MINBLOCKSHIFT + ztest_random(5));
1186 return (ztest_opts.zo_ashift);
1187 }
1188
1189 static boolean_t
1190 ztest_is_draid_spare(const char *name)
1191 {
1192 uint64_t spare_id = 0, parity = 0, vdev_id = 0;
1193
1194 if (sscanf(name, VDEV_TYPE_DRAID "%"PRIu64"-%"PRIu64"-%"PRIu64"",
1195 &parity, &vdev_id, &spare_id) == 3) {
1196 return (B_TRUE);
1197 }
1198
1199 return (B_FALSE);
1200 }
1201
1202 static nvlist_t *
1203 make_vdev_file(const char *path, const char *aux, const char *pool,
1204 size_t size, uint64_t ashift)
1205 {
1206 char *pathbuf = NULL;
1207 uint64_t vdev;
1208 nvlist_t *file;
1209 boolean_t draid_spare = B_FALSE;
1210
1211
1212 if (ashift == 0)
1213 ashift = ztest_get_ashift();
1214
1215 if (path == NULL) {
1216 pathbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1217 path = pathbuf;
1218
1219 if (aux != NULL) {
1220 vdev = ztest_shared->zs_vdev_aux;
1221 (void) snprintf(pathbuf, MAXPATHLEN,
1222 ztest_aux_template, ztest_opts.zo_dir,
1223 pool == NULL ? ztest_opts.zo_pool : pool,
1224 aux, vdev);
1225 } else {
1226 vdev = ztest_shared->zs_vdev_next_leaf++;
1227 (void) snprintf(pathbuf, MAXPATHLEN,
1228 ztest_dev_template, ztest_opts.zo_dir,
1229 pool == NULL ? ztest_opts.zo_pool : pool, vdev);
1230 }
1231 } else {
1232 draid_spare = ztest_is_draid_spare(path);
1233 }
1234
1235 if (size != 0 && !draid_spare) {
1236 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
1237 if (fd == -1)
1238 fatal(B_TRUE, "can't open %s", path);
1239 if (ftruncate(fd, size) != 0)
1240 fatal(B_TRUE, "can't ftruncate %s", path);
1241 (void) close(fd);
1242 }
1243
1244 file = fnvlist_alloc();
1245 fnvlist_add_string(file, ZPOOL_CONFIG_TYPE,
1246 draid_spare ? VDEV_TYPE_DRAID_SPARE : VDEV_TYPE_FILE);
1247 fnvlist_add_string(file, ZPOOL_CONFIG_PATH, path);
1248 fnvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift);
1249 umem_free(pathbuf, MAXPATHLEN);
1250
1251 return (file);
1252 }
1253
1254 static nvlist_t *
1255 make_vdev_raid(const char *path, const char *aux, const char *pool, size_t size,
1256 uint64_t ashift, int r)
1257 {
1258 nvlist_t *raid, **child;
1259 int c;
1260
1261 if (r < 2)
1262 return (make_vdev_file(path, aux, pool, size, ashift));
1263 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
1264
1265 for (c = 0; c < r; c++)
1266 child[c] = make_vdev_file(path, aux, pool, size, ashift);
1267
1268 raid = fnvlist_alloc();
1269 fnvlist_add_string(raid, ZPOOL_CONFIG_TYPE,
1270 ztest_opts.zo_raid_type);
1271 fnvlist_add_uint64(raid, ZPOOL_CONFIG_NPARITY,
1272 ztest_opts.zo_raid_parity);
1273 fnvlist_add_nvlist_array(raid, ZPOOL_CONFIG_CHILDREN,
1274 (const nvlist_t **)child, r);
1275
1276 if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0) {
1277 uint64_t ndata = ztest_opts.zo_draid_data;
1278 uint64_t nparity = ztest_opts.zo_raid_parity;
1279 uint64_t nspares = ztest_opts.zo_draid_spares;
1280 uint64_t children = ztest_opts.zo_raid_children;
1281 uint64_t ngroups = 1;
1282
1283 /*
1284 * Calculate the minimum number of groups required to fill a
1285 * slice. This is the LCM of the stripe width (data + parity)
1286 * and the number of data drives (children - spares).
1287 */
1288 while (ngroups * (ndata + nparity) % (children - nspares) != 0)
1289 ngroups++;
1290
1291 /* Store the basic dRAID configuration. */
1292 fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NDATA, ndata);
1293 fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NSPARES, nspares);
1294 fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NGROUPS, ngroups);
1295 }
1296
1297 for (c = 0; c < r; c++)
1298 fnvlist_free(child[c]);
1299
1300 umem_free(child, r * sizeof (nvlist_t *));
1301
1302 return (raid);
1303 }
1304
1305 static nvlist_t *
1306 make_vdev_mirror(const char *path, const char *aux, const char *pool,
1307 size_t size, uint64_t ashift, int r, int m)
1308 {
1309 nvlist_t *mirror, **child;
1310 int c;
1311
1312 if (m < 1)
1313 return (make_vdev_raid(path, aux, pool, size, ashift, r));
1314
1315 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
1316
1317 for (c = 0; c < m; c++)
1318 child[c] = make_vdev_raid(path, aux, pool, size, ashift, r);
1319
1320 mirror = fnvlist_alloc();
1321 fnvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, VDEV_TYPE_MIRROR);
1322 fnvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
1323 (const nvlist_t **)child, m);
1324
1325 for (c = 0; c < m; c++)
1326 fnvlist_free(child[c]);
1327
1328 umem_free(child, m * sizeof (nvlist_t *));
1329
1330 return (mirror);
1331 }
1332
1333 static nvlist_t *
1334 make_vdev_root(const char *path, const char *aux, const char *pool, size_t size,
1335 uint64_t ashift, const char *class, int r, int m, int t)
1336 {
1337 nvlist_t *root, **child;
1338 int c;
1339 boolean_t log;
1340
1341 ASSERT3S(t, >, 0);
1342
1343 log = (class != NULL && strcmp(class, "log") == 0);
1344
1345 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
1346
1347 for (c = 0; c < t; c++) {
1348 child[c] = make_vdev_mirror(path, aux, pool, size, ashift,
1349 r, m);
1350 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, log);
1351
1352 if (class != NULL && class[0] != '\0') {
1353 ASSERT(m > 1 || log); /* expecting a mirror */
1354 fnvlist_add_string(child[c],
1355 ZPOOL_CONFIG_ALLOCATION_BIAS, class);
1356 }
1357 }
1358
1359 root = fnvlist_alloc();
1360 fnvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT);
1361 fnvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
1362 (const nvlist_t **)child, t);
1363
1364 for (c = 0; c < t; c++)
1365 fnvlist_free(child[c]);
1366
1367 umem_free(child, t * sizeof (nvlist_t *));
1368
1369 return (root);
1370 }
1371
1372 /*
1373 * Find a random spa version. Returns back a random spa version in the
1374 * range [initial_version, SPA_VERSION_FEATURES].
1375 */
1376 static uint64_t
1377 ztest_random_spa_version(uint64_t initial_version)
1378 {
1379 uint64_t version = initial_version;
1380
1381 if (version <= SPA_VERSION_BEFORE_FEATURES) {
1382 version = version +
1383 ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1);
1384 }
1385
1386 if (version > SPA_VERSION_BEFORE_FEATURES)
1387 version = SPA_VERSION_FEATURES;
1388
1389 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
1390 return (version);
1391 }
1392
1393 static int
1394 ztest_random_blocksize(void)
1395 {
1396 ASSERT3U(ztest_spa->spa_max_ashift, !=, 0);
1397
1398 /*
1399 * Choose a block size >= the ashift.
1400 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks.
1401 */
1402 int maxbs = SPA_OLD_MAXBLOCKSHIFT;
1403 if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE)
1404 maxbs = 20;
1405 uint64_t block_shift =
1406 ztest_random(maxbs - ztest_spa->spa_max_ashift + 1);
1407 return (1 << (SPA_MINBLOCKSHIFT + block_shift));
1408 }
1409
1410 static int
1411 ztest_random_dnodesize(void)
1412 {
1413 int slots;
1414 int max_slots = spa_maxdnodesize(ztest_spa) >> DNODE_SHIFT;
1415
1416 if (max_slots == DNODE_MIN_SLOTS)
1417 return (DNODE_MIN_SIZE);
1418
1419 /*
1420 * Weight the random distribution more heavily toward smaller
1421 * dnode sizes since that is more likely to reflect real-world
1422 * usage.
1423 */
1424 ASSERT3U(max_slots, >, 4);
1425 switch (ztest_random(10)) {
1426 case 0:
1427 slots = 5 + ztest_random(max_slots - 4);
1428 break;
1429 case 1 ... 4:
1430 slots = 2 + ztest_random(3);
1431 break;
1432 default:
1433 slots = 1;
1434 break;
1435 }
1436
1437 return (slots << DNODE_SHIFT);
1438 }
1439
1440 static int
1441 ztest_random_ibshift(void)
1442 {
1443 return (DN_MIN_INDBLKSHIFT +
1444 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
1445 }
1446
1447 static uint64_t
1448 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
1449 {
1450 uint64_t top;
1451 vdev_t *rvd = spa->spa_root_vdev;
1452 vdev_t *tvd;
1453
1454 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
1455
1456 do {
1457 top = ztest_random(rvd->vdev_children);
1458 tvd = rvd->vdev_child[top];
1459 } while (!vdev_is_concrete(tvd) || (tvd->vdev_islog && !log_ok) ||
1460 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
1461
1462 return (top);
1463 }
1464
1465 static uint64_t
1466 ztest_random_dsl_prop(zfs_prop_t prop)
1467 {
1468 uint64_t value;
1469
1470 do {
1471 value = zfs_prop_random_value(prop, ztest_random(-1ULL));
1472 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
1473
1474 return (value);
1475 }
1476
1477 static int
1478 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
1479 boolean_t inherit)
1480 {
1481 const char *propname = zfs_prop_to_name(prop);
1482 const char *valname;
1483 char *setpoint;
1484 uint64_t curval;
1485 int error;
1486
1487 error = dsl_prop_set_int(osname, propname,
1488 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value);
1489
1490 if (error == ENOSPC) {
1491 ztest_record_enospc(FTAG);
1492 return (error);
1493 }
1494 ASSERT0(error);
1495
1496 setpoint = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1497 VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint));
1498
1499 if (ztest_opts.zo_verbose >= 6) {
1500 int err;
1501
1502 err = zfs_prop_index_to_string(prop, curval, &valname);
1503 if (err)
1504 (void) printf("%s %s = %llu at '%s'\n", osname,
1505 propname, (unsigned long long)curval, setpoint);
1506 else
1507 (void) printf("%s %s = %s at '%s'\n",
1508 osname, propname, valname, setpoint);
1509 }
1510 umem_free(setpoint, MAXPATHLEN);
1511
1512 return (error);
1513 }
1514
1515 static int
1516 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value)
1517 {
1518 spa_t *spa = ztest_spa;
1519 nvlist_t *props = NULL;
1520 int error;
1521
1522 props = fnvlist_alloc();
1523 fnvlist_add_uint64(props, zpool_prop_to_name(prop), value);
1524
1525 error = spa_prop_set(spa, props);
1526
1527 fnvlist_free(props);
1528
1529 if (error == ENOSPC) {
1530 ztest_record_enospc(FTAG);
1531 return (error);
1532 }
1533 ASSERT0(error);
1534
1535 return (error);
1536 }
1537
1538 static int
1539 ztest_dmu_objset_own(const char *name, dmu_objset_type_t type,
1540 boolean_t readonly, boolean_t decrypt, const void *tag, objset_t **osp)
1541 {
1542 int err;
1543 char *cp = NULL;
1544 char ddname[ZFS_MAX_DATASET_NAME_LEN];
1545
1546 strcpy(ddname, name);
1547 cp = strchr(ddname, '@');
1548 if (cp != NULL)
1549 *cp = '\0';
1550
1551 err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
1552 while (decrypt && err == EACCES) {
1553 dsl_crypto_params_t *dcp;
1554 nvlist_t *crypto_args = fnvlist_alloc();
1555
1556 fnvlist_add_uint8_array(crypto_args, "wkeydata",
1557 (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
1558 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, NULL,
1559 crypto_args, &dcp));
1560 err = spa_keystore_load_wkey(ddname, dcp, B_FALSE);
1561 /*
1562 * Note: if there was an error loading, the wkey was not
1563 * consumed, and needs to be freed.
1564 */
1565 dsl_crypto_params_free(dcp, (err != 0));
1566 fnvlist_free(crypto_args);
1567
1568 if (err == EINVAL) {
1569 /*
1570 * We couldn't load a key for this dataset so try
1571 * the parent. This loop will eventually hit the
1572 * encryption root since ztest only makes clones
1573 * as children of their origin datasets.
1574 */
1575 cp = strrchr(ddname, '/');
1576 if (cp == NULL)
1577 return (err);
1578
1579 *cp = '\0';
1580 err = EACCES;
1581 continue;
1582 } else if (err != 0) {
1583 break;
1584 }
1585
1586 err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
1587 break;
1588 }
1589
1590 return (err);
1591 }
1592
1593 static void
1594 ztest_rll_init(rll_t *rll)
1595 {
1596 rll->rll_writer = NULL;
1597 rll->rll_readers = 0;
1598 mutex_init(&rll->rll_lock, NULL, MUTEX_DEFAULT, NULL);
1599 cv_init(&rll->rll_cv, NULL, CV_DEFAULT, NULL);
1600 }
1601
1602 static void
1603 ztest_rll_destroy(rll_t *rll)
1604 {
1605 ASSERT3P(rll->rll_writer, ==, NULL);
1606 ASSERT0(rll->rll_readers);
1607 mutex_destroy(&rll->rll_lock);
1608 cv_destroy(&rll->rll_cv);
1609 }
1610
1611 static void
1612 ztest_rll_lock(rll_t *rll, rl_type_t type)
1613 {
1614 mutex_enter(&rll->rll_lock);
1615
1616 if (type == RL_READER) {
1617 while (rll->rll_writer != NULL)
1618 (void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1619 rll->rll_readers++;
1620 } else {
1621 while (rll->rll_writer != NULL || rll->rll_readers)
1622 (void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1623 rll->rll_writer = curthread;
1624 }
1625
1626 mutex_exit(&rll->rll_lock);
1627 }
1628
1629 static void
1630 ztest_rll_unlock(rll_t *rll)
1631 {
1632 mutex_enter(&rll->rll_lock);
1633
1634 if (rll->rll_writer) {
1635 ASSERT0(rll->rll_readers);
1636 rll->rll_writer = NULL;
1637 } else {
1638 ASSERT3S(rll->rll_readers, >, 0);
1639 ASSERT3P(rll->rll_writer, ==, NULL);
1640 rll->rll_readers--;
1641 }
1642
1643 if (rll->rll_writer == NULL && rll->rll_readers == 0)
1644 cv_broadcast(&rll->rll_cv);
1645
1646 mutex_exit(&rll->rll_lock);
1647 }
1648
1649 static void
1650 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
1651 {
1652 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1653
1654 ztest_rll_lock(rll, type);
1655 }
1656
1657 static void
1658 ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
1659 {
1660 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1661
1662 ztest_rll_unlock(rll);
1663 }
1664
1665 static rl_t *
1666 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
1667 uint64_t size, rl_type_t type)
1668 {
1669 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1));
1670 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)];
1671 rl_t *rl;
1672
1673 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL);
1674 rl->rl_object = object;
1675 rl->rl_offset = offset;
1676 rl->rl_size = size;
1677 rl->rl_lock = rll;
1678
1679 ztest_rll_lock(rll, type);
1680
1681 return (rl);
1682 }
1683
1684 static void
1685 ztest_range_unlock(rl_t *rl)
1686 {
1687 rll_t *rll = rl->rl_lock;
1688
1689 ztest_rll_unlock(rll);
1690
1691 umem_free(rl, sizeof (*rl));
1692 }
1693
1694 static void
1695 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os)
1696 {
1697 zd->zd_os = os;
1698 zd->zd_zilog = dmu_objset_zil(os);
1699 zd->zd_shared = szd;
1700 dmu_objset_name(os, zd->zd_name);
1701 int l;
1702
1703 if (zd->zd_shared != NULL)
1704 zd->zd_shared->zd_seq = 0;
1705
1706 VERIFY0(pthread_rwlock_init(&zd->zd_zilog_lock, NULL));
1707 mutex_init(&zd->zd_dirobj_lock, NULL, MUTEX_DEFAULT, NULL);
1708
1709 for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1710 ztest_rll_init(&zd->zd_object_lock[l]);
1711
1712 for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1713 ztest_rll_init(&zd->zd_range_lock[l]);
1714 }
1715
1716 static void
1717 ztest_zd_fini(ztest_ds_t *zd)
1718 {
1719 int l;
1720
1721 mutex_destroy(&zd->zd_dirobj_lock);
1722 (void) pthread_rwlock_destroy(&zd->zd_zilog_lock);
1723
1724 for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1725 ztest_rll_destroy(&zd->zd_object_lock[l]);
1726
1727 for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1728 ztest_rll_destroy(&zd->zd_range_lock[l]);
1729 }
1730
1731 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
1732
1733 static uint64_t
1734 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag)
1735 {
1736 uint64_t txg;
1737 int error;
1738
1739 /*
1740 * Attempt to assign tx to some transaction group.
1741 */
1742 error = dmu_tx_assign(tx, txg_how);
1743 if (error) {
1744 if (error == ERESTART) {
1745 ASSERT3U(txg_how, ==, TXG_NOWAIT);
1746 dmu_tx_wait(tx);
1747 } else {
1748 ASSERT3U(error, ==, ENOSPC);
1749 ztest_record_enospc(tag);
1750 }
1751 dmu_tx_abort(tx);
1752 return (0);
1753 }
1754 txg = dmu_tx_get_txg(tx);
1755 ASSERT3U(txg, !=, 0);
1756 return (txg);
1757 }
1758
1759 static void
1760 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1761 uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1762 uint64_t crtxg)
1763 {
1764 bt->bt_magic = BT_MAGIC;
1765 bt->bt_objset = dmu_objset_id(os);
1766 bt->bt_object = object;
1767 bt->bt_dnodesize = dnodesize;
1768 bt->bt_offset = offset;
1769 bt->bt_gen = gen;
1770 bt->bt_txg = txg;
1771 bt->bt_crtxg = crtxg;
1772 }
1773
1774 static void
1775 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1776 uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1777 uint64_t crtxg)
1778 {
1779 ASSERT3U(bt->bt_magic, ==, BT_MAGIC);
1780 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os));
1781 ASSERT3U(bt->bt_object, ==, object);
1782 ASSERT3U(bt->bt_dnodesize, ==, dnodesize);
1783 ASSERT3U(bt->bt_offset, ==, offset);
1784 ASSERT3U(bt->bt_gen, <=, gen);
1785 ASSERT3U(bt->bt_txg, <=, txg);
1786 ASSERT3U(bt->bt_crtxg, ==, crtxg);
1787 }
1788
1789 static ztest_block_tag_t *
1790 ztest_bt_bonus(dmu_buf_t *db)
1791 {
1792 dmu_object_info_t doi;
1793 ztest_block_tag_t *bt;
1794
1795 dmu_object_info_from_db(db, &doi);
1796 ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
1797 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
1798 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
1799
1800 return (bt);
1801 }
1802
1803 /*
1804 * Generate a token to fill up unused bonus buffer space. Try to make
1805 * it unique to the object, generation, and offset to verify that data
1806 * is not getting overwritten by data from other dnodes.
1807 */
1808 #define ZTEST_BONUS_FILL_TOKEN(obj, ds, gen, offset) \
1809 (((ds) << 48) | ((gen) << 32) | ((obj) << 8) | (offset))
1810
1811 /*
1812 * Fill up the unused bonus buffer region before the block tag with a
1813 * verifiable pattern. Filling the whole bonus area with non-zero data
1814 * helps ensure that all dnode traversal code properly skips the
1815 * interior regions of large dnodes.
1816 */
1817 static void
1818 ztest_fill_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1819 objset_t *os, uint64_t gen)
1820 {
1821 uint64_t *bonusp;
1822
1823 ASSERT(IS_P2ALIGNED((char *)end - (char *)db->db_data, 8));
1824
1825 for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1826 uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1827 gen, bonusp - (uint64_t *)db->db_data);
1828 *bonusp = token;
1829 }
1830 }
1831
1832 /*
1833 * Verify that the unused area of a bonus buffer is filled with the
1834 * expected tokens.
1835 */
1836 static void
1837 ztest_verify_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1838 objset_t *os, uint64_t gen)
1839 {
1840 uint64_t *bonusp;
1841
1842 for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1843 uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1844 gen, bonusp - (uint64_t *)db->db_data);
1845 VERIFY3U(*bonusp, ==, token);
1846 }
1847 }
1848
1849 /*
1850 * ZIL logging ops
1851 */
1852
1853 #define lrz_type lr_mode
1854 #define lrz_blocksize lr_uid
1855 #define lrz_ibshift lr_gid
1856 #define lrz_bonustype lr_rdev
1857 #define lrz_dnodesize lr_crtime[1]
1858
1859 static void
1860 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
1861 {
1862 char *name = (void *)(lr + 1); /* name follows lr */
1863 size_t namesize = strlen(name) + 1;
1864 itx_t *itx;
1865
1866 if (zil_replaying(zd->zd_zilog, tx))
1867 return;
1868
1869 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
1870 memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
1871 sizeof (*lr) + namesize - sizeof (lr_t));
1872
1873 zil_itx_assign(zd->zd_zilog, itx, tx);
1874 }
1875
1876 static void
1877 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object)
1878 {
1879 char *name = (void *)(lr + 1); /* name follows lr */
1880 size_t namesize = strlen(name) + 1;
1881 itx_t *itx;
1882
1883 if (zil_replaying(zd->zd_zilog, tx))
1884 return;
1885
1886 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
1887 memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
1888 sizeof (*lr) + namesize - sizeof (lr_t));
1889
1890 itx->itx_oid = object;
1891 zil_itx_assign(zd->zd_zilog, itx, tx);
1892 }
1893
1894 static void
1895 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
1896 {
1897 itx_t *itx;
1898 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
1899
1900 if (zil_replaying(zd->zd_zilog, tx))
1901 return;
1902
1903 if (lr->lr_length > zil_max_log_data(zd->zd_zilog))
1904 write_state = WR_INDIRECT;
1905
1906 itx = zil_itx_create(TX_WRITE,
1907 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
1908
1909 if (write_state == WR_COPIED &&
1910 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
1911 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) {
1912 zil_itx_destroy(itx);
1913 itx = zil_itx_create(TX_WRITE, sizeof (*lr));
1914 write_state = WR_NEED_COPY;
1915 }
1916 itx->itx_private = zd;
1917 itx->itx_wr_state = write_state;
1918 itx->itx_sync = (ztest_random(8) == 0);
1919
1920 memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
1921 sizeof (*lr) - sizeof (lr_t));
1922
1923 zil_itx_assign(zd->zd_zilog, itx, tx);
1924 }
1925
1926 static void
1927 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
1928 {
1929 itx_t *itx;
1930
1931 if (zil_replaying(zd->zd_zilog, tx))
1932 return;
1933
1934 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
1935 memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
1936 sizeof (*lr) - sizeof (lr_t));
1937
1938 itx->itx_sync = B_FALSE;
1939 zil_itx_assign(zd->zd_zilog, itx, tx);
1940 }
1941
1942 static void
1943 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
1944 {
1945 itx_t *itx;
1946
1947 if (zil_replaying(zd->zd_zilog, tx))
1948 return;
1949
1950 itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
1951 memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
1952 sizeof (*lr) - sizeof (lr_t));
1953
1954 itx->itx_sync = B_FALSE;
1955 zil_itx_assign(zd->zd_zilog, itx, tx);
1956 }
1957
1958 /*
1959 * ZIL replay ops
1960 */
1961 static int
1962 ztest_replay_create(void *arg1, void *arg2, boolean_t byteswap)
1963 {
1964 ztest_ds_t *zd = arg1;
1965 lr_create_t *lr = arg2;
1966 char *name = (void *)(lr + 1); /* name follows lr */
1967 objset_t *os = zd->zd_os;
1968 ztest_block_tag_t *bbt;
1969 dmu_buf_t *db;
1970 dmu_tx_t *tx;
1971 uint64_t txg;
1972 int error = 0;
1973 int bonuslen;
1974
1975 if (byteswap)
1976 byteswap_uint64_array(lr, sizeof (*lr));
1977
1978 ASSERT3U(lr->lr_doid, ==, ZTEST_DIROBJ);
1979 ASSERT3S(name[0], !=, '\0');
1980
1981 tx = dmu_tx_create(os);
1982
1983 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
1984
1985 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1986 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1987 } else {
1988 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1989 }
1990
1991 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1992 if (txg == 0)
1993 return (ENOSPC);
1994
1995 ASSERT3U(dmu_objset_zil(os)->zl_replay, ==, !!lr->lr_foid);
1996 bonuslen = DN_BONUS_SIZE(lr->lrz_dnodesize);
1997
1998 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1999 if (lr->lr_foid == 0) {
2000 lr->lr_foid = zap_create_dnsize(os,
2001 lr->lrz_type, lr->lrz_bonustype,
2002 bonuslen, lr->lrz_dnodesize, tx);
2003 } else {
2004 error = zap_create_claim_dnsize(os, lr->lr_foid,
2005 lr->lrz_type, lr->lrz_bonustype,
2006 bonuslen, lr->lrz_dnodesize, tx);
2007 }
2008 } else {
2009 if (lr->lr_foid == 0) {
2010 lr->lr_foid = dmu_object_alloc_dnsize(os,
2011 lr->lrz_type, 0, lr->lrz_bonustype,
2012 bonuslen, lr->lrz_dnodesize, tx);
2013 } else {
2014 error = dmu_object_claim_dnsize(os, lr->lr_foid,
2015 lr->lrz_type, 0, lr->lrz_bonustype,
2016 bonuslen, lr->lrz_dnodesize, tx);
2017 }
2018 }
2019
2020 if (error) {
2021 ASSERT3U(error, ==, EEXIST);
2022 ASSERT(zd->zd_zilog->zl_replay);
2023 dmu_tx_commit(tx);
2024 return (error);
2025 }
2026
2027 ASSERT3U(lr->lr_foid, !=, 0);
2028
2029 if (lr->lrz_type != DMU_OT_ZAP_OTHER)
2030 VERIFY0(dmu_object_set_blocksize(os, lr->lr_foid,
2031 lr->lrz_blocksize, lr->lrz_ibshift, tx));
2032
2033 VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2034 bbt = ztest_bt_bonus(db);
2035 dmu_buf_will_dirty(db, tx);
2036 ztest_bt_generate(bbt, os, lr->lr_foid, lr->lrz_dnodesize, -1ULL,
2037 lr->lr_gen, txg, txg);
2038 ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, lr->lr_gen);
2039 dmu_buf_rele(db, FTAG);
2040
2041 VERIFY0(zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
2042 &lr->lr_foid, tx));
2043
2044 (void) ztest_log_create(zd, tx, lr);
2045
2046 dmu_tx_commit(tx);
2047
2048 return (0);
2049 }
2050
2051 static int
2052 ztest_replay_remove(void *arg1, void *arg2, boolean_t byteswap)
2053 {
2054 ztest_ds_t *zd = arg1;
2055 lr_remove_t *lr = arg2;
2056 char *name = (void *)(lr + 1); /* name follows lr */
2057 objset_t *os = zd->zd_os;
2058 dmu_object_info_t doi;
2059 dmu_tx_t *tx;
2060 uint64_t object, txg;
2061
2062 if (byteswap)
2063 byteswap_uint64_array(lr, sizeof (*lr));
2064
2065 ASSERT3U(lr->lr_doid, ==, ZTEST_DIROBJ);
2066 ASSERT3S(name[0], !=, '\0');
2067
2068 VERIFY0(
2069 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
2070 ASSERT3U(object, !=, 0);
2071
2072 ztest_object_lock(zd, object, RL_WRITER);
2073
2074 VERIFY0(dmu_object_info(os, object, &doi));
2075
2076 tx = dmu_tx_create(os);
2077
2078 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
2079 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
2080
2081 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2082 if (txg == 0) {
2083 ztest_object_unlock(zd, object);
2084 return (ENOSPC);
2085 }
2086
2087 if (doi.doi_type == DMU_OT_ZAP_OTHER) {
2088 VERIFY0(zap_destroy(os, object, tx));
2089 } else {
2090 VERIFY0(dmu_object_free(os, object, tx));
2091 }
2092
2093 VERIFY0(zap_remove(os, lr->lr_doid, name, tx));
2094
2095 (void) ztest_log_remove(zd, tx, lr, object);
2096
2097 dmu_tx_commit(tx);
2098
2099 ztest_object_unlock(zd, object);
2100
2101 return (0);
2102 }
2103
2104 static int
2105 ztest_replay_write(void *arg1, void *arg2, boolean_t byteswap)
2106 {
2107 ztest_ds_t *zd = arg1;
2108 lr_write_t *lr = arg2;
2109 objset_t *os = zd->zd_os;
2110 void *data = lr + 1; /* data follows lr */
2111 uint64_t offset, length;
2112 ztest_block_tag_t *bt = data;
2113 ztest_block_tag_t *bbt;
2114 uint64_t gen, txg, lrtxg, crtxg;
2115 dmu_object_info_t doi;
2116 dmu_tx_t *tx;
2117 dmu_buf_t *db;
2118 arc_buf_t *abuf = NULL;
2119 rl_t *rl;
2120
2121 if (byteswap)
2122 byteswap_uint64_array(lr, sizeof (*lr));
2123
2124 offset = lr->lr_offset;
2125 length = lr->lr_length;
2126
2127 /* If it's a dmu_sync() block, write the whole block */
2128 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
2129 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
2130 if (length < blocksize) {
2131 offset -= offset % blocksize;
2132 length = blocksize;
2133 }
2134 }
2135
2136 if (bt->bt_magic == BSWAP_64(BT_MAGIC))
2137 byteswap_uint64_array(bt, sizeof (*bt));
2138
2139 if (bt->bt_magic != BT_MAGIC)
2140 bt = NULL;
2141
2142 ztest_object_lock(zd, lr->lr_foid, RL_READER);
2143 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER);
2144
2145 VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2146
2147 dmu_object_info_from_db(db, &doi);
2148
2149 bbt = ztest_bt_bonus(db);
2150 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2151 gen = bbt->bt_gen;
2152 crtxg = bbt->bt_crtxg;
2153 lrtxg = lr->lr_common.lrc_txg;
2154
2155 tx = dmu_tx_create(os);
2156
2157 dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
2158
2159 if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
2160 P2PHASE(offset, length) == 0)
2161 abuf = dmu_request_arcbuf(db, length);
2162
2163 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2164 if (txg == 0) {
2165 if (abuf != NULL)
2166 dmu_return_arcbuf(abuf);
2167 dmu_buf_rele(db, FTAG);
2168 ztest_range_unlock(rl);
2169 ztest_object_unlock(zd, lr->lr_foid);
2170 return (ENOSPC);
2171 }
2172
2173 if (bt != NULL) {
2174 /*
2175 * Usually, verify the old data before writing new data --
2176 * but not always, because we also want to verify correct
2177 * behavior when the data was not recently read into cache.
2178 */
2179 ASSERT0(offset % doi.doi_data_block_size);
2180 if (ztest_random(4) != 0) {
2181 int prefetch = ztest_random(2) ?
2182 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
2183 ztest_block_tag_t rbt;
2184
2185 VERIFY(dmu_read(os, lr->lr_foid, offset,
2186 sizeof (rbt), &rbt, prefetch) == 0);
2187 if (rbt.bt_magic == BT_MAGIC) {
2188 ztest_bt_verify(&rbt, os, lr->lr_foid, 0,
2189 offset, gen, txg, crtxg);
2190 }
2191 }
2192
2193 /*
2194 * Writes can appear to be newer than the bonus buffer because
2195 * the ztest_get_data() callback does a dmu_read() of the
2196 * open-context data, which may be different than the data
2197 * as it was when the write was generated.
2198 */
2199 if (zd->zd_zilog->zl_replay) {
2200 ztest_bt_verify(bt, os, lr->lr_foid, 0, offset,
2201 MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
2202 bt->bt_crtxg);
2203 }
2204
2205 /*
2206 * Set the bt's gen/txg to the bonus buffer's gen/txg
2207 * so that all of the usual ASSERTs will work.
2208 */
2209 ztest_bt_generate(bt, os, lr->lr_foid, 0, offset, gen, txg,
2210 crtxg);
2211 }
2212
2213 if (abuf == NULL) {
2214 dmu_write(os, lr->lr_foid, offset, length, data, tx);
2215 } else {
2216 memcpy(abuf->b_data, data, length);
2217 dmu_assign_arcbuf_by_dbuf(db, offset, abuf, tx);
2218 }
2219
2220 (void) ztest_log_write(zd, tx, lr);
2221
2222 dmu_buf_rele(db, FTAG);
2223
2224 dmu_tx_commit(tx);
2225
2226 ztest_range_unlock(rl);
2227 ztest_object_unlock(zd, lr->lr_foid);
2228
2229 return (0);
2230 }
2231
2232 static int
2233 ztest_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
2234 {
2235 ztest_ds_t *zd = arg1;
2236 lr_truncate_t *lr = arg2;
2237 objset_t *os = zd->zd_os;
2238 dmu_tx_t *tx;
2239 uint64_t txg;
2240 rl_t *rl;
2241
2242 if (byteswap)
2243 byteswap_uint64_array(lr, sizeof (*lr));
2244
2245 ztest_object_lock(zd, lr->lr_foid, RL_READER);
2246 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
2247 RL_WRITER);
2248
2249 tx = dmu_tx_create(os);
2250
2251 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
2252
2253 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2254 if (txg == 0) {
2255 ztest_range_unlock(rl);
2256 ztest_object_unlock(zd, lr->lr_foid);
2257 return (ENOSPC);
2258 }
2259
2260 VERIFY0(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
2261 lr->lr_length, tx));
2262
2263 (void) ztest_log_truncate(zd, tx, lr);
2264
2265 dmu_tx_commit(tx);
2266
2267 ztest_range_unlock(rl);
2268 ztest_object_unlock(zd, lr->lr_foid);
2269
2270 return (0);
2271 }
2272
2273 static int
2274 ztest_replay_setattr(void *arg1, void *arg2, boolean_t byteswap)
2275 {
2276 ztest_ds_t *zd = arg1;
2277 lr_setattr_t *lr = arg2;
2278 objset_t *os = zd->zd_os;
2279 dmu_tx_t *tx;
2280 dmu_buf_t *db;
2281 ztest_block_tag_t *bbt;
2282 uint64_t txg, lrtxg, crtxg, dnodesize;
2283
2284 if (byteswap)
2285 byteswap_uint64_array(lr, sizeof (*lr));
2286
2287 ztest_object_lock(zd, lr->lr_foid, RL_WRITER);
2288
2289 VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2290
2291 tx = dmu_tx_create(os);
2292 dmu_tx_hold_bonus(tx, lr->lr_foid);
2293
2294 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2295 if (txg == 0) {
2296 dmu_buf_rele(db, FTAG);
2297 ztest_object_unlock(zd, lr->lr_foid);
2298 return (ENOSPC);
2299 }
2300
2301 bbt = ztest_bt_bonus(db);
2302 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2303 crtxg = bbt->bt_crtxg;
2304 lrtxg = lr->lr_common.lrc_txg;
2305 dnodesize = bbt->bt_dnodesize;
2306
2307 if (zd->zd_zilog->zl_replay) {
2308 ASSERT3U(lr->lr_size, !=, 0);
2309 ASSERT3U(lr->lr_mode, !=, 0);
2310 ASSERT3U(lrtxg, !=, 0);
2311 } else {
2312 /*
2313 * Randomly change the size and increment the generation.
2314 */
2315 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
2316 sizeof (*bbt);
2317 lr->lr_mode = bbt->bt_gen + 1;
2318 ASSERT0(lrtxg);
2319 }
2320
2321 /*
2322 * Verify that the current bonus buffer is not newer than our txg.
2323 */
2324 ztest_bt_verify(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
2325 MAX(txg, lrtxg), crtxg);
2326
2327 dmu_buf_will_dirty(db, tx);
2328
2329 ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
2330 ASSERT3U(lr->lr_size, <=, db->db_size);
2331 VERIFY0(dmu_set_bonus(db, lr->lr_size, tx));
2332 bbt = ztest_bt_bonus(db);
2333
2334 ztest_bt_generate(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
2335 txg, crtxg);
2336 ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, bbt->bt_gen);
2337 dmu_buf_rele(db, FTAG);
2338
2339 (void) ztest_log_setattr(zd, tx, lr);
2340
2341 dmu_tx_commit(tx);
2342
2343 ztest_object_unlock(zd, lr->lr_foid);
2344
2345 return (0);
2346 }
2347
2348 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
2349 NULL, /* 0 no such transaction type */
2350 ztest_replay_create, /* TX_CREATE */
2351 NULL, /* TX_MKDIR */
2352 NULL, /* TX_MKXATTR */
2353 NULL, /* TX_SYMLINK */
2354 ztest_replay_remove, /* TX_REMOVE */
2355 NULL, /* TX_RMDIR */
2356 NULL, /* TX_LINK */
2357 NULL, /* TX_RENAME */
2358 ztest_replay_write, /* TX_WRITE */
2359 ztest_replay_truncate, /* TX_TRUNCATE */
2360 ztest_replay_setattr, /* TX_SETATTR */
2361 NULL, /* TX_ACL */
2362 NULL, /* TX_CREATE_ACL */
2363 NULL, /* TX_CREATE_ATTR */
2364 NULL, /* TX_CREATE_ACL_ATTR */
2365 NULL, /* TX_MKDIR_ACL */
2366 NULL, /* TX_MKDIR_ATTR */
2367 NULL, /* TX_MKDIR_ACL_ATTR */
2368 NULL, /* TX_WRITE2 */
2369 NULL, /* TX_SETSAXATTR */
2370 };
2371
2372 /*
2373 * ZIL get_data callbacks
2374 */
2375
2376 static void
2377 ztest_get_done(zgd_t *zgd, int error)
2378 {
2379 (void) error;
2380 ztest_ds_t *zd = zgd->zgd_private;
2381 uint64_t object = ((rl_t *)zgd->zgd_lr)->rl_object;
2382
2383 if (zgd->zgd_db)
2384 dmu_buf_rele(zgd->zgd_db, zgd);
2385
2386 ztest_range_unlock((rl_t *)zgd->zgd_lr);
2387 ztest_object_unlock(zd, object);
2388
2389 umem_free(zgd, sizeof (*zgd));
2390 }
2391
2392 static int
2393 ztest_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf,
2394 struct lwb *lwb, zio_t *zio)
2395 {
2396 (void) arg2;
2397 ztest_ds_t *zd = arg;
2398 objset_t *os = zd->zd_os;
2399 uint64_t object = lr->lr_foid;
2400 uint64_t offset = lr->lr_offset;
2401 uint64_t size = lr->lr_length;
2402 uint64_t txg = lr->lr_common.lrc_txg;
2403 uint64_t crtxg;
2404 dmu_object_info_t doi;
2405 dmu_buf_t *db;
2406 zgd_t *zgd;
2407 int error;
2408
2409 ASSERT3P(lwb, !=, NULL);
2410 ASSERT3P(zio, !=, NULL);
2411 ASSERT3U(size, !=, 0);
2412
2413 ztest_object_lock(zd, object, RL_READER);
2414 error = dmu_bonus_hold(os, object, FTAG, &db);
2415 if (error) {
2416 ztest_object_unlock(zd, object);
2417 return (error);
2418 }
2419
2420 crtxg = ztest_bt_bonus(db)->bt_crtxg;
2421
2422 if (crtxg == 0 || crtxg > txg) {
2423 dmu_buf_rele(db, FTAG);
2424 ztest_object_unlock(zd, object);
2425 return (ENOENT);
2426 }
2427
2428 dmu_object_info_from_db(db, &doi);
2429 dmu_buf_rele(db, FTAG);
2430 db = NULL;
2431
2432 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
2433 zgd->zgd_lwb = lwb;
2434 zgd->zgd_private = zd;
2435
2436 if (buf != NULL) { /* immediate write */
2437 zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd,
2438 object, offset, size, RL_READER);
2439
2440 error = dmu_read(os, object, offset, size, buf,
2441 DMU_READ_NO_PREFETCH);
2442 ASSERT0(error);
2443 } else {
2444 size = doi.doi_data_block_size;
2445 if (ISP2(size)) {
2446 offset = P2ALIGN(offset, size);
2447 } else {
2448 ASSERT3U(offset, <, size);
2449 offset = 0;
2450 }
2451
2452 zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd,
2453 object, offset, size, RL_READER);
2454
2455 error = dmu_buf_hold(os, object, offset, zgd, &db,
2456 DMU_READ_NO_PREFETCH);
2457
2458 if (error == 0) {
2459 blkptr_t *bp = &lr->lr_blkptr;
2460
2461 zgd->zgd_db = db;
2462 zgd->zgd_bp = bp;
2463
2464 ASSERT3U(db->db_offset, ==, offset);
2465 ASSERT3U(db->db_size, ==, size);
2466
2467 error = dmu_sync(zio, lr->lr_common.lrc_txg,
2468 ztest_get_done, zgd);
2469
2470 if (error == 0)
2471 return (0);
2472 }
2473 }
2474
2475 ztest_get_done(zgd, error);
2476
2477 return (error);
2478 }
2479
2480 static void *
2481 ztest_lr_alloc(size_t lrsize, char *name)
2482 {
2483 char *lr;
2484 size_t namesize = name ? strlen(name) + 1 : 0;
2485
2486 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
2487
2488 if (name)
2489 memcpy(lr + lrsize, name, namesize);
2490
2491 return (lr);
2492 }
2493
2494 static void
2495 ztest_lr_free(void *lr, size_t lrsize, char *name)
2496 {
2497 size_t namesize = name ? strlen(name) + 1 : 0;
2498
2499 umem_free(lr, lrsize + namesize);
2500 }
2501
2502 /*
2503 * Lookup a bunch of objects. Returns the number of objects not found.
2504 */
2505 static int
2506 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
2507 {
2508 int missing = 0;
2509 int error;
2510 int i;
2511
2512 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2513
2514 for (i = 0; i < count; i++, od++) {
2515 od->od_object = 0;
2516 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
2517 sizeof (uint64_t), 1, &od->od_object);
2518 if (error) {
2519 ASSERT3S(error, ==, ENOENT);
2520 ASSERT0(od->od_object);
2521 missing++;
2522 } else {
2523 dmu_buf_t *db;
2524 ztest_block_tag_t *bbt;
2525 dmu_object_info_t doi;
2526
2527 ASSERT3U(od->od_object, !=, 0);
2528 ASSERT0(missing); /* there should be no gaps */
2529
2530 ztest_object_lock(zd, od->od_object, RL_READER);
2531 VERIFY0(dmu_bonus_hold(zd->zd_os, od->od_object,
2532 FTAG, &db));
2533 dmu_object_info_from_db(db, &doi);
2534 bbt = ztest_bt_bonus(db);
2535 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2536 od->od_type = doi.doi_type;
2537 od->od_blocksize = doi.doi_data_block_size;
2538 od->od_gen = bbt->bt_gen;
2539 dmu_buf_rele(db, FTAG);
2540 ztest_object_unlock(zd, od->od_object);
2541 }
2542 }
2543
2544 return (missing);
2545 }
2546
2547 static int
2548 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
2549 {
2550 int missing = 0;
2551 int i;
2552
2553 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2554
2555 for (i = 0; i < count; i++, od++) {
2556 if (missing) {
2557 od->od_object = 0;
2558 missing++;
2559 continue;
2560 }
2561
2562 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2563
2564 lr->lr_doid = od->od_dir;
2565 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */
2566 lr->lrz_type = od->od_crtype;
2567 lr->lrz_blocksize = od->od_crblocksize;
2568 lr->lrz_ibshift = ztest_random_ibshift();
2569 lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
2570 lr->lrz_dnodesize = od->od_crdnodesize;
2571 lr->lr_gen = od->od_crgen;
2572 lr->lr_crtime[0] = time(NULL);
2573
2574 if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
2575 ASSERT0(missing);
2576 od->od_object = 0;
2577 missing++;
2578 } else {
2579 od->od_object = lr->lr_foid;
2580 od->od_type = od->od_crtype;
2581 od->od_blocksize = od->od_crblocksize;
2582 od->od_gen = od->od_crgen;
2583 ASSERT3U(od->od_object, !=, 0);
2584 }
2585
2586 ztest_lr_free(lr, sizeof (*lr), od->od_name);
2587 }
2588
2589 return (missing);
2590 }
2591
2592 static int
2593 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
2594 {
2595 int missing = 0;
2596 int error;
2597 int i;
2598
2599 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2600
2601 od += count - 1;
2602
2603 for (i = count - 1; i >= 0; i--, od--) {
2604 if (missing) {
2605 missing++;
2606 continue;
2607 }
2608
2609 /*
2610 * No object was found.
2611 */
2612 if (od->od_object == 0)
2613 continue;
2614
2615 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2616
2617 lr->lr_doid = od->od_dir;
2618
2619 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
2620 ASSERT3U(error, ==, ENOSPC);
2621 missing++;
2622 } else {
2623 od->od_object = 0;
2624 }
2625 ztest_lr_free(lr, sizeof (*lr), od->od_name);
2626 }
2627
2628 return (missing);
2629 }
2630
2631 static int
2632 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
2633 void *data)
2634 {
2635 lr_write_t *lr;
2636 int error;
2637
2638 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
2639
2640 lr->lr_foid = object;
2641 lr->lr_offset = offset;
2642 lr->lr_length = size;
2643 lr->lr_blkoff = 0;
2644 BP_ZERO(&lr->lr_blkptr);
2645
2646 memcpy(lr + 1, data, size);
2647
2648 error = ztest_replay_write(zd, lr, B_FALSE);
2649
2650 ztest_lr_free(lr, sizeof (*lr) + size, NULL);
2651
2652 return (error);
2653 }
2654
2655 static int
2656 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2657 {
2658 lr_truncate_t *lr;
2659 int error;
2660
2661 lr = ztest_lr_alloc(sizeof (*lr), NULL);
2662
2663 lr->lr_foid = object;
2664 lr->lr_offset = offset;
2665 lr->lr_length = size;
2666
2667 error = ztest_replay_truncate(zd, lr, B_FALSE);
2668
2669 ztest_lr_free(lr, sizeof (*lr), NULL);
2670
2671 return (error);
2672 }
2673
2674 static int
2675 ztest_setattr(ztest_ds_t *zd, uint64_t object)
2676 {
2677 lr_setattr_t *lr;
2678 int error;
2679
2680 lr = ztest_lr_alloc(sizeof (*lr), NULL);
2681
2682 lr->lr_foid = object;
2683 lr->lr_size = 0;
2684 lr->lr_mode = 0;
2685
2686 error = ztest_replay_setattr(zd, lr, B_FALSE);
2687
2688 ztest_lr_free(lr, sizeof (*lr), NULL);
2689
2690 return (error);
2691 }
2692
2693 static void
2694 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2695 {
2696 objset_t *os = zd->zd_os;
2697 dmu_tx_t *tx;
2698 uint64_t txg;
2699 rl_t *rl;
2700
2701 txg_wait_synced(dmu_objset_pool(os), 0);
2702
2703 ztest_object_lock(zd, object, RL_READER);
2704 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER);
2705
2706 tx = dmu_tx_create(os);
2707
2708 dmu_tx_hold_write(tx, object, offset, size);
2709
2710 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2711
2712 if (txg != 0) {
2713 dmu_prealloc(os, object, offset, size, tx);
2714 dmu_tx_commit(tx);
2715 txg_wait_synced(dmu_objset_pool(os), txg);
2716 } else {
2717 (void) dmu_free_long_range(os, object, offset, size);
2718 }
2719
2720 ztest_range_unlock(rl);
2721 ztest_object_unlock(zd, object);
2722 }
2723
2724 static void
2725 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
2726 {
2727 int err;
2728 ztest_block_tag_t wbt;
2729 dmu_object_info_t doi;
2730 enum ztest_io_type io_type;
2731 uint64_t blocksize;
2732 void *data;
2733
2734 VERIFY0(dmu_object_info(zd->zd_os, object, &doi));
2735 blocksize = doi.doi_data_block_size;
2736 data = umem_alloc(blocksize, UMEM_NOFAIL);
2737
2738 /*
2739 * Pick an i/o type at random, biased toward writing block tags.
2740 */
2741 io_type = ztest_random(ZTEST_IO_TYPES);
2742 if (ztest_random(2) == 0)
2743 io_type = ZTEST_IO_WRITE_TAG;
2744
2745 (void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
2746
2747 switch (io_type) {
2748
2749 case ZTEST_IO_WRITE_TAG:
2750 ztest_bt_generate(&wbt, zd->zd_os, object, doi.doi_dnodesize,
2751 offset, 0, 0, 0);
2752 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
2753 break;
2754
2755 case ZTEST_IO_WRITE_PATTERN:
2756 (void) memset(data, 'a' + (object + offset) % 5, blocksize);
2757 if (ztest_random(2) == 0) {
2758 /*
2759 * Induce fletcher2 collisions to ensure that
2760 * zio_ddt_collision() detects and resolves them
2761 * when using fletcher2-verify for deduplication.
2762 */
2763 ((uint64_t *)data)[0] ^= 1ULL << 63;
2764 ((uint64_t *)data)[4] ^= 1ULL << 63;
2765 }
2766 (void) ztest_write(zd, object, offset, blocksize, data);
2767 break;
2768
2769 case ZTEST_IO_WRITE_ZEROES:
2770 memset(data, 0, blocksize);
2771 (void) ztest_write(zd, object, offset, blocksize, data);
2772 break;
2773
2774 case ZTEST_IO_TRUNCATE:
2775 (void) ztest_truncate(zd, object, offset, blocksize);
2776 break;
2777
2778 case ZTEST_IO_SETATTR:
2779 (void) ztest_setattr(zd, object);
2780 break;
2781 default:
2782 break;
2783
2784 case ZTEST_IO_REWRITE:
2785 (void) pthread_rwlock_rdlock(&ztest_name_lock);
2786 err = ztest_dsl_prop_set_uint64(zd->zd_name,
2787 ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa),
2788 B_FALSE);
2789 VERIFY(err == 0 || err == ENOSPC);
2790 err = ztest_dsl_prop_set_uint64(zd->zd_name,
2791 ZFS_PROP_COMPRESSION,
2792 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION),
2793 B_FALSE);
2794 VERIFY(err == 0 || err == ENOSPC);
2795 (void) pthread_rwlock_unlock(&ztest_name_lock);
2796
2797 VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data,
2798 DMU_READ_NO_PREFETCH));
2799
2800 (void) ztest_write(zd, object, offset, blocksize, data);
2801 break;
2802 }
2803
2804 (void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2805
2806 umem_free(data, blocksize);
2807 }
2808
2809 /*
2810 * Initialize an object description template.
2811 */
2812 static void
2813 ztest_od_init(ztest_od_t *od, uint64_t id, const char *tag, uint64_t index,
2814 dmu_object_type_t type, uint64_t blocksize, uint64_t dnodesize,
2815 uint64_t gen)
2816 {
2817 od->od_dir = ZTEST_DIROBJ;
2818 od->od_object = 0;
2819
2820 od->od_crtype = type;
2821 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
2822 od->od_crdnodesize = dnodesize ? dnodesize : ztest_random_dnodesize();
2823 od->od_crgen = gen;
2824
2825 od->od_type = DMU_OT_NONE;
2826 od->od_blocksize = 0;
2827 od->od_gen = 0;
2828
2829 (void) snprintf(od->od_name, sizeof (od->od_name),
2830 "%s(%"PRId64")[%"PRIu64"]",
2831 tag, id, index);
2832 }
2833
2834 /*
2835 * Lookup or create the objects for a test using the od template.
2836 * If the objects do not all exist, or if 'remove' is specified,
2837 * remove any existing objects and create new ones. Otherwise,
2838 * use the existing objects.
2839 */
2840 static int
2841 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
2842 {
2843 int count = size / sizeof (*od);
2844 int rv = 0;
2845
2846 mutex_enter(&zd->zd_dirobj_lock);
2847 if ((ztest_lookup(zd, od, count) != 0 || remove) &&
2848 (ztest_remove(zd, od, count) != 0 ||
2849 ztest_create(zd, od, count) != 0))
2850 rv = -1;
2851 zd->zd_od = od;
2852 mutex_exit(&zd->zd_dirobj_lock);
2853
2854 return (rv);
2855 }
2856
2857 void
2858 ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
2859 {
2860 (void) id;
2861 zilog_t *zilog = zd->zd_zilog;
2862
2863 (void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
2864
2865 zil_commit(zilog, ztest_random(ZTEST_OBJECTS));
2866
2867 /*
2868 * Remember the committed values in zd, which is in parent/child
2869 * shared memory. If we die, the next iteration of ztest_run()
2870 * will verify that the log really does contain this record.
2871 */
2872 mutex_enter(&zilog->zl_lock);
2873 ASSERT3P(zd->zd_shared, !=, NULL);
2874 ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq);
2875 zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq;
2876 mutex_exit(&zilog->zl_lock);
2877
2878 (void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2879 }
2880
2881 /*
2882 * This function is designed to simulate the operations that occur during a
2883 * mount/unmount operation. We hold the dataset across these operations in an
2884 * attempt to expose any implicit assumptions about ZIL management.
2885 */
2886 void
2887 ztest_zil_remount(ztest_ds_t *zd, uint64_t id)
2888 {
2889 (void) id;
2890 objset_t *os = zd->zd_os;
2891
2892 /*
2893 * We hold the ztest_vdev_lock so we don't cause problems with
2894 * other threads that wish to remove a log device, such as
2895 * ztest_device_removal().
2896 */
2897 mutex_enter(&ztest_vdev_lock);
2898
2899 /*
2900 * We grab the zd_dirobj_lock to ensure that no other thread is
2901 * updating the zil (i.e. adding in-memory log records) and the
2902 * zd_zilog_lock to block any I/O.
2903 */
2904 mutex_enter(&zd->zd_dirobj_lock);
2905 (void) pthread_rwlock_wrlock(&zd->zd_zilog_lock);
2906
2907 /* zfsvfs_teardown() */
2908 zil_close(zd->zd_zilog);
2909
2910 /* zfsvfs_setup() */
2911 VERIFY3P(zil_open(os, ztest_get_data, NULL), ==, zd->zd_zilog);
2912 zil_replay(os, zd, ztest_replay_vector);
2913
2914 (void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2915 mutex_exit(&zd->zd_dirobj_lock);
2916 mutex_exit(&ztest_vdev_lock);
2917 }
2918
2919 /*
2920 * Verify that we can't destroy an active pool, create an existing pool,
2921 * or create a pool with a bad vdev spec.
2922 */
2923 void
2924 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
2925 {
2926 (void) zd, (void) id;
2927 ztest_shared_opts_t *zo = &ztest_opts;
2928 spa_t *spa;
2929 nvlist_t *nvroot;
2930
2931 if (zo->zo_mmp_test)
2932 return;
2933
2934 /*
2935 * Attempt to create using a bad file.
2936 */
2937 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
2938 VERIFY3U(ENOENT, ==,
2939 spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL));
2940 fnvlist_free(nvroot);
2941
2942 /*
2943 * Attempt to create using a bad mirror.
2944 */
2945 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 2, 1);
2946 VERIFY3U(ENOENT, ==,
2947 spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL));
2948 fnvlist_free(nvroot);
2949
2950 /*
2951 * Attempt to create an existing pool. It shouldn't matter
2952 * what's in the nvroot; we should fail with EEXIST.
2953 */
2954 (void) pthread_rwlock_rdlock(&ztest_name_lock);
2955 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
2956 VERIFY3U(EEXIST, ==,
2957 spa_create(zo->zo_pool, nvroot, NULL, NULL, NULL));
2958 fnvlist_free(nvroot);
2959
2960 /*
2961 * We open a reference to the spa and then we try to export it
2962 * expecting one of the following errors:
2963 *
2964 * EBUSY
2965 * Because of the reference we just opened.
2966 *
2967 * ZFS_ERR_EXPORT_IN_PROGRESS
2968 * For the case that there is another ztest thread doing
2969 * an export concurrently.
2970 */
2971 VERIFY0(spa_open(zo->zo_pool, &spa, FTAG));
2972 int error = spa_destroy(zo->zo_pool);
2973 if (error != EBUSY && error != ZFS_ERR_EXPORT_IN_PROGRESS) {
2974 fatal(B_FALSE, "spa_destroy(%s) returned unexpected value %d",
2975 spa->spa_name, error);
2976 }
2977 spa_close(spa, FTAG);
2978
2979 (void) pthread_rwlock_unlock(&ztest_name_lock);
2980 }
2981
2982 /*
2983 * Start and then stop the MMP threads to ensure the startup and shutdown code
2984 * works properly. Actual protection and property-related code tested via ZTS.
2985 */
2986 void
2987 ztest_mmp_enable_disable(ztest_ds_t *zd, uint64_t id)
2988 {
2989 (void) zd, (void) id;
2990 ztest_shared_opts_t *zo = &ztest_opts;
2991 spa_t *spa = ztest_spa;
2992
2993 if (zo->zo_mmp_test)
2994 return;
2995
2996 /*
2997 * Since enabling MMP involves setting a property, it could not be done
2998 * while the pool is suspended.
2999 */
3000 if (spa_suspended(spa))
3001 return;
3002
3003 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3004 mutex_enter(&spa->spa_props_lock);
3005
3006 zfs_multihost_fail_intervals = 0;
3007
3008 if (!spa_multihost(spa)) {
3009 spa->spa_multihost = B_TRUE;
3010 mmp_thread_start(spa);
3011 }
3012
3013 mutex_exit(&spa->spa_props_lock);
3014 spa_config_exit(spa, SCL_CONFIG, FTAG);
3015
3016 txg_wait_synced(spa_get_dsl(spa), 0);
3017 mmp_signal_all_threads();
3018 txg_wait_synced(spa_get_dsl(spa), 0);
3019
3020 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3021 mutex_enter(&spa->spa_props_lock);
3022
3023 if (spa_multihost(spa)) {
3024 mmp_thread_stop(spa);
3025 spa->spa_multihost = B_FALSE;
3026 }
3027
3028 mutex_exit(&spa->spa_props_lock);
3029 spa_config_exit(spa, SCL_CONFIG, FTAG);
3030 }
3031
3032 void
3033 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id)
3034 {
3035 (void) zd, (void) id;
3036 spa_t *spa;
3037 uint64_t initial_version = SPA_VERSION_INITIAL;
3038 uint64_t version, newversion;
3039 nvlist_t *nvroot, *props;
3040 char *name;
3041
3042 if (ztest_opts.zo_mmp_test)
3043 return;
3044
3045 /* dRAID added after feature flags, skip upgrade test. */
3046 if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0)
3047 return;
3048
3049 mutex_enter(&ztest_vdev_lock);
3050 name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool);
3051
3052 /*
3053 * Clean up from previous runs.
3054 */
3055 (void) spa_destroy(name);
3056
3057 nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0,
3058 NULL, ztest_opts.zo_raid_children, ztest_opts.zo_mirrors, 1);
3059
3060 /*
3061 * If we're configuring a RAIDZ device then make sure that the
3062 * initial version is capable of supporting that feature.
3063 */
3064 switch (ztest_opts.zo_raid_parity) {
3065 case 0:
3066 case 1:
3067 initial_version = SPA_VERSION_INITIAL;
3068 break;
3069 case 2:
3070 initial_version = SPA_VERSION_RAIDZ2;
3071 break;
3072 case 3:
3073 initial_version = SPA_VERSION_RAIDZ3;
3074 break;
3075 }
3076
3077 /*
3078 * Create a pool with a spa version that can be upgraded. Pick
3079 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
3080 */
3081 do {
3082 version = ztest_random_spa_version(initial_version);
3083 } while (version > SPA_VERSION_BEFORE_FEATURES);
3084
3085 props = fnvlist_alloc();
3086 fnvlist_add_uint64(props,
3087 zpool_prop_to_name(ZPOOL_PROP_VERSION), version);
3088 VERIFY0(spa_create(name, nvroot, props, NULL, NULL));
3089 fnvlist_free(nvroot);
3090 fnvlist_free(props);
3091
3092 VERIFY0(spa_open(name, &spa, FTAG));
3093 VERIFY3U(spa_version(spa), ==, version);
3094 newversion = ztest_random_spa_version(version + 1);
3095
3096 if (ztest_opts.zo_verbose >= 4) {
3097 (void) printf("upgrading spa version from "
3098 "%"PRIu64" to %"PRIu64"\n",
3099 version, newversion);
3100 }
3101
3102 spa_upgrade(spa, newversion);
3103 VERIFY3U(spa_version(spa), >, version);
3104 VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config,
3105 zpool_prop_to_name(ZPOOL_PROP_VERSION)));
3106 spa_close(spa, FTAG);
3107
3108 kmem_strfree(name);
3109 mutex_exit(&ztest_vdev_lock);
3110 }
3111
3112 static void
3113 ztest_spa_checkpoint(spa_t *spa)
3114 {
3115 ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
3116
3117 int error = spa_checkpoint(spa->spa_name);
3118
3119 switch (error) {
3120 case 0:
3121 case ZFS_ERR_DEVRM_IN_PROGRESS:
3122 case ZFS_ERR_DISCARDING_CHECKPOINT:
3123 case ZFS_ERR_CHECKPOINT_EXISTS:
3124 break;
3125 case ENOSPC:
3126 ztest_record_enospc(FTAG);
3127 break;
3128 default:
3129 fatal(B_FALSE, "spa_checkpoint(%s) = %d", spa->spa_name, error);
3130 }
3131 }
3132
3133 static void
3134 ztest_spa_discard_checkpoint(spa_t *spa)
3135 {
3136 ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
3137
3138 int error = spa_checkpoint_discard(spa->spa_name);
3139
3140 switch (error) {
3141 case 0:
3142 case ZFS_ERR_DISCARDING_CHECKPOINT:
3143 case ZFS_ERR_NO_CHECKPOINT:
3144 break;
3145 default:
3146 fatal(B_FALSE, "spa_discard_checkpoint(%s) = %d",
3147 spa->spa_name, error);
3148 }
3149
3150 }
3151
3152 void
3153 ztest_spa_checkpoint_create_discard(ztest_ds_t *zd, uint64_t id)
3154 {
3155 (void) zd, (void) id;
3156 spa_t *spa = ztest_spa;
3157
3158 mutex_enter(&ztest_checkpoint_lock);
3159 if (ztest_random(2) == 0) {
3160 ztest_spa_checkpoint(spa);
3161 } else {
3162 ztest_spa_discard_checkpoint(spa);
3163 }
3164 mutex_exit(&ztest_checkpoint_lock);
3165 }
3166
3167
3168 static vdev_t *
3169 vdev_lookup_by_path(vdev_t *vd, const char *path)
3170 {
3171 vdev_t *mvd;
3172 int c;
3173
3174 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
3175 return (vd);
3176
3177 for (c = 0; c < vd->vdev_children; c++)
3178 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
3179 NULL)
3180 return (mvd);
3181
3182 return (NULL);
3183 }
3184
3185 static int
3186 spa_num_top_vdevs(spa_t *spa)
3187 {
3188 vdev_t *rvd = spa->spa_root_vdev;
3189 ASSERT3U(spa_config_held(spa, SCL_VDEV, RW_READER), ==, SCL_VDEV);
3190 return (rvd->vdev_children);
3191 }
3192
3193 /*
3194 * Verify that vdev_add() works as expected.
3195 */
3196 void
3197 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
3198 {
3199 (void) zd, (void) id;
3200 ztest_shared_t *zs = ztest_shared;
3201 spa_t *spa = ztest_spa;
3202 uint64_t leaves;
3203 uint64_t guid;
3204 nvlist_t *nvroot;
3205 int error;
3206
3207 if (ztest_opts.zo_mmp_test)
3208 return;
3209
3210 mutex_enter(&ztest_vdev_lock);
3211 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) *
3212 ztest_opts.zo_raid_children;
3213
3214 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3215
3216 ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
3217
3218 /*
3219 * If we have slogs then remove them 1/4 of the time.
3220 */
3221 if (spa_has_slogs(spa) && ztest_random(4) == 0) {
3222 metaslab_group_t *mg;
3223
3224 /*
3225 * find the first real slog in log allocation class
3226 */
3227 mg = spa_log_class(spa)->mc_allocator[0].mca_rotor;
3228 while (!mg->mg_vd->vdev_islog)
3229 mg = mg->mg_next;
3230
3231 guid = mg->mg_vd->vdev_guid;
3232
3233 spa_config_exit(spa, SCL_VDEV, FTAG);
3234
3235 /*
3236 * We have to grab the zs_name_lock as writer to
3237 * prevent a race between removing a slog (dmu_objset_find)
3238 * and destroying a dataset. Removing the slog will
3239 * grab a reference on the dataset which may cause
3240 * dsl_destroy_head() to fail with EBUSY thus
3241 * leaving the dataset in an inconsistent state.
3242 */
3243 pthread_rwlock_wrlock(&ztest_name_lock);
3244 error = spa_vdev_remove(spa, guid, B_FALSE);
3245 pthread_rwlock_unlock(&ztest_name_lock);
3246
3247 switch (error) {
3248 case 0:
3249 case EEXIST: /* Generic zil_reset() error */
3250 case EBUSY: /* Replay required */
3251 case EACCES: /* Crypto key not loaded */
3252 case ZFS_ERR_CHECKPOINT_EXISTS:
3253 case ZFS_ERR_DISCARDING_CHECKPOINT:
3254 break;
3255 default:
3256 fatal(B_FALSE, "spa_vdev_remove() = %d", error);
3257 }
3258 } else {
3259 spa_config_exit(spa, SCL_VDEV, FTAG);
3260
3261 /*
3262 * Make 1/4 of the devices be log devices
3263 */
3264 nvroot = make_vdev_root(NULL, NULL, NULL,
3265 ztest_opts.zo_vdev_size, 0, (ztest_random(4) == 0) ?
3266 "log" : NULL, ztest_opts.zo_raid_children, zs->zs_mirrors,
3267 1);
3268
3269 error = spa_vdev_add(spa, nvroot);
3270 fnvlist_free(nvroot);
3271
3272 switch (error) {
3273 case 0:
3274 break;
3275 case ENOSPC:
3276 ztest_record_enospc("spa_vdev_add");
3277 break;
3278 default:
3279 fatal(B_FALSE, "spa_vdev_add() = %d", error);
3280 }
3281 }
3282
3283 mutex_exit(&ztest_vdev_lock);
3284 }
3285
3286 void
3287 ztest_vdev_class_add(ztest_ds_t *zd, uint64_t id)
3288 {
3289 (void) zd, (void) id;
3290 ztest_shared_t *zs = ztest_shared;
3291 spa_t *spa = ztest_spa;
3292 uint64_t leaves;
3293 nvlist_t *nvroot;
3294 const char *class = (ztest_random(2) == 0) ?
3295 VDEV_ALLOC_BIAS_SPECIAL : VDEV_ALLOC_BIAS_DEDUP;
3296 int error;
3297
3298 /*
3299 * By default add a special vdev 50% of the time
3300 */
3301 if ((ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_OFF) ||
3302 (ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_RND &&
3303 ztest_random(2) == 0)) {
3304 return;
3305 }
3306
3307 mutex_enter(&ztest_vdev_lock);
3308
3309 /* Only test with mirrors */
3310 if (zs->zs_mirrors < 2) {
3311 mutex_exit(&ztest_vdev_lock);
3312 return;
3313 }
3314
3315 /* requires feature@allocation_classes */
3316 if (!spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)) {
3317 mutex_exit(&ztest_vdev_lock);
3318 return;
3319 }
3320
3321 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) *
3322 ztest_opts.zo_raid_children;
3323
3324 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3325 ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
3326 spa_config_exit(spa, SCL_VDEV, FTAG);
3327
3328 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
3329 class, ztest_opts.zo_raid_children, zs->zs_mirrors, 1);
3330
3331 error = spa_vdev_add(spa, nvroot);
3332 fnvlist_free(nvroot);
3333
3334 if (error == ENOSPC)
3335 ztest_record_enospc("spa_vdev_add");
3336 else if (error != 0)
3337 fatal(B_FALSE, "spa_vdev_add() = %d", error);
3338
3339 /*
3340 * 50% of the time allow small blocks in the special class
3341 */
3342 if (error == 0 &&
3343 spa_special_class(spa)->mc_groups == 1 && ztest_random(2) == 0) {
3344 if (ztest_opts.zo_verbose >= 3)
3345 (void) printf("Enabling special VDEV small blocks\n");
3346 (void) ztest_dsl_prop_set_uint64(zd->zd_name,
3347 ZFS_PROP_SPECIAL_SMALL_BLOCKS, 32768, B_FALSE);
3348 }
3349
3350 mutex_exit(&ztest_vdev_lock);
3351
3352 if (ztest_opts.zo_verbose >= 3) {
3353 metaslab_class_t *mc;
3354
3355 if (strcmp(class, VDEV_ALLOC_BIAS_SPECIAL) == 0)
3356 mc = spa_special_class(spa);
3357 else
3358 mc = spa_dedup_class(spa);
3359 (void) printf("Added a %s mirrored vdev (of %d)\n",
3360 class, (int)mc->mc_groups);
3361 }
3362 }
3363
3364 /*
3365 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
3366 */
3367 void
3368 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
3369 {
3370 (void) zd, (void) id;
3371 ztest_shared_t *zs = ztest_shared;
3372 spa_t *spa = ztest_spa;
3373 vdev_t *rvd = spa->spa_root_vdev;
3374 spa_aux_vdev_t *sav;
3375 const char *aux;
3376 char *path;
3377 uint64_t guid = 0;
3378 int error, ignore_err = 0;
3379
3380 if (ztest_opts.zo_mmp_test)
3381 return;
3382
3383 path = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3384
3385 if (ztest_random(2) == 0) {
3386 sav = &spa->spa_spares;
3387 aux = ZPOOL_CONFIG_SPARES;
3388 } else {
3389 sav = &spa->spa_l2cache;
3390 aux = ZPOOL_CONFIG_L2CACHE;
3391 }
3392
3393 mutex_enter(&ztest_vdev_lock);
3394
3395 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3396
3397 if (sav->sav_count != 0 && ztest_random(4) == 0) {
3398 /*
3399 * Pick a random device to remove.
3400 */
3401 vdev_t *svd = sav->sav_vdevs[ztest_random(sav->sav_count)];
3402
3403 /* dRAID spares cannot be removed; try anyways to see ENOTSUP */
3404 if (strstr(svd->vdev_path, VDEV_TYPE_DRAID) != NULL)
3405 ignore_err = ENOTSUP;
3406
3407 guid = svd->vdev_guid;
3408 } else {
3409 /*
3410 * Find an unused device we can add.
3411 */
3412 zs->zs_vdev_aux = 0;
3413 for (;;) {
3414 int c;
3415 (void) snprintf(path, MAXPATHLEN, ztest_aux_template,
3416 ztest_opts.zo_dir, ztest_opts.zo_pool, aux,
3417 zs->zs_vdev_aux);
3418 for (c = 0; c < sav->sav_count; c++)
3419 if (strcmp(sav->sav_vdevs[c]->vdev_path,
3420 path) == 0)
3421 break;
3422 if (c == sav->sav_count &&
3423 vdev_lookup_by_path(rvd, path) == NULL)
3424 break;
3425 zs->zs_vdev_aux++;
3426 }
3427 }
3428
3429 spa_config_exit(spa, SCL_VDEV, FTAG);
3430
3431 if (guid == 0) {
3432 /*
3433 * Add a new device.
3434 */
3435 nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL,
3436 (ztest_opts.zo_vdev_size * 5) / 4, 0, NULL, 0, 0, 1);
3437 error = spa_vdev_add(spa, nvroot);
3438
3439 switch (error) {
3440 case 0:
3441 break;
3442 default:
3443 fatal(B_FALSE, "spa_vdev_add(%p) = %d", nvroot, error);
3444 }
3445 fnvlist_free(nvroot);
3446 } else {
3447 /*
3448 * Remove an existing device. Sometimes, dirty its
3449 * vdev state first to make sure we handle removal
3450 * of devices that have pending state changes.
3451 */
3452 if (ztest_random(2) == 0)
3453 (void) vdev_online(spa, guid, 0, NULL);
3454
3455 error = spa_vdev_remove(spa, guid, B_FALSE);
3456
3457 switch (error) {
3458 case 0:
3459 case EBUSY:
3460 case ZFS_ERR_CHECKPOINT_EXISTS:
3461 case ZFS_ERR_DISCARDING_CHECKPOINT:
3462 break;
3463 default:
3464 if (error != ignore_err)
3465 fatal(B_FALSE,
3466 "spa_vdev_remove(%"PRIu64") = %d",
3467 guid, error);
3468 }
3469 }
3470
3471 mutex_exit(&ztest_vdev_lock);
3472
3473 umem_free(path, MAXPATHLEN);
3474 }
3475
3476 /*
3477 * split a pool if it has mirror tlvdevs
3478 */
3479 void
3480 ztest_split_pool(ztest_ds_t *zd, uint64_t id)
3481 {
3482 (void) zd, (void) id;
3483 ztest_shared_t *zs = ztest_shared;
3484 spa_t *spa = ztest_spa;
3485 vdev_t *rvd = spa->spa_root_vdev;
3486 nvlist_t *tree, **child, *config, *split, **schild;
3487 uint_t c, children, schildren = 0, lastlogid = 0;
3488 int error = 0;
3489
3490 if (ztest_opts.zo_mmp_test)
3491 return;
3492
3493 mutex_enter(&ztest_vdev_lock);
3494
3495 /* ensure we have a usable config; mirrors of raidz aren't supported */
3496 if (zs->zs_mirrors < 3 || ztest_opts.zo_raid_children > 1) {
3497 mutex_exit(&ztest_vdev_lock);
3498 return;
3499 }
3500
3501 /* clean up the old pool, if any */
3502 (void) spa_destroy("splitp");
3503
3504 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3505
3506 /* generate a config from the existing config */
3507 mutex_enter(&spa->spa_props_lock);
3508 tree = fnvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE);
3509 mutex_exit(&spa->spa_props_lock);
3510
3511 VERIFY0(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN,
3512 &child, &children));
3513
3514 schild = malloc(rvd->vdev_children * sizeof (nvlist_t *));
3515 for (c = 0; c < children; c++) {
3516 vdev_t *tvd = rvd->vdev_child[c];
3517 nvlist_t **mchild;
3518 uint_t mchildren;
3519
3520 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
3521 schild[schildren] = fnvlist_alloc();
3522 fnvlist_add_string(schild[schildren],
3523 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE);
3524 fnvlist_add_uint64(schild[schildren],
3525 ZPOOL_CONFIG_IS_HOLE, 1);
3526 if (lastlogid == 0)
3527 lastlogid = schildren;
3528 ++schildren;
3529 continue;
3530 }
3531 lastlogid = 0;
3532 VERIFY0(nvlist_lookup_nvlist_array(child[c],
3533 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren));
3534 schild[schildren++] = fnvlist_dup(mchild[0]);
3535 }
3536
3537 /* OK, create a config that can be used to split */
3538 split = fnvlist_alloc();
3539 fnvlist_add_string(split, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT);
3540 fnvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN,
3541 (const nvlist_t **)schild, lastlogid != 0 ? lastlogid : schildren);
3542
3543 config = fnvlist_alloc();
3544 fnvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split);
3545
3546 for (c = 0; c < schildren; c++)
3547 fnvlist_free(schild[c]);
3548 free(schild);
3549 fnvlist_free(split);
3550
3551 spa_config_exit(spa, SCL_VDEV, FTAG);
3552
3553 (void) pthread_rwlock_wrlock(&ztest_name_lock);
3554 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
3555 (void) pthread_rwlock_unlock(&ztest_name_lock);
3556
3557 fnvlist_free(config);
3558
3559 if (error == 0) {
3560 (void) printf("successful split - results:\n");
3561 mutex_enter(&spa_namespace_lock);
3562 show_pool_stats(spa);
3563 show_pool_stats(spa_lookup("splitp"));
3564 mutex_exit(&spa_namespace_lock);
3565 ++zs->zs_splits;
3566 --zs->zs_mirrors;
3567 }
3568 mutex_exit(&ztest_vdev_lock);
3569 }
3570
3571 /*
3572 * Verify that we can attach and detach devices.
3573 */
3574 void
3575 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
3576 {
3577 (void) zd, (void) id;
3578 ztest_shared_t *zs = ztest_shared;
3579 spa_t *spa = ztest_spa;
3580 spa_aux_vdev_t *sav = &spa->spa_spares;
3581 vdev_t *rvd = spa->spa_root_vdev;
3582 vdev_t *oldvd, *newvd, *pvd;
3583 nvlist_t *root;
3584 uint64_t leaves;
3585 uint64_t leaf, top;
3586 uint64_t ashift = ztest_get_ashift();
3587 uint64_t oldguid, pguid;
3588 uint64_t oldsize, newsize;
3589 char *oldpath, *newpath;
3590 int replacing;
3591 int oldvd_has_siblings = B_FALSE;
3592 int newvd_is_spare = B_FALSE;
3593 int newvd_is_dspare = B_FALSE;
3594 int oldvd_is_log;
3595 int error, expected_error;
3596
3597 if (ztest_opts.zo_mmp_test)
3598 return;
3599
3600 oldpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3601 newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3602
3603 mutex_enter(&ztest_vdev_lock);
3604 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raid_children;
3605
3606 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3607
3608 /*
3609 * If a vdev is in the process of being removed, its removal may
3610 * finish while we are in progress, leading to an unexpected error
3611 * value. Don't bother trying to attach while we are in the middle
3612 * of removal.
3613 */
3614 if (ztest_device_removal_active) {
3615 spa_config_exit(spa, SCL_ALL, FTAG);
3616 goto out;
3617 }
3618
3619 /*
3620 * Decide whether to do an attach or a replace.
3621 */
3622 replacing = ztest_random(2);
3623
3624 /*
3625 * Pick a random top-level vdev.
3626 */
3627 top = ztest_random_vdev_top(spa, B_TRUE);
3628
3629 /*
3630 * Pick a random leaf within it.
3631 */
3632 leaf = ztest_random(leaves);
3633
3634 /*
3635 * Locate this vdev.
3636 */
3637 oldvd = rvd->vdev_child[top];
3638
3639 /* pick a child from the mirror */
3640 if (zs->zs_mirrors >= 1) {
3641 ASSERT3P(oldvd->vdev_ops, ==, &vdev_mirror_ops);
3642 ASSERT3U(oldvd->vdev_children, >=, zs->zs_mirrors);
3643 oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raid_children];
3644 }
3645
3646 /* pick a child out of the raidz group */
3647 if (ztest_opts.zo_raid_children > 1) {
3648 if (strcmp(oldvd->vdev_ops->vdev_op_type, "raidz") == 0)
3649 ASSERT3P(oldvd->vdev_ops, ==, &vdev_raidz_ops);
3650 else
3651 ASSERT3P(oldvd->vdev_ops, ==, &vdev_draid_ops);
3652 ASSERT3U(oldvd->vdev_children, ==, ztest_opts.zo_raid_children);
3653 oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raid_children];
3654 }
3655
3656 /*
3657 * If we're already doing an attach or replace, oldvd may be a
3658 * mirror vdev -- in which case, pick a random child.
3659 */
3660 while (oldvd->vdev_children != 0) {
3661 oldvd_has_siblings = B_TRUE;
3662 ASSERT3U(oldvd->vdev_children, >=, 2);
3663 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
3664 }
3665
3666 oldguid = oldvd->vdev_guid;
3667 oldsize = vdev_get_min_asize(oldvd);
3668 oldvd_is_log = oldvd->vdev_top->vdev_islog;
3669 (void) strcpy(oldpath, oldvd->vdev_path);
3670 pvd = oldvd->vdev_parent;
3671 pguid = pvd->vdev_guid;
3672
3673 /*
3674 * If oldvd has siblings, then half of the time, detach it. Prior
3675 * to the detach the pool is scrubbed in order to prevent creating
3676 * unrepairable blocks as a result of the data corruption injection.
3677 */
3678 if (oldvd_has_siblings && ztest_random(2) == 0) {
3679 spa_config_exit(spa, SCL_ALL, FTAG);
3680
3681 error = ztest_scrub_impl(spa);
3682 if (error)
3683 goto out;
3684
3685 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
3686 if (error != 0 && error != ENODEV && error != EBUSY &&
3687 error != ENOTSUP && error != ZFS_ERR_CHECKPOINT_EXISTS &&
3688 error != ZFS_ERR_DISCARDING_CHECKPOINT)
3689 fatal(B_FALSE, "detach (%s) returned %d",
3690 oldpath, error);
3691 goto out;
3692 }
3693
3694 /*
3695 * For the new vdev, choose with equal probability between the two
3696 * standard paths (ending in either 'a' or 'b') or a random hot spare.
3697 */
3698 if (sav->sav_count != 0 && ztest_random(3) == 0) {
3699 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
3700 newvd_is_spare = B_TRUE;
3701
3702 if (newvd->vdev_ops == &vdev_draid_spare_ops)
3703 newvd_is_dspare = B_TRUE;
3704
3705 (void) strcpy(newpath, newvd->vdev_path);
3706 } else {
3707 (void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
3708 ztest_opts.zo_dir, ztest_opts.zo_pool,
3709 top * leaves + leaf);
3710 if (ztest_random(2) == 0)
3711 newpath[strlen(newpath) - 1] = 'b';
3712 newvd = vdev_lookup_by_path(rvd, newpath);
3713 }
3714
3715 if (newvd) {
3716 /*
3717 * Reopen to ensure the vdev's asize field isn't stale.
3718 */
3719 vdev_reopen(newvd);
3720 newsize = vdev_get_min_asize(newvd);
3721 } else {
3722 /*
3723 * Make newsize a little bigger or smaller than oldsize.
3724 * If it's smaller, the attach should fail.
3725 * If it's larger, and we're doing a replace,
3726 * we should get dynamic LUN growth when we're done.
3727 */
3728 newsize = 10 * oldsize / (9 + ztest_random(3));
3729 }
3730
3731 /*
3732 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
3733 * unless it's a replace; in that case any non-replacing parent is OK.
3734 *
3735 * If newvd is already part of the pool, it should fail with EBUSY.
3736 *
3737 * If newvd is too small, it should fail with EOVERFLOW.
3738 *
3739 * If newvd is a distributed spare and it's being attached to a
3740 * dRAID which is not its parent it should fail with EINVAL.
3741 */
3742 if (pvd->vdev_ops != &vdev_mirror_ops &&
3743 pvd->vdev_ops != &vdev_root_ops && (!replacing ||
3744 pvd->vdev_ops == &vdev_replacing_ops ||
3745 pvd->vdev_ops == &vdev_spare_ops))
3746 expected_error = ENOTSUP;
3747 else if (newvd_is_spare && (!replacing || oldvd_is_log))
3748 expected_error = ENOTSUP;
3749 else if (newvd == oldvd)
3750 expected_error = replacing ? 0 : EBUSY;
3751 else if (vdev_lookup_by_path(rvd, newpath) != NULL)
3752 expected_error = EBUSY;
3753 else if (!newvd_is_dspare && newsize < oldsize)
3754 expected_error = EOVERFLOW;
3755 else if (ashift > oldvd->vdev_top->vdev_ashift)
3756 expected_error = EDOM;
3757 else if (newvd_is_dspare && pvd != vdev_draid_spare_get_parent(newvd))
3758 expected_error = ENOTSUP;
3759 else
3760 expected_error = 0;
3761
3762 spa_config_exit(spa, SCL_ALL, FTAG);
3763
3764 /*
3765 * Build the nvlist describing newpath.
3766 */
3767 root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0,
3768 ashift, NULL, 0, 0, 1);
3769
3770 /*
3771 * When supported select either a healing or sequential resilver.
3772 */
3773 boolean_t rebuilding = B_FALSE;
3774 if (pvd->vdev_ops == &vdev_mirror_ops ||
3775 pvd->vdev_ops == &vdev_root_ops) {
3776 rebuilding = !!ztest_random(2);
3777 }
3778
3779 error = spa_vdev_attach(spa, oldguid, root, replacing, rebuilding);
3780
3781 fnvlist_free(root);
3782
3783 /*
3784 * If our parent was the replacing vdev, but the replace completed,
3785 * then instead of failing with ENOTSUP we may either succeed,
3786 * fail with ENODEV, or fail with EOVERFLOW.
3787 */
3788 if (expected_error == ENOTSUP &&
3789 (error == 0 || error == ENODEV || error == EOVERFLOW))
3790 expected_error = error;
3791
3792 /*
3793 * If someone grew the LUN, the replacement may be too small.
3794 */
3795 if (error == EOVERFLOW || error == EBUSY)
3796 expected_error = error;
3797
3798 if (error == ZFS_ERR_CHECKPOINT_EXISTS ||
3799 error == ZFS_ERR_DISCARDING_CHECKPOINT ||
3800 error == ZFS_ERR_RESILVER_IN_PROGRESS ||
3801 error == ZFS_ERR_REBUILD_IN_PROGRESS)
3802 expected_error = error;
3803
3804 if (error != expected_error && expected_error != EBUSY) {
3805 fatal(B_FALSE, "attach (%s %"PRIu64", %s %"PRIu64", %d) "
3806 "returned %d, expected %d",
3807 oldpath, oldsize, newpath,
3808 newsize, replacing, error, expected_error);
3809 }
3810 out:
3811 mutex_exit(&ztest_vdev_lock);
3812
3813 umem_free(oldpath, MAXPATHLEN);
3814 umem_free(newpath, MAXPATHLEN);
3815 }
3816
3817 void
3818 ztest_device_removal(ztest_ds_t *zd, uint64_t id)
3819 {
3820 (void) zd, (void) id;
3821 spa_t *spa = ztest_spa;
3822 vdev_t *vd;
3823 uint64_t guid;
3824 int error;
3825
3826 mutex_enter(&ztest_vdev_lock);
3827
3828 if (ztest_device_removal_active) {
3829 mutex_exit(&ztest_vdev_lock);
3830 return;
3831 }
3832
3833 /*
3834 * Remove a random top-level vdev and wait for removal to finish.
3835 */
3836 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3837 vd = vdev_lookup_top(spa, ztest_random_vdev_top(spa, B_FALSE));
3838 guid = vd->vdev_guid;
3839 spa_config_exit(spa, SCL_VDEV, FTAG);
3840
3841 error = spa_vdev_remove(spa, guid, B_FALSE);
3842 if (error == 0) {
3843 ztest_device_removal_active = B_TRUE;
3844 mutex_exit(&ztest_vdev_lock);
3845
3846 /*
3847 * spa->spa_vdev_removal is created in a sync task that
3848 * is initiated via dsl_sync_task_nowait(). Since the
3849 * task may not run before spa_vdev_remove() returns, we
3850 * must wait at least 1 txg to ensure that the removal
3851 * struct has been created.
3852 */
3853 txg_wait_synced(spa_get_dsl(spa), 0);
3854
3855 while (spa->spa_removing_phys.sr_state == DSS_SCANNING)
3856 txg_wait_synced(spa_get_dsl(spa), 0);
3857 } else {
3858 mutex_exit(&ztest_vdev_lock);
3859 return;
3860 }
3861
3862 /*
3863 * The pool needs to be scrubbed after completing device removal.
3864 * Failure to do so may result in checksum errors due to the
3865 * strategy employed by ztest_fault_inject() when selecting which
3866 * offset are redundant and can be damaged.
3867 */
3868 error = spa_scan(spa, POOL_SCAN_SCRUB);
3869 if (error == 0) {
3870 while (dsl_scan_scrubbing(spa_get_dsl(spa)))
3871 txg_wait_synced(spa_get_dsl(spa), 0);
3872 }
3873
3874 mutex_enter(&ztest_vdev_lock);
3875 ztest_device_removal_active = B_FALSE;
3876 mutex_exit(&ztest_vdev_lock);
3877 }
3878
3879 /*
3880 * Callback function which expands the physical size of the vdev.
3881 */
3882 static vdev_t *
3883 grow_vdev(vdev_t *vd, void *arg)
3884 {
3885 spa_t *spa __maybe_unused = vd->vdev_spa;
3886 size_t *newsize = arg;
3887 size_t fsize;
3888 int fd;
3889
3890 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), ==, SCL_STATE);
3891 ASSERT(vd->vdev_ops->vdev_op_leaf);
3892
3893 if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
3894 return (vd);
3895
3896 fsize = lseek(fd, 0, SEEK_END);
3897 VERIFY0(ftruncate(fd, *newsize));
3898
3899 if (ztest_opts.zo_verbose >= 6) {
3900 (void) printf("%s grew from %lu to %lu bytes\n",
3901 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
3902 }
3903 (void) close(fd);
3904 return (NULL);
3905 }
3906
3907 /*
3908 * Callback function which expands a given vdev by calling vdev_online().
3909 */
3910 static vdev_t *
3911 online_vdev(vdev_t *vd, void *arg)
3912 {
3913 (void) arg;
3914 spa_t *spa = vd->vdev_spa;
3915 vdev_t *tvd = vd->vdev_top;
3916 uint64_t guid = vd->vdev_guid;
3917 uint64_t generation = spa->spa_config_generation + 1;
3918 vdev_state_t newstate = VDEV_STATE_UNKNOWN;
3919 int error;
3920
3921 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), ==, SCL_STATE);
3922 ASSERT(vd->vdev_ops->vdev_op_leaf);
3923
3924 /* Calling vdev_online will initialize the new metaslabs */
3925 spa_config_exit(spa, SCL_STATE, spa);
3926 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
3927 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3928
3929 /*
3930 * If vdev_online returned an error or the underlying vdev_open
3931 * failed then we abort the expand. The only way to know that
3932 * vdev_open fails is by checking the returned newstate.
3933 */
3934 if (error || newstate != VDEV_STATE_HEALTHY) {
3935 if (ztest_opts.zo_verbose >= 5) {
3936 (void) printf("Unable to expand vdev, state %u, "
3937 "error %d\n", newstate, error);
3938 }
3939 return (vd);
3940 }
3941 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
3942
3943 /*
3944 * Since we dropped the lock we need to ensure that we're
3945 * still talking to the original vdev. It's possible this
3946 * vdev may have been detached/replaced while we were
3947 * trying to online it.
3948 */
3949 if (generation != spa->spa_config_generation) {
3950 if (ztest_opts.zo_verbose >= 5) {
3951 (void) printf("vdev configuration has changed, "
3952 "guid %"PRIu64", state %"PRIu64", "
3953 "expected gen %"PRIu64", got gen %"PRIu64"\n",
3954 guid,
3955 tvd->vdev_state,
3956 generation,
3957 spa->spa_config_generation);
3958 }
3959 return (vd);
3960 }
3961 return (NULL);
3962 }
3963
3964 /*
3965 * Traverse the vdev tree calling the supplied function.
3966 * We continue to walk the tree until we either have walked all
3967 * children or we receive a non-NULL return from the callback.
3968 * If a NULL callback is passed, then we just return back the first
3969 * leaf vdev we encounter.
3970 */
3971 static vdev_t *
3972 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
3973 {
3974 uint_t c;
3975
3976 if (vd->vdev_ops->vdev_op_leaf) {
3977 if (func == NULL)
3978 return (vd);
3979 else
3980 return (func(vd, arg));
3981 }
3982
3983 for (c = 0; c < vd->vdev_children; c++) {
3984 vdev_t *cvd = vd->vdev_child[c];
3985 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
3986 return (cvd);
3987 }
3988 return (NULL);
3989 }
3990
3991 /*
3992 * Verify that dynamic LUN growth works as expected.
3993 */
3994 void
3995 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
3996 {
3997 (void) zd, (void) id;
3998 spa_t *spa = ztest_spa;
3999 vdev_t *vd, *tvd;
4000 metaslab_class_t *mc;
4001 metaslab_group_t *mg;
4002 size_t psize, newsize;
4003 uint64_t top;
4004 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
4005
4006 mutex_enter(&ztest_checkpoint_lock);
4007 mutex_enter(&ztest_vdev_lock);
4008 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
4009
4010 /*
4011 * If there is a vdev removal in progress, it could complete while
4012 * we are running, in which case we would not be able to verify
4013 * that the metaslab_class space increased (because it decreases
4014 * when the device removal completes).
4015 */
4016 if (ztest_device_removal_active) {
4017 spa_config_exit(spa, SCL_STATE, spa);
4018 mutex_exit(&ztest_vdev_lock);
4019 mutex_exit(&ztest_checkpoint_lock);
4020 return;
4021 }
4022
4023 top = ztest_random_vdev_top(spa, B_TRUE);
4024
4025 tvd = spa->spa_root_vdev->vdev_child[top];
4026 mg = tvd->vdev_mg;
4027 mc = mg->mg_class;
4028 old_ms_count = tvd->vdev_ms_count;
4029 old_class_space = metaslab_class_get_space(mc);
4030
4031 /*
4032 * Determine the size of the first leaf vdev associated with
4033 * our top-level device.
4034 */
4035 vd = vdev_walk_tree(tvd, NULL, NULL);
4036 ASSERT3P(vd, !=, NULL);
4037 ASSERT(vd->vdev_ops->vdev_op_leaf);
4038
4039 psize = vd->vdev_psize;
4040
4041 /*
4042 * We only try to expand the vdev if it's healthy, less than 4x its
4043 * original size, and it has a valid psize.
4044 */
4045 if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
4046 psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) {
4047 spa_config_exit(spa, SCL_STATE, spa);
4048 mutex_exit(&ztest_vdev_lock);
4049 mutex_exit(&ztest_checkpoint_lock);
4050 return;
4051 }
4052 ASSERT3U(psize, >, 0);
4053 newsize = psize + MAX(psize / 8, SPA_MAXBLOCKSIZE);
4054 ASSERT3U(newsize, >, psize);
4055
4056 if (ztest_opts.zo_verbose >= 6) {
4057 (void) printf("Expanding LUN %s from %lu to %lu\n",
4058 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
4059 }
4060
4061 /*
4062 * Growing the vdev is a two step process:
4063 * 1). expand the physical size (i.e. relabel)
4064 * 2). online the vdev to create the new metaslabs
4065 */
4066 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
4067 vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
4068 tvd->vdev_state != VDEV_STATE_HEALTHY) {
4069 if (ztest_opts.zo_verbose >= 5) {
4070 (void) printf("Could not expand LUN because "
4071 "the vdev configuration changed.\n");
4072 }
4073 spa_config_exit(spa, SCL_STATE, spa);
4074 mutex_exit(&ztest_vdev_lock);
4075 mutex_exit(&ztest_checkpoint_lock);
4076 return;
4077 }
4078
4079 spa_config_exit(spa, SCL_STATE, spa);
4080
4081 /*
4082 * Expanding the LUN will update the config asynchronously,
4083 * thus we must wait for the async thread to complete any
4084 * pending tasks before proceeding.
4085 */
4086 for (;;) {
4087 boolean_t done;
4088 mutex_enter(&spa->spa_async_lock);
4089 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
4090 mutex_exit(&spa->spa_async_lock);
4091 if (done)
4092 break;
4093 txg_wait_synced(spa_get_dsl(spa), 0);
4094 (void) poll(NULL, 0, 100);
4095 }
4096
4097 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
4098
4099 tvd = spa->spa_root_vdev->vdev_child[top];
4100 new_ms_count = tvd->vdev_ms_count;
4101 new_class_space = metaslab_class_get_space(mc);
4102
4103 if (tvd->vdev_mg != mg || mg->mg_class != mc) {
4104 if (ztest_opts.zo_verbose >= 5) {
4105 (void) printf("Could not verify LUN expansion due to "
4106 "intervening vdev offline or remove.\n");
4107 }
4108 spa_config_exit(spa, SCL_STATE, spa);
4109 mutex_exit(&ztest_vdev_lock);
4110 mutex_exit(&ztest_checkpoint_lock);
4111 return;
4112 }
4113
4114 /*
4115 * Make sure we were able to grow the vdev.
4116 */
4117 if (new_ms_count <= old_ms_count) {
4118 fatal(B_FALSE,
4119 "LUN expansion failed: ms_count %"PRIu64" < %"PRIu64"\n",
4120 old_ms_count, new_ms_count);
4121 }
4122
4123 /*
4124 * Make sure we were able to grow the pool.
4125 */
4126 if (new_class_space <= old_class_space) {
4127 fatal(B_FALSE,
4128 "LUN expansion failed: class_space %"PRIu64" < %"PRIu64"\n",
4129 old_class_space, new_class_space);
4130 }
4131
4132 if (ztest_opts.zo_verbose >= 5) {
4133 char oldnumbuf[NN_NUMBUF_SZ], newnumbuf[NN_NUMBUF_SZ];
4134
4135 nicenum(old_class_space, oldnumbuf, sizeof (oldnumbuf));
4136 nicenum(new_class_space, newnumbuf, sizeof (newnumbuf));
4137 (void) printf("%s grew from %s to %s\n",
4138 spa->spa_name, oldnumbuf, newnumbuf);
4139 }
4140
4141 spa_config_exit(spa, SCL_STATE, spa);
4142 mutex_exit(&ztest_vdev_lock);
4143 mutex_exit(&ztest_checkpoint_lock);
4144 }
4145
4146 /*
4147 * Verify that dmu_objset_{create,destroy,open,close} work as expected.
4148 */
4149 static void
4150 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
4151 {
4152 (void) arg, (void) cr;
4153
4154 /*
4155 * Create the objects common to all ztest datasets.
4156 */
4157 VERIFY0(zap_create_claim(os, ZTEST_DIROBJ,
4158 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx));
4159 }
4160
4161 static int
4162 ztest_dataset_create(char *dsname)
4163 {
4164 int err;
4165 uint64_t rand;
4166 dsl_crypto_params_t *dcp = NULL;
4167
4168 /*
4169 * 50% of the time, we create encrypted datasets
4170 * using a random cipher suite and a hard-coded
4171 * wrapping key.
4172 */
4173 rand = ztest_random(2);
4174 if (rand != 0) {
4175 nvlist_t *crypto_args = fnvlist_alloc();
4176 nvlist_t *props = fnvlist_alloc();
4177
4178 /* slight bias towards the default cipher suite */
4179 rand = ztest_random(ZIO_CRYPT_FUNCTIONS);
4180 if (rand < ZIO_CRYPT_AES_128_CCM)
4181 rand = ZIO_CRYPT_ON;
4182
4183 fnvlist_add_uint64(props,
4184 zfs_prop_to_name(ZFS_PROP_ENCRYPTION), rand);
4185 fnvlist_add_uint8_array(crypto_args, "wkeydata",
4186 (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
4187
4188 /*
4189 * These parameters aren't really used by the kernel. They
4190 * are simply stored so that userspace knows how to load
4191 * the wrapping key.
4192 */
4193 fnvlist_add_uint64(props,
4194 zfs_prop_to_name(ZFS_PROP_KEYFORMAT), ZFS_KEYFORMAT_RAW);
4195 fnvlist_add_string(props,
4196 zfs_prop_to_name(ZFS_PROP_KEYLOCATION), "prompt");
4197 fnvlist_add_uint64(props,
4198 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 0ULL);
4199 fnvlist_add_uint64(props,
4200 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 0ULL);
4201
4202 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, props,
4203 crypto_args, &dcp));
4204
4205 /*
4206 * Cycle through all available encryption implementations
4207 * to verify interoperability.
4208 */
4209 VERIFY0(gcm_impl_set("cycle"));
4210 VERIFY0(aes_impl_set("cycle"));
4211
4212 fnvlist_free(crypto_args);
4213 fnvlist_free(props);
4214 }
4215
4216 err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, dcp,
4217 ztest_objset_create_cb, NULL);
4218 dsl_crypto_params_free(dcp, !!err);
4219
4220 rand = ztest_random(100);
4221 if (err || rand < 80)
4222 return (err);
4223
4224 if (ztest_opts.zo_verbose >= 5)
4225 (void) printf("Setting dataset %s to sync always\n", dsname);
4226 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
4227 ZFS_SYNC_ALWAYS, B_FALSE));
4228 }
4229
4230 static int
4231 ztest_objset_destroy_cb(const char *name, void *arg)
4232 {
4233 (void) arg;
4234 objset_t *os;
4235 dmu_object_info_t doi;
4236 int error;
4237
4238 /*
4239 * Verify that the dataset contains a directory object.
4240 */
4241 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
4242 B_TRUE, FTAG, &os));
4243 error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
4244 if (error != ENOENT) {
4245 /* We could have crashed in the middle of destroying it */
4246 ASSERT0(error);
4247 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
4248 ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
4249 }
4250 dmu_objset_disown(os, B_TRUE, FTAG);
4251
4252 /*
4253 * Destroy the dataset.
4254 */
4255 if (strchr(name, '@') != NULL) {
4256 error = dsl_destroy_snapshot(name, B_TRUE);
4257 if (error != ECHRNG) {
4258 /*
4259 * The program was executed, but encountered a runtime
4260 * error, such as insufficient slop, or a hold on the
4261 * dataset.
4262 */
4263 ASSERT0(error);
4264 }
4265 } else {
4266 error = dsl_destroy_head(name);
4267 if (error == ENOSPC) {
4268 /* There could be checkpoint or insufficient slop */
4269 ztest_record_enospc(FTAG);
4270 } else if (error != EBUSY) {
4271 /* There could be a hold on this dataset */
4272 ASSERT0(error);
4273 }
4274 }
4275 return (0);
4276 }
4277
4278 static boolean_t
4279 ztest_snapshot_create(char *osname, uint64_t id)
4280 {
4281 char snapname[ZFS_MAX_DATASET_NAME_LEN];
4282 int error;
4283
4284 (void) snprintf(snapname, sizeof (snapname), "%"PRIu64"", id);
4285
4286 error = dmu_objset_snapshot_one(osname, snapname);
4287 if (error == ENOSPC) {
4288 ztest_record_enospc(FTAG);
4289 return (B_FALSE);
4290 }
4291 if (error != 0 && error != EEXIST) {
4292 fatal(B_FALSE, "ztest_snapshot_create(%s@%s) = %d", osname,
4293 snapname, error);
4294 }
4295 return (B_TRUE);
4296 }
4297
4298 static boolean_t
4299 ztest_snapshot_destroy(char *osname, uint64_t id)
4300 {
4301 char snapname[ZFS_MAX_DATASET_NAME_LEN];
4302 int error;
4303
4304 (void) snprintf(snapname, sizeof (snapname), "%s@%"PRIu64"",
4305 osname, id);
4306
4307 error = dsl_destroy_snapshot(snapname, B_FALSE);
4308 if (error != 0 && error != ENOENT)
4309 fatal(B_FALSE, "ztest_snapshot_destroy(%s) = %d",
4310 snapname, error);
4311 return (B_TRUE);
4312 }
4313
4314 void
4315 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
4316 {
4317 (void) zd;
4318 ztest_ds_t *zdtmp;
4319 int iters;
4320 int error;
4321 objset_t *os, *os2;
4322 char name[ZFS_MAX_DATASET_NAME_LEN];
4323 zilog_t *zilog;
4324 int i;
4325
4326 zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
4327
4328 (void) pthread_rwlock_rdlock(&ztest_name_lock);
4329
4330 (void) snprintf(name, sizeof (name), "%s/temp_%"PRIu64"",
4331 ztest_opts.zo_pool, id);
4332
4333 /*
4334 * If this dataset exists from a previous run, process its replay log
4335 * half of the time. If we don't replay it, then dsl_destroy_head()
4336 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
4337 */
4338 if (ztest_random(2) == 0 &&
4339 ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
4340 B_TRUE, FTAG, &os) == 0) {
4341 ztest_zd_init(zdtmp, NULL, os);
4342 zil_replay(os, zdtmp, ztest_replay_vector);
4343 ztest_zd_fini(zdtmp);
4344 dmu_objset_disown(os, B_TRUE, FTAG);
4345 }
4346
4347 /*
4348 * There may be an old instance of the dataset we're about to
4349 * create lying around from a previous run. If so, destroy it
4350 * and all of its snapshots.
4351 */
4352 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
4353 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
4354
4355 /*
4356 * Verify that the destroyed dataset is no longer in the namespace.
4357 */
4358 VERIFY3U(ENOENT, ==, ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
4359 B_TRUE, FTAG, &os));
4360
4361 /*
4362 * Verify that we can create a new dataset.
4363 */
4364 error = ztest_dataset_create(name);
4365 if (error) {
4366 if (error == ENOSPC) {
4367 ztest_record_enospc(FTAG);
4368 goto out;
4369 }
4370 fatal(B_FALSE, "dmu_objset_create(%s) = %d", name, error);
4371 }
4372
4373 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, B_TRUE,
4374 FTAG, &os));
4375
4376 ztest_zd_init(zdtmp, NULL, os);
4377
4378 /*
4379 * Open the intent log for it.
4380 */
4381 zilog = zil_open(os, ztest_get_data, NULL);
4382
4383 /*
4384 * Put some objects in there, do a little I/O to them,
4385 * and randomly take a couple of snapshots along the way.
4386 */
4387 iters = ztest_random(5);
4388 for (i = 0; i < iters; i++) {
4389 ztest_dmu_object_alloc_free(zdtmp, id);
4390 if (ztest_random(iters) == 0)
4391 (void) ztest_snapshot_create(name, i);
4392 }
4393
4394 /*
4395 * Verify that we cannot create an existing dataset.
4396 */
4397 VERIFY3U(EEXIST, ==,
4398 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL, NULL));
4399
4400 /*
4401 * Verify that we can hold an objset that is also owned.
4402 */
4403 VERIFY0(dmu_objset_hold(name, FTAG, &os2));
4404 dmu_objset_rele(os2, FTAG);
4405
4406 /*
4407 * Verify that we cannot own an objset that is already owned.
4408 */
4409 VERIFY3U(EBUSY, ==, ztest_dmu_objset_own(name, DMU_OST_OTHER,
4410 B_FALSE, B_TRUE, FTAG, &os2));
4411
4412 zil_close(zilog);
4413 dmu_objset_disown(os, B_TRUE, FTAG);
4414 ztest_zd_fini(zdtmp);
4415 out:
4416 (void) pthread_rwlock_unlock(&ztest_name_lock);
4417
4418 umem_free(zdtmp, sizeof (ztest_ds_t));
4419 }
4420
4421 /*
4422 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
4423 */
4424 void
4425 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
4426 {
4427 (void) pthread_rwlock_rdlock(&ztest_name_lock);
4428 (void) ztest_snapshot_destroy(zd->zd_name, id);
4429 (void) ztest_snapshot_create(zd->zd_name, id);
4430 (void) pthread_rwlock_unlock(&ztest_name_lock);
4431 }
4432
4433 /*
4434 * Cleanup non-standard snapshots and clones.
4435 */
4436 static void
4437 ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
4438 {
4439 char *snap1name;
4440 char *clone1name;
4441 char *snap2name;
4442 char *clone2name;
4443 char *snap3name;
4444 int error;
4445
4446 snap1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4447 clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4448 snap2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4449 clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4450 snap3name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4451
4452 (void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN, "%s@s1_%"PRIu64"",
4453 osname, id);
4454 (void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN, "%s/c1_%"PRIu64"",
4455 osname, id);
4456 (void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN, "%s@s2_%"PRIu64"",
4457 clone1name, id);
4458 (void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN, "%s/c2_%"PRIu64"",
4459 osname, id);
4460 (void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN, "%s@s3_%"PRIu64"",
4461 clone1name, id);
4462
4463 error = dsl_destroy_head(clone2name);
4464 if (error && error != ENOENT)
4465 fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clone2name, error);
4466 error = dsl_destroy_snapshot(snap3name, B_FALSE);
4467 if (error && error != ENOENT)
4468 fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
4469 snap3name, error);
4470 error = dsl_destroy_snapshot(snap2name, B_FALSE);
4471 if (error && error != ENOENT)
4472 fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
4473 snap2name, error);
4474 error = dsl_destroy_head(clone1name);
4475 if (error && error != ENOENT)
4476 fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clone1name, error);
4477 error = dsl_destroy_snapshot(snap1name, B_FALSE);
4478 if (error && error != ENOENT)
4479 fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
4480 snap1name, error);
4481
4482 umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
4483 umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
4484 umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
4485 umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
4486 umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
4487 }
4488
4489 /*
4490 * Verify dsl_dataset_promote handles EBUSY
4491 */
4492 void
4493 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
4494 {
4495 objset_t *os;
4496 char *snap1name;
4497 char *clone1name;
4498 char *snap2name;
4499 char *clone2name;
4500 char *snap3name;
4501 char *osname = zd->zd_name;
4502 int error;
4503
4504 snap1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4505 clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4506 snap2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4507 clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4508 snap3name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4509
4510 (void) pthread_rwlock_rdlock(&ztest_name_lock);
4511
4512 ztest_dsl_dataset_cleanup(osname, id);
4513
4514 (void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN, "%s@s1_%"PRIu64"",
4515 osname, id);
4516 (void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN, "%s/c1_%"PRIu64"",
4517 osname, id);
4518 (void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN, "%s@s2_%"PRIu64"",
4519 clone1name, id);
4520 (void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN, "%s/c2_%"PRIu64"",
4521 osname, id);
4522 (void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN, "%s@s3_%"PRIu64"",
4523 clone1name, id);
4524
4525 error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1);
4526 if (error && error != EEXIST) {
4527 if (error == ENOSPC) {
4528 ztest_record_enospc(FTAG);
4529 goto out;
4530 }
4531 fatal(B_FALSE, "dmu_take_snapshot(%s) = %d", snap1name, error);
4532 }
4533
4534 error = dmu_objset_clone(clone1name, snap1name);
4535 if (error) {
4536 if (error == ENOSPC) {
4537 ztest_record_enospc(FTAG);
4538 goto out;
4539 }
4540 fatal(B_FALSE, "dmu_objset_create(%s) = %d", clone1name, error);
4541 }
4542
4543 error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1);
4544 if (error && error != EEXIST) {
4545 if (error == ENOSPC) {
4546 ztest_record_enospc(FTAG);
4547 goto out;
4548 }
4549 fatal(B_FALSE, "dmu_open_snapshot(%s) = %d", snap2name, error);
4550 }
4551
4552 error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1);
4553 if (error && error != EEXIST) {
4554 if (error == ENOSPC) {
4555 ztest_record_enospc(FTAG);
4556 goto out;
4557 }
4558 fatal(B_FALSE, "dmu_open_snapshot(%s) = %d", snap3name, error);
4559 }
4560
4561 error = dmu_objset_clone(clone2name, snap3name);
4562 if (error) {
4563 if (error == ENOSPC) {
4564 ztest_record_enospc(FTAG);
4565 goto out;
4566 }
4567 fatal(B_FALSE, "dmu_objset_create(%s) = %d", clone2name, error);
4568 }
4569
4570 error = ztest_dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, B_TRUE,
4571 FTAG, &os);
4572 if (error)
4573 fatal(B_FALSE, "dmu_objset_own(%s) = %d", snap2name, error);
4574 error = dsl_dataset_promote(clone2name, NULL);
4575 if (error == ENOSPC) {
4576 dmu_objset_disown(os, B_TRUE, FTAG);
4577 ztest_record_enospc(FTAG);
4578 goto out;
4579 }
4580 if (error != EBUSY)
4581 fatal(B_FALSE, "dsl_dataset_promote(%s), %d, not EBUSY",
4582 clone2name, error);
4583 dmu_objset_disown(os, B_TRUE, FTAG);
4584
4585 out:
4586 ztest_dsl_dataset_cleanup(osname, id);
4587
4588 (void) pthread_rwlock_unlock(&ztest_name_lock);
4589
4590 umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
4591 umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
4592 umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
4593 umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
4594 umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
4595 }
4596
4597 #undef OD_ARRAY_SIZE
4598 #define OD_ARRAY_SIZE 4
4599
4600 /*
4601 * Verify that dmu_object_{alloc,free} work as expected.
4602 */
4603 void
4604 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
4605 {
4606 ztest_od_t *od;
4607 int batchsize;
4608 int size;
4609 int b;
4610
4611 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
4612 od = umem_alloc(size, UMEM_NOFAIL);
4613 batchsize = OD_ARRAY_SIZE;
4614
4615 for (b = 0; b < batchsize; b++)
4616 ztest_od_init(od + b, id, FTAG, b, DMU_OT_UINT64_OTHER,
4617 0, 0, 0);
4618
4619 /*
4620 * Destroy the previous batch of objects, create a new batch,
4621 * and do some I/O on the new objects.
4622 */
4623 if (ztest_object_init(zd, od, size, B_TRUE) != 0)
4624 return;
4625
4626 while (ztest_random(4 * batchsize) != 0)
4627 ztest_io(zd, od[ztest_random(batchsize)].od_object,
4628 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4629
4630 umem_free(od, size);
4631 }
4632
4633 /*
4634 * Rewind the global allocator to verify object allocation backfilling.
4635 */
4636 void
4637 ztest_dmu_object_next_chunk(ztest_ds_t *zd, uint64_t id)
4638 {
4639 (void) id;
4640 objset_t *os = zd->zd_os;
4641 int dnodes_per_chunk = 1 << dmu_object_alloc_chunk_shift;
4642 uint64_t object;
4643
4644 /*
4645 * Rewind the global allocator randomly back to a lower object number
4646 * to force backfilling and reclamation of recently freed dnodes.
4647 */
4648 mutex_enter(&os->os_obj_lock);
4649 object = ztest_random(os->os_obj_next_chunk);
4650 os->os_obj_next_chunk = P2ALIGN(object, dnodes_per_chunk);
4651 mutex_exit(&os->os_obj_lock);
4652 }
4653
4654 #undef OD_ARRAY_SIZE
4655 #define OD_ARRAY_SIZE 2
4656
4657 /*
4658 * Verify that dmu_{read,write} work as expected.
4659 */
4660 void
4661 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
4662 {
4663 int size;
4664 ztest_od_t *od;
4665
4666 objset_t *os = zd->zd_os;
4667 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
4668 od = umem_alloc(size, UMEM_NOFAIL);
4669 dmu_tx_t *tx;
4670 int freeit, error;
4671 uint64_t i, n, s, txg;
4672 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
4673 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
4674 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
4675 uint64_t regions = 997;
4676 uint64_t stride = 123456789ULL;
4677 uint64_t width = 40;
4678 int free_percent = 5;
4679
4680 /*
4681 * This test uses two objects, packobj and bigobj, that are always
4682 * updated together (i.e. in the same tx) so that their contents are
4683 * in sync and can be compared. Their contents relate to each other
4684 * in a simple way: packobj is a dense array of 'bufwad' structures,
4685 * while bigobj is a sparse array of the same bufwads. Specifically,
4686 * for any index n, there are three bufwads that should be identical:
4687 *
4688 * packobj, at offset n * sizeof (bufwad_t)
4689 * bigobj, at the head of the nth chunk
4690 * bigobj, at the tail of the nth chunk
4691 *
4692 * The chunk size is arbitrary. It doesn't have to be a power of two,
4693 * and it doesn't have any relation to the object blocksize.
4694 * The only requirement is that it can hold at least two bufwads.
4695 *
4696 * Normally, we write the bufwad to each of these locations.
4697 * However, free_percent of the time we instead write zeroes to
4698 * packobj and perform a dmu_free_range() on bigobj. By comparing
4699 * bigobj to packobj, we can verify that the DMU is correctly
4700 * tracking which parts of an object are allocated and free,
4701 * and that the contents of the allocated blocks are correct.
4702 */
4703
4704 /*
4705 * Read the directory info. If it's the first time, set things up.
4706 */
4707 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, chunksize);
4708 ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
4709 chunksize);
4710
4711 if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
4712 umem_free(od, size);
4713 return;
4714 }
4715
4716 bigobj = od[0].od_object;
4717 packobj = od[1].od_object;
4718 chunksize = od[0].od_gen;
4719 ASSERT3U(chunksize, ==, od[1].od_gen);
4720
4721 /*
4722 * Prefetch a random chunk of the big object.
4723 * Our aim here is to get some async reads in flight
4724 * for blocks that we may free below; the DMU should
4725 * handle this race correctly.
4726 */
4727 n = ztest_random(regions) * stride + ztest_random(width);
4728 s = 1 + ztest_random(2 * width - 1);
4729 dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize,
4730 ZIO_PRIORITY_SYNC_READ);
4731
4732 /*
4733 * Pick a random index and compute the offsets into packobj and bigobj.
4734 */
4735 n = ztest_random(regions) * stride + ztest_random(width);
4736 s = 1 + ztest_random(width - 1);
4737
4738 packoff = n * sizeof (bufwad_t);
4739 packsize = s * sizeof (bufwad_t);
4740
4741 bigoff = n * chunksize;
4742 bigsize = s * chunksize;
4743
4744 packbuf = umem_alloc(packsize, UMEM_NOFAIL);
4745 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
4746
4747 /*
4748 * free_percent of the time, free a range of bigobj rather than
4749 * overwriting it.
4750 */
4751 freeit = (ztest_random(100) < free_percent);
4752
4753 /*
4754 * Read the current contents of our objects.
4755 */
4756 error = dmu_read(os, packobj, packoff, packsize, packbuf,
4757 DMU_READ_PREFETCH);
4758 ASSERT0(error);
4759 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
4760 DMU_READ_PREFETCH);
4761 ASSERT0(error);
4762
4763 /*
4764 * Get a tx for the mods to both packobj and bigobj.
4765 */
4766 tx = dmu_tx_create(os);
4767
4768 dmu_tx_hold_write(tx, packobj, packoff, packsize);
4769
4770 if (freeit)
4771 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
4772 else
4773 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
4774
4775 /* This accounts for setting the checksum/compression. */
4776 dmu_tx_hold_bonus(tx, bigobj);
4777
4778 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4779 if (txg == 0) {
4780 umem_free(packbuf, packsize);
4781 umem_free(bigbuf, bigsize);
4782 umem_free(od, size);
4783 return;
4784 }
4785
4786 enum zio_checksum cksum;
4787 do {
4788 cksum = (enum zio_checksum)
4789 ztest_random_dsl_prop(ZFS_PROP_CHECKSUM);
4790 } while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS);
4791 dmu_object_set_checksum(os, bigobj, cksum, tx);
4792
4793 enum zio_compress comp;
4794 do {
4795 comp = (enum zio_compress)
4796 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION);
4797 } while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS);
4798 dmu_object_set_compress(os, bigobj, comp, tx);
4799
4800 /*
4801 * For each index from n to n + s, verify that the existing bufwad
4802 * in packobj matches the bufwads at the head and tail of the
4803 * corresponding chunk in bigobj. Then update all three bufwads
4804 * with the new values we want to write out.
4805 */
4806 for (i = 0; i < s; i++) {
4807 /* LINTED */
4808 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
4809 /* LINTED */
4810 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
4811 /* LINTED */
4812 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
4813
4814 ASSERT3U((uintptr_t)bigH - (uintptr_t)bigbuf, <, bigsize);
4815 ASSERT3U((uintptr_t)bigT - (uintptr_t)bigbuf, <, bigsize);
4816
4817 if (pack->bw_txg > txg)
4818 fatal(B_FALSE,
4819 "future leak: got %"PRIx64", open txg is %"PRIx64"",
4820 pack->bw_txg, txg);
4821
4822 if (pack->bw_data != 0 && pack->bw_index != n + i)
4823 fatal(B_FALSE, "wrong index: "
4824 "got %"PRIx64", wanted %"PRIx64"+%"PRIx64"",
4825 pack->bw_index, n, i);
4826
4827 if (memcmp(pack, bigH, sizeof (bufwad_t)) != 0)
4828 fatal(B_FALSE, "pack/bigH mismatch in %p/%p",
4829 pack, bigH);
4830
4831 if (memcmp(pack, bigT, sizeof (bufwad_t)) != 0)
4832 fatal(B_FALSE, "pack/bigT mismatch in %p/%p",
4833 pack, bigT);
4834
4835 if (freeit) {
4836 memset(pack, 0, sizeof (bufwad_t));
4837 } else {
4838 pack->bw_index = n + i;
4839 pack->bw_txg = txg;
4840 pack->bw_data = 1 + ztest_random(-2ULL);
4841 }
4842 *bigH = *pack;
4843 *bigT = *pack;
4844 }
4845
4846 /*
4847 * We've verified all the old bufwads, and made new ones.
4848 * Now write them out.
4849 */
4850 dmu_write(os, packobj, packoff, packsize, packbuf, tx);
4851
4852 if (freeit) {
4853 if (ztest_opts.zo_verbose >= 7) {
4854 (void) printf("freeing offset %"PRIx64" size %"PRIx64""
4855 " txg %"PRIx64"\n",
4856 bigoff, bigsize, txg);
4857 }
4858 VERIFY0(dmu_free_range(os, bigobj, bigoff, bigsize, tx));
4859 } else {
4860 if (ztest_opts.zo_verbose >= 7) {
4861 (void) printf("writing offset %"PRIx64" size %"PRIx64""
4862 " txg %"PRIx64"\n",
4863 bigoff, bigsize, txg);
4864 }
4865 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);
4866 }
4867
4868 dmu_tx_commit(tx);
4869
4870 /*
4871 * Sanity check the stuff we just wrote.
4872 */
4873 {
4874 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
4875 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
4876
4877 VERIFY0(dmu_read(os, packobj, packoff,
4878 packsize, packcheck, DMU_READ_PREFETCH));
4879 VERIFY0(dmu_read(os, bigobj, bigoff,
4880 bigsize, bigcheck, DMU_READ_PREFETCH));
4881
4882 ASSERT0(memcmp(packbuf, packcheck, packsize));
4883 ASSERT0(memcmp(bigbuf, bigcheck, bigsize));
4884
4885 umem_free(packcheck, packsize);
4886 umem_free(bigcheck, bigsize);
4887 }
4888
4889 umem_free(packbuf, packsize);
4890 umem_free(bigbuf, bigsize);
4891 umem_free(od, size);
4892 }
4893
4894 static void
4895 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
4896 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
4897 {
4898 uint64_t i;
4899 bufwad_t *pack;
4900 bufwad_t *bigH;
4901 bufwad_t *bigT;
4902
4903 /*
4904 * For each index from n to n + s, verify that the existing bufwad
4905 * in packobj matches the bufwads at the head and tail of the
4906 * corresponding chunk in bigobj. Then update all three bufwads
4907 * with the new values we want to write out.
4908 */
4909 for (i = 0; i < s; i++) {
4910 /* LINTED */
4911 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
4912 /* LINTED */
4913 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
4914 /* LINTED */
4915 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
4916
4917 ASSERT3U((uintptr_t)bigH - (uintptr_t)bigbuf, <, bigsize);
4918 ASSERT3U((uintptr_t)bigT - (uintptr_t)bigbuf, <, bigsize);
4919
4920 if (pack->bw_txg > txg)
4921 fatal(B_FALSE,
4922 "future leak: got %"PRIx64", open txg is %"PRIx64"",
4923 pack->bw_txg, txg);
4924
4925 if (pack->bw_data != 0 && pack->bw_index != n + i)
4926 fatal(B_FALSE, "wrong index: "
4927 "got %"PRIx64", wanted %"PRIx64"+%"PRIx64"",
4928 pack->bw_index, n, i);
4929
4930 if (memcmp(pack, bigH, sizeof (bufwad_t)) != 0)
4931 fatal(B_FALSE, "pack/bigH mismatch in %p/%p",
4932 pack, bigH);
4933
4934 if (memcmp(pack, bigT, sizeof (bufwad_t)) != 0)
4935 fatal(B_FALSE, "pack/bigT mismatch in %p/%p",
4936 pack, bigT);
4937
4938 pack->bw_index = n + i;
4939 pack->bw_txg = txg;
4940 pack->bw_data = 1 + ztest_random(-2ULL);
4941
4942 *bigH = *pack;
4943 *bigT = *pack;
4944 }
4945 }
4946
4947 #undef OD_ARRAY_SIZE
4948 #define OD_ARRAY_SIZE 2
4949
4950 void
4951 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
4952 {
4953 objset_t *os = zd->zd_os;
4954 ztest_od_t *od;
4955 dmu_tx_t *tx;
4956 uint64_t i;
4957 int error;
4958 int size;
4959 uint64_t n, s, txg;
4960 bufwad_t *packbuf, *bigbuf;
4961 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
4962 uint64_t blocksize = ztest_random_blocksize();
4963 uint64_t chunksize = blocksize;
4964 uint64_t regions = 997;
4965 uint64_t stride = 123456789ULL;
4966 uint64_t width = 9;
4967 dmu_buf_t *bonus_db;
4968 arc_buf_t **bigbuf_arcbufs;
4969 dmu_object_info_t doi;
4970
4971 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
4972 od = umem_alloc(size, UMEM_NOFAIL);
4973
4974 /*
4975 * This test uses two objects, packobj and bigobj, that are always
4976 * updated together (i.e. in the same tx) so that their contents are
4977 * in sync and can be compared. Their contents relate to each other
4978 * in a simple way: packobj is a dense array of 'bufwad' structures,
4979 * while bigobj is a sparse array of the same bufwads. Specifically,
4980 * for any index n, there are three bufwads that should be identical:
4981 *
4982 * packobj, at offset n * sizeof (bufwad_t)
4983 * bigobj, at the head of the nth chunk
4984 * bigobj, at the tail of the nth chunk
4985 *
4986 * The chunk size is set equal to bigobj block size so that
4987 * dmu_assign_arcbuf_by_dbuf() can be tested for object updates.
4988 */
4989
4990 /*
4991 * Read the directory info. If it's the first time, set things up.
4992 */
4993 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
4994 ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
4995 chunksize);
4996
4997
4998 if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
4999 umem_free(od, size);
5000 return;
5001 }
5002
5003 bigobj = od[0].od_object;
5004 packobj = od[1].od_object;
5005 blocksize = od[0].od_blocksize;
5006 chunksize = blocksize;
5007 ASSERT3U(chunksize, ==, od[1].od_gen);
5008
5009 VERIFY0(dmu_object_info(os, bigobj, &doi));
5010 VERIFY(ISP2(doi.doi_data_block_size));
5011 VERIFY3U(chunksize, ==, doi.doi_data_block_size);
5012 VERIFY3U(chunksize, >=, 2 * sizeof (bufwad_t));
5013
5014 /*
5015 * Pick a random index and compute the offsets into packobj and bigobj.
5016 */
5017 n = ztest_random(regions) * stride + ztest_random(width);
5018 s = 1 + ztest_random(width - 1);
5019
5020 packoff = n * sizeof (bufwad_t);
5021 packsize = s * sizeof (bufwad_t);
5022
5023 bigoff = n * chunksize;
5024 bigsize = s * chunksize;
5025
5026 packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
5027 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
5028
5029 VERIFY0(dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
5030
5031 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
5032
5033 /*
5034 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
5035 * Iteration 1 test zcopy to already referenced dbufs.
5036 * Iteration 2 test zcopy to dirty dbuf in the same txg.
5037 * Iteration 3 test zcopy to dbuf dirty in previous txg.
5038 * Iteration 4 test zcopy when dbuf is no longer dirty.
5039 * Iteration 5 test zcopy when it can't be done.
5040 * Iteration 6 one more zcopy write.
5041 */
5042 for (i = 0; i < 7; i++) {
5043 uint64_t j;
5044 uint64_t off;
5045
5046 /*
5047 * In iteration 5 (i == 5) use arcbufs
5048 * that don't match bigobj blksz to test
5049 * dmu_assign_arcbuf_by_dbuf() when it can't directly
5050 * assign an arcbuf to a dbuf.
5051 */
5052 for (j = 0; j < s; j++) {
5053 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5054 bigbuf_arcbufs[j] =
5055 dmu_request_arcbuf(bonus_db, chunksize);
5056 } else {
5057 bigbuf_arcbufs[2 * j] =
5058 dmu_request_arcbuf(bonus_db, chunksize / 2);
5059 bigbuf_arcbufs[2 * j + 1] =
5060 dmu_request_arcbuf(bonus_db, chunksize / 2);
5061 }
5062 }
5063
5064 /*
5065 * Get a tx for the mods to both packobj and bigobj.
5066 */
5067 tx = dmu_tx_create(os);
5068
5069 dmu_tx_hold_write(tx, packobj, packoff, packsize);
5070 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
5071
5072 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5073 if (txg == 0) {
5074 umem_free(packbuf, packsize);
5075 umem_free(bigbuf, bigsize);
5076 for (j = 0; j < s; j++) {
5077 if (i != 5 ||
5078 chunksize < (SPA_MINBLOCKSIZE * 2)) {
5079 dmu_return_arcbuf(bigbuf_arcbufs[j]);
5080 } else {
5081 dmu_return_arcbuf(
5082 bigbuf_arcbufs[2 * j]);
5083 dmu_return_arcbuf(
5084 bigbuf_arcbufs[2 * j + 1]);
5085 }
5086 }
5087 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
5088 umem_free(od, size);
5089 dmu_buf_rele(bonus_db, FTAG);
5090 return;
5091 }
5092
5093 /*
5094 * 50% of the time don't read objects in the 1st iteration to
5095 * test dmu_assign_arcbuf_by_dbuf() for the case when there are
5096 * no existing dbufs for the specified offsets.
5097 */
5098 if (i != 0 || ztest_random(2) != 0) {
5099 error = dmu_read(os, packobj, packoff,
5100 packsize, packbuf, DMU_READ_PREFETCH);
5101 ASSERT0(error);
5102 error = dmu_read(os, bigobj, bigoff, bigsize,
5103 bigbuf, DMU_READ_PREFETCH);
5104 ASSERT0(error);
5105 }
5106 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
5107 n, chunksize, txg);
5108
5109 /*
5110 * We've verified all the old bufwads, and made new ones.
5111 * Now write them out.
5112 */
5113 dmu_write(os, packobj, packoff, packsize, packbuf, tx);
5114 if (ztest_opts.zo_verbose >= 7) {
5115 (void) printf("writing offset %"PRIx64" size %"PRIx64""
5116 " txg %"PRIx64"\n",
5117 bigoff, bigsize, txg);
5118 }
5119 for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
5120 dmu_buf_t *dbt;
5121 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5122 memcpy(bigbuf_arcbufs[j]->b_data,
5123 (caddr_t)bigbuf + (off - bigoff),
5124 chunksize);
5125 } else {
5126 memcpy(bigbuf_arcbufs[2 * j]->b_data,
5127 (caddr_t)bigbuf + (off - bigoff),
5128 chunksize / 2);
5129 memcpy(bigbuf_arcbufs[2 * j + 1]->b_data,
5130 (caddr_t)bigbuf + (off - bigoff) +
5131 chunksize / 2,
5132 chunksize / 2);
5133 }
5134
5135 if (i == 1) {
5136 VERIFY(dmu_buf_hold(os, bigobj, off,
5137 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0);
5138 }
5139 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5140 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5141 off, bigbuf_arcbufs[j], tx));
5142 } else {
5143 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5144 off, bigbuf_arcbufs[2 * j], tx));
5145 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5146 off + chunksize / 2,
5147 bigbuf_arcbufs[2 * j + 1], tx));
5148 }
5149 if (i == 1) {
5150 dmu_buf_rele(dbt, FTAG);
5151 }
5152 }
5153 dmu_tx_commit(tx);
5154
5155 /*
5156 * Sanity check the stuff we just wrote.
5157 */
5158 {
5159 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
5160 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
5161
5162 VERIFY0(dmu_read(os, packobj, packoff,
5163 packsize, packcheck, DMU_READ_PREFETCH));
5164 VERIFY0(dmu_read(os, bigobj, bigoff,
5165 bigsize, bigcheck, DMU_READ_PREFETCH));
5166
5167 ASSERT0(memcmp(packbuf, packcheck, packsize));
5168 ASSERT0(memcmp(bigbuf, bigcheck, bigsize));
5169
5170 umem_free(packcheck, packsize);
5171 umem_free(bigcheck, bigsize);
5172 }
5173 if (i == 2) {
5174 txg_wait_open(dmu_objset_pool(os), 0, B_TRUE);
5175 } else if (i == 3) {
5176 txg_wait_synced(dmu_objset_pool(os), 0);
5177 }
5178 }
5179
5180 dmu_buf_rele(bonus_db, FTAG);
5181 umem_free(packbuf, packsize);
5182 umem_free(bigbuf, bigsize);
5183 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
5184 umem_free(od, size);
5185 }
5186
5187 void
5188 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
5189 {
5190 (void) id;
5191 ztest_od_t *od;
5192
5193 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5194 uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
5195 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5196
5197 /*
5198 * Have multiple threads write to large offsets in an object
5199 * to verify that parallel writes to an object -- even to the
5200 * same blocks within the object -- doesn't cause any trouble.
5201 */
5202 ztest_od_init(od, ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
5203
5204 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0)
5205 return;
5206
5207 while (ztest_random(10) != 0)
5208 ztest_io(zd, od->od_object, offset);
5209
5210 umem_free(od, sizeof (ztest_od_t));
5211 }
5212
5213 void
5214 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
5215 {
5216 ztest_od_t *od;
5217 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
5218 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5219 uint64_t count = ztest_random(20) + 1;
5220 uint64_t blocksize = ztest_random_blocksize();
5221 void *data;
5222
5223 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5224
5225 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
5226
5227 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5228 !ztest_random(2)) != 0) {
5229 umem_free(od, sizeof (ztest_od_t));
5230 return;
5231 }
5232
5233 if (ztest_truncate(zd, od->od_object, offset, count * blocksize) != 0) {
5234 umem_free(od, sizeof (ztest_od_t));
5235 return;
5236 }
5237
5238 ztest_prealloc(zd, od->od_object, offset, count * blocksize);
5239
5240 data = umem_zalloc(blocksize, UMEM_NOFAIL);
5241
5242 while (ztest_random(count) != 0) {
5243 uint64_t randoff = offset + (ztest_random(count) * blocksize);
5244 if (ztest_write(zd, od->od_object, randoff, blocksize,
5245 data) != 0)
5246 break;
5247 while (ztest_random(4) != 0)
5248 ztest_io(zd, od->od_object, randoff);
5249 }
5250
5251 umem_free(data, blocksize);
5252 umem_free(od, sizeof (ztest_od_t));
5253 }
5254
5255 /*
5256 * Verify that zap_{create,destroy,add,remove,update} work as expected.
5257 */
5258 #define ZTEST_ZAP_MIN_INTS 1
5259 #define ZTEST_ZAP_MAX_INTS 4
5260 #define ZTEST_ZAP_MAX_PROPS 1000
5261
5262 void
5263 ztest_zap(ztest_ds_t *zd, uint64_t id)
5264 {
5265 objset_t *os = zd->zd_os;
5266 ztest_od_t *od;
5267 uint64_t object;
5268 uint64_t txg, last_txg;
5269 uint64_t value[ZTEST_ZAP_MAX_INTS];
5270 uint64_t zl_ints, zl_intsize, prop;
5271 int i, ints;
5272 dmu_tx_t *tx;
5273 char propname[100], txgname[100];
5274 int error;
5275 const char *const hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
5276
5277 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5278 ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
5279
5280 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5281 !ztest_random(2)) != 0)
5282 goto out;
5283
5284 object = od->od_object;
5285
5286 /*
5287 * Generate a known hash collision, and verify that
5288 * we can lookup and remove both entries.
5289 */
5290 tx = dmu_tx_create(os);
5291 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5292 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5293 if (txg == 0)
5294 goto out;
5295 for (i = 0; i < 2; i++) {
5296 value[i] = i;
5297 VERIFY0(zap_add(os, object, hc[i], sizeof (uint64_t),
5298 1, &value[i], tx));
5299 }
5300 for (i = 0; i < 2; i++) {
5301 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
5302 sizeof (uint64_t), 1, &value[i], tx));
5303 VERIFY0(
5304 zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
5305 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5306 ASSERT3U(zl_ints, ==, 1);
5307 }
5308 for (i = 0; i < 2; i++) {
5309 VERIFY0(zap_remove(os, object, hc[i], tx));
5310 }
5311 dmu_tx_commit(tx);
5312
5313 /*
5314 * Generate a bunch of random entries.
5315 */
5316 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
5317
5318 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
5319 (void) sprintf(propname, "prop_%"PRIu64"", prop);
5320 (void) sprintf(txgname, "txg_%"PRIu64"", prop);
5321 memset(value, 0, sizeof (value));
5322 last_txg = 0;
5323
5324 /*
5325 * If these zap entries already exist, validate their contents.
5326 */
5327 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
5328 if (error == 0) {
5329 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5330 ASSERT3U(zl_ints, ==, 1);
5331
5332 VERIFY0(zap_lookup(os, object, txgname, zl_intsize,
5333 zl_ints, &last_txg));
5334
5335 VERIFY0(zap_length(os, object, propname, &zl_intsize,
5336 &zl_ints));
5337
5338 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5339 ASSERT3U(zl_ints, ==, ints);
5340
5341 VERIFY0(zap_lookup(os, object, propname, zl_intsize,
5342 zl_ints, value));
5343
5344 for (i = 0; i < ints; i++) {
5345 ASSERT3U(value[i], ==, last_txg + object + i);
5346 }
5347 } else {
5348 ASSERT3U(error, ==, ENOENT);
5349 }
5350
5351 /*
5352 * Atomically update two entries in our zap object.
5353 * The first is named txg_%llu, and contains the txg
5354 * in which the property was last updated. The second
5355 * is named prop_%llu, and the nth element of its value
5356 * should be txg + object + n.
5357 */
5358 tx = dmu_tx_create(os);
5359 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5360 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5361 if (txg == 0)
5362 goto out;
5363
5364 if (last_txg > txg)
5365 fatal(B_FALSE, "zap future leak: old %"PRIu64" new %"PRIu64"",
5366 last_txg, txg);
5367
5368 for (i = 0; i < ints; i++)
5369 value[i] = txg + object + i;
5370
5371 VERIFY0(zap_update(os, object, txgname, sizeof (uint64_t),
5372 1, &txg, tx));
5373 VERIFY0(zap_update(os, object, propname, sizeof (uint64_t),
5374 ints, value, tx));
5375
5376 dmu_tx_commit(tx);
5377
5378 /*
5379 * Remove a random pair of entries.
5380 */
5381 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
5382 (void) sprintf(propname, "prop_%"PRIu64"", prop);
5383 (void) sprintf(txgname, "txg_%"PRIu64"", prop);
5384
5385 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
5386
5387 if (error == ENOENT)
5388 goto out;
5389
5390 ASSERT0(error);
5391
5392 tx = dmu_tx_create(os);
5393 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5394 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5395 if (txg == 0)
5396 goto out;
5397 VERIFY0(zap_remove(os, object, txgname, tx));
5398 VERIFY0(zap_remove(os, object, propname, tx));
5399 dmu_tx_commit(tx);
5400 out:
5401 umem_free(od, sizeof (ztest_od_t));
5402 }
5403
5404 /*
5405 * Test case to test the upgrading of a microzap to fatzap.
5406 */
5407 void
5408 ztest_fzap(ztest_ds_t *zd, uint64_t id)
5409 {
5410 objset_t *os = zd->zd_os;
5411 ztest_od_t *od;
5412 uint64_t object, txg, value;
5413
5414 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5415 ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
5416
5417 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5418 !ztest_random(2)) != 0)
5419 goto out;
5420 object = od->od_object;
5421
5422 /*
5423 * Add entries to this ZAP and make sure it spills over
5424 * and gets upgraded to a fatzap. Also, since we are adding
5425 * 2050 entries we should see ptrtbl growth and leaf-block split.
5426 */
5427 for (value = 0; value < 2050; value++) {
5428 char name[ZFS_MAX_DATASET_NAME_LEN];
5429 dmu_tx_t *tx;
5430 int error;
5431
5432 (void) snprintf(name, sizeof (name), "fzap-%"PRIu64"-%"PRIu64"",
5433 id, value);
5434
5435 tx = dmu_tx_create(os);
5436 dmu_tx_hold_zap(tx, object, B_TRUE, name);
5437 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5438 if (txg == 0)
5439 goto out;
5440 error = zap_add(os, object, name, sizeof (uint64_t), 1,
5441 &value, tx);
5442 ASSERT(error == 0 || error == EEXIST);
5443 dmu_tx_commit(tx);
5444 }
5445 out:
5446 umem_free(od, sizeof (ztest_od_t));
5447 }
5448
5449 void
5450 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
5451 {
5452 (void) id;
5453 objset_t *os = zd->zd_os;
5454 ztest_od_t *od;
5455 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
5456 dmu_tx_t *tx;
5457 int i, namelen, error;
5458 int micro = ztest_random(2);
5459 char name[20], string_value[20];
5460 void *data;
5461
5462 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5463 ztest_od_init(od, ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0, 0);
5464
5465 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
5466 umem_free(od, sizeof (ztest_od_t));
5467 return;
5468 }
5469
5470 object = od->od_object;
5471
5472 /*
5473 * Generate a random name of the form 'xxx.....' where each
5474 * x is a random printable character and the dots are dots.
5475 * There are 94 such characters, and the name length goes from
5476 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
5477 */
5478 namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
5479
5480 for (i = 0; i < 3; i++)
5481 name[i] = '!' + ztest_random('~' - '!' + 1);
5482 for (; i < namelen - 1; i++)
5483 name[i] = '.';
5484 name[i] = '\0';
5485
5486 if ((namelen & 1) || micro) {
5487 wsize = sizeof (txg);
5488 wc = 1;
5489 data = &txg;
5490 } else {
5491 wsize = 1;
5492 wc = namelen;
5493 data = string_value;
5494 }
5495
5496 count = -1ULL;
5497 VERIFY0(zap_count(os, object, &count));
5498 ASSERT3S(count, !=, -1ULL);
5499
5500 /*
5501 * Select an operation: length, lookup, add, update, remove.
5502 */
5503 i = ztest_random(5);
5504
5505 if (i >= 2) {
5506 tx = dmu_tx_create(os);
5507 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5508 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5509 if (txg == 0) {
5510 umem_free(od, sizeof (ztest_od_t));
5511 return;
5512 }
5513 memcpy(string_value, name, namelen);
5514 } else {
5515 tx = NULL;
5516 txg = 0;
5517 memset(string_value, 0, namelen);
5518 }
5519
5520 switch (i) {
5521
5522 case 0:
5523 error = zap_length(os, object, name, &zl_wsize, &zl_wc);
5524 if (error == 0) {
5525 ASSERT3U(wsize, ==, zl_wsize);
5526 ASSERT3U(wc, ==, zl_wc);
5527 } else {
5528 ASSERT3U(error, ==, ENOENT);
5529 }
5530 break;
5531
5532 case 1:
5533 error = zap_lookup(os, object, name, wsize, wc, data);
5534 if (error == 0) {
5535 if (data == string_value &&
5536 memcmp(name, data, namelen) != 0)
5537 fatal(B_FALSE, "name '%s' != val '%s' len %d",
5538 name, (char *)data, namelen);
5539 } else {
5540 ASSERT3U(error, ==, ENOENT);
5541 }
5542 break;
5543
5544 case 2:
5545 error = zap_add(os, object, name, wsize, wc, data, tx);
5546 ASSERT(error == 0 || error == EEXIST);
5547 break;
5548
5549 case 3:
5550 VERIFY0(zap_update(os, object, name, wsize, wc, data, tx));
5551 break;
5552
5553 case 4:
5554 error = zap_remove(os, object, name, tx);
5555 ASSERT(error == 0 || error == ENOENT);
5556 break;
5557 }
5558
5559 if (tx != NULL)
5560 dmu_tx_commit(tx);
5561
5562 umem_free(od, sizeof (ztest_od_t));
5563 }
5564
5565 /*
5566 * Commit callback data.
5567 */
5568 typedef struct ztest_cb_data {
5569 list_node_t zcd_node;
5570 uint64_t zcd_txg;
5571 int zcd_expected_err;
5572 boolean_t zcd_added;
5573 boolean_t zcd_called;
5574 spa_t *zcd_spa;
5575 } ztest_cb_data_t;
5576
5577 /* This is the actual commit callback function */
5578 static void
5579 ztest_commit_callback(void *arg, int error)
5580 {
5581 ztest_cb_data_t *data = arg;
5582 uint64_t synced_txg;
5583
5584 VERIFY3P(data, !=, NULL);
5585 VERIFY3S(data->zcd_expected_err, ==, error);
5586 VERIFY(!data->zcd_called);
5587
5588 synced_txg = spa_last_synced_txg(data->zcd_spa);
5589 if (data->zcd_txg > synced_txg)
5590 fatal(B_FALSE,
5591 "commit callback of txg %"PRIu64" called prematurely, "
5592 "last synced txg = %"PRIu64"\n",
5593 data->zcd_txg, synced_txg);
5594
5595 data->zcd_called = B_TRUE;
5596
5597 if (error == ECANCELED) {
5598 ASSERT0(data->zcd_txg);
5599 ASSERT(!data->zcd_added);
5600
5601 /*
5602 * The private callback data should be destroyed here, but
5603 * since we are going to check the zcd_called field after
5604 * dmu_tx_abort(), we will destroy it there.
5605 */
5606 return;
5607 }
5608
5609 ASSERT(data->zcd_added);
5610 ASSERT3U(data->zcd_txg, !=, 0);
5611
5612 (void) mutex_enter(&zcl.zcl_callbacks_lock);
5613
5614 /* See if this cb was called more quickly */
5615 if ((synced_txg - data->zcd_txg) < zc_min_txg_delay)
5616 zc_min_txg_delay = synced_txg - data->zcd_txg;
5617
5618 /* Remove our callback from the list */
5619 list_remove(&zcl.zcl_callbacks, data);
5620
5621 (void) mutex_exit(&zcl.zcl_callbacks_lock);
5622
5623 umem_free(data, sizeof (ztest_cb_data_t));
5624 }
5625
5626 /* Allocate and initialize callback data structure */
5627 static ztest_cb_data_t *
5628 ztest_create_cb_data(objset_t *os, uint64_t txg)
5629 {
5630 ztest_cb_data_t *cb_data;
5631
5632 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
5633
5634 cb_data->zcd_txg = txg;
5635 cb_data->zcd_spa = dmu_objset_spa(os);
5636 list_link_init(&cb_data->zcd_node);
5637
5638 return (cb_data);
5639 }
5640
5641 /*
5642 * Commit callback test.
5643 */
5644 void
5645 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
5646 {
5647 objset_t *os = zd->zd_os;
5648 ztest_od_t *od;
5649 dmu_tx_t *tx;
5650 ztest_cb_data_t *cb_data[3], *tmp_cb;
5651 uint64_t old_txg, txg;
5652 int i, error = 0;
5653
5654 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5655 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
5656
5657 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
5658 umem_free(od, sizeof (ztest_od_t));
5659 return;
5660 }
5661
5662 tx = dmu_tx_create(os);
5663
5664 cb_data[0] = ztest_create_cb_data(os, 0);
5665 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
5666
5667 dmu_tx_hold_write(tx, od->od_object, 0, sizeof (uint64_t));
5668
5669 /* Every once in a while, abort the transaction on purpose */
5670 if (ztest_random(100) == 0)
5671 error = -1;
5672
5673 if (!error)
5674 error = dmu_tx_assign(tx, TXG_NOWAIT);
5675
5676 txg = error ? 0 : dmu_tx_get_txg(tx);
5677
5678 cb_data[0]->zcd_txg = txg;
5679 cb_data[1] = ztest_create_cb_data(os, txg);
5680 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
5681
5682 if (error) {
5683 /*
5684 * It's not a strict requirement to call the registered
5685 * callbacks from inside dmu_tx_abort(), but that's what
5686 * it's supposed to happen in the current implementation
5687 * so we will check for that.
5688 */
5689 for (i = 0; i < 2; i++) {
5690 cb_data[i]->zcd_expected_err = ECANCELED;
5691 VERIFY(!cb_data[i]->zcd_called);
5692 }
5693
5694 dmu_tx_abort(tx);
5695
5696 for (i = 0; i < 2; i++) {
5697 VERIFY(cb_data[i]->zcd_called);
5698 umem_free(cb_data[i], sizeof (ztest_cb_data_t));
5699 }
5700
5701 umem_free(od, sizeof (ztest_od_t));
5702 return;
5703 }
5704
5705 cb_data[2] = ztest_create_cb_data(os, txg);
5706 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
5707
5708 /*
5709 * Read existing data to make sure there isn't a future leak.
5710 */
5711 VERIFY0(dmu_read(os, od->od_object, 0, sizeof (uint64_t),
5712 &old_txg, DMU_READ_PREFETCH));
5713
5714 if (old_txg > txg)
5715 fatal(B_FALSE,
5716 "future leak: got %"PRIu64", open txg is %"PRIu64"",
5717 old_txg, txg);
5718
5719 dmu_write(os, od->od_object, 0, sizeof (uint64_t), &txg, tx);
5720
5721 (void) mutex_enter(&zcl.zcl_callbacks_lock);
5722
5723 /*
5724 * Since commit callbacks don't have any ordering requirement and since
5725 * it is theoretically possible for a commit callback to be called
5726 * after an arbitrary amount of time has elapsed since its txg has been
5727 * synced, it is difficult to reliably determine whether a commit
5728 * callback hasn't been called due to high load or due to a flawed
5729 * implementation.
5730 *
5731 * In practice, we will assume that if after a certain number of txgs a
5732 * commit callback hasn't been called, then most likely there's an
5733 * implementation bug..
5734 */
5735 tmp_cb = list_head(&zcl.zcl_callbacks);
5736 if (tmp_cb != NULL &&
5737 tmp_cb->zcd_txg + ZTEST_COMMIT_CB_THRESH < txg) {
5738 fatal(B_FALSE,
5739 "Commit callback threshold exceeded, "
5740 "oldest txg: %"PRIu64", open txg: %"PRIu64"\n",
5741 tmp_cb->zcd_txg, txg);
5742 }
5743
5744 /*
5745 * Let's find the place to insert our callbacks.
5746 *
5747 * Even though the list is ordered by txg, it is possible for the
5748 * insertion point to not be the end because our txg may already be
5749 * quiescing at this point and other callbacks in the open txg
5750 * (from other objsets) may have sneaked in.
5751 */
5752 tmp_cb = list_tail(&zcl.zcl_callbacks);
5753 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
5754 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
5755
5756 /* Add the 3 callbacks to the list */
5757 for (i = 0; i < 3; i++) {
5758 if (tmp_cb == NULL)
5759 list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
5760 else
5761 list_insert_after(&zcl.zcl_callbacks, tmp_cb,
5762 cb_data[i]);
5763
5764 cb_data[i]->zcd_added = B_TRUE;
5765 VERIFY(!cb_data[i]->zcd_called);
5766
5767 tmp_cb = cb_data[i];
5768 }
5769
5770 zc_cb_counter += 3;
5771
5772 (void) mutex_exit(&zcl.zcl_callbacks_lock);
5773
5774 dmu_tx_commit(tx);
5775
5776 umem_free(od, sizeof (ztest_od_t));
5777 }
5778
5779 /*
5780 * Visit each object in the dataset. Verify that its properties
5781 * are consistent what was stored in the block tag when it was created,
5782 * and that its unused bonus buffer space has not been overwritten.
5783 */
5784 void
5785 ztest_verify_dnode_bt(ztest_ds_t *zd, uint64_t id)
5786 {
5787 (void) id;
5788 objset_t *os = zd->zd_os;
5789 uint64_t obj;
5790 int err = 0;
5791
5792 for (obj = 0; err == 0; err = dmu_object_next(os, &obj, FALSE, 0)) {
5793 ztest_block_tag_t *bt = NULL;
5794 dmu_object_info_t doi;
5795 dmu_buf_t *db;
5796
5797 ztest_object_lock(zd, obj, RL_READER);
5798 if (dmu_bonus_hold(os, obj, FTAG, &db) != 0) {
5799 ztest_object_unlock(zd, obj);
5800 continue;
5801 }
5802
5803 dmu_object_info_from_db(db, &doi);
5804 if (doi.doi_bonus_size >= sizeof (*bt))
5805 bt = ztest_bt_bonus(db);
5806
5807 if (bt && bt->bt_magic == BT_MAGIC) {
5808 ztest_bt_verify(bt, os, obj, doi.doi_dnodesize,
5809 bt->bt_offset, bt->bt_gen, bt->bt_txg,
5810 bt->bt_crtxg);
5811 ztest_verify_unused_bonus(db, bt, obj, os, bt->bt_gen);
5812 }
5813
5814 dmu_buf_rele(db, FTAG);
5815 ztest_object_unlock(zd, obj);
5816 }
5817 }
5818
5819 void
5820 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
5821 {
5822 (void) id;
5823 zfs_prop_t proplist[] = {
5824 ZFS_PROP_CHECKSUM,
5825 ZFS_PROP_COMPRESSION,
5826 ZFS_PROP_COPIES,
5827 ZFS_PROP_DEDUP
5828 };
5829
5830 (void) pthread_rwlock_rdlock(&ztest_name_lock);
5831
5832 for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++)
5833 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
5834 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
5835
5836 VERIFY0(ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_RECORDSIZE,
5837 ztest_random_blocksize(), (int)ztest_random(2)));
5838
5839 (void) pthread_rwlock_unlock(&ztest_name_lock);
5840 }
5841
5842 void
5843 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
5844 {
5845 (void) zd, (void) id;
5846 nvlist_t *props = NULL;
5847
5848 (void) pthread_rwlock_rdlock(&ztest_name_lock);
5849
5850 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_AUTOTRIM, ztest_random(2));
5851
5852 VERIFY0(spa_prop_get(ztest_spa, &props));
5853
5854 if (ztest_opts.zo_verbose >= 6)
5855 dump_nvlist(props, 4);
5856
5857 fnvlist_free(props);
5858
5859 (void) pthread_rwlock_unlock(&ztest_name_lock);
5860 }
5861
5862 static int
5863 user_release_one(const char *snapname, const char *holdname)
5864 {
5865 nvlist_t *snaps, *holds;
5866 int error;
5867
5868 snaps = fnvlist_alloc();
5869 holds = fnvlist_alloc();
5870 fnvlist_add_boolean(holds, holdname);
5871 fnvlist_add_nvlist(snaps, snapname, holds);
5872 fnvlist_free(holds);
5873 error = dsl_dataset_user_release(snaps, NULL);
5874 fnvlist_free(snaps);
5875 return (error);
5876 }
5877
5878 /*
5879 * Test snapshot hold/release and deferred destroy.
5880 */
5881 void
5882 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
5883 {
5884 int error;
5885 objset_t *os = zd->zd_os;
5886 objset_t *origin;
5887 char snapname[100];
5888 char fullname[100];
5889 char clonename[100];
5890 char tag[100];
5891 char osname[ZFS_MAX_DATASET_NAME_LEN];
5892 nvlist_t *holds;
5893
5894 (void) pthread_rwlock_rdlock(&ztest_name_lock);
5895
5896 dmu_objset_name(os, osname);
5897
5898 (void) snprintf(snapname, sizeof (snapname), "sh1_%"PRIu64"", id);
5899 (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname);
5900 (void) snprintf(clonename, sizeof (clonename), "%s/ch1_%"PRIu64"",
5901 osname, id);
5902 (void) snprintf(tag, sizeof (tag), "tag_%"PRIu64"", id);
5903
5904 /*
5905 * Clean up from any previous run.
5906 */
5907 error = dsl_destroy_head(clonename);
5908 if (error != ENOENT)
5909 ASSERT0(error);
5910 error = user_release_one(fullname, tag);
5911 if (error != ESRCH && error != ENOENT)
5912 ASSERT0(error);
5913 error = dsl_destroy_snapshot(fullname, B_FALSE);
5914 if (error != ENOENT)
5915 ASSERT0(error);
5916
5917 /*
5918 * Create snapshot, clone it, mark snap for deferred destroy,
5919 * destroy clone, verify snap was also destroyed.
5920 */
5921 error = dmu_objset_snapshot_one(osname, snapname);
5922 if (error) {
5923 if (error == ENOSPC) {
5924 ztest_record_enospc("dmu_objset_snapshot");
5925 goto out;
5926 }
5927 fatal(B_FALSE, "dmu_objset_snapshot(%s) = %d", fullname, error);
5928 }
5929
5930 error = dmu_objset_clone(clonename, fullname);
5931 if (error) {
5932 if (error == ENOSPC) {
5933 ztest_record_enospc("dmu_objset_clone");
5934 goto out;
5935 }
5936 fatal(B_FALSE, "dmu_objset_clone(%s) = %d", clonename, error);
5937 }
5938
5939 error = dsl_destroy_snapshot(fullname, B_TRUE);
5940 if (error) {
5941 fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
5942 fullname, error);
5943 }
5944
5945 error = dsl_destroy_head(clonename);
5946 if (error)
5947 fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clonename, error);
5948
5949 error = dmu_objset_hold(fullname, FTAG, &origin);
5950 if (error != ENOENT)
5951 fatal(B_FALSE, "dmu_objset_hold(%s) = %d", fullname, error);
5952
5953 /*
5954 * Create snapshot, add temporary hold, verify that we can't
5955 * destroy a held snapshot, mark for deferred destroy,
5956 * release hold, verify snapshot was destroyed.
5957 */
5958 error = dmu_objset_snapshot_one(osname, snapname);
5959 if (error) {
5960 if (error == ENOSPC) {
5961 ztest_record_enospc("dmu_objset_snapshot");
5962 goto out;
5963 }
5964 fatal(B_FALSE, "dmu_objset_snapshot(%s) = %d", fullname, error);
5965 }
5966
5967 holds = fnvlist_alloc();
5968 fnvlist_add_string(holds, fullname, tag);
5969 error = dsl_dataset_user_hold(holds, 0, NULL);
5970 fnvlist_free(holds);
5971
5972 if (error == ENOSPC) {
5973 ztest_record_enospc("dsl_dataset_user_hold");
5974 goto out;
5975 } else if (error) {
5976 fatal(B_FALSE, "dsl_dataset_user_hold(%s, %s) = %u",
5977 fullname, tag, error);
5978 }
5979
5980 error = dsl_destroy_snapshot(fullname, B_FALSE);
5981 if (error != EBUSY) {
5982 fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
5983 fullname, error);
5984 }
5985
5986 error = dsl_destroy_snapshot(fullname, B_TRUE);
5987 if (error) {
5988 fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
5989 fullname, error);
5990 }
5991
5992 error = user_release_one(fullname, tag);
5993 if (error)
5994 fatal(B_FALSE, "user_release_one(%s, %s) = %d",
5995 fullname, tag, error);
5996
5997 VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT);
5998
5999 out:
6000 (void) pthread_rwlock_unlock(&ztest_name_lock);
6001 }
6002
6003 /*
6004 * Inject random faults into the on-disk data.
6005 */
6006 void
6007 ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
6008 {
6009 (void) zd, (void) id;
6010 ztest_shared_t *zs = ztest_shared;
6011 spa_t *spa = ztest_spa;
6012 int fd;
6013 uint64_t offset;
6014 uint64_t leaves;
6015 uint64_t bad = 0x1990c0ffeedecadeull;
6016 uint64_t top, leaf;
6017 char *path0;
6018 char *pathrand;
6019 size_t fsize;
6020 int bshift = SPA_MAXBLOCKSHIFT + 2;
6021 int iters = 1000;
6022 int maxfaults;
6023 int mirror_save;
6024 vdev_t *vd0 = NULL;
6025 uint64_t guid0 = 0;
6026 boolean_t islog = B_FALSE;
6027
6028 path0 = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6029 pathrand = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6030
6031 mutex_enter(&ztest_vdev_lock);
6032
6033 /*
6034 * Device removal is in progress, fault injection must be disabled
6035 * until it completes and the pool is scrubbed. The fault injection
6036 * strategy for damaging blocks does not take in to account evacuated
6037 * blocks which may have already been damaged.
6038 */
6039 if (ztest_device_removal_active) {
6040 mutex_exit(&ztest_vdev_lock);
6041 goto out;
6042 }
6043
6044 maxfaults = MAXFAULTS(zs);
6045 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raid_children;
6046 mirror_save = zs->zs_mirrors;
6047 mutex_exit(&ztest_vdev_lock);
6048
6049 ASSERT3U(leaves, >=, 1);
6050
6051 /*
6052 * While ztest is running the number of leaves will not change. This
6053 * is critical for the fault injection logic as it determines where
6054 * errors can be safely injected such that they are always repairable.
6055 *
6056 * When restarting ztest a different number of leaves may be requested
6057 * which will shift the regions to be damaged. This is fine as long
6058 * as the pool has been scrubbed prior to using the new mapping.
6059 * Failure to do can result in non-repairable damage being injected.
6060 */
6061 if (ztest_pool_scrubbed == B_FALSE)
6062 goto out;
6063
6064 /*
6065 * Grab the name lock as reader. There are some operations
6066 * which don't like to have their vdevs changed while
6067 * they are in progress (i.e. spa_change_guid). Those
6068 * operations will have grabbed the name lock as writer.
6069 */
6070 (void) pthread_rwlock_rdlock(&ztest_name_lock);
6071
6072 /*
6073 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
6074 */
6075 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6076
6077 if (ztest_random(2) == 0) {
6078 /*
6079 * Inject errors on a normal data device or slog device.
6080 */
6081 top = ztest_random_vdev_top(spa, B_TRUE);
6082 leaf = ztest_random(leaves) + zs->zs_splits;
6083
6084 /*
6085 * Generate paths to the first leaf in this top-level vdev,
6086 * and to the random leaf we selected. We'll induce transient
6087 * write failures and random online/offline activity on leaf 0,
6088 * and we'll write random garbage to the randomly chosen leaf.
6089 */
6090 (void) snprintf(path0, MAXPATHLEN, ztest_dev_template,
6091 ztest_opts.zo_dir, ztest_opts.zo_pool,
6092 top * leaves + zs->zs_splits);
6093 (void) snprintf(pathrand, MAXPATHLEN, ztest_dev_template,
6094 ztest_opts.zo_dir, ztest_opts.zo_pool,
6095 top * leaves + leaf);
6096
6097 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
6098 if (vd0 != NULL && vd0->vdev_top->vdev_islog)
6099 islog = B_TRUE;
6100
6101 /*
6102 * If the top-level vdev needs to be resilvered
6103 * then we only allow faults on the device that is
6104 * resilvering.
6105 */
6106 if (vd0 != NULL && maxfaults != 1 &&
6107 (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) ||
6108 vd0->vdev_resilver_txg != 0)) {
6109 /*
6110 * Make vd0 explicitly claim to be unreadable,
6111 * or unwritable, or reach behind its back
6112 * and close the underlying fd. We can do this if
6113 * maxfaults == 0 because we'll fail and reexecute,
6114 * and we can do it if maxfaults >= 2 because we'll
6115 * have enough redundancy. If maxfaults == 1, the
6116 * combination of this with injection of random data
6117 * corruption below exceeds the pool's fault tolerance.
6118 */
6119 vdev_file_t *vf = vd0->vdev_tsd;
6120
6121 zfs_dbgmsg("injecting fault to vdev %llu; maxfaults=%d",
6122 (long long)vd0->vdev_id, (int)maxfaults);
6123
6124 if (vf != NULL && ztest_random(3) == 0) {
6125 (void) close(vf->vf_file->f_fd);
6126 vf->vf_file->f_fd = -1;
6127 } else if (ztest_random(2) == 0) {
6128 vd0->vdev_cant_read = B_TRUE;
6129 } else {
6130 vd0->vdev_cant_write = B_TRUE;
6131 }
6132 guid0 = vd0->vdev_guid;
6133 }
6134 } else {
6135 /*
6136 * Inject errors on an l2cache device.
6137 */
6138 spa_aux_vdev_t *sav = &spa->spa_l2cache;
6139
6140 if (sav->sav_count == 0) {
6141 spa_config_exit(spa, SCL_STATE, FTAG);
6142 (void) pthread_rwlock_unlock(&ztest_name_lock);
6143 goto out;
6144 }
6145 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
6146 guid0 = vd0->vdev_guid;
6147 (void) strcpy(path0, vd0->vdev_path);
6148 (void) strcpy(pathrand, vd0->vdev_path);
6149
6150 leaf = 0;
6151 leaves = 1;
6152 maxfaults = INT_MAX; /* no limit on cache devices */
6153 }
6154
6155 spa_config_exit(spa, SCL_STATE, FTAG);
6156 (void) pthread_rwlock_unlock(&ztest_name_lock);
6157
6158 /*
6159 * If we can tolerate two or more faults, or we're dealing
6160 * with a slog, randomly online/offline vd0.
6161 */
6162 if ((maxfaults >= 2 || islog) && guid0 != 0) {
6163 if (ztest_random(10) < 6) {
6164 int flags = (ztest_random(2) == 0 ?
6165 ZFS_OFFLINE_TEMPORARY : 0);
6166
6167 /*
6168 * We have to grab the zs_name_lock as writer to
6169 * prevent a race between offlining a slog and
6170 * destroying a dataset. Offlining the slog will
6171 * grab a reference on the dataset which may cause
6172 * dsl_destroy_head() to fail with EBUSY thus
6173 * leaving the dataset in an inconsistent state.
6174 */
6175 if (islog)
6176 (void) pthread_rwlock_wrlock(&ztest_name_lock);
6177
6178 VERIFY3U(vdev_offline(spa, guid0, flags), !=, EBUSY);
6179
6180 if (islog)
6181 (void) pthread_rwlock_unlock(&ztest_name_lock);
6182 } else {
6183 /*
6184 * Ideally we would like to be able to randomly
6185 * call vdev_[on|off]line without holding locks
6186 * to force unpredictable failures but the side
6187 * effects of vdev_[on|off]line prevent us from
6188 * doing so. We grab the ztest_vdev_lock here to
6189 * prevent a race between injection testing and
6190 * aux_vdev removal.
6191 */
6192 mutex_enter(&ztest_vdev_lock);
6193 (void) vdev_online(spa, guid0, 0, NULL);
6194 mutex_exit(&ztest_vdev_lock);
6195 }
6196 }
6197
6198 if (maxfaults == 0)
6199 goto out;
6200
6201 /*
6202 * We have at least single-fault tolerance, so inject data corruption.
6203 */
6204 fd = open(pathrand, O_RDWR);
6205
6206 if (fd == -1) /* we hit a gap in the device namespace */
6207 goto out;
6208
6209 fsize = lseek(fd, 0, SEEK_END);
6210
6211 while (--iters != 0) {
6212 /*
6213 * The offset must be chosen carefully to ensure that
6214 * we do not inject a given logical block with errors
6215 * on two different leaf devices, because ZFS can not
6216 * tolerate that (if maxfaults==1).
6217 *
6218 * To achieve this we divide each leaf device into
6219 * chunks of size (# leaves * SPA_MAXBLOCKSIZE * 4).
6220 * Each chunk is further divided into error-injection
6221 * ranges (can accept errors) and clear ranges (we do
6222 * not inject errors in those). Each error-injection
6223 * range can accept errors only for a single leaf vdev.
6224 * Error-injection ranges are separated by clear ranges.
6225 *
6226 * For example, with 3 leaves, each chunk looks like:
6227 * 0 to 32M: injection range for leaf 0
6228 * 32M to 64M: clear range - no injection allowed
6229 * 64M to 96M: injection range for leaf 1
6230 * 96M to 128M: clear range - no injection allowed
6231 * 128M to 160M: injection range for leaf 2
6232 * 160M to 192M: clear range - no injection allowed
6233 *
6234 * Each clear range must be large enough such that a
6235 * single block cannot straddle it. This way a block
6236 * can't be a target in two different injection ranges
6237 * (on different leaf vdevs).
6238 */
6239 offset = ztest_random(fsize / (leaves << bshift)) *
6240 (leaves << bshift) + (leaf << bshift) +
6241 (ztest_random(1ULL << (bshift - 1)) & -8ULL);
6242
6243 /*
6244 * Only allow damage to the labels at one end of the vdev.
6245 *
6246 * If all labels are damaged, the device will be totally
6247 * inaccessible, which will result in loss of data,
6248 * because we also damage (parts of) the other side of
6249 * the mirror/raidz.
6250 *
6251 * Additionally, we will always have both an even and an
6252 * odd label, so that we can handle crashes in the
6253 * middle of vdev_config_sync().
6254 */
6255 if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE)
6256 continue;
6257
6258 /*
6259 * The two end labels are stored at the "end" of the disk, but
6260 * the end of the disk (vdev_psize) is aligned to
6261 * sizeof (vdev_label_t).
6262 */
6263 uint64_t psize = P2ALIGN(fsize, sizeof (vdev_label_t));
6264 if ((leaf & 1) == 1 &&
6265 offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE)
6266 continue;
6267
6268 mutex_enter(&ztest_vdev_lock);
6269 if (mirror_save != zs->zs_mirrors) {
6270 mutex_exit(&ztest_vdev_lock);
6271 (void) close(fd);
6272 goto out;
6273 }
6274
6275 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
6276 fatal(B_TRUE,
6277 "can't inject bad word at 0x%"PRIx64" in %s",
6278 offset, pathrand);
6279
6280 mutex_exit(&ztest_vdev_lock);
6281
6282 if (ztest_opts.zo_verbose >= 7)
6283 (void) printf("injected bad word into %s,"
6284 " offset 0x%"PRIx64"\n", pathrand, offset);
6285 }
6286
6287 (void) close(fd);
6288 out:
6289 umem_free(path0, MAXPATHLEN);
6290 umem_free(pathrand, MAXPATHLEN);
6291 }
6292
6293 /*
6294 * By design ztest will never inject uncorrectable damage in to the pool.
6295 * Issue a scrub, wait for it to complete, and verify there is never any
6296 * persistent damage.
6297 *
6298 * Only after a full scrub has been completed is it safe to start injecting
6299 * data corruption. See the comment in zfs_fault_inject().
6300 */
6301 static int
6302 ztest_scrub_impl(spa_t *spa)
6303 {
6304 int error = spa_scan(spa, POOL_SCAN_SCRUB);
6305 if (error)
6306 return (error);
6307
6308 while (dsl_scan_scrubbing(spa_get_dsl(spa)))
6309 txg_wait_synced(spa_get_dsl(spa), 0);
6310
6311 if (spa_get_errlog_size(spa) > 0)
6312 return (ECKSUM);
6313
6314 ztest_pool_scrubbed = B_TRUE;
6315
6316 return (0);
6317 }
6318
6319 /*
6320 * Scrub the pool.
6321 */
6322 void
6323 ztest_scrub(ztest_ds_t *zd, uint64_t id)
6324 {
6325 (void) zd, (void) id;
6326 spa_t *spa = ztest_spa;
6327 int error;
6328
6329 /*
6330 * Scrub in progress by device removal.
6331 */
6332 if (ztest_device_removal_active)
6333 return;
6334
6335 /*
6336 * Start a scrub, wait a moment, then force a restart.
6337 */
6338 (void) spa_scan(spa, POOL_SCAN_SCRUB);
6339 (void) poll(NULL, 0, 100);
6340
6341 error = ztest_scrub_impl(spa);
6342 if (error == EBUSY)
6343 error = 0;
6344 ASSERT0(error);
6345 }
6346
6347 /*
6348 * Change the guid for the pool.
6349 */
6350 void
6351 ztest_reguid(ztest_ds_t *zd, uint64_t id)
6352 {
6353 (void) zd, (void) id;
6354 spa_t *spa = ztest_spa;
6355 uint64_t orig, load;
6356 int error;
6357
6358 if (ztest_opts.zo_mmp_test)
6359 return;
6360
6361 orig = spa_guid(spa);
6362 load = spa_load_guid(spa);
6363
6364 (void) pthread_rwlock_wrlock(&ztest_name_lock);
6365 error = spa_change_guid(spa);
6366 (void) pthread_rwlock_unlock(&ztest_name_lock);
6367
6368 if (error != 0)
6369 return;
6370
6371 if (ztest_opts.zo_verbose >= 4) {
6372 (void) printf("Changed guid old %"PRIu64" -> %"PRIu64"\n",
6373 orig, spa_guid(spa));
6374 }
6375
6376 VERIFY3U(orig, !=, spa_guid(spa));
6377 VERIFY3U(load, ==, spa_load_guid(spa));
6378 }
6379
6380 void
6381 ztest_blake3(ztest_ds_t *zd, uint64_t id)
6382 {
6383 (void) zd, (void) id;
6384 hrtime_t end = gethrtime() + NANOSEC;
6385 zio_cksum_salt_t salt;
6386 void *salt_ptr = &salt.zcs_bytes;
6387 struct abd *abd_data, *abd_meta;
6388 void *buf, *templ;
6389 int i, *ptr;
6390 uint32_t size;
6391 BLAKE3_CTX ctx;
6392
6393 size = ztest_random_blocksize();
6394 buf = umem_alloc(size, UMEM_NOFAIL);
6395 abd_data = abd_alloc(size, B_FALSE);
6396 abd_meta = abd_alloc(size, B_TRUE);
6397
6398 for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6399 *ptr = ztest_random(UINT_MAX);
6400 memset(salt_ptr, 'A', 32);
6401
6402 abd_copy_from_buf_off(abd_data, buf, 0, size);
6403 abd_copy_from_buf_off(abd_meta, buf, 0, size);
6404
6405 while (gethrtime() <= end) {
6406 int run_count = 100;
6407 zio_cksum_t zc_ref1, zc_ref2;
6408 zio_cksum_t zc_res1, zc_res2;
6409
6410 void *ref1 = &zc_ref1;
6411 void *ref2 = &zc_ref2;
6412 void *res1 = &zc_res1;
6413 void *res2 = &zc_res2;
6414
6415 /* BLAKE3_KEY_LEN = 32 */
6416 VERIFY0(blake3_impl_setname("generic"));
6417 templ = abd_checksum_blake3_tmpl_init(&salt);
6418 Blake3_InitKeyed(&ctx, salt_ptr);
6419 Blake3_Update(&ctx, buf, size);
6420 Blake3_Final(&ctx, ref1);
6421 zc_ref2 = zc_ref1;
6422 ZIO_CHECKSUM_BSWAP(&zc_ref2);
6423 abd_checksum_blake3_tmpl_free(templ);
6424
6425 VERIFY0(blake3_impl_setname("cycle"));
6426 while (run_count-- > 0) {
6427
6428 /* Test current implementation */
6429 Blake3_InitKeyed(&ctx, salt_ptr);
6430 Blake3_Update(&ctx, buf, size);
6431 Blake3_Final(&ctx, res1);
6432 zc_res2 = zc_res1;
6433 ZIO_CHECKSUM_BSWAP(&zc_res2);
6434
6435 VERIFY0(memcmp(ref1, res1, 32));
6436 VERIFY0(memcmp(ref2, res2, 32));
6437
6438 /* Test ABD - data */
6439 templ = abd_checksum_blake3_tmpl_init(&salt);
6440 abd_checksum_blake3_native(abd_data, size,
6441 templ, &zc_res1);
6442 abd_checksum_blake3_byteswap(abd_data, size,
6443 templ, &zc_res2);
6444
6445 VERIFY0(memcmp(ref1, res1, 32));
6446 VERIFY0(memcmp(ref2, res2, 32));
6447
6448 /* Test ABD - metadata */
6449 abd_checksum_blake3_native(abd_meta, size,
6450 templ, &zc_res1);
6451 abd_checksum_blake3_byteswap(abd_meta, size,
6452 templ, &zc_res2);
6453 abd_checksum_blake3_tmpl_free(templ);
6454
6455 VERIFY0(memcmp(ref1, res1, 32));
6456 VERIFY0(memcmp(ref2, res2, 32));
6457
6458 }
6459 }
6460
6461 abd_free(abd_data);
6462 abd_free(abd_meta);
6463 umem_free(buf, size);
6464 }
6465
6466 void
6467 ztest_fletcher(ztest_ds_t *zd, uint64_t id)
6468 {
6469 (void) zd, (void) id;
6470 hrtime_t end = gethrtime() + NANOSEC;
6471
6472 while (gethrtime() <= end) {
6473 int run_count = 100;
6474 void *buf;
6475 struct abd *abd_data, *abd_meta;
6476 uint32_t size;
6477 int *ptr;
6478 int i;
6479 zio_cksum_t zc_ref;
6480 zio_cksum_t zc_ref_byteswap;
6481
6482 size = ztest_random_blocksize();
6483
6484 buf = umem_alloc(size, UMEM_NOFAIL);
6485 abd_data = abd_alloc(size, B_FALSE);
6486 abd_meta = abd_alloc(size, B_TRUE);
6487
6488 for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6489 *ptr = ztest_random(UINT_MAX);
6490
6491 abd_copy_from_buf_off(abd_data, buf, 0, size);
6492 abd_copy_from_buf_off(abd_meta, buf, 0, size);
6493
6494 VERIFY0(fletcher_4_impl_set("scalar"));
6495 fletcher_4_native(buf, size, NULL, &zc_ref);
6496 fletcher_4_byteswap(buf, size, NULL, &zc_ref_byteswap);
6497
6498 VERIFY0(fletcher_4_impl_set("cycle"));
6499 while (run_count-- > 0) {
6500 zio_cksum_t zc;
6501 zio_cksum_t zc_byteswap;
6502
6503 fletcher_4_byteswap(buf, size, NULL, &zc_byteswap);
6504 fletcher_4_native(buf, size, NULL, &zc);
6505
6506 VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
6507 VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
6508 sizeof (zc_byteswap)));
6509
6510 /* Test ABD - data */
6511 abd_fletcher_4_byteswap(abd_data, size, NULL,
6512 &zc_byteswap);
6513 abd_fletcher_4_native(abd_data, size, NULL, &zc);
6514
6515 VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
6516 VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
6517 sizeof (zc_byteswap)));
6518
6519 /* Test ABD - metadata */
6520 abd_fletcher_4_byteswap(abd_meta, size, NULL,
6521 &zc_byteswap);
6522 abd_fletcher_4_native(abd_meta, size, NULL, &zc);
6523
6524 VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
6525 VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
6526 sizeof (zc_byteswap)));
6527
6528 }
6529
6530 umem_free(buf, size);
6531 abd_free(abd_data);
6532 abd_free(abd_meta);
6533 }
6534 }
6535
6536 void
6537 ztest_fletcher_incr(ztest_ds_t *zd, uint64_t id)
6538 {
6539 (void) zd, (void) id;
6540 void *buf;
6541 size_t size;
6542 int *ptr;
6543 int i;
6544 zio_cksum_t zc_ref;
6545 zio_cksum_t zc_ref_bswap;
6546
6547 hrtime_t end = gethrtime() + NANOSEC;
6548
6549 while (gethrtime() <= end) {
6550 int run_count = 100;
6551
6552 size = ztest_random_blocksize();
6553 buf = umem_alloc(size, UMEM_NOFAIL);
6554
6555 for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6556 *ptr = ztest_random(UINT_MAX);
6557
6558 VERIFY0(fletcher_4_impl_set("scalar"));
6559 fletcher_4_native(buf, size, NULL, &zc_ref);
6560 fletcher_4_byteswap(buf, size, NULL, &zc_ref_bswap);
6561
6562 VERIFY0(fletcher_4_impl_set("cycle"));
6563
6564 while (run_count-- > 0) {
6565 zio_cksum_t zc;
6566 zio_cksum_t zc_bswap;
6567 size_t pos = 0;
6568
6569 ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
6570 ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
6571
6572 while (pos < size) {
6573 size_t inc = 64 * ztest_random(size / 67);
6574 /* sometimes add few bytes to test non-simd */
6575 if (ztest_random(100) < 10)
6576 inc += P2ALIGN(ztest_random(64),
6577 sizeof (uint32_t));
6578
6579 if (inc > (size - pos))
6580 inc = size - pos;
6581
6582 fletcher_4_incremental_native(buf + pos, inc,
6583 &zc);
6584 fletcher_4_incremental_byteswap(buf + pos, inc,
6585 &zc_bswap);
6586
6587 pos += inc;
6588 }
6589
6590 VERIFY3U(pos, ==, size);
6591
6592 VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
6593 VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
6594
6595 /*
6596 * verify if incremental on the whole buffer is
6597 * equivalent to non-incremental version
6598 */
6599 ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
6600 ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
6601
6602 fletcher_4_incremental_native(buf, size, &zc);
6603 fletcher_4_incremental_byteswap(buf, size, &zc_bswap);
6604
6605 VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
6606 VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
6607 }
6608
6609 umem_free(buf, size);
6610 }
6611 }
6612
6613 static int
6614 ztest_set_global_vars(void)
6615 {
6616 for (size_t i = 0; i < ztest_opts.zo_gvars_count; i++) {
6617 char *kv = ztest_opts.zo_gvars[i];
6618 VERIFY3U(strlen(kv), <=, ZO_GVARS_MAX_ARGLEN);
6619 VERIFY3U(strlen(kv), >, 0);
6620 int err = set_global_var(kv);
6621 if (ztest_opts.zo_verbose > 0) {
6622 (void) printf("setting global var %s ... %s\n", kv,
6623 err ? "failed" : "ok");
6624 }
6625 if (err != 0) {
6626 (void) fprintf(stderr,
6627 "failed to set global var '%s'\n", kv);
6628 return (err);
6629 }
6630 }
6631 return (0);
6632 }
6633
6634 static char **
6635 ztest_global_vars_to_zdb_args(void)
6636 {
6637 char **args = calloc(2*ztest_opts.zo_gvars_count + 1, sizeof (char *));
6638 char **cur = args;
6639 for (size_t i = 0; i < ztest_opts.zo_gvars_count; i++) {
6640 *cur++ = (char *)"-o";
6641 *cur++ = ztest_opts.zo_gvars[i];
6642 }
6643 ASSERT3P(cur, ==, &args[2*ztest_opts.zo_gvars_count]);
6644 *cur = NULL;
6645 return (args);
6646 }
6647
6648 /* The end of strings is indicated by a NULL element */
6649 static char *
6650 join_strings(char **strings, const char *sep)
6651 {
6652 size_t totallen = 0;
6653 for (char **sp = strings; *sp != NULL; sp++) {
6654 totallen += strlen(*sp);
6655 totallen += strlen(sep);
6656 }
6657 if (totallen > 0) {
6658 ASSERT(totallen >= strlen(sep));
6659 totallen -= strlen(sep);
6660 }
6661
6662 size_t buflen = totallen + 1;
6663 char *o = malloc(buflen); /* trailing 0 byte */
6664 o[0] = '\0';
6665 for (char **sp = strings; *sp != NULL; sp++) {
6666 size_t would;
6667 would = strlcat(o, *sp, buflen);
6668 VERIFY3U(would, <, buflen);
6669 if (*(sp+1) == NULL) {
6670 break;
6671 }
6672 would = strlcat(o, sep, buflen);
6673 VERIFY3U(would, <, buflen);
6674 }
6675 ASSERT3S(strlen(o), ==, totallen);
6676 return (o);
6677 }
6678
6679 static int
6680 ztest_check_path(char *path)
6681 {
6682 struct stat s;
6683 /* return true on success */
6684 return (!stat(path, &s));
6685 }
6686
6687 static void
6688 ztest_get_zdb_bin(char *bin, int len)
6689 {
6690 char *zdb_path;
6691 /*
6692 * Try to use $ZDB and in-tree zdb path. If not successful, just
6693 * let popen to search through PATH.
6694 */
6695 if ((zdb_path = getenv("ZDB"))) {
6696 strlcpy(bin, zdb_path, len); /* In env */
6697 if (!ztest_check_path(bin)) {
6698 ztest_dump_core = 0;
6699 fatal(B_TRUE, "invalid ZDB '%s'", bin);
6700 }
6701 return;
6702 }
6703
6704 VERIFY3P(realpath(getexecname(), bin), !=, NULL);
6705 if (strstr(bin, ".libs/ztest")) {
6706 strstr(bin, ".libs/ztest")[0] = '\0'; /* In-tree */
6707 strcat(bin, "zdb");
6708 if (ztest_check_path(bin))
6709 return;
6710 }
6711 strcpy(bin, "zdb");
6712 }
6713
6714 static vdev_t *
6715 ztest_random_concrete_vdev_leaf(vdev_t *vd)
6716 {
6717 if (vd == NULL)
6718 return (NULL);
6719
6720 if (vd->vdev_children == 0)
6721 return (vd);
6722
6723 vdev_t *eligible[vd->vdev_children];
6724 int eligible_idx = 0, i;
6725 for (i = 0; i < vd->vdev_children; i++) {
6726 vdev_t *cvd = vd->vdev_child[i];
6727 if (cvd->vdev_top->vdev_removing)
6728 continue;
6729 if (cvd->vdev_children > 0 ||
6730 (vdev_is_concrete(cvd) && !cvd->vdev_detached)) {
6731 eligible[eligible_idx++] = cvd;
6732 }
6733 }
6734 VERIFY3S(eligible_idx, >, 0);
6735
6736 uint64_t child_no = ztest_random(eligible_idx);
6737 return (ztest_random_concrete_vdev_leaf(eligible[child_no]));
6738 }
6739
6740 void
6741 ztest_initialize(ztest_ds_t *zd, uint64_t id)
6742 {
6743 (void) zd, (void) id;
6744 spa_t *spa = ztest_spa;
6745 int error = 0;
6746
6747 mutex_enter(&ztest_vdev_lock);
6748
6749 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
6750
6751 /* Random leaf vdev */
6752 vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev);
6753 if (rand_vd == NULL) {
6754 spa_config_exit(spa, SCL_VDEV, FTAG);
6755 mutex_exit(&ztest_vdev_lock);
6756 return;
6757 }
6758
6759 /*
6760 * The random vdev we've selected may change as soon as we
6761 * drop the spa_config_lock. We create local copies of things
6762 * we're interested in.
6763 */
6764 uint64_t guid = rand_vd->vdev_guid;
6765 char *path = strdup(rand_vd->vdev_path);
6766 boolean_t active = rand_vd->vdev_initialize_thread != NULL;
6767
6768 zfs_dbgmsg("vd %px, guid %llu", rand_vd, (u_longlong_t)guid);
6769 spa_config_exit(spa, SCL_VDEV, FTAG);
6770
6771 uint64_t cmd = ztest_random(POOL_INITIALIZE_FUNCS);
6772
6773 nvlist_t *vdev_guids = fnvlist_alloc();
6774 nvlist_t *vdev_errlist = fnvlist_alloc();
6775 fnvlist_add_uint64(vdev_guids, path, guid);
6776 error = spa_vdev_initialize(spa, vdev_guids, cmd, vdev_errlist);
6777 fnvlist_free(vdev_guids);
6778 fnvlist_free(vdev_errlist);
6779
6780 switch (cmd) {
6781 case POOL_INITIALIZE_CANCEL:
6782 if (ztest_opts.zo_verbose >= 4) {
6783 (void) printf("Cancel initialize %s", path);
6784 if (!active)
6785 (void) printf(" failed (no initialize active)");
6786 (void) printf("\n");
6787 }
6788 break;
6789 case POOL_INITIALIZE_START:
6790 if (ztest_opts.zo_verbose >= 4) {
6791 (void) printf("Start initialize %s", path);
6792 if (active && error == 0)
6793 (void) printf(" failed (already active)");
6794 else if (error != 0)
6795 (void) printf(" failed (error %d)", error);
6796 (void) printf("\n");
6797 }
6798 break;
6799 case POOL_INITIALIZE_SUSPEND:
6800 if (ztest_opts.zo_verbose >= 4) {
6801 (void) printf("Suspend initialize %s", path);
6802 if (!active)
6803 (void) printf(" failed (no initialize active)");
6804 (void) printf("\n");
6805 }
6806 break;
6807 }
6808 free(path);
6809 mutex_exit(&ztest_vdev_lock);
6810 }
6811
6812 void
6813 ztest_trim(ztest_ds_t *zd, uint64_t id)
6814 {
6815 (void) zd, (void) id;
6816 spa_t *spa = ztest_spa;
6817 int error = 0;
6818
6819 mutex_enter(&ztest_vdev_lock);
6820
6821 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
6822
6823 /* Random leaf vdev */
6824 vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev);
6825 if (rand_vd == NULL) {
6826 spa_config_exit(spa, SCL_VDEV, FTAG);
6827 mutex_exit(&ztest_vdev_lock);
6828 return;
6829 }
6830
6831 /*
6832 * The random vdev we've selected may change as soon as we
6833 * drop the spa_config_lock. We create local copies of things
6834 * we're interested in.
6835 */
6836 uint64_t guid = rand_vd->vdev_guid;
6837 char *path = strdup(rand_vd->vdev_path);
6838 boolean_t active = rand_vd->vdev_trim_thread != NULL;
6839
6840 zfs_dbgmsg("vd %p, guid %llu", rand_vd, (u_longlong_t)guid);
6841 spa_config_exit(spa, SCL_VDEV, FTAG);
6842
6843 uint64_t cmd = ztest_random(POOL_TRIM_FUNCS);
6844 uint64_t rate = 1 << ztest_random(30);
6845 boolean_t partial = (ztest_random(5) > 0);
6846 boolean_t secure = (ztest_random(5) > 0);
6847
6848 nvlist_t *vdev_guids = fnvlist_alloc();
6849 nvlist_t *vdev_errlist = fnvlist_alloc();
6850 fnvlist_add_uint64(vdev_guids, path, guid);
6851 error = spa_vdev_trim(spa, vdev_guids, cmd, rate, partial,
6852 secure, vdev_errlist);
6853 fnvlist_free(vdev_guids);
6854 fnvlist_free(vdev_errlist);
6855
6856 switch (cmd) {
6857 case POOL_TRIM_CANCEL:
6858 if (ztest_opts.zo_verbose >= 4) {
6859 (void) printf("Cancel TRIM %s", path);
6860 if (!active)
6861 (void) printf(" failed (no TRIM active)");
6862 (void) printf("\n");
6863 }
6864 break;
6865 case POOL_TRIM_START:
6866 if (ztest_opts.zo_verbose >= 4) {
6867 (void) printf("Start TRIM %s", path);
6868 if (active && error == 0)
6869 (void) printf(" failed (already active)");
6870 else if (error != 0)
6871 (void) printf(" failed (error %d)", error);
6872 (void) printf("\n");
6873 }
6874 break;
6875 case POOL_TRIM_SUSPEND:
6876 if (ztest_opts.zo_verbose >= 4) {
6877 (void) printf("Suspend TRIM %s", path);
6878 if (!active)
6879 (void) printf(" failed (no TRIM active)");
6880 (void) printf("\n");
6881 }
6882 break;
6883 }
6884 free(path);
6885 mutex_exit(&ztest_vdev_lock);
6886 }
6887
6888 /*
6889 * Verify pool integrity by running zdb.
6890 */
6891 static void
6892 ztest_run_zdb(const char *pool)
6893 {
6894 int status;
6895 char *bin;
6896 char *zdb;
6897 char *zbuf;
6898 const int len = MAXPATHLEN + MAXNAMELEN + 20;
6899 FILE *fp;
6900
6901 bin = umem_alloc(len, UMEM_NOFAIL);
6902 zdb = umem_alloc(len, UMEM_NOFAIL);
6903 zbuf = umem_alloc(1024, UMEM_NOFAIL);
6904
6905 ztest_get_zdb_bin(bin, len);
6906
6907 char **set_gvars_args = ztest_global_vars_to_zdb_args();
6908 char *set_gvars_args_joined = join_strings(set_gvars_args, " ");
6909 free(set_gvars_args);
6910
6911 size_t would = snprintf(zdb, len,
6912 "%s -bcc%s%s -G -d -Y -e -y %s -p %s %s",
6913 bin,
6914 ztest_opts.zo_verbose >= 3 ? "s" : "",
6915 ztest_opts.zo_verbose >= 4 ? "v" : "",
6916 set_gvars_args_joined,
6917 ztest_opts.zo_dir,
6918 pool);
6919 ASSERT3U(would, <, len);
6920
6921 free(set_gvars_args_joined);
6922
6923 if (ztest_opts.zo_verbose >= 5)
6924 (void) printf("Executing %s\n", zdb);
6925
6926 fp = popen(zdb, "r");
6927
6928 while (fgets(zbuf, 1024, fp) != NULL)
6929 if (ztest_opts.zo_verbose >= 3)
6930 (void) printf("%s", zbuf);
6931
6932 status = pclose(fp);
6933
6934 if (status == 0)
6935 goto out;
6936
6937 ztest_dump_core = 0;
6938 if (WIFEXITED(status))
6939 fatal(B_FALSE, "'%s' exit code %d", zdb, WEXITSTATUS(status));
6940 else
6941 fatal(B_FALSE, "'%s' died with signal %d",
6942 zdb, WTERMSIG(status));
6943 out:
6944 umem_free(bin, len);
6945 umem_free(zdb, len);
6946 umem_free(zbuf, 1024);
6947 }
6948
6949 static void
6950 ztest_walk_pool_directory(const char *header)
6951 {
6952 spa_t *spa = NULL;
6953
6954 if (ztest_opts.zo_verbose >= 6)
6955 (void) puts(header);
6956
6957 mutex_enter(&spa_namespace_lock);
6958 while ((spa = spa_next(spa)) != NULL)
6959 if (ztest_opts.zo_verbose >= 6)
6960 (void) printf("\t%s\n", spa_name(spa));
6961 mutex_exit(&spa_namespace_lock);
6962 }
6963
6964 static void
6965 ztest_spa_import_export(char *oldname, char *newname)
6966 {
6967 nvlist_t *config, *newconfig;
6968 uint64_t pool_guid;
6969 spa_t *spa;
6970 int error;
6971
6972 if (ztest_opts.zo_verbose >= 4) {
6973 (void) printf("import/export: old = %s, new = %s\n",
6974 oldname, newname);
6975 }
6976
6977 /*
6978 * Clean up from previous runs.
6979 */
6980 (void) spa_destroy(newname);
6981
6982 /*
6983 * Get the pool's configuration and guid.
6984 */
6985 VERIFY0(spa_open(oldname, &spa, FTAG));
6986
6987 /*
6988 * Kick off a scrub to tickle scrub/export races.
6989 */
6990 if (ztest_random(2) == 0)
6991 (void) spa_scan(spa, POOL_SCAN_SCRUB);
6992
6993 pool_guid = spa_guid(spa);
6994 spa_close(spa, FTAG);
6995
6996 ztest_walk_pool_directory("pools before export");
6997
6998 /*
6999 * Export it.
7000 */
7001 VERIFY0(spa_export(oldname, &config, B_FALSE, B_FALSE));
7002
7003 ztest_walk_pool_directory("pools after export");
7004
7005 /*
7006 * Try to import it.
7007 */
7008 newconfig = spa_tryimport(config);
7009 ASSERT3P(newconfig, !=, NULL);
7010 fnvlist_free(newconfig);
7011
7012 /*
7013 * Import it under the new name.
7014 */
7015 error = spa_import(newname, config, NULL, 0);
7016 if (error != 0) {
7017 dump_nvlist(config, 0);
7018 fatal(B_FALSE, "couldn't import pool %s as %s: error %u",
7019 oldname, newname, error);
7020 }
7021
7022 ztest_walk_pool_directory("pools after import");
7023
7024 /*
7025 * Try to import it again -- should fail with EEXIST.
7026 */
7027 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0));
7028
7029 /*
7030 * Try to import it under a different name -- should fail with EEXIST.
7031 */
7032 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0));
7033
7034 /*
7035 * Verify that the pool is no longer visible under the old name.
7036 */
7037 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
7038
7039 /*
7040 * Verify that we can open and close the pool using the new name.
7041 */
7042 VERIFY0(spa_open(newname, &spa, FTAG));
7043 ASSERT3U(pool_guid, ==, spa_guid(spa));
7044 spa_close(spa, FTAG);
7045
7046 fnvlist_free(config);
7047 }
7048
7049 static void
7050 ztest_resume(spa_t *spa)
7051 {
7052 if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6)
7053 (void) printf("resuming from suspended state\n");
7054 spa_vdev_state_enter(spa, SCL_NONE);
7055 vdev_clear(spa, NULL);
7056 (void) spa_vdev_state_exit(spa, NULL, 0);
7057 (void) zio_resume(spa);
7058 }
7059
7060 static __attribute__((noreturn)) void
7061 ztest_resume_thread(void *arg)
7062 {
7063 spa_t *spa = arg;
7064
7065 while (!ztest_exiting) {
7066 if (spa_suspended(spa))
7067 ztest_resume(spa);
7068 (void) poll(NULL, 0, 100);
7069
7070 /*
7071 * Periodically change the zfs_compressed_arc_enabled setting.
7072 */
7073 if (ztest_random(10) == 0)
7074 zfs_compressed_arc_enabled = ztest_random(2);
7075
7076 /*
7077 * Periodically change the zfs_abd_scatter_enabled setting.
7078 */
7079 if (ztest_random(10) == 0)
7080 zfs_abd_scatter_enabled = ztest_random(2);
7081 }
7082
7083 thread_exit();
7084 }
7085
7086 static __attribute__((noreturn)) void
7087 ztest_deadman_thread(void *arg)
7088 {
7089 ztest_shared_t *zs = arg;
7090 spa_t *spa = ztest_spa;
7091 hrtime_t delay, overdue, last_run = gethrtime();
7092
7093 delay = (zs->zs_thread_stop - zs->zs_thread_start) +
7094 MSEC2NSEC(zfs_deadman_synctime_ms);
7095
7096 while (!ztest_exiting) {
7097 /*
7098 * Wait for the delay timer while checking occasionally
7099 * if we should stop.
7100 */
7101 if (gethrtime() < last_run + delay) {
7102 (void) poll(NULL, 0, 1000);
7103 continue;
7104 }
7105
7106 /*
7107 * If the pool is suspended then fail immediately. Otherwise,
7108 * check to see if the pool is making any progress. If
7109 * vdev_deadman() discovers that there hasn't been any recent
7110 * I/Os then it will end up aborting the tests.
7111 */
7112 if (spa_suspended(spa) || spa->spa_root_vdev == NULL) {
7113 fatal(B_FALSE,
7114 "aborting test after %lu seconds because "
7115 "pool has transitioned to a suspended state.",
7116 zfs_deadman_synctime_ms / 1000);
7117 }
7118 vdev_deadman(spa->spa_root_vdev, FTAG);
7119
7120 /*
7121 * If the process doesn't complete within a grace period of
7122 * zfs_deadman_synctime_ms over the expected finish time,
7123 * then it may be hung and is terminated.
7124 */
7125 overdue = zs->zs_proc_stop + MSEC2NSEC(zfs_deadman_synctime_ms);
7126 if (gethrtime() > overdue) {
7127 fatal(B_FALSE,
7128 "aborting test after %llu seconds because "
7129 "the process is overdue for termination.",
7130 (gethrtime() - zs->zs_proc_start) / NANOSEC);
7131 }
7132
7133 (void) printf("ztest has been running for %lld seconds\n",
7134 (gethrtime() - zs->zs_proc_start) / NANOSEC);
7135
7136 last_run = gethrtime();
7137 delay = MSEC2NSEC(zfs_deadman_checktime_ms);
7138 }
7139
7140 thread_exit();
7141 }
7142
7143 static void
7144 ztest_execute(int test, ztest_info_t *zi, uint64_t id)
7145 {
7146 ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets];
7147 ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test);
7148 hrtime_t functime = gethrtime();
7149 int i;
7150
7151 for (i = 0; i < zi->zi_iters; i++)
7152 zi->zi_func(zd, id);
7153
7154 functime = gethrtime() - functime;
7155
7156 atomic_add_64(&zc->zc_count, 1);
7157 atomic_add_64(&zc->zc_time, functime);
7158
7159 if (ztest_opts.zo_verbose >= 4)
7160 (void) printf("%6.2f sec in %s\n",
7161 (double)functime / NANOSEC, zi->zi_funcname);
7162 }
7163
7164 static __attribute__((noreturn)) void
7165 ztest_thread(void *arg)
7166 {
7167 int rand;
7168 uint64_t id = (uintptr_t)arg;
7169 ztest_shared_t *zs = ztest_shared;
7170 uint64_t call_next;
7171 hrtime_t now;
7172 ztest_info_t *zi;
7173 ztest_shared_callstate_t *zc;
7174
7175 while ((now = gethrtime()) < zs->zs_thread_stop) {
7176 /*
7177 * See if it's time to force a crash.
7178 */
7179 if (now > zs->zs_thread_kill)
7180 ztest_kill(zs);
7181
7182 /*
7183 * If we're getting ENOSPC with some regularity, stop.
7184 */
7185 if (zs->zs_enospc_count > 10)
7186 break;
7187
7188 /*
7189 * Pick a random function to execute.
7190 */
7191 rand = ztest_random(ZTEST_FUNCS);
7192 zi = &ztest_info[rand];
7193 zc = ZTEST_GET_SHARED_CALLSTATE(rand);
7194 call_next = zc->zc_next;
7195
7196 if (now >= call_next &&
7197 atomic_cas_64(&zc->zc_next, call_next, call_next +
7198 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) {
7199 ztest_execute(rand, zi, id);
7200 }
7201 }
7202
7203 thread_exit();
7204 }
7205
7206 static void
7207 ztest_dataset_name(char *dsname, const char *pool, int d)
7208 {
7209 (void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d);
7210 }
7211
7212 static void
7213 ztest_dataset_destroy(int d)
7214 {
7215 char name[ZFS_MAX_DATASET_NAME_LEN];
7216 int t;
7217
7218 ztest_dataset_name(name, ztest_opts.zo_pool, d);
7219
7220 if (ztest_opts.zo_verbose >= 3)
7221 (void) printf("Destroying %s to free up space\n", name);
7222
7223 /*
7224 * Cleanup any non-standard clones and snapshots. In general,
7225 * ztest thread t operates on dataset (t % zopt_datasets),
7226 * so there may be more than one thing to clean up.
7227 */
7228 for (t = d; t < ztest_opts.zo_threads;
7229 t += ztest_opts.zo_datasets)
7230 ztest_dsl_dataset_cleanup(name, t);
7231
7232 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
7233 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
7234 }
7235
7236 static void
7237 ztest_dataset_dirobj_verify(ztest_ds_t *zd)
7238 {
7239 uint64_t usedobjs, dirobjs, scratch;
7240
7241 /*
7242 * ZTEST_DIROBJ is the object directory for the entire dataset.
7243 * Therefore, the number of objects in use should equal the
7244 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
7245 * If not, we have an object leak.
7246 *
7247 * Note that we can only check this in ztest_dataset_open(),
7248 * when the open-context and syncing-context values agree.
7249 * That's because zap_count() returns the open-context value,
7250 * while dmu_objset_space() returns the rootbp fill count.
7251 */
7252 VERIFY0(zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
7253 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
7254 ASSERT3U(dirobjs + 1, ==, usedobjs);
7255 }
7256
7257 static int
7258 ztest_dataset_open(int d)
7259 {
7260 ztest_ds_t *zd = &ztest_ds[d];
7261 uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq;
7262 objset_t *os;
7263 zilog_t *zilog;
7264 char name[ZFS_MAX_DATASET_NAME_LEN];
7265 int error;
7266
7267 ztest_dataset_name(name, ztest_opts.zo_pool, d);
7268
7269 (void) pthread_rwlock_rdlock(&ztest_name_lock);
7270
7271 error = ztest_dataset_create(name);
7272 if (error == ENOSPC) {
7273 (void) pthread_rwlock_unlock(&ztest_name_lock);
7274 ztest_record_enospc(FTAG);
7275 return (error);
7276 }
7277 ASSERT(error == 0 || error == EEXIST);
7278
7279 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
7280 B_TRUE, zd, &os));
7281 (void) pthread_rwlock_unlock(&ztest_name_lock);
7282
7283 ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os);
7284
7285 zilog = zd->zd_zilog;
7286
7287 if (zilog->zl_header->zh_claim_lr_seq != 0 &&
7288 zilog->zl_header->zh_claim_lr_seq < committed_seq)
7289 fatal(B_FALSE, "missing log records: "
7290 "claimed %"PRIu64" < committed %"PRIu64"",
7291 zilog->zl_header->zh_claim_lr_seq, committed_seq);
7292
7293 ztest_dataset_dirobj_verify(zd);
7294
7295 zil_replay(os, zd, ztest_replay_vector);
7296
7297 ztest_dataset_dirobj_verify(zd);
7298
7299 if (ztest_opts.zo_verbose >= 6)
7300 (void) printf("%s replay %"PRIu64" blocks, "
7301 "%"PRIu64" records, seq %"PRIu64"\n",
7302 zd->zd_name,
7303 zilog->zl_parse_blk_count,
7304 zilog->zl_parse_lr_count,
7305 zilog->zl_replaying_seq);
7306
7307 zilog = zil_open(os, ztest_get_data, NULL);
7308
7309 if (zilog->zl_replaying_seq != 0 &&
7310 zilog->zl_replaying_seq < committed_seq)
7311 fatal(B_FALSE, "missing log records: "
7312 "replayed %"PRIu64" < committed %"PRIu64"",
7313 zilog->zl_replaying_seq, committed_seq);
7314
7315 return (0);
7316 }
7317
7318 static void
7319 ztest_dataset_close(int d)
7320 {
7321 ztest_ds_t *zd = &ztest_ds[d];
7322
7323 zil_close(zd->zd_zilog);
7324 dmu_objset_disown(zd->zd_os, B_TRUE, zd);
7325
7326 ztest_zd_fini(zd);
7327 }
7328
7329 static int
7330 ztest_replay_zil_cb(const char *name, void *arg)
7331 {
7332 (void) arg;
7333 objset_t *os;
7334 ztest_ds_t *zdtmp;
7335
7336 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_ANY, B_TRUE,
7337 B_TRUE, FTAG, &os));
7338
7339 zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
7340
7341 ztest_zd_init(zdtmp, NULL, os);
7342 zil_replay(os, zdtmp, ztest_replay_vector);
7343 ztest_zd_fini(zdtmp);
7344
7345 if (dmu_objset_zil(os)->zl_parse_lr_count != 0 &&
7346 ztest_opts.zo_verbose >= 6) {
7347 zilog_t *zilog = dmu_objset_zil(os);
7348
7349 (void) printf("%s replay %"PRIu64" blocks, "
7350 "%"PRIu64" records, seq %"PRIu64"\n",
7351 name,
7352 zilog->zl_parse_blk_count,
7353 zilog->zl_parse_lr_count,
7354 zilog->zl_replaying_seq);
7355 }
7356
7357 umem_free(zdtmp, sizeof (ztest_ds_t));
7358
7359 dmu_objset_disown(os, B_TRUE, FTAG);
7360 return (0);
7361 }
7362
7363 static void
7364 ztest_freeze(void)
7365 {
7366 ztest_ds_t *zd = &ztest_ds[0];
7367 spa_t *spa;
7368 int numloops = 0;
7369
7370 if (ztest_opts.zo_verbose >= 3)
7371 (void) printf("testing spa_freeze()...\n");
7372
7373 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7374 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7375 VERIFY0(ztest_dataset_open(0));
7376 ztest_spa = spa;
7377
7378 /*
7379 * Force the first log block to be transactionally allocated.
7380 * We have to do this before we freeze the pool -- otherwise
7381 * the log chain won't be anchored.
7382 */
7383 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
7384 ztest_dmu_object_alloc_free(zd, 0);
7385 zil_commit(zd->zd_zilog, 0);
7386 }
7387
7388 txg_wait_synced(spa_get_dsl(spa), 0);
7389
7390 /*
7391 * Freeze the pool. This stops spa_sync() from doing anything,
7392 * so that the only way to record changes from now on is the ZIL.
7393 */
7394 spa_freeze(spa);
7395
7396 /*
7397 * Because it is hard to predict how much space a write will actually
7398 * require beforehand, we leave ourselves some fudge space to write over
7399 * capacity.
7400 */
7401 uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2;
7402
7403 /*
7404 * Run tests that generate log records but don't alter the pool config
7405 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
7406 * We do a txg_wait_synced() after each iteration to force the txg
7407 * to increase well beyond the last synced value in the uberblock.
7408 * The ZIL should be OK with that.
7409 *
7410 * Run a random number of times less than zo_maxloops and ensure we do
7411 * not run out of space on the pool.
7412 */
7413 while (ztest_random(10) != 0 &&
7414 numloops++ < ztest_opts.zo_maxloops &&
7415 metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) {
7416 ztest_od_t od;
7417 ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
7418 VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE));
7419 ztest_io(zd, od.od_object,
7420 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
7421 txg_wait_synced(spa_get_dsl(spa), 0);
7422 }
7423
7424 /*
7425 * Commit all of the changes we just generated.
7426 */
7427 zil_commit(zd->zd_zilog, 0);
7428 txg_wait_synced(spa_get_dsl(spa), 0);
7429
7430 /*
7431 * Close our dataset and close the pool.
7432 */
7433 ztest_dataset_close(0);
7434 spa_close(spa, FTAG);
7435 kernel_fini();
7436
7437 /*
7438 * Open and close the pool and dataset to induce log replay.
7439 */
7440 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7441 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7442 ASSERT3U(spa_freeze_txg(spa), ==, UINT64_MAX);
7443 VERIFY0(ztest_dataset_open(0));
7444 ztest_spa = spa;
7445 txg_wait_synced(spa_get_dsl(spa), 0);
7446 ztest_dataset_close(0);
7447 ztest_reguid(NULL, 0);
7448
7449 spa_close(spa, FTAG);
7450 kernel_fini();
7451 }
7452
7453 static void
7454 ztest_import_impl(void)
7455 {
7456 importargs_t args = { 0 };
7457 nvlist_t *cfg = NULL;
7458 int nsearch = 1;
7459 char *searchdirs[nsearch];
7460 int flags = ZFS_IMPORT_MISSING_LOG;
7461
7462 searchdirs[0] = ztest_opts.zo_dir;
7463 args.paths = nsearch;
7464 args.path = searchdirs;
7465 args.can_be_active = B_FALSE;
7466
7467 VERIFY0(zpool_find_config(NULL, ztest_opts.zo_pool, &cfg, &args,
7468 &libzpool_config_ops));
7469 VERIFY0(spa_import(ztest_opts.zo_pool, cfg, NULL, flags));
7470 fnvlist_free(cfg);
7471 }
7472
7473 /*
7474 * Import a storage pool with the given name.
7475 */
7476 static void
7477 ztest_import(ztest_shared_t *zs)
7478 {
7479 spa_t *spa;
7480
7481 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
7482 mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
7483 VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
7484
7485 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7486
7487 ztest_import_impl();
7488
7489 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7490 zs->zs_metaslab_sz =
7491 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
7492 spa_close(spa, FTAG);
7493
7494 kernel_fini();
7495
7496 if (!ztest_opts.zo_mmp_test) {
7497 ztest_run_zdb(ztest_opts.zo_pool);
7498 ztest_freeze();
7499 ztest_run_zdb(ztest_opts.zo_pool);
7500 }
7501
7502 (void) pthread_rwlock_destroy(&ztest_name_lock);
7503 mutex_destroy(&ztest_vdev_lock);
7504 mutex_destroy(&ztest_checkpoint_lock);
7505 }
7506
7507 /*
7508 * Kick off threads to run tests on all datasets in parallel.
7509 */
7510 static void
7511 ztest_run(ztest_shared_t *zs)
7512 {
7513 spa_t *spa;
7514 objset_t *os;
7515 kthread_t *resume_thread, *deadman_thread;
7516 kthread_t **run_threads;
7517 uint64_t object;
7518 int error;
7519 int t, d;
7520
7521 ztest_exiting = B_FALSE;
7522
7523 /*
7524 * Initialize parent/child shared state.
7525 */
7526 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
7527 mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
7528 VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
7529
7530 zs->zs_thread_start = gethrtime();
7531 zs->zs_thread_stop =
7532 zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC;
7533 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
7534 zs->zs_thread_kill = zs->zs_thread_stop;
7535 if (ztest_random(100) < ztest_opts.zo_killrate) {
7536 zs->zs_thread_kill -=
7537 ztest_random(ztest_opts.zo_passtime * NANOSEC);
7538 }
7539
7540 mutex_init(&zcl.zcl_callbacks_lock, NULL, MUTEX_DEFAULT, NULL);
7541
7542 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
7543 offsetof(ztest_cb_data_t, zcd_node));
7544
7545 /*
7546 * Open our pool. It may need to be imported first depending on
7547 * what tests were running when the previous pass was terminated.
7548 */
7549 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7550 error = spa_open(ztest_opts.zo_pool, &spa, FTAG);
7551 if (error) {
7552 VERIFY3S(error, ==, ENOENT);
7553 ztest_import_impl();
7554 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7555 zs->zs_metaslab_sz =
7556 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
7557 }
7558
7559 metaslab_preload_limit = ztest_random(20) + 1;
7560 ztest_spa = spa;
7561
7562 VERIFY0(vdev_raidz_impl_set("cycle"));
7563
7564 dmu_objset_stats_t dds;
7565 VERIFY0(ztest_dmu_objset_own(ztest_opts.zo_pool,
7566 DMU_OST_ANY, B_TRUE, B_TRUE, FTAG, &os));
7567 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
7568 dmu_objset_fast_stat(os, &dds);
7569 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
7570 zs->zs_guid = dds.dds_guid;
7571 dmu_objset_disown(os, B_TRUE, FTAG);
7572
7573 /*
7574 * Create a thread to periodically resume suspended I/O.
7575 */
7576 resume_thread = thread_create(NULL, 0, ztest_resume_thread,
7577 spa, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
7578
7579 /*
7580 * Create a deadman thread and set to panic if we hang.
7581 */
7582 deadman_thread = thread_create(NULL, 0, ztest_deadman_thread,
7583 zs, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
7584
7585 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
7586
7587 /*
7588 * Verify that we can safely inquire about any object,
7589 * whether it's allocated or not. To make it interesting,
7590 * we probe a 5-wide window around each power of two.
7591 * This hits all edge cases, including zero and the max.
7592 */
7593 for (t = 0; t < 64; t++) {
7594 for (d = -5; d <= 5; d++) {
7595 error = dmu_object_info(spa->spa_meta_objset,
7596 (1ULL << t) + d, NULL);
7597 ASSERT(error == 0 || error == ENOENT ||
7598 error == EINVAL);
7599 }
7600 }
7601
7602 /*
7603 * If we got any ENOSPC errors on the previous run, destroy something.
7604 */
7605 if (zs->zs_enospc_count != 0) {
7606 int d = ztest_random(ztest_opts.zo_datasets);
7607 ztest_dataset_destroy(d);
7608 }
7609 zs->zs_enospc_count = 0;
7610
7611 /*
7612 * If we were in the middle of ztest_device_removal() and were killed
7613 * we need to ensure the removal and scrub complete before running
7614 * any tests that check ztest_device_removal_active. The removal will
7615 * be restarted automatically when the spa is opened, but we need to
7616 * initiate the scrub manually if it is not already in progress. Note
7617 * that we always run the scrub whenever an indirect vdev exists
7618 * because we have no way of knowing for sure if ztest_device_removal()
7619 * fully completed its scrub before the pool was reimported.
7620 */
7621 if (spa->spa_removing_phys.sr_state == DSS_SCANNING ||
7622 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
7623 while (spa->spa_removing_phys.sr_state == DSS_SCANNING)
7624 txg_wait_synced(spa_get_dsl(spa), 0);
7625
7626 error = ztest_scrub_impl(spa);
7627 if (error == EBUSY)
7628 error = 0;
7629 ASSERT0(error);
7630 }
7631
7632 run_threads = umem_zalloc(ztest_opts.zo_threads * sizeof (kthread_t *),
7633 UMEM_NOFAIL);
7634
7635 if (ztest_opts.zo_verbose >= 4)
7636 (void) printf("starting main threads...\n");
7637
7638 /*
7639 * Replay all logs of all datasets in the pool. This is primarily for
7640 * temporary datasets which wouldn't otherwise get replayed, which
7641 * can trigger failures when attempting to offline a SLOG in
7642 * ztest_fault_inject().
7643 */
7644 (void) dmu_objset_find(ztest_opts.zo_pool, ztest_replay_zil_cb,
7645 NULL, DS_FIND_CHILDREN);
7646
7647 /*
7648 * Kick off all the tests that run in parallel.
7649 */
7650 for (t = 0; t < ztest_opts.zo_threads; t++) {
7651 if (t < ztest_opts.zo_datasets && ztest_dataset_open(t) != 0) {
7652 umem_free(run_threads, ztest_opts.zo_threads *
7653 sizeof (kthread_t *));
7654 return;
7655 }
7656
7657 run_threads[t] = thread_create(NULL, 0, ztest_thread,
7658 (void *)(uintptr_t)t, 0, NULL, TS_RUN | TS_JOINABLE,
7659 defclsyspri);
7660 }
7661
7662 /*
7663 * Wait for all of the tests to complete.
7664 */
7665 for (t = 0; t < ztest_opts.zo_threads; t++)
7666 VERIFY0(thread_join(run_threads[t]));
7667
7668 /*
7669 * Close all datasets. This must be done after all the threads
7670 * are joined so we can be sure none of the datasets are in-use
7671 * by any of the threads.
7672 */
7673 for (t = 0; t < ztest_opts.zo_threads; t++) {
7674 if (t < ztest_opts.zo_datasets)
7675 ztest_dataset_close(t);
7676 }
7677
7678 txg_wait_synced(spa_get_dsl(spa), 0);
7679
7680 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
7681 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
7682
7683 umem_free(run_threads, ztest_opts.zo_threads * sizeof (kthread_t *));
7684
7685 /* Kill the resume and deadman threads */
7686 ztest_exiting = B_TRUE;
7687 VERIFY0(thread_join(resume_thread));
7688 VERIFY0(thread_join(deadman_thread));
7689 ztest_resume(spa);
7690
7691 /*
7692 * Right before closing the pool, kick off a bunch of async I/O;
7693 * spa_close() should wait for it to complete.
7694 */
7695 for (object = 1; object < 50; object++) {
7696 dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20,
7697 ZIO_PRIORITY_SYNC_READ);
7698 }
7699
7700 /* Verify that at least one commit cb was called in a timely fashion */
7701 if (zc_cb_counter >= ZTEST_COMMIT_CB_MIN_REG)
7702 VERIFY0(zc_min_txg_delay);
7703
7704 spa_close(spa, FTAG);
7705
7706 /*
7707 * Verify that we can loop over all pools.
7708 */
7709 mutex_enter(&spa_namespace_lock);
7710 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
7711 if (ztest_opts.zo_verbose > 3)
7712 (void) printf("spa_next: found %s\n", spa_name(spa));
7713 mutex_exit(&spa_namespace_lock);
7714
7715 /*
7716 * Verify that we can export the pool and reimport it under a
7717 * different name.
7718 */
7719 if ((ztest_random(2) == 0) && !ztest_opts.zo_mmp_test) {
7720 char name[ZFS_MAX_DATASET_NAME_LEN];
7721 (void) snprintf(name, sizeof (name), "%s_import",
7722 ztest_opts.zo_pool);
7723 ztest_spa_import_export(ztest_opts.zo_pool, name);
7724 ztest_spa_import_export(name, ztest_opts.zo_pool);
7725 }
7726
7727 kernel_fini();
7728
7729 list_destroy(&zcl.zcl_callbacks);
7730 mutex_destroy(&zcl.zcl_callbacks_lock);
7731 (void) pthread_rwlock_destroy(&ztest_name_lock);
7732 mutex_destroy(&ztest_vdev_lock);
7733 mutex_destroy(&ztest_checkpoint_lock);
7734 }
7735
7736 static void
7737 print_time(hrtime_t t, char *timebuf)
7738 {
7739 hrtime_t s = t / NANOSEC;
7740 hrtime_t m = s / 60;
7741 hrtime_t h = m / 60;
7742 hrtime_t d = h / 24;
7743
7744 s -= m * 60;
7745 m -= h * 60;
7746 h -= d * 24;
7747
7748 timebuf[0] = '\0';
7749
7750 if (d)
7751 (void) sprintf(timebuf,
7752 "%llud%02lluh%02llum%02llus", d, h, m, s);
7753 else if (h)
7754 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
7755 else if (m)
7756 (void) sprintf(timebuf, "%llum%02llus", m, s);
7757 else
7758 (void) sprintf(timebuf, "%llus", s);
7759 }
7760
7761 static nvlist_t *
7762 make_random_props(void)
7763 {
7764 nvlist_t *props;
7765
7766 props = fnvlist_alloc();
7767
7768 if (ztest_random(2) == 0)
7769 return (props);
7770
7771 fnvlist_add_uint64(props,
7772 zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE), 1);
7773
7774 return (props);
7775 }
7776
7777 /*
7778 * Create a storage pool with the given name and initial vdev size.
7779 * Then test spa_freeze() functionality.
7780 */
7781 static void
7782 ztest_init(ztest_shared_t *zs)
7783 {
7784 spa_t *spa;
7785 nvlist_t *nvroot, *props;
7786 int i;
7787
7788 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
7789 mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
7790 VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
7791
7792 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7793
7794 /*
7795 * Create the storage pool.
7796 */
7797 (void) spa_destroy(ztest_opts.zo_pool);
7798 ztest_shared->zs_vdev_next_leaf = 0;
7799 zs->zs_splits = 0;
7800 zs->zs_mirrors = ztest_opts.zo_mirrors;
7801 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
7802 NULL, ztest_opts.zo_raid_children, zs->zs_mirrors, 1);
7803 props = make_random_props();
7804
7805 /*
7806 * We don't expect the pool to suspend unless maxfaults == 0,
7807 * in which case ztest_fault_inject() temporarily takes away
7808 * the only valid replica.
7809 */
7810 fnvlist_add_uint64(props,
7811 zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
7812 MAXFAULTS(zs) ? ZIO_FAILURE_MODE_PANIC : ZIO_FAILURE_MODE_WAIT);
7813
7814 for (i = 0; i < SPA_FEATURES; i++) {
7815 char *buf;
7816
7817 if (!spa_feature_table[i].fi_zfs_mod_supported)
7818 continue;
7819
7820 /*
7821 * 75% chance of using the log space map feature. We want ztest
7822 * to exercise both the code paths that use the log space map
7823 * feature and the ones that don't.
7824 */
7825 if (i == SPA_FEATURE_LOG_SPACEMAP && ztest_random(4) == 0)
7826 continue;
7827
7828 VERIFY3S(-1, !=, asprintf(&buf, "feature@%s",
7829 spa_feature_table[i].fi_uname));
7830 fnvlist_add_uint64(props, buf, 0);
7831 free(buf);
7832 }
7833
7834 VERIFY0(spa_create(ztest_opts.zo_pool, nvroot, props, NULL, NULL));
7835 fnvlist_free(nvroot);
7836 fnvlist_free(props);
7837
7838 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7839 zs->zs_metaslab_sz =
7840 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
7841 spa_close(spa, FTAG);
7842
7843 kernel_fini();
7844
7845 if (!ztest_opts.zo_mmp_test) {
7846 ztest_run_zdb(ztest_opts.zo_pool);
7847 ztest_freeze();
7848 ztest_run_zdb(ztest_opts.zo_pool);
7849 }
7850
7851 (void) pthread_rwlock_destroy(&ztest_name_lock);
7852 mutex_destroy(&ztest_vdev_lock);
7853 mutex_destroy(&ztest_checkpoint_lock);
7854 }
7855
7856 static void
7857 setup_data_fd(void)
7858 {
7859 static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX";
7860
7861 ztest_fd_data = mkstemp(ztest_name_data);
7862 ASSERT3S(ztest_fd_data, >=, 0);
7863 (void) unlink(ztest_name_data);
7864 }
7865
7866 static int
7867 shared_data_size(ztest_shared_hdr_t *hdr)
7868 {
7869 int size;
7870
7871 size = hdr->zh_hdr_size;
7872 size += hdr->zh_opts_size;
7873 size += hdr->zh_size;
7874 size += hdr->zh_stats_size * hdr->zh_stats_count;
7875 size += hdr->zh_ds_size * hdr->zh_ds_count;
7876
7877 return (size);
7878 }
7879
7880 static void
7881 setup_hdr(void)
7882 {
7883 int size;
7884 ztest_shared_hdr_t *hdr;
7885
7886 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
7887 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
7888 ASSERT3P(hdr, !=, MAP_FAILED);
7889
7890 VERIFY0(ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t)));
7891
7892 hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t);
7893 hdr->zh_opts_size = sizeof (ztest_shared_opts_t);
7894 hdr->zh_size = sizeof (ztest_shared_t);
7895 hdr->zh_stats_size = sizeof (ztest_shared_callstate_t);
7896 hdr->zh_stats_count = ZTEST_FUNCS;
7897 hdr->zh_ds_size = sizeof (ztest_shared_ds_t);
7898 hdr->zh_ds_count = ztest_opts.zo_datasets;
7899
7900 size = shared_data_size(hdr);
7901 VERIFY0(ftruncate(ztest_fd_data, size));
7902
7903 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
7904 }
7905
7906 static void
7907 setup_data(void)
7908 {
7909 int size, offset;
7910 ztest_shared_hdr_t *hdr;
7911 uint8_t *buf;
7912
7913 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
7914 PROT_READ, MAP_SHARED, ztest_fd_data, 0);
7915 ASSERT3P(hdr, !=, MAP_FAILED);
7916
7917 size = shared_data_size(hdr);
7918
7919 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
7920 hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()),
7921 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
7922 ASSERT3P(hdr, !=, MAP_FAILED);
7923 buf = (uint8_t *)hdr;
7924
7925 offset = hdr->zh_hdr_size;
7926 ztest_shared_opts = (void *)&buf[offset];
7927 offset += hdr->zh_opts_size;
7928 ztest_shared = (void *)&buf[offset];
7929 offset += hdr->zh_size;
7930 ztest_shared_callstate = (void *)&buf[offset];
7931 offset += hdr->zh_stats_size * hdr->zh_stats_count;
7932 ztest_shared_ds = (void *)&buf[offset];
7933 }
7934
7935 static boolean_t
7936 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp)
7937 {
7938 pid_t pid;
7939 int status;
7940 char *cmdbuf = NULL;
7941
7942 pid = fork();
7943
7944 if (cmd == NULL) {
7945 cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
7946 (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN);
7947 cmd = cmdbuf;
7948 }
7949
7950 if (pid == -1)
7951 fatal(B_TRUE, "fork failed");
7952
7953 if (pid == 0) { /* child */
7954 char fd_data_str[12];
7955
7956 VERIFY3S(11, >=,
7957 snprintf(fd_data_str, 12, "%d", ztest_fd_data));
7958 VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1));
7959
7960 if (libpath != NULL) {
7961 const char *curlp = getenv("LD_LIBRARY_PATH");
7962 if (curlp == NULL)
7963 VERIFY0(setenv("LD_LIBRARY_PATH", libpath, 1));
7964 else {
7965 char *newlp = NULL;
7966 VERIFY3S(-1, !=,
7967 asprintf(&newlp, "%s:%s", libpath, curlp));
7968 VERIFY0(setenv("LD_LIBRARY_PATH", newlp, 1));
7969 free(newlp);
7970 }
7971 }
7972 (void) execl(cmd, cmd, (char *)NULL);
7973 ztest_dump_core = B_FALSE;
7974 fatal(B_TRUE, "exec failed: %s", cmd);
7975 }
7976
7977 if (cmdbuf != NULL) {
7978 umem_free(cmdbuf, MAXPATHLEN);
7979 cmd = NULL;
7980 }
7981
7982 while (waitpid(pid, &status, 0) != pid)
7983 continue;
7984 if (statusp != NULL)
7985 *statusp = status;
7986
7987 if (WIFEXITED(status)) {
7988 if (WEXITSTATUS(status) != 0) {
7989 (void) fprintf(stderr, "child exited with code %d\n",
7990 WEXITSTATUS(status));
7991 exit(2);
7992 }
7993 return (B_FALSE);
7994 } else if (WIFSIGNALED(status)) {
7995 if (!ignorekill || WTERMSIG(status) != SIGKILL) {
7996 (void) fprintf(stderr, "child died with signal %d\n",
7997 WTERMSIG(status));
7998 exit(3);
7999 }
8000 return (B_TRUE);
8001 } else {
8002 (void) fprintf(stderr, "something strange happened to child\n");
8003 exit(4);
8004 }
8005 }
8006
8007 static void
8008 ztest_run_init(void)
8009 {
8010 int i;
8011
8012 ztest_shared_t *zs = ztest_shared;
8013
8014 /*
8015 * Blow away any existing copy of zpool.cache
8016 */
8017 (void) remove(spa_config_path);
8018
8019 if (ztest_opts.zo_init == 0) {
8020 if (ztest_opts.zo_verbose >= 1)
8021 (void) printf("Importing pool %s\n",
8022 ztest_opts.zo_pool);
8023 ztest_import(zs);
8024 return;
8025 }
8026
8027 /*
8028 * Create and initialize our storage pool.
8029 */
8030 for (i = 1; i <= ztest_opts.zo_init; i++) {
8031 memset(zs, 0, sizeof (*zs));
8032 if (ztest_opts.zo_verbose >= 3 &&
8033 ztest_opts.zo_init != 1) {
8034 (void) printf("ztest_init(), pass %d\n", i);
8035 }
8036 ztest_init(zs);
8037 }
8038 }
8039
8040 int
8041 main(int argc, char **argv)
8042 {
8043 int kills = 0;
8044 int iters = 0;
8045 int older = 0;
8046 int newer = 0;
8047 ztest_shared_t *zs;
8048 ztest_info_t *zi;
8049 ztest_shared_callstate_t *zc;
8050 char timebuf[100];
8051 char numbuf[NN_NUMBUF_SZ];
8052 char *cmd;
8053 boolean_t hasalt;
8054 int f, err;
8055 char *fd_data_str = getenv("ZTEST_FD_DATA");
8056 struct sigaction action;
8057
8058 (void) setvbuf(stdout, NULL, _IOLBF, 0);
8059
8060 dprintf_setup(&argc, argv);
8061 zfs_deadman_synctime_ms = 300000;
8062 zfs_deadman_checktime_ms = 30000;
8063 /*
8064 * As two-word space map entries may not come up often (especially
8065 * if pool and vdev sizes are small) we want to force at least some
8066 * of them so the feature get tested.
8067 */
8068 zfs_force_some_double_word_sm_entries = B_TRUE;
8069
8070 /*
8071 * Verify that even extensively damaged split blocks with many
8072 * segments can be reconstructed in a reasonable amount of time
8073 * when reconstruction is known to be possible.
8074 *
8075 * Note: the lower this value is, the more damage we inflict, and
8076 * the more time ztest spends in recovering that damage. We chose
8077 * to induce damage 1/100th of the time so recovery is tested but
8078 * not so frequently that ztest doesn't get to test other code paths.
8079 */
8080 zfs_reconstruct_indirect_damage_fraction = 100;
8081
8082 action.sa_handler = sig_handler;
8083 sigemptyset(&action.sa_mask);
8084 action.sa_flags = 0;
8085
8086 if (sigaction(SIGSEGV, &action, NULL) < 0) {
8087 (void) fprintf(stderr, "ztest: cannot catch SIGSEGV: %s.\n",
8088 strerror(errno));
8089 exit(EXIT_FAILURE);
8090 }
8091
8092 if (sigaction(SIGABRT, &action, NULL) < 0) {
8093 (void) fprintf(stderr, "ztest: cannot catch SIGABRT: %s.\n",
8094 strerror(errno));
8095 exit(EXIT_FAILURE);
8096 }
8097
8098 /*
8099 * Force random_get_bytes() to use /dev/urandom in order to prevent
8100 * ztest from needlessly depleting the system entropy pool.
8101 */
8102 random_path = "/dev/urandom";
8103 ztest_fd_rand = open(random_path, O_RDONLY | O_CLOEXEC);
8104 ASSERT3S(ztest_fd_rand, >=, 0);
8105
8106 if (!fd_data_str) {
8107 process_options(argc, argv);
8108
8109 setup_data_fd();
8110 setup_hdr();
8111 setup_data();
8112 memcpy(ztest_shared_opts, &ztest_opts,
8113 sizeof (*ztest_shared_opts));
8114 } else {
8115 ztest_fd_data = atoi(fd_data_str);
8116 setup_data();
8117 memcpy(&ztest_opts, ztest_shared_opts, sizeof (ztest_opts));
8118 }
8119 ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count);
8120
8121 err = ztest_set_global_vars();
8122 if (err != 0 && !fd_data_str) {
8123 /* error message done by ztest_set_global_vars */
8124 exit(EXIT_FAILURE);
8125 } else {
8126 /* children should not be spawned if setting gvars fails */
8127 VERIFY3S(err, ==, 0);
8128 }
8129
8130 /* Override location of zpool.cache */
8131 VERIFY3S(asprintf((char **)&spa_config_path, "%s/zpool.cache",
8132 ztest_opts.zo_dir), !=, -1);
8133
8134 ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t),
8135 UMEM_NOFAIL);
8136 zs = ztest_shared;
8137
8138 if (fd_data_str) {
8139 metaslab_force_ganging = ztest_opts.zo_metaslab_force_ganging;
8140 metaslab_df_alloc_threshold =
8141 zs->zs_metaslab_df_alloc_threshold;
8142
8143 if (zs->zs_do_init)
8144 ztest_run_init();
8145 else
8146 ztest_run(zs);
8147 exit(0);
8148 }
8149
8150 hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0);
8151
8152 if (ztest_opts.zo_verbose >= 1) {
8153 (void) printf("%"PRIu64" vdevs, %d datasets, %d threads,"
8154 "%d %s disks, %"PRIu64" seconds...\n\n",
8155 ztest_opts.zo_vdevs,
8156 ztest_opts.zo_datasets,
8157 ztest_opts.zo_threads,
8158 ztest_opts.zo_raid_children,
8159 ztest_opts.zo_raid_type,
8160 ztest_opts.zo_time);
8161 }
8162
8163 cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
8164 (void) strlcpy(cmd, getexecname(), MAXNAMELEN);
8165
8166 zs->zs_do_init = B_TRUE;
8167 if (strlen(ztest_opts.zo_alt_ztest) != 0) {
8168 if (ztest_opts.zo_verbose >= 1) {
8169 (void) printf("Executing older ztest for "
8170 "initialization: %s\n", ztest_opts.zo_alt_ztest);
8171 }
8172 VERIFY(!exec_child(ztest_opts.zo_alt_ztest,
8173 ztest_opts.zo_alt_libpath, B_FALSE, NULL));
8174 } else {
8175 VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL));
8176 }
8177 zs->zs_do_init = B_FALSE;
8178
8179 zs->zs_proc_start = gethrtime();
8180 zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC;
8181
8182 for (f = 0; f < ZTEST_FUNCS; f++) {
8183 zi = &ztest_info[f];
8184 zc = ZTEST_GET_SHARED_CALLSTATE(f);
8185 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
8186 zc->zc_next = UINT64_MAX;
8187 else
8188 zc->zc_next = zs->zs_proc_start +
8189 ztest_random(2 * zi->zi_interval[0] + 1);
8190 }
8191
8192 /*
8193 * Run the tests in a loop. These tests include fault injection
8194 * to verify that self-healing data works, and forced crashes
8195 * to verify that we never lose on-disk consistency.
8196 */
8197 while (gethrtime() < zs->zs_proc_stop) {
8198 int status;
8199 boolean_t killed;
8200
8201 /*
8202 * Initialize the workload counters for each function.
8203 */
8204 for (f = 0; f < ZTEST_FUNCS; f++) {
8205 zc = ZTEST_GET_SHARED_CALLSTATE(f);
8206 zc->zc_count = 0;
8207 zc->zc_time = 0;
8208 }
8209
8210 /* Set the allocation switch size */
8211 zs->zs_metaslab_df_alloc_threshold =
8212 ztest_random(zs->zs_metaslab_sz / 4) + 1;
8213
8214 if (!hasalt || ztest_random(2) == 0) {
8215 if (hasalt && ztest_opts.zo_verbose >= 1) {
8216 (void) printf("Executing newer ztest: %s\n",
8217 cmd);
8218 }
8219 newer++;
8220 killed = exec_child(cmd, NULL, B_TRUE, &status);
8221 } else {
8222 if (hasalt && ztest_opts.zo_verbose >= 1) {
8223 (void) printf("Executing older ztest: %s\n",
8224 ztest_opts.zo_alt_ztest);
8225 }
8226 older++;
8227 killed = exec_child(ztest_opts.zo_alt_ztest,
8228 ztest_opts.zo_alt_libpath, B_TRUE, &status);
8229 }
8230
8231 if (killed)
8232 kills++;
8233 iters++;
8234
8235 if (ztest_opts.zo_verbose >= 1) {
8236 hrtime_t now = gethrtime();
8237
8238 now = MIN(now, zs->zs_proc_stop);
8239 print_time(zs->zs_proc_stop - now, timebuf);
8240 nicenum(zs->zs_space, numbuf, sizeof (numbuf));
8241
8242 (void) printf("Pass %3d, %8s, %3"PRIu64" ENOSPC, "
8243 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
8244 iters,
8245 WIFEXITED(status) ? "Complete" : "SIGKILL",
8246 zs->zs_enospc_count,
8247 100.0 * zs->zs_alloc / zs->zs_space,
8248 numbuf,
8249 100.0 * (now - zs->zs_proc_start) /
8250 (ztest_opts.zo_time * NANOSEC), timebuf);
8251 }
8252
8253 if (ztest_opts.zo_verbose >= 2) {
8254 (void) printf("\nWorkload summary:\n\n");
8255 (void) printf("%7s %9s %s\n",
8256 "Calls", "Time", "Function");
8257 (void) printf("%7s %9s %s\n",
8258 "-----", "----", "--------");
8259 for (f = 0; f < ZTEST_FUNCS; f++) {
8260 zi = &ztest_info[f];
8261 zc = ZTEST_GET_SHARED_CALLSTATE(f);
8262 print_time(zc->zc_time, timebuf);
8263 (void) printf("%7"PRIu64" %9s %s\n",
8264 zc->zc_count, timebuf,
8265 zi->zi_funcname);
8266 }
8267 (void) printf("\n");
8268 }
8269
8270 if (!ztest_opts.zo_mmp_test)
8271 ztest_run_zdb(ztest_opts.zo_pool);
8272 }
8273
8274 if (ztest_opts.zo_verbose >= 1) {
8275 if (hasalt) {
8276 (void) printf("%d runs of older ztest: %s\n", older,
8277 ztest_opts.zo_alt_ztest);
8278 (void) printf("%d runs of newer ztest: %s\n", newer,
8279 cmd);
8280 }
8281 (void) printf("%d killed, %d completed, %.0f%% kill rate\n",
8282 kills, iters - kills, (100.0 * kills) / MAX(1, iters));
8283 }
8284
8285 umem_free(cmd, MAXNAMELEN);
8286
8287 return (0);
8288 }