]> git.proxmox.com Git - mirror_zfs.git/blob - cmd/ztest.c
Add ashift validation when adding devices to a pool
[mirror_zfs.git] / cmd / ztest.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2024 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2013 Steven Hartland. All rights reserved.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2017 Joyent, Inc.
28 * Copyright (c) 2017, Intel Corporation.
29 */
30
31 /*
32 * The objective of this program is to provide a DMU/ZAP/SPA stress test
33 * that runs entirely in userland, is easy to use, and easy to extend.
34 *
35 * The overall design of the ztest program is as follows:
36 *
37 * (1) For each major functional area (e.g. adding vdevs to a pool,
38 * creating and destroying datasets, reading and writing objects, etc)
39 * we have a simple routine to test that functionality. These
40 * individual routines do not have to do anything "stressful".
41 *
42 * (2) We turn these simple functionality tests into a stress test by
43 * running them all in parallel, with as many threads as desired,
44 * and spread across as many datasets, objects, and vdevs as desired.
45 *
46 * (3) While all this is happening, we inject faults into the pool to
47 * verify that self-healing data really works.
48 *
49 * (4) Every time we open a dataset, we change its checksum and compression
50 * functions. Thus even individual objects vary from block to block
51 * in which checksum they use and whether they're compressed.
52 *
53 * (5) To verify that we never lose on-disk consistency after a crash,
54 * we run the entire test in a child of the main process.
55 * At random times, the child self-immolates with a SIGKILL.
56 * This is the software equivalent of pulling the power cord.
57 * The parent then runs the test again, using the existing
58 * storage pool, as many times as desired. If backwards compatibility
59 * testing is enabled ztest will sometimes run the "older" version
60 * of ztest after a SIGKILL.
61 *
62 * (6) To verify that we don't have future leaks or temporal incursions,
63 * many of the functional tests record the transaction group number
64 * as part of their data. When reading old data, they verify that
65 * the transaction group number is less than the current, open txg.
66 * If you add a new test, please do this if applicable.
67 *
68 * (7) Threads are created with a reduced stack size, for sanity checking.
69 * Therefore, it's important not to allocate huge buffers on the stack.
70 *
71 * When run with no arguments, ztest runs for about five minutes and
72 * produces no output if successful. To get a little bit of information,
73 * specify -V. To get more information, specify -VV, and so on.
74 *
75 * To turn this into an overnight stress test, use -T to specify run time.
76 *
77 * You can ask more vdevs [-v], datasets [-d], or threads [-t]
78 * to increase the pool capacity, fanout, and overall stress level.
79 *
80 * Use the -k option to set the desired frequency of kills.
81 *
82 * When ztest invokes itself it passes all relevant information through a
83 * temporary file which is mmap-ed in the child process. This allows shared
84 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
85 * stored at offset 0 of this file and contains information on the size and
86 * number of shared structures in the file. The information stored in this file
87 * must remain backwards compatible with older versions of ztest so that
88 * ztest can invoke them during backwards compatibility testing (-B).
89 */
90
91 #include <sys/zfs_context.h>
92 #include <sys/spa.h>
93 #include <sys/dmu.h>
94 #include <sys/txg.h>
95 #include <sys/dbuf.h>
96 #include <sys/zap.h>
97 #include <sys/dmu_objset.h>
98 #include <sys/poll.h>
99 #include <sys/stat.h>
100 #include <sys/time.h>
101 #include <sys/wait.h>
102 #include <sys/mman.h>
103 #include <sys/resource.h>
104 #include <sys/zio.h>
105 #include <sys/zil.h>
106 #include <sys/zil_impl.h>
107 #include <sys/vdev_draid.h>
108 #include <sys/vdev_impl.h>
109 #include <sys/vdev_file.h>
110 #include <sys/vdev_initialize.h>
111 #include <sys/vdev_raidz.h>
112 #include <sys/vdev_trim.h>
113 #include <sys/spa_impl.h>
114 #include <sys/metaslab_impl.h>
115 #include <sys/dsl_prop.h>
116 #include <sys/dsl_dataset.h>
117 #include <sys/dsl_destroy.h>
118 #include <sys/dsl_scan.h>
119 #include <sys/zio_checksum.h>
120 #include <sys/zfs_refcount.h>
121 #include <sys/zfeature.h>
122 #include <sys/dsl_userhold.h>
123 #include <sys/abd.h>
124 #include <sys/blake3.h>
125 #include <stdio.h>
126 #include <stdlib.h>
127 #include <unistd.h>
128 #include <getopt.h>
129 #include <signal.h>
130 #include <umem.h>
131 #include <ctype.h>
132 #include <math.h>
133 #include <sys/fs/zfs.h>
134 #include <zfs_fletcher.h>
135 #include <libnvpair.h>
136 #include <libzutil.h>
137 #include <sys/crypto/icp.h>
138 #include <sys/zfs_impl.h>
139 #if (__GLIBC__ && !__UCLIBC__)
140 #include <execinfo.h> /* for backtrace() */
141 #endif
142
143 static int ztest_fd_data = -1;
144 static int ztest_fd_rand = -1;
145
146 typedef struct ztest_shared_hdr {
147 uint64_t zh_hdr_size;
148 uint64_t zh_opts_size;
149 uint64_t zh_size;
150 uint64_t zh_stats_size;
151 uint64_t zh_stats_count;
152 uint64_t zh_ds_size;
153 uint64_t zh_ds_count;
154 uint64_t zh_scratch_state_size;
155 } ztest_shared_hdr_t;
156
157 static ztest_shared_hdr_t *ztest_shared_hdr;
158
159 enum ztest_class_state {
160 ZTEST_VDEV_CLASS_OFF,
161 ZTEST_VDEV_CLASS_ON,
162 ZTEST_VDEV_CLASS_RND
163 };
164
165 /* Dedicated RAIDZ Expansion test states */
166 typedef enum {
167 RAIDZ_EXPAND_NONE, /* Default is none, must opt-in */
168 RAIDZ_EXPAND_REQUESTED, /* The '-X' option was used */
169 RAIDZ_EXPAND_STARTED, /* Testing has commenced */
170 RAIDZ_EXPAND_KILLED, /* Reached the proccess kill */
171 RAIDZ_EXPAND_CHECKED, /* Pool scrub verification done */
172 } raidz_expand_test_state_t;
173
174
175 #define ZO_GVARS_MAX_ARGLEN ((size_t)64)
176 #define ZO_GVARS_MAX_COUNT ((size_t)10)
177
178 typedef struct ztest_shared_opts {
179 char zo_pool[ZFS_MAX_DATASET_NAME_LEN];
180 char zo_dir[ZFS_MAX_DATASET_NAME_LEN];
181 char zo_alt_ztest[MAXNAMELEN];
182 char zo_alt_libpath[MAXNAMELEN];
183 uint64_t zo_vdevs;
184 uint64_t zo_vdevtime;
185 size_t zo_vdev_size;
186 int zo_ashift;
187 int zo_mirrors;
188 int zo_raid_do_expand;
189 int zo_raid_children;
190 int zo_raid_parity;
191 char zo_raid_type[8];
192 int zo_draid_data;
193 int zo_draid_spares;
194 int zo_datasets;
195 int zo_threads;
196 uint64_t zo_passtime;
197 uint64_t zo_killrate;
198 int zo_verbose;
199 int zo_init;
200 uint64_t zo_time;
201 uint64_t zo_maxloops;
202 uint64_t zo_metaslab_force_ganging;
203 raidz_expand_test_state_t zo_raidz_expand_test;
204 int zo_mmp_test;
205 int zo_special_vdevs;
206 int zo_dump_dbgmsg;
207 int zo_gvars_count;
208 char zo_gvars[ZO_GVARS_MAX_COUNT][ZO_GVARS_MAX_ARGLEN];
209 } ztest_shared_opts_t;
210
211 /* Default values for command line options. */
212 #define DEFAULT_POOL "ztest"
213 #define DEFAULT_VDEV_DIR "/tmp"
214 #define DEFAULT_VDEV_COUNT 5
215 #define DEFAULT_VDEV_SIZE (SPA_MINDEVSIZE * 4) /* 256m default size */
216 #define DEFAULT_VDEV_SIZE_STR "256M"
217 #define DEFAULT_ASHIFT SPA_MINBLOCKSHIFT
218 #define DEFAULT_MIRRORS 2
219 #define DEFAULT_RAID_CHILDREN 4
220 #define DEFAULT_RAID_PARITY 1
221 #define DEFAULT_DRAID_DATA 4
222 #define DEFAULT_DRAID_SPARES 1
223 #define DEFAULT_DATASETS_COUNT 7
224 #define DEFAULT_THREADS 23
225 #define DEFAULT_RUN_TIME 300 /* 300 seconds */
226 #define DEFAULT_RUN_TIME_STR "300 sec"
227 #define DEFAULT_PASS_TIME 60 /* 60 seconds */
228 #define DEFAULT_PASS_TIME_STR "60 sec"
229 #define DEFAULT_KILL_RATE 70 /* 70% kill rate */
230 #define DEFAULT_KILLRATE_STR "70%"
231 #define DEFAULT_INITS 1
232 #define DEFAULT_MAX_LOOPS 50 /* 5 minutes */
233 #define DEFAULT_FORCE_GANGING (64 << 10)
234 #define DEFAULT_FORCE_GANGING_STR "64K"
235
236 /* Simplifying assumption: -1 is not a valid default. */
237 #define NO_DEFAULT -1
238
239 static const ztest_shared_opts_t ztest_opts_defaults = {
240 .zo_pool = DEFAULT_POOL,
241 .zo_dir = DEFAULT_VDEV_DIR,
242 .zo_alt_ztest = { '\0' },
243 .zo_alt_libpath = { '\0' },
244 .zo_vdevs = DEFAULT_VDEV_COUNT,
245 .zo_ashift = DEFAULT_ASHIFT,
246 .zo_mirrors = DEFAULT_MIRRORS,
247 .zo_raid_children = DEFAULT_RAID_CHILDREN,
248 .zo_raid_parity = DEFAULT_RAID_PARITY,
249 .zo_raid_type = VDEV_TYPE_RAIDZ,
250 .zo_vdev_size = DEFAULT_VDEV_SIZE,
251 .zo_draid_data = DEFAULT_DRAID_DATA, /* data drives */
252 .zo_draid_spares = DEFAULT_DRAID_SPARES, /* distributed spares */
253 .zo_datasets = DEFAULT_DATASETS_COUNT,
254 .zo_threads = DEFAULT_THREADS,
255 .zo_passtime = DEFAULT_PASS_TIME,
256 .zo_killrate = DEFAULT_KILL_RATE,
257 .zo_verbose = 0,
258 .zo_mmp_test = 0,
259 .zo_init = DEFAULT_INITS,
260 .zo_time = DEFAULT_RUN_TIME,
261 .zo_maxloops = DEFAULT_MAX_LOOPS, /* max loops during spa_freeze() */
262 .zo_metaslab_force_ganging = DEFAULT_FORCE_GANGING,
263 .zo_special_vdevs = ZTEST_VDEV_CLASS_RND,
264 .zo_gvars_count = 0,
265 .zo_raidz_expand_test = RAIDZ_EXPAND_NONE,
266 };
267
268 extern uint64_t metaslab_force_ganging;
269 extern uint64_t metaslab_df_alloc_threshold;
270 extern uint64_t zfs_deadman_synctime_ms;
271 extern uint_t metaslab_preload_limit;
272 extern int zfs_compressed_arc_enabled;
273 extern int zfs_abd_scatter_enabled;
274 extern uint_t dmu_object_alloc_chunk_shift;
275 extern boolean_t zfs_force_some_double_word_sm_entries;
276 extern unsigned long zio_decompress_fail_fraction;
277 extern unsigned long zfs_reconstruct_indirect_damage_fraction;
278 extern uint64_t raidz_expand_max_reflow_bytes;
279 extern uint_t raidz_expand_pause_point;
280
281
282 static ztest_shared_opts_t *ztest_shared_opts;
283 static ztest_shared_opts_t ztest_opts;
284 static const char *const ztest_wkeydata = "abcdefghijklmnopqrstuvwxyz012345";
285
286 typedef struct ztest_shared_ds {
287 uint64_t zd_seq;
288 } ztest_shared_ds_t;
289
290 static ztest_shared_ds_t *ztest_shared_ds;
291 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
292
293 typedef struct ztest_scratch_state {
294 uint64_t zs_raidz_scratch_verify_pause;
295 } ztest_shared_scratch_state_t;
296
297 static ztest_shared_scratch_state_t *ztest_scratch_state;
298
299 #define BT_MAGIC 0x123456789abcdefULL
300 #define MAXFAULTS(zs) \
301 (MAX((zs)->zs_mirrors, 1) * (ztest_opts.zo_raid_parity + 1) - 1)
302
303 enum ztest_io_type {
304 ZTEST_IO_WRITE_TAG,
305 ZTEST_IO_WRITE_PATTERN,
306 ZTEST_IO_WRITE_ZEROES,
307 ZTEST_IO_TRUNCATE,
308 ZTEST_IO_SETATTR,
309 ZTEST_IO_REWRITE,
310 ZTEST_IO_TYPES
311 };
312
313 typedef struct ztest_block_tag {
314 uint64_t bt_magic;
315 uint64_t bt_objset;
316 uint64_t bt_object;
317 uint64_t bt_dnodesize;
318 uint64_t bt_offset;
319 uint64_t bt_gen;
320 uint64_t bt_txg;
321 uint64_t bt_crtxg;
322 } ztest_block_tag_t;
323
324 typedef struct bufwad {
325 uint64_t bw_index;
326 uint64_t bw_txg;
327 uint64_t bw_data;
328 } bufwad_t;
329
330 /*
331 * It would be better to use a rangelock_t per object. Unfortunately
332 * the rangelock_t is not a drop-in replacement for rl_t, because we
333 * still need to map from object ID to rangelock_t.
334 */
335 typedef enum {
336 ZTRL_READER,
337 ZTRL_WRITER,
338 ZTRL_APPEND
339 } rl_type_t;
340
341 typedef struct rll {
342 void *rll_writer;
343 int rll_readers;
344 kmutex_t rll_lock;
345 kcondvar_t rll_cv;
346 } rll_t;
347
348 typedef struct rl {
349 uint64_t rl_object;
350 uint64_t rl_offset;
351 uint64_t rl_size;
352 rll_t *rl_lock;
353 } rl_t;
354
355 #define ZTEST_RANGE_LOCKS 64
356 #define ZTEST_OBJECT_LOCKS 64
357
358 /*
359 * Object descriptor. Used as a template for object lookup/create/remove.
360 */
361 typedef struct ztest_od {
362 uint64_t od_dir;
363 uint64_t od_object;
364 dmu_object_type_t od_type;
365 dmu_object_type_t od_crtype;
366 uint64_t od_blocksize;
367 uint64_t od_crblocksize;
368 uint64_t od_crdnodesize;
369 uint64_t od_gen;
370 uint64_t od_crgen;
371 char od_name[ZFS_MAX_DATASET_NAME_LEN];
372 } ztest_od_t;
373
374 /*
375 * Per-dataset state.
376 */
377 typedef struct ztest_ds {
378 ztest_shared_ds_t *zd_shared;
379 objset_t *zd_os;
380 pthread_rwlock_t zd_zilog_lock;
381 zilog_t *zd_zilog;
382 ztest_od_t *zd_od; /* debugging aid */
383 char zd_name[ZFS_MAX_DATASET_NAME_LEN];
384 kmutex_t zd_dirobj_lock;
385 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS];
386 rll_t zd_range_lock[ZTEST_RANGE_LOCKS];
387 } ztest_ds_t;
388
389 /*
390 * Per-iteration state.
391 */
392 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
393
394 typedef struct ztest_info {
395 ztest_func_t *zi_func; /* test function */
396 uint64_t zi_iters; /* iterations per execution */
397 uint64_t *zi_interval; /* execute every <interval> seconds */
398 const char *zi_funcname; /* name of test function */
399 } ztest_info_t;
400
401 typedef struct ztest_shared_callstate {
402 uint64_t zc_count; /* per-pass count */
403 uint64_t zc_time; /* per-pass time */
404 uint64_t zc_next; /* next time to call this function */
405 } ztest_shared_callstate_t;
406
407 static ztest_shared_callstate_t *ztest_shared_callstate;
408 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
409
410 ztest_func_t ztest_dmu_read_write;
411 ztest_func_t ztest_dmu_write_parallel;
412 ztest_func_t ztest_dmu_object_alloc_free;
413 ztest_func_t ztest_dmu_object_next_chunk;
414 ztest_func_t ztest_dmu_commit_callbacks;
415 ztest_func_t ztest_zap;
416 ztest_func_t ztest_zap_parallel;
417 ztest_func_t ztest_zil_commit;
418 ztest_func_t ztest_zil_remount;
419 ztest_func_t ztest_dmu_read_write_zcopy;
420 ztest_func_t ztest_dmu_objset_create_destroy;
421 ztest_func_t ztest_dmu_prealloc;
422 ztest_func_t ztest_fzap;
423 ztest_func_t ztest_dmu_snapshot_create_destroy;
424 ztest_func_t ztest_dsl_prop_get_set;
425 ztest_func_t ztest_spa_prop_get_set;
426 ztest_func_t ztest_spa_create_destroy;
427 ztest_func_t ztest_fault_inject;
428 ztest_func_t ztest_dmu_snapshot_hold;
429 ztest_func_t ztest_mmp_enable_disable;
430 ztest_func_t ztest_scrub;
431 ztest_func_t ztest_dsl_dataset_promote_busy;
432 ztest_func_t ztest_vdev_attach_detach;
433 ztest_func_t ztest_vdev_raidz_attach;
434 ztest_func_t ztest_vdev_LUN_growth;
435 ztest_func_t ztest_vdev_add_remove;
436 ztest_func_t ztest_vdev_class_add;
437 ztest_func_t ztest_vdev_aux_add_remove;
438 ztest_func_t ztest_split_pool;
439 ztest_func_t ztest_reguid;
440 ztest_func_t ztest_spa_upgrade;
441 ztest_func_t ztest_device_removal;
442 ztest_func_t ztest_spa_checkpoint_create_discard;
443 ztest_func_t ztest_initialize;
444 ztest_func_t ztest_trim;
445 ztest_func_t ztest_blake3;
446 ztest_func_t ztest_fletcher;
447 ztest_func_t ztest_fletcher_incr;
448 ztest_func_t ztest_verify_dnode_bt;
449
450 static uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */
451 static uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */
452 static uint64_t zopt_often = 1ULL * NANOSEC; /* every second */
453 static uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */
454 static uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */
455
456 #define ZTI_INIT(func, iters, interval) \
457 { .zi_func = (func), \
458 .zi_iters = (iters), \
459 .zi_interval = (interval), \
460 .zi_funcname = # func }
461
462 static ztest_info_t ztest_info[] = {
463 ZTI_INIT(ztest_dmu_read_write, 1, &zopt_always),
464 ZTI_INIT(ztest_dmu_write_parallel, 10, &zopt_always),
465 ZTI_INIT(ztest_dmu_object_alloc_free, 1, &zopt_always),
466 ZTI_INIT(ztest_dmu_object_next_chunk, 1, &zopt_sometimes),
467 ZTI_INIT(ztest_dmu_commit_callbacks, 1, &zopt_always),
468 ZTI_INIT(ztest_zap, 30, &zopt_always),
469 ZTI_INIT(ztest_zap_parallel, 100, &zopt_always),
470 ZTI_INIT(ztest_split_pool, 1, &zopt_sometimes),
471 ZTI_INIT(ztest_zil_commit, 1, &zopt_incessant),
472 ZTI_INIT(ztest_zil_remount, 1, &zopt_sometimes),
473 ZTI_INIT(ztest_dmu_read_write_zcopy, 1, &zopt_often),
474 ZTI_INIT(ztest_dmu_objset_create_destroy, 1, &zopt_often),
475 ZTI_INIT(ztest_dsl_prop_get_set, 1, &zopt_often),
476 ZTI_INIT(ztest_spa_prop_get_set, 1, &zopt_sometimes),
477 #if 0
478 ZTI_INIT(ztest_dmu_prealloc, 1, &zopt_sometimes),
479 #endif
480 ZTI_INIT(ztest_fzap, 1, &zopt_sometimes),
481 ZTI_INIT(ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes),
482 ZTI_INIT(ztest_spa_create_destroy, 1, &zopt_sometimes),
483 ZTI_INIT(ztest_fault_inject, 1, &zopt_sometimes),
484 ZTI_INIT(ztest_dmu_snapshot_hold, 1, &zopt_sometimes),
485 ZTI_INIT(ztest_mmp_enable_disable, 1, &zopt_sometimes),
486 ZTI_INIT(ztest_reguid, 1, &zopt_rarely),
487 ZTI_INIT(ztest_scrub, 1, &zopt_rarely),
488 ZTI_INIT(ztest_spa_upgrade, 1, &zopt_rarely),
489 ZTI_INIT(ztest_dsl_dataset_promote_busy, 1, &zopt_rarely),
490 ZTI_INIT(ztest_vdev_attach_detach, 1, &zopt_sometimes),
491 ZTI_INIT(ztest_vdev_raidz_attach, 1, &zopt_sometimes),
492 ZTI_INIT(ztest_vdev_LUN_growth, 1, &zopt_rarely),
493 ZTI_INIT(ztest_vdev_add_remove, 1, &ztest_opts.zo_vdevtime),
494 ZTI_INIT(ztest_vdev_class_add, 1, &ztest_opts.zo_vdevtime),
495 ZTI_INIT(ztest_vdev_aux_add_remove, 1, &ztest_opts.zo_vdevtime),
496 ZTI_INIT(ztest_device_removal, 1, &zopt_sometimes),
497 ZTI_INIT(ztest_spa_checkpoint_create_discard, 1, &zopt_rarely),
498 ZTI_INIT(ztest_initialize, 1, &zopt_sometimes),
499 ZTI_INIT(ztest_trim, 1, &zopt_sometimes),
500 ZTI_INIT(ztest_blake3, 1, &zopt_rarely),
501 ZTI_INIT(ztest_fletcher, 1, &zopt_rarely),
502 ZTI_INIT(ztest_fletcher_incr, 1, &zopt_rarely),
503 ZTI_INIT(ztest_verify_dnode_bt, 1, &zopt_sometimes),
504 };
505
506 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t))
507
508 /*
509 * The following struct is used to hold a list of uncalled commit callbacks.
510 * The callbacks are ordered by txg number.
511 */
512 typedef struct ztest_cb_list {
513 kmutex_t zcl_callbacks_lock;
514 list_t zcl_callbacks;
515 } ztest_cb_list_t;
516
517 /*
518 * Stuff we need to share writably between parent and child.
519 */
520 typedef struct ztest_shared {
521 boolean_t zs_do_init;
522 hrtime_t zs_proc_start;
523 hrtime_t zs_proc_stop;
524 hrtime_t zs_thread_start;
525 hrtime_t zs_thread_stop;
526 hrtime_t zs_thread_kill;
527 uint64_t zs_enospc_count;
528 uint64_t zs_vdev_next_leaf;
529 uint64_t zs_vdev_aux;
530 uint64_t zs_alloc;
531 uint64_t zs_space;
532 uint64_t zs_splits;
533 uint64_t zs_mirrors;
534 uint64_t zs_metaslab_sz;
535 uint64_t zs_metaslab_df_alloc_threshold;
536 uint64_t zs_guid;
537 } ztest_shared_t;
538
539 #define ID_PARALLEL -1ULL
540
541 static char ztest_dev_template[] = "%s/%s.%llua";
542 static char ztest_aux_template[] = "%s/%s.%s.%llu";
543 static ztest_shared_t *ztest_shared;
544
545 static spa_t *ztest_spa = NULL;
546 static ztest_ds_t *ztest_ds;
547
548 static kmutex_t ztest_vdev_lock;
549 static boolean_t ztest_device_removal_active = B_FALSE;
550 static boolean_t ztest_pool_scrubbed = B_FALSE;
551 static kmutex_t ztest_checkpoint_lock;
552
553 /*
554 * The ztest_name_lock protects the pool and dataset namespace used by
555 * the individual tests. To modify the namespace, consumers must grab
556 * this lock as writer. Grabbing the lock as reader will ensure that the
557 * namespace does not change while the lock is held.
558 */
559 static pthread_rwlock_t ztest_name_lock;
560
561 static boolean_t ztest_dump_core = B_TRUE;
562 static boolean_t ztest_exiting;
563
564 /* Global commit callback list */
565 static ztest_cb_list_t zcl;
566 /* Commit cb delay */
567 static uint64_t zc_min_txg_delay = UINT64_MAX;
568 static int zc_cb_counter = 0;
569
570 /*
571 * Minimum number of commit callbacks that need to be registered for us to check
572 * whether the minimum txg delay is acceptable.
573 */
574 #define ZTEST_COMMIT_CB_MIN_REG 100
575
576 /*
577 * If a number of txgs equal to this threshold have been created after a commit
578 * callback has been registered but not called, then we assume there is an
579 * implementation bug.
580 */
581 #define ZTEST_COMMIT_CB_THRESH (TXG_CONCURRENT_STATES + 1000)
582
583 enum ztest_object {
584 ZTEST_META_DNODE = 0,
585 ZTEST_DIROBJ,
586 ZTEST_OBJECTS
587 };
588
589 static __attribute__((noreturn)) void usage(boolean_t requested);
590 static int ztest_scrub_impl(spa_t *spa);
591
592 /*
593 * These libumem hooks provide a reasonable set of defaults for the allocator's
594 * debugging facilities.
595 */
596 const char *
597 _umem_debug_init(void)
598 {
599 return ("default,verbose"); /* $UMEM_DEBUG setting */
600 }
601
602 const char *
603 _umem_logging_init(void)
604 {
605 return ("fail,contents"); /* $UMEM_LOGGING setting */
606 }
607
608 static void
609 dump_debug_buffer(void)
610 {
611 ssize_t ret __attribute__((unused));
612
613 if (!ztest_opts.zo_dump_dbgmsg)
614 return;
615
616 /*
617 * We use write() instead of printf() so that this function
618 * is safe to call from a signal handler.
619 */
620 ret = write(STDOUT_FILENO, "\n", 1);
621 zfs_dbgmsg_print("ztest");
622 }
623
624 #define BACKTRACE_SZ 100
625
626 static void sig_handler(int signo)
627 {
628 struct sigaction action;
629 #if (__GLIBC__ && !__UCLIBC__) /* backtrace() is a GNU extension */
630 int nptrs;
631 void *buffer[BACKTRACE_SZ];
632
633 nptrs = backtrace(buffer, BACKTRACE_SZ);
634 backtrace_symbols_fd(buffer, nptrs, STDERR_FILENO);
635 #endif
636 dump_debug_buffer();
637
638 /*
639 * Restore default action and re-raise signal so SIGSEGV and
640 * SIGABRT can trigger a core dump.
641 */
642 action.sa_handler = SIG_DFL;
643 sigemptyset(&action.sa_mask);
644 action.sa_flags = 0;
645 (void) sigaction(signo, &action, NULL);
646 raise(signo);
647 }
648
649 #define FATAL_MSG_SZ 1024
650
651 static const char *fatal_msg;
652
653 static __attribute__((format(printf, 2, 3))) __attribute__((noreturn)) void
654 fatal(int do_perror, const char *message, ...)
655 {
656 va_list args;
657 int save_errno = errno;
658 char *buf;
659
660 (void) fflush(stdout);
661 buf = umem_alloc(FATAL_MSG_SZ, UMEM_NOFAIL);
662 if (buf == NULL)
663 goto out;
664
665 va_start(args, message);
666 (void) sprintf(buf, "ztest: ");
667 /* LINTED */
668 (void) vsprintf(buf + strlen(buf), message, args);
669 va_end(args);
670 if (do_perror) {
671 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
672 ": %s", strerror(save_errno));
673 }
674 (void) fprintf(stderr, "%s\n", buf);
675 fatal_msg = buf; /* to ease debugging */
676
677 out:
678 if (ztest_dump_core)
679 abort();
680 else
681 dump_debug_buffer();
682
683 exit(3);
684 }
685
686 static int
687 str2shift(const char *buf)
688 {
689 const char *ends = "BKMGTPEZ";
690 int i;
691
692 if (buf[0] == '\0')
693 return (0);
694 for (i = 0; i < strlen(ends); i++) {
695 if (toupper(buf[0]) == ends[i])
696 break;
697 }
698 if (i == strlen(ends)) {
699 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
700 buf);
701 usage(B_FALSE);
702 }
703 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
704 return (10*i);
705 }
706 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
707 usage(B_FALSE);
708 }
709
710 static uint64_t
711 nicenumtoull(const char *buf)
712 {
713 char *end;
714 uint64_t val;
715
716 val = strtoull(buf, &end, 0);
717 if (end == buf) {
718 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
719 usage(B_FALSE);
720 } else if (end[0] == '.') {
721 double fval = strtod(buf, &end);
722 fval *= pow(2, str2shift(end));
723 /*
724 * UINT64_MAX is not exactly representable as a double.
725 * The closest representation is UINT64_MAX + 1, so we
726 * use a >= comparison instead of > for the bounds check.
727 */
728 if (fval >= (double)UINT64_MAX) {
729 (void) fprintf(stderr, "ztest: value too large: %s\n",
730 buf);
731 usage(B_FALSE);
732 }
733 val = (uint64_t)fval;
734 } else {
735 int shift = str2shift(end);
736 if (shift >= 64 || (val << shift) >> shift != val) {
737 (void) fprintf(stderr, "ztest: value too large: %s\n",
738 buf);
739 usage(B_FALSE);
740 }
741 val <<= shift;
742 }
743 return (val);
744 }
745
746 typedef struct ztest_option {
747 const char short_opt;
748 const char *long_opt;
749 const char *long_opt_param;
750 const char *comment;
751 unsigned int default_int;
752 const char *default_str;
753 } ztest_option_t;
754
755 /*
756 * The following option_table is used for generating the usage info as well as
757 * the long and short option information for calling getopt_long().
758 */
759 static ztest_option_t option_table[] = {
760 { 'v', "vdevs", "INTEGER", "Number of vdevs", DEFAULT_VDEV_COUNT,
761 NULL},
762 { 's', "vdev-size", "INTEGER", "Size of each vdev",
763 NO_DEFAULT, DEFAULT_VDEV_SIZE_STR},
764 { 'a', "alignment-shift", "INTEGER",
765 "Alignment shift; use 0 for random", DEFAULT_ASHIFT, NULL},
766 { 'm', "mirror-copies", "INTEGER", "Number of mirror copies",
767 DEFAULT_MIRRORS, NULL},
768 { 'r', "raid-disks", "INTEGER", "Number of raidz/draid disks",
769 DEFAULT_RAID_CHILDREN, NULL},
770 { 'R', "raid-parity", "INTEGER", "Raid parity",
771 DEFAULT_RAID_PARITY, NULL},
772 { 'K', "raid-kind", "raidz|eraidz|draid|random", "Raid kind",
773 NO_DEFAULT, "random"},
774 { 'D', "draid-data", "INTEGER", "Number of draid data drives",
775 DEFAULT_DRAID_DATA, NULL},
776 { 'S', "draid-spares", "INTEGER", "Number of draid spares",
777 DEFAULT_DRAID_SPARES, NULL},
778 { 'd', "datasets", "INTEGER", "Number of datasets",
779 DEFAULT_DATASETS_COUNT, NULL},
780 { 't', "threads", "INTEGER", "Number of ztest threads",
781 DEFAULT_THREADS, NULL},
782 { 'g', "gang-block-threshold", "INTEGER",
783 "Metaslab gang block threshold",
784 NO_DEFAULT, DEFAULT_FORCE_GANGING_STR},
785 { 'i', "init-count", "INTEGER", "Number of times to initialize pool",
786 DEFAULT_INITS, NULL},
787 { 'k', "kill-percentage", "INTEGER", "Kill percentage",
788 NO_DEFAULT, DEFAULT_KILLRATE_STR},
789 { 'p', "pool-name", "STRING", "Pool name",
790 NO_DEFAULT, DEFAULT_POOL},
791 { 'f', "vdev-file-directory", "PATH", "File directory for vdev files",
792 NO_DEFAULT, DEFAULT_VDEV_DIR},
793 { 'M', "multi-host", NULL,
794 "Multi-host; simulate pool imported on remote host",
795 NO_DEFAULT, NULL},
796 { 'E', "use-existing-pool", NULL,
797 "Use existing pool instead of creating new one", NO_DEFAULT, NULL},
798 { 'T', "run-time", "INTEGER", "Total run time",
799 NO_DEFAULT, DEFAULT_RUN_TIME_STR},
800 { 'P', "pass-time", "INTEGER", "Time per pass",
801 NO_DEFAULT, DEFAULT_PASS_TIME_STR},
802 { 'F', "freeze-loops", "INTEGER", "Max loops in spa_freeze()",
803 DEFAULT_MAX_LOOPS, NULL},
804 { 'B', "alt-ztest", "PATH", "Alternate ztest path",
805 NO_DEFAULT, NULL},
806 { 'C', "vdev-class-state", "on|off|random", "vdev class state",
807 NO_DEFAULT, "random"},
808 { 'X', "raidz-expansion", NULL,
809 "Perform a dedicated raidz expansion test",
810 NO_DEFAULT, NULL},
811 { 'o', "option", "\"OPTION=INTEGER\"",
812 "Set global variable to an unsigned 32-bit integer value",
813 NO_DEFAULT, NULL},
814 { 'G', "dump-debug-msg", NULL,
815 "Dump zfs_dbgmsg buffer before exiting due to an error",
816 NO_DEFAULT, NULL},
817 { 'V', "verbose", NULL,
818 "Verbose (use multiple times for ever more verbosity)",
819 NO_DEFAULT, NULL},
820 { 'h', "help", NULL, "Show this help",
821 NO_DEFAULT, NULL},
822 {0, 0, 0, 0, 0, 0}
823 };
824
825 static struct option *long_opts = NULL;
826 static char *short_opts = NULL;
827
828 static void
829 init_options(void)
830 {
831 ASSERT3P(long_opts, ==, NULL);
832 ASSERT3P(short_opts, ==, NULL);
833
834 int count = sizeof (option_table) / sizeof (option_table[0]);
835 long_opts = umem_alloc(sizeof (struct option) * count, UMEM_NOFAIL);
836
837 short_opts = umem_alloc(sizeof (char) * 2 * count, UMEM_NOFAIL);
838 int short_opt_index = 0;
839
840 for (int i = 0; i < count; i++) {
841 long_opts[i].val = option_table[i].short_opt;
842 long_opts[i].name = option_table[i].long_opt;
843 long_opts[i].has_arg = option_table[i].long_opt_param != NULL
844 ? required_argument : no_argument;
845 long_opts[i].flag = NULL;
846 short_opts[short_opt_index++] = option_table[i].short_opt;
847 if (option_table[i].long_opt_param != NULL) {
848 short_opts[short_opt_index++] = ':';
849 }
850 }
851 }
852
853 static void
854 fini_options(void)
855 {
856 int count = sizeof (option_table) / sizeof (option_table[0]);
857
858 umem_free(long_opts, sizeof (struct option) * count);
859 umem_free(short_opts, sizeof (char) * 2 * count);
860
861 long_opts = NULL;
862 short_opts = NULL;
863 }
864
865 static __attribute__((noreturn)) void
866 usage(boolean_t requested)
867 {
868 char option[80];
869 FILE *fp = requested ? stdout : stderr;
870
871 (void) fprintf(fp, "Usage: %s [OPTIONS...]\n", DEFAULT_POOL);
872 for (int i = 0; option_table[i].short_opt != 0; i++) {
873 if (option_table[i].long_opt_param != NULL) {
874 (void) sprintf(option, " -%c --%s=%s",
875 option_table[i].short_opt,
876 option_table[i].long_opt,
877 option_table[i].long_opt_param);
878 } else {
879 (void) sprintf(option, " -%c --%s",
880 option_table[i].short_opt,
881 option_table[i].long_opt);
882 }
883 (void) fprintf(fp, " %-43s%s", option,
884 option_table[i].comment);
885
886 if (option_table[i].long_opt_param != NULL) {
887 if (option_table[i].default_str != NULL) {
888 (void) fprintf(fp, " (default: %s)",
889 option_table[i].default_str);
890 } else if (option_table[i].default_int != NO_DEFAULT) {
891 (void) fprintf(fp, " (default: %u)",
892 option_table[i].default_int);
893 }
894 }
895 (void) fprintf(fp, "\n");
896 }
897 exit(requested ? 0 : 1);
898 }
899
900 static uint64_t
901 ztest_random(uint64_t range)
902 {
903 uint64_t r;
904
905 ASSERT3S(ztest_fd_rand, >=, 0);
906
907 if (range == 0)
908 return (0);
909
910 if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r))
911 fatal(B_TRUE, "short read from /dev/urandom");
912
913 return (r % range);
914 }
915
916 static void
917 ztest_parse_name_value(const char *input, ztest_shared_opts_t *zo)
918 {
919 char name[32];
920 char *value;
921 int state = ZTEST_VDEV_CLASS_RND;
922
923 (void) strlcpy(name, input, sizeof (name));
924
925 value = strchr(name, '=');
926 if (value == NULL) {
927 (void) fprintf(stderr, "missing value in property=value "
928 "'-C' argument (%s)\n", input);
929 usage(B_FALSE);
930 }
931 *(value) = '\0';
932 value++;
933
934 if (strcmp(value, "on") == 0) {
935 state = ZTEST_VDEV_CLASS_ON;
936 } else if (strcmp(value, "off") == 0) {
937 state = ZTEST_VDEV_CLASS_OFF;
938 } else if (strcmp(value, "random") == 0) {
939 state = ZTEST_VDEV_CLASS_RND;
940 } else {
941 (void) fprintf(stderr, "invalid property value '%s'\n", value);
942 usage(B_FALSE);
943 }
944
945 if (strcmp(name, "special") == 0) {
946 zo->zo_special_vdevs = state;
947 } else {
948 (void) fprintf(stderr, "invalid property name '%s'\n", name);
949 usage(B_FALSE);
950 }
951 if (zo->zo_verbose >= 3)
952 (void) printf("%s vdev state is '%s'\n", name, value);
953 }
954
955 static void
956 process_options(int argc, char **argv)
957 {
958 char *path;
959 ztest_shared_opts_t *zo = &ztest_opts;
960
961 int opt;
962 uint64_t value;
963 const char *raid_kind = "random";
964
965 memcpy(zo, &ztest_opts_defaults, sizeof (*zo));
966
967 init_options();
968
969 while ((opt = getopt_long(argc, argv, short_opts, long_opts,
970 NULL)) != EOF) {
971 value = 0;
972 switch (opt) {
973 case 'v':
974 case 's':
975 case 'a':
976 case 'm':
977 case 'r':
978 case 'R':
979 case 'D':
980 case 'S':
981 case 'd':
982 case 't':
983 case 'g':
984 case 'i':
985 case 'k':
986 case 'T':
987 case 'P':
988 case 'F':
989 value = nicenumtoull(optarg);
990 }
991 switch (opt) {
992 case 'v':
993 zo->zo_vdevs = value;
994 break;
995 case 's':
996 zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value);
997 break;
998 case 'a':
999 zo->zo_ashift = value;
1000 break;
1001 case 'm':
1002 zo->zo_mirrors = value;
1003 break;
1004 case 'r':
1005 zo->zo_raid_children = MAX(1, value);
1006 break;
1007 case 'R':
1008 zo->zo_raid_parity = MIN(MAX(value, 1), 3);
1009 break;
1010 case 'K':
1011 raid_kind = optarg;
1012 break;
1013 case 'D':
1014 zo->zo_draid_data = MAX(1, value);
1015 break;
1016 case 'S':
1017 zo->zo_draid_spares = MAX(1, value);
1018 break;
1019 case 'd':
1020 zo->zo_datasets = MAX(1, value);
1021 break;
1022 case 't':
1023 zo->zo_threads = MAX(1, value);
1024 break;
1025 case 'g':
1026 zo->zo_metaslab_force_ganging =
1027 MAX(SPA_MINBLOCKSIZE << 1, value);
1028 break;
1029 case 'i':
1030 zo->zo_init = value;
1031 break;
1032 case 'k':
1033 zo->zo_killrate = value;
1034 break;
1035 case 'p':
1036 (void) strlcpy(zo->zo_pool, optarg,
1037 sizeof (zo->zo_pool));
1038 break;
1039 case 'f':
1040 path = realpath(optarg, NULL);
1041 if (path == NULL) {
1042 (void) fprintf(stderr, "error: %s: %s\n",
1043 optarg, strerror(errno));
1044 usage(B_FALSE);
1045 } else {
1046 (void) strlcpy(zo->zo_dir, path,
1047 sizeof (zo->zo_dir));
1048 free(path);
1049 }
1050 break;
1051 case 'M':
1052 zo->zo_mmp_test = 1;
1053 break;
1054 case 'V':
1055 zo->zo_verbose++;
1056 break;
1057 case 'X':
1058 zo->zo_raidz_expand_test = RAIDZ_EXPAND_REQUESTED;
1059 break;
1060 case 'E':
1061 zo->zo_init = 0;
1062 break;
1063 case 'T':
1064 zo->zo_time = value;
1065 break;
1066 case 'P':
1067 zo->zo_passtime = MAX(1, value);
1068 break;
1069 case 'F':
1070 zo->zo_maxloops = MAX(1, value);
1071 break;
1072 case 'B':
1073 (void) strlcpy(zo->zo_alt_ztest, optarg,
1074 sizeof (zo->zo_alt_ztest));
1075 break;
1076 case 'C':
1077 ztest_parse_name_value(optarg, zo);
1078 break;
1079 case 'o':
1080 if (zo->zo_gvars_count >= ZO_GVARS_MAX_COUNT) {
1081 (void) fprintf(stderr,
1082 "max global var count (%zu) exceeded\n",
1083 ZO_GVARS_MAX_COUNT);
1084 usage(B_FALSE);
1085 }
1086 char *v = zo->zo_gvars[zo->zo_gvars_count];
1087 if (strlcpy(v, optarg, ZO_GVARS_MAX_ARGLEN) >=
1088 ZO_GVARS_MAX_ARGLEN) {
1089 (void) fprintf(stderr,
1090 "global var option '%s' is too long\n",
1091 optarg);
1092 usage(B_FALSE);
1093 }
1094 zo->zo_gvars_count++;
1095 break;
1096 case 'G':
1097 zo->zo_dump_dbgmsg = 1;
1098 break;
1099 case 'h':
1100 usage(B_TRUE);
1101 break;
1102 case '?':
1103 default:
1104 usage(B_FALSE);
1105 break;
1106 }
1107 }
1108
1109 fini_options();
1110
1111 /* Force compatible options for raidz expansion run */
1112 if (zo->zo_raidz_expand_test == RAIDZ_EXPAND_REQUESTED) {
1113 zo->zo_mmp_test = 0;
1114 zo->zo_mirrors = 0;
1115 zo->zo_vdevs = 1;
1116 zo->zo_vdev_size = DEFAULT_VDEV_SIZE * 2;
1117 zo->zo_raid_do_expand = B_FALSE;
1118 raid_kind = "raidz";
1119 }
1120
1121 if (strcmp(raid_kind, "random") == 0) {
1122 switch (ztest_random(3)) {
1123 case 0:
1124 raid_kind = "raidz";
1125 break;
1126 case 1:
1127 raid_kind = "eraidz";
1128 break;
1129 case 2:
1130 raid_kind = "draid";
1131 break;
1132 }
1133
1134 if (ztest_opts.zo_verbose >= 3)
1135 (void) printf("choosing RAID type '%s'\n", raid_kind);
1136 }
1137
1138 if (strcmp(raid_kind, "draid") == 0) {
1139 uint64_t min_devsize;
1140
1141 /* With fewer disk use 256M, otherwise 128M is OK */
1142 min_devsize = (ztest_opts.zo_raid_children < 16) ?
1143 (256ULL << 20) : (128ULL << 20);
1144
1145 /* No top-level mirrors with dRAID for now */
1146 zo->zo_mirrors = 0;
1147
1148 /* Use more appropriate defaults for dRAID */
1149 if (zo->zo_vdevs == ztest_opts_defaults.zo_vdevs)
1150 zo->zo_vdevs = 1;
1151 if (zo->zo_raid_children ==
1152 ztest_opts_defaults.zo_raid_children)
1153 zo->zo_raid_children = 16;
1154 if (zo->zo_ashift < 12)
1155 zo->zo_ashift = 12;
1156 if (zo->zo_vdev_size < min_devsize)
1157 zo->zo_vdev_size = min_devsize;
1158
1159 if (zo->zo_draid_data + zo->zo_raid_parity >
1160 zo->zo_raid_children - zo->zo_draid_spares) {
1161 (void) fprintf(stderr, "error: too few draid "
1162 "children (%d) for stripe width (%d)\n",
1163 zo->zo_raid_children,
1164 zo->zo_draid_data + zo->zo_raid_parity);
1165 usage(B_FALSE);
1166 }
1167
1168 (void) strlcpy(zo->zo_raid_type, VDEV_TYPE_DRAID,
1169 sizeof (zo->zo_raid_type));
1170
1171 } else if (strcmp(raid_kind, "eraidz") == 0) {
1172 /* using eraidz (expandable raidz) */
1173 zo->zo_raid_do_expand = B_TRUE;
1174
1175 /* tests expect top-level to be raidz */
1176 zo->zo_mirrors = 0;
1177 zo->zo_vdevs = 1;
1178
1179 /* Make sure parity is less than data columns */
1180 zo->zo_raid_parity = MIN(zo->zo_raid_parity,
1181 zo->zo_raid_children - 1);
1182
1183 } else /* using raidz */ {
1184 ASSERT0(strcmp(raid_kind, "raidz"));
1185
1186 zo->zo_raid_parity = MIN(zo->zo_raid_parity,
1187 zo->zo_raid_children - 1);
1188 }
1189
1190 zo->zo_vdevtime =
1191 (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs :
1192 UINT64_MAX >> 2);
1193
1194 if (*zo->zo_alt_ztest) {
1195 const char *invalid_what = "ztest";
1196 char *val = zo->zo_alt_ztest;
1197 if (0 != access(val, X_OK) ||
1198 (strrchr(val, '/') == NULL && (errno == EINVAL)))
1199 goto invalid;
1200
1201 int dirlen = strrchr(val, '/') - val;
1202 strlcpy(zo->zo_alt_libpath, val,
1203 MIN(sizeof (zo->zo_alt_libpath), dirlen + 1));
1204 invalid_what = "library path", val = zo->zo_alt_libpath;
1205 if (strrchr(val, '/') == NULL && (errno == EINVAL))
1206 goto invalid;
1207 *strrchr(val, '/') = '\0';
1208 strlcat(val, "/lib", sizeof (zo->zo_alt_libpath));
1209
1210 if (0 != access(zo->zo_alt_libpath, X_OK))
1211 goto invalid;
1212 return;
1213
1214 invalid:
1215 ztest_dump_core = B_FALSE;
1216 fatal(B_TRUE, "invalid alternate %s %s", invalid_what, val);
1217 }
1218 }
1219
1220 static void
1221 ztest_kill(ztest_shared_t *zs)
1222 {
1223 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa));
1224 zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa));
1225
1226 /*
1227 * Before we kill ourselves, make sure that the config is updated.
1228 * See comment above spa_write_cachefile().
1229 */
1230 if (raidz_expand_pause_point != RAIDZ_EXPAND_PAUSE_NONE) {
1231 if (mutex_tryenter(&spa_namespace_lock)) {
1232 spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE,
1233 B_FALSE);
1234 mutex_exit(&spa_namespace_lock);
1235
1236 ztest_scratch_state->zs_raidz_scratch_verify_pause =
1237 raidz_expand_pause_point;
1238 } else {
1239 /*
1240 * Do not verify scratch object in case if
1241 * spa_namespace_lock cannot be acquired,
1242 * it can cause deadlock in spa_config_update().
1243 */
1244 raidz_expand_pause_point = RAIDZ_EXPAND_PAUSE_NONE;
1245
1246 return;
1247 }
1248 } else {
1249 mutex_enter(&spa_namespace_lock);
1250 spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE, B_FALSE);
1251 mutex_exit(&spa_namespace_lock);
1252 }
1253
1254 (void) raise(SIGKILL);
1255 }
1256
1257 static void
1258 ztest_record_enospc(const char *s)
1259 {
1260 (void) s;
1261 ztest_shared->zs_enospc_count++;
1262 }
1263
1264 static uint64_t
1265 ztest_get_ashift(void)
1266 {
1267 if (ztest_opts.zo_ashift == 0)
1268 return (SPA_MINBLOCKSHIFT + ztest_random(5));
1269 return (ztest_opts.zo_ashift);
1270 }
1271
1272 static boolean_t
1273 ztest_is_draid_spare(const char *name)
1274 {
1275 uint64_t spare_id = 0, parity = 0, vdev_id = 0;
1276
1277 if (sscanf(name, VDEV_TYPE_DRAID "%"PRIu64"-%"PRIu64"-%"PRIu64"",
1278 &parity, &vdev_id, &spare_id) == 3) {
1279 return (B_TRUE);
1280 }
1281
1282 return (B_FALSE);
1283 }
1284
1285 static nvlist_t *
1286 make_vdev_file(const char *path, const char *aux, const char *pool,
1287 size_t size, uint64_t ashift)
1288 {
1289 char *pathbuf = NULL;
1290 uint64_t vdev;
1291 nvlist_t *file;
1292 boolean_t draid_spare = B_FALSE;
1293
1294
1295 if (ashift == 0)
1296 ashift = ztest_get_ashift();
1297
1298 if (path == NULL) {
1299 pathbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1300 path = pathbuf;
1301
1302 if (aux != NULL) {
1303 vdev = ztest_shared->zs_vdev_aux;
1304 (void) snprintf(pathbuf, MAXPATHLEN,
1305 ztest_aux_template, ztest_opts.zo_dir,
1306 pool == NULL ? ztest_opts.zo_pool : pool,
1307 aux, vdev);
1308 } else {
1309 vdev = ztest_shared->zs_vdev_next_leaf++;
1310 (void) snprintf(pathbuf, MAXPATHLEN,
1311 ztest_dev_template, ztest_opts.zo_dir,
1312 pool == NULL ? ztest_opts.zo_pool : pool, vdev);
1313 }
1314 } else {
1315 draid_spare = ztest_is_draid_spare(path);
1316 }
1317
1318 if (size != 0 && !draid_spare) {
1319 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
1320 if (fd == -1)
1321 fatal(B_TRUE, "can't open %s", path);
1322 if (ftruncate(fd, size) != 0)
1323 fatal(B_TRUE, "can't ftruncate %s", path);
1324 (void) close(fd);
1325 }
1326
1327 file = fnvlist_alloc();
1328 fnvlist_add_string(file, ZPOOL_CONFIG_TYPE,
1329 draid_spare ? VDEV_TYPE_DRAID_SPARE : VDEV_TYPE_FILE);
1330 fnvlist_add_string(file, ZPOOL_CONFIG_PATH, path);
1331 fnvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift);
1332 umem_free(pathbuf, MAXPATHLEN);
1333
1334 return (file);
1335 }
1336
1337 static nvlist_t *
1338 make_vdev_raid(const char *path, const char *aux, const char *pool, size_t size,
1339 uint64_t ashift, int r)
1340 {
1341 nvlist_t *raid, **child;
1342 int c;
1343
1344 if (r < 2)
1345 return (make_vdev_file(path, aux, pool, size, ashift));
1346 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
1347
1348 for (c = 0; c < r; c++)
1349 child[c] = make_vdev_file(path, aux, pool, size, ashift);
1350
1351 raid = fnvlist_alloc();
1352 fnvlist_add_string(raid, ZPOOL_CONFIG_TYPE,
1353 ztest_opts.zo_raid_type);
1354 fnvlist_add_uint64(raid, ZPOOL_CONFIG_NPARITY,
1355 ztest_opts.zo_raid_parity);
1356 fnvlist_add_nvlist_array(raid, ZPOOL_CONFIG_CHILDREN,
1357 (const nvlist_t **)child, r);
1358
1359 if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0) {
1360 uint64_t ndata = ztest_opts.zo_draid_data;
1361 uint64_t nparity = ztest_opts.zo_raid_parity;
1362 uint64_t nspares = ztest_opts.zo_draid_spares;
1363 uint64_t children = ztest_opts.zo_raid_children;
1364 uint64_t ngroups = 1;
1365
1366 /*
1367 * Calculate the minimum number of groups required to fill a
1368 * slice. This is the LCM of the stripe width (data + parity)
1369 * and the number of data drives (children - spares).
1370 */
1371 while (ngroups * (ndata + nparity) % (children - nspares) != 0)
1372 ngroups++;
1373
1374 /* Store the basic dRAID configuration. */
1375 fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NDATA, ndata);
1376 fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NSPARES, nspares);
1377 fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NGROUPS, ngroups);
1378 }
1379
1380 for (c = 0; c < r; c++)
1381 fnvlist_free(child[c]);
1382
1383 umem_free(child, r * sizeof (nvlist_t *));
1384
1385 return (raid);
1386 }
1387
1388 static nvlist_t *
1389 make_vdev_mirror(const char *path, const char *aux, const char *pool,
1390 size_t size, uint64_t ashift, int r, int m)
1391 {
1392 nvlist_t *mirror, **child;
1393 int c;
1394
1395 if (m < 1)
1396 return (make_vdev_raid(path, aux, pool, size, ashift, r));
1397
1398 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
1399
1400 for (c = 0; c < m; c++)
1401 child[c] = make_vdev_raid(path, aux, pool, size, ashift, r);
1402
1403 mirror = fnvlist_alloc();
1404 fnvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, VDEV_TYPE_MIRROR);
1405 fnvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
1406 (const nvlist_t **)child, m);
1407
1408 for (c = 0; c < m; c++)
1409 fnvlist_free(child[c]);
1410
1411 umem_free(child, m * sizeof (nvlist_t *));
1412
1413 return (mirror);
1414 }
1415
1416 static nvlist_t *
1417 make_vdev_root(const char *path, const char *aux, const char *pool, size_t size,
1418 uint64_t ashift, const char *class, int r, int m, int t)
1419 {
1420 nvlist_t *root, **child;
1421 int c;
1422 boolean_t log;
1423
1424 ASSERT3S(t, >, 0);
1425
1426 log = (class != NULL && strcmp(class, "log") == 0);
1427
1428 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
1429
1430 for (c = 0; c < t; c++) {
1431 child[c] = make_vdev_mirror(path, aux, pool, size, ashift,
1432 r, m);
1433 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, log);
1434
1435 if (class != NULL && class[0] != '\0') {
1436 ASSERT(m > 1 || log); /* expecting a mirror */
1437 fnvlist_add_string(child[c],
1438 ZPOOL_CONFIG_ALLOCATION_BIAS, class);
1439 }
1440 }
1441
1442 root = fnvlist_alloc();
1443 fnvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT);
1444 fnvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
1445 (const nvlist_t **)child, t);
1446
1447 for (c = 0; c < t; c++)
1448 fnvlist_free(child[c]);
1449
1450 umem_free(child, t * sizeof (nvlist_t *));
1451
1452 return (root);
1453 }
1454
1455 /*
1456 * Find a random spa version. Returns back a random spa version in the
1457 * range [initial_version, SPA_VERSION_FEATURES].
1458 */
1459 static uint64_t
1460 ztest_random_spa_version(uint64_t initial_version)
1461 {
1462 uint64_t version = initial_version;
1463
1464 if (version <= SPA_VERSION_BEFORE_FEATURES) {
1465 version = version +
1466 ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1);
1467 }
1468
1469 if (version > SPA_VERSION_BEFORE_FEATURES)
1470 version = SPA_VERSION_FEATURES;
1471
1472 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
1473 return (version);
1474 }
1475
1476 static int
1477 ztest_random_blocksize(void)
1478 {
1479 ASSERT3U(ztest_spa->spa_max_ashift, !=, 0);
1480
1481 /*
1482 * Choose a block size >= the ashift.
1483 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks.
1484 */
1485 int maxbs = SPA_OLD_MAXBLOCKSHIFT;
1486 if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE)
1487 maxbs = 20;
1488 uint64_t block_shift =
1489 ztest_random(maxbs - ztest_spa->spa_max_ashift + 1);
1490 return (1 << (SPA_MINBLOCKSHIFT + block_shift));
1491 }
1492
1493 static int
1494 ztest_random_dnodesize(void)
1495 {
1496 int slots;
1497 int max_slots = spa_maxdnodesize(ztest_spa) >> DNODE_SHIFT;
1498
1499 if (max_slots == DNODE_MIN_SLOTS)
1500 return (DNODE_MIN_SIZE);
1501
1502 /*
1503 * Weight the random distribution more heavily toward smaller
1504 * dnode sizes since that is more likely to reflect real-world
1505 * usage.
1506 */
1507 ASSERT3U(max_slots, >, 4);
1508 switch (ztest_random(10)) {
1509 case 0:
1510 slots = 5 + ztest_random(max_slots - 4);
1511 break;
1512 case 1 ... 4:
1513 slots = 2 + ztest_random(3);
1514 break;
1515 default:
1516 slots = 1;
1517 break;
1518 }
1519
1520 return (slots << DNODE_SHIFT);
1521 }
1522
1523 static int
1524 ztest_random_ibshift(void)
1525 {
1526 return (DN_MIN_INDBLKSHIFT +
1527 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
1528 }
1529
1530 static uint64_t
1531 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
1532 {
1533 uint64_t top;
1534 vdev_t *rvd = spa->spa_root_vdev;
1535 vdev_t *tvd;
1536
1537 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
1538
1539 do {
1540 top = ztest_random(rvd->vdev_children);
1541 tvd = rvd->vdev_child[top];
1542 } while (!vdev_is_concrete(tvd) || (tvd->vdev_islog && !log_ok) ||
1543 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
1544
1545 return (top);
1546 }
1547
1548 static uint64_t
1549 ztest_random_dsl_prop(zfs_prop_t prop)
1550 {
1551 uint64_t value;
1552
1553 do {
1554 value = zfs_prop_random_value(prop, ztest_random(-1ULL));
1555 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
1556
1557 return (value);
1558 }
1559
1560 static int
1561 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
1562 boolean_t inherit)
1563 {
1564 const char *propname = zfs_prop_to_name(prop);
1565 const char *valname;
1566 char *setpoint;
1567 uint64_t curval;
1568 int error;
1569
1570 error = dsl_prop_set_int(osname, propname,
1571 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value);
1572
1573 if (error == ENOSPC) {
1574 ztest_record_enospc(FTAG);
1575 return (error);
1576 }
1577 ASSERT0(error);
1578
1579 setpoint = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1580 VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint));
1581
1582 if (ztest_opts.zo_verbose >= 6) {
1583 int err;
1584
1585 err = zfs_prop_index_to_string(prop, curval, &valname);
1586 if (err)
1587 (void) printf("%s %s = %llu at '%s'\n", osname,
1588 propname, (unsigned long long)curval, setpoint);
1589 else
1590 (void) printf("%s %s = %s at '%s'\n",
1591 osname, propname, valname, setpoint);
1592 }
1593 umem_free(setpoint, MAXPATHLEN);
1594
1595 return (error);
1596 }
1597
1598 static int
1599 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value)
1600 {
1601 spa_t *spa = ztest_spa;
1602 nvlist_t *props = NULL;
1603 int error;
1604
1605 props = fnvlist_alloc();
1606 fnvlist_add_uint64(props, zpool_prop_to_name(prop), value);
1607
1608 error = spa_prop_set(spa, props);
1609
1610 fnvlist_free(props);
1611
1612 if (error == ENOSPC) {
1613 ztest_record_enospc(FTAG);
1614 return (error);
1615 }
1616 ASSERT0(error);
1617
1618 return (error);
1619 }
1620
1621 static int
1622 ztest_dmu_objset_own(const char *name, dmu_objset_type_t type,
1623 boolean_t readonly, boolean_t decrypt, const void *tag, objset_t **osp)
1624 {
1625 int err;
1626 char *cp = NULL;
1627 char ddname[ZFS_MAX_DATASET_NAME_LEN];
1628
1629 strlcpy(ddname, name, sizeof (ddname));
1630 cp = strchr(ddname, '@');
1631 if (cp != NULL)
1632 *cp = '\0';
1633
1634 err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
1635 while (decrypt && err == EACCES) {
1636 dsl_crypto_params_t *dcp;
1637 nvlist_t *crypto_args = fnvlist_alloc();
1638
1639 fnvlist_add_uint8_array(crypto_args, "wkeydata",
1640 (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
1641 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, NULL,
1642 crypto_args, &dcp));
1643 err = spa_keystore_load_wkey(ddname, dcp, B_FALSE);
1644 /*
1645 * Note: if there was an error loading, the wkey was not
1646 * consumed, and needs to be freed.
1647 */
1648 dsl_crypto_params_free(dcp, (err != 0));
1649 fnvlist_free(crypto_args);
1650
1651 if (err == EINVAL) {
1652 /*
1653 * We couldn't load a key for this dataset so try
1654 * the parent. This loop will eventually hit the
1655 * encryption root since ztest only makes clones
1656 * as children of their origin datasets.
1657 */
1658 cp = strrchr(ddname, '/');
1659 if (cp == NULL)
1660 return (err);
1661
1662 *cp = '\0';
1663 err = EACCES;
1664 continue;
1665 } else if (err != 0) {
1666 break;
1667 }
1668
1669 err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
1670 break;
1671 }
1672
1673 return (err);
1674 }
1675
1676 static void
1677 ztest_rll_init(rll_t *rll)
1678 {
1679 rll->rll_writer = NULL;
1680 rll->rll_readers = 0;
1681 mutex_init(&rll->rll_lock, NULL, MUTEX_DEFAULT, NULL);
1682 cv_init(&rll->rll_cv, NULL, CV_DEFAULT, NULL);
1683 }
1684
1685 static void
1686 ztest_rll_destroy(rll_t *rll)
1687 {
1688 ASSERT3P(rll->rll_writer, ==, NULL);
1689 ASSERT0(rll->rll_readers);
1690 mutex_destroy(&rll->rll_lock);
1691 cv_destroy(&rll->rll_cv);
1692 }
1693
1694 static void
1695 ztest_rll_lock(rll_t *rll, rl_type_t type)
1696 {
1697 mutex_enter(&rll->rll_lock);
1698
1699 if (type == ZTRL_READER) {
1700 while (rll->rll_writer != NULL)
1701 (void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1702 rll->rll_readers++;
1703 } else {
1704 while (rll->rll_writer != NULL || rll->rll_readers)
1705 (void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1706 rll->rll_writer = curthread;
1707 }
1708
1709 mutex_exit(&rll->rll_lock);
1710 }
1711
1712 static void
1713 ztest_rll_unlock(rll_t *rll)
1714 {
1715 mutex_enter(&rll->rll_lock);
1716
1717 if (rll->rll_writer) {
1718 ASSERT0(rll->rll_readers);
1719 rll->rll_writer = NULL;
1720 } else {
1721 ASSERT3S(rll->rll_readers, >, 0);
1722 ASSERT3P(rll->rll_writer, ==, NULL);
1723 rll->rll_readers--;
1724 }
1725
1726 if (rll->rll_writer == NULL && rll->rll_readers == 0)
1727 cv_broadcast(&rll->rll_cv);
1728
1729 mutex_exit(&rll->rll_lock);
1730 }
1731
1732 static void
1733 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
1734 {
1735 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1736
1737 ztest_rll_lock(rll, type);
1738 }
1739
1740 static void
1741 ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
1742 {
1743 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1744
1745 ztest_rll_unlock(rll);
1746 }
1747
1748 static rl_t *
1749 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
1750 uint64_t size, rl_type_t type)
1751 {
1752 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1));
1753 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)];
1754 rl_t *rl;
1755
1756 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL);
1757 rl->rl_object = object;
1758 rl->rl_offset = offset;
1759 rl->rl_size = size;
1760 rl->rl_lock = rll;
1761
1762 ztest_rll_lock(rll, type);
1763
1764 return (rl);
1765 }
1766
1767 static void
1768 ztest_range_unlock(rl_t *rl)
1769 {
1770 rll_t *rll = rl->rl_lock;
1771
1772 ztest_rll_unlock(rll);
1773
1774 umem_free(rl, sizeof (*rl));
1775 }
1776
1777 static void
1778 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os)
1779 {
1780 zd->zd_os = os;
1781 zd->zd_zilog = dmu_objset_zil(os);
1782 zd->zd_shared = szd;
1783 dmu_objset_name(os, zd->zd_name);
1784 int l;
1785
1786 if (zd->zd_shared != NULL)
1787 zd->zd_shared->zd_seq = 0;
1788
1789 VERIFY0(pthread_rwlock_init(&zd->zd_zilog_lock, NULL));
1790 mutex_init(&zd->zd_dirobj_lock, NULL, MUTEX_DEFAULT, NULL);
1791
1792 for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1793 ztest_rll_init(&zd->zd_object_lock[l]);
1794
1795 for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1796 ztest_rll_init(&zd->zd_range_lock[l]);
1797 }
1798
1799 static void
1800 ztest_zd_fini(ztest_ds_t *zd)
1801 {
1802 int l;
1803
1804 mutex_destroy(&zd->zd_dirobj_lock);
1805 (void) pthread_rwlock_destroy(&zd->zd_zilog_lock);
1806
1807 for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1808 ztest_rll_destroy(&zd->zd_object_lock[l]);
1809
1810 for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1811 ztest_rll_destroy(&zd->zd_range_lock[l]);
1812 }
1813
1814 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
1815
1816 static uint64_t
1817 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag)
1818 {
1819 uint64_t txg;
1820 int error;
1821
1822 /*
1823 * Attempt to assign tx to some transaction group.
1824 */
1825 error = dmu_tx_assign(tx, txg_how);
1826 if (error) {
1827 if (error == ERESTART) {
1828 ASSERT3U(txg_how, ==, TXG_NOWAIT);
1829 dmu_tx_wait(tx);
1830 } else {
1831 ASSERT3U(error, ==, ENOSPC);
1832 ztest_record_enospc(tag);
1833 }
1834 dmu_tx_abort(tx);
1835 return (0);
1836 }
1837 txg = dmu_tx_get_txg(tx);
1838 ASSERT3U(txg, !=, 0);
1839 return (txg);
1840 }
1841
1842 static void
1843 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1844 uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1845 uint64_t crtxg)
1846 {
1847 bt->bt_magic = BT_MAGIC;
1848 bt->bt_objset = dmu_objset_id(os);
1849 bt->bt_object = object;
1850 bt->bt_dnodesize = dnodesize;
1851 bt->bt_offset = offset;
1852 bt->bt_gen = gen;
1853 bt->bt_txg = txg;
1854 bt->bt_crtxg = crtxg;
1855 }
1856
1857 static void
1858 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1859 uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1860 uint64_t crtxg)
1861 {
1862 ASSERT3U(bt->bt_magic, ==, BT_MAGIC);
1863 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os));
1864 ASSERT3U(bt->bt_object, ==, object);
1865 ASSERT3U(bt->bt_dnodesize, ==, dnodesize);
1866 ASSERT3U(bt->bt_offset, ==, offset);
1867 ASSERT3U(bt->bt_gen, <=, gen);
1868 ASSERT3U(bt->bt_txg, <=, txg);
1869 ASSERT3U(bt->bt_crtxg, ==, crtxg);
1870 }
1871
1872 static ztest_block_tag_t *
1873 ztest_bt_bonus(dmu_buf_t *db)
1874 {
1875 dmu_object_info_t doi;
1876 ztest_block_tag_t *bt;
1877
1878 dmu_object_info_from_db(db, &doi);
1879 ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
1880 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
1881 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
1882
1883 return (bt);
1884 }
1885
1886 /*
1887 * Generate a token to fill up unused bonus buffer space. Try to make
1888 * it unique to the object, generation, and offset to verify that data
1889 * is not getting overwritten by data from other dnodes.
1890 */
1891 #define ZTEST_BONUS_FILL_TOKEN(obj, ds, gen, offset) \
1892 (((ds) << 48) | ((gen) << 32) | ((obj) << 8) | (offset))
1893
1894 /*
1895 * Fill up the unused bonus buffer region before the block tag with a
1896 * verifiable pattern. Filling the whole bonus area with non-zero data
1897 * helps ensure that all dnode traversal code properly skips the
1898 * interior regions of large dnodes.
1899 */
1900 static void
1901 ztest_fill_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1902 objset_t *os, uint64_t gen)
1903 {
1904 uint64_t *bonusp;
1905
1906 ASSERT(IS_P2ALIGNED((char *)end - (char *)db->db_data, 8));
1907
1908 for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1909 uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1910 gen, bonusp - (uint64_t *)db->db_data);
1911 *bonusp = token;
1912 }
1913 }
1914
1915 /*
1916 * Verify that the unused area of a bonus buffer is filled with the
1917 * expected tokens.
1918 */
1919 static void
1920 ztest_verify_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1921 objset_t *os, uint64_t gen)
1922 {
1923 uint64_t *bonusp;
1924
1925 for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1926 uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1927 gen, bonusp - (uint64_t *)db->db_data);
1928 VERIFY3U(*bonusp, ==, token);
1929 }
1930 }
1931
1932 /*
1933 * ZIL logging ops
1934 */
1935
1936 #define lrz_type lr_mode
1937 #define lrz_blocksize lr_uid
1938 #define lrz_ibshift lr_gid
1939 #define lrz_bonustype lr_rdev
1940 #define lrz_dnodesize lr_crtime[1]
1941
1942 static void
1943 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
1944 {
1945 char *name = (void *)(lr + 1); /* name follows lr */
1946 size_t namesize = strlen(name) + 1;
1947 itx_t *itx;
1948
1949 if (zil_replaying(zd->zd_zilog, tx))
1950 return;
1951
1952 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
1953 memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
1954 sizeof (*lr) + namesize - sizeof (lr_t));
1955
1956 zil_itx_assign(zd->zd_zilog, itx, tx);
1957 }
1958
1959 static void
1960 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object)
1961 {
1962 char *name = (void *)(lr + 1); /* name follows lr */
1963 size_t namesize = strlen(name) + 1;
1964 itx_t *itx;
1965
1966 if (zil_replaying(zd->zd_zilog, tx))
1967 return;
1968
1969 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
1970 memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
1971 sizeof (*lr) + namesize - sizeof (lr_t));
1972
1973 itx->itx_oid = object;
1974 zil_itx_assign(zd->zd_zilog, itx, tx);
1975 }
1976
1977 static void
1978 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
1979 {
1980 itx_t *itx;
1981 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
1982
1983 if (zil_replaying(zd->zd_zilog, tx))
1984 return;
1985
1986 if (lr->lr_length > zil_max_log_data(zd->zd_zilog, sizeof (lr_write_t)))
1987 write_state = WR_INDIRECT;
1988
1989 itx = zil_itx_create(TX_WRITE,
1990 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
1991
1992 if (write_state == WR_COPIED &&
1993 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
1994 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) {
1995 zil_itx_destroy(itx);
1996 itx = zil_itx_create(TX_WRITE, sizeof (*lr));
1997 write_state = WR_NEED_COPY;
1998 }
1999 itx->itx_private = zd;
2000 itx->itx_wr_state = write_state;
2001 itx->itx_sync = (ztest_random(8) == 0);
2002
2003 memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
2004 sizeof (*lr) - sizeof (lr_t));
2005
2006 zil_itx_assign(zd->zd_zilog, itx, tx);
2007 }
2008
2009 static void
2010 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
2011 {
2012 itx_t *itx;
2013
2014 if (zil_replaying(zd->zd_zilog, tx))
2015 return;
2016
2017 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
2018 memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
2019 sizeof (*lr) - sizeof (lr_t));
2020
2021 itx->itx_sync = B_FALSE;
2022 zil_itx_assign(zd->zd_zilog, itx, tx);
2023 }
2024
2025 static void
2026 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
2027 {
2028 itx_t *itx;
2029
2030 if (zil_replaying(zd->zd_zilog, tx))
2031 return;
2032
2033 itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
2034 memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
2035 sizeof (*lr) - sizeof (lr_t));
2036
2037 itx->itx_sync = B_FALSE;
2038 zil_itx_assign(zd->zd_zilog, itx, tx);
2039 }
2040
2041 /*
2042 * ZIL replay ops
2043 */
2044 static int
2045 ztest_replay_create(void *arg1, void *arg2, boolean_t byteswap)
2046 {
2047 ztest_ds_t *zd = arg1;
2048 lr_create_t *lr = arg2;
2049 char *name = (void *)(lr + 1); /* name follows lr */
2050 objset_t *os = zd->zd_os;
2051 ztest_block_tag_t *bbt;
2052 dmu_buf_t *db;
2053 dmu_tx_t *tx;
2054 uint64_t txg;
2055 int error = 0;
2056 int bonuslen;
2057
2058 if (byteswap)
2059 byteswap_uint64_array(lr, sizeof (*lr));
2060
2061 ASSERT3U(lr->lr_doid, ==, ZTEST_DIROBJ);
2062 ASSERT3S(name[0], !=, '\0');
2063
2064 tx = dmu_tx_create(os);
2065
2066 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
2067
2068 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
2069 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
2070 } else {
2071 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
2072 }
2073
2074 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2075 if (txg == 0)
2076 return (ENOSPC);
2077
2078 ASSERT3U(dmu_objset_zil(os)->zl_replay, ==, !!lr->lr_foid);
2079 bonuslen = DN_BONUS_SIZE(lr->lrz_dnodesize);
2080
2081 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
2082 if (lr->lr_foid == 0) {
2083 lr->lr_foid = zap_create_dnsize(os,
2084 lr->lrz_type, lr->lrz_bonustype,
2085 bonuslen, lr->lrz_dnodesize, tx);
2086 } else {
2087 error = zap_create_claim_dnsize(os, lr->lr_foid,
2088 lr->lrz_type, lr->lrz_bonustype,
2089 bonuslen, lr->lrz_dnodesize, tx);
2090 }
2091 } else {
2092 if (lr->lr_foid == 0) {
2093 lr->lr_foid = dmu_object_alloc_dnsize(os,
2094 lr->lrz_type, 0, lr->lrz_bonustype,
2095 bonuslen, lr->lrz_dnodesize, tx);
2096 } else {
2097 error = dmu_object_claim_dnsize(os, lr->lr_foid,
2098 lr->lrz_type, 0, lr->lrz_bonustype,
2099 bonuslen, lr->lrz_dnodesize, tx);
2100 }
2101 }
2102
2103 if (error) {
2104 ASSERT3U(error, ==, EEXIST);
2105 ASSERT(zd->zd_zilog->zl_replay);
2106 dmu_tx_commit(tx);
2107 return (error);
2108 }
2109
2110 ASSERT3U(lr->lr_foid, !=, 0);
2111
2112 if (lr->lrz_type != DMU_OT_ZAP_OTHER)
2113 VERIFY0(dmu_object_set_blocksize(os, lr->lr_foid,
2114 lr->lrz_blocksize, lr->lrz_ibshift, tx));
2115
2116 VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2117 bbt = ztest_bt_bonus(db);
2118 dmu_buf_will_dirty(db, tx);
2119 ztest_bt_generate(bbt, os, lr->lr_foid, lr->lrz_dnodesize, -1ULL,
2120 lr->lr_gen, txg, txg);
2121 ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, lr->lr_gen);
2122 dmu_buf_rele(db, FTAG);
2123
2124 VERIFY0(zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
2125 &lr->lr_foid, tx));
2126
2127 (void) ztest_log_create(zd, tx, lr);
2128
2129 dmu_tx_commit(tx);
2130
2131 return (0);
2132 }
2133
2134 static int
2135 ztest_replay_remove(void *arg1, void *arg2, boolean_t byteswap)
2136 {
2137 ztest_ds_t *zd = arg1;
2138 lr_remove_t *lr = arg2;
2139 char *name = (void *)(lr + 1); /* name follows lr */
2140 objset_t *os = zd->zd_os;
2141 dmu_object_info_t doi;
2142 dmu_tx_t *tx;
2143 uint64_t object, txg;
2144
2145 if (byteswap)
2146 byteswap_uint64_array(lr, sizeof (*lr));
2147
2148 ASSERT3U(lr->lr_doid, ==, ZTEST_DIROBJ);
2149 ASSERT3S(name[0], !=, '\0');
2150
2151 VERIFY0(
2152 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
2153 ASSERT3U(object, !=, 0);
2154
2155 ztest_object_lock(zd, object, ZTRL_WRITER);
2156
2157 VERIFY0(dmu_object_info(os, object, &doi));
2158
2159 tx = dmu_tx_create(os);
2160
2161 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
2162 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
2163
2164 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2165 if (txg == 0) {
2166 ztest_object_unlock(zd, object);
2167 return (ENOSPC);
2168 }
2169
2170 if (doi.doi_type == DMU_OT_ZAP_OTHER) {
2171 VERIFY0(zap_destroy(os, object, tx));
2172 } else {
2173 VERIFY0(dmu_object_free(os, object, tx));
2174 }
2175
2176 VERIFY0(zap_remove(os, lr->lr_doid, name, tx));
2177
2178 (void) ztest_log_remove(zd, tx, lr, object);
2179
2180 dmu_tx_commit(tx);
2181
2182 ztest_object_unlock(zd, object);
2183
2184 return (0);
2185 }
2186
2187 static int
2188 ztest_replay_write(void *arg1, void *arg2, boolean_t byteswap)
2189 {
2190 ztest_ds_t *zd = arg1;
2191 lr_write_t *lr = arg2;
2192 objset_t *os = zd->zd_os;
2193 void *data = lr + 1; /* data follows lr */
2194 uint64_t offset, length;
2195 ztest_block_tag_t *bt = data;
2196 ztest_block_tag_t *bbt;
2197 uint64_t gen, txg, lrtxg, crtxg;
2198 dmu_object_info_t doi;
2199 dmu_tx_t *tx;
2200 dmu_buf_t *db;
2201 arc_buf_t *abuf = NULL;
2202 rl_t *rl;
2203
2204 if (byteswap)
2205 byteswap_uint64_array(lr, sizeof (*lr));
2206
2207 offset = lr->lr_offset;
2208 length = lr->lr_length;
2209
2210 /* If it's a dmu_sync() block, write the whole block */
2211 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
2212 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
2213 if (length < blocksize) {
2214 offset -= offset % blocksize;
2215 length = blocksize;
2216 }
2217 }
2218
2219 if (bt->bt_magic == BSWAP_64(BT_MAGIC))
2220 byteswap_uint64_array(bt, sizeof (*bt));
2221
2222 if (bt->bt_magic != BT_MAGIC)
2223 bt = NULL;
2224
2225 ztest_object_lock(zd, lr->lr_foid, ZTRL_READER);
2226 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, ZTRL_WRITER);
2227
2228 VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2229
2230 dmu_object_info_from_db(db, &doi);
2231
2232 bbt = ztest_bt_bonus(db);
2233 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2234 gen = bbt->bt_gen;
2235 crtxg = bbt->bt_crtxg;
2236 lrtxg = lr->lr_common.lrc_txg;
2237
2238 tx = dmu_tx_create(os);
2239
2240 dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
2241
2242 if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
2243 P2PHASE(offset, length) == 0)
2244 abuf = dmu_request_arcbuf(db, length);
2245
2246 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2247 if (txg == 0) {
2248 if (abuf != NULL)
2249 dmu_return_arcbuf(abuf);
2250 dmu_buf_rele(db, FTAG);
2251 ztest_range_unlock(rl);
2252 ztest_object_unlock(zd, lr->lr_foid);
2253 return (ENOSPC);
2254 }
2255
2256 if (bt != NULL) {
2257 /*
2258 * Usually, verify the old data before writing new data --
2259 * but not always, because we also want to verify correct
2260 * behavior when the data was not recently read into cache.
2261 */
2262 ASSERT(doi.doi_data_block_size);
2263 ASSERT0(offset % doi.doi_data_block_size);
2264 if (ztest_random(4) != 0) {
2265 int prefetch = ztest_random(2) ?
2266 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
2267 ztest_block_tag_t rbt;
2268
2269 VERIFY(dmu_read(os, lr->lr_foid, offset,
2270 sizeof (rbt), &rbt, prefetch) == 0);
2271 if (rbt.bt_magic == BT_MAGIC) {
2272 ztest_bt_verify(&rbt, os, lr->lr_foid, 0,
2273 offset, gen, txg, crtxg);
2274 }
2275 }
2276
2277 /*
2278 * Writes can appear to be newer than the bonus buffer because
2279 * the ztest_get_data() callback does a dmu_read() of the
2280 * open-context data, which may be different than the data
2281 * as it was when the write was generated.
2282 */
2283 if (zd->zd_zilog->zl_replay) {
2284 ztest_bt_verify(bt, os, lr->lr_foid, 0, offset,
2285 MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
2286 bt->bt_crtxg);
2287 }
2288
2289 /*
2290 * Set the bt's gen/txg to the bonus buffer's gen/txg
2291 * so that all of the usual ASSERTs will work.
2292 */
2293 ztest_bt_generate(bt, os, lr->lr_foid, 0, offset, gen, txg,
2294 crtxg);
2295 }
2296
2297 if (abuf == NULL) {
2298 dmu_write(os, lr->lr_foid, offset, length, data, tx);
2299 } else {
2300 memcpy(abuf->b_data, data, length);
2301 VERIFY0(dmu_assign_arcbuf_by_dbuf(db, offset, abuf, tx));
2302 }
2303
2304 (void) ztest_log_write(zd, tx, lr);
2305
2306 dmu_buf_rele(db, FTAG);
2307
2308 dmu_tx_commit(tx);
2309
2310 ztest_range_unlock(rl);
2311 ztest_object_unlock(zd, lr->lr_foid);
2312
2313 return (0);
2314 }
2315
2316 static int
2317 ztest_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
2318 {
2319 ztest_ds_t *zd = arg1;
2320 lr_truncate_t *lr = arg2;
2321 objset_t *os = zd->zd_os;
2322 dmu_tx_t *tx;
2323 uint64_t txg;
2324 rl_t *rl;
2325
2326 if (byteswap)
2327 byteswap_uint64_array(lr, sizeof (*lr));
2328
2329 ztest_object_lock(zd, lr->lr_foid, ZTRL_READER);
2330 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
2331 ZTRL_WRITER);
2332
2333 tx = dmu_tx_create(os);
2334
2335 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
2336
2337 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2338 if (txg == 0) {
2339 ztest_range_unlock(rl);
2340 ztest_object_unlock(zd, lr->lr_foid);
2341 return (ENOSPC);
2342 }
2343
2344 VERIFY0(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
2345 lr->lr_length, tx));
2346
2347 (void) ztest_log_truncate(zd, tx, lr);
2348
2349 dmu_tx_commit(tx);
2350
2351 ztest_range_unlock(rl);
2352 ztest_object_unlock(zd, lr->lr_foid);
2353
2354 return (0);
2355 }
2356
2357 static int
2358 ztest_replay_setattr(void *arg1, void *arg2, boolean_t byteswap)
2359 {
2360 ztest_ds_t *zd = arg1;
2361 lr_setattr_t *lr = arg2;
2362 objset_t *os = zd->zd_os;
2363 dmu_tx_t *tx;
2364 dmu_buf_t *db;
2365 ztest_block_tag_t *bbt;
2366 uint64_t txg, lrtxg, crtxg, dnodesize;
2367
2368 if (byteswap)
2369 byteswap_uint64_array(lr, sizeof (*lr));
2370
2371 ztest_object_lock(zd, lr->lr_foid, ZTRL_WRITER);
2372
2373 VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2374
2375 tx = dmu_tx_create(os);
2376 dmu_tx_hold_bonus(tx, lr->lr_foid);
2377
2378 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2379 if (txg == 0) {
2380 dmu_buf_rele(db, FTAG);
2381 ztest_object_unlock(zd, lr->lr_foid);
2382 return (ENOSPC);
2383 }
2384
2385 bbt = ztest_bt_bonus(db);
2386 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2387 crtxg = bbt->bt_crtxg;
2388 lrtxg = lr->lr_common.lrc_txg;
2389 dnodesize = bbt->bt_dnodesize;
2390
2391 if (zd->zd_zilog->zl_replay) {
2392 ASSERT3U(lr->lr_size, !=, 0);
2393 ASSERT3U(lr->lr_mode, !=, 0);
2394 ASSERT3U(lrtxg, !=, 0);
2395 } else {
2396 /*
2397 * Randomly change the size and increment the generation.
2398 */
2399 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
2400 sizeof (*bbt);
2401 lr->lr_mode = bbt->bt_gen + 1;
2402 ASSERT0(lrtxg);
2403 }
2404
2405 /*
2406 * Verify that the current bonus buffer is not newer than our txg.
2407 */
2408 ztest_bt_verify(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
2409 MAX(txg, lrtxg), crtxg);
2410
2411 dmu_buf_will_dirty(db, tx);
2412
2413 ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
2414 ASSERT3U(lr->lr_size, <=, db->db_size);
2415 VERIFY0(dmu_set_bonus(db, lr->lr_size, tx));
2416 bbt = ztest_bt_bonus(db);
2417
2418 ztest_bt_generate(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
2419 txg, crtxg);
2420 ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, bbt->bt_gen);
2421 dmu_buf_rele(db, FTAG);
2422
2423 (void) ztest_log_setattr(zd, tx, lr);
2424
2425 dmu_tx_commit(tx);
2426
2427 ztest_object_unlock(zd, lr->lr_foid);
2428
2429 return (0);
2430 }
2431
2432 static zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
2433 NULL, /* 0 no such transaction type */
2434 ztest_replay_create, /* TX_CREATE */
2435 NULL, /* TX_MKDIR */
2436 NULL, /* TX_MKXATTR */
2437 NULL, /* TX_SYMLINK */
2438 ztest_replay_remove, /* TX_REMOVE */
2439 NULL, /* TX_RMDIR */
2440 NULL, /* TX_LINK */
2441 NULL, /* TX_RENAME */
2442 ztest_replay_write, /* TX_WRITE */
2443 ztest_replay_truncate, /* TX_TRUNCATE */
2444 ztest_replay_setattr, /* TX_SETATTR */
2445 NULL, /* TX_ACL */
2446 NULL, /* TX_CREATE_ACL */
2447 NULL, /* TX_CREATE_ATTR */
2448 NULL, /* TX_CREATE_ACL_ATTR */
2449 NULL, /* TX_MKDIR_ACL */
2450 NULL, /* TX_MKDIR_ATTR */
2451 NULL, /* TX_MKDIR_ACL_ATTR */
2452 NULL, /* TX_WRITE2 */
2453 NULL, /* TX_SETSAXATTR */
2454 NULL, /* TX_RENAME_EXCHANGE */
2455 NULL, /* TX_RENAME_WHITEOUT */
2456 };
2457
2458 /*
2459 * ZIL get_data callbacks
2460 */
2461
2462 static void
2463 ztest_get_done(zgd_t *zgd, int error)
2464 {
2465 (void) error;
2466 ztest_ds_t *zd = zgd->zgd_private;
2467 uint64_t object = ((rl_t *)zgd->zgd_lr)->rl_object;
2468
2469 if (zgd->zgd_db)
2470 dmu_buf_rele(zgd->zgd_db, zgd);
2471
2472 ztest_range_unlock((rl_t *)zgd->zgd_lr);
2473 ztest_object_unlock(zd, object);
2474
2475 umem_free(zgd, sizeof (*zgd));
2476 }
2477
2478 static int
2479 ztest_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf,
2480 struct lwb *lwb, zio_t *zio)
2481 {
2482 (void) arg2;
2483 ztest_ds_t *zd = arg;
2484 objset_t *os = zd->zd_os;
2485 uint64_t object = lr->lr_foid;
2486 uint64_t offset = lr->lr_offset;
2487 uint64_t size = lr->lr_length;
2488 uint64_t txg = lr->lr_common.lrc_txg;
2489 uint64_t crtxg;
2490 dmu_object_info_t doi;
2491 dmu_buf_t *db;
2492 zgd_t *zgd;
2493 int error;
2494
2495 ASSERT3P(lwb, !=, NULL);
2496 ASSERT3U(size, !=, 0);
2497
2498 ztest_object_lock(zd, object, ZTRL_READER);
2499 error = dmu_bonus_hold(os, object, FTAG, &db);
2500 if (error) {
2501 ztest_object_unlock(zd, object);
2502 return (error);
2503 }
2504
2505 crtxg = ztest_bt_bonus(db)->bt_crtxg;
2506
2507 if (crtxg == 0 || crtxg > txg) {
2508 dmu_buf_rele(db, FTAG);
2509 ztest_object_unlock(zd, object);
2510 return (ENOENT);
2511 }
2512
2513 dmu_object_info_from_db(db, &doi);
2514 dmu_buf_rele(db, FTAG);
2515 db = NULL;
2516
2517 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
2518 zgd->zgd_lwb = lwb;
2519 zgd->zgd_private = zd;
2520
2521 if (buf != NULL) { /* immediate write */
2522 zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd,
2523 object, offset, size, ZTRL_READER);
2524
2525 error = dmu_read(os, object, offset, size, buf,
2526 DMU_READ_NO_PREFETCH);
2527 ASSERT0(error);
2528 } else {
2529 ASSERT3P(zio, !=, NULL);
2530 size = doi.doi_data_block_size;
2531 if (ISP2(size)) {
2532 offset = P2ALIGN(offset, size);
2533 } else {
2534 ASSERT3U(offset, <, size);
2535 offset = 0;
2536 }
2537
2538 zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd,
2539 object, offset, size, ZTRL_READER);
2540
2541 error = dmu_buf_hold_noread(os, object, offset, zgd, &db);
2542
2543 if (error == 0) {
2544 blkptr_t *bp = &lr->lr_blkptr;
2545
2546 zgd->zgd_db = db;
2547 zgd->zgd_bp = bp;
2548
2549 ASSERT3U(db->db_offset, ==, offset);
2550 ASSERT3U(db->db_size, ==, size);
2551
2552 error = dmu_sync(zio, lr->lr_common.lrc_txg,
2553 ztest_get_done, zgd);
2554
2555 if (error == 0)
2556 return (0);
2557 }
2558 }
2559
2560 ztest_get_done(zgd, error);
2561
2562 return (error);
2563 }
2564
2565 static void *
2566 ztest_lr_alloc(size_t lrsize, char *name)
2567 {
2568 char *lr;
2569 size_t namesize = name ? strlen(name) + 1 : 0;
2570
2571 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
2572
2573 if (name)
2574 memcpy(lr + lrsize, name, namesize);
2575
2576 return (lr);
2577 }
2578
2579 static void
2580 ztest_lr_free(void *lr, size_t lrsize, char *name)
2581 {
2582 size_t namesize = name ? strlen(name) + 1 : 0;
2583
2584 umem_free(lr, lrsize + namesize);
2585 }
2586
2587 /*
2588 * Lookup a bunch of objects. Returns the number of objects not found.
2589 */
2590 static int
2591 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
2592 {
2593 int missing = 0;
2594 int error;
2595 int i;
2596
2597 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2598
2599 for (i = 0; i < count; i++, od++) {
2600 od->od_object = 0;
2601 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
2602 sizeof (uint64_t), 1, &od->od_object);
2603 if (error) {
2604 ASSERT3S(error, ==, ENOENT);
2605 ASSERT0(od->od_object);
2606 missing++;
2607 } else {
2608 dmu_buf_t *db;
2609 ztest_block_tag_t *bbt;
2610 dmu_object_info_t doi;
2611
2612 ASSERT3U(od->od_object, !=, 0);
2613 ASSERT0(missing); /* there should be no gaps */
2614
2615 ztest_object_lock(zd, od->od_object, ZTRL_READER);
2616 VERIFY0(dmu_bonus_hold(zd->zd_os, od->od_object,
2617 FTAG, &db));
2618 dmu_object_info_from_db(db, &doi);
2619 bbt = ztest_bt_bonus(db);
2620 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2621 od->od_type = doi.doi_type;
2622 od->od_blocksize = doi.doi_data_block_size;
2623 od->od_gen = bbt->bt_gen;
2624 dmu_buf_rele(db, FTAG);
2625 ztest_object_unlock(zd, od->od_object);
2626 }
2627 }
2628
2629 return (missing);
2630 }
2631
2632 static int
2633 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
2634 {
2635 int missing = 0;
2636 int i;
2637
2638 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2639
2640 for (i = 0; i < count; i++, od++) {
2641 if (missing) {
2642 od->od_object = 0;
2643 missing++;
2644 continue;
2645 }
2646
2647 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2648
2649 lr->lr_doid = od->od_dir;
2650 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */
2651 lr->lrz_type = od->od_crtype;
2652 lr->lrz_blocksize = od->od_crblocksize;
2653 lr->lrz_ibshift = ztest_random_ibshift();
2654 lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
2655 lr->lrz_dnodesize = od->od_crdnodesize;
2656 lr->lr_gen = od->od_crgen;
2657 lr->lr_crtime[0] = time(NULL);
2658
2659 if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
2660 ASSERT0(missing);
2661 od->od_object = 0;
2662 missing++;
2663 } else {
2664 od->od_object = lr->lr_foid;
2665 od->od_type = od->od_crtype;
2666 od->od_blocksize = od->od_crblocksize;
2667 od->od_gen = od->od_crgen;
2668 ASSERT3U(od->od_object, !=, 0);
2669 }
2670
2671 ztest_lr_free(lr, sizeof (*lr), od->od_name);
2672 }
2673
2674 return (missing);
2675 }
2676
2677 static int
2678 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
2679 {
2680 int missing = 0;
2681 int error;
2682 int i;
2683
2684 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2685
2686 od += count - 1;
2687
2688 for (i = count - 1; i >= 0; i--, od--) {
2689 if (missing) {
2690 missing++;
2691 continue;
2692 }
2693
2694 /*
2695 * No object was found.
2696 */
2697 if (od->od_object == 0)
2698 continue;
2699
2700 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2701
2702 lr->lr_doid = od->od_dir;
2703
2704 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
2705 ASSERT3U(error, ==, ENOSPC);
2706 missing++;
2707 } else {
2708 od->od_object = 0;
2709 }
2710 ztest_lr_free(lr, sizeof (*lr), od->od_name);
2711 }
2712
2713 return (missing);
2714 }
2715
2716 static int
2717 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
2718 const void *data)
2719 {
2720 lr_write_t *lr;
2721 int error;
2722
2723 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
2724
2725 lr->lr_foid = object;
2726 lr->lr_offset = offset;
2727 lr->lr_length = size;
2728 lr->lr_blkoff = 0;
2729 BP_ZERO(&lr->lr_blkptr);
2730
2731 memcpy(lr + 1, data, size);
2732
2733 error = ztest_replay_write(zd, lr, B_FALSE);
2734
2735 ztest_lr_free(lr, sizeof (*lr) + size, NULL);
2736
2737 return (error);
2738 }
2739
2740 static int
2741 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2742 {
2743 lr_truncate_t *lr;
2744 int error;
2745
2746 lr = ztest_lr_alloc(sizeof (*lr), NULL);
2747
2748 lr->lr_foid = object;
2749 lr->lr_offset = offset;
2750 lr->lr_length = size;
2751
2752 error = ztest_replay_truncate(zd, lr, B_FALSE);
2753
2754 ztest_lr_free(lr, sizeof (*lr), NULL);
2755
2756 return (error);
2757 }
2758
2759 static int
2760 ztest_setattr(ztest_ds_t *zd, uint64_t object)
2761 {
2762 lr_setattr_t *lr;
2763 int error;
2764
2765 lr = ztest_lr_alloc(sizeof (*lr), NULL);
2766
2767 lr->lr_foid = object;
2768 lr->lr_size = 0;
2769 lr->lr_mode = 0;
2770
2771 error = ztest_replay_setattr(zd, lr, B_FALSE);
2772
2773 ztest_lr_free(lr, sizeof (*lr), NULL);
2774
2775 return (error);
2776 }
2777
2778 static void
2779 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2780 {
2781 objset_t *os = zd->zd_os;
2782 dmu_tx_t *tx;
2783 uint64_t txg;
2784 rl_t *rl;
2785
2786 txg_wait_synced(dmu_objset_pool(os), 0);
2787
2788 ztest_object_lock(zd, object, ZTRL_READER);
2789 rl = ztest_range_lock(zd, object, offset, size, ZTRL_WRITER);
2790
2791 tx = dmu_tx_create(os);
2792
2793 dmu_tx_hold_write(tx, object, offset, size);
2794
2795 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2796
2797 if (txg != 0) {
2798 dmu_prealloc(os, object, offset, size, tx);
2799 dmu_tx_commit(tx);
2800 txg_wait_synced(dmu_objset_pool(os), txg);
2801 } else {
2802 (void) dmu_free_long_range(os, object, offset, size);
2803 }
2804
2805 ztest_range_unlock(rl);
2806 ztest_object_unlock(zd, object);
2807 }
2808
2809 static void
2810 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
2811 {
2812 int err;
2813 ztest_block_tag_t wbt;
2814 dmu_object_info_t doi;
2815 enum ztest_io_type io_type;
2816 uint64_t blocksize;
2817 void *data;
2818
2819 VERIFY0(dmu_object_info(zd->zd_os, object, &doi));
2820 blocksize = doi.doi_data_block_size;
2821 data = umem_alloc(blocksize, UMEM_NOFAIL);
2822
2823 /*
2824 * Pick an i/o type at random, biased toward writing block tags.
2825 */
2826 io_type = ztest_random(ZTEST_IO_TYPES);
2827 if (ztest_random(2) == 0)
2828 io_type = ZTEST_IO_WRITE_TAG;
2829
2830 (void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
2831
2832 switch (io_type) {
2833
2834 case ZTEST_IO_WRITE_TAG:
2835 ztest_bt_generate(&wbt, zd->zd_os, object, doi.doi_dnodesize,
2836 offset, 0, 0, 0);
2837 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
2838 break;
2839
2840 case ZTEST_IO_WRITE_PATTERN:
2841 (void) memset(data, 'a' + (object + offset) % 5, blocksize);
2842 if (ztest_random(2) == 0) {
2843 /*
2844 * Induce fletcher2 collisions to ensure that
2845 * zio_ddt_collision() detects and resolves them
2846 * when using fletcher2-verify for deduplication.
2847 */
2848 ((uint64_t *)data)[0] ^= 1ULL << 63;
2849 ((uint64_t *)data)[4] ^= 1ULL << 63;
2850 }
2851 (void) ztest_write(zd, object, offset, blocksize, data);
2852 break;
2853
2854 case ZTEST_IO_WRITE_ZEROES:
2855 memset(data, 0, blocksize);
2856 (void) ztest_write(zd, object, offset, blocksize, data);
2857 break;
2858
2859 case ZTEST_IO_TRUNCATE:
2860 (void) ztest_truncate(zd, object, offset, blocksize);
2861 break;
2862
2863 case ZTEST_IO_SETATTR:
2864 (void) ztest_setattr(zd, object);
2865 break;
2866 default:
2867 break;
2868
2869 case ZTEST_IO_REWRITE:
2870 (void) pthread_rwlock_rdlock(&ztest_name_lock);
2871 err = ztest_dsl_prop_set_uint64(zd->zd_name,
2872 ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa),
2873 B_FALSE);
2874 ASSERT(err == 0 || err == ENOSPC);
2875 err = ztest_dsl_prop_set_uint64(zd->zd_name,
2876 ZFS_PROP_COMPRESSION,
2877 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION),
2878 B_FALSE);
2879 ASSERT(err == 0 || err == ENOSPC);
2880 (void) pthread_rwlock_unlock(&ztest_name_lock);
2881
2882 VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data,
2883 DMU_READ_NO_PREFETCH));
2884
2885 (void) ztest_write(zd, object, offset, blocksize, data);
2886 break;
2887 }
2888
2889 (void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2890
2891 umem_free(data, blocksize);
2892 }
2893
2894 /*
2895 * Initialize an object description template.
2896 */
2897 static void
2898 ztest_od_init(ztest_od_t *od, uint64_t id, const char *tag, uint64_t index,
2899 dmu_object_type_t type, uint64_t blocksize, uint64_t dnodesize,
2900 uint64_t gen)
2901 {
2902 od->od_dir = ZTEST_DIROBJ;
2903 od->od_object = 0;
2904
2905 od->od_crtype = type;
2906 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
2907 od->od_crdnodesize = dnodesize ? dnodesize : ztest_random_dnodesize();
2908 od->od_crgen = gen;
2909
2910 od->od_type = DMU_OT_NONE;
2911 od->od_blocksize = 0;
2912 od->od_gen = 0;
2913
2914 (void) snprintf(od->od_name, sizeof (od->od_name),
2915 "%s(%"PRId64")[%"PRIu64"]",
2916 tag, id, index);
2917 }
2918
2919 /*
2920 * Lookup or create the objects for a test using the od template.
2921 * If the objects do not all exist, or if 'remove' is specified,
2922 * remove any existing objects and create new ones. Otherwise,
2923 * use the existing objects.
2924 */
2925 static int
2926 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
2927 {
2928 int count = size / sizeof (*od);
2929 int rv = 0;
2930
2931 mutex_enter(&zd->zd_dirobj_lock);
2932 if ((ztest_lookup(zd, od, count) != 0 || remove) &&
2933 (ztest_remove(zd, od, count) != 0 ||
2934 ztest_create(zd, od, count) != 0))
2935 rv = -1;
2936 zd->zd_od = od;
2937 mutex_exit(&zd->zd_dirobj_lock);
2938
2939 return (rv);
2940 }
2941
2942 void
2943 ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
2944 {
2945 (void) id;
2946 zilog_t *zilog = zd->zd_zilog;
2947
2948 (void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
2949
2950 zil_commit(zilog, ztest_random(ZTEST_OBJECTS));
2951
2952 /*
2953 * Remember the committed values in zd, which is in parent/child
2954 * shared memory. If we die, the next iteration of ztest_run()
2955 * will verify that the log really does contain this record.
2956 */
2957 mutex_enter(&zilog->zl_lock);
2958 ASSERT3P(zd->zd_shared, !=, NULL);
2959 ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq);
2960 zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq;
2961 mutex_exit(&zilog->zl_lock);
2962
2963 (void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2964 }
2965
2966 /*
2967 * This function is designed to simulate the operations that occur during a
2968 * mount/unmount operation. We hold the dataset across these operations in an
2969 * attempt to expose any implicit assumptions about ZIL management.
2970 */
2971 void
2972 ztest_zil_remount(ztest_ds_t *zd, uint64_t id)
2973 {
2974 (void) id;
2975 objset_t *os = zd->zd_os;
2976
2977 /*
2978 * We hold the ztest_vdev_lock so we don't cause problems with
2979 * other threads that wish to remove a log device, such as
2980 * ztest_device_removal().
2981 */
2982 mutex_enter(&ztest_vdev_lock);
2983
2984 /*
2985 * We grab the zd_dirobj_lock to ensure that no other thread is
2986 * updating the zil (i.e. adding in-memory log records) and the
2987 * zd_zilog_lock to block any I/O.
2988 */
2989 mutex_enter(&zd->zd_dirobj_lock);
2990 (void) pthread_rwlock_wrlock(&zd->zd_zilog_lock);
2991
2992 /* zfsvfs_teardown() */
2993 zil_close(zd->zd_zilog);
2994
2995 /* zfsvfs_setup() */
2996 VERIFY3P(zil_open(os, ztest_get_data, NULL), ==, zd->zd_zilog);
2997 zil_replay(os, zd, ztest_replay_vector);
2998
2999 (void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
3000 mutex_exit(&zd->zd_dirobj_lock);
3001 mutex_exit(&ztest_vdev_lock);
3002 }
3003
3004 /*
3005 * Verify that we can't destroy an active pool, create an existing pool,
3006 * or create a pool with a bad vdev spec.
3007 */
3008 void
3009 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
3010 {
3011 (void) zd, (void) id;
3012 ztest_shared_opts_t *zo = &ztest_opts;
3013 spa_t *spa;
3014 nvlist_t *nvroot;
3015
3016 if (zo->zo_mmp_test)
3017 return;
3018
3019 /*
3020 * Attempt to create using a bad file.
3021 */
3022 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
3023 VERIFY3U(ENOENT, ==,
3024 spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL));
3025 fnvlist_free(nvroot);
3026
3027 /*
3028 * Attempt to create using a bad mirror.
3029 */
3030 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 2, 1);
3031 VERIFY3U(ENOENT, ==,
3032 spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL));
3033 fnvlist_free(nvroot);
3034
3035 /*
3036 * Attempt to create an existing pool. It shouldn't matter
3037 * what's in the nvroot; we should fail with EEXIST.
3038 */
3039 (void) pthread_rwlock_rdlock(&ztest_name_lock);
3040 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
3041 VERIFY3U(EEXIST, ==,
3042 spa_create(zo->zo_pool, nvroot, NULL, NULL, NULL));
3043 fnvlist_free(nvroot);
3044
3045 /*
3046 * We open a reference to the spa and then we try to export it
3047 * expecting one of the following errors:
3048 *
3049 * EBUSY
3050 * Because of the reference we just opened.
3051 *
3052 * ZFS_ERR_EXPORT_IN_PROGRESS
3053 * For the case that there is another ztest thread doing
3054 * an export concurrently.
3055 */
3056 VERIFY0(spa_open(zo->zo_pool, &spa, FTAG));
3057 int error = spa_destroy(zo->zo_pool);
3058 if (error != EBUSY && error != ZFS_ERR_EXPORT_IN_PROGRESS) {
3059 fatal(B_FALSE, "spa_destroy(%s) returned unexpected value %d",
3060 spa->spa_name, error);
3061 }
3062 spa_close(spa, FTAG);
3063
3064 (void) pthread_rwlock_unlock(&ztest_name_lock);
3065 }
3066
3067 /*
3068 * Start and then stop the MMP threads to ensure the startup and shutdown code
3069 * works properly. Actual protection and property-related code tested via ZTS.
3070 */
3071 void
3072 ztest_mmp_enable_disable(ztest_ds_t *zd, uint64_t id)
3073 {
3074 (void) zd, (void) id;
3075 ztest_shared_opts_t *zo = &ztest_opts;
3076 spa_t *spa = ztest_spa;
3077
3078 if (zo->zo_mmp_test)
3079 return;
3080
3081 /*
3082 * Since enabling MMP involves setting a property, it could not be done
3083 * while the pool is suspended.
3084 */
3085 if (spa_suspended(spa))
3086 return;
3087
3088 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3089 mutex_enter(&spa->spa_props_lock);
3090
3091 zfs_multihost_fail_intervals = 0;
3092
3093 if (!spa_multihost(spa)) {
3094 spa->spa_multihost = B_TRUE;
3095 mmp_thread_start(spa);
3096 }
3097
3098 mutex_exit(&spa->spa_props_lock);
3099 spa_config_exit(spa, SCL_CONFIG, FTAG);
3100
3101 txg_wait_synced(spa_get_dsl(spa), 0);
3102 mmp_signal_all_threads();
3103 txg_wait_synced(spa_get_dsl(spa), 0);
3104
3105 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3106 mutex_enter(&spa->spa_props_lock);
3107
3108 if (spa_multihost(spa)) {
3109 mmp_thread_stop(spa);
3110 spa->spa_multihost = B_FALSE;
3111 }
3112
3113 mutex_exit(&spa->spa_props_lock);
3114 spa_config_exit(spa, SCL_CONFIG, FTAG);
3115 }
3116
3117 static int
3118 ztest_get_raidz_children(spa_t *spa)
3119 {
3120 (void) spa;
3121 vdev_t *raidvd;
3122
3123 ASSERT(MUTEX_HELD(&ztest_vdev_lock));
3124
3125 if (ztest_opts.zo_raid_do_expand) {
3126 raidvd = ztest_spa->spa_root_vdev->vdev_child[0];
3127
3128 ASSERT(raidvd->vdev_ops == &vdev_raidz_ops);
3129
3130 return (raidvd->vdev_children);
3131 }
3132
3133 return (ztest_opts.zo_raid_children);
3134 }
3135
3136 void
3137 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id)
3138 {
3139 (void) zd, (void) id;
3140 spa_t *spa;
3141 uint64_t initial_version = SPA_VERSION_INITIAL;
3142 uint64_t raidz_children, version, newversion;
3143 nvlist_t *nvroot, *props;
3144 char *name;
3145
3146 if (ztest_opts.zo_mmp_test)
3147 return;
3148
3149 /* dRAID added after feature flags, skip upgrade test. */
3150 if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0)
3151 return;
3152
3153 mutex_enter(&ztest_vdev_lock);
3154 name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool);
3155
3156 /*
3157 * Clean up from previous runs.
3158 */
3159 (void) spa_destroy(name);
3160
3161 raidz_children = ztest_get_raidz_children(ztest_spa);
3162
3163 nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0,
3164 NULL, raidz_children, ztest_opts.zo_mirrors, 1);
3165
3166 /*
3167 * If we're configuring a RAIDZ device then make sure that the
3168 * initial version is capable of supporting that feature.
3169 */
3170 switch (ztest_opts.zo_raid_parity) {
3171 case 0:
3172 case 1:
3173 initial_version = SPA_VERSION_INITIAL;
3174 break;
3175 case 2:
3176 initial_version = SPA_VERSION_RAIDZ2;
3177 break;
3178 case 3:
3179 initial_version = SPA_VERSION_RAIDZ3;
3180 break;
3181 }
3182
3183 /*
3184 * Create a pool with a spa version that can be upgraded. Pick
3185 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
3186 */
3187 do {
3188 version = ztest_random_spa_version(initial_version);
3189 } while (version > SPA_VERSION_BEFORE_FEATURES);
3190
3191 props = fnvlist_alloc();
3192 fnvlist_add_uint64(props,
3193 zpool_prop_to_name(ZPOOL_PROP_VERSION), version);
3194 VERIFY0(spa_create(name, nvroot, props, NULL, NULL));
3195 fnvlist_free(nvroot);
3196 fnvlist_free(props);
3197
3198 VERIFY0(spa_open(name, &spa, FTAG));
3199 VERIFY3U(spa_version(spa), ==, version);
3200 newversion = ztest_random_spa_version(version + 1);
3201
3202 if (ztest_opts.zo_verbose >= 4) {
3203 (void) printf("upgrading spa version from "
3204 "%"PRIu64" to %"PRIu64"\n",
3205 version, newversion);
3206 }
3207
3208 spa_upgrade(spa, newversion);
3209 VERIFY3U(spa_version(spa), >, version);
3210 VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config,
3211 zpool_prop_to_name(ZPOOL_PROP_VERSION)));
3212 spa_close(spa, FTAG);
3213
3214 kmem_strfree(name);
3215 mutex_exit(&ztest_vdev_lock);
3216 }
3217
3218 static void
3219 ztest_spa_checkpoint(spa_t *spa)
3220 {
3221 ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
3222
3223 int error = spa_checkpoint(spa->spa_name);
3224
3225 switch (error) {
3226 case 0:
3227 case ZFS_ERR_DEVRM_IN_PROGRESS:
3228 case ZFS_ERR_DISCARDING_CHECKPOINT:
3229 case ZFS_ERR_CHECKPOINT_EXISTS:
3230 case ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS:
3231 break;
3232 case ENOSPC:
3233 ztest_record_enospc(FTAG);
3234 break;
3235 default:
3236 fatal(B_FALSE, "spa_checkpoint(%s) = %d", spa->spa_name, error);
3237 }
3238 }
3239
3240 static void
3241 ztest_spa_discard_checkpoint(spa_t *spa)
3242 {
3243 ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
3244
3245 int error = spa_checkpoint_discard(spa->spa_name);
3246
3247 switch (error) {
3248 case 0:
3249 case ZFS_ERR_DISCARDING_CHECKPOINT:
3250 case ZFS_ERR_NO_CHECKPOINT:
3251 break;
3252 default:
3253 fatal(B_FALSE, "spa_discard_checkpoint(%s) = %d",
3254 spa->spa_name, error);
3255 }
3256
3257 }
3258
3259 void
3260 ztest_spa_checkpoint_create_discard(ztest_ds_t *zd, uint64_t id)
3261 {
3262 (void) zd, (void) id;
3263 spa_t *spa = ztest_spa;
3264
3265 mutex_enter(&ztest_checkpoint_lock);
3266 if (ztest_random(2) == 0) {
3267 ztest_spa_checkpoint(spa);
3268 } else {
3269 ztest_spa_discard_checkpoint(spa);
3270 }
3271 mutex_exit(&ztest_checkpoint_lock);
3272 }
3273
3274
3275 static vdev_t *
3276 vdev_lookup_by_path(vdev_t *vd, const char *path)
3277 {
3278 vdev_t *mvd;
3279 int c;
3280
3281 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
3282 return (vd);
3283
3284 for (c = 0; c < vd->vdev_children; c++)
3285 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
3286 NULL)
3287 return (mvd);
3288
3289 return (NULL);
3290 }
3291
3292 static int
3293 spa_num_top_vdevs(spa_t *spa)
3294 {
3295 vdev_t *rvd = spa->spa_root_vdev;
3296 ASSERT3U(spa_config_held(spa, SCL_VDEV, RW_READER), ==, SCL_VDEV);
3297 return (rvd->vdev_children);
3298 }
3299
3300 /*
3301 * Verify that vdev_add() works as expected.
3302 */
3303 void
3304 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
3305 {
3306 (void) zd, (void) id;
3307 ztest_shared_t *zs = ztest_shared;
3308 spa_t *spa = ztest_spa;
3309 uint64_t leaves;
3310 uint64_t guid;
3311 uint64_t raidz_children;
3312
3313 nvlist_t *nvroot;
3314 int error;
3315
3316 if (ztest_opts.zo_mmp_test)
3317 return;
3318
3319 mutex_enter(&ztest_vdev_lock);
3320 raidz_children = ztest_get_raidz_children(spa);
3321 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * raidz_children;
3322
3323 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3324
3325 ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
3326
3327 /*
3328 * If we have slogs then remove them 1/4 of the time.
3329 */
3330 if (spa_has_slogs(spa) && ztest_random(4) == 0) {
3331 metaslab_group_t *mg;
3332
3333 /*
3334 * find the first real slog in log allocation class
3335 */
3336 mg = spa_log_class(spa)->mc_allocator[0].mca_rotor;
3337 while (!mg->mg_vd->vdev_islog)
3338 mg = mg->mg_next;
3339
3340 guid = mg->mg_vd->vdev_guid;
3341
3342 spa_config_exit(spa, SCL_VDEV, FTAG);
3343
3344 /*
3345 * We have to grab the zs_name_lock as writer to
3346 * prevent a race between removing a slog (dmu_objset_find)
3347 * and destroying a dataset. Removing the slog will
3348 * grab a reference on the dataset which may cause
3349 * dsl_destroy_head() to fail with EBUSY thus
3350 * leaving the dataset in an inconsistent state.
3351 */
3352 pthread_rwlock_wrlock(&ztest_name_lock);
3353 error = spa_vdev_remove(spa, guid, B_FALSE);
3354 pthread_rwlock_unlock(&ztest_name_lock);
3355
3356 switch (error) {
3357 case 0:
3358 case EEXIST: /* Generic zil_reset() error */
3359 case EBUSY: /* Replay required */
3360 case EACCES: /* Crypto key not loaded */
3361 case ZFS_ERR_CHECKPOINT_EXISTS:
3362 case ZFS_ERR_DISCARDING_CHECKPOINT:
3363 break;
3364 default:
3365 fatal(B_FALSE, "spa_vdev_remove() = %d", error);
3366 }
3367 } else {
3368 spa_config_exit(spa, SCL_VDEV, FTAG);
3369
3370 /*
3371 * Make 1/4 of the devices be log devices
3372 */
3373 nvroot = make_vdev_root(NULL, NULL, NULL,
3374 ztest_opts.zo_vdev_size, 0, (ztest_random(4) == 0) ?
3375 "log" : NULL, raidz_children, zs->zs_mirrors,
3376 1);
3377
3378 error = spa_vdev_add(spa, nvroot, B_FALSE);
3379 fnvlist_free(nvroot);
3380
3381 switch (error) {
3382 case 0:
3383 break;
3384 case ENOSPC:
3385 ztest_record_enospc("spa_vdev_add");
3386 break;
3387 default:
3388 fatal(B_FALSE, "spa_vdev_add() = %d", error);
3389 }
3390 }
3391
3392 mutex_exit(&ztest_vdev_lock);
3393 }
3394
3395 void
3396 ztest_vdev_class_add(ztest_ds_t *zd, uint64_t id)
3397 {
3398 (void) zd, (void) id;
3399 ztest_shared_t *zs = ztest_shared;
3400 spa_t *spa = ztest_spa;
3401 uint64_t leaves;
3402 nvlist_t *nvroot;
3403 uint64_t raidz_children;
3404 const char *class = (ztest_random(2) == 0) ?
3405 VDEV_ALLOC_BIAS_SPECIAL : VDEV_ALLOC_BIAS_DEDUP;
3406 int error;
3407
3408 /*
3409 * By default add a special vdev 50% of the time
3410 */
3411 if ((ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_OFF) ||
3412 (ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_RND &&
3413 ztest_random(2) == 0)) {
3414 return;
3415 }
3416
3417 mutex_enter(&ztest_vdev_lock);
3418
3419 /* Only test with mirrors */
3420 if (zs->zs_mirrors < 2) {
3421 mutex_exit(&ztest_vdev_lock);
3422 return;
3423 }
3424
3425 /* requires feature@allocation_classes */
3426 if (!spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)) {
3427 mutex_exit(&ztest_vdev_lock);
3428 return;
3429 }
3430
3431 raidz_children = ztest_get_raidz_children(spa);
3432 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * raidz_children;
3433
3434 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3435 ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
3436 spa_config_exit(spa, SCL_VDEV, FTAG);
3437
3438 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
3439 class, raidz_children, zs->zs_mirrors, 1);
3440
3441 error = spa_vdev_add(spa, nvroot, B_FALSE);
3442 fnvlist_free(nvroot);
3443
3444 if (error == ENOSPC)
3445 ztest_record_enospc("spa_vdev_add");
3446 else if (error != 0)
3447 fatal(B_FALSE, "spa_vdev_add() = %d", error);
3448
3449 /*
3450 * 50% of the time allow small blocks in the special class
3451 */
3452 if (error == 0 &&
3453 spa_special_class(spa)->mc_groups == 1 && ztest_random(2) == 0) {
3454 if (ztest_opts.zo_verbose >= 3)
3455 (void) printf("Enabling special VDEV small blocks\n");
3456 error = ztest_dsl_prop_set_uint64(zd->zd_name,
3457 ZFS_PROP_SPECIAL_SMALL_BLOCKS, 32768, B_FALSE);
3458 ASSERT(error == 0 || error == ENOSPC);
3459 }
3460
3461 mutex_exit(&ztest_vdev_lock);
3462
3463 if (ztest_opts.zo_verbose >= 3) {
3464 metaslab_class_t *mc;
3465
3466 if (strcmp(class, VDEV_ALLOC_BIAS_SPECIAL) == 0)
3467 mc = spa_special_class(spa);
3468 else
3469 mc = spa_dedup_class(spa);
3470 (void) printf("Added a %s mirrored vdev (of %d)\n",
3471 class, (int)mc->mc_groups);
3472 }
3473 }
3474
3475 /*
3476 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
3477 */
3478 void
3479 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
3480 {
3481 (void) zd, (void) id;
3482 ztest_shared_t *zs = ztest_shared;
3483 spa_t *spa = ztest_spa;
3484 vdev_t *rvd = spa->spa_root_vdev;
3485 spa_aux_vdev_t *sav;
3486 const char *aux;
3487 char *path;
3488 uint64_t guid = 0;
3489 int error, ignore_err = 0;
3490
3491 if (ztest_opts.zo_mmp_test)
3492 return;
3493
3494 path = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3495
3496 if (ztest_random(2) == 0) {
3497 sav = &spa->spa_spares;
3498 aux = ZPOOL_CONFIG_SPARES;
3499 } else {
3500 sav = &spa->spa_l2cache;
3501 aux = ZPOOL_CONFIG_L2CACHE;
3502 }
3503
3504 mutex_enter(&ztest_vdev_lock);
3505
3506 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3507
3508 if (sav->sav_count != 0 && ztest_random(4) == 0) {
3509 /*
3510 * Pick a random device to remove.
3511 */
3512 vdev_t *svd = sav->sav_vdevs[ztest_random(sav->sav_count)];
3513
3514 /* dRAID spares cannot be removed; try anyways to see ENOTSUP */
3515 if (strstr(svd->vdev_path, VDEV_TYPE_DRAID) != NULL)
3516 ignore_err = ENOTSUP;
3517
3518 guid = svd->vdev_guid;
3519 } else {
3520 /*
3521 * Find an unused device we can add.
3522 */
3523 zs->zs_vdev_aux = 0;
3524 for (;;) {
3525 int c;
3526 (void) snprintf(path, MAXPATHLEN, ztest_aux_template,
3527 ztest_opts.zo_dir, ztest_opts.zo_pool, aux,
3528 zs->zs_vdev_aux);
3529 for (c = 0; c < sav->sav_count; c++)
3530 if (strcmp(sav->sav_vdevs[c]->vdev_path,
3531 path) == 0)
3532 break;
3533 if (c == sav->sav_count &&
3534 vdev_lookup_by_path(rvd, path) == NULL)
3535 break;
3536 zs->zs_vdev_aux++;
3537 }
3538 }
3539
3540 spa_config_exit(spa, SCL_VDEV, FTAG);
3541
3542 if (guid == 0) {
3543 /*
3544 * Add a new device.
3545 */
3546 nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL,
3547 (ztest_opts.zo_vdev_size * 5) / 4, 0, NULL, 0, 0, 1);
3548 error = spa_vdev_add(spa, nvroot, B_FALSE);
3549
3550 switch (error) {
3551 case 0:
3552 break;
3553 default:
3554 fatal(B_FALSE, "spa_vdev_add(%p) = %d", nvroot, error);
3555 }
3556 fnvlist_free(nvroot);
3557 } else {
3558 /*
3559 * Remove an existing device. Sometimes, dirty its
3560 * vdev state first to make sure we handle removal
3561 * of devices that have pending state changes.
3562 */
3563 if (ztest_random(2) == 0)
3564 (void) vdev_online(spa, guid, 0, NULL);
3565
3566 error = spa_vdev_remove(spa, guid, B_FALSE);
3567
3568 switch (error) {
3569 case 0:
3570 case EBUSY:
3571 case ZFS_ERR_CHECKPOINT_EXISTS:
3572 case ZFS_ERR_DISCARDING_CHECKPOINT:
3573 break;
3574 default:
3575 if (error != ignore_err)
3576 fatal(B_FALSE,
3577 "spa_vdev_remove(%"PRIu64") = %d",
3578 guid, error);
3579 }
3580 }
3581
3582 mutex_exit(&ztest_vdev_lock);
3583
3584 umem_free(path, MAXPATHLEN);
3585 }
3586
3587 /*
3588 * split a pool if it has mirror tlvdevs
3589 */
3590 void
3591 ztest_split_pool(ztest_ds_t *zd, uint64_t id)
3592 {
3593 (void) zd, (void) id;
3594 ztest_shared_t *zs = ztest_shared;
3595 spa_t *spa = ztest_spa;
3596 vdev_t *rvd = spa->spa_root_vdev;
3597 nvlist_t *tree, **child, *config, *split, **schild;
3598 uint_t c, children, schildren = 0, lastlogid = 0;
3599 int error = 0;
3600
3601 if (ztest_opts.zo_mmp_test)
3602 return;
3603
3604 mutex_enter(&ztest_vdev_lock);
3605
3606 /* ensure we have a usable config; mirrors of raidz aren't supported */
3607 if (zs->zs_mirrors < 3 || ztest_opts.zo_raid_children > 1) {
3608 mutex_exit(&ztest_vdev_lock);
3609 return;
3610 }
3611
3612 /* clean up the old pool, if any */
3613 (void) spa_destroy("splitp");
3614
3615 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3616
3617 /* generate a config from the existing config */
3618 mutex_enter(&spa->spa_props_lock);
3619 tree = fnvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE);
3620 mutex_exit(&spa->spa_props_lock);
3621
3622 VERIFY0(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN,
3623 &child, &children));
3624
3625 schild = umem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
3626 UMEM_NOFAIL);
3627 for (c = 0; c < children; c++) {
3628 vdev_t *tvd = rvd->vdev_child[c];
3629 nvlist_t **mchild;
3630 uint_t mchildren;
3631
3632 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
3633 schild[schildren] = fnvlist_alloc();
3634 fnvlist_add_string(schild[schildren],
3635 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE);
3636 fnvlist_add_uint64(schild[schildren],
3637 ZPOOL_CONFIG_IS_HOLE, 1);
3638 if (lastlogid == 0)
3639 lastlogid = schildren;
3640 ++schildren;
3641 continue;
3642 }
3643 lastlogid = 0;
3644 VERIFY0(nvlist_lookup_nvlist_array(child[c],
3645 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren));
3646 schild[schildren++] = fnvlist_dup(mchild[0]);
3647 }
3648
3649 /* OK, create a config that can be used to split */
3650 split = fnvlist_alloc();
3651 fnvlist_add_string(split, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT);
3652 fnvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN,
3653 (const nvlist_t **)schild, lastlogid != 0 ? lastlogid : schildren);
3654
3655 config = fnvlist_alloc();
3656 fnvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split);
3657
3658 for (c = 0; c < schildren; c++)
3659 fnvlist_free(schild[c]);
3660 umem_free(schild, rvd->vdev_children * sizeof (nvlist_t *));
3661 fnvlist_free(split);
3662
3663 spa_config_exit(spa, SCL_VDEV, FTAG);
3664
3665 (void) pthread_rwlock_wrlock(&ztest_name_lock);
3666 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
3667 (void) pthread_rwlock_unlock(&ztest_name_lock);
3668
3669 fnvlist_free(config);
3670
3671 if (error == 0) {
3672 (void) printf("successful split - results:\n");
3673 mutex_enter(&spa_namespace_lock);
3674 show_pool_stats(spa);
3675 show_pool_stats(spa_lookup("splitp"));
3676 mutex_exit(&spa_namespace_lock);
3677 ++zs->zs_splits;
3678 --zs->zs_mirrors;
3679 }
3680 mutex_exit(&ztest_vdev_lock);
3681 }
3682
3683 /*
3684 * Verify that we can attach and detach devices.
3685 */
3686 void
3687 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
3688 {
3689 (void) zd, (void) id;
3690 ztest_shared_t *zs = ztest_shared;
3691 spa_t *spa = ztest_spa;
3692 spa_aux_vdev_t *sav = &spa->spa_spares;
3693 vdev_t *rvd = spa->spa_root_vdev;
3694 vdev_t *oldvd, *newvd, *pvd;
3695 nvlist_t *root;
3696 uint64_t leaves;
3697 uint64_t leaf, top;
3698 uint64_t ashift = ztest_get_ashift();
3699 uint64_t oldguid, pguid;
3700 uint64_t oldsize, newsize;
3701 uint64_t raidz_children;
3702 char *oldpath, *newpath;
3703 int replacing;
3704 int oldvd_has_siblings = B_FALSE;
3705 int newvd_is_spare = B_FALSE;
3706 int newvd_is_dspare = B_FALSE;
3707 int oldvd_is_log;
3708 int oldvd_is_special;
3709 int error, expected_error;
3710
3711 if (ztest_opts.zo_mmp_test)
3712 return;
3713
3714 oldpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3715 newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3716
3717 mutex_enter(&ztest_vdev_lock);
3718 raidz_children = ztest_get_raidz_children(spa);
3719 leaves = MAX(zs->zs_mirrors, 1) * raidz_children;
3720
3721 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3722
3723 /*
3724 * If a vdev is in the process of being removed, its removal may
3725 * finish while we are in progress, leading to an unexpected error
3726 * value. Don't bother trying to attach while we are in the middle
3727 * of removal.
3728 */
3729 if (ztest_device_removal_active) {
3730 spa_config_exit(spa, SCL_ALL, FTAG);
3731 goto out;
3732 }
3733
3734 /*
3735 * RAIDZ leaf VDEV mirrors are not currently supported while a
3736 * RAIDZ expansion is in progress.
3737 */
3738 if (ztest_opts.zo_raid_do_expand) {
3739 spa_config_exit(spa, SCL_ALL, FTAG);
3740 goto out;
3741 }
3742
3743 /*
3744 * Decide whether to do an attach or a replace.
3745 */
3746 replacing = ztest_random(2);
3747
3748 /*
3749 * Pick a random top-level vdev.
3750 */
3751 top = ztest_random_vdev_top(spa, B_TRUE);
3752
3753 /*
3754 * Pick a random leaf within it.
3755 */
3756 leaf = ztest_random(leaves);
3757
3758 /*
3759 * Locate this vdev.
3760 */
3761 oldvd = rvd->vdev_child[top];
3762
3763 /* pick a child from the mirror */
3764 if (zs->zs_mirrors >= 1) {
3765 ASSERT3P(oldvd->vdev_ops, ==, &vdev_mirror_ops);
3766 ASSERT3U(oldvd->vdev_children, >=, zs->zs_mirrors);
3767 oldvd = oldvd->vdev_child[leaf / raidz_children];
3768 }
3769
3770 /* pick a child out of the raidz group */
3771 if (ztest_opts.zo_raid_children > 1) {
3772 if (strcmp(oldvd->vdev_ops->vdev_op_type, "raidz") == 0)
3773 ASSERT3P(oldvd->vdev_ops, ==, &vdev_raidz_ops);
3774 else
3775 ASSERT3P(oldvd->vdev_ops, ==, &vdev_draid_ops);
3776 oldvd = oldvd->vdev_child[leaf % raidz_children];
3777 }
3778
3779 /*
3780 * If we're already doing an attach or replace, oldvd may be a
3781 * mirror vdev -- in which case, pick a random child.
3782 */
3783 while (oldvd->vdev_children != 0) {
3784 oldvd_has_siblings = B_TRUE;
3785 ASSERT3U(oldvd->vdev_children, >=, 2);
3786 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
3787 }
3788
3789 oldguid = oldvd->vdev_guid;
3790 oldsize = vdev_get_min_asize(oldvd);
3791 oldvd_is_log = oldvd->vdev_top->vdev_islog;
3792 oldvd_is_special =
3793 oldvd->vdev_top->vdev_alloc_bias == VDEV_BIAS_SPECIAL ||
3794 oldvd->vdev_top->vdev_alloc_bias == VDEV_BIAS_DEDUP;
3795 (void) strlcpy(oldpath, oldvd->vdev_path, MAXPATHLEN);
3796 pvd = oldvd->vdev_parent;
3797 pguid = pvd->vdev_guid;
3798
3799 /*
3800 * If oldvd has siblings, then half of the time, detach it. Prior
3801 * to the detach the pool is scrubbed in order to prevent creating
3802 * unrepairable blocks as a result of the data corruption injection.
3803 */
3804 if (oldvd_has_siblings && ztest_random(2) == 0) {
3805 spa_config_exit(spa, SCL_ALL, FTAG);
3806
3807 error = ztest_scrub_impl(spa);
3808 if (error)
3809 goto out;
3810
3811 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
3812 if (error != 0 && error != ENODEV && error != EBUSY &&
3813 error != ENOTSUP && error != ZFS_ERR_CHECKPOINT_EXISTS &&
3814 error != ZFS_ERR_DISCARDING_CHECKPOINT)
3815 fatal(B_FALSE, "detach (%s) returned %d",
3816 oldpath, error);
3817 goto out;
3818 }
3819
3820 /*
3821 * For the new vdev, choose with equal probability between the two
3822 * standard paths (ending in either 'a' or 'b') or a random hot spare.
3823 */
3824 if (sav->sav_count != 0 && ztest_random(3) == 0) {
3825 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
3826 newvd_is_spare = B_TRUE;
3827
3828 if (newvd->vdev_ops == &vdev_draid_spare_ops)
3829 newvd_is_dspare = B_TRUE;
3830
3831 (void) strlcpy(newpath, newvd->vdev_path, MAXPATHLEN);
3832 } else {
3833 (void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
3834 ztest_opts.zo_dir, ztest_opts.zo_pool,
3835 top * leaves + leaf);
3836 if (ztest_random(2) == 0)
3837 newpath[strlen(newpath) - 1] = 'b';
3838 newvd = vdev_lookup_by_path(rvd, newpath);
3839 }
3840
3841 if (newvd) {
3842 /*
3843 * Reopen to ensure the vdev's asize field isn't stale.
3844 */
3845 vdev_reopen(newvd);
3846 newsize = vdev_get_min_asize(newvd);
3847 } else {
3848 /*
3849 * Make newsize a little bigger or smaller than oldsize.
3850 * If it's smaller, the attach should fail.
3851 * If it's larger, and we're doing a replace,
3852 * we should get dynamic LUN growth when we're done.
3853 */
3854 newsize = 10 * oldsize / (9 + ztest_random(3));
3855 }
3856
3857 /*
3858 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
3859 * unless it's a replace; in that case any non-replacing parent is OK.
3860 *
3861 * If newvd is already part of the pool, it should fail with EBUSY.
3862 *
3863 * If newvd is too small, it should fail with EOVERFLOW.
3864 *
3865 * If newvd is a distributed spare and it's being attached to a
3866 * dRAID which is not its parent it should fail with EINVAL.
3867 */
3868 if (pvd->vdev_ops != &vdev_mirror_ops &&
3869 pvd->vdev_ops != &vdev_root_ops && (!replacing ||
3870 pvd->vdev_ops == &vdev_replacing_ops ||
3871 pvd->vdev_ops == &vdev_spare_ops))
3872 expected_error = ENOTSUP;
3873 else if (newvd_is_spare &&
3874 (!replacing || oldvd_is_log || oldvd_is_special))
3875 expected_error = ENOTSUP;
3876 else if (newvd == oldvd)
3877 expected_error = replacing ? 0 : EBUSY;
3878 else if (vdev_lookup_by_path(rvd, newpath) != NULL)
3879 expected_error = EBUSY;
3880 else if (!newvd_is_dspare && newsize < oldsize)
3881 expected_error = EOVERFLOW;
3882 else if (ashift > oldvd->vdev_top->vdev_ashift)
3883 expected_error = EDOM;
3884 else if (newvd_is_dspare && pvd != vdev_draid_spare_get_parent(newvd))
3885 expected_error = EINVAL;
3886 else
3887 expected_error = 0;
3888
3889 spa_config_exit(spa, SCL_ALL, FTAG);
3890
3891 /*
3892 * Build the nvlist describing newpath.
3893 */
3894 root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0,
3895 ashift, NULL, 0, 0, 1);
3896
3897 /*
3898 * When supported select either a healing or sequential resilver.
3899 */
3900 boolean_t rebuilding = B_FALSE;
3901 if (pvd->vdev_ops == &vdev_mirror_ops ||
3902 pvd->vdev_ops == &vdev_root_ops) {
3903 rebuilding = !!ztest_random(2);
3904 }
3905
3906 error = spa_vdev_attach(spa, oldguid, root, replacing, rebuilding);
3907
3908 fnvlist_free(root);
3909
3910 /*
3911 * If our parent was the replacing vdev, but the replace completed,
3912 * then instead of failing with ENOTSUP we may either succeed,
3913 * fail with ENODEV, or fail with EOVERFLOW.
3914 */
3915 if (expected_error == ENOTSUP &&
3916 (error == 0 || error == ENODEV || error == EOVERFLOW))
3917 expected_error = error;
3918
3919 /*
3920 * If someone grew the LUN, the replacement may be too small.
3921 */
3922 if (error == EOVERFLOW || error == EBUSY)
3923 expected_error = error;
3924
3925 if (error == ZFS_ERR_CHECKPOINT_EXISTS ||
3926 error == ZFS_ERR_DISCARDING_CHECKPOINT ||
3927 error == ZFS_ERR_RESILVER_IN_PROGRESS ||
3928 error == ZFS_ERR_REBUILD_IN_PROGRESS)
3929 expected_error = error;
3930
3931 if (error != expected_error && expected_error != EBUSY) {
3932 fatal(B_FALSE, "attach (%s %"PRIu64", %s %"PRIu64", %d) "
3933 "returned %d, expected %d",
3934 oldpath, oldsize, newpath,
3935 newsize, replacing, error, expected_error);
3936 }
3937 out:
3938 mutex_exit(&ztest_vdev_lock);
3939
3940 umem_free(oldpath, MAXPATHLEN);
3941 umem_free(newpath, MAXPATHLEN);
3942 }
3943
3944 static void
3945 raidz_scratch_verify(void)
3946 {
3947 spa_t *spa;
3948 uint64_t write_size, logical_size, offset;
3949 raidz_reflow_scratch_state_t state;
3950 vdev_raidz_expand_t *vre;
3951 vdev_t *raidvd;
3952
3953 ASSERT(raidz_expand_pause_point == RAIDZ_EXPAND_PAUSE_NONE);
3954
3955 if (ztest_scratch_state->zs_raidz_scratch_verify_pause == 0)
3956 return;
3957
3958 kernel_init(SPA_MODE_READ);
3959
3960 mutex_enter(&spa_namespace_lock);
3961 spa = spa_lookup(ztest_opts.zo_pool);
3962 ASSERT(spa);
3963 spa->spa_import_flags |= ZFS_IMPORT_SKIP_MMP;
3964 mutex_exit(&spa_namespace_lock);
3965
3966 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
3967
3968 ASSERT3U(RRSS_GET_OFFSET(&spa->spa_uberblock), !=, UINT64_MAX);
3969
3970 mutex_enter(&ztest_vdev_lock);
3971
3972 spa_config_enter(spa, SCL_ALL, FTAG, RW_READER);
3973
3974 vre = spa->spa_raidz_expand;
3975 if (vre == NULL)
3976 goto out;
3977
3978 raidvd = vdev_lookup_top(spa, vre->vre_vdev_id);
3979 offset = RRSS_GET_OFFSET(&spa->spa_uberblock);
3980 state = RRSS_GET_STATE(&spa->spa_uberblock);
3981 write_size = P2ALIGN(VDEV_BOOT_SIZE, 1 << raidvd->vdev_ashift);
3982 logical_size = write_size * raidvd->vdev_children;
3983
3984 switch (state) {
3985 /*
3986 * Initial state of reflow process. RAIDZ expansion was
3987 * requested by user, but scratch object was not created.
3988 */
3989 case RRSS_SCRATCH_NOT_IN_USE:
3990 ASSERT3U(offset, ==, 0);
3991 break;
3992
3993 /*
3994 * Scratch object was synced and stored in boot area.
3995 */
3996 case RRSS_SCRATCH_VALID:
3997
3998 /*
3999 * Scratch object was synced back to raidz start offset,
4000 * raidz is ready for sector by sector reflow process.
4001 */
4002 case RRSS_SCRATCH_INVALID_SYNCED:
4003
4004 /*
4005 * Scratch object was synced back to raidz start offset
4006 * on zpool importing, raidz is ready for sector by sector
4007 * reflow process.
4008 */
4009 case RRSS_SCRATCH_INVALID_SYNCED_ON_IMPORT:
4010 ASSERT3U(offset, ==, logical_size);
4011 break;
4012
4013 /*
4014 * Sector by sector reflow process started.
4015 */
4016 case RRSS_SCRATCH_INVALID_SYNCED_REFLOW:
4017 ASSERT3U(offset, >=, logical_size);
4018 break;
4019 }
4020
4021 out:
4022 spa_config_exit(spa, SCL_ALL, FTAG);
4023
4024 mutex_exit(&ztest_vdev_lock);
4025
4026 ztest_scratch_state->zs_raidz_scratch_verify_pause = 0;
4027
4028 spa_close(spa, FTAG);
4029 kernel_fini();
4030 }
4031
4032 static void
4033 ztest_scratch_thread(void *arg)
4034 {
4035 (void) arg;
4036
4037 /* wait up to 10 seconds */
4038 for (int t = 100; t > 0; t -= 1) {
4039 if (raidz_expand_pause_point == RAIDZ_EXPAND_PAUSE_NONE)
4040 thread_exit();
4041
4042 (void) poll(NULL, 0, 100);
4043 }
4044
4045 /* killed when the scratch area progress reached a certain point */
4046 ztest_kill(ztest_shared);
4047 }
4048
4049 /*
4050 * Verify that we can attach raidz device.
4051 */
4052 void
4053 ztest_vdev_raidz_attach(ztest_ds_t *zd, uint64_t id)
4054 {
4055 (void) zd, (void) id;
4056 ztest_shared_t *zs = ztest_shared;
4057 spa_t *spa = ztest_spa;
4058 uint64_t leaves, raidz_children, newsize, ashift = ztest_get_ashift();
4059 kthread_t *scratch_thread = NULL;
4060 vdev_t *newvd, *pvd;
4061 nvlist_t *root;
4062 char *newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
4063 int error, expected_error = 0;
4064
4065 mutex_enter(&ztest_vdev_lock);
4066
4067 spa_config_enter(spa, SCL_ALL, FTAG, RW_READER);
4068
4069 /* Only allow attach when raid-kind = 'eraidz' */
4070 if (!ztest_opts.zo_raid_do_expand) {
4071 spa_config_exit(spa, SCL_ALL, FTAG);
4072 goto out;
4073 }
4074
4075 if (ztest_opts.zo_mmp_test) {
4076 spa_config_exit(spa, SCL_ALL, FTAG);
4077 goto out;
4078 }
4079
4080 if (ztest_device_removal_active) {
4081 spa_config_exit(spa, SCL_ALL, FTAG);
4082 goto out;
4083 }
4084
4085 pvd = vdev_lookup_top(spa, 0);
4086
4087 ASSERT(pvd->vdev_ops == &vdev_raidz_ops);
4088
4089 /*
4090 * Get size of a child of the raidz group,
4091 * make sure device is a bit bigger
4092 */
4093 newvd = pvd->vdev_child[ztest_random(pvd->vdev_children)];
4094 newsize = 10 * vdev_get_min_asize(newvd) / (9 + ztest_random(2));
4095
4096 /*
4097 * Get next attached leaf id
4098 */
4099 raidz_children = ztest_get_raidz_children(spa);
4100 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * raidz_children;
4101 zs->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
4102
4103 if (spa->spa_raidz_expand)
4104 expected_error = ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS;
4105
4106 spa_config_exit(spa, SCL_ALL, FTAG);
4107
4108 /*
4109 * Path to vdev to be attached
4110 */
4111 (void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
4112 ztest_opts.zo_dir, ztest_opts.zo_pool, zs->zs_vdev_next_leaf);
4113
4114 /*
4115 * Build the nvlist describing newpath.
4116 */
4117 root = make_vdev_root(newpath, NULL, NULL, newsize, ashift, NULL,
4118 0, 0, 1);
4119
4120 /*
4121 * 50% of the time, set raidz_expand_pause_point to cause
4122 * raidz_reflow_scratch_sync() to pause at a certain point and
4123 * then kill the test after 10 seconds so raidz_scratch_verify()
4124 * can confirm consistency when the pool is imported.
4125 */
4126 if (ztest_random(2) == 0 && expected_error == 0) {
4127 raidz_expand_pause_point =
4128 ztest_random(RAIDZ_EXPAND_PAUSE_SCRATCH_POST_REFLOW_2) + 1;
4129 scratch_thread = thread_create(NULL, 0, ztest_scratch_thread,
4130 ztest_shared, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
4131 }
4132
4133 error = spa_vdev_attach(spa, pvd->vdev_guid, root, B_FALSE, B_FALSE);
4134
4135 nvlist_free(root);
4136
4137 if (error == EOVERFLOW || error == ENXIO ||
4138 error == ZFS_ERR_CHECKPOINT_EXISTS ||
4139 error == ZFS_ERR_DISCARDING_CHECKPOINT)
4140 expected_error = error;
4141
4142 if (error != 0 && error != expected_error) {
4143 fatal(0, "raidz attach (%s %"PRIu64") returned %d, expected %d",
4144 newpath, newsize, error, expected_error);
4145 }
4146
4147 if (raidz_expand_pause_point) {
4148 if (error != 0) {
4149 /*
4150 * Do not verify scratch object in case of error
4151 * returned by vdev attaching.
4152 */
4153 raidz_expand_pause_point = RAIDZ_EXPAND_PAUSE_NONE;
4154 }
4155
4156 VERIFY0(thread_join(scratch_thread));
4157 }
4158 out:
4159 mutex_exit(&ztest_vdev_lock);
4160
4161 umem_free(newpath, MAXPATHLEN);
4162 }
4163
4164 void
4165 ztest_device_removal(ztest_ds_t *zd, uint64_t id)
4166 {
4167 (void) zd, (void) id;
4168 spa_t *spa = ztest_spa;
4169 vdev_t *vd;
4170 uint64_t guid;
4171 int error;
4172
4173 mutex_enter(&ztest_vdev_lock);
4174
4175 if (ztest_device_removal_active) {
4176 mutex_exit(&ztest_vdev_lock);
4177 return;
4178 }
4179
4180 /*
4181 * Remove a random top-level vdev and wait for removal to finish.
4182 */
4183 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4184 vd = vdev_lookup_top(spa, ztest_random_vdev_top(spa, B_FALSE));
4185 guid = vd->vdev_guid;
4186 spa_config_exit(spa, SCL_VDEV, FTAG);
4187
4188 error = spa_vdev_remove(spa, guid, B_FALSE);
4189 if (error == 0) {
4190 ztest_device_removal_active = B_TRUE;
4191 mutex_exit(&ztest_vdev_lock);
4192
4193 /*
4194 * spa->spa_vdev_removal is created in a sync task that
4195 * is initiated via dsl_sync_task_nowait(). Since the
4196 * task may not run before spa_vdev_remove() returns, we
4197 * must wait at least 1 txg to ensure that the removal
4198 * struct has been created.
4199 */
4200 txg_wait_synced(spa_get_dsl(spa), 0);
4201
4202 while (spa->spa_removing_phys.sr_state == DSS_SCANNING)
4203 txg_wait_synced(spa_get_dsl(spa), 0);
4204 } else {
4205 mutex_exit(&ztest_vdev_lock);
4206 return;
4207 }
4208
4209 /*
4210 * The pool needs to be scrubbed after completing device removal.
4211 * Failure to do so may result in checksum errors due to the
4212 * strategy employed by ztest_fault_inject() when selecting which
4213 * offset are redundant and can be damaged.
4214 */
4215 error = spa_scan(spa, POOL_SCAN_SCRUB);
4216 if (error == 0) {
4217 while (dsl_scan_scrubbing(spa_get_dsl(spa)))
4218 txg_wait_synced(spa_get_dsl(spa), 0);
4219 }
4220
4221 mutex_enter(&ztest_vdev_lock);
4222 ztest_device_removal_active = B_FALSE;
4223 mutex_exit(&ztest_vdev_lock);
4224 }
4225
4226 /*
4227 * Callback function which expands the physical size of the vdev.
4228 */
4229 static vdev_t *
4230 grow_vdev(vdev_t *vd, void *arg)
4231 {
4232 spa_t *spa __maybe_unused = vd->vdev_spa;
4233 size_t *newsize = arg;
4234 size_t fsize;
4235 int fd;
4236
4237 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), ==, SCL_STATE);
4238 ASSERT(vd->vdev_ops->vdev_op_leaf);
4239
4240 if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
4241 return (vd);
4242
4243 fsize = lseek(fd, 0, SEEK_END);
4244 VERIFY0(ftruncate(fd, *newsize));
4245
4246 if (ztest_opts.zo_verbose >= 6) {
4247 (void) printf("%s grew from %lu to %lu bytes\n",
4248 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
4249 }
4250 (void) close(fd);
4251 return (NULL);
4252 }
4253
4254 /*
4255 * Callback function which expands a given vdev by calling vdev_online().
4256 */
4257 static vdev_t *
4258 online_vdev(vdev_t *vd, void *arg)
4259 {
4260 (void) arg;
4261 spa_t *spa = vd->vdev_spa;
4262 vdev_t *tvd = vd->vdev_top;
4263 uint64_t guid = vd->vdev_guid;
4264 uint64_t generation = spa->spa_config_generation + 1;
4265 vdev_state_t newstate = VDEV_STATE_UNKNOWN;
4266 int error;
4267
4268 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), ==, SCL_STATE);
4269 ASSERT(vd->vdev_ops->vdev_op_leaf);
4270
4271 /* Calling vdev_online will initialize the new metaslabs */
4272 spa_config_exit(spa, SCL_STATE, spa);
4273 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
4274 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
4275
4276 /*
4277 * If vdev_online returned an error or the underlying vdev_open
4278 * failed then we abort the expand. The only way to know that
4279 * vdev_open fails is by checking the returned newstate.
4280 */
4281 if (error || newstate != VDEV_STATE_HEALTHY) {
4282 if (ztest_opts.zo_verbose >= 5) {
4283 (void) printf("Unable to expand vdev, state %u, "
4284 "error %d\n", newstate, error);
4285 }
4286 return (vd);
4287 }
4288 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
4289
4290 /*
4291 * Since we dropped the lock we need to ensure that we're
4292 * still talking to the original vdev. It's possible this
4293 * vdev may have been detached/replaced while we were
4294 * trying to online it.
4295 */
4296 if (generation != spa->spa_config_generation) {
4297 if (ztest_opts.zo_verbose >= 5) {
4298 (void) printf("vdev configuration has changed, "
4299 "guid %"PRIu64", state %"PRIu64", "
4300 "expected gen %"PRIu64", got gen %"PRIu64"\n",
4301 guid,
4302 tvd->vdev_state,
4303 generation,
4304 spa->spa_config_generation);
4305 }
4306 return (vd);
4307 }
4308 return (NULL);
4309 }
4310
4311 /*
4312 * Traverse the vdev tree calling the supplied function.
4313 * We continue to walk the tree until we either have walked all
4314 * children or we receive a non-NULL return from the callback.
4315 * If a NULL callback is passed, then we just return back the first
4316 * leaf vdev we encounter.
4317 */
4318 static vdev_t *
4319 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
4320 {
4321 uint_t c;
4322
4323 if (vd->vdev_ops->vdev_op_leaf) {
4324 if (func == NULL)
4325 return (vd);
4326 else
4327 return (func(vd, arg));
4328 }
4329
4330 for (c = 0; c < vd->vdev_children; c++) {
4331 vdev_t *cvd = vd->vdev_child[c];
4332 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
4333 return (cvd);
4334 }
4335 return (NULL);
4336 }
4337
4338 /*
4339 * Verify that dynamic LUN growth works as expected.
4340 */
4341 void
4342 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
4343 {
4344 (void) zd, (void) id;
4345 spa_t *spa = ztest_spa;
4346 vdev_t *vd, *tvd;
4347 metaslab_class_t *mc;
4348 metaslab_group_t *mg;
4349 size_t psize, newsize;
4350 uint64_t top;
4351 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
4352
4353 mutex_enter(&ztest_checkpoint_lock);
4354 mutex_enter(&ztest_vdev_lock);
4355 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
4356
4357 /*
4358 * If there is a vdev removal in progress, it could complete while
4359 * we are running, in which case we would not be able to verify
4360 * that the metaslab_class space increased (because it decreases
4361 * when the device removal completes).
4362 */
4363 if (ztest_device_removal_active) {
4364 spa_config_exit(spa, SCL_STATE, spa);
4365 mutex_exit(&ztest_vdev_lock);
4366 mutex_exit(&ztest_checkpoint_lock);
4367 return;
4368 }
4369
4370 /*
4371 * If we are under raidz expansion, the test can failed because the
4372 * metaslabs count will not increase immediately after the vdev is
4373 * expanded. It will happen only after raidz expansion completion.
4374 */
4375 if (spa->spa_raidz_expand) {
4376 spa_config_exit(spa, SCL_STATE, spa);
4377 mutex_exit(&ztest_vdev_lock);
4378 mutex_exit(&ztest_checkpoint_lock);
4379 return;
4380 }
4381
4382 top = ztest_random_vdev_top(spa, B_TRUE);
4383
4384 tvd = spa->spa_root_vdev->vdev_child[top];
4385 mg = tvd->vdev_mg;
4386 mc = mg->mg_class;
4387 old_ms_count = tvd->vdev_ms_count;
4388 old_class_space = metaslab_class_get_space(mc);
4389
4390 /*
4391 * Determine the size of the first leaf vdev associated with
4392 * our top-level device.
4393 */
4394 vd = vdev_walk_tree(tvd, NULL, NULL);
4395 ASSERT3P(vd, !=, NULL);
4396 ASSERT(vd->vdev_ops->vdev_op_leaf);
4397
4398 psize = vd->vdev_psize;
4399
4400 /*
4401 * We only try to expand the vdev if it's healthy, less than 4x its
4402 * original size, and it has a valid psize.
4403 */
4404 if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
4405 psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) {
4406 spa_config_exit(spa, SCL_STATE, spa);
4407 mutex_exit(&ztest_vdev_lock);
4408 mutex_exit(&ztest_checkpoint_lock);
4409 return;
4410 }
4411 ASSERT3U(psize, >, 0);
4412 newsize = psize + MAX(psize / 8, SPA_MAXBLOCKSIZE);
4413 ASSERT3U(newsize, >, psize);
4414
4415 if (ztest_opts.zo_verbose >= 6) {
4416 (void) printf("Expanding LUN %s from %lu to %lu\n",
4417 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
4418 }
4419
4420 /*
4421 * Growing the vdev is a two step process:
4422 * 1). expand the physical size (i.e. relabel)
4423 * 2). online the vdev to create the new metaslabs
4424 */
4425 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
4426 vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
4427 tvd->vdev_state != VDEV_STATE_HEALTHY) {
4428 if (ztest_opts.zo_verbose >= 5) {
4429 (void) printf("Could not expand LUN because "
4430 "the vdev configuration changed.\n");
4431 }
4432 spa_config_exit(spa, SCL_STATE, spa);
4433 mutex_exit(&ztest_vdev_lock);
4434 mutex_exit(&ztest_checkpoint_lock);
4435 return;
4436 }
4437
4438 spa_config_exit(spa, SCL_STATE, spa);
4439
4440 /*
4441 * Expanding the LUN will update the config asynchronously,
4442 * thus we must wait for the async thread to complete any
4443 * pending tasks before proceeding.
4444 */
4445 for (;;) {
4446 boolean_t done;
4447 mutex_enter(&spa->spa_async_lock);
4448 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
4449 mutex_exit(&spa->spa_async_lock);
4450 if (done)
4451 break;
4452 txg_wait_synced(spa_get_dsl(spa), 0);
4453 (void) poll(NULL, 0, 100);
4454 }
4455
4456 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
4457
4458 tvd = spa->spa_root_vdev->vdev_child[top];
4459 new_ms_count = tvd->vdev_ms_count;
4460 new_class_space = metaslab_class_get_space(mc);
4461
4462 if (tvd->vdev_mg != mg || mg->mg_class != mc) {
4463 if (ztest_opts.zo_verbose >= 5) {
4464 (void) printf("Could not verify LUN expansion due to "
4465 "intervening vdev offline or remove.\n");
4466 }
4467 spa_config_exit(spa, SCL_STATE, spa);
4468 mutex_exit(&ztest_vdev_lock);
4469 mutex_exit(&ztest_checkpoint_lock);
4470 return;
4471 }
4472
4473 /*
4474 * Make sure we were able to grow the vdev.
4475 */
4476 if (new_ms_count <= old_ms_count) {
4477 fatal(B_FALSE,
4478 "LUN expansion failed: ms_count %"PRIu64" < %"PRIu64"\n",
4479 old_ms_count, new_ms_count);
4480 }
4481
4482 /*
4483 * Make sure we were able to grow the pool.
4484 */
4485 if (new_class_space <= old_class_space) {
4486 fatal(B_FALSE,
4487 "LUN expansion failed: class_space %"PRIu64" < %"PRIu64"\n",
4488 old_class_space, new_class_space);
4489 }
4490
4491 if (ztest_opts.zo_verbose >= 5) {
4492 char oldnumbuf[NN_NUMBUF_SZ], newnumbuf[NN_NUMBUF_SZ];
4493
4494 nicenum(old_class_space, oldnumbuf, sizeof (oldnumbuf));
4495 nicenum(new_class_space, newnumbuf, sizeof (newnumbuf));
4496 (void) printf("%s grew from %s to %s\n",
4497 spa->spa_name, oldnumbuf, newnumbuf);
4498 }
4499
4500 spa_config_exit(spa, SCL_STATE, spa);
4501 mutex_exit(&ztest_vdev_lock);
4502 mutex_exit(&ztest_checkpoint_lock);
4503 }
4504
4505 /*
4506 * Verify that dmu_objset_{create,destroy,open,close} work as expected.
4507 */
4508 static void
4509 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
4510 {
4511 (void) arg, (void) cr;
4512
4513 /*
4514 * Create the objects common to all ztest datasets.
4515 */
4516 VERIFY0(zap_create_claim(os, ZTEST_DIROBJ,
4517 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx));
4518 }
4519
4520 static int
4521 ztest_dataset_create(char *dsname)
4522 {
4523 int err;
4524 uint64_t rand;
4525 dsl_crypto_params_t *dcp = NULL;
4526
4527 /*
4528 * 50% of the time, we create encrypted datasets
4529 * using a random cipher suite and a hard-coded
4530 * wrapping key.
4531 */
4532 rand = ztest_random(2);
4533 if (rand != 0) {
4534 nvlist_t *crypto_args = fnvlist_alloc();
4535 nvlist_t *props = fnvlist_alloc();
4536
4537 /* slight bias towards the default cipher suite */
4538 rand = ztest_random(ZIO_CRYPT_FUNCTIONS);
4539 if (rand < ZIO_CRYPT_AES_128_CCM)
4540 rand = ZIO_CRYPT_ON;
4541
4542 fnvlist_add_uint64(props,
4543 zfs_prop_to_name(ZFS_PROP_ENCRYPTION), rand);
4544 fnvlist_add_uint8_array(crypto_args, "wkeydata",
4545 (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
4546
4547 /*
4548 * These parameters aren't really used by the kernel. They
4549 * are simply stored so that userspace knows how to load
4550 * the wrapping key.
4551 */
4552 fnvlist_add_uint64(props,
4553 zfs_prop_to_name(ZFS_PROP_KEYFORMAT), ZFS_KEYFORMAT_RAW);
4554 fnvlist_add_string(props,
4555 zfs_prop_to_name(ZFS_PROP_KEYLOCATION), "prompt");
4556 fnvlist_add_uint64(props,
4557 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 0ULL);
4558 fnvlist_add_uint64(props,
4559 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 0ULL);
4560
4561 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, props,
4562 crypto_args, &dcp));
4563
4564 /*
4565 * Cycle through all available encryption implementations
4566 * to verify interoperability.
4567 */
4568 VERIFY0(gcm_impl_set("cycle"));
4569 VERIFY0(aes_impl_set("cycle"));
4570
4571 fnvlist_free(crypto_args);
4572 fnvlist_free(props);
4573 }
4574
4575 err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, dcp,
4576 ztest_objset_create_cb, NULL);
4577 dsl_crypto_params_free(dcp, !!err);
4578
4579 rand = ztest_random(100);
4580 if (err || rand < 80)
4581 return (err);
4582
4583 if (ztest_opts.zo_verbose >= 5)
4584 (void) printf("Setting dataset %s to sync always\n", dsname);
4585 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
4586 ZFS_SYNC_ALWAYS, B_FALSE));
4587 }
4588
4589 static int
4590 ztest_objset_destroy_cb(const char *name, void *arg)
4591 {
4592 (void) arg;
4593 objset_t *os;
4594 dmu_object_info_t doi;
4595 int error;
4596
4597 /*
4598 * Verify that the dataset contains a directory object.
4599 */
4600 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
4601 B_TRUE, FTAG, &os));
4602 error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
4603 if (error != ENOENT) {
4604 /* We could have crashed in the middle of destroying it */
4605 ASSERT0(error);
4606 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
4607 ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
4608 }
4609 dmu_objset_disown(os, B_TRUE, FTAG);
4610
4611 /*
4612 * Destroy the dataset.
4613 */
4614 if (strchr(name, '@') != NULL) {
4615 error = dsl_destroy_snapshot(name, B_TRUE);
4616 if (error != ECHRNG) {
4617 /*
4618 * The program was executed, but encountered a runtime
4619 * error, such as insufficient slop, or a hold on the
4620 * dataset.
4621 */
4622 ASSERT0(error);
4623 }
4624 } else {
4625 error = dsl_destroy_head(name);
4626 if (error == ENOSPC) {
4627 /* There could be checkpoint or insufficient slop */
4628 ztest_record_enospc(FTAG);
4629 } else if (error != EBUSY) {
4630 /* There could be a hold on this dataset */
4631 ASSERT0(error);
4632 }
4633 }
4634 return (0);
4635 }
4636
4637 static boolean_t
4638 ztest_snapshot_create(char *osname, uint64_t id)
4639 {
4640 char snapname[ZFS_MAX_DATASET_NAME_LEN];
4641 int error;
4642
4643 (void) snprintf(snapname, sizeof (snapname), "%"PRIu64"", id);
4644
4645 error = dmu_objset_snapshot_one(osname, snapname);
4646 if (error == ENOSPC) {
4647 ztest_record_enospc(FTAG);
4648 return (B_FALSE);
4649 }
4650 if (error != 0 && error != EEXIST && error != ECHRNG) {
4651 fatal(B_FALSE, "ztest_snapshot_create(%s@%s) = %d", osname,
4652 snapname, error);
4653 }
4654 return (B_TRUE);
4655 }
4656
4657 static boolean_t
4658 ztest_snapshot_destroy(char *osname, uint64_t id)
4659 {
4660 char snapname[ZFS_MAX_DATASET_NAME_LEN];
4661 int error;
4662
4663 (void) snprintf(snapname, sizeof (snapname), "%s@%"PRIu64"",
4664 osname, id);
4665
4666 error = dsl_destroy_snapshot(snapname, B_FALSE);
4667 if (error != 0 && error != ENOENT && error != ECHRNG)
4668 fatal(B_FALSE, "ztest_snapshot_destroy(%s) = %d",
4669 snapname, error);
4670 return (B_TRUE);
4671 }
4672
4673 void
4674 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
4675 {
4676 (void) zd;
4677 ztest_ds_t *zdtmp;
4678 int iters;
4679 int error;
4680 objset_t *os, *os2;
4681 char name[ZFS_MAX_DATASET_NAME_LEN];
4682 zilog_t *zilog;
4683 int i;
4684
4685 zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
4686
4687 (void) pthread_rwlock_rdlock(&ztest_name_lock);
4688
4689 (void) snprintf(name, sizeof (name), "%s/temp_%"PRIu64"",
4690 ztest_opts.zo_pool, id);
4691
4692 /*
4693 * If this dataset exists from a previous run, process its replay log
4694 * half of the time. If we don't replay it, then dsl_destroy_head()
4695 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
4696 */
4697 if (ztest_random(2) == 0 &&
4698 ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
4699 B_TRUE, FTAG, &os) == 0) {
4700 ztest_zd_init(zdtmp, NULL, os);
4701 zil_replay(os, zdtmp, ztest_replay_vector);
4702 ztest_zd_fini(zdtmp);
4703 dmu_objset_disown(os, B_TRUE, FTAG);
4704 }
4705
4706 /*
4707 * There may be an old instance of the dataset we're about to
4708 * create lying around from a previous run. If so, destroy it
4709 * and all of its snapshots.
4710 */
4711 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
4712 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
4713
4714 /*
4715 * Verify that the destroyed dataset is no longer in the namespace.
4716 * It may still be present if the destroy above fails with ENOSPC.
4717 */
4718 error = ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, B_TRUE,
4719 FTAG, &os);
4720 if (error == 0) {
4721 dmu_objset_disown(os, B_TRUE, FTAG);
4722 ztest_record_enospc(FTAG);
4723 goto out;
4724 }
4725 VERIFY3U(ENOENT, ==, error);
4726
4727 /*
4728 * Verify that we can create a new dataset.
4729 */
4730 error = ztest_dataset_create(name);
4731 if (error) {
4732 if (error == ENOSPC) {
4733 ztest_record_enospc(FTAG);
4734 goto out;
4735 }
4736 fatal(B_FALSE, "dmu_objset_create(%s) = %d", name, error);
4737 }
4738
4739 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, B_TRUE,
4740 FTAG, &os));
4741
4742 ztest_zd_init(zdtmp, NULL, os);
4743
4744 /*
4745 * Open the intent log for it.
4746 */
4747 zilog = zil_open(os, ztest_get_data, NULL);
4748
4749 /*
4750 * Put some objects in there, do a little I/O to them,
4751 * and randomly take a couple of snapshots along the way.
4752 */
4753 iters = ztest_random(5);
4754 for (i = 0; i < iters; i++) {
4755 ztest_dmu_object_alloc_free(zdtmp, id);
4756 if (ztest_random(iters) == 0)
4757 (void) ztest_snapshot_create(name, i);
4758 }
4759
4760 /*
4761 * Verify that we cannot create an existing dataset.
4762 */
4763 VERIFY3U(EEXIST, ==,
4764 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL, NULL));
4765
4766 /*
4767 * Verify that we can hold an objset that is also owned.
4768 */
4769 VERIFY0(dmu_objset_hold(name, FTAG, &os2));
4770 dmu_objset_rele(os2, FTAG);
4771
4772 /*
4773 * Verify that we cannot own an objset that is already owned.
4774 */
4775 VERIFY3U(EBUSY, ==, ztest_dmu_objset_own(name, DMU_OST_OTHER,
4776 B_FALSE, B_TRUE, FTAG, &os2));
4777
4778 zil_close(zilog);
4779 dmu_objset_disown(os, B_TRUE, FTAG);
4780 ztest_zd_fini(zdtmp);
4781 out:
4782 (void) pthread_rwlock_unlock(&ztest_name_lock);
4783
4784 umem_free(zdtmp, sizeof (ztest_ds_t));
4785 }
4786
4787 /*
4788 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
4789 */
4790 void
4791 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
4792 {
4793 (void) pthread_rwlock_rdlock(&ztest_name_lock);
4794 (void) ztest_snapshot_destroy(zd->zd_name, id);
4795 (void) ztest_snapshot_create(zd->zd_name, id);
4796 (void) pthread_rwlock_unlock(&ztest_name_lock);
4797 }
4798
4799 /*
4800 * Cleanup non-standard snapshots and clones.
4801 */
4802 static void
4803 ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
4804 {
4805 char *snap1name;
4806 char *clone1name;
4807 char *snap2name;
4808 char *clone2name;
4809 char *snap3name;
4810 int error;
4811
4812 snap1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4813 clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4814 snap2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4815 clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4816 snap3name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4817
4818 (void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN, "%s@s1_%"PRIu64"",
4819 osname, id);
4820 (void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN, "%s/c1_%"PRIu64"",
4821 osname, id);
4822 (void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN, "%s@s2_%"PRIu64"",
4823 clone1name, id);
4824 (void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN, "%s/c2_%"PRIu64"",
4825 osname, id);
4826 (void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN, "%s@s3_%"PRIu64"",
4827 clone1name, id);
4828
4829 error = dsl_destroy_head(clone2name);
4830 if (error && error != ENOENT)
4831 fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clone2name, error);
4832 error = dsl_destroy_snapshot(snap3name, B_FALSE);
4833 if (error && error != ENOENT)
4834 fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
4835 snap3name, error);
4836 error = dsl_destroy_snapshot(snap2name, B_FALSE);
4837 if (error && error != ENOENT)
4838 fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
4839 snap2name, error);
4840 error = dsl_destroy_head(clone1name);
4841 if (error && error != ENOENT)
4842 fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clone1name, error);
4843 error = dsl_destroy_snapshot(snap1name, B_FALSE);
4844 if (error && error != ENOENT)
4845 fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
4846 snap1name, error);
4847
4848 umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
4849 umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
4850 umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
4851 umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
4852 umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
4853 }
4854
4855 /*
4856 * Verify dsl_dataset_promote handles EBUSY
4857 */
4858 void
4859 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
4860 {
4861 objset_t *os;
4862 char *snap1name;
4863 char *clone1name;
4864 char *snap2name;
4865 char *clone2name;
4866 char *snap3name;
4867 char *osname = zd->zd_name;
4868 int error;
4869
4870 snap1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4871 clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4872 snap2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4873 clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4874 snap3name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4875
4876 (void) pthread_rwlock_rdlock(&ztest_name_lock);
4877
4878 ztest_dsl_dataset_cleanup(osname, id);
4879
4880 (void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN, "%s@s1_%"PRIu64"",
4881 osname, id);
4882 (void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN, "%s/c1_%"PRIu64"",
4883 osname, id);
4884 (void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN, "%s@s2_%"PRIu64"",
4885 clone1name, id);
4886 (void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN, "%s/c2_%"PRIu64"",
4887 osname, id);
4888 (void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN, "%s@s3_%"PRIu64"",
4889 clone1name, id);
4890
4891 error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1);
4892 if (error && error != EEXIST) {
4893 if (error == ENOSPC) {
4894 ztest_record_enospc(FTAG);
4895 goto out;
4896 }
4897 fatal(B_FALSE, "dmu_take_snapshot(%s) = %d", snap1name, error);
4898 }
4899
4900 error = dmu_objset_clone(clone1name, snap1name);
4901 if (error) {
4902 if (error == ENOSPC) {
4903 ztest_record_enospc(FTAG);
4904 goto out;
4905 }
4906 fatal(B_FALSE, "dmu_objset_create(%s) = %d", clone1name, error);
4907 }
4908
4909 error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1);
4910 if (error && error != EEXIST) {
4911 if (error == ENOSPC) {
4912 ztest_record_enospc(FTAG);
4913 goto out;
4914 }
4915 fatal(B_FALSE, "dmu_open_snapshot(%s) = %d", snap2name, error);
4916 }
4917
4918 error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1);
4919 if (error && error != EEXIST) {
4920 if (error == ENOSPC) {
4921 ztest_record_enospc(FTAG);
4922 goto out;
4923 }
4924 fatal(B_FALSE, "dmu_open_snapshot(%s) = %d", snap3name, error);
4925 }
4926
4927 error = dmu_objset_clone(clone2name, snap3name);
4928 if (error) {
4929 if (error == ENOSPC) {
4930 ztest_record_enospc(FTAG);
4931 goto out;
4932 }
4933 fatal(B_FALSE, "dmu_objset_create(%s) = %d", clone2name, error);
4934 }
4935
4936 error = ztest_dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, B_TRUE,
4937 FTAG, &os);
4938 if (error)
4939 fatal(B_FALSE, "dmu_objset_own(%s) = %d", snap2name, error);
4940 error = dsl_dataset_promote(clone2name, NULL);
4941 if (error == ENOSPC) {
4942 dmu_objset_disown(os, B_TRUE, FTAG);
4943 ztest_record_enospc(FTAG);
4944 goto out;
4945 }
4946 if (error != EBUSY)
4947 fatal(B_FALSE, "dsl_dataset_promote(%s), %d, not EBUSY",
4948 clone2name, error);
4949 dmu_objset_disown(os, B_TRUE, FTAG);
4950
4951 out:
4952 ztest_dsl_dataset_cleanup(osname, id);
4953
4954 (void) pthread_rwlock_unlock(&ztest_name_lock);
4955
4956 umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
4957 umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
4958 umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
4959 umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
4960 umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
4961 }
4962
4963 #undef OD_ARRAY_SIZE
4964 #define OD_ARRAY_SIZE 4
4965
4966 /*
4967 * Verify that dmu_object_{alloc,free} work as expected.
4968 */
4969 void
4970 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
4971 {
4972 ztest_od_t *od;
4973 int batchsize;
4974 int size;
4975 int b;
4976
4977 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
4978 od = umem_alloc(size, UMEM_NOFAIL);
4979 batchsize = OD_ARRAY_SIZE;
4980
4981 for (b = 0; b < batchsize; b++)
4982 ztest_od_init(od + b, id, FTAG, b, DMU_OT_UINT64_OTHER,
4983 0, 0, 0);
4984
4985 /*
4986 * Destroy the previous batch of objects, create a new batch,
4987 * and do some I/O on the new objects.
4988 */
4989 if (ztest_object_init(zd, od, size, B_TRUE) != 0) {
4990 zd->zd_od = NULL;
4991 umem_free(od, size);
4992 return;
4993 }
4994
4995 while (ztest_random(4 * batchsize) != 0)
4996 ztest_io(zd, od[ztest_random(batchsize)].od_object,
4997 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4998
4999 umem_free(od, size);
5000 }
5001
5002 /*
5003 * Rewind the global allocator to verify object allocation backfilling.
5004 */
5005 void
5006 ztest_dmu_object_next_chunk(ztest_ds_t *zd, uint64_t id)
5007 {
5008 (void) id;
5009 objset_t *os = zd->zd_os;
5010 uint_t dnodes_per_chunk = 1 << dmu_object_alloc_chunk_shift;
5011 uint64_t object;
5012
5013 /*
5014 * Rewind the global allocator randomly back to a lower object number
5015 * to force backfilling and reclamation of recently freed dnodes.
5016 */
5017 mutex_enter(&os->os_obj_lock);
5018 object = ztest_random(os->os_obj_next_chunk);
5019 os->os_obj_next_chunk = P2ALIGN(object, dnodes_per_chunk);
5020 mutex_exit(&os->os_obj_lock);
5021 }
5022
5023 #undef OD_ARRAY_SIZE
5024 #define OD_ARRAY_SIZE 2
5025
5026 /*
5027 * Verify that dmu_{read,write} work as expected.
5028 */
5029 void
5030 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
5031 {
5032 int size;
5033 ztest_od_t *od;
5034
5035 objset_t *os = zd->zd_os;
5036 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
5037 od = umem_alloc(size, UMEM_NOFAIL);
5038 dmu_tx_t *tx;
5039 int freeit, error;
5040 uint64_t i, n, s, txg;
5041 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
5042 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
5043 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
5044 uint64_t regions = 997;
5045 uint64_t stride = 123456789ULL;
5046 uint64_t width = 40;
5047 int free_percent = 5;
5048
5049 /*
5050 * This test uses two objects, packobj and bigobj, that are always
5051 * updated together (i.e. in the same tx) so that their contents are
5052 * in sync and can be compared. Their contents relate to each other
5053 * in a simple way: packobj is a dense array of 'bufwad' structures,
5054 * while bigobj is a sparse array of the same bufwads. Specifically,
5055 * for any index n, there are three bufwads that should be identical:
5056 *
5057 * packobj, at offset n * sizeof (bufwad_t)
5058 * bigobj, at the head of the nth chunk
5059 * bigobj, at the tail of the nth chunk
5060 *
5061 * The chunk size is arbitrary. It doesn't have to be a power of two,
5062 * and it doesn't have any relation to the object blocksize.
5063 * The only requirement is that it can hold at least two bufwads.
5064 *
5065 * Normally, we write the bufwad to each of these locations.
5066 * However, free_percent of the time we instead write zeroes to
5067 * packobj and perform a dmu_free_range() on bigobj. By comparing
5068 * bigobj to packobj, we can verify that the DMU is correctly
5069 * tracking which parts of an object are allocated and free,
5070 * and that the contents of the allocated blocks are correct.
5071 */
5072
5073 /*
5074 * Read the directory info. If it's the first time, set things up.
5075 */
5076 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, chunksize);
5077 ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
5078 chunksize);
5079
5080 if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
5081 umem_free(od, size);
5082 return;
5083 }
5084
5085 bigobj = od[0].od_object;
5086 packobj = od[1].od_object;
5087 chunksize = od[0].od_gen;
5088 ASSERT3U(chunksize, ==, od[1].od_gen);
5089
5090 /*
5091 * Prefetch a random chunk of the big object.
5092 * Our aim here is to get some async reads in flight
5093 * for blocks that we may free below; the DMU should
5094 * handle this race correctly.
5095 */
5096 n = ztest_random(regions) * stride + ztest_random(width);
5097 s = 1 + ztest_random(2 * width - 1);
5098 dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize,
5099 ZIO_PRIORITY_SYNC_READ);
5100
5101 /*
5102 * Pick a random index and compute the offsets into packobj and bigobj.
5103 */
5104 n = ztest_random(regions) * stride + ztest_random(width);
5105 s = 1 + ztest_random(width - 1);
5106
5107 packoff = n * sizeof (bufwad_t);
5108 packsize = s * sizeof (bufwad_t);
5109
5110 bigoff = n * chunksize;
5111 bigsize = s * chunksize;
5112
5113 packbuf = umem_alloc(packsize, UMEM_NOFAIL);
5114 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
5115
5116 /*
5117 * free_percent of the time, free a range of bigobj rather than
5118 * overwriting it.
5119 */
5120 freeit = (ztest_random(100) < free_percent);
5121
5122 /*
5123 * Read the current contents of our objects.
5124 */
5125 error = dmu_read(os, packobj, packoff, packsize, packbuf,
5126 DMU_READ_PREFETCH);
5127 ASSERT0(error);
5128 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
5129 DMU_READ_PREFETCH);
5130 ASSERT0(error);
5131
5132 /*
5133 * Get a tx for the mods to both packobj and bigobj.
5134 */
5135 tx = dmu_tx_create(os);
5136
5137 dmu_tx_hold_write(tx, packobj, packoff, packsize);
5138
5139 if (freeit)
5140 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
5141 else
5142 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
5143
5144 /* This accounts for setting the checksum/compression. */
5145 dmu_tx_hold_bonus(tx, bigobj);
5146
5147 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5148 if (txg == 0) {
5149 umem_free(packbuf, packsize);
5150 umem_free(bigbuf, bigsize);
5151 umem_free(od, size);
5152 return;
5153 }
5154
5155 enum zio_checksum cksum;
5156 do {
5157 cksum = (enum zio_checksum)
5158 ztest_random_dsl_prop(ZFS_PROP_CHECKSUM);
5159 } while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS);
5160 dmu_object_set_checksum(os, bigobj, cksum, tx);
5161
5162 enum zio_compress comp;
5163 do {
5164 comp = (enum zio_compress)
5165 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION);
5166 } while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS);
5167 dmu_object_set_compress(os, bigobj, comp, tx);
5168
5169 /*
5170 * For each index from n to n + s, verify that the existing bufwad
5171 * in packobj matches the bufwads at the head and tail of the
5172 * corresponding chunk in bigobj. Then update all three bufwads
5173 * with the new values we want to write out.
5174 */
5175 for (i = 0; i < s; i++) {
5176 /* LINTED */
5177 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
5178 /* LINTED */
5179 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
5180 /* LINTED */
5181 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
5182
5183 ASSERT3U((uintptr_t)bigH - (uintptr_t)bigbuf, <, bigsize);
5184 ASSERT3U((uintptr_t)bigT - (uintptr_t)bigbuf, <, bigsize);
5185
5186 if (pack->bw_txg > txg)
5187 fatal(B_FALSE,
5188 "future leak: got %"PRIx64", open txg is %"PRIx64"",
5189 pack->bw_txg, txg);
5190
5191 if (pack->bw_data != 0 && pack->bw_index != n + i)
5192 fatal(B_FALSE, "wrong index: "
5193 "got %"PRIx64", wanted %"PRIx64"+%"PRIx64"",
5194 pack->bw_index, n, i);
5195
5196 if (memcmp(pack, bigH, sizeof (bufwad_t)) != 0)
5197 fatal(B_FALSE, "pack/bigH mismatch in %p/%p",
5198 pack, bigH);
5199
5200 if (memcmp(pack, bigT, sizeof (bufwad_t)) != 0)
5201 fatal(B_FALSE, "pack/bigT mismatch in %p/%p",
5202 pack, bigT);
5203
5204 if (freeit) {
5205 memset(pack, 0, sizeof (bufwad_t));
5206 } else {
5207 pack->bw_index = n + i;
5208 pack->bw_txg = txg;
5209 pack->bw_data = 1 + ztest_random(-2ULL);
5210 }
5211 *bigH = *pack;
5212 *bigT = *pack;
5213 }
5214
5215 /*
5216 * We've verified all the old bufwads, and made new ones.
5217 * Now write them out.
5218 */
5219 dmu_write(os, packobj, packoff, packsize, packbuf, tx);
5220
5221 if (freeit) {
5222 if (ztest_opts.zo_verbose >= 7) {
5223 (void) printf("freeing offset %"PRIx64" size %"PRIx64""
5224 " txg %"PRIx64"\n",
5225 bigoff, bigsize, txg);
5226 }
5227 VERIFY0(dmu_free_range(os, bigobj, bigoff, bigsize, tx));
5228 } else {
5229 if (ztest_opts.zo_verbose >= 7) {
5230 (void) printf("writing offset %"PRIx64" size %"PRIx64""
5231 " txg %"PRIx64"\n",
5232 bigoff, bigsize, txg);
5233 }
5234 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);
5235 }
5236
5237 dmu_tx_commit(tx);
5238
5239 /*
5240 * Sanity check the stuff we just wrote.
5241 */
5242 {
5243 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
5244 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
5245
5246 VERIFY0(dmu_read(os, packobj, packoff,
5247 packsize, packcheck, DMU_READ_PREFETCH));
5248 VERIFY0(dmu_read(os, bigobj, bigoff,
5249 bigsize, bigcheck, DMU_READ_PREFETCH));
5250
5251 ASSERT0(memcmp(packbuf, packcheck, packsize));
5252 ASSERT0(memcmp(bigbuf, bigcheck, bigsize));
5253
5254 umem_free(packcheck, packsize);
5255 umem_free(bigcheck, bigsize);
5256 }
5257
5258 umem_free(packbuf, packsize);
5259 umem_free(bigbuf, bigsize);
5260 umem_free(od, size);
5261 }
5262
5263 static void
5264 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
5265 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
5266 {
5267 uint64_t i;
5268 bufwad_t *pack;
5269 bufwad_t *bigH;
5270 bufwad_t *bigT;
5271
5272 /*
5273 * For each index from n to n + s, verify that the existing bufwad
5274 * in packobj matches the bufwads at the head and tail of the
5275 * corresponding chunk in bigobj. Then update all three bufwads
5276 * with the new values we want to write out.
5277 */
5278 for (i = 0; i < s; i++) {
5279 /* LINTED */
5280 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
5281 /* LINTED */
5282 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
5283 /* LINTED */
5284 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
5285
5286 ASSERT3U((uintptr_t)bigH - (uintptr_t)bigbuf, <, bigsize);
5287 ASSERT3U((uintptr_t)bigT - (uintptr_t)bigbuf, <, bigsize);
5288
5289 if (pack->bw_txg > txg)
5290 fatal(B_FALSE,
5291 "future leak: got %"PRIx64", open txg is %"PRIx64"",
5292 pack->bw_txg, txg);
5293
5294 if (pack->bw_data != 0 && pack->bw_index != n + i)
5295 fatal(B_FALSE, "wrong index: "
5296 "got %"PRIx64", wanted %"PRIx64"+%"PRIx64"",
5297 pack->bw_index, n, i);
5298
5299 if (memcmp(pack, bigH, sizeof (bufwad_t)) != 0)
5300 fatal(B_FALSE, "pack/bigH mismatch in %p/%p",
5301 pack, bigH);
5302
5303 if (memcmp(pack, bigT, sizeof (bufwad_t)) != 0)
5304 fatal(B_FALSE, "pack/bigT mismatch in %p/%p",
5305 pack, bigT);
5306
5307 pack->bw_index = n + i;
5308 pack->bw_txg = txg;
5309 pack->bw_data = 1 + ztest_random(-2ULL);
5310
5311 *bigH = *pack;
5312 *bigT = *pack;
5313 }
5314 }
5315
5316 #undef OD_ARRAY_SIZE
5317 #define OD_ARRAY_SIZE 2
5318
5319 void
5320 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
5321 {
5322 objset_t *os = zd->zd_os;
5323 ztest_od_t *od;
5324 dmu_tx_t *tx;
5325 uint64_t i;
5326 int error;
5327 int size;
5328 uint64_t n, s, txg;
5329 bufwad_t *packbuf, *bigbuf;
5330 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
5331 uint64_t blocksize = ztest_random_blocksize();
5332 uint64_t chunksize = blocksize;
5333 uint64_t regions = 997;
5334 uint64_t stride = 123456789ULL;
5335 uint64_t width = 9;
5336 dmu_buf_t *bonus_db;
5337 arc_buf_t **bigbuf_arcbufs;
5338 dmu_object_info_t doi;
5339
5340 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
5341 od = umem_alloc(size, UMEM_NOFAIL);
5342
5343 /*
5344 * This test uses two objects, packobj and bigobj, that are always
5345 * updated together (i.e. in the same tx) so that their contents are
5346 * in sync and can be compared. Their contents relate to each other
5347 * in a simple way: packobj is a dense array of 'bufwad' structures,
5348 * while bigobj is a sparse array of the same bufwads. Specifically,
5349 * for any index n, there are three bufwads that should be identical:
5350 *
5351 * packobj, at offset n * sizeof (bufwad_t)
5352 * bigobj, at the head of the nth chunk
5353 * bigobj, at the tail of the nth chunk
5354 *
5355 * The chunk size is set equal to bigobj block size so that
5356 * dmu_assign_arcbuf_by_dbuf() can be tested for object updates.
5357 */
5358
5359 /*
5360 * Read the directory info. If it's the first time, set things up.
5361 */
5362 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
5363 ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
5364 chunksize);
5365
5366
5367 if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
5368 umem_free(od, size);
5369 return;
5370 }
5371
5372 bigobj = od[0].od_object;
5373 packobj = od[1].od_object;
5374 blocksize = od[0].od_blocksize;
5375 chunksize = blocksize;
5376 ASSERT3U(chunksize, ==, od[1].od_gen);
5377
5378 VERIFY0(dmu_object_info(os, bigobj, &doi));
5379 VERIFY(ISP2(doi.doi_data_block_size));
5380 VERIFY3U(chunksize, ==, doi.doi_data_block_size);
5381 VERIFY3U(chunksize, >=, 2 * sizeof (bufwad_t));
5382
5383 /*
5384 * Pick a random index and compute the offsets into packobj and bigobj.
5385 */
5386 n = ztest_random(regions) * stride + ztest_random(width);
5387 s = 1 + ztest_random(width - 1);
5388
5389 packoff = n * sizeof (bufwad_t);
5390 packsize = s * sizeof (bufwad_t);
5391
5392 bigoff = n * chunksize;
5393 bigsize = s * chunksize;
5394
5395 packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
5396 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
5397
5398 VERIFY0(dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
5399
5400 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
5401
5402 /*
5403 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
5404 * Iteration 1 test zcopy to already referenced dbufs.
5405 * Iteration 2 test zcopy to dirty dbuf in the same txg.
5406 * Iteration 3 test zcopy to dbuf dirty in previous txg.
5407 * Iteration 4 test zcopy when dbuf is no longer dirty.
5408 * Iteration 5 test zcopy when it can't be done.
5409 * Iteration 6 one more zcopy write.
5410 */
5411 for (i = 0; i < 7; i++) {
5412 uint64_t j;
5413 uint64_t off;
5414
5415 /*
5416 * In iteration 5 (i == 5) use arcbufs
5417 * that don't match bigobj blksz to test
5418 * dmu_assign_arcbuf_by_dbuf() when it can't directly
5419 * assign an arcbuf to a dbuf.
5420 */
5421 for (j = 0; j < s; j++) {
5422 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5423 bigbuf_arcbufs[j] =
5424 dmu_request_arcbuf(bonus_db, chunksize);
5425 } else {
5426 bigbuf_arcbufs[2 * j] =
5427 dmu_request_arcbuf(bonus_db, chunksize / 2);
5428 bigbuf_arcbufs[2 * j + 1] =
5429 dmu_request_arcbuf(bonus_db, chunksize / 2);
5430 }
5431 }
5432
5433 /*
5434 * Get a tx for the mods to both packobj and bigobj.
5435 */
5436 tx = dmu_tx_create(os);
5437
5438 dmu_tx_hold_write(tx, packobj, packoff, packsize);
5439 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
5440
5441 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5442 if (txg == 0) {
5443 umem_free(packbuf, packsize);
5444 umem_free(bigbuf, bigsize);
5445 for (j = 0; j < s; j++) {
5446 if (i != 5 ||
5447 chunksize < (SPA_MINBLOCKSIZE * 2)) {
5448 dmu_return_arcbuf(bigbuf_arcbufs[j]);
5449 } else {
5450 dmu_return_arcbuf(
5451 bigbuf_arcbufs[2 * j]);
5452 dmu_return_arcbuf(
5453 bigbuf_arcbufs[2 * j + 1]);
5454 }
5455 }
5456 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
5457 umem_free(od, size);
5458 dmu_buf_rele(bonus_db, FTAG);
5459 return;
5460 }
5461
5462 /*
5463 * 50% of the time don't read objects in the 1st iteration to
5464 * test dmu_assign_arcbuf_by_dbuf() for the case when there are
5465 * no existing dbufs for the specified offsets.
5466 */
5467 if (i != 0 || ztest_random(2) != 0) {
5468 error = dmu_read(os, packobj, packoff,
5469 packsize, packbuf, DMU_READ_PREFETCH);
5470 ASSERT0(error);
5471 error = dmu_read(os, bigobj, bigoff, bigsize,
5472 bigbuf, DMU_READ_PREFETCH);
5473 ASSERT0(error);
5474 }
5475 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
5476 n, chunksize, txg);
5477
5478 /*
5479 * We've verified all the old bufwads, and made new ones.
5480 * Now write them out.
5481 */
5482 dmu_write(os, packobj, packoff, packsize, packbuf, tx);
5483 if (ztest_opts.zo_verbose >= 7) {
5484 (void) printf("writing offset %"PRIx64" size %"PRIx64""
5485 " txg %"PRIx64"\n",
5486 bigoff, bigsize, txg);
5487 }
5488 for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
5489 dmu_buf_t *dbt;
5490 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5491 memcpy(bigbuf_arcbufs[j]->b_data,
5492 (caddr_t)bigbuf + (off - bigoff),
5493 chunksize);
5494 } else {
5495 memcpy(bigbuf_arcbufs[2 * j]->b_data,
5496 (caddr_t)bigbuf + (off - bigoff),
5497 chunksize / 2);
5498 memcpy(bigbuf_arcbufs[2 * j + 1]->b_data,
5499 (caddr_t)bigbuf + (off - bigoff) +
5500 chunksize / 2,
5501 chunksize / 2);
5502 }
5503
5504 if (i == 1) {
5505 VERIFY(dmu_buf_hold(os, bigobj, off,
5506 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0);
5507 }
5508 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5509 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5510 off, bigbuf_arcbufs[j], tx));
5511 } else {
5512 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5513 off, bigbuf_arcbufs[2 * j], tx));
5514 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5515 off + chunksize / 2,
5516 bigbuf_arcbufs[2 * j + 1], tx));
5517 }
5518 if (i == 1) {
5519 dmu_buf_rele(dbt, FTAG);
5520 }
5521 }
5522 dmu_tx_commit(tx);
5523
5524 /*
5525 * Sanity check the stuff we just wrote.
5526 */
5527 {
5528 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
5529 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
5530
5531 VERIFY0(dmu_read(os, packobj, packoff,
5532 packsize, packcheck, DMU_READ_PREFETCH));
5533 VERIFY0(dmu_read(os, bigobj, bigoff,
5534 bigsize, bigcheck, DMU_READ_PREFETCH));
5535
5536 ASSERT0(memcmp(packbuf, packcheck, packsize));
5537 ASSERT0(memcmp(bigbuf, bigcheck, bigsize));
5538
5539 umem_free(packcheck, packsize);
5540 umem_free(bigcheck, bigsize);
5541 }
5542 if (i == 2) {
5543 txg_wait_open(dmu_objset_pool(os), 0, B_TRUE);
5544 } else if (i == 3) {
5545 txg_wait_synced(dmu_objset_pool(os), 0);
5546 }
5547 }
5548
5549 dmu_buf_rele(bonus_db, FTAG);
5550 umem_free(packbuf, packsize);
5551 umem_free(bigbuf, bigsize);
5552 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
5553 umem_free(od, size);
5554 }
5555
5556 void
5557 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
5558 {
5559 (void) id;
5560 ztest_od_t *od;
5561
5562 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5563 uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
5564 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5565
5566 /*
5567 * Have multiple threads write to large offsets in an object
5568 * to verify that parallel writes to an object -- even to the
5569 * same blocks within the object -- doesn't cause any trouble.
5570 */
5571 ztest_od_init(od, ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
5572
5573 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0)
5574 return;
5575
5576 while (ztest_random(10) != 0)
5577 ztest_io(zd, od->od_object, offset);
5578
5579 umem_free(od, sizeof (ztest_od_t));
5580 }
5581
5582 void
5583 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
5584 {
5585 ztest_od_t *od;
5586 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
5587 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5588 uint64_t count = ztest_random(20) + 1;
5589 uint64_t blocksize = ztest_random_blocksize();
5590 void *data;
5591
5592 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5593
5594 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
5595
5596 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5597 !ztest_random(2)) != 0) {
5598 umem_free(od, sizeof (ztest_od_t));
5599 return;
5600 }
5601
5602 if (ztest_truncate(zd, od->od_object, offset, count * blocksize) != 0) {
5603 umem_free(od, sizeof (ztest_od_t));
5604 return;
5605 }
5606
5607 ztest_prealloc(zd, od->od_object, offset, count * blocksize);
5608
5609 data = umem_zalloc(blocksize, UMEM_NOFAIL);
5610
5611 while (ztest_random(count) != 0) {
5612 uint64_t randoff = offset + (ztest_random(count) * blocksize);
5613 if (ztest_write(zd, od->od_object, randoff, blocksize,
5614 data) != 0)
5615 break;
5616 while (ztest_random(4) != 0)
5617 ztest_io(zd, od->od_object, randoff);
5618 }
5619
5620 umem_free(data, blocksize);
5621 umem_free(od, sizeof (ztest_od_t));
5622 }
5623
5624 /*
5625 * Verify that zap_{create,destroy,add,remove,update} work as expected.
5626 */
5627 #define ZTEST_ZAP_MIN_INTS 1
5628 #define ZTEST_ZAP_MAX_INTS 4
5629 #define ZTEST_ZAP_MAX_PROPS 1000
5630
5631 void
5632 ztest_zap(ztest_ds_t *zd, uint64_t id)
5633 {
5634 objset_t *os = zd->zd_os;
5635 ztest_od_t *od;
5636 uint64_t object;
5637 uint64_t txg, last_txg;
5638 uint64_t value[ZTEST_ZAP_MAX_INTS];
5639 uint64_t zl_ints, zl_intsize, prop;
5640 int i, ints;
5641 dmu_tx_t *tx;
5642 char propname[100], txgname[100];
5643 int error;
5644 const char *const hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
5645
5646 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5647 ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
5648
5649 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5650 !ztest_random(2)) != 0)
5651 goto out;
5652
5653 object = od->od_object;
5654
5655 /*
5656 * Generate a known hash collision, and verify that
5657 * we can lookup and remove both entries.
5658 */
5659 tx = dmu_tx_create(os);
5660 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5661 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5662 if (txg == 0)
5663 goto out;
5664 for (i = 0; i < 2; i++) {
5665 value[i] = i;
5666 VERIFY0(zap_add(os, object, hc[i], sizeof (uint64_t),
5667 1, &value[i], tx));
5668 }
5669 for (i = 0; i < 2; i++) {
5670 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
5671 sizeof (uint64_t), 1, &value[i], tx));
5672 VERIFY0(
5673 zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
5674 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5675 ASSERT3U(zl_ints, ==, 1);
5676 }
5677 for (i = 0; i < 2; i++) {
5678 VERIFY0(zap_remove(os, object, hc[i], tx));
5679 }
5680 dmu_tx_commit(tx);
5681
5682 /*
5683 * Generate a bunch of random entries.
5684 */
5685 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
5686
5687 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
5688 (void) sprintf(propname, "prop_%"PRIu64"", prop);
5689 (void) sprintf(txgname, "txg_%"PRIu64"", prop);
5690 memset(value, 0, sizeof (value));
5691 last_txg = 0;
5692
5693 /*
5694 * If these zap entries already exist, validate their contents.
5695 */
5696 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
5697 if (error == 0) {
5698 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5699 ASSERT3U(zl_ints, ==, 1);
5700
5701 VERIFY0(zap_lookup(os, object, txgname, zl_intsize,
5702 zl_ints, &last_txg));
5703
5704 VERIFY0(zap_length(os, object, propname, &zl_intsize,
5705 &zl_ints));
5706
5707 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5708 ASSERT3U(zl_ints, ==, ints);
5709
5710 VERIFY0(zap_lookup(os, object, propname, zl_intsize,
5711 zl_ints, value));
5712
5713 for (i = 0; i < ints; i++) {
5714 ASSERT3U(value[i], ==, last_txg + object + i);
5715 }
5716 } else {
5717 ASSERT3U(error, ==, ENOENT);
5718 }
5719
5720 /*
5721 * Atomically update two entries in our zap object.
5722 * The first is named txg_%llu, and contains the txg
5723 * in which the property was last updated. The second
5724 * is named prop_%llu, and the nth element of its value
5725 * should be txg + object + n.
5726 */
5727 tx = dmu_tx_create(os);
5728 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5729 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5730 if (txg == 0)
5731 goto out;
5732
5733 if (last_txg > txg)
5734 fatal(B_FALSE, "zap future leak: old %"PRIu64" new %"PRIu64"",
5735 last_txg, txg);
5736
5737 for (i = 0; i < ints; i++)
5738 value[i] = txg + object + i;
5739
5740 VERIFY0(zap_update(os, object, txgname, sizeof (uint64_t),
5741 1, &txg, tx));
5742 VERIFY0(zap_update(os, object, propname, sizeof (uint64_t),
5743 ints, value, tx));
5744
5745 dmu_tx_commit(tx);
5746
5747 /*
5748 * Remove a random pair of entries.
5749 */
5750 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
5751 (void) sprintf(propname, "prop_%"PRIu64"", prop);
5752 (void) sprintf(txgname, "txg_%"PRIu64"", prop);
5753
5754 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
5755
5756 if (error == ENOENT)
5757 goto out;
5758
5759 ASSERT0(error);
5760
5761 tx = dmu_tx_create(os);
5762 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5763 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5764 if (txg == 0)
5765 goto out;
5766 VERIFY0(zap_remove(os, object, txgname, tx));
5767 VERIFY0(zap_remove(os, object, propname, tx));
5768 dmu_tx_commit(tx);
5769 out:
5770 umem_free(od, sizeof (ztest_od_t));
5771 }
5772
5773 /*
5774 * Test case to test the upgrading of a microzap to fatzap.
5775 */
5776 void
5777 ztest_fzap(ztest_ds_t *zd, uint64_t id)
5778 {
5779 objset_t *os = zd->zd_os;
5780 ztest_od_t *od;
5781 uint64_t object, txg, value;
5782
5783 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5784 ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
5785
5786 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5787 !ztest_random(2)) != 0)
5788 goto out;
5789 object = od->od_object;
5790
5791 /*
5792 * Add entries to this ZAP and make sure it spills over
5793 * and gets upgraded to a fatzap. Also, since we are adding
5794 * 2050 entries we should see ptrtbl growth and leaf-block split.
5795 */
5796 for (value = 0; value < 2050; value++) {
5797 char name[ZFS_MAX_DATASET_NAME_LEN];
5798 dmu_tx_t *tx;
5799 int error;
5800
5801 (void) snprintf(name, sizeof (name), "fzap-%"PRIu64"-%"PRIu64"",
5802 id, value);
5803
5804 tx = dmu_tx_create(os);
5805 dmu_tx_hold_zap(tx, object, B_TRUE, name);
5806 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5807 if (txg == 0)
5808 goto out;
5809 error = zap_add(os, object, name, sizeof (uint64_t), 1,
5810 &value, tx);
5811 ASSERT(error == 0 || error == EEXIST);
5812 dmu_tx_commit(tx);
5813 }
5814 out:
5815 umem_free(od, sizeof (ztest_od_t));
5816 }
5817
5818 void
5819 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
5820 {
5821 (void) id;
5822 objset_t *os = zd->zd_os;
5823 ztest_od_t *od;
5824 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
5825 dmu_tx_t *tx;
5826 int i, namelen, error;
5827 int micro = ztest_random(2);
5828 char name[20], string_value[20];
5829 void *data;
5830
5831 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5832 ztest_od_init(od, ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0, 0);
5833
5834 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
5835 umem_free(od, sizeof (ztest_od_t));
5836 return;
5837 }
5838
5839 object = od->od_object;
5840
5841 /*
5842 * Generate a random name of the form 'xxx.....' where each
5843 * x is a random printable character and the dots are dots.
5844 * There are 94 such characters, and the name length goes from
5845 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
5846 */
5847 namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
5848
5849 for (i = 0; i < 3; i++)
5850 name[i] = '!' + ztest_random('~' - '!' + 1);
5851 for (; i < namelen - 1; i++)
5852 name[i] = '.';
5853 name[i] = '\0';
5854
5855 if ((namelen & 1) || micro) {
5856 wsize = sizeof (txg);
5857 wc = 1;
5858 data = &txg;
5859 } else {
5860 wsize = 1;
5861 wc = namelen;
5862 data = string_value;
5863 }
5864
5865 count = -1ULL;
5866 VERIFY0(zap_count(os, object, &count));
5867 ASSERT3S(count, !=, -1ULL);
5868
5869 /*
5870 * Select an operation: length, lookup, add, update, remove.
5871 */
5872 i = ztest_random(5);
5873
5874 if (i >= 2) {
5875 tx = dmu_tx_create(os);
5876 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5877 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5878 if (txg == 0) {
5879 umem_free(od, sizeof (ztest_od_t));
5880 return;
5881 }
5882 memcpy(string_value, name, namelen);
5883 } else {
5884 tx = NULL;
5885 txg = 0;
5886 memset(string_value, 0, namelen);
5887 }
5888
5889 switch (i) {
5890
5891 case 0:
5892 error = zap_length(os, object, name, &zl_wsize, &zl_wc);
5893 if (error == 0) {
5894 ASSERT3U(wsize, ==, zl_wsize);
5895 ASSERT3U(wc, ==, zl_wc);
5896 } else {
5897 ASSERT3U(error, ==, ENOENT);
5898 }
5899 break;
5900
5901 case 1:
5902 error = zap_lookup(os, object, name, wsize, wc, data);
5903 if (error == 0) {
5904 if (data == string_value &&
5905 memcmp(name, data, namelen) != 0)
5906 fatal(B_FALSE, "name '%s' != val '%s' len %d",
5907 name, (char *)data, namelen);
5908 } else {
5909 ASSERT3U(error, ==, ENOENT);
5910 }
5911 break;
5912
5913 case 2:
5914 error = zap_add(os, object, name, wsize, wc, data, tx);
5915 ASSERT(error == 0 || error == EEXIST);
5916 break;
5917
5918 case 3:
5919 VERIFY0(zap_update(os, object, name, wsize, wc, data, tx));
5920 break;
5921
5922 case 4:
5923 error = zap_remove(os, object, name, tx);
5924 ASSERT(error == 0 || error == ENOENT);
5925 break;
5926 }
5927
5928 if (tx != NULL)
5929 dmu_tx_commit(tx);
5930
5931 umem_free(od, sizeof (ztest_od_t));
5932 }
5933
5934 /*
5935 * Commit callback data.
5936 */
5937 typedef struct ztest_cb_data {
5938 list_node_t zcd_node;
5939 uint64_t zcd_txg;
5940 int zcd_expected_err;
5941 boolean_t zcd_added;
5942 boolean_t zcd_called;
5943 spa_t *zcd_spa;
5944 } ztest_cb_data_t;
5945
5946 /* This is the actual commit callback function */
5947 static void
5948 ztest_commit_callback(void *arg, int error)
5949 {
5950 ztest_cb_data_t *data = arg;
5951 uint64_t synced_txg;
5952
5953 VERIFY3P(data, !=, NULL);
5954 VERIFY3S(data->zcd_expected_err, ==, error);
5955 VERIFY(!data->zcd_called);
5956
5957 synced_txg = spa_last_synced_txg(data->zcd_spa);
5958 if (data->zcd_txg > synced_txg)
5959 fatal(B_FALSE,
5960 "commit callback of txg %"PRIu64" called prematurely, "
5961 "last synced txg = %"PRIu64"\n",
5962 data->zcd_txg, synced_txg);
5963
5964 data->zcd_called = B_TRUE;
5965
5966 if (error == ECANCELED) {
5967 ASSERT0(data->zcd_txg);
5968 ASSERT(!data->zcd_added);
5969
5970 /*
5971 * The private callback data should be destroyed here, but
5972 * since we are going to check the zcd_called field after
5973 * dmu_tx_abort(), we will destroy it there.
5974 */
5975 return;
5976 }
5977
5978 ASSERT(data->zcd_added);
5979 ASSERT3U(data->zcd_txg, !=, 0);
5980
5981 (void) mutex_enter(&zcl.zcl_callbacks_lock);
5982
5983 /* See if this cb was called more quickly */
5984 if ((synced_txg - data->zcd_txg) < zc_min_txg_delay)
5985 zc_min_txg_delay = synced_txg - data->zcd_txg;
5986
5987 /* Remove our callback from the list */
5988 list_remove(&zcl.zcl_callbacks, data);
5989
5990 (void) mutex_exit(&zcl.zcl_callbacks_lock);
5991
5992 umem_free(data, sizeof (ztest_cb_data_t));
5993 }
5994
5995 /* Allocate and initialize callback data structure */
5996 static ztest_cb_data_t *
5997 ztest_create_cb_data(objset_t *os, uint64_t txg)
5998 {
5999 ztest_cb_data_t *cb_data;
6000
6001 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
6002
6003 cb_data->zcd_txg = txg;
6004 cb_data->zcd_spa = dmu_objset_spa(os);
6005 list_link_init(&cb_data->zcd_node);
6006
6007 return (cb_data);
6008 }
6009
6010 /*
6011 * Commit callback test.
6012 */
6013 void
6014 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
6015 {
6016 objset_t *os = zd->zd_os;
6017 ztest_od_t *od;
6018 dmu_tx_t *tx;
6019 ztest_cb_data_t *cb_data[3], *tmp_cb;
6020 uint64_t old_txg, txg;
6021 int i, error = 0;
6022
6023 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
6024 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
6025
6026 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
6027 umem_free(od, sizeof (ztest_od_t));
6028 return;
6029 }
6030
6031 tx = dmu_tx_create(os);
6032
6033 cb_data[0] = ztest_create_cb_data(os, 0);
6034 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
6035
6036 dmu_tx_hold_write(tx, od->od_object, 0, sizeof (uint64_t));
6037
6038 /* Every once in a while, abort the transaction on purpose */
6039 if (ztest_random(100) == 0)
6040 error = -1;
6041
6042 if (!error)
6043 error = dmu_tx_assign(tx, TXG_NOWAIT);
6044
6045 txg = error ? 0 : dmu_tx_get_txg(tx);
6046
6047 cb_data[0]->zcd_txg = txg;
6048 cb_data[1] = ztest_create_cb_data(os, txg);
6049 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
6050
6051 if (error) {
6052 /*
6053 * It's not a strict requirement to call the registered
6054 * callbacks from inside dmu_tx_abort(), but that's what
6055 * it's supposed to happen in the current implementation
6056 * so we will check for that.
6057 */
6058 for (i = 0; i < 2; i++) {
6059 cb_data[i]->zcd_expected_err = ECANCELED;
6060 VERIFY(!cb_data[i]->zcd_called);
6061 }
6062
6063 dmu_tx_abort(tx);
6064
6065 for (i = 0; i < 2; i++) {
6066 VERIFY(cb_data[i]->zcd_called);
6067 umem_free(cb_data[i], sizeof (ztest_cb_data_t));
6068 }
6069
6070 umem_free(od, sizeof (ztest_od_t));
6071 return;
6072 }
6073
6074 cb_data[2] = ztest_create_cb_data(os, txg);
6075 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
6076
6077 /*
6078 * Read existing data to make sure there isn't a future leak.
6079 */
6080 VERIFY0(dmu_read(os, od->od_object, 0, sizeof (uint64_t),
6081 &old_txg, DMU_READ_PREFETCH));
6082
6083 if (old_txg > txg)
6084 fatal(B_FALSE,
6085 "future leak: got %"PRIu64", open txg is %"PRIu64"",
6086 old_txg, txg);
6087
6088 dmu_write(os, od->od_object, 0, sizeof (uint64_t), &txg, tx);
6089
6090 (void) mutex_enter(&zcl.zcl_callbacks_lock);
6091
6092 /*
6093 * Since commit callbacks don't have any ordering requirement and since
6094 * it is theoretically possible for a commit callback to be called
6095 * after an arbitrary amount of time has elapsed since its txg has been
6096 * synced, it is difficult to reliably determine whether a commit
6097 * callback hasn't been called due to high load or due to a flawed
6098 * implementation.
6099 *
6100 * In practice, we will assume that if after a certain number of txgs a
6101 * commit callback hasn't been called, then most likely there's an
6102 * implementation bug..
6103 */
6104 tmp_cb = list_head(&zcl.zcl_callbacks);
6105 if (tmp_cb != NULL &&
6106 tmp_cb->zcd_txg + ZTEST_COMMIT_CB_THRESH < txg) {
6107 fatal(B_FALSE,
6108 "Commit callback threshold exceeded, "
6109 "oldest txg: %"PRIu64", open txg: %"PRIu64"\n",
6110 tmp_cb->zcd_txg, txg);
6111 }
6112
6113 /*
6114 * Let's find the place to insert our callbacks.
6115 *
6116 * Even though the list is ordered by txg, it is possible for the
6117 * insertion point to not be the end because our txg may already be
6118 * quiescing at this point and other callbacks in the open txg
6119 * (from other objsets) may have sneaked in.
6120 */
6121 tmp_cb = list_tail(&zcl.zcl_callbacks);
6122 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
6123 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
6124
6125 /* Add the 3 callbacks to the list */
6126 for (i = 0; i < 3; i++) {
6127 if (tmp_cb == NULL)
6128 list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
6129 else
6130 list_insert_after(&zcl.zcl_callbacks, tmp_cb,
6131 cb_data[i]);
6132
6133 cb_data[i]->zcd_added = B_TRUE;
6134 VERIFY(!cb_data[i]->zcd_called);
6135
6136 tmp_cb = cb_data[i];
6137 }
6138
6139 zc_cb_counter += 3;
6140
6141 (void) mutex_exit(&zcl.zcl_callbacks_lock);
6142
6143 dmu_tx_commit(tx);
6144
6145 umem_free(od, sizeof (ztest_od_t));
6146 }
6147
6148 /*
6149 * Visit each object in the dataset. Verify that its properties
6150 * are consistent what was stored in the block tag when it was created,
6151 * and that its unused bonus buffer space has not been overwritten.
6152 */
6153 void
6154 ztest_verify_dnode_bt(ztest_ds_t *zd, uint64_t id)
6155 {
6156 (void) id;
6157 objset_t *os = zd->zd_os;
6158 uint64_t obj;
6159 int err = 0;
6160
6161 for (obj = 0; err == 0; err = dmu_object_next(os, &obj, FALSE, 0)) {
6162 ztest_block_tag_t *bt = NULL;
6163 dmu_object_info_t doi;
6164 dmu_buf_t *db;
6165
6166 ztest_object_lock(zd, obj, ZTRL_READER);
6167 if (dmu_bonus_hold(os, obj, FTAG, &db) != 0) {
6168 ztest_object_unlock(zd, obj);
6169 continue;
6170 }
6171
6172 dmu_object_info_from_db(db, &doi);
6173 if (doi.doi_bonus_size >= sizeof (*bt))
6174 bt = ztest_bt_bonus(db);
6175
6176 if (bt && bt->bt_magic == BT_MAGIC) {
6177 ztest_bt_verify(bt, os, obj, doi.doi_dnodesize,
6178 bt->bt_offset, bt->bt_gen, bt->bt_txg,
6179 bt->bt_crtxg);
6180 ztest_verify_unused_bonus(db, bt, obj, os, bt->bt_gen);
6181 }
6182
6183 dmu_buf_rele(db, FTAG);
6184 ztest_object_unlock(zd, obj);
6185 }
6186 }
6187
6188 void
6189 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
6190 {
6191 (void) id;
6192 zfs_prop_t proplist[] = {
6193 ZFS_PROP_CHECKSUM,
6194 ZFS_PROP_COMPRESSION,
6195 ZFS_PROP_COPIES,
6196 ZFS_PROP_DEDUP
6197 };
6198
6199 (void) pthread_rwlock_rdlock(&ztest_name_lock);
6200
6201 for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) {
6202 int error = ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
6203 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
6204 ASSERT(error == 0 || error == ENOSPC);
6205 }
6206
6207 int error = ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_RECORDSIZE,
6208 ztest_random_blocksize(), (int)ztest_random(2));
6209 ASSERT(error == 0 || error == ENOSPC);
6210
6211 (void) pthread_rwlock_unlock(&ztest_name_lock);
6212 }
6213
6214 void
6215 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
6216 {
6217 (void) zd, (void) id;
6218 nvlist_t *props = NULL;
6219
6220 (void) pthread_rwlock_rdlock(&ztest_name_lock);
6221
6222 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_AUTOTRIM, ztest_random(2));
6223
6224 VERIFY0(spa_prop_get(ztest_spa, &props));
6225
6226 if (ztest_opts.zo_verbose >= 6)
6227 dump_nvlist(props, 4);
6228
6229 fnvlist_free(props);
6230
6231 (void) pthread_rwlock_unlock(&ztest_name_lock);
6232 }
6233
6234 static int
6235 user_release_one(const char *snapname, const char *holdname)
6236 {
6237 nvlist_t *snaps, *holds;
6238 int error;
6239
6240 snaps = fnvlist_alloc();
6241 holds = fnvlist_alloc();
6242 fnvlist_add_boolean(holds, holdname);
6243 fnvlist_add_nvlist(snaps, snapname, holds);
6244 fnvlist_free(holds);
6245 error = dsl_dataset_user_release(snaps, NULL);
6246 fnvlist_free(snaps);
6247 return (error);
6248 }
6249
6250 /*
6251 * Test snapshot hold/release and deferred destroy.
6252 */
6253 void
6254 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
6255 {
6256 int error;
6257 objset_t *os = zd->zd_os;
6258 objset_t *origin;
6259 char snapname[100];
6260 char fullname[100];
6261 char clonename[100];
6262 char tag[100];
6263 char osname[ZFS_MAX_DATASET_NAME_LEN];
6264 nvlist_t *holds;
6265
6266 (void) pthread_rwlock_rdlock(&ztest_name_lock);
6267
6268 dmu_objset_name(os, osname);
6269
6270 (void) snprintf(snapname, sizeof (snapname), "sh1_%"PRIu64"", id);
6271 (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname);
6272 (void) snprintf(clonename, sizeof (clonename), "%s/ch1_%"PRIu64"",
6273 osname, id);
6274 (void) snprintf(tag, sizeof (tag), "tag_%"PRIu64"", id);
6275
6276 /*
6277 * Clean up from any previous run.
6278 */
6279 error = dsl_destroy_head(clonename);
6280 if (error != ENOENT)
6281 ASSERT0(error);
6282 error = user_release_one(fullname, tag);
6283 if (error != ESRCH && error != ENOENT)
6284 ASSERT0(error);
6285 error = dsl_destroy_snapshot(fullname, B_FALSE);
6286 if (error != ENOENT)
6287 ASSERT0(error);
6288
6289 /*
6290 * Create snapshot, clone it, mark snap for deferred destroy,
6291 * destroy clone, verify snap was also destroyed.
6292 */
6293 error = dmu_objset_snapshot_one(osname, snapname);
6294 if (error) {
6295 if (error == ENOSPC) {
6296 ztest_record_enospc("dmu_objset_snapshot");
6297 goto out;
6298 }
6299 fatal(B_FALSE, "dmu_objset_snapshot(%s) = %d", fullname, error);
6300 }
6301
6302 error = dmu_objset_clone(clonename, fullname);
6303 if (error) {
6304 if (error == ENOSPC) {
6305 ztest_record_enospc("dmu_objset_clone");
6306 goto out;
6307 }
6308 fatal(B_FALSE, "dmu_objset_clone(%s) = %d", clonename, error);
6309 }
6310
6311 error = dsl_destroy_snapshot(fullname, B_TRUE);
6312 if (error) {
6313 fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
6314 fullname, error);
6315 }
6316
6317 error = dsl_destroy_head(clonename);
6318 if (error)
6319 fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clonename, error);
6320
6321 error = dmu_objset_hold(fullname, FTAG, &origin);
6322 if (error != ENOENT)
6323 fatal(B_FALSE, "dmu_objset_hold(%s) = %d", fullname, error);
6324
6325 /*
6326 * Create snapshot, add temporary hold, verify that we can't
6327 * destroy a held snapshot, mark for deferred destroy,
6328 * release hold, verify snapshot was destroyed.
6329 */
6330 error = dmu_objset_snapshot_one(osname, snapname);
6331 if (error) {
6332 if (error == ENOSPC) {
6333 ztest_record_enospc("dmu_objset_snapshot");
6334 goto out;
6335 }
6336 fatal(B_FALSE, "dmu_objset_snapshot(%s) = %d", fullname, error);
6337 }
6338
6339 holds = fnvlist_alloc();
6340 fnvlist_add_string(holds, fullname, tag);
6341 error = dsl_dataset_user_hold(holds, 0, NULL);
6342 fnvlist_free(holds);
6343
6344 if (error == ENOSPC) {
6345 ztest_record_enospc("dsl_dataset_user_hold");
6346 goto out;
6347 } else if (error) {
6348 fatal(B_FALSE, "dsl_dataset_user_hold(%s, %s) = %u",
6349 fullname, tag, error);
6350 }
6351
6352 error = dsl_destroy_snapshot(fullname, B_FALSE);
6353 if (error != EBUSY) {
6354 fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
6355 fullname, error);
6356 }
6357
6358 error = dsl_destroy_snapshot(fullname, B_TRUE);
6359 if (error) {
6360 fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
6361 fullname, error);
6362 }
6363
6364 error = user_release_one(fullname, tag);
6365 if (error)
6366 fatal(B_FALSE, "user_release_one(%s, %s) = %d",
6367 fullname, tag, error);
6368
6369 VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT);
6370
6371 out:
6372 (void) pthread_rwlock_unlock(&ztest_name_lock);
6373 }
6374
6375 /*
6376 * Inject random faults into the on-disk data.
6377 */
6378 void
6379 ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
6380 {
6381 (void) zd, (void) id;
6382 ztest_shared_t *zs = ztest_shared;
6383 spa_t *spa = ztest_spa;
6384 int fd;
6385 uint64_t offset;
6386 uint64_t leaves;
6387 uint64_t bad = 0x1990c0ffeedecadeull;
6388 uint64_t top, leaf;
6389 uint64_t raidz_children;
6390 char *path0;
6391 char *pathrand;
6392 size_t fsize;
6393 int bshift = SPA_MAXBLOCKSHIFT + 2;
6394 int iters = 1000;
6395 int maxfaults;
6396 int mirror_save;
6397 vdev_t *vd0 = NULL;
6398 uint64_t guid0 = 0;
6399 boolean_t islog = B_FALSE;
6400 boolean_t injected = B_FALSE;
6401
6402 path0 = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6403 pathrand = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6404
6405 mutex_enter(&ztest_vdev_lock);
6406
6407 /*
6408 * Device removal is in progress, fault injection must be disabled
6409 * until it completes and the pool is scrubbed. The fault injection
6410 * strategy for damaging blocks does not take in to account evacuated
6411 * blocks which may have already been damaged.
6412 */
6413 if (ztest_device_removal_active)
6414 goto out;
6415
6416 /*
6417 * The fault injection strategy for damaging blocks cannot be used
6418 * if raidz expansion is in progress. The leaves value
6419 * (attached raidz children) is variable and strategy for damaging
6420 * blocks will corrupt same data blocks on different child vdevs
6421 * because of the reflow process.
6422 */
6423 if (spa->spa_raidz_expand != NULL)
6424 goto out;
6425
6426 maxfaults = MAXFAULTS(zs);
6427 raidz_children = ztest_get_raidz_children(spa);
6428 leaves = MAX(zs->zs_mirrors, 1) * raidz_children;
6429 mirror_save = zs->zs_mirrors;
6430
6431 ASSERT3U(leaves, >=, 1);
6432
6433 /*
6434 * While ztest is running the number of leaves will not change. This
6435 * is critical for the fault injection logic as it determines where
6436 * errors can be safely injected such that they are always repairable.
6437 *
6438 * When restarting ztest a different number of leaves may be requested
6439 * which will shift the regions to be damaged. This is fine as long
6440 * as the pool has been scrubbed prior to using the new mapping.
6441 * Failure to do can result in non-repairable damage being injected.
6442 */
6443 if (ztest_pool_scrubbed == B_FALSE)
6444 goto out;
6445
6446 /*
6447 * Grab the name lock as reader. There are some operations
6448 * which don't like to have their vdevs changed while
6449 * they are in progress (i.e. spa_change_guid). Those
6450 * operations will have grabbed the name lock as writer.
6451 */
6452 (void) pthread_rwlock_rdlock(&ztest_name_lock);
6453
6454 /*
6455 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
6456 */
6457 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6458
6459 if (ztest_random(2) == 0) {
6460 /*
6461 * Inject errors on a normal data device or slog device.
6462 */
6463 top = ztest_random_vdev_top(spa, B_TRUE);
6464 leaf = ztest_random(leaves) + zs->zs_splits;
6465
6466 /*
6467 * Generate paths to the first leaf in this top-level vdev,
6468 * and to the random leaf we selected. We'll induce transient
6469 * write failures and random online/offline activity on leaf 0,
6470 * and we'll write random garbage to the randomly chosen leaf.
6471 */
6472 (void) snprintf(path0, MAXPATHLEN, ztest_dev_template,
6473 ztest_opts.zo_dir, ztest_opts.zo_pool,
6474 top * leaves + zs->zs_splits);
6475 (void) snprintf(pathrand, MAXPATHLEN, ztest_dev_template,
6476 ztest_opts.zo_dir, ztest_opts.zo_pool,
6477 top * leaves + leaf);
6478
6479 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
6480 if (vd0 != NULL && vd0->vdev_top->vdev_islog)
6481 islog = B_TRUE;
6482
6483 /*
6484 * If the top-level vdev needs to be resilvered
6485 * then we only allow faults on the device that is
6486 * resilvering.
6487 */
6488 if (vd0 != NULL && maxfaults != 1 &&
6489 (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) ||
6490 vd0->vdev_resilver_txg != 0)) {
6491 /*
6492 * Make vd0 explicitly claim to be unreadable,
6493 * or unwritable, or reach behind its back
6494 * and close the underlying fd. We can do this if
6495 * maxfaults == 0 because we'll fail and reexecute,
6496 * and we can do it if maxfaults >= 2 because we'll
6497 * have enough redundancy. If maxfaults == 1, the
6498 * combination of this with injection of random data
6499 * corruption below exceeds the pool's fault tolerance.
6500 */
6501 vdev_file_t *vf = vd0->vdev_tsd;
6502
6503 zfs_dbgmsg("injecting fault to vdev %llu; maxfaults=%d",
6504 (long long)vd0->vdev_id, (int)maxfaults);
6505
6506 if (vf != NULL && ztest_random(3) == 0) {
6507 (void) close(vf->vf_file->f_fd);
6508 vf->vf_file->f_fd = -1;
6509 } else if (ztest_random(2) == 0) {
6510 vd0->vdev_cant_read = B_TRUE;
6511 } else {
6512 vd0->vdev_cant_write = B_TRUE;
6513 }
6514 guid0 = vd0->vdev_guid;
6515 }
6516 } else {
6517 /*
6518 * Inject errors on an l2cache device.
6519 */
6520 spa_aux_vdev_t *sav = &spa->spa_l2cache;
6521
6522 if (sav->sav_count == 0) {
6523 spa_config_exit(spa, SCL_STATE, FTAG);
6524 (void) pthread_rwlock_unlock(&ztest_name_lock);
6525 goto out;
6526 }
6527 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
6528 guid0 = vd0->vdev_guid;
6529 (void) strlcpy(path0, vd0->vdev_path, MAXPATHLEN);
6530 (void) strlcpy(pathrand, vd0->vdev_path, MAXPATHLEN);
6531
6532 leaf = 0;
6533 leaves = 1;
6534 maxfaults = INT_MAX; /* no limit on cache devices */
6535 }
6536
6537 spa_config_exit(spa, SCL_STATE, FTAG);
6538 (void) pthread_rwlock_unlock(&ztest_name_lock);
6539
6540 /*
6541 * If we can tolerate two or more faults, or we're dealing
6542 * with a slog, randomly online/offline vd0.
6543 */
6544 if ((maxfaults >= 2 || islog) && guid0 != 0) {
6545 if (ztest_random(10) < 6) {
6546 int flags = (ztest_random(2) == 0 ?
6547 ZFS_OFFLINE_TEMPORARY : 0);
6548
6549 /*
6550 * We have to grab the zs_name_lock as writer to
6551 * prevent a race between offlining a slog and
6552 * destroying a dataset. Offlining the slog will
6553 * grab a reference on the dataset which may cause
6554 * dsl_destroy_head() to fail with EBUSY thus
6555 * leaving the dataset in an inconsistent state.
6556 */
6557 if (islog)
6558 (void) pthread_rwlock_wrlock(&ztest_name_lock);
6559
6560 VERIFY3U(vdev_offline(spa, guid0, flags), !=, EBUSY);
6561
6562 if (islog)
6563 (void) pthread_rwlock_unlock(&ztest_name_lock);
6564 } else {
6565 /*
6566 * Ideally we would like to be able to randomly
6567 * call vdev_[on|off]line without holding locks
6568 * to force unpredictable failures but the side
6569 * effects of vdev_[on|off]line prevent us from
6570 * doing so.
6571 */
6572 (void) vdev_online(spa, guid0, 0, NULL);
6573 }
6574 }
6575
6576 if (maxfaults == 0)
6577 goto out;
6578
6579 /*
6580 * We have at least single-fault tolerance, so inject data corruption.
6581 */
6582 fd = open(pathrand, O_RDWR);
6583
6584 if (fd == -1) /* we hit a gap in the device namespace */
6585 goto out;
6586
6587 fsize = lseek(fd, 0, SEEK_END);
6588
6589 while (--iters != 0) {
6590 /*
6591 * The offset must be chosen carefully to ensure that
6592 * we do not inject a given logical block with errors
6593 * on two different leaf devices, because ZFS can not
6594 * tolerate that (if maxfaults==1).
6595 *
6596 * To achieve this we divide each leaf device into
6597 * chunks of size (# leaves * SPA_MAXBLOCKSIZE * 4).
6598 * Each chunk is further divided into error-injection
6599 * ranges (can accept errors) and clear ranges (we do
6600 * not inject errors in those). Each error-injection
6601 * range can accept errors only for a single leaf vdev.
6602 * Error-injection ranges are separated by clear ranges.
6603 *
6604 * For example, with 3 leaves, each chunk looks like:
6605 * 0 to 32M: injection range for leaf 0
6606 * 32M to 64M: clear range - no injection allowed
6607 * 64M to 96M: injection range for leaf 1
6608 * 96M to 128M: clear range - no injection allowed
6609 * 128M to 160M: injection range for leaf 2
6610 * 160M to 192M: clear range - no injection allowed
6611 *
6612 * Each clear range must be large enough such that a
6613 * single block cannot straddle it. This way a block
6614 * can't be a target in two different injection ranges
6615 * (on different leaf vdevs).
6616 */
6617 offset = ztest_random(fsize / (leaves << bshift)) *
6618 (leaves << bshift) + (leaf << bshift) +
6619 (ztest_random(1ULL << (bshift - 1)) & -8ULL);
6620
6621 /*
6622 * Only allow damage to the labels at one end of the vdev.
6623 *
6624 * If all labels are damaged, the device will be totally
6625 * inaccessible, which will result in loss of data,
6626 * because we also damage (parts of) the other side of
6627 * the mirror/raidz.
6628 *
6629 * Additionally, we will always have both an even and an
6630 * odd label, so that we can handle crashes in the
6631 * middle of vdev_config_sync().
6632 */
6633 if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE)
6634 continue;
6635
6636 /*
6637 * The two end labels are stored at the "end" of the disk, but
6638 * the end of the disk (vdev_psize) is aligned to
6639 * sizeof (vdev_label_t).
6640 */
6641 uint64_t psize = P2ALIGN(fsize, sizeof (vdev_label_t));
6642 if ((leaf & 1) == 1 &&
6643 offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE)
6644 continue;
6645
6646 if (mirror_save != zs->zs_mirrors) {
6647 (void) close(fd);
6648 goto out;
6649 }
6650
6651 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
6652 fatal(B_TRUE,
6653 "can't inject bad word at 0x%"PRIx64" in %s",
6654 offset, pathrand);
6655
6656 if (ztest_opts.zo_verbose >= 7)
6657 (void) printf("injected bad word into %s,"
6658 " offset 0x%"PRIx64"\n", pathrand, offset);
6659
6660 injected = B_TRUE;
6661 }
6662
6663 (void) close(fd);
6664 out:
6665 mutex_exit(&ztest_vdev_lock);
6666
6667 if (injected && ztest_opts.zo_raid_do_expand) {
6668 int error = spa_scan(spa, POOL_SCAN_SCRUB);
6669 if (error == 0) {
6670 while (dsl_scan_scrubbing(spa_get_dsl(spa)))
6671 txg_wait_synced(spa_get_dsl(spa), 0);
6672 }
6673 }
6674
6675 umem_free(path0, MAXPATHLEN);
6676 umem_free(pathrand, MAXPATHLEN);
6677 }
6678
6679 /*
6680 * By design ztest will never inject uncorrectable damage in to the pool.
6681 * Issue a scrub, wait for it to complete, and verify there is never any
6682 * persistent damage.
6683 *
6684 * Only after a full scrub has been completed is it safe to start injecting
6685 * data corruption. See the comment in zfs_fault_inject().
6686 */
6687 static int
6688 ztest_scrub_impl(spa_t *spa)
6689 {
6690 int error = spa_scan(spa, POOL_SCAN_SCRUB);
6691 if (error)
6692 return (error);
6693
6694 while (dsl_scan_scrubbing(spa_get_dsl(spa)))
6695 txg_wait_synced(spa_get_dsl(spa), 0);
6696
6697 if (spa_approx_errlog_size(spa) > 0)
6698 return (ECKSUM);
6699
6700 ztest_pool_scrubbed = B_TRUE;
6701
6702 return (0);
6703 }
6704
6705 /*
6706 * Scrub the pool.
6707 */
6708 void
6709 ztest_scrub(ztest_ds_t *zd, uint64_t id)
6710 {
6711 (void) zd, (void) id;
6712 spa_t *spa = ztest_spa;
6713 int error;
6714
6715 /*
6716 * Scrub in progress by device removal.
6717 */
6718 if (ztest_device_removal_active)
6719 return;
6720
6721 /*
6722 * Start a scrub, wait a moment, then force a restart.
6723 */
6724 (void) spa_scan(spa, POOL_SCAN_SCRUB);
6725 (void) poll(NULL, 0, 100);
6726
6727 error = ztest_scrub_impl(spa);
6728 if (error == EBUSY)
6729 error = 0;
6730 ASSERT0(error);
6731 }
6732
6733 /*
6734 * Change the guid for the pool.
6735 */
6736 void
6737 ztest_reguid(ztest_ds_t *zd, uint64_t id)
6738 {
6739 (void) zd, (void) id;
6740 spa_t *spa = ztest_spa;
6741 uint64_t orig, load;
6742 int error;
6743 ztest_shared_t *zs = ztest_shared;
6744
6745 if (ztest_opts.zo_mmp_test)
6746 return;
6747
6748 orig = spa_guid(spa);
6749 load = spa_load_guid(spa);
6750
6751 (void) pthread_rwlock_wrlock(&ztest_name_lock);
6752 error = spa_change_guid(spa);
6753 zs->zs_guid = spa_guid(spa);
6754 (void) pthread_rwlock_unlock(&ztest_name_lock);
6755
6756 if (error != 0)
6757 return;
6758
6759 if (ztest_opts.zo_verbose >= 4) {
6760 (void) printf("Changed guid old %"PRIu64" -> %"PRIu64"\n",
6761 orig, spa_guid(spa));
6762 }
6763
6764 VERIFY3U(orig, !=, spa_guid(spa));
6765 VERIFY3U(load, ==, spa_load_guid(spa));
6766 }
6767
6768 void
6769 ztest_blake3(ztest_ds_t *zd, uint64_t id)
6770 {
6771 (void) zd, (void) id;
6772 hrtime_t end = gethrtime() + NANOSEC;
6773 zio_cksum_salt_t salt;
6774 void *salt_ptr = &salt.zcs_bytes;
6775 struct abd *abd_data, *abd_meta;
6776 void *buf, *templ;
6777 int i, *ptr;
6778 uint32_t size;
6779 BLAKE3_CTX ctx;
6780 const zfs_impl_t *blake3 = zfs_impl_get_ops("blake3");
6781
6782 size = ztest_random_blocksize();
6783 buf = umem_alloc(size, UMEM_NOFAIL);
6784 abd_data = abd_alloc(size, B_FALSE);
6785 abd_meta = abd_alloc(size, B_TRUE);
6786
6787 for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6788 *ptr = ztest_random(UINT_MAX);
6789 memset(salt_ptr, 'A', 32);
6790
6791 abd_copy_from_buf_off(abd_data, buf, 0, size);
6792 abd_copy_from_buf_off(abd_meta, buf, 0, size);
6793
6794 while (gethrtime() <= end) {
6795 int run_count = 100;
6796 zio_cksum_t zc_ref1, zc_ref2;
6797 zio_cksum_t zc_res1, zc_res2;
6798
6799 void *ref1 = &zc_ref1;
6800 void *ref2 = &zc_ref2;
6801 void *res1 = &zc_res1;
6802 void *res2 = &zc_res2;
6803
6804 /* BLAKE3_KEY_LEN = 32 */
6805 VERIFY0(blake3->setname("generic"));
6806 templ = abd_checksum_blake3_tmpl_init(&salt);
6807 Blake3_InitKeyed(&ctx, salt_ptr);
6808 Blake3_Update(&ctx, buf, size);
6809 Blake3_Final(&ctx, ref1);
6810 zc_ref2 = zc_ref1;
6811 ZIO_CHECKSUM_BSWAP(&zc_ref2);
6812 abd_checksum_blake3_tmpl_free(templ);
6813
6814 VERIFY0(blake3->setname("cycle"));
6815 while (run_count-- > 0) {
6816
6817 /* Test current implementation */
6818 Blake3_InitKeyed(&ctx, salt_ptr);
6819 Blake3_Update(&ctx, buf, size);
6820 Blake3_Final(&ctx, res1);
6821 zc_res2 = zc_res1;
6822 ZIO_CHECKSUM_BSWAP(&zc_res2);
6823
6824 VERIFY0(memcmp(ref1, res1, 32));
6825 VERIFY0(memcmp(ref2, res2, 32));
6826
6827 /* Test ABD - data */
6828 templ = abd_checksum_blake3_tmpl_init(&salt);
6829 abd_checksum_blake3_native(abd_data, size,
6830 templ, &zc_res1);
6831 abd_checksum_blake3_byteswap(abd_data, size,
6832 templ, &zc_res2);
6833
6834 VERIFY0(memcmp(ref1, res1, 32));
6835 VERIFY0(memcmp(ref2, res2, 32));
6836
6837 /* Test ABD - metadata */
6838 abd_checksum_blake3_native(abd_meta, size,
6839 templ, &zc_res1);
6840 abd_checksum_blake3_byteswap(abd_meta, size,
6841 templ, &zc_res2);
6842 abd_checksum_blake3_tmpl_free(templ);
6843
6844 VERIFY0(memcmp(ref1, res1, 32));
6845 VERIFY0(memcmp(ref2, res2, 32));
6846
6847 }
6848 }
6849
6850 abd_free(abd_data);
6851 abd_free(abd_meta);
6852 umem_free(buf, size);
6853 }
6854
6855 void
6856 ztest_fletcher(ztest_ds_t *zd, uint64_t id)
6857 {
6858 (void) zd, (void) id;
6859 hrtime_t end = gethrtime() + NANOSEC;
6860
6861 while (gethrtime() <= end) {
6862 int run_count = 100;
6863 void *buf;
6864 struct abd *abd_data, *abd_meta;
6865 uint32_t size;
6866 int *ptr;
6867 int i;
6868 zio_cksum_t zc_ref;
6869 zio_cksum_t zc_ref_byteswap;
6870
6871 size = ztest_random_blocksize();
6872
6873 buf = umem_alloc(size, UMEM_NOFAIL);
6874 abd_data = abd_alloc(size, B_FALSE);
6875 abd_meta = abd_alloc(size, B_TRUE);
6876
6877 for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6878 *ptr = ztest_random(UINT_MAX);
6879
6880 abd_copy_from_buf_off(abd_data, buf, 0, size);
6881 abd_copy_from_buf_off(abd_meta, buf, 0, size);
6882
6883 VERIFY0(fletcher_4_impl_set("scalar"));
6884 fletcher_4_native(buf, size, NULL, &zc_ref);
6885 fletcher_4_byteswap(buf, size, NULL, &zc_ref_byteswap);
6886
6887 VERIFY0(fletcher_4_impl_set("cycle"));
6888 while (run_count-- > 0) {
6889 zio_cksum_t zc;
6890 zio_cksum_t zc_byteswap;
6891
6892 fletcher_4_byteswap(buf, size, NULL, &zc_byteswap);
6893 fletcher_4_native(buf, size, NULL, &zc);
6894
6895 VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
6896 VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
6897 sizeof (zc_byteswap)));
6898
6899 /* Test ABD - data */
6900 abd_fletcher_4_byteswap(abd_data, size, NULL,
6901 &zc_byteswap);
6902 abd_fletcher_4_native(abd_data, size, NULL, &zc);
6903
6904 VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
6905 VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
6906 sizeof (zc_byteswap)));
6907
6908 /* Test ABD - metadata */
6909 abd_fletcher_4_byteswap(abd_meta, size, NULL,
6910 &zc_byteswap);
6911 abd_fletcher_4_native(abd_meta, size, NULL, &zc);
6912
6913 VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
6914 VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
6915 sizeof (zc_byteswap)));
6916
6917 }
6918
6919 umem_free(buf, size);
6920 abd_free(abd_data);
6921 abd_free(abd_meta);
6922 }
6923 }
6924
6925 void
6926 ztest_fletcher_incr(ztest_ds_t *zd, uint64_t id)
6927 {
6928 (void) zd, (void) id;
6929 void *buf;
6930 size_t size;
6931 int *ptr;
6932 int i;
6933 zio_cksum_t zc_ref;
6934 zio_cksum_t zc_ref_bswap;
6935
6936 hrtime_t end = gethrtime() + NANOSEC;
6937
6938 while (gethrtime() <= end) {
6939 int run_count = 100;
6940
6941 size = ztest_random_blocksize();
6942 buf = umem_alloc(size, UMEM_NOFAIL);
6943
6944 for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6945 *ptr = ztest_random(UINT_MAX);
6946
6947 VERIFY0(fletcher_4_impl_set("scalar"));
6948 fletcher_4_native(buf, size, NULL, &zc_ref);
6949 fletcher_4_byteswap(buf, size, NULL, &zc_ref_bswap);
6950
6951 VERIFY0(fletcher_4_impl_set("cycle"));
6952
6953 while (run_count-- > 0) {
6954 zio_cksum_t zc;
6955 zio_cksum_t zc_bswap;
6956 size_t pos = 0;
6957
6958 ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
6959 ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
6960
6961 while (pos < size) {
6962 size_t inc = 64 * ztest_random(size / 67);
6963 /* sometimes add few bytes to test non-simd */
6964 if (ztest_random(100) < 10)
6965 inc += P2ALIGN(ztest_random(64),
6966 sizeof (uint32_t));
6967
6968 if (inc > (size - pos))
6969 inc = size - pos;
6970
6971 fletcher_4_incremental_native(buf + pos, inc,
6972 &zc);
6973 fletcher_4_incremental_byteswap(buf + pos, inc,
6974 &zc_bswap);
6975
6976 pos += inc;
6977 }
6978
6979 VERIFY3U(pos, ==, size);
6980
6981 VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
6982 VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
6983
6984 /*
6985 * verify if incremental on the whole buffer is
6986 * equivalent to non-incremental version
6987 */
6988 ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
6989 ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
6990
6991 fletcher_4_incremental_native(buf, size, &zc);
6992 fletcher_4_incremental_byteswap(buf, size, &zc_bswap);
6993
6994 VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
6995 VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
6996 }
6997
6998 umem_free(buf, size);
6999 }
7000 }
7001
7002 static int
7003 ztest_set_global_vars(void)
7004 {
7005 for (size_t i = 0; i < ztest_opts.zo_gvars_count; i++) {
7006 char *kv = ztest_opts.zo_gvars[i];
7007 VERIFY3U(strlen(kv), <=, ZO_GVARS_MAX_ARGLEN);
7008 VERIFY3U(strlen(kv), >, 0);
7009 int err = set_global_var(kv);
7010 if (ztest_opts.zo_verbose > 0) {
7011 (void) printf("setting global var %s ... %s\n", kv,
7012 err ? "failed" : "ok");
7013 }
7014 if (err != 0) {
7015 (void) fprintf(stderr,
7016 "failed to set global var '%s'\n", kv);
7017 return (err);
7018 }
7019 }
7020 return (0);
7021 }
7022
7023 static char **
7024 ztest_global_vars_to_zdb_args(void)
7025 {
7026 char **args = calloc(2*ztest_opts.zo_gvars_count + 1, sizeof (char *));
7027 char **cur = args;
7028 if (args == NULL)
7029 return (NULL);
7030 for (size_t i = 0; i < ztest_opts.zo_gvars_count; i++) {
7031 *cur++ = (char *)"-o";
7032 *cur++ = ztest_opts.zo_gvars[i];
7033 }
7034 ASSERT3P(cur, ==, &args[2*ztest_opts.zo_gvars_count]);
7035 *cur = NULL;
7036 return (args);
7037 }
7038
7039 /* The end of strings is indicated by a NULL element */
7040 static char *
7041 join_strings(char **strings, const char *sep)
7042 {
7043 size_t totallen = 0;
7044 for (char **sp = strings; *sp != NULL; sp++) {
7045 totallen += strlen(*sp);
7046 totallen += strlen(sep);
7047 }
7048 if (totallen > 0) {
7049 ASSERT(totallen >= strlen(sep));
7050 totallen -= strlen(sep);
7051 }
7052
7053 size_t buflen = totallen + 1;
7054 char *o = umem_alloc(buflen, UMEM_NOFAIL); /* trailing 0 byte */
7055 o[0] = '\0';
7056 for (char **sp = strings; *sp != NULL; sp++) {
7057 size_t would;
7058 would = strlcat(o, *sp, buflen);
7059 VERIFY3U(would, <, buflen);
7060 if (*(sp+1) == NULL) {
7061 break;
7062 }
7063 would = strlcat(o, sep, buflen);
7064 VERIFY3U(would, <, buflen);
7065 }
7066 ASSERT3S(strlen(o), ==, totallen);
7067 return (o);
7068 }
7069
7070 static int
7071 ztest_check_path(char *path)
7072 {
7073 struct stat s;
7074 /* return true on success */
7075 return (!stat(path, &s));
7076 }
7077
7078 static void
7079 ztest_get_zdb_bin(char *bin, int len)
7080 {
7081 char *zdb_path;
7082 /*
7083 * Try to use $ZDB and in-tree zdb path. If not successful, just
7084 * let popen to search through PATH.
7085 */
7086 if ((zdb_path = getenv("ZDB"))) {
7087 strlcpy(bin, zdb_path, len); /* In env */
7088 if (!ztest_check_path(bin)) {
7089 ztest_dump_core = 0;
7090 fatal(B_TRUE, "invalid ZDB '%s'", bin);
7091 }
7092 return;
7093 }
7094
7095 VERIFY3P(realpath(getexecname(), bin), !=, NULL);
7096 if (strstr(bin, ".libs/ztest")) {
7097 strstr(bin, ".libs/ztest")[0] = '\0'; /* In-tree */
7098 strcat(bin, "zdb");
7099 if (ztest_check_path(bin))
7100 return;
7101 }
7102 strcpy(bin, "zdb");
7103 }
7104
7105 static vdev_t *
7106 ztest_random_concrete_vdev_leaf(vdev_t *vd)
7107 {
7108 if (vd == NULL)
7109 return (NULL);
7110
7111 if (vd->vdev_children == 0)
7112 return (vd);
7113
7114 vdev_t *eligible[vd->vdev_children];
7115 int eligible_idx = 0, i;
7116 for (i = 0; i < vd->vdev_children; i++) {
7117 vdev_t *cvd = vd->vdev_child[i];
7118 if (cvd->vdev_top->vdev_removing)
7119 continue;
7120 if (cvd->vdev_children > 0 ||
7121 (vdev_is_concrete(cvd) && !cvd->vdev_detached)) {
7122 eligible[eligible_idx++] = cvd;
7123 }
7124 }
7125 VERIFY3S(eligible_idx, >, 0);
7126
7127 uint64_t child_no = ztest_random(eligible_idx);
7128 return (ztest_random_concrete_vdev_leaf(eligible[child_no]));
7129 }
7130
7131 void
7132 ztest_initialize(ztest_ds_t *zd, uint64_t id)
7133 {
7134 (void) zd, (void) id;
7135 spa_t *spa = ztest_spa;
7136 int error = 0;
7137
7138 mutex_enter(&ztest_vdev_lock);
7139
7140 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
7141
7142 /* Random leaf vdev */
7143 vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev);
7144 if (rand_vd == NULL) {
7145 spa_config_exit(spa, SCL_VDEV, FTAG);
7146 mutex_exit(&ztest_vdev_lock);
7147 return;
7148 }
7149
7150 /*
7151 * The random vdev we've selected may change as soon as we
7152 * drop the spa_config_lock. We create local copies of things
7153 * we're interested in.
7154 */
7155 uint64_t guid = rand_vd->vdev_guid;
7156 char *path = strdup(rand_vd->vdev_path);
7157 boolean_t active = rand_vd->vdev_initialize_thread != NULL;
7158
7159 zfs_dbgmsg("vd %px, guid %llu", rand_vd, (u_longlong_t)guid);
7160 spa_config_exit(spa, SCL_VDEV, FTAG);
7161
7162 uint64_t cmd = ztest_random(POOL_INITIALIZE_FUNCS);
7163
7164 nvlist_t *vdev_guids = fnvlist_alloc();
7165 nvlist_t *vdev_errlist = fnvlist_alloc();
7166 fnvlist_add_uint64(vdev_guids, path, guid);
7167 error = spa_vdev_initialize(spa, vdev_guids, cmd, vdev_errlist);
7168 fnvlist_free(vdev_guids);
7169 fnvlist_free(vdev_errlist);
7170
7171 switch (cmd) {
7172 case POOL_INITIALIZE_CANCEL:
7173 if (ztest_opts.zo_verbose >= 4) {
7174 (void) printf("Cancel initialize %s", path);
7175 if (!active)
7176 (void) printf(" failed (no initialize active)");
7177 (void) printf("\n");
7178 }
7179 break;
7180 case POOL_INITIALIZE_START:
7181 if (ztest_opts.zo_verbose >= 4) {
7182 (void) printf("Start initialize %s", path);
7183 if (active && error == 0)
7184 (void) printf(" failed (already active)");
7185 else if (error != 0)
7186 (void) printf(" failed (error %d)", error);
7187 (void) printf("\n");
7188 }
7189 break;
7190 case POOL_INITIALIZE_SUSPEND:
7191 if (ztest_opts.zo_verbose >= 4) {
7192 (void) printf("Suspend initialize %s", path);
7193 if (!active)
7194 (void) printf(" failed (no initialize active)");
7195 (void) printf("\n");
7196 }
7197 break;
7198 }
7199 free(path);
7200 mutex_exit(&ztest_vdev_lock);
7201 }
7202
7203 void
7204 ztest_trim(ztest_ds_t *zd, uint64_t id)
7205 {
7206 (void) zd, (void) id;
7207 spa_t *spa = ztest_spa;
7208 int error = 0;
7209
7210 mutex_enter(&ztest_vdev_lock);
7211
7212 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
7213
7214 /* Random leaf vdev */
7215 vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev);
7216 if (rand_vd == NULL) {
7217 spa_config_exit(spa, SCL_VDEV, FTAG);
7218 mutex_exit(&ztest_vdev_lock);
7219 return;
7220 }
7221
7222 /*
7223 * The random vdev we've selected may change as soon as we
7224 * drop the spa_config_lock. We create local copies of things
7225 * we're interested in.
7226 */
7227 uint64_t guid = rand_vd->vdev_guid;
7228 char *path = strdup(rand_vd->vdev_path);
7229 boolean_t active = rand_vd->vdev_trim_thread != NULL;
7230
7231 zfs_dbgmsg("vd %p, guid %llu", rand_vd, (u_longlong_t)guid);
7232 spa_config_exit(spa, SCL_VDEV, FTAG);
7233
7234 uint64_t cmd = ztest_random(POOL_TRIM_FUNCS);
7235 uint64_t rate = 1 << ztest_random(30);
7236 boolean_t partial = (ztest_random(5) > 0);
7237 boolean_t secure = (ztest_random(5) > 0);
7238
7239 nvlist_t *vdev_guids = fnvlist_alloc();
7240 nvlist_t *vdev_errlist = fnvlist_alloc();
7241 fnvlist_add_uint64(vdev_guids, path, guid);
7242 error = spa_vdev_trim(spa, vdev_guids, cmd, rate, partial,
7243 secure, vdev_errlist);
7244 fnvlist_free(vdev_guids);
7245 fnvlist_free(vdev_errlist);
7246
7247 switch (cmd) {
7248 case POOL_TRIM_CANCEL:
7249 if (ztest_opts.zo_verbose >= 4) {
7250 (void) printf("Cancel TRIM %s", path);
7251 if (!active)
7252 (void) printf(" failed (no TRIM active)");
7253 (void) printf("\n");
7254 }
7255 break;
7256 case POOL_TRIM_START:
7257 if (ztest_opts.zo_verbose >= 4) {
7258 (void) printf("Start TRIM %s", path);
7259 if (active && error == 0)
7260 (void) printf(" failed (already active)");
7261 else if (error != 0)
7262 (void) printf(" failed (error %d)", error);
7263 (void) printf("\n");
7264 }
7265 break;
7266 case POOL_TRIM_SUSPEND:
7267 if (ztest_opts.zo_verbose >= 4) {
7268 (void) printf("Suspend TRIM %s", path);
7269 if (!active)
7270 (void) printf(" failed (no TRIM active)");
7271 (void) printf("\n");
7272 }
7273 break;
7274 }
7275 free(path);
7276 mutex_exit(&ztest_vdev_lock);
7277 }
7278
7279 /*
7280 * Verify pool integrity by running zdb.
7281 */
7282 static void
7283 ztest_run_zdb(uint64_t guid)
7284 {
7285 int status;
7286 char *bin;
7287 char *zdb;
7288 char *zbuf;
7289 const int len = MAXPATHLEN + MAXNAMELEN + 20;
7290 FILE *fp;
7291
7292 bin = umem_alloc(len, UMEM_NOFAIL);
7293 zdb = umem_alloc(len, UMEM_NOFAIL);
7294 zbuf = umem_alloc(1024, UMEM_NOFAIL);
7295
7296 ztest_get_zdb_bin(bin, len);
7297
7298 char **set_gvars_args = ztest_global_vars_to_zdb_args();
7299 if (set_gvars_args == NULL) {
7300 fatal(B_FALSE, "Failed to allocate memory in "
7301 "ztest_global_vars_to_zdb_args(). Cannot run zdb.\n");
7302 }
7303 char *set_gvars_args_joined = join_strings(set_gvars_args, " ");
7304 free(set_gvars_args);
7305
7306 size_t would = snprintf(zdb, len,
7307 "%s -bcc%s%s -G -d -Y -e -y %s -p %s %"PRIu64,
7308 bin,
7309 ztest_opts.zo_verbose >= 3 ? "s" : "",
7310 ztest_opts.zo_verbose >= 4 ? "v" : "",
7311 set_gvars_args_joined,
7312 ztest_opts.zo_dir,
7313 guid);
7314 ASSERT3U(would, <, len);
7315
7316 umem_free(set_gvars_args_joined, strlen(set_gvars_args_joined) + 1);
7317
7318 if (ztest_opts.zo_verbose >= 5)
7319 (void) printf("Executing %s\n", zdb);
7320
7321 fp = popen(zdb, "r");
7322
7323 while (fgets(zbuf, 1024, fp) != NULL)
7324 if (ztest_opts.zo_verbose >= 3)
7325 (void) printf("%s", zbuf);
7326
7327 status = pclose(fp);
7328
7329 if (status == 0)
7330 goto out;
7331
7332 ztest_dump_core = 0;
7333 if (WIFEXITED(status))
7334 fatal(B_FALSE, "'%s' exit code %d", zdb, WEXITSTATUS(status));
7335 else
7336 fatal(B_FALSE, "'%s' died with signal %d",
7337 zdb, WTERMSIG(status));
7338 out:
7339 umem_free(bin, len);
7340 umem_free(zdb, len);
7341 umem_free(zbuf, 1024);
7342 }
7343
7344 static void
7345 ztest_walk_pool_directory(const char *header)
7346 {
7347 spa_t *spa = NULL;
7348
7349 if (ztest_opts.zo_verbose >= 6)
7350 (void) puts(header);
7351
7352 mutex_enter(&spa_namespace_lock);
7353 while ((spa = spa_next(spa)) != NULL)
7354 if (ztest_opts.zo_verbose >= 6)
7355 (void) printf("\t%s\n", spa_name(spa));
7356 mutex_exit(&spa_namespace_lock);
7357 }
7358
7359 static void
7360 ztest_spa_import_export(char *oldname, char *newname)
7361 {
7362 nvlist_t *config, *newconfig;
7363 uint64_t pool_guid;
7364 spa_t *spa;
7365 int error;
7366
7367 if (ztest_opts.zo_verbose >= 4) {
7368 (void) printf("import/export: old = %s, new = %s\n",
7369 oldname, newname);
7370 }
7371
7372 /*
7373 * Clean up from previous runs.
7374 */
7375 (void) spa_destroy(newname);
7376
7377 /*
7378 * Get the pool's configuration and guid.
7379 */
7380 VERIFY0(spa_open(oldname, &spa, FTAG));
7381
7382 /*
7383 * Kick off a scrub to tickle scrub/export races.
7384 */
7385 if (ztest_random(2) == 0)
7386 (void) spa_scan(spa, POOL_SCAN_SCRUB);
7387
7388 pool_guid = spa_guid(spa);
7389 spa_close(spa, FTAG);
7390
7391 ztest_walk_pool_directory("pools before export");
7392
7393 /*
7394 * Export it.
7395 */
7396 VERIFY0(spa_export(oldname, &config, B_FALSE, B_FALSE));
7397
7398 ztest_walk_pool_directory("pools after export");
7399
7400 /*
7401 * Try to import it.
7402 */
7403 newconfig = spa_tryimport(config);
7404 ASSERT3P(newconfig, !=, NULL);
7405 fnvlist_free(newconfig);
7406
7407 /*
7408 * Import it under the new name.
7409 */
7410 error = spa_import(newname, config, NULL, 0);
7411 if (error != 0) {
7412 dump_nvlist(config, 0);
7413 fatal(B_FALSE, "couldn't import pool %s as %s: error %u",
7414 oldname, newname, error);
7415 }
7416
7417 ztest_walk_pool_directory("pools after import");
7418
7419 /*
7420 * Try to import it again -- should fail with EEXIST.
7421 */
7422 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0));
7423
7424 /*
7425 * Try to import it under a different name -- should fail with EEXIST.
7426 */
7427 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0));
7428
7429 /*
7430 * Verify that the pool is no longer visible under the old name.
7431 */
7432 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
7433
7434 /*
7435 * Verify that we can open and close the pool using the new name.
7436 */
7437 VERIFY0(spa_open(newname, &spa, FTAG));
7438 ASSERT3U(pool_guid, ==, spa_guid(spa));
7439 spa_close(spa, FTAG);
7440
7441 fnvlist_free(config);
7442 }
7443
7444 static void
7445 ztest_resume(spa_t *spa)
7446 {
7447 if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6)
7448 (void) printf("resuming from suspended state\n");
7449 spa_vdev_state_enter(spa, SCL_NONE);
7450 vdev_clear(spa, NULL);
7451 (void) spa_vdev_state_exit(spa, NULL, 0);
7452 (void) zio_resume(spa);
7453 }
7454
7455 static __attribute__((noreturn)) void
7456 ztest_resume_thread(void *arg)
7457 {
7458 spa_t *spa = arg;
7459
7460 while (!ztest_exiting) {
7461 if (spa_suspended(spa))
7462 ztest_resume(spa);
7463 (void) poll(NULL, 0, 100);
7464
7465 /*
7466 * Periodically change the zfs_compressed_arc_enabled setting.
7467 */
7468 if (ztest_random(10) == 0)
7469 zfs_compressed_arc_enabled = ztest_random(2);
7470
7471 /*
7472 * Periodically change the zfs_abd_scatter_enabled setting.
7473 */
7474 if (ztest_random(10) == 0)
7475 zfs_abd_scatter_enabled = ztest_random(2);
7476 }
7477
7478 thread_exit();
7479 }
7480
7481 static __attribute__((noreturn)) void
7482 ztest_deadman_thread(void *arg)
7483 {
7484 ztest_shared_t *zs = arg;
7485 spa_t *spa = ztest_spa;
7486 hrtime_t delay, overdue, last_run = gethrtime();
7487
7488 delay = (zs->zs_thread_stop - zs->zs_thread_start) +
7489 MSEC2NSEC(zfs_deadman_synctime_ms);
7490
7491 while (!ztest_exiting) {
7492 /*
7493 * Wait for the delay timer while checking occasionally
7494 * if we should stop.
7495 */
7496 if (gethrtime() < last_run + delay) {
7497 (void) poll(NULL, 0, 1000);
7498 continue;
7499 }
7500
7501 /*
7502 * If the pool is suspended then fail immediately. Otherwise,
7503 * check to see if the pool is making any progress. If
7504 * vdev_deadman() discovers that there hasn't been any recent
7505 * I/Os then it will end up aborting the tests.
7506 */
7507 if (spa_suspended(spa) || spa->spa_root_vdev == NULL) {
7508 fatal(B_FALSE,
7509 "aborting test after %llu seconds because "
7510 "pool has transitioned to a suspended state.",
7511 (u_longlong_t)zfs_deadman_synctime_ms / 1000);
7512 }
7513 vdev_deadman(spa->spa_root_vdev, FTAG);
7514
7515 /*
7516 * If the process doesn't complete within a grace period of
7517 * zfs_deadman_synctime_ms over the expected finish time,
7518 * then it may be hung and is terminated.
7519 */
7520 overdue = zs->zs_proc_stop + MSEC2NSEC(zfs_deadman_synctime_ms);
7521 if (gethrtime() > overdue) {
7522 fatal(B_FALSE,
7523 "aborting test after %llu seconds because "
7524 "the process is overdue for termination.",
7525 (gethrtime() - zs->zs_proc_start) / NANOSEC);
7526 }
7527
7528 (void) printf("ztest has been running for %lld seconds\n",
7529 (gethrtime() - zs->zs_proc_start) / NANOSEC);
7530
7531 last_run = gethrtime();
7532 delay = MSEC2NSEC(zfs_deadman_checktime_ms);
7533 }
7534
7535 thread_exit();
7536 }
7537
7538 static void
7539 ztest_execute(int test, ztest_info_t *zi, uint64_t id)
7540 {
7541 ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets];
7542 ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test);
7543 hrtime_t functime = gethrtime();
7544 int i;
7545
7546 for (i = 0; i < zi->zi_iters; i++)
7547 zi->zi_func(zd, id);
7548
7549 functime = gethrtime() - functime;
7550
7551 atomic_add_64(&zc->zc_count, 1);
7552 atomic_add_64(&zc->zc_time, functime);
7553
7554 if (ztest_opts.zo_verbose >= 4)
7555 (void) printf("%6.2f sec in %s\n",
7556 (double)functime / NANOSEC, zi->zi_funcname);
7557 }
7558
7559 typedef struct ztest_raidz_expand_io {
7560 uint64_t rzx_id;
7561 uint64_t rzx_amount;
7562 uint64_t rzx_bufsize;
7563 const void *rzx_buffer;
7564 uint64_t rzx_alloc_max;
7565 spa_t *rzx_spa;
7566 } ztest_expand_io_t;
7567
7568 #undef OD_ARRAY_SIZE
7569 #define OD_ARRAY_SIZE 10
7570
7571 /*
7572 * Write a request amount of data to some dataset objects.
7573 * There will be ztest_opts.zo_threads count of these running in parallel.
7574 */
7575 static __attribute__((noreturn)) void
7576 ztest_rzx_thread(void *arg)
7577 {
7578 ztest_expand_io_t *info = (ztest_expand_io_t *)arg;
7579 ztest_od_t *od;
7580 int batchsize;
7581 int od_size;
7582 ztest_ds_t *zd = &ztest_ds[info->rzx_id % ztest_opts.zo_datasets];
7583 spa_t *spa = info->rzx_spa;
7584
7585 od_size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
7586 od = umem_alloc(od_size, UMEM_NOFAIL);
7587 batchsize = OD_ARRAY_SIZE;
7588
7589 /* Create objects to write to */
7590 for (int b = 0; b < batchsize; b++) {
7591 ztest_od_init(od + b, info->rzx_id, FTAG, b,
7592 DMU_OT_UINT64_OTHER, 0, 0, 0);
7593 }
7594 if (ztest_object_init(zd, od, od_size, B_FALSE) != 0) {
7595 umem_free(od, od_size);
7596 thread_exit();
7597 }
7598
7599 for (uint64_t offset = 0, written = 0; written < info->rzx_amount;
7600 offset += info->rzx_bufsize) {
7601 /* write to 10 objects */
7602 for (int i = 0; i < batchsize && written < info->rzx_amount;
7603 i++) {
7604 (void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
7605 ztest_write(zd, od[i].od_object, offset,
7606 info->rzx_bufsize, info->rzx_buffer);
7607 (void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
7608 written += info->rzx_bufsize;
7609 }
7610 txg_wait_synced(spa_get_dsl(spa), 0);
7611 /* due to inflation, we'll typically bail here */
7612 if (metaslab_class_get_alloc(spa_normal_class(spa)) >
7613 info->rzx_alloc_max) {
7614 break;
7615 }
7616 }
7617
7618 /* Remove a few objects to leave some holes in allocation space */
7619 mutex_enter(&zd->zd_dirobj_lock);
7620 (void) ztest_remove(zd, od, 2);
7621 mutex_exit(&zd->zd_dirobj_lock);
7622
7623 umem_free(od, od_size);
7624
7625 thread_exit();
7626 }
7627
7628 static __attribute__((noreturn)) void
7629 ztest_thread(void *arg)
7630 {
7631 int rand;
7632 uint64_t id = (uintptr_t)arg;
7633 ztest_shared_t *zs = ztest_shared;
7634 uint64_t call_next;
7635 hrtime_t now;
7636 ztest_info_t *zi;
7637 ztest_shared_callstate_t *zc;
7638
7639 while ((now = gethrtime()) < zs->zs_thread_stop) {
7640 /*
7641 * See if it's time to force a crash.
7642 */
7643 if (now > zs->zs_thread_kill &&
7644 raidz_expand_pause_point == RAIDZ_EXPAND_PAUSE_NONE) {
7645 ztest_kill(zs);
7646 }
7647
7648 /*
7649 * If we're getting ENOSPC with some regularity, stop.
7650 */
7651 if (zs->zs_enospc_count > 10)
7652 break;
7653
7654 /*
7655 * Pick a random function to execute.
7656 */
7657 rand = ztest_random(ZTEST_FUNCS);
7658 zi = &ztest_info[rand];
7659 zc = ZTEST_GET_SHARED_CALLSTATE(rand);
7660 call_next = zc->zc_next;
7661
7662 if (now >= call_next &&
7663 atomic_cas_64(&zc->zc_next, call_next, call_next +
7664 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) {
7665 ztest_execute(rand, zi, id);
7666 }
7667 }
7668
7669 thread_exit();
7670 }
7671
7672 static void
7673 ztest_dataset_name(char *dsname, const char *pool, int d)
7674 {
7675 (void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d);
7676 }
7677
7678 static void
7679 ztest_dataset_destroy(int d)
7680 {
7681 char name[ZFS_MAX_DATASET_NAME_LEN];
7682 int t;
7683
7684 ztest_dataset_name(name, ztest_opts.zo_pool, d);
7685
7686 if (ztest_opts.zo_verbose >= 3)
7687 (void) printf("Destroying %s to free up space\n", name);
7688
7689 /*
7690 * Cleanup any non-standard clones and snapshots. In general,
7691 * ztest thread t operates on dataset (t % zopt_datasets),
7692 * so there may be more than one thing to clean up.
7693 */
7694 for (t = d; t < ztest_opts.zo_threads;
7695 t += ztest_opts.zo_datasets)
7696 ztest_dsl_dataset_cleanup(name, t);
7697
7698 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
7699 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
7700 }
7701
7702 static void
7703 ztest_dataset_dirobj_verify(ztest_ds_t *zd)
7704 {
7705 uint64_t usedobjs, dirobjs, scratch;
7706
7707 /*
7708 * ZTEST_DIROBJ is the object directory for the entire dataset.
7709 * Therefore, the number of objects in use should equal the
7710 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
7711 * If not, we have an object leak.
7712 *
7713 * Note that we can only check this in ztest_dataset_open(),
7714 * when the open-context and syncing-context values agree.
7715 * That's because zap_count() returns the open-context value,
7716 * while dmu_objset_space() returns the rootbp fill count.
7717 */
7718 VERIFY0(zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
7719 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
7720 ASSERT3U(dirobjs + 1, ==, usedobjs);
7721 }
7722
7723 static int
7724 ztest_dataset_open(int d)
7725 {
7726 ztest_ds_t *zd = &ztest_ds[d];
7727 uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq;
7728 objset_t *os;
7729 zilog_t *zilog;
7730 char name[ZFS_MAX_DATASET_NAME_LEN];
7731 int error;
7732
7733 ztest_dataset_name(name, ztest_opts.zo_pool, d);
7734
7735 (void) pthread_rwlock_rdlock(&ztest_name_lock);
7736
7737 error = ztest_dataset_create(name);
7738 if (error == ENOSPC) {
7739 (void) pthread_rwlock_unlock(&ztest_name_lock);
7740 ztest_record_enospc(FTAG);
7741 return (error);
7742 }
7743 ASSERT(error == 0 || error == EEXIST);
7744
7745 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
7746 B_TRUE, zd, &os));
7747 (void) pthread_rwlock_unlock(&ztest_name_lock);
7748
7749 ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os);
7750
7751 zilog = zd->zd_zilog;
7752
7753 if (zilog->zl_header->zh_claim_lr_seq != 0 &&
7754 zilog->zl_header->zh_claim_lr_seq < committed_seq)
7755 fatal(B_FALSE, "missing log records: "
7756 "claimed %"PRIu64" < committed %"PRIu64"",
7757 zilog->zl_header->zh_claim_lr_seq, committed_seq);
7758
7759 ztest_dataset_dirobj_verify(zd);
7760
7761 zil_replay(os, zd, ztest_replay_vector);
7762
7763 ztest_dataset_dirobj_verify(zd);
7764
7765 if (ztest_opts.zo_verbose >= 6)
7766 (void) printf("%s replay %"PRIu64" blocks, "
7767 "%"PRIu64" records, seq %"PRIu64"\n",
7768 zd->zd_name,
7769 zilog->zl_parse_blk_count,
7770 zilog->zl_parse_lr_count,
7771 zilog->zl_replaying_seq);
7772
7773 zilog = zil_open(os, ztest_get_data, NULL);
7774
7775 if (zilog->zl_replaying_seq != 0 &&
7776 zilog->zl_replaying_seq < committed_seq)
7777 fatal(B_FALSE, "missing log records: "
7778 "replayed %"PRIu64" < committed %"PRIu64"",
7779 zilog->zl_replaying_seq, committed_seq);
7780
7781 return (0);
7782 }
7783
7784 static void
7785 ztest_dataset_close(int d)
7786 {
7787 ztest_ds_t *zd = &ztest_ds[d];
7788
7789 zil_close(zd->zd_zilog);
7790 dmu_objset_disown(zd->zd_os, B_TRUE, zd);
7791
7792 ztest_zd_fini(zd);
7793 }
7794
7795 static int
7796 ztest_replay_zil_cb(const char *name, void *arg)
7797 {
7798 (void) arg;
7799 objset_t *os;
7800 ztest_ds_t *zdtmp;
7801
7802 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_ANY, B_TRUE,
7803 B_TRUE, FTAG, &os));
7804
7805 zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
7806
7807 ztest_zd_init(zdtmp, NULL, os);
7808 zil_replay(os, zdtmp, ztest_replay_vector);
7809 ztest_zd_fini(zdtmp);
7810
7811 if (dmu_objset_zil(os)->zl_parse_lr_count != 0 &&
7812 ztest_opts.zo_verbose >= 6) {
7813 zilog_t *zilog = dmu_objset_zil(os);
7814
7815 (void) printf("%s replay %"PRIu64" blocks, "
7816 "%"PRIu64" records, seq %"PRIu64"\n",
7817 name,
7818 zilog->zl_parse_blk_count,
7819 zilog->zl_parse_lr_count,
7820 zilog->zl_replaying_seq);
7821 }
7822
7823 umem_free(zdtmp, sizeof (ztest_ds_t));
7824
7825 dmu_objset_disown(os, B_TRUE, FTAG);
7826 return (0);
7827 }
7828
7829 static void
7830 ztest_freeze(void)
7831 {
7832 ztest_ds_t *zd = &ztest_ds[0];
7833 spa_t *spa;
7834 int numloops = 0;
7835
7836 /* freeze not supported during RAIDZ expansion */
7837 if (ztest_opts.zo_raid_do_expand)
7838 return;
7839
7840 if (ztest_opts.zo_verbose >= 3)
7841 (void) printf("testing spa_freeze()...\n");
7842
7843 raidz_scratch_verify();
7844 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7845 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7846 VERIFY0(ztest_dataset_open(0));
7847 ztest_spa = spa;
7848
7849 /*
7850 * Force the first log block to be transactionally allocated.
7851 * We have to do this before we freeze the pool -- otherwise
7852 * the log chain won't be anchored.
7853 */
7854 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
7855 ztest_dmu_object_alloc_free(zd, 0);
7856 zil_commit(zd->zd_zilog, 0);
7857 }
7858
7859 txg_wait_synced(spa_get_dsl(spa), 0);
7860
7861 /*
7862 * Freeze the pool. This stops spa_sync() from doing anything,
7863 * so that the only way to record changes from now on is the ZIL.
7864 */
7865 spa_freeze(spa);
7866
7867 /*
7868 * Because it is hard to predict how much space a write will actually
7869 * require beforehand, we leave ourselves some fudge space to write over
7870 * capacity.
7871 */
7872 uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2;
7873
7874 /*
7875 * Run tests that generate log records but don't alter the pool config
7876 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
7877 * We do a txg_wait_synced() after each iteration to force the txg
7878 * to increase well beyond the last synced value in the uberblock.
7879 * The ZIL should be OK with that.
7880 *
7881 * Run a random number of times less than zo_maxloops and ensure we do
7882 * not run out of space on the pool.
7883 */
7884 while (ztest_random(10) != 0 &&
7885 numloops++ < ztest_opts.zo_maxloops &&
7886 metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) {
7887 ztest_od_t od;
7888 ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
7889 VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE));
7890 ztest_io(zd, od.od_object,
7891 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
7892 txg_wait_synced(spa_get_dsl(spa), 0);
7893 }
7894
7895 /*
7896 * Commit all of the changes we just generated.
7897 */
7898 zil_commit(zd->zd_zilog, 0);
7899 txg_wait_synced(spa_get_dsl(spa), 0);
7900
7901 /*
7902 * Close our dataset and close the pool.
7903 */
7904 ztest_dataset_close(0);
7905 spa_close(spa, FTAG);
7906 kernel_fini();
7907
7908 /*
7909 * Open and close the pool and dataset to induce log replay.
7910 */
7911 raidz_scratch_verify();
7912 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7913 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7914 ASSERT3U(spa_freeze_txg(spa), ==, UINT64_MAX);
7915 VERIFY0(ztest_dataset_open(0));
7916 ztest_spa = spa;
7917 txg_wait_synced(spa_get_dsl(spa), 0);
7918 ztest_dataset_close(0);
7919 ztest_reguid(NULL, 0);
7920
7921 spa_close(spa, FTAG);
7922 kernel_fini();
7923 }
7924
7925 static void
7926 ztest_import_impl(void)
7927 {
7928 importargs_t args = { 0 };
7929 nvlist_t *cfg = NULL;
7930 int nsearch = 1;
7931 char *searchdirs[nsearch];
7932 int flags = ZFS_IMPORT_MISSING_LOG;
7933
7934 searchdirs[0] = ztest_opts.zo_dir;
7935 args.paths = nsearch;
7936 args.path = searchdirs;
7937 args.can_be_active = B_FALSE;
7938
7939 libpc_handle_t lpch = {
7940 .lpc_lib_handle = NULL,
7941 .lpc_ops = &libzpool_config_ops,
7942 .lpc_printerr = B_TRUE
7943 };
7944 VERIFY0(zpool_find_config(&lpch, ztest_opts.zo_pool, &cfg, &args));
7945 VERIFY0(spa_import(ztest_opts.zo_pool, cfg, NULL, flags));
7946 fnvlist_free(cfg);
7947 }
7948
7949 /*
7950 * Import a storage pool with the given name.
7951 */
7952 static void
7953 ztest_import(ztest_shared_t *zs)
7954 {
7955 spa_t *spa;
7956
7957 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
7958 mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
7959 VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
7960
7961 raidz_scratch_verify();
7962 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7963
7964 ztest_import_impl();
7965
7966 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7967 zs->zs_metaslab_sz =
7968 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
7969 zs->zs_guid = spa_guid(spa);
7970 spa_close(spa, FTAG);
7971
7972 kernel_fini();
7973
7974 if (!ztest_opts.zo_mmp_test) {
7975 ztest_run_zdb(zs->zs_guid);
7976 ztest_freeze();
7977 ztest_run_zdb(zs->zs_guid);
7978 }
7979
7980 (void) pthread_rwlock_destroy(&ztest_name_lock);
7981 mutex_destroy(&ztest_vdev_lock);
7982 mutex_destroy(&ztest_checkpoint_lock);
7983 }
7984
7985 /*
7986 * After the expansion was killed, check that the pool is healthy
7987 */
7988 static void
7989 ztest_raidz_expand_check(spa_t *spa)
7990 {
7991 ASSERT3U(ztest_opts.zo_raidz_expand_test, ==, RAIDZ_EXPAND_KILLED);
7992 /*
7993 * Set pool check done flag, main program will run a zdb check
7994 * of the pool when we exit.
7995 */
7996 ztest_shared_opts->zo_raidz_expand_test = RAIDZ_EXPAND_CHECKED;
7997
7998 /* Wait for reflow to finish */
7999 if (ztest_opts.zo_verbose >= 1) {
8000 (void) printf("\nwaiting for reflow to finish ...\n");
8001 }
8002 pool_raidz_expand_stat_t rzx_stats;
8003 pool_raidz_expand_stat_t *pres = &rzx_stats;
8004 do {
8005 txg_wait_synced(spa_get_dsl(spa), 0);
8006 (void) poll(NULL, 0, 500); /* wait 1/2 second */
8007
8008 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8009 (void) spa_raidz_expand_get_stats(spa, pres);
8010 spa_config_exit(spa, SCL_CONFIG, FTAG);
8011 } while (pres->pres_state != DSS_FINISHED &&
8012 pres->pres_reflowed < pres->pres_to_reflow);
8013
8014 if (ztest_opts.zo_verbose >= 1) {
8015 (void) printf("verifying an interrupted raidz "
8016 "expansion using a pool scrub ...\n");
8017 }
8018 /* Will fail here if there is non-recoverable corruption detected */
8019 VERIFY0(ztest_scrub_impl(spa));
8020 if (ztest_opts.zo_verbose >= 1) {
8021 (void) printf("raidz expansion scrub check complete\n");
8022 }
8023 }
8024
8025 /*
8026 * Start a raidz expansion test. We run some I/O on the pool for a while
8027 * to get some data in the pool. Then we grow the raidz and
8028 * kill the test at the requested offset into the reflow, verifying that
8029 * doing such does not lead to pool corruption.
8030 */
8031 static void
8032 ztest_raidz_expand_run(ztest_shared_t *zs, spa_t *spa)
8033 {
8034 nvlist_t *root;
8035 pool_raidz_expand_stat_t rzx_stats;
8036 pool_raidz_expand_stat_t *pres = &rzx_stats;
8037 kthread_t **run_threads;
8038 vdev_t *cvd, *rzvd = spa->spa_root_vdev->vdev_child[0];
8039 int total_disks = rzvd->vdev_children;
8040 int data_disks = total_disks - vdev_get_nparity(rzvd);
8041 uint64_t alloc_goal;
8042 uint64_t csize;
8043 int error, t;
8044 int threads = ztest_opts.zo_threads;
8045 ztest_expand_io_t *thread_args;
8046
8047 ASSERT3U(ztest_opts.zo_raidz_expand_test, !=, RAIDZ_EXPAND_NONE);
8048 ASSERT3U(rzvd->vdev_ops, ==, &vdev_raidz_ops);
8049 ztest_opts.zo_raidz_expand_test = RAIDZ_EXPAND_STARTED;
8050
8051 /* Setup a 1 MiB buffer of random data */
8052 uint64_t bufsize = 1024 * 1024;
8053 void *buffer = umem_alloc(bufsize, UMEM_NOFAIL);
8054
8055 if (read(ztest_fd_rand, buffer, bufsize) != bufsize) {
8056 fatal(B_TRUE, "short read from /dev/urandom");
8057 }
8058 /*
8059 * Put some data in the pool and then attach a vdev to initiate
8060 * reflow.
8061 */
8062 run_threads = umem_zalloc(threads * sizeof (kthread_t *), UMEM_NOFAIL);
8063 thread_args = umem_zalloc(threads * sizeof (ztest_expand_io_t),
8064 UMEM_NOFAIL);
8065 /* Aim for roughly 25% of allocatable space up to 1GB */
8066 alloc_goal = (vdev_get_min_asize(rzvd) * data_disks) / total_disks;
8067 alloc_goal = MIN(alloc_goal >> 2, 1024*1024*1024);
8068 if (ztest_opts.zo_verbose >= 1) {
8069 (void) printf("adding data to pool '%s', goal %llu bytes\n",
8070 ztest_opts.zo_pool, (u_longlong_t)alloc_goal);
8071 }
8072
8073 /*
8074 * Kick off all the I/O generators that run in parallel.
8075 */
8076 for (t = 0; t < threads; t++) {
8077 if (t < ztest_opts.zo_datasets && ztest_dataset_open(t) != 0) {
8078 umem_free(run_threads, threads * sizeof (kthread_t *));
8079 umem_free(buffer, bufsize);
8080 return;
8081 }
8082 thread_args[t].rzx_id = t;
8083 thread_args[t].rzx_amount = alloc_goal / threads;
8084 thread_args[t].rzx_bufsize = bufsize;
8085 thread_args[t].rzx_buffer = buffer;
8086 thread_args[t].rzx_alloc_max = alloc_goal;
8087 thread_args[t].rzx_spa = spa;
8088 run_threads[t] = thread_create(NULL, 0, ztest_rzx_thread,
8089 &thread_args[t], 0, NULL, TS_RUN | TS_JOINABLE,
8090 defclsyspri);
8091 }
8092
8093 /*
8094 * Wait for all of the writers to complete.
8095 */
8096 for (t = 0; t < threads; t++)
8097 VERIFY0(thread_join(run_threads[t]));
8098
8099 /*
8100 * Close all datasets. This must be done after all the threads
8101 * are joined so we can be sure none of the datasets are in-use
8102 * by any of the threads.
8103 */
8104 for (t = 0; t < ztest_opts.zo_threads; t++) {
8105 if (t < ztest_opts.zo_datasets)
8106 ztest_dataset_close(t);
8107 }
8108
8109 txg_wait_synced(spa_get_dsl(spa), 0);
8110
8111 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
8112 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
8113
8114 umem_free(buffer, bufsize);
8115 umem_free(run_threads, threads * sizeof (kthread_t *));
8116 umem_free(thread_args, threads * sizeof (ztest_expand_io_t));
8117
8118 /* Set our reflow target to 25%, 50% or 75% of allocated size */
8119 uint_t multiple = ztest_random(3) + 1;
8120 uint64_t reflow_max = (rzvd->vdev_stat.vs_alloc * multiple) / 4;
8121 raidz_expand_max_reflow_bytes = reflow_max;
8122
8123 if (ztest_opts.zo_verbose >= 1) {
8124 (void) printf("running raidz expansion test, killing when "
8125 "reflow reaches %llu bytes (%u/4 of allocated space)\n",
8126 (u_longlong_t)reflow_max, multiple);
8127 }
8128
8129 /* XXX - do we want some I/O load during the reflow? */
8130
8131 /*
8132 * Use a disk size that is larger than existing ones
8133 */
8134 cvd = rzvd->vdev_child[0];
8135 csize = vdev_get_min_asize(cvd);
8136 csize += csize / 10;
8137 /*
8138 * Path to vdev to be attached
8139 */
8140 char *newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
8141 (void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
8142 ztest_opts.zo_dir, ztest_opts.zo_pool, rzvd->vdev_children);
8143 /*
8144 * Build the nvlist describing newpath.
8145 */
8146 root = make_vdev_root(newpath, NULL, NULL, csize, ztest_get_ashift(),
8147 NULL, 0, 0, 1);
8148 /*
8149 * Expand the raidz vdev by attaching the new disk
8150 */
8151 if (ztest_opts.zo_verbose >= 1) {
8152 (void) printf("expanding raidz: %d wide to %d wide with '%s'\n",
8153 (int)rzvd->vdev_children, (int)rzvd->vdev_children + 1,
8154 newpath);
8155 }
8156 error = spa_vdev_attach(spa, rzvd->vdev_guid, root, B_FALSE, B_FALSE);
8157 nvlist_free(root);
8158 if (error != 0) {
8159 fatal(0, "raidz expand: attach (%s %llu) returned %d",
8160 newpath, (long long)csize, error);
8161 }
8162
8163 /*
8164 * Wait for reflow to begin
8165 */
8166 while (spa->spa_raidz_expand == NULL) {
8167 txg_wait_synced(spa_get_dsl(spa), 0);
8168 (void) poll(NULL, 0, 100); /* wait 1/10 second */
8169 }
8170 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8171 (void) spa_raidz_expand_get_stats(spa, pres);
8172 spa_config_exit(spa, SCL_CONFIG, FTAG);
8173 while (pres->pres_state != DSS_SCANNING) {
8174 txg_wait_synced(spa_get_dsl(spa), 0);
8175 (void) poll(NULL, 0, 100); /* wait 1/10 second */
8176 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8177 (void) spa_raidz_expand_get_stats(spa, pres);
8178 spa_config_exit(spa, SCL_CONFIG, FTAG);
8179 }
8180
8181 ASSERT3U(pres->pres_state, ==, DSS_SCANNING);
8182 ASSERT3U(pres->pres_to_reflow, !=, 0);
8183 /*
8184 * Set so when we are killed we go to raidz checking rather than
8185 * restarting test.
8186 */
8187 ztest_shared_opts->zo_raidz_expand_test = RAIDZ_EXPAND_KILLED;
8188 if (ztest_opts.zo_verbose >= 1) {
8189 (void) printf("raidz expansion reflow started, waiting for "
8190 "%llu bytes to be copied\n", (u_longlong_t)reflow_max);
8191 }
8192
8193 /*
8194 * Wait for reflow maximum to be reached and then kill the test
8195 */
8196 while (pres->pres_reflowed < reflow_max) {
8197 txg_wait_synced(spa_get_dsl(spa), 0);
8198 (void) poll(NULL, 0, 100); /* wait 1/10 second */
8199 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8200 (void) spa_raidz_expand_get_stats(spa, pres);
8201 spa_config_exit(spa, SCL_CONFIG, FTAG);
8202 }
8203
8204 /* Reset the reflow pause before killing */
8205 raidz_expand_max_reflow_bytes = 0;
8206
8207 if (ztest_opts.zo_verbose >= 1) {
8208 (void) printf("killing raidz expansion test after reflow "
8209 "reached %llu bytes\n", (u_longlong_t)pres->pres_reflowed);
8210 }
8211
8212 /*
8213 * Kill ourself to simulate a panic during a reflow. Our parent will
8214 * restart the test and the changed flag value will drive the test
8215 * through the scrub/check code to verify the pool is not corrupted.
8216 */
8217 ztest_kill(zs);
8218 }
8219
8220 static void
8221 ztest_generic_run(ztest_shared_t *zs, spa_t *spa)
8222 {
8223 kthread_t **run_threads;
8224 int t;
8225
8226 run_threads = umem_zalloc(ztest_opts.zo_threads * sizeof (kthread_t *),
8227 UMEM_NOFAIL);
8228
8229 /*
8230 * Kick off all the tests that run in parallel.
8231 */
8232 for (t = 0; t < ztest_opts.zo_threads; t++) {
8233 if (t < ztest_opts.zo_datasets && ztest_dataset_open(t) != 0) {
8234 umem_free(run_threads, ztest_opts.zo_threads *
8235 sizeof (kthread_t *));
8236 return;
8237 }
8238
8239 run_threads[t] = thread_create(NULL, 0, ztest_thread,
8240 (void *)(uintptr_t)t, 0, NULL, TS_RUN | TS_JOINABLE,
8241 defclsyspri);
8242 }
8243
8244 /*
8245 * Wait for all of the tests to complete.
8246 */
8247 for (t = 0; t < ztest_opts.zo_threads; t++)
8248 VERIFY0(thread_join(run_threads[t]));
8249
8250 /*
8251 * Close all datasets. This must be done after all the threads
8252 * are joined so we can be sure none of the datasets are in-use
8253 * by any of the threads.
8254 */
8255 for (t = 0; t < ztest_opts.zo_threads; t++) {
8256 if (t < ztest_opts.zo_datasets)
8257 ztest_dataset_close(t);
8258 }
8259
8260 txg_wait_synced(spa_get_dsl(spa), 0);
8261
8262 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
8263 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
8264
8265 umem_free(run_threads, ztest_opts.zo_threads * sizeof (kthread_t *));
8266 }
8267
8268 /*
8269 * Setup our test context and kick off threads to run tests on all datasets
8270 * in parallel.
8271 */
8272 static void
8273 ztest_run(ztest_shared_t *zs)
8274 {
8275 spa_t *spa;
8276 objset_t *os;
8277 kthread_t *resume_thread, *deadman_thread;
8278 uint64_t object;
8279 int error;
8280 int t, d;
8281
8282 ztest_exiting = B_FALSE;
8283
8284 /*
8285 * Initialize parent/child shared state.
8286 */
8287 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
8288 mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
8289 VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
8290
8291 zs->zs_thread_start = gethrtime();
8292 zs->zs_thread_stop =
8293 zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC;
8294 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
8295 zs->zs_thread_kill = zs->zs_thread_stop;
8296 if (ztest_random(100) < ztest_opts.zo_killrate) {
8297 zs->zs_thread_kill -=
8298 ztest_random(ztest_opts.zo_passtime * NANOSEC);
8299 }
8300
8301 mutex_init(&zcl.zcl_callbacks_lock, NULL, MUTEX_DEFAULT, NULL);
8302
8303 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
8304 offsetof(ztest_cb_data_t, zcd_node));
8305
8306 /*
8307 * Open our pool. It may need to be imported first depending on
8308 * what tests were running when the previous pass was terminated.
8309 */
8310 raidz_scratch_verify();
8311 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
8312 error = spa_open(ztest_opts.zo_pool, &spa, FTAG);
8313 if (error) {
8314 VERIFY3S(error, ==, ENOENT);
8315 ztest_import_impl();
8316 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
8317 zs->zs_metaslab_sz =
8318 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
8319 }
8320
8321 metaslab_preload_limit = ztest_random(20) + 1;
8322 ztest_spa = spa;
8323
8324 /*
8325 * XXX - BUGBUG raidz expansion do not run this for generic for now
8326 */
8327 if (ztest_opts.zo_raidz_expand_test != RAIDZ_EXPAND_NONE)
8328 VERIFY0(vdev_raidz_impl_set("cycle"));
8329
8330 dmu_objset_stats_t dds;
8331 VERIFY0(ztest_dmu_objset_own(ztest_opts.zo_pool,
8332 DMU_OST_ANY, B_TRUE, B_TRUE, FTAG, &os));
8333 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
8334 dmu_objset_fast_stat(os, &dds);
8335 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
8336 dmu_objset_disown(os, B_TRUE, FTAG);
8337
8338 /* Give the dedicated raidz expansion test more grace time */
8339 if (ztest_opts.zo_raidz_expand_test != RAIDZ_EXPAND_NONE)
8340 zfs_deadman_synctime_ms *= 2;
8341
8342 /*
8343 * Create a thread to periodically resume suspended I/O.
8344 */
8345 resume_thread = thread_create(NULL, 0, ztest_resume_thread,
8346 spa, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
8347
8348 /*
8349 * Create a deadman thread and set to panic if we hang.
8350 */
8351 deadman_thread = thread_create(NULL, 0, ztest_deadman_thread,
8352 zs, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
8353
8354 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
8355
8356 /*
8357 * Verify that we can safely inquire about any object,
8358 * whether it's allocated or not. To make it interesting,
8359 * we probe a 5-wide window around each power of two.
8360 * This hits all edge cases, including zero and the max.
8361 */
8362 for (t = 0; t < 64; t++) {
8363 for (d = -5; d <= 5; d++) {
8364 error = dmu_object_info(spa->spa_meta_objset,
8365 (1ULL << t) + d, NULL);
8366 ASSERT(error == 0 || error == ENOENT ||
8367 error == EINVAL);
8368 }
8369 }
8370
8371 /*
8372 * If we got any ENOSPC errors on the previous run, destroy something.
8373 */
8374 if (zs->zs_enospc_count != 0) {
8375 /* Not expecting ENOSPC errors during raidz expansion tests */
8376 ASSERT3U(ztest_opts.zo_raidz_expand_test, ==,
8377 RAIDZ_EXPAND_NONE);
8378
8379 int d = ztest_random(ztest_opts.zo_datasets);
8380 ztest_dataset_destroy(d);
8381 }
8382 zs->zs_enospc_count = 0;
8383
8384 /*
8385 * If we were in the middle of ztest_device_removal() and were killed
8386 * we need to ensure the removal and scrub complete before running
8387 * any tests that check ztest_device_removal_active. The removal will
8388 * be restarted automatically when the spa is opened, but we need to
8389 * initiate the scrub manually if it is not already in progress. Note
8390 * that we always run the scrub whenever an indirect vdev exists
8391 * because we have no way of knowing for sure if ztest_device_removal()
8392 * fully completed its scrub before the pool was reimported.
8393 *
8394 * Does not apply for the RAIDZ expansion specific test runs
8395 */
8396 if (ztest_opts.zo_raidz_expand_test == RAIDZ_EXPAND_NONE &&
8397 (spa->spa_removing_phys.sr_state == DSS_SCANNING ||
8398 spa->spa_removing_phys.sr_prev_indirect_vdev != -1)) {
8399 while (spa->spa_removing_phys.sr_state == DSS_SCANNING)
8400 txg_wait_synced(spa_get_dsl(spa), 0);
8401
8402 error = ztest_scrub_impl(spa);
8403 if (error == EBUSY)
8404 error = 0;
8405 ASSERT0(error);
8406 }
8407
8408 if (ztest_opts.zo_verbose >= 4)
8409 (void) printf("starting main threads...\n");
8410
8411 /*
8412 * Replay all logs of all datasets in the pool. This is primarily for
8413 * temporary datasets which wouldn't otherwise get replayed, which
8414 * can trigger failures when attempting to offline a SLOG in
8415 * ztest_fault_inject().
8416 */
8417 (void) dmu_objset_find(ztest_opts.zo_pool, ztest_replay_zil_cb,
8418 NULL, DS_FIND_CHILDREN);
8419
8420 if (ztest_opts.zo_raidz_expand_test == RAIDZ_EXPAND_REQUESTED)
8421 ztest_raidz_expand_run(zs, spa);
8422 else if (ztest_opts.zo_raidz_expand_test == RAIDZ_EXPAND_KILLED)
8423 ztest_raidz_expand_check(spa);
8424 else
8425 ztest_generic_run(zs, spa);
8426
8427 /* Kill the resume and deadman threads */
8428 ztest_exiting = B_TRUE;
8429 VERIFY0(thread_join(resume_thread));
8430 VERIFY0(thread_join(deadman_thread));
8431 ztest_resume(spa);
8432
8433 /*
8434 * Right before closing the pool, kick off a bunch of async I/O;
8435 * spa_close() should wait for it to complete.
8436 */
8437 for (object = 1; object < 50; object++) {
8438 dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20,
8439 ZIO_PRIORITY_SYNC_READ);
8440 }
8441
8442 /* Verify that at least one commit cb was called in a timely fashion */
8443 if (zc_cb_counter >= ZTEST_COMMIT_CB_MIN_REG)
8444 VERIFY0(zc_min_txg_delay);
8445
8446 spa_close(spa, FTAG);
8447
8448 /*
8449 * Verify that we can loop over all pools.
8450 */
8451 mutex_enter(&spa_namespace_lock);
8452 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
8453 if (ztest_opts.zo_verbose > 3)
8454 (void) printf("spa_next: found %s\n", spa_name(spa));
8455 mutex_exit(&spa_namespace_lock);
8456
8457 /*
8458 * Verify that we can export the pool and reimport it under a
8459 * different name.
8460 */
8461 if ((ztest_random(2) == 0) && !ztest_opts.zo_mmp_test) {
8462 char name[ZFS_MAX_DATASET_NAME_LEN];
8463 (void) snprintf(name, sizeof (name), "%s_import",
8464 ztest_opts.zo_pool);
8465 ztest_spa_import_export(ztest_opts.zo_pool, name);
8466 ztest_spa_import_export(name, ztest_opts.zo_pool);
8467 }
8468
8469 kernel_fini();
8470
8471 list_destroy(&zcl.zcl_callbacks);
8472 mutex_destroy(&zcl.zcl_callbacks_lock);
8473 (void) pthread_rwlock_destroy(&ztest_name_lock);
8474 mutex_destroy(&ztest_vdev_lock);
8475 mutex_destroy(&ztest_checkpoint_lock);
8476 }
8477
8478 static void
8479 print_time(hrtime_t t, char *timebuf)
8480 {
8481 hrtime_t s = t / NANOSEC;
8482 hrtime_t m = s / 60;
8483 hrtime_t h = m / 60;
8484 hrtime_t d = h / 24;
8485
8486 s -= m * 60;
8487 m -= h * 60;
8488 h -= d * 24;
8489
8490 timebuf[0] = '\0';
8491
8492 if (d)
8493 (void) sprintf(timebuf,
8494 "%llud%02lluh%02llum%02llus", d, h, m, s);
8495 else if (h)
8496 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
8497 else if (m)
8498 (void) sprintf(timebuf, "%llum%02llus", m, s);
8499 else
8500 (void) sprintf(timebuf, "%llus", s);
8501 }
8502
8503 static nvlist_t *
8504 make_random_props(void)
8505 {
8506 nvlist_t *props;
8507
8508 props = fnvlist_alloc();
8509
8510 if (ztest_random(2) == 0)
8511 return (props);
8512
8513 fnvlist_add_uint64(props,
8514 zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE), 1);
8515
8516 return (props);
8517 }
8518
8519 /*
8520 * Create a storage pool with the given name and initial vdev size.
8521 * Then test spa_freeze() functionality.
8522 */
8523 static void
8524 ztest_init(ztest_shared_t *zs)
8525 {
8526 spa_t *spa;
8527 nvlist_t *nvroot, *props;
8528 int i;
8529
8530 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
8531 mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
8532 VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
8533
8534 raidz_scratch_verify();
8535 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
8536
8537 /*
8538 * Create the storage pool.
8539 */
8540 (void) spa_destroy(ztest_opts.zo_pool);
8541 ztest_shared->zs_vdev_next_leaf = 0;
8542 zs->zs_splits = 0;
8543 zs->zs_mirrors = ztest_opts.zo_mirrors;
8544 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
8545 NULL, ztest_opts.zo_raid_children, zs->zs_mirrors, 1);
8546 props = make_random_props();
8547
8548 /*
8549 * We don't expect the pool to suspend unless maxfaults == 0,
8550 * in which case ztest_fault_inject() temporarily takes away
8551 * the only valid replica.
8552 */
8553 fnvlist_add_uint64(props,
8554 zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
8555 MAXFAULTS(zs) ? ZIO_FAILURE_MODE_PANIC : ZIO_FAILURE_MODE_WAIT);
8556
8557 for (i = 0; i < SPA_FEATURES; i++) {
8558 char *buf;
8559
8560 if (!spa_feature_table[i].fi_zfs_mod_supported)
8561 continue;
8562
8563 /*
8564 * 75% chance of using the log space map feature. We want ztest
8565 * to exercise both the code paths that use the log space map
8566 * feature and the ones that don't.
8567 */
8568 if (i == SPA_FEATURE_LOG_SPACEMAP && ztest_random(4) == 0)
8569 continue;
8570
8571 VERIFY3S(-1, !=, asprintf(&buf, "feature@%s",
8572 spa_feature_table[i].fi_uname));
8573 fnvlist_add_uint64(props, buf, 0);
8574 free(buf);
8575 }
8576
8577 VERIFY0(spa_create(ztest_opts.zo_pool, nvroot, props, NULL, NULL));
8578 fnvlist_free(nvroot);
8579 fnvlist_free(props);
8580
8581 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
8582 zs->zs_metaslab_sz =
8583 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
8584 zs->zs_guid = spa_guid(spa);
8585 spa_close(spa, FTAG);
8586
8587 kernel_fini();
8588
8589 if (!ztest_opts.zo_mmp_test) {
8590 ztest_run_zdb(zs->zs_guid);
8591 ztest_freeze();
8592 ztest_run_zdb(zs->zs_guid);
8593 }
8594
8595 (void) pthread_rwlock_destroy(&ztest_name_lock);
8596 mutex_destroy(&ztest_vdev_lock);
8597 mutex_destroy(&ztest_checkpoint_lock);
8598 }
8599
8600 static void
8601 setup_data_fd(void)
8602 {
8603 static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX";
8604
8605 ztest_fd_data = mkstemp(ztest_name_data);
8606 ASSERT3S(ztest_fd_data, >=, 0);
8607 (void) unlink(ztest_name_data);
8608 }
8609
8610 static int
8611 shared_data_size(ztest_shared_hdr_t *hdr)
8612 {
8613 int size;
8614
8615 size = hdr->zh_hdr_size;
8616 size += hdr->zh_opts_size;
8617 size += hdr->zh_size;
8618 size += hdr->zh_stats_size * hdr->zh_stats_count;
8619 size += hdr->zh_ds_size * hdr->zh_ds_count;
8620 size += hdr->zh_scratch_state_size;
8621
8622 return (size);
8623 }
8624
8625 static void
8626 setup_hdr(void)
8627 {
8628 int size;
8629 ztest_shared_hdr_t *hdr;
8630
8631 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
8632 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
8633 ASSERT3P(hdr, !=, MAP_FAILED);
8634
8635 VERIFY0(ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t)));
8636
8637 hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t);
8638 hdr->zh_opts_size = sizeof (ztest_shared_opts_t);
8639 hdr->zh_size = sizeof (ztest_shared_t);
8640 hdr->zh_stats_size = sizeof (ztest_shared_callstate_t);
8641 hdr->zh_stats_count = ZTEST_FUNCS;
8642 hdr->zh_ds_size = sizeof (ztest_shared_ds_t);
8643 hdr->zh_ds_count = ztest_opts.zo_datasets;
8644 hdr->zh_scratch_state_size = sizeof (ztest_shared_scratch_state_t);
8645
8646 size = shared_data_size(hdr);
8647 VERIFY0(ftruncate(ztest_fd_data, size));
8648
8649 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
8650 }
8651
8652 static void
8653 setup_data(void)
8654 {
8655 int size, offset;
8656 ztest_shared_hdr_t *hdr;
8657 uint8_t *buf;
8658
8659 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
8660 PROT_READ, MAP_SHARED, ztest_fd_data, 0);
8661 ASSERT3P(hdr, !=, MAP_FAILED);
8662
8663 size = shared_data_size(hdr);
8664
8665 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
8666 hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()),
8667 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
8668 ASSERT3P(hdr, !=, MAP_FAILED);
8669 buf = (uint8_t *)hdr;
8670
8671 offset = hdr->zh_hdr_size;
8672 ztest_shared_opts = (void *)&buf[offset];
8673 offset += hdr->zh_opts_size;
8674 ztest_shared = (void *)&buf[offset];
8675 offset += hdr->zh_size;
8676 ztest_shared_callstate = (void *)&buf[offset];
8677 offset += hdr->zh_stats_size * hdr->zh_stats_count;
8678 ztest_shared_ds = (void *)&buf[offset];
8679 offset += hdr->zh_ds_size * hdr->zh_ds_count;
8680 ztest_scratch_state = (void *)&buf[offset];
8681 }
8682
8683 static boolean_t
8684 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp)
8685 {
8686 pid_t pid;
8687 int status;
8688 char *cmdbuf = NULL;
8689
8690 pid = fork();
8691
8692 if (cmd == NULL) {
8693 cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
8694 (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN);
8695 cmd = cmdbuf;
8696 }
8697
8698 if (pid == -1)
8699 fatal(B_TRUE, "fork failed");
8700
8701 if (pid == 0) { /* child */
8702 char fd_data_str[12];
8703
8704 VERIFY3S(11, >=,
8705 snprintf(fd_data_str, 12, "%d", ztest_fd_data));
8706 VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1));
8707
8708 if (libpath != NULL) {
8709 const char *curlp = getenv("LD_LIBRARY_PATH");
8710 if (curlp == NULL)
8711 VERIFY0(setenv("LD_LIBRARY_PATH", libpath, 1));
8712 else {
8713 char *newlp = NULL;
8714 VERIFY3S(-1, !=,
8715 asprintf(&newlp, "%s:%s", libpath, curlp));
8716 VERIFY0(setenv("LD_LIBRARY_PATH", newlp, 1));
8717 free(newlp);
8718 }
8719 }
8720 (void) execl(cmd, cmd, (char *)NULL);
8721 ztest_dump_core = B_FALSE;
8722 fatal(B_TRUE, "exec failed: %s", cmd);
8723 }
8724
8725 if (cmdbuf != NULL) {
8726 umem_free(cmdbuf, MAXPATHLEN);
8727 cmd = NULL;
8728 }
8729
8730 while (waitpid(pid, &status, 0) != pid)
8731 continue;
8732 if (statusp != NULL)
8733 *statusp = status;
8734
8735 if (WIFEXITED(status)) {
8736 if (WEXITSTATUS(status) != 0) {
8737 (void) fprintf(stderr, "child exited with code %d\n",
8738 WEXITSTATUS(status));
8739 exit(2);
8740 }
8741 return (B_FALSE);
8742 } else if (WIFSIGNALED(status)) {
8743 if (!ignorekill || WTERMSIG(status) != SIGKILL) {
8744 (void) fprintf(stderr, "child died with signal %d\n",
8745 WTERMSIG(status));
8746 exit(3);
8747 }
8748 return (B_TRUE);
8749 } else {
8750 (void) fprintf(stderr, "something strange happened to child\n");
8751 exit(4);
8752 }
8753 }
8754
8755 static void
8756 ztest_run_init(void)
8757 {
8758 int i;
8759
8760 ztest_shared_t *zs = ztest_shared;
8761
8762 /*
8763 * Blow away any existing copy of zpool.cache
8764 */
8765 (void) remove(spa_config_path);
8766
8767 if (ztest_opts.zo_init == 0) {
8768 if (ztest_opts.zo_verbose >= 1)
8769 (void) printf("Importing pool %s\n",
8770 ztest_opts.zo_pool);
8771 ztest_import(zs);
8772 return;
8773 }
8774
8775 /*
8776 * Create and initialize our storage pool.
8777 */
8778 for (i = 1; i <= ztest_opts.zo_init; i++) {
8779 memset(zs, 0, sizeof (*zs));
8780 if (ztest_opts.zo_verbose >= 3 &&
8781 ztest_opts.zo_init != 1) {
8782 (void) printf("ztest_init(), pass %d\n", i);
8783 }
8784 ztest_init(zs);
8785 }
8786 }
8787
8788 int
8789 main(int argc, char **argv)
8790 {
8791 int kills = 0;
8792 int iters = 0;
8793 int older = 0;
8794 int newer = 0;
8795 ztest_shared_t *zs;
8796 ztest_info_t *zi;
8797 ztest_shared_callstate_t *zc;
8798 char timebuf[100];
8799 char numbuf[NN_NUMBUF_SZ];
8800 char *cmd;
8801 boolean_t hasalt;
8802 int f, err;
8803 char *fd_data_str = getenv("ZTEST_FD_DATA");
8804 struct sigaction action;
8805
8806 (void) setvbuf(stdout, NULL, _IOLBF, 0);
8807
8808 dprintf_setup(&argc, argv);
8809 zfs_deadman_synctime_ms = 300000;
8810 zfs_deadman_checktime_ms = 30000;
8811 /*
8812 * As two-word space map entries may not come up often (especially
8813 * if pool and vdev sizes are small) we want to force at least some
8814 * of them so the feature get tested.
8815 */
8816 zfs_force_some_double_word_sm_entries = B_TRUE;
8817
8818 /*
8819 * Verify that even extensively damaged split blocks with many
8820 * segments can be reconstructed in a reasonable amount of time
8821 * when reconstruction is known to be possible.
8822 *
8823 * Note: the lower this value is, the more damage we inflict, and
8824 * the more time ztest spends in recovering that damage. We chose
8825 * to induce damage 1/100th of the time so recovery is tested but
8826 * not so frequently that ztest doesn't get to test other code paths.
8827 */
8828 zfs_reconstruct_indirect_damage_fraction = 100;
8829
8830 action.sa_handler = sig_handler;
8831 sigemptyset(&action.sa_mask);
8832 action.sa_flags = 0;
8833
8834 if (sigaction(SIGSEGV, &action, NULL) < 0) {
8835 (void) fprintf(stderr, "ztest: cannot catch SIGSEGV: %s.\n",
8836 strerror(errno));
8837 exit(EXIT_FAILURE);
8838 }
8839
8840 if (sigaction(SIGABRT, &action, NULL) < 0) {
8841 (void) fprintf(stderr, "ztest: cannot catch SIGABRT: %s.\n",
8842 strerror(errno));
8843 exit(EXIT_FAILURE);
8844 }
8845
8846 /*
8847 * Force random_get_bytes() to use /dev/urandom in order to prevent
8848 * ztest from needlessly depleting the system entropy pool.
8849 */
8850 random_path = "/dev/urandom";
8851 ztest_fd_rand = open(random_path, O_RDONLY | O_CLOEXEC);
8852 ASSERT3S(ztest_fd_rand, >=, 0);
8853
8854 if (!fd_data_str) {
8855 process_options(argc, argv);
8856
8857 setup_data_fd();
8858 setup_hdr();
8859 setup_data();
8860 memcpy(ztest_shared_opts, &ztest_opts,
8861 sizeof (*ztest_shared_opts));
8862 } else {
8863 ztest_fd_data = atoi(fd_data_str);
8864 setup_data();
8865 memcpy(&ztest_opts, ztest_shared_opts, sizeof (ztest_opts));
8866 }
8867 ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count);
8868
8869 err = ztest_set_global_vars();
8870 if (err != 0 && !fd_data_str) {
8871 /* error message done by ztest_set_global_vars */
8872 exit(EXIT_FAILURE);
8873 } else {
8874 /* children should not be spawned if setting gvars fails */
8875 VERIFY3S(err, ==, 0);
8876 }
8877
8878 /* Override location of zpool.cache */
8879 VERIFY3S(asprintf((char **)&spa_config_path, "%s/zpool.cache",
8880 ztest_opts.zo_dir), !=, -1);
8881
8882 ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t),
8883 UMEM_NOFAIL);
8884 zs = ztest_shared;
8885
8886 if (fd_data_str) {
8887 metaslab_force_ganging = ztest_opts.zo_metaslab_force_ganging;
8888 metaslab_df_alloc_threshold =
8889 zs->zs_metaslab_df_alloc_threshold;
8890
8891 if (zs->zs_do_init)
8892 ztest_run_init();
8893 else
8894 ztest_run(zs);
8895 exit(0);
8896 }
8897
8898 hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0);
8899
8900 if (ztest_opts.zo_verbose >= 1) {
8901 (void) printf("%"PRIu64" vdevs, %d datasets, %d threads, "
8902 "%d %s disks, parity %d, %"PRIu64" seconds...\n\n",
8903 ztest_opts.zo_vdevs,
8904 ztest_opts.zo_datasets,
8905 ztest_opts.zo_threads,
8906 ztest_opts.zo_raid_children,
8907 ztest_opts.zo_raid_type,
8908 ztest_opts.zo_raid_parity,
8909 ztest_opts.zo_time);
8910 }
8911
8912 cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
8913 (void) strlcpy(cmd, getexecname(), MAXNAMELEN);
8914
8915 zs->zs_do_init = B_TRUE;
8916 if (strlen(ztest_opts.zo_alt_ztest) != 0) {
8917 if (ztest_opts.zo_verbose >= 1) {
8918 (void) printf("Executing older ztest for "
8919 "initialization: %s\n", ztest_opts.zo_alt_ztest);
8920 }
8921 VERIFY(!exec_child(ztest_opts.zo_alt_ztest,
8922 ztest_opts.zo_alt_libpath, B_FALSE, NULL));
8923 } else {
8924 VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL));
8925 }
8926 zs->zs_do_init = B_FALSE;
8927
8928 zs->zs_proc_start = gethrtime();
8929 zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC;
8930
8931 for (f = 0; f < ZTEST_FUNCS; f++) {
8932 zi = &ztest_info[f];
8933 zc = ZTEST_GET_SHARED_CALLSTATE(f);
8934 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
8935 zc->zc_next = UINT64_MAX;
8936 else
8937 zc->zc_next = zs->zs_proc_start +
8938 ztest_random(2 * zi->zi_interval[0] + 1);
8939 }
8940
8941 /*
8942 * Run the tests in a loop. These tests include fault injection
8943 * to verify that self-healing data works, and forced crashes
8944 * to verify that we never lose on-disk consistency.
8945 */
8946 while (gethrtime() < zs->zs_proc_stop) {
8947 int status;
8948 boolean_t killed;
8949
8950 /*
8951 * Initialize the workload counters for each function.
8952 */
8953 for (f = 0; f < ZTEST_FUNCS; f++) {
8954 zc = ZTEST_GET_SHARED_CALLSTATE(f);
8955 zc->zc_count = 0;
8956 zc->zc_time = 0;
8957 }
8958
8959 /* Set the allocation switch size */
8960 zs->zs_metaslab_df_alloc_threshold =
8961 ztest_random(zs->zs_metaslab_sz / 4) + 1;
8962
8963 if (!hasalt || ztest_random(2) == 0) {
8964 if (hasalt && ztest_opts.zo_verbose >= 1) {
8965 (void) printf("Executing newer ztest: %s\n",
8966 cmd);
8967 }
8968 newer++;
8969 killed = exec_child(cmd, NULL, B_TRUE, &status);
8970 } else {
8971 if (hasalt && ztest_opts.zo_verbose >= 1) {
8972 (void) printf("Executing older ztest: %s\n",
8973 ztest_opts.zo_alt_ztest);
8974 }
8975 older++;
8976 killed = exec_child(ztest_opts.zo_alt_ztest,
8977 ztest_opts.zo_alt_libpath, B_TRUE, &status);
8978 }
8979
8980 if (killed)
8981 kills++;
8982 iters++;
8983
8984 if (ztest_opts.zo_verbose >= 1) {
8985 hrtime_t now = gethrtime();
8986
8987 now = MIN(now, zs->zs_proc_stop);
8988 print_time(zs->zs_proc_stop - now, timebuf);
8989 nicenum(zs->zs_space, numbuf, sizeof (numbuf));
8990
8991 (void) printf("Pass %3d, %8s, %3"PRIu64" ENOSPC, "
8992 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
8993 iters,
8994 WIFEXITED(status) ? "Complete" : "SIGKILL",
8995 zs->zs_enospc_count,
8996 100.0 * zs->zs_alloc / zs->zs_space,
8997 numbuf,
8998 100.0 * (now - zs->zs_proc_start) /
8999 (ztest_opts.zo_time * NANOSEC), timebuf);
9000 }
9001
9002 if (ztest_opts.zo_verbose >= 2) {
9003 (void) printf("\nWorkload summary:\n\n");
9004 (void) printf("%7s %9s %s\n",
9005 "Calls", "Time", "Function");
9006 (void) printf("%7s %9s %s\n",
9007 "-----", "----", "--------");
9008 for (f = 0; f < ZTEST_FUNCS; f++) {
9009 zi = &ztest_info[f];
9010 zc = ZTEST_GET_SHARED_CALLSTATE(f);
9011 print_time(zc->zc_time, timebuf);
9012 (void) printf("%7"PRIu64" %9s %s\n",
9013 zc->zc_count, timebuf,
9014 zi->zi_funcname);
9015 }
9016 (void) printf("\n");
9017 }
9018
9019 if (!ztest_opts.zo_mmp_test)
9020 ztest_run_zdb(zs->zs_guid);
9021 if (ztest_shared_opts->zo_raidz_expand_test ==
9022 RAIDZ_EXPAND_CHECKED)
9023 break; /* raidz expand test complete */
9024 }
9025
9026 if (ztest_opts.zo_verbose >= 1) {
9027 if (hasalt) {
9028 (void) printf("%d runs of older ztest: %s\n", older,
9029 ztest_opts.zo_alt_ztest);
9030 (void) printf("%d runs of newer ztest: %s\n", newer,
9031 cmd);
9032 }
9033 (void) printf("%d killed, %d completed, %.0f%% kill rate\n",
9034 kills, iters - kills, (100.0 * kills) / MAX(1, iters));
9035 }
9036
9037 umem_free(cmd, MAXNAMELEN);
9038
9039 return (0);
9040 }