]> git.proxmox.com Git - mirror_zfs.git/blob - cmd/ztest.c
Introduce BLAKE3 checksums as an OpenZFS feature
[mirror_zfs.git] / cmd / ztest.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2013 Steven Hartland. All rights reserved.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2017 Joyent, Inc.
28 * Copyright (c) 2017, Intel Corporation.
29 */
30
31 /*
32 * The objective of this program is to provide a DMU/ZAP/SPA stress test
33 * that runs entirely in userland, is easy to use, and easy to extend.
34 *
35 * The overall design of the ztest program is as follows:
36 *
37 * (1) For each major functional area (e.g. adding vdevs to a pool,
38 * creating and destroying datasets, reading and writing objects, etc)
39 * we have a simple routine to test that functionality. These
40 * individual routines do not have to do anything "stressful".
41 *
42 * (2) We turn these simple functionality tests into a stress test by
43 * running them all in parallel, with as many threads as desired,
44 * and spread across as many datasets, objects, and vdevs as desired.
45 *
46 * (3) While all this is happening, we inject faults into the pool to
47 * verify that self-healing data really works.
48 *
49 * (4) Every time we open a dataset, we change its checksum and compression
50 * functions. Thus even individual objects vary from block to block
51 * in which checksum they use and whether they're compressed.
52 *
53 * (5) To verify that we never lose on-disk consistency after a crash,
54 * we run the entire test in a child of the main process.
55 * At random times, the child self-immolates with a SIGKILL.
56 * This is the software equivalent of pulling the power cord.
57 * The parent then runs the test again, using the existing
58 * storage pool, as many times as desired. If backwards compatibility
59 * testing is enabled ztest will sometimes run the "older" version
60 * of ztest after a SIGKILL.
61 *
62 * (6) To verify that we don't have future leaks or temporal incursions,
63 * many of the functional tests record the transaction group number
64 * as part of their data. When reading old data, they verify that
65 * the transaction group number is less than the current, open txg.
66 * If you add a new test, please do this if applicable.
67 *
68 * (7) Threads are created with a reduced stack size, for sanity checking.
69 * Therefore, it's important not to allocate huge buffers on the stack.
70 *
71 * When run with no arguments, ztest runs for about five minutes and
72 * produces no output if successful. To get a little bit of information,
73 * specify -V. To get more information, specify -VV, and so on.
74 *
75 * To turn this into an overnight stress test, use -T to specify run time.
76 *
77 * You can ask more vdevs [-v], datasets [-d], or threads [-t]
78 * to increase the pool capacity, fanout, and overall stress level.
79 *
80 * Use the -k option to set the desired frequency of kills.
81 *
82 * When ztest invokes itself it passes all relevant information through a
83 * temporary file which is mmap-ed in the child process. This allows shared
84 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
85 * stored at offset 0 of this file and contains information on the size and
86 * number of shared structures in the file. The information stored in this file
87 * must remain backwards compatible with older versions of ztest so that
88 * ztest can invoke them during backwards compatibility testing (-B).
89 */
90
91 #include <sys/zfs_context.h>
92 #include <sys/spa.h>
93 #include <sys/dmu.h>
94 #include <sys/txg.h>
95 #include <sys/dbuf.h>
96 #include <sys/zap.h>
97 #include <sys/dmu_objset.h>
98 #include <sys/poll.h>
99 #include <sys/stat.h>
100 #include <sys/time.h>
101 #include <sys/wait.h>
102 #include <sys/mman.h>
103 #include <sys/resource.h>
104 #include <sys/zio.h>
105 #include <sys/zil.h>
106 #include <sys/zil_impl.h>
107 #include <sys/vdev_draid.h>
108 #include <sys/vdev_impl.h>
109 #include <sys/vdev_file.h>
110 #include <sys/vdev_initialize.h>
111 #include <sys/vdev_raidz.h>
112 #include <sys/vdev_trim.h>
113 #include <sys/spa_impl.h>
114 #include <sys/metaslab_impl.h>
115 #include <sys/dsl_prop.h>
116 #include <sys/dsl_dataset.h>
117 #include <sys/dsl_destroy.h>
118 #include <sys/dsl_scan.h>
119 #include <sys/zio_checksum.h>
120 #include <sys/zfs_refcount.h>
121 #include <sys/zfeature.h>
122 #include <sys/dsl_userhold.h>
123 #include <sys/abd.h>
124 #include <sys/blake3.h>
125 #include <stdio.h>
126 #include <stdlib.h>
127 #include <unistd.h>
128 #include <getopt.h>
129 #include <signal.h>
130 #include <umem.h>
131 #include <ctype.h>
132 #include <math.h>
133 #include <sys/fs/zfs.h>
134 #include <zfs_fletcher.h>
135 #include <libnvpair.h>
136 #include <libzutil.h>
137 #include <sys/crypto/icp.h>
138 #if (__GLIBC__ && !__UCLIBC__)
139 #include <execinfo.h> /* for backtrace() */
140 #endif
141
142 static int ztest_fd_data = -1;
143 static int ztest_fd_rand = -1;
144
145 typedef struct ztest_shared_hdr {
146 uint64_t zh_hdr_size;
147 uint64_t zh_opts_size;
148 uint64_t zh_size;
149 uint64_t zh_stats_size;
150 uint64_t zh_stats_count;
151 uint64_t zh_ds_size;
152 uint64_t zh_ds_count;
153 } ztest_shared_hdr_t;
154
155 static ztest_shared_hdr_t *ztest_shared_hdr;
156
157 enum ztest_class_state {
158 ZTEST_VDEV_CLASS_OFF,
159 ZTEST_VDEV_CLASS_ON,
160 ZTEST_VDEV_CLASS_RND
161 };
162
163 #define ZO_GVARS_MAX_ARGLEN ((size_t)64)
164 #define ZO_GVARS_MAX_COUNT ((size_t)10)
165
166 typedef struct ztest_shared_opts {
167 char zo_pool[ZFS_MAX_DATASET_NAME_LEN];
168 char zo_dir[ZFS_MAX_DATASET_NAME_LEN];
169 char zo_alt_ztest[MAXNAMELEN];
170 char zo_alt_libpath[MAXNAMELEN];
171 uint64_t zo_vdevs;
172 uint64_t zo_vdevtime;
173 size_t zo_vdev_size;
174 int zo_ashift;
175 int zo_mirrors;
176 int zo_raid_children;
177 int zo_raid_parity;
178 char zo_raid_type[8];
179 int zo_draid_data;
180 int zo_draid_spares;
181 int zo_datasets;
182 int zo_threads;
183 uint64_t zo_passtime;
184 uint64_t zo_killrate;
185 int zo_verbose;
186 int zo_init;
187 uint64_t zo_time;
188 uint64_t zo_maxloops;
189 uint64_t zo_metaslab_force_ganging;
190 int zo_mmp_test;
191 int zo_special_vdevs;
192 int zo_dump_dbgmsg;
193 int zo_gvars_count;
194 char zo_gvars[ZO_GVARS_MAX_COUNT][ZO_GVARS_MAX_ARGLEN];
195 } ztest_shared_opts_t;
196
197 /* Default values for command line options. */
198 #define DEFAULT_POOL "ztest"
199 #define DEFAULT_VDEV_DIR "/tmp"
200 #define DEFAULT_VDEV_COUNT 5
201 #define DEFAULT_VDEV_SIZE (SPA_MINDEVSIZE * 4) /* 256m default size */
202 #define DEFAULT_VDEV_SIZE_STR "256M"
203 #define DEFAULT_ASHIFT SPA_MINBLOCKSHIFT
204 #define DEFAULT_MIRRORS 2
205 #define DEFAULT_RAID_CHILDREN 4
206 #define DEFAULT_RAID_PARITY 1
207 #define DEFAULT_DRAID_DATA 4
208 #define DEFAULT_DRAID_SPARES 1
209 #define DEFAULT_DATASETS_COUNT 7
210 #define DEFAULT_THREADS 23
211 #define DEFAULT_RUN_TIME 300 /* 300 seconds */
212 #define DEFAULT_RUN_TIME_STR "300 sec"
213 #define DEFAULT_PASS_TIME 60 /* 60 seconds */
214 #define DEFAULT_PASS_TIME_STR "60 sec"
215 #define DEFAULT_KILL_RATE 70 /* 70% kill rate */
216 #define DEFAULT_KILLRATE_STR "70%"
217 #define DEFAULT_INITS 1
218 #define DEFAULT_MAX_LOOPS 50 /* 5 minutes */
219 #define DEFAULT_FORCE_GANGING (64 << 10)
220 #define DEFAULT_FORCE_GANGING_STR "64K"
221
222 /* Simplifying assumption: -1 is not a valid default. */
223 #define NO_DEFAULT -1
224
225 static const ztest_shared_opts_t ztest_opts_defaults = {
226 .zo_pool = DEFAULT_POOL,
227 .zo_dir = DEFAULT_VDEV_DIR,
228 .zo_alt_ztest = { '\0' },
229 .zo_alt_libpath = { '\0' },
230 .zo_vdevs = DEFAULT_VDEV_COUNT,
231 .zo_ashift = DEFAULT_ASHIFT,
232 .zo_mirrors = DEFAULT_MIRRORS,
233 .zo_raid_children = DEFAULT_RAID_CHILDREN,
234 .zo_raid_parity = DEFAULT_RAID_PARITY,
235 .zo_raid_type = VDEV_TYPE_RAIDZ,
236 .zo_vdev_size = DEFAULT_VDEV_SIZE,
237 .zo_draid_data = DEFAULT_DRAID_DATA, /* data drives */
238 .zo_draid_spares = DEFAULT_DRAID_SPARES, /* distributed spares */
239 .zo_datasets = DEFAULT_DATASETS_COUNT,
240 .zo_threads = DEFAULT_THREADS,
241 .zo_passtime = DEFAULT_PASS_TIME,
242 .zo_killrate = DEFAULT_KILL_RATE,
243 .zo_verbose = 0,
244 .zo_mmp_test = 0,
245 .zo_init = DEFAULT_INITS,
246 .zo_time = DEFAULT_RUN_TIME,
247 .zo_maxloops = DEFAULT_MAX_LOOPS, /* max loops during spa_freeze() */
248 .zo_metaslab_force_ganging = DEFAULT_FORCE_GANGING,
249 .zo_special_vdevs = ZTEST_VDEV_CLASS_RND,
250 .zo_gvars_count = 0,
251 };
252
253 extern uint64_t metaslab_force_ganging;
254 extern uint64_t metaslab_df_alloc_threshold;
255 extern unsigned long zfs_deadman_synctime_ms;
256 extern int metaslab_preload_limit;
257 extern int zfs_compressed_arc_enabled;
258 extern int zfs_abd_scatter_enabled;
259 extern int dmu_object_alloc_chunk_shift;
260 extern boolean_t zfs_force_some_double_word_sm_entries;
261 extern unsigned long zio_decompress_fail_fraction;
262 extern unsigned long zfs_reconstruct_indirect_damage_fraction;
263
264
265 static ztest_shared_opts_t *ztest_shared_opts;
266 static ztest_shared_opts_t ztest_opts;
267 static char *ztest_wkeydata = "abcdefghijklmnopqrstuvwxyz012345";
268
269 typedef struct ztest_shared_ds {
270 uint64_t zd_seq;
271 } ztest_shared_ds_t;
272
273 static ztest_shared_ds_t *ztest_shared_ds;
274 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
275
276 #define BT_MAGIC 0x123456789abcdefULL
277 #define MAXFAULTS(zs) \
278 (MAX((zs)->zs_mirrors, 1) * (ztest_opts.zo_raid_parity + 1) - 1)
279
280 enum ztest_io_type {
281 ZTEST_IO_WRITE_TAG,
282 ZTEST_IO_WRITE_PATTERN,
283 ZTEST_IO_WRITE_ZEROES,
284 ZTEST_IO_TRUNCATE,
285 ZTEST_IO_SETATTR,
286 ZTEST_IO_REWRITE,
287 ZTEST_IO_TYPES
288 };
289
290 typedef struct ztest_block_tag {
291 uint64_t bt_magic;
292 uint64_t bt_objset;
293 uint64_t bt_object;
294 uint64_t bt_dnodesize;
295 uint64_t bt_offset;
296 uint64_t bt_gen;
297 uint64_t bt_txg;
298 uint64_t bt_crtxg;
299 } ztest_block_tag_t;
300
301 typedef struct bufwad {
302 uint64_t bw_index;
303 uint64_t bw_txg;
304 uint64_t bw_data;
305 } bufwad_t;
306
307 /*
308 * It would be better to use a rangelock_t per object. Unfortunately
309 * the rangelock_t is not a drop-in replacement for rl_t, because we
310 * still need to map from object ID to rangelock_t.
311 */
312 typedef enum {
313 RL_READER,
314 RL_WRITER,
315 RL_APPEND
316 } rl_type_t;
317
318 typedef struct rll {
319 void *rll_writer;
320 int rll_readers;
321 kmutex_t rll_lock;
322 kcondvar_t rll_cv;
323 } rll_t;
324
325 typedef struct rl {
326 uint64_t rl_object;
327 uint64_t rl_offset;
328 uint64_t rl_size;
329 rll_t *rl_lock;
330 } rl_t;
331
332 #define ZTEST_RANGE_LOCKS 64
333 #define ZTEST_OBJECT_LOCKS 64
334
335 /*
336 * Object descriptor. Used as a template for object lookup/create/remove.
337 */
338 typedef struct ztest_od {
339 uint64_t od_dir;
340 uint64_t od_object;
341 dmu_object_type_t od_type;
342 dmu_object_type_t od_crtype;
343 uint64_t od_blocksize;
344 uint64_t od_crblocksize;
345 uint64_t od_crdnodesize;
346 uint64_t od_gen;
347 uint64_t od_crgen;
348 char od_name[ZFS_MAX_DATASET_NAME_LEN];
349 } ztest_od_t;
350
351 /*
352 * Per-dataset state.
353 */
354 typedef struct ztest_ds {
355 ztest_shared_ds_t *zd_shared;
356 objset_t *zd_os;
357 pthread_rwlock_t zd_zilog_lock;
358 zilog_t *zd_zilog;
359 ztest_od_t *zd_od; /* debugging aid */
360 char zd_name[ZFS_MAX_DATASET_NAME_LEN];
361 kmutex_t zd_dirobj_lock;
362 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS];
363 rll_t zd_range_lock[ZTEST_RANGE_LOCKS];
364 } ztest_ds_t;
365
366 /*
367 * Per-iteration state.
368 */
369 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
370
371 typedef struct ztest_info {
372 ztest_func_t *zi_func; /* test function */
373 uint64_t zi_iters; /* iterations per execution */
374 uint64_t *zi_interval; /* execute every <interval> seconds */
375 const char *zi_funcname; /* name of test function */
376 } ztest_info_t;
377
378 typedef struct ztest_shared_callstate {
379 uint64_t zc_count; /* per-pass count */
380 uint64_t zc_time; /* per-pass time */
381 uint64_t zc_next; /* next time to call this function */
382 } ztest_shared_callstate_t;
383
384 static ztest_shared_callstate_t *ztest_shared_callstate;
385 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
386
387 ztest_func_t ztest_dmu_read_write;
388 ztest_func_t ztest_dmu_write_parallel;
389 ztest_func_t ztest_dmu_object_alloc_free;
390 ztest_func_t ztest_dmu_object_next_chunk;
391 ztest_func_t ztest_dmu_commit_callbacks;
392 ztest_func_t ztest_zap;
393 ztest_func_t ztest_zap_parallel;
394 ztest_func_t ztest_zil_commit;
395 ztest_func_t ztest_zil_remount;
396 ztest_func_t ztest_dmu_read_write_zcopy;
397 ztest_func_t ztest_dmu_objset_create_destroy;
398 ztest_func_t ztest_dmu_prealloc;
399 ztest_func_t ztest_fzap;
400 ztest_func_t ztest_dmu_snapshot_create_destroy;
401 ztest_func_t ztest_dsl_prop_get_set;
402 ztest_func_t ztest_spa_prop_get_set;
403 ztest_func_t ztest_spa_create_destroy;
404 ztest_func_t ztest_fault_inject;
405 ztest_func_t ztest_dmu_snapshot_hold;
406 ztest_func_t ztest_mmp_enable_disable;
407 ztest_func_t ztest_scrub;
408 ztest_func_t ztest_dsl_dataset_promote_busy;
409 ztest_func_t ztest_vdev_attach_detach;
410 ztest_func_t ztest_vdev_LUN_growth;
411 ztest_func_t ztest_vdev_add_remove;
412 ztest_func_t ztest_vdev_class_add;
413 ztest_func_t ztest_vdev_aux_add_remove;
414 ztest_func_t ztest_split_pool;
415 ztest_func_t ztest_reguid;
416 ztest_func_t ztest_spa_upgrade;
417 ztest_func_t ztest_device_removal;
418 ztest_func_t ztest_spa_checkpoint_create_discard;
419 ztest_func_t ztest_initialize;
420 ztest_func_t ztest_trim;
421 ztest_func_t ztest_blake3;
422 ztest_func_t ztest_fletcher;
423 ztest_func_t ztest_fletcher_incr;
424 ztest_func_t ztest_verify_dnode_bt;
425
426 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */
427 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */
428 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */
429 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */
430 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */
431
432 #define ZTI_INIT(func, iters, interval) \
433 { .zi_func = (func), \
434 .zi_iters = (iters), \
435 .zi_interval = (interval), \
436 .zi_funcname = # func }
437
438 ztest_info_t ztest_info[] = {
439 ZTI_INIT(ztest_dmu_read_write, 1, &zopt_always),
440 ZTI_INIT(ztest_dmu_write_parallel, 10, &zopt_always),
441 ZTI_INIT(ztest_dmu_object_alloc_free, 1, &zopt_always),
442 ZTI_INIT(ztest_dmu_object_next_chunk, 1, &zopt_sometimes),
443 ZTI_INIT(ztest_dmu_commit_callbacks, 1, &zopt_always),
444 ZTI_INIT(ztest_zap, 30, &zopt_always),
445 ZTI_INIT(ztest_zap_parallel, 100, &zopt_always),
446 ZTI_INIT(ztest_split_pool, 1, &zopt_always),
447 ZTI_INIT(ztest_zil_commit, 1, &zopt_incessant),
448 ZTI_INIT(ztest_zil_remount, 1, &zopt_sometimes),
449 ZTI_INIT(ztest_dmu_read_write_zcopy, 1, &zopt_often),
450 ZTI_INIT(ztest_dmu_objset_create_destroy, 1, &zopt_often),
451 ZTI_INIT(ztest_dsl_prop_get_set, 1, &zopt_often),
452 ZTI_INIT(ztest_spa_prop_get_set, 1, &zopt_sometimes),
453 #if 0
454 ZTI_INIT(ztest_dmu_prealloc, 1, &zopt_sometimes),
455 #endif
456 ZTI_INIT(ztest_fzap, 1, &zopt_sometimes),
457 ZTI_INIT(ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes),
458 ZTI_INIT(ztest_spa_create_destroy, 1, &zopt_sometimes),
459 ZTI_INIT(ztest_fault_inject, 1, &zopt_sometimes),
460 ZTI_INIT(ztest_dmu_snapshot_hold, 1, &zopt_sometimes),
461 ZTI_INIT(ztest_mmp_enable_disable, 1, &zopt_sometimes),
462 ZTI_INIT(ztest_reguid, 1, &zopt_rarely),
463 ZTI_INIT(ztest_scrub, 1, &zopt_rarely),
464 ZTI_INIT(ztest_spa_upgrade, 1, &zopt_rarely),
465 ZTI_INIT(ztest_dsl_dataset_promote_busy, 1, &zopt_rarely),
466 ZTI_INIT(ztest_vdev_attach_detach, 1, &zopt_sometimes),
467 ZTI_INIT(ztest_vdev_LUN_growth, 1, &zopt_rarely),
468 ZTI_INIT(ztest_vdev_add_remove, 1, &ztest_opts.zo_vdevtime),
469 ZTI_INIT(ztest_vdev_class_add, 1, &ztest_opts.zo_vdevtime),
470 ZTI_INIT(ztest_vdev_aux_add_remove, 1, &ztest_opts.zo_vdevtime),
471 ZTI_INIT(ztest_device_removal, 1, &zopt_sometimes),
472 ZTI_INIT(ztest_spa_checkpoint_create_discard, 1, &zopt_rarely),
473 ZTI_INIT(ztest_initialize, 1, &zopt_sometimes),
474 ZTI_INIT(ztest_trim, 1, &zopt_sometimes),
475 ZTI_INIT(ztest_blake3, 1, &zopt_rarely),
476 ZTI_INIT(ztest_fletcher, 1, &zopt_rarely),
477 ZTI_INIT(ztest_fletcher_incr, 1, &zopt_rarely),
478 ZTI_INIT(ztest_verify_dnode_bt, 1, &zopt_sometimes),
479 };
480
481 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t))
482
483 /*
484 * The following struct is used to hold a list of uncalled commit callbacks.
485 * The callbacks are ordered by txg number.
486 */
487 typedef struct ztest_cb_list {
488 kmutex_t zcl_callbacks_lock;
489 list_t zcl_callbacks;
490 } ztest_cb_list_t;
491
492 /*
493 * Stuff we need to share writably between parent and child.
494 */
495 typedef struct ztest_shared {
496 boolean_t zs_do_init;
497 hrtime_t zs_proc_start;
498 hrtime_t zs_proc_stop;
499 hrtime_t zs_thread_start;
500 hrtime_t zs_thread_stop;
501 hrtime_t zs_thread_kill;
502 uint64_t zs_enospc_count;
503 uint64_t zs_vdev_next_leaf;
504 uint64_t zs_vdev_aux;
505 uint64_t zs_alloc;
506 uint64_t zs_space;
507 uint64_t zs_splits;
508 uint64_t zs_mirrors;
509 uint64_t zs_metaslab_sz;
510 uint64_t zs_metaslab_df_alloc_threshold;
511 uint64_t zs_guid;
512 } ztest_shared_t;
513
514 #define ID_PARALLEL -1ULL
515
516 static char ztest_dev_template[] = "%s/%s.%llua";
517 static char ztest_aux_template[] = "%s/%s.%s.%llu";
518 ztest_shared_t *ztest_shared;
519
520 static spa_t *ztest_spa = NULL;
521 static ztest_ds_t *ztest_ds;
522
523 static kmutex_t ztest_vdev_lock;
524 static boolean_t ztest_device_removal_active = B_FALSE;
525 static boolean_t ztest_pool_scrubbed = B_FALSE;
526 static kmutex_t ztest_checkpoint_lock;
527
528 /*
529 * The ztest_name_lock protects the pool and dataset namespace used by
530 * the individual tests. To modify the namespace, consumers must grab
531 * this lock as writer. Grabbing the lock as reader will ensure that the
532 * namespace does not change while the lock is held.
533 */
534 static pthread_rwlock_t ztest_name_lock;
535
536 static boolean_t ztest_dump_core = B_TRUE;
537 static boolean_t ztest_exiting;
538
539 /* Global commit callback list */
540 static ztest_cb_list_t zcl;
541 /* Commit cb delay */
542 static uint64_t zc_min_txg_delay = UINT64_MAX;
543 static int zc_cb_counter = 0;
544
545 /*
546 * Minimum number of commit callbacks that need to be registered for us to check
547 * whether the minimum txg delay is acceptable.
548 */
549 #define ZTEST_COMMIT_CB_MIN_REG 100
550
551 /*
552 * If a number of txgs equal to this threshold have been created after a commit
553 * callback has been registered but not called, then we assume there is an
554 * implementation bug.
555 */
556 #define ZTEST_COMMIT_CB_THRESH (TXG_CONCURRENT_STATES + 1000)
557
558 enum ztest_object {
559 ZTEST_META_DNODE = 0,
560 ZTEST_DIROBJ,
561 ZTEST_OBJECTS
562 };
563
564 static __attribute__((noreturn)) void usage(boolean_t requested);
565 static int ztest_scrub_impl(spa_t *spa);
566
567 /*
568 * These libumem hooks provide a reasonable set of defaults for the allocator's
569 * debugging facilities.
570 */
571 const char *
572 _umem_debug_init(void)
573 {
574 return ("default,verbose"); /* $UMEM_DEBUG setting */
575 }
576
577 const char *
578 _umem_logging_init(void)
579 {
580 return ("fail,contents"); /* $UMEM_LOGGING setting */
581 }
582
583 static void
584 dump_debug_buffer(void)
585 {
586 ssize_t ret __attribute__((unused));
587
588 if (!ztest_opts.zo_dump_dbgmsg)
589 return;
590
591 /*
592 * We use write() instead of printf() so that this function
593 * is safe to call from a signal handler.
594 */
595 ret = write(STDOUT_FILENO, "\n", 1);
596 zfs_dbgmsg_print("ztest");
597 }
598
599 #define BACKTRACE_SZ 100
600
601 static void sig_handler(int signo)
602 {
603 struct sigaction action;
604 #if (__GLIBC__ && !__UCLIBC__) /* backtrace() is a GNU extension */
605 int nptrs;
606 void *buffer[BACKTRACE_SZ];
607
608 nptrs = backtrace(buffer, BACKTRACE_SZ);
609 backtrace_symbols_fd(buffer, nptrs, STDERR_FILENO);
610 #endif
611 dump_debug_buffer();
612
613 /*
614 * Restore default action and re-raise signal so SIGSEGV and
615 * SIGABRT can trigger a core dump.
616 */
617 action.sa_handler = SIG_DFL;
618 sigemptyset(&action.sa_mask);
619 action.sa_flags = 0;
620 (void) sigaction(signo, &action, NULL);
621 raise(signo);
622 }
623
624 #define FATAL_MSG_SZ 1024
625
626 char *fatal_msg;
627
628 static __attribute__((format(printf, 2, 3))) __attribute__((noreturn)) void
629 fatal(int do_perror, char *message, ...)
630 {
631 va_list args;
632 int save_errno = errno;
633 char *buf;
634
635 (void) fflush(stdout);
636 buf = umem_alloc(FATAL_MSG_SZ, UMEM_NOFAIL);
637 if (buf == NULL)
638 goto out;
639
640 va_start(args, message);
641 (void) sprintf(buf, "ztest: ");
642 /* LINTED */
643 (void) vsprintf(buf + strlen(buf), message, args);
644 va_end(args);
645 if (do_perror) {
646 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
647 ": %s", strerror(save_errno));
648 }
649 (void) fprintf(stderr, "%s\n", buf);
650 fatal_msg = buf; /* to ease debugging */
651
652 out:
653 if (ztest_dump_core)
654 abort();
655 else
656 dump_debug_buffer();
657
658 exit(3);
659 }
660
661 static int
662 str2shift(const char *buf)
663 {
664 const char *ends = "BKMGTPEZ";
665 int i;
666
667 if (buf[0] == '\0')
668 return (0);
669 for (i = 0; i < strlen(ends); i++) {
670 if (toupper(buf[0]) == ends[i])
671 break;
672 }
673 if (i == strlen(ends)) {
674 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
675 buf);
676 usage(B_FALSE);
677 }
678 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
679 return (10*i);
680 }
681 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
682 usage(B_FALSE);
683 }
684
685 static uint64_t
686 nicenumtoull(const char *buf)
687 {
688 char *end;
689 uint64_t val;
690
691 val = strtoull(buf, &end, 0);
692 if (end == buf) {
693 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
694 usage(B_FALSE);
695 } else if (end[0] == '.') {
696 double fval = strtod(buf, &end);
697 fval *= pow(2, str2shift(end));
698 /*
699 * UINT64_MAX is not exactly representable as a double.
700 * The closest representation is UINT64_MAX + 1, so we
701 * use a >= comparison instead of > for the bounds check.
702 */
703 if (fval >= (double)UINT64_MAX) {
704 (void) fprintf(stderr, "ztest: value too large: %s\n",
705 buf);
706 usage(B_FALSE);
707 }
708 val = (uint64_t)fval;
709 } else {
710 int shift = str2shift(end);
711 if (shift >= 64 || (val << shift) >> shift != val) {
712 (void) fprintf(stderr, "ztest: value too large: %s\n",
713 buf);
714 usage(B_FALSE);
715 }
716 val <<= shift;
717 }
718 return (val);
719 }
720
721 typedef struct ztest_option {
722 const char short_opt;
723 const char *long_opt;
724 const char *long_opt_param;
725 const char *comment;
726 unsigned int default_int;
727 char *default_str;
728 } ztest_option_t;
729
730 /*
731 * The following option_table is used for generating the usage info as well as
732 * the long and short option information for calling getopt_long().
733 */
734 static ztest_option_t option_table[] = {
735 { 'v', "vdevs", "INTEGER", "Number of vdevs", DEFAULT_VDEV_COUNT,
736 NULL},
737 { 's', "vdev-size", "INTEGER", "Size of each vdev",
738 NO_DEFAULT, DEFAULT_VDEV_SIZE_STR},
739 { 'a', "alignment-shift", "INTEGER",
740 "Alignment shift; use 0 for random", DEFAULT_ASHIFT, NULL},
741 { 'm', "mirror-copies", "INTEGER", "Number of mirror copies",
742 DEFAULT_MIRRORS, NULL},
743 { 'r', "raid-disks", "INTEGER", "Number of raidz/draid disks",
744 DEFAULT_RAID_CHILDREN, NULL},
745 { 'R', "raid-parity", "INTEGER", "Raid parity",
746 DEFAULT_RAID_PARITY, NULL},
747 { 'K', "raid-kind", "raidz|draid|random", "Raid kind",
748 NO_DEFAULT, "random"},
749 { 'D', "draid-data", "INTEGER", "Number of draid data drives",
750 DEFAULT_DRAID_DATA, NULL},
751 { 'S', "draid-spares", "INTEGER", "Number of draid spares",
752 DEFAULT_DRAID_SPARES, NULL},
753 { 'd', "datasets", "INTEGER", "Number of datasets",
754 DEFAULT_DATASETS_COUNT, NULL},
755 { 't', "threads", "INTEGER", "Number of ztest threads",
756 DEFAULT_THREADS, NULL},
757 { 'g', "gang-block-threshold", "INTEGER",
758 "Metaslab gang block threshold",
759 NO_DEFAULT, DEFAULT_FORCE_GANGING_STR},
760 { 'i', "init-count", "INTEGER", "Number of times to initialize pool",
761 DEFAULT_INITS, NULL},
762 { 'k', "kill-percentage", "INTEGER", "Kill percentage",
763 NO_DEFAULT, DEFAULT_KILLRATE_STR},
764 { 'p', "pool-name", "STRING", "Pool name",
765 NO_DEFAULT, DEFAULT_POOL},
766 { 'f', "vdev-file-directory", "PATH", "File directory for vdev files",
767 NO_DEFAULT, DEFAULT_VDEV_DIR},
768 { 'M', "multi-host", NULL,
769 "Multi-host; simulate pool imported on remote host",
770 NO_DEFAULT, NULL},
771 { 'E', "use-existing-pool", NULL,
772 "Use existing pool instead of creating new one", NO_DEFAULT, NULL},
773 { 'T', "run-time", "INTEGER", "Total run time",
774 NO_DEFAULT, DEFAULT_RUN_TIME_STR},
775 { 'P', "pass-time", "INTEGER", "Time per pass",
776 NO_DEFAULT, DEFAULT_PASS_TIME_STR},
777 { 'F', "freeze-loops", "INTEGER", "Max loops in spa_freeze()",
778 DEFAULT_MAX_LOOPS, NULL},
779 { 'B', "alt-ztest", "PATH", "Alternate ztest path",
780 NO_DEFAULT, NULL},
781 { 'C', "vdev-class-state", "on|off|random", "vdev class state",
782 NO_DEFAULT, "random"},
783 { 'o', "option", "\"OPTION=INTEGER\"",
784 "Set global variable to an unsigned 32-bit integer value",
785 NO_DEFAULT, NULL},
786 { 'G', "dump-debug-msg", NULL,
787 "Dump zfs_dbgmsg buffer before exiting due to an error",
788 NO_DEFAULT, NULL},
789 { 'V', "verbose", NULL,
790 "Verbose (use multiple times for ever more verbosity)",
791 NO_DEFAULT, NULL},
792 { 'h', "help", NULL, "Show this help",
793 NO_DEFAULT, NULL},
794 {0, 0, 0, 0, 0, 0}
795 };
796
797 static struct option *long_opts = NULL;
798 static char *short_opts = NULL;
799
800 static void
801 init_options(void)
802 {
803 ASSERT3P(long_opts, ==, NULL);
804 ASSERT3P(short_opts, ==, NULL);
805
806 int count = sizeof (option_table) / sizeof (option_table[0]);
807 long_opts = umem_alloc(sizeof (struct option) * count, UMEM_NOFAIL);
808
809 short_opts = umem_alloc(sizeof (char) * 2 * count, UMEM_NOFAIL);
810 int short_opt_index = 0;
811
812 for (int i = 0; i < count; i++) {
813 long_opts[i].val = option_table[i].short_opt;
814 long_opts[i].name = option_table[i].long_opt;
815 long_opts[i].has_arg = option_table[i].long_opt_param != NULL
816 ? required_argument : no_argument;
817 long_opts[i].flag = NULL;
818 short_opts[short_opt_index++] = option_table[i].short_opt;
819 if (option_table[i].long_opt_param != NULL) {
820 short_opts[short_opt_index++] = ':';
821 }
822 }
823 }
824
825 static void
826 fini_options(void)
827 {
828 int count = sizeof (option_table) / sizeof (option_table[0]);
829
830 umem_free(long_opts, sizeof (struct option) * count);
831 umem_free(short_opts, sizeof (char) * 2 * count);
832
833 long_opts = NULL;
834 short_opts = NULL;
835 }
836
837 static __attribute__((noreturn)) void
838 usage(boolean_t requested)
839 {
840 char option[80];
841 FILE *fp = requested ? stdout : stderr;
842
843 (void) fprintf(fp, "Usage: %s [OPTIONS...]\n", DEFAULT_POOL);
844 for (int i = 0; option_table[i].short_opt != 0; i++) {
845 if (option_table[i].long_opt_param != NULL) {
846 (void) sprintf(option, " -%c --%s=%s",
847 option_table[i].short_opt,
848 option_table[i].long_opt,
849 option_table[i].long_opt_param);
850 } else {
851 (void) sprintf(option, " -%c --%s",
852 option_table[i].short_opt,
853 option_table[i].long_opt);
854 }
855 (void) fprintf(fp, " %-40s%s", option,
856 option_table[i].comment);
857
858 if (option_table[i].long_opt_param != NULL) {
859 if (option_table[i].default_str != NULL) {
860 (void) fprintf(fp, " (default: %s)",
861 option_table[i].default_str);
862 } else if (option_table[i].default_int != NO_DEFAULT) {
863 (void) fprintf(fp, " (default: %u)",
864 option_table[i].default_int);
865 }
866 }
867 (void) fprintf(fp, "\n");
868 }
869 exit(requested ? 0 : 1);
870 }
871
872 static uint64_t
873 ztest_random(uint64_t range)
874 {
875 uint64_t r;
876
877 ASSERT3S(ztest_fd_rand, >=, 0);
878
879 if (range == 0)
880 return (0);
881
882 if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r))
883 fatal(B_TRUE, "short read from /dev/urandom");
884
885 return (r % range);
886 }
887
888 static void
889 ztest_parse_name_value(const char *input, ztest_shared_opts_t *zo)
890 {
891 char name[32];
892 char *value;
893 int state = ZTEST_VDEV_CLASS_RND;
894
895 (void) strlcpy(name, input, sizeof (name));
896
897 value = strchr(name, '=');
898 if (value == NULL) {
899 (void) fprintf(stderr, "missing value in property=value "
900 "'-C' argument (%s)\n", input);
901 usage(B_FALSE);
902 }
903 *(value) = '\0';
904 value++;
905
906 if (strcmp(value, "on") == 0) {
907 state = ZTEST_VDEV_CLASS_ON;
908 } else if (strcmp(value, "off") == 0) {
909 state = ZTEST_VDEV_CLASS_OFF;
910 } else if (strcmp(value, "random") == 0) {
911 state = ZTEST_VDEV_CLASS_RND;
912 } else {
913 (void) fprintf(stderr, "invalid property value '%s'\n", value);
914 usage(B_FALSE);
915 }
916
917 if (strcmp(name, "special") == 0) {
918 zo->zo_special_vdevs = state;
919 } else {
920 (void) fprintf(stderr, "invalid property name '%s'\n", name);
921 usage(B_FALSE);
922 }
923 if (zo->zo_verbose >= 3)
924 (void) printf("%s vdev state is '%s'\n", name, value);
925 }
926
927 static void
928 process_options(int argc, char **argv)
929 {
930 char *path;
931 ztest_shared_opts_t *zo = &ztest_opts;
932
933 int opt;
934 uint64_t value;
935 const char *raid_kind = "random";
936
937 memcpy(zo, &ztest_opts_defaults, sizeof (*zo));
938
939 init_options();
940
941 while ((opt = getopt_long(argc, argv, short_opts, long_opts,
942 NULL)) != EOF) {
943 value = 0;
944 switch (opt) {
945 case 'v':
946 case 's':
947 case 'a':
948 case 'm':
949 case 'r':
950 case 'R':
951 case 'D':
952 case 'S':
953 case 'd':
954 case 't':
955 case 'g':
956 case 'i':
957 case 'k':
958 case 'T':
959 case 'P':
960 case 'F':
961 value = nicenumtoull(optarg);
962 }
963 switch (opt) {
964 case 'v':
965 zo->zo_vdevs = value;
966 break;
967 case 's':
968 zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value);
969 break;
970 case 'a':
971 zo->zo_ashift = value;
972 break;
973 case 'm':
974 zo->zo_mirrors = value;
975 break;
976 case 'r':
977 zo->zo_raid_children = MAX(1, value);
978 break;
979 case 'R':
980 zo->zo_raid_parity = MIN(MAX(value, 1), 3);
981 break;
982 case 'K':
983 raid_kind = optarg;
984 break;
985 case 'D':
986 zo->zo_draid_data = MAX(1, value);
987 break;
988 case 'S':
989 zo->zo_draid_spares = MAX(1, value);
990 break;
991 case 'd':
992 zo->zo_datasets = MAX(1, value);
993 break;
994 case 't':
995 zo->zo_threads = MAX(1, value);
996 break;
997 case 'g':
998 zo->zo_metaslab_force_ganging =
999 MAX(SPA_MINBLOCKSIZE << 1, value);
1000 break;
1001 case 'i':
1002 zo->zo_init = value;
1003 break;
1004 case 'k':
1005 zo->zo_killrate = value;
1006 break;
1007 case 'p':
1008 (void) strlcpy(zo->zo_pool, optarg,
1009 sizeof (zo->zo_pool));
1010 break;
1011 case 'f':
1012 path = realpath(optarg, NULL);
1013 if (path == NULL) {
1014 (void) fprintf(stderr, "error: %s: %s\n",
1015 optarg, strerror(errno));
1016 usage(B_FALSE);
1017 } else {
1018 (void) strlcpy(zo->zo_dir, path,
1019 sizeof (zo->zo_dir));
1020 free(path);
1021 }
1022 break;
1023 case 'M':
1024 zo->zo_mmp_test = 1;
1025 break;
1026 case 'V':
1027 zo->zo_verbose++;
1028 break;
1029 case 'E':
1030 zo->zo_init = 0;
1031 break;
1032 case 'T':
1033 zo->zo_time = value;
1034 break;
1035 case 'P':
1036 zo->zo_passtime = MAX(1, value);
1037 break;
1038 case 'F':
1039 zo->zo_maxloops = MAX(1, value);
1040 break;
1041 case 'B':
1042 (void) strlcpy(zo->zo_alt_ztest, optarg,
1043 sizeof (zo->zo_alt_ztest));
1044 break;
1045 case 'C':
1046 ztest_parse_name_value(optarg, zo);
1047 break;
1048 case 'o':
1049 if (zo->zo_gvars_count >= ZO_GVARS_MAX_COUNT) {
1050 (void) fprintf(stderr,
1051 "max global var count (%zu) exceeded\n",
1052 ZO_GVARS_MAX_COUNT);
1053 usage(B_FALSE);
1054 }
1055 char *v = zo->zo_gvars[zo->zo_gvars_count];
1056 if (strlcpy(v, optarg, ZO_GVARS_MAX_ARGLEN) >=
1057 ZO_GVARS_MAX_ARGLEN) {
1058 (void) fprintf(stderr,
1059 "global var option '%s' is too long\n",
1060 optarg);
1061 usage(B_FALSE);
1062 }
1063 zo->zo_gvars_count++;
1064 break;
1065 case 'G':
1066 zo->zo_dump_dbgmsg = 1;
1067 break;
1068 case 'h':
1069 usage(B_TRUE);
1070 break;
1071 case '?':
1072 default:
1073 usage(B_FALSE);
1074 break;
1075 }
1076 }
1077
1078 fini_options();
1079
1080 /* When raid choice is 'random' add a draid pool 50% of the time */
1081 if (strcmp(raid_kind, "random") == 0) {
1082 raid_kind = (ztest_random(2) == 0) ? "draid" : "raidz";
1083
1084 if (ztest_opts.zo_verbose >= 3)
1085 (void) printf("choosing RAID type '%s'\n", raid_kind);
1086 }
1087
1088 if (strcmp(raid_kind, "draid") == 0) {
1089 uint64_t min_devsize;
1090
1091 /* With fewer disk use 256M, otherwise 128M is OK */
1092 min_devsize = (ztest_opts.zo_raid_children < 16) ?
1093 (256ULL << 20) : (128ULL << 20);
1094
1095 /* No top-level mirrors with dRAID for now */
1096 zo->zo_mirrors = 0;
1097
1098 /* Use more appropriate defaults for dRAID */
1099 if (zo->zo_vdevs == ztest_opts_defaults.zo_vdevs)
1100 zo->zo_vdevs = 1;
1101 if (zo->zo_raid_children ==
1102 ztest_opts_defaults.zo_raid_children)
1103 zo->zo_raid_children = 16;
1104 if (zo->zo_ashift < 12)
1105 zo->zo_ashift = 12;
1106 if (zo->zo_vdev_size < min_devsize)
1107 zo->zo_vdev_size = min_devsize;
1108
1109 if (zo->zo_draid_data + zo->zo_raid_parity >
1110 zo->zo_raid_children - zo->zo_draid_spares) {
1111 (void) fprintf(stderr, "error: too few draid "
1112 "children (%d) for stripe width (%d)\n",
1113 zo->zo_raid_children,
1114 zo->zo_draid_data + zo->zo_raid_parity);
1115 usage(B_FALSE);
1116 }
1117
1118 (void) strlcpy(zo->zo_raid_type, VDEV_TYPE_DRAID,
1119 sizeof (zo->zo_raid_type));
1120
1121 } else /* using raidz */ {
1122 ASSERT0(strcmp(raid_kind, "raidz"));
1123
1124 zo->zo_raid_parity = MIN(zo->zo_raid_parity,
1125 zo->zo_raid_children - 1);
1126 }
1127
1128 zo->zo_vdevtime =
1129 (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs :
1130 UINT64_MAX >> 2);
1131
1132 if (*zo->zo_alt_ztest) {
1133 const char *invalid_what = "ztest";
1134 char *val = zo->zo_alt_ztest;
1135 if (0 != access(val, X_OK) ||
1136 (strrchr(val, '/') == NULL && (errno = EINVAL)))
1137 goto invalid;
1138
1139 int dirlen = strrchr(val, '/') - val;
1140 strncpy(zo->zo_alt_libpath, val, dirlen);
1141 invalid_what = "library path", val = zo->zo_alt_libpath;
1142 if (strrchr(val, '/') == NULL && (errno = EINVAL))
1143 goto invalid;
1144 *strrchr(val, '/') = '\0';
1145 strlcat(val, "/lib", sizeof (zo->zo_alt_libpath));
1146
1147 if (0 != access(zo->zo_alt_libpath, X_OK))
1148 goto invalid;
1149 return;
1150
1151 invalid:
1152 ztest_dump_core = B_FALSE;
1153 fatal(B_TRUE, "invalid alternate %s %s", invalid_what, val);
1154 }
1155 }
1156
1157 static void
1158 ztest_kill(ztest_shared_t *zs)
1159 {
1160 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa));
1161 zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa));
1162
1163 /*
1164 * Before we kill ourselves, make sure that the config is updated.
1165 * See comment above spa_write_cachefile().
1166 */
1167 mutex_enter(&spa_namespace_lock);
1168 spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE);
1169 mutex_exit(&spa_namespace_lock);
1170
1171 (void) raise(SIGKILL);
1172 }
1173
1174 static void
1175 ztest_record_enospc(const char *s)
1176 {
1177 (void) s;
1178 ztest_shared->zs_enospc_count++;
1179 }
1180
1181 static uint64_t
1182 ztest_get_ashift(void)
1183 {
1184 if (ztest_opts.zo_ashift == 0)
1185 return (SPA_MINBLOCKSHIFT + ztest_random(5));
1186 return (ztest_opts.zo_ashift);
1187 }
1188
1189 static boolean_t
1190 ztest_is_draid_spare(const char *name)
1191 {
1192 uint64_t spare_id = 0, parity = 0, vdev_id = 0;
1193
1194 if (sscanf(name, VDEV_TYPE_DRAID "%"PRIu64"-%"PRIu64"-%"PRIu64"",
1195 &parity, &vdev_id, &spare_id) == 3) {
1196 return (B_TRUE);
1197 }
1198
1199 return (B_FALSE);
1200 }
1201
1202 static nvlist_t *
1203 make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift)
1204 {
1205 char *pathbuf;
1206 uint64_t vdev;
1207 nvlist_t *file;
1208 boolean_t draid_spare = B_FALSE;
1209
1210 pathbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1211
1212 if (ashift == 0)
1213 ashift = ztest_get_ashift();
1214
1215 if (path == NULL) {
1216 path = pathbuf;
1217
1218 if (aux != NULL) {
1219 vdev = ztest_shared->zs_vdev_aux;
1220 (void) snprintf(path, MAXPATHLEN,
1221 ztest_aux_template, ztest_opts.zo_dir,
1222 pool == NULL ? ztest_opts.zo_pool : pool,
1223 aux, vdev);
1224 } else {
1225 vdev = ztest_shared->zs_vdev_next_leaf++;
1226 (void) snprintf(path, MAXPATHLEN,
1227 ztest_dev_template, ztest_opts.zo_dir,
1228 pool == NULL ? ztest_opts.zo_pool : pool, vdev);
1229 }
1230 } else {
1231 draid_spare = ztest_is_draid_spare(path);
1232 }
1233
1234 if (size != 0 && !draid_spare) {
1235 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
1236 if (fd == -1)
1237 fatal(B_TRUE, "can't open %s", path);
1238 if (ftruncate(fd, size) != 0)
1239 fatal(B_TRUE, "can't ftruncate %s", path);
1240 (void) close(fd);
1241 }
1242
1243 file = fnvlist_alloc();
1244 fnvlist_add_string(file, ZPOOL_CONFIG_TYPE,
1245 draid_spare ? VDEV_TYPE_DRAID_SPARE : VDEV_TYPE_FILE);
1246 fnvlist_add_string(file, ZPOOL_CONFIG_PATH, path);
1247 fnvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift);
1248 umem_free(pathbuf, MAXPATHLEN);
1249
1250 return (file);
1251 }
1252
1253 static nvlist_t *
1254 make_vdev_raid(char *path, char *aux, char *pool, size_t size,
1255 uint64_t ashift, int r)
1256 {
1257 nvlist_t *raid, **child;
1258 int c;
1259
1260 if (r < 2)
1261 return (make_vdev_file(path, aux, pool, size, ashift));
1262 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
1263
1264 for (c = 0; c < r; c++)
1265 child[c] = make_vdev_file(path, aux, pool, size, ashift);
1266
1267 raid = fnvlist_alloc();
1268 fnvlist_add_string(raid, ZPOOL_CONFIG_TYPE,
1269 ztest_opts.zo_raid_type);
1270 fnvlist_add_uint64(raid, ZPOOL_CONFIG_NPARITY,
1271 ztest_opts.zo_raid_parity);
1272 fnvlist_add_nvlist_array(raid, ZPOOL_CONFIG_CHILDREN,
1273 (const nvlist_t **)child, r);
1274
1275 if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0) {
1276 uint64_t ndata = ztest_opts.zo_draid_data;
1277 uint64_t nparity = ztest_opts.zo_raid_parity;
1278 uint64_t nspares = ztest_opts.zo_draid_spares;
1279 uint64_t children = ztest_opts.zo_raid_children;
1280 uint64_t ngroups = 1;
1281
1282 /*
1283 * Calculate the minimum number of groups required to fill a
1284 * slice. This is the LCM of the stripe width (data + parity)
1285 * and the number of data drives (children - spares).
1286 */
1287 while (ngroups * (ndata + nparity) % (children - nspares) != 0)
1288 ngroups++;
1289
1290 /* Store the basic dRAID configuration. */
1291 fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NDATA, ndata);
1292 fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NSPARES, nspares);
1293 fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NGROUPS, ngroups);
1294 }
1295
1296 for (c = 0; c < r; c++)
1297 fnvlist_free(child[c]);
1298
1299 umem_free(child, r * sizeof (nvlist_t *));
1300
1301 return (raid);
1302 }
1303
1304 static nvlist_t *
1305 make_vdev_mirror(char *path, char *aux, char *pool, size_t size,
1306 uint64_t ashift, int r, int m)
1307 {
1308 nvlist_t *mirror, **child;
1309 int c;
1310
1311 if (m < 1)
1312 return (make_vdev_raid(path, aux, pool, size, ashift, r));
1313
1314 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
1315
1316 for (c = 0; c < m; c++)
1317 child[c] = make_vdev_raid(path, aux, pool, size, ashift, r);
1318
1319 mirror = fnvlist_alloc();
1320 fnvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, VDEV_TYPE_MIRROR);
1321 fnvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
1322 (const nvlist_t **)child, m);
1323
1324 for (c = 0; c < m; c++)
1325 fnvlist_free(child[c]);
1326
1327 umem_free(child, m * sizeof (nvlist_t *));
1328
1329 return (mirror);
1330 }
1331
1332 static nvlist_t *
1333 make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift,
1334 const char *class, int r, int m, int t)
1335 {
1336 nvlist_t *root, **child;
1337 int c;
1338 boolean_t log;
1339
1340 ASSERT3S(t, >, 0);
1341
1342 log = (class != NULL && strcmp(class, "log") == 0);
1343
1344 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
1345
1346 for (c = 0; c < t; c++) {
1347 child[c] = make_vdev_mirror(path, aux, pool, size, ashift,
1348 r, m);
1349 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, log);
1350
1351 if (class != NULL && class[0] != '\0') {
1352 ASSERT(m > 1 || log); /* expecting a mirror */
1353 fnvlist_add_string(child[c],
1354 ZPOOL_CONFIG_ALLOCATION_BIAS, class);
1355 }
1356 }
1357
1358 root = fnvlist_alloc();
1359 fnvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT);
1360 fnvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
1361 (const nvlist_t **)child, t);
1362
1363 for (c = 0; c < t; c++)
1364 fnvlist_free(child[c]);
1365
1366 umem_free(child, t * sizeof (nvlist_t *));
1367
1368 return (root);
1369 }
1370
1371 /*
1372 * Find a random spa version. Returns back a random spa version in the
1373 * range [initial_version, SPA_VERSION_FEATURES].
1374 */
1375 static uint64_t
1376 ztest_random_spa_version(uint64_t initial_version)
1377 {
1378 uint64_t version = initial_version;
1379
1380 if (version <= SPA_VERSION_BEFORE_FEATURES) {
1381 version = version +
1382 ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1);
1383 }
1384
1385 if (version > SPA_VERSION_BEFORE_FEATURES)
1386 version = SPA_VERSION_FEATURES;
1387
1388 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
1389 return (version);
1390 }
1391
1392 static int
1393 ztest_random_blocksize(void)
1394 {
1395 ASSERT3U(ztest_spa->spa_max_ashift, !=, 0);
1396
1397 /*
1398 * Choose a block size >= the ashift.
1399 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks.
1400 */
1401 int maxbs = SPA_OLD_MAXBLOCKSHIFT;
1402 if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE)
1403 maxbs = 20;
1404 uint64_t block_shift =
1405 ztest_random(maxbs - ztest_spa->spa_max_ashift + 1);
1406 return (1 << (SPA_MINBLOCKSHIFT + block_shift));
1407 }
1408
1409 static int
1410 ztest_random_dnodesize(void)
1411 {
1412 int slots;
1413 int max_slots = spa_maxdnodesize(ztest_spa) >> DNODE_SHIFT;
1414
1415 if (max_slots == DNODE_MIN_SLOTS)
1416 return (DNODE_MIN_SIZE);
1417
1418 /*
1419 * Weight the random distribution more heavily toward smaller
1420 * dnode sizes since that is more likely to reflect real-world
1421 * usage.
1422 */
1423 ASSERT3U(max_slots, >, 4);
1424 switch (ztest_random(10)) {
1425 case 0:
1426 slots = 5 + ztest_random(max_slots - 4);
1427 break;
1428 case 1 ... 4:
1429 slots = 2 + ztest_random(3);
1430 break;
1431 default:
1432 slots = 1;
1433 break;
1434 }
1435
1436 return (slots << DNODE_SHIFT);
1437 }
1438
1439 static int
1440 ztest_random_ibshift(void)
1441 {
1442 return (DN_MIN_INDBLKSHIFT +
1443 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
1444 }
1445
1446 static uint64_t
1447 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
1448 {
1449 uint64_t top;
1450 vdev_t *rvd = spa->spa_root_vdev;
1451 vdev_t *tvd;
1452
1453 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
1454
1455 do {
1456 top = ztest_random(rvd->vdev_children);
1457 tvd = rvd->vdev_child[top];
1458 } while (!vdev_is_concrete(tvd) || (tvd->vdev_islog && !log_ok) ||
1459 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
1460
1461 return (top);
1462 }
1463
1464 static uint64_t
1465 ztest_random_dsl_prop(zfs_prop_t prop)
1466 {
1467 uint64_t value;
1468
1469 do {
1470 value = zfs_prop_random_value(prop, ztest_random(-1ULL));
1471 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
1472
1473 return (value);
1474 }
1475
1476 static int
1477 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
1478 boolean_t inherit)
1479 {
1480 const char *propname = zfs_prop_to_name(prop);
1481 const char *valname;
1482 char *setpoint;
1483 uint64_t curval;
1484 int error;
1485
1486 error = dsl_prop_set_int(osname, propname,
1487 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value);
1488
1489 if (error == ENOSPC) {
1490 ztest_record_enospc(FTAG);
1491 return (error);
1492 }
1493 ASSERT0(error);
1494
1495 setpoint = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1496 VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint));
1497
1498 if (ztest_opts.zo_verbose >= 6) {
1499 int err;
1500
1501 err = zfs_prop_index_to_string(prop, curval, &valname);
1502 if (err)
1503 (void) printf("%s %s = %llu at '%s'\n", osname,
1504 propname, (unsigned long long)curval, setpoint);
1505 else
1506 (void) printf("%s %s = %s at '%s'\n",
1507 osname, propname, valname, setpoint);
1508 }
1509 umem_free(setpoint, MAXPATHLEN);
1510
1511 return (error);
1512 }
1513
1514 static int
1515 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value)
1516 {
1517 spa_t *spa = ztest_spa;
1518 nvlist_t *props = NULL;
1519 int error;
1520
1521 props = fnvlist_alloc();
1522 fnvlist_add_uint64(props, zpool_prop_to_name(prop), value);
1523
1524 error = spa_prop_set(spa, props);
1525
1526 fnvlist_free(props);
1527
1528 if (error == ENOSPC) {
1529 ztest_record_enospc(FTAG);
1530 return (error);
1531 }
1532 ASSERT0(error);
1533
1534 return (error);
1535 }
1536
1537 static int
1538 ztest_dmu_objset_own(const char *name, dmu_objset_type_t type,
1539 boolean_t readonly, boolean_t decrypt, void *tag, objset_t **osp)
1540 {
1541 int err;
1542 char *cp = NULL;
1543 char ddname[ZFS_MAX_DATASET_NAME_LEN];
1544
1545 strcpy(ddname, name);
1546 cp = strchr(ddname, '@');
1547 if (cp != NULL)
1548 *cp = '\0';
1549
1550 err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
1551 while (decrypt && err == EACCES) {
1552 dsl_crypto_params_t *dcp;
1553 nvlist_t *crypto_args = fnvlist_alloc();
1554
1555 fnvlist_add_uint8_array(crypto_args, "wkeydata",
1556 (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
1557 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, NULL,
1558 crypto_args, &dcp));
1559 err = spa_keystore_load_wkey(ddname, dcp, B_FALSE);
1560 /*
1561 * Note: if there was an error loading, the wkey was not
1562 * consumed, and needs to be freed.
1563 */
1564 dsl_crypto_params_free(dcp, (err != 0));
1565 fnvlist_free(crypto_args);
1566
1567 if (err == EINVAL) {
1568 /*
1569 * We couldn't load a key for this dataset so try
1570 * the parent. This loop will eventually hit the
1571 * encryption root since ztest only makes clones
1572 * as children of their origin datasets.
1573 */
1574 cp = strrchr(ddname, '/');
1575 if (cp == NULL)
1576 return (err);
1577
1578 *cp = '\0';
1579 err = EACCES;
1580 continue;
1581 } else if (err != 0) {
1582 break;
1583 }
1584
1585 err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
1586 break;
1587 }
1588
1589 return (err);
1590 }
1591
1592 static void
1593 ztest_rll_init(rll_t *rll)
1594 {
1595 rll->rll_writer = NULL;
1596 rll->rll_readers = 0;
1597 mutex_init(&rll->rll_lock, NULL, MUTEX_DEFAULT, NULL);
1598 cv_init(&rll->rll_cv, NULL, CV_DEFAULT, NULL);
1599 }
1600
1601 static void
1602 ztest_rll_destroy(rll_t *rll)
1603 {
1604 ASSERT3P(rll->rll_writer, ==, NULL);
1605 ASSERT0(rll->rll_readers);
1606 mutex_destroy(&rll->rll_lock);
1607 cv_destroy(&rll->rll_cv);
1608 }
1609
1610 static void
1611 ztest_rll_lock(rll_t *rll, rl_type_t type)
1612 {
1613 mutex_enter(&rll->rll_lock);
1614
1615 if (type == RL_READER) {
1616 while (rll->rll_writer != NULL)
1617 (void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1618 rll->rll_readers++;
1619 } else {
1620 while (rll->rll_writer != NULL || rll->rll_readers)
1621 (void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1622 rll->rll_writer = curthread;
1623 }
1624
1625 mutex_exit(&rll->rll_lock);
1626 }
1627
1628 static void
1629 ztest_rll_unlock(rll_t *rll)
1630 {
1631 mutex_enter(&rll->rll_lock);
1632
1633 if (rll->rll_writer) {
1634 ASSERT0(rll->rll_readers);
1635 rll->rll_writer = NULL;
1636 } else {
1637 ASSERT3S(rll->rll_readers, >, 0);
1638 ASSERT3P(rll->rll_writer, ==, NULL);
1639 rll->rll_readers--;
1640 }
1641
1642 if (rll->rll_writer == NULL && rll->rll_readers == 0)
1643 cv_broadcast(&rll->rll_cv);
1644
1645 mutex_exit(&rll->rll_lock);
1646 }
1647
1648 static void
1649 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
1650 {
1651 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1652
1653 ztest_rll_lock(rll, type);
1654 }
1655
1656 static void
1657 ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
1658 {
1659 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1660
1661 ztest_rll_unlock(rll);
1662 }
1663
1664 static rl_t *
1665 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
1666 uint64_t size, rl_type_t type)
1667 {
1668 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1));
1669 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)];
1670 rl_t *rl;
1671
1672 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL);
1673 rl->rl_object = object;
1674 rl->rl_offset = offset;
1675 rl->rl_size = size;
1676 rl->rl_lock = rll;
1677
1678 ztest_rll_lock(rll, type);
1679
1680 return (rl);
1681 }
1682
1683 static void
1684 ztest_range_unlock(rl_t *rl)
1685 {
1686 rll_t *rll = rl->rl_lock;
1687
1688 ztest_rll_unlock(rll);
1689
1690 umem_free(rl, sizeof (*rl));
1691 }
1692
1693 static void
1694 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os)
1695 {
1696 zd->zd_os = os;
1697 zd->zd_zilog = dmu_objset_zil(os);
1698 zd->zd_shared = szd;
1699 dmu_objset_name(os, zd->zd_name);
1700 int l;
1701
1702 if (zd->zd_shared != NULL)
1703 zd->zd_shared->zd_seq = 0;
1704
1705 VERIFY0(pthread_rwlock_init(&zd->zd_zilog_lock, NULL));
1706 mutex_init(&zd->zd_dirobj_lock, NULL, MUTEX_DEFAULT, NULL);
1707
1708 for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1709 ztest_rll_init(&zd->zd_object_lock[l]);
1710
1711 for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1712 ztest_rll_init(&zd->zd_range_lock[l]);
1713 }
1714
1715 static void
1716 ztest_zd_fini(ztest_ds_t *zd)
1717 {
1718 int l;
1719
1720 mutex_destroy(&zd->zd_dirobj_lock);
1721 (void) pthread_rwlock_destroy(&zd->zd_zilog_lock);
1722
1723 for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1724 ztest_rll_destroy(&zd->zd_object_lock[l]);
1725
1726 for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1727 ztest_rll_destroy(&zd->zd_range_lock[l]);
1728 }
1729
1730 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
1731
1732 static uint64_t
1733 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag)
1734 {
1735 uint64_t txg;
1736 int error;
1737
1738 /*
1739 * Attempt to assign tx to some transaction group.
1740 */
1741 error = dmu_tx_assign(tx, txg_how);
1742 if (error) {
1743 if (error == ERESTART) {
1744 ASSERT3U(txg_how, ==, TXG_NOWAIT);
1745 dmu_tx_wait(tx);
1746 } else {
1747 ASSERT3U(error, ==, ENOSPC);
1748 ztest_record_enospc(tag);
1749 }
1750 dmu_tx_abort(tx);
1751 return (0);
1752 }
1753 txg = dmu_tx_get_txg(tx);
1754 ASSERT3U(txg, !=, 0);
1755 return (txg);
1756 }
1757
1758 static void
1759 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1760 uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1761 uint64_t crtxg)
1762 {
1763 bt->bt_magic = BT_MAGIC;
1764 bt->bt_objset = dmu_objset_id(os);
1765 bt->bt_object = object;
1766 bt->bt_dnodesize = dnodesize;
1767 bt->bt_offset = offset;
1768 bt->bt_gen = gen;
1769 bt->bt_txg = txg;
1770 bt->bt_crtxg = crtxg;
1771 }
1772
1773 static void
1774 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1775 uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1776 uint64_t crtxg)
1777 {
1778 ASSERT3U(bt->bt_magic, ==, BT_MAGIC);
1779 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os));
1780 ASSERT3U(bt->bt_object, ==, object);
1781 ASSERT3U(bt->bt_dnodesize, ==, dnodesize);
1782 ASSERT3U(bt->bt_offset, ==, offset);
1783 ASSERT3U(bt->bt_gen, <=, gen);
1784 ASSERT3U(bt->bt_txg, <=, txg);
1785 ASSERT3U(bt->bt_crtxg, ==, crtxg);
1786 }
1787
1788 static ztest_block_tag_t *
1789 ztest_bt_bonus(dmu_buf_t *db)
1790 {
1791 dmu_object_info_t doi;
1792 ztest_block_tag_t *bt;
1793
1794 dmu_object_info_from_db(db, &doi);
1795 ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
1796 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
1797 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
1798
1799 return (bt);
1800 }
1801
1802 /*
1803 * Generate a token to fill up unused bonus buffer space. Try to make
1804 * it unique to the object, generation, and offset to verify that data
1805 * is not getting overwritten by data from other dnodes.
1806 */
1807 #define ZTEST_BONUS_FILL_TOKEN(obj, ds, gen, offset) \
1808 (((ds) << 48) | ((gen) << 32) | ((obj) << 8) | (offset))
1809
1810 /*
1811 * Fill up the unused bonus buffer region before the block tag with a
1812 * verifiable pattern. Filling the whole bonus area with non-zero data
1813 * helps ensure that all dnode traversal code properly skips the
1814 * interior regions of large dnodes.
1815 */
1816 static void
1817 ztest_fill_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1818 objset_t *os, uint64_t gen)
1819 {
1820 uint64_t *bonusp;
1821
1822 ASSERT(IS_P2ALIGNED((char *)end - (char *)db->db_data, 8));
1823
1824 for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1825 uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1826 gen, bonusp - (uint64_t *)db->db_data);
1827 *bonusp = token;
1828 }
1829 }
1830
1831 /*
1832 * Verify that the unused area of a bonus buffer is filled with the
1833 * expected tokens.
1834 */
1835 static void
1836 ztest_verify_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1837 objset_t *os, uint64_t gen)
1838 {
1839 uint64_t *bonusp;
1840
1841 for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1842 uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1843 gen, bonusp - (uint64_t *)db->db_data);
1844 VERIFY3U(*bonusp, ==, token);
1845 }
1846 }
1847
1848 /*
1849 * ZIL logging ops
1850 */
1851
1852 #define lrz_type lr_mode
1853 #define lrz_blocksize lr_uid
1854 #define lrz_ibshift lr_gid
1855 #define lrz_bonustype lr_rdev
1856 #define lrz_dnodesize lr_crtime[1]
1857
1858 static void
1859 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
1860 {
1861 char *name = (void *)(lr + 1); /* name follows lr */
1862 size_t namesize = strlen(name) + 1;
1863 itx_t *itx;
1864
1865 if (zil_replaying(zd->zd_zilog, tx))
1866 return;
1867
1868 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
1869 memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
1870 sizeof (*lr) + namesize - sizeof (lr_t));
1871
1872 zil_itx_assign(zd->zd_zilog, itx, tx);
1873 }
1874
1875 static void
1876 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object)
1877 {
1878 char *name = (void *)(lr + 1); /* name follows lr */
1879 size_t namesize = strlen(name) + 1;
1880 itx_t *itx;
1881
1882 if (zil_replaying(zd->zd_zilog, tx))
1883 return;
1884
1885 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
1886 memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
1887 sizeof (*lr) + namesize - sizeof (lr_t));
1888
1889 itx->itx_oid = object;
1890 zil_itx_assign(zd->zd_zilog, itx, tx);
1891 }
1892
1893 static void
1894 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
1895 {
1896 itx_t *itx;
1897 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
1898
1899 if (zil_replaying(zd->zd_zilog, tx))
1900 return;
1901
1902 if (lr->lr_length > zil_max_log_data(zd->zd_zilog))
1903 write_state = WR_INDIRECT;
1904
1905 itx = zil_itx_create(TX_WRITE,
1906 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
1907
1908 if (write_state == WR_COPIED &&
1909 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
1910 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) {
1911 zil_itx_destroy(itx);
1912 itx = zil_itx_create(TX_WRITE, sizeof (*lr));
1913 write_state = WR_NEED_COPY;
1914 }
1915 itx->itx_private = zd;
1916 itx->itx_wr_state = write_state;
1917 itx->itx_sync = (ztest_random(8) == 0);
1918
1919 memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
1920 sizeof (*lr) - sizeof (lr_t));
1921
1922 zil_itx_assign(zd->zd_zilog, itx, tx);
1923 }
1924
1925 static void
1926 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
1927 {
1928 itx_t *itx;
1929
1930 if (zil_replaying(zd->zd_zilog, tx))
1931 return;
1932
1933 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
1934 memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
1935 sizeof (*lr) - sizeof (lr_t));
1936
1937 itx->itx_sync = B_FALSE;
1938 zil_itx_assign(zd->zd_zilog, itx, tx);
1939 }
1940
1941 static void
1942 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
1943 {
1944 itx_t *itx;
1945
1946 if (zil_replaying(zd->zd_zilog, tx))
1947 return;
1948
1949 itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
1950 memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
1951 sizeof (*lr) - sizeof (lr_t));
1952
1953 itx->itx_sync = B_FALSE;
1954 zil_itx_assign(zd->zd_zilog, itx, tx);
1955 }
1956
1957 /*
1958 * ZIL replay ops
1959 */
1960 static int
1961 ztest_replay_create(void *arg1, void *arg2, boolean_t byteswap)
1962 {
1963 ztest_ds_t *zd = arg1;
1964 lr_create_t *lr = arg2;
1965 char *name = (void *)(lr + 1); /* name follows lr */
1966 objset_t *os = zd->zd_os;
1967 ztest_block_tag_t *bbt;
1968 dmu_buf_t *db;
1969 dmu_tx_t *tx;
1970 uint64_t txg;
1971 int error = 0;
1972 int bonuslen;
1973
1974 if (byteswap)
1975 byteswap_uint64_array(lr, sizeof (*lr));
1976
1977 ASSERT3U(lr->lr_doid, ==, ZTEST_DIROBJ);
1978 ASSERT3S(name[0], !=, '\0');
1979
1980 tx = dmu_tx_create(os);
1981
1982 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
1983
1984 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1985 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1986 } else {
1987 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1988 }
1989
1990 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1991 if (txg == 0)
1992 return (ENOSPC);
1993
1994 ASSERT3U(dmu_objset_zil(os)->zl_replay, ==, !!lr->lr_foid);
1995 bonuslen = DN_BONUS_SIZE(lr->lrz_dnodesize);
1996
1997 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1998 if (lr->lr_foid == 0) {
1999 lr->lr_foid = zap_create_dnsize(os,
2000 lr->lrz_type, lr->lrz_bonustype,
2001 bonuslen, lr->lrz_dnodesize, tx);
2002 } else {
2003 error = zap_create_claim_dnsize(os, lr->lr_foid,
2004 lr->lrz_type, lr->lrz_bonustype,
2005 bonuslen, lr->lrz_dnodesize, tx);
2006 }
2007 } else {
2008 if (lr->lr_foid == 0) {
2009 lr->lr_foid = dmu_object_alloc_dnsize(os,
2010 lr->lrz_type, 0, lr->lrz_bonustype,
2011 bonuslen, lr->lrz_dnodesize, tx);
2012 } else {
2013 error = dmu_object_claim_dnsize(os, lr->lr_foid,
2014 lr->lrz_type, 0, lr->lrz_bonustype,
2015 bonuslen, lr->lrz_dnodesize, tx);
2016 }
2017 }
2018
2019 if (error) {
2020 ASSERT3U(error, ==, EEXIST);
2021 ASSERT(zd->zd_zilog->zl_replay);
2022 dmu_tx_commit(tx);
2023 return (error);
2024 }
2025
2026 ASSERT3U(lr->lr_foid, !=, 0);
2027
2028 if (lr->lrz_type != DMU_OT_ZAP_OTHER)
2029 VERIFY0(dmu_object_set_blocksize(os, lr->lr_foid,
2030 lr->lrz_blocksize, lr->lrz_ibshift, tx));
2031
2032 VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2033 bbt = ztest_bt_bonus(db);
2034 dmu_buf_will_dirty(db, tx);
2035 ztest_bt_generate(bbt, os, lr->lr_foid, lr->lrz_dnodesize, -1ULL,
2036 lr->lr_gen, txg, txg);
2037 ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, lr->lr_gen);
2038 dmu_buf_rele(db, FTAG);
2039
2040 VERIFY0(zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
2041 &lr->lr_foid, tx));
2042
2043 (void) ztest_log_create(zd, tx, lr);
2044
2045 dmu_tx_commit(tx);
2046
2047 return (0);
2048 }
2049
2050 static int
2051 ztest_replay_remove(void *arg1, void *arg2, boolean_t byteswap)
2052 {
2053 ztest_ds_t *zd = arg1;
2054 lr_remove_t *lr = arg2;
2055 char *name = (void *)(lr + 1); /* name follows lr */
2056 objset_t *os = zd->zd_os;
2057 dmu_object_info_t doi;
2058 dmu_tx_t *tx;
2059 uint64_t object, txg;
2060
2061 if (byteswap)
2062 byteswap_uint64_array(lr, sizeof (*lr));
2063
2064 ASSERT3U(lr->lr_doid, ==, ZTEST_DIROBJ);
2065 ASSERT3S(name[0], !=, '\0');
2066
2067 VERIFY0(
2068 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
2069 ASSERT3U(object, !=, 0);
2070
2071 ztest_object_lock(zd, object, RL_WRITER);
2072
2073 VERIFY0(dmu_object_info(os, object, &doi));
2074
2075 tx = dmu_tx_create(os);
2076
2077 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
2078 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
2079
2080 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2081 if (txg == 0) {
2082 ztest_object_unlock(zd, object);
2083 return (ENOSPC);
2084 }
2085
2086 if (doi.doi_type == DMU_OT_ZAP_OTHER) {
2087 VERIFY0(zap_destroy(os, object, tx));
2088 } else {
2089 VERIFY0(dmu_object_free(os, object, tx));
2090 }
2091
2092 VERIFY0(zap_remove(os, lr->lr_doid, name, tx));
2093
2094 (void) ztest_log_remove(zd, tx, lr, object);
2095
2096 dmu_tx_commit(tx);
2097
2098 ztest_object_unlock(zd, object);
2099
2100 return (0);
2101 }
2102
2103 static int
2104 ztest_replay_write(void *arg1, void *arg2, boolean_t byteswap)
2105 {
2106 ztest_ds_t *zd = arg1;
2107 lr_write_t *lr = arg2;
2108 objset_t *os = zd->zd_os;
2109 void *data = lr + 1; /* data follows lr */
2110 uint64_t offset, length;
2111 ztest_block_tag_t *bt = data;
2112 ztest_block_tag_t *bbt;
2113 uint64_t gen, txg, lrtxg, crtxg;
2114 dmu_object_info_t doi;
2115 dmu_tx_t *tx;
2116 dmu_buf_t *db;
2117 arc_buf_t *abuf = NULL;
2118 rl_t *rl;
2119
2120 if (byteswap)
2121 byteswap_uint64_array(lr, sizeof (*lr));
2122
2123 offset = lr->lr_offset;
2124 length = lr->lr_length;
2125
2126 /* If it's a dmu_sync() block, write the whole block */
2127 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
2128 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
2129 if (length < blocksize) {
2130 offset -= offset % blocksize;
2131 length = blocksize;
2132 }
2133 }
2134
2135 if (bt->bt_magic == BSWAP_64(BT_MAGIC))
2136 byteswap_uint64_array(bt, sizeof (*bt));
2137
2138 if (bt->bt_magic != BT_MAGIC)
2139 bt = NULL;
2140
2141 ztest_object_lock(zd, lr->lr_foid, RL_READER);
2142 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER);
2143
2144 VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2145
2146 dmu_object_info_from_db(db, &doi);
2147
2148 bbt = ztest_bt_bonus(db);
2149 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2150 gen = bbt->bt_gen;
2151 crtxg = bbt->bt_crtxg;
2152 lrtxg = lr->lr_common.lrc_txg;
2153
2154 tx = dmu_tx_create(os);
2155
2156 dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
2157
2158 if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
2159 P2PHASE(offset, length) == 0)
2160 abuf = dmu_request_arcbuf(db, length);
2161
2162 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2163 if (txg == 0) {
2164 if (abuf != NULL)
2165 dmu_return_arcbuf(abuf);
2166 dmu_buf_rele(db, FTAG);
2167 ztest_range_unlock(rl);
2168 ztest_object_unlock(zd, lr->lr_foid);
2169 return (ENOSPC);
2170 }
2171
2172 if (bt != NULL) {
2173 /*
2174 * Usually, verify the old data before writing new data --
2175 * but not always, because we also want to verify correct
2176 * behavior when the data was not recently read into cache.
2177 */
2178 ASSERT0(offset % doi.doi_data_block_size);
2179 if (ztest_random(4) != 0) {
2180 int prefetch = ztest_random(2) ?
2181 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
2182 ztest_block_tag_t rbt;
2183
2184 VERIFY(dmu_read(os, lr->lr_foid, offset,
2185 sizeof (rbt), &rbt, prefetch) == 0);
2186 if (rbt.bt_magic == BT_MAGIC) {
2187 ztest_bt_verify(&rbt, os, lr->lr_foid, 0,
2188 offset, gen, txg, crtxg);
2189 }
2190 }
2191
2192 /*
2193 * Writes can appear to be newer than the bonus buffer because
2194 * the ztest_get_data() callback does a dmu_read() of the
2195 * open-context data, which may be different than the data
2196 * as it was when the write was generated.
2197 */
2198 if (zd->zd_zilog->zl_replay) {
2199 ztest_bt_verify(bt, os, lr->lr_foid, 0, offset,
2200 MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
2201 bt->bt_crtxg);
2202 }
2203
2204 /*
2205 * Set the bt's gen/txg to the bonus buffer's gen/txg
2206 * so that all of the usual ASSERTs will work.
2207 */
2208 ztest_bt_generate(bt, os, lr->lr_foid, 0, offset, gen, txg,
2209 crtxg);
2210 }
2211
2212 if (abuf == NULL) {
2213 dmu_write(os, lr->lr_foid, offset, length, data, tx);
2214 } else {
2215 memcpy(abuf->b_data, data, length);
2216 dmu_assign_arcbuf_by_dbuf(db, offset, abuf, tx);
2217 }
2218
2219 (void) ztest_log_write(zd, tx, lr);
2220
2221 dmu_buf_rele(db, FTAG);
2222
2223 dmu_tx_commit(tx);
2224
2225 ztest_range_unlock(rl);
2226 ztest_object_unlock(zd, lr->lr_foid);
2227
2228 return (0);
2229 }
2230
2231 static int
2232 ztest_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
2233 {
2234 ztest_ds_t *zd = arg1;
2235 lr_truncate_t *lr = arg2;
2236 objset_t *os = zd->zd_os;
2237 dmu_tx_t *tx;
2238 uint64_t txg;
2239 rl_t *rl;
2240
2241 if (byteswap)
2242 byteswap_uint64_array(lr, sizeof (*lr));
2243
2244 ztest_object_lock(zd, lr->lr_foid, RL_READER);
2245 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
2246 RL_WRITER);
2247
2248 tx = dmu_tx_create(os);
2249
2250 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
2251
2252 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2253 if (txg == 0) {
2254 ztest_range_unlock(rl);
2255 ztest_object_unlock(zd, lr->lr_foid);
2256 return (ENOSPC);
2257 }
2258
2259 VERIFY0(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
2260 lr->lr_length, tx));
2261
2262 (void) ztest_log_truncate(zd, tx, lr);
2263
2264 dmu_tx_commit(tx);
2265
2266 ztest_range_unlock(rl);
2267 ztest_object_unlock(zd, lr->lr_foid);
2268
2269 return (0);
2270 }
2271
2272 static int
2273 ztest_replay_setattr(void *arg1, void *arg2, boolean_t byteswap)
2274 {
2275 ztest_ds_t *zd = arg1;
2276 lr_setattr_t *lr = arg2;
2277 objset_t *os = zd->zd_os;
2278 dmu_tx_t *tx;
2279 dmu_buf_t *db;
2280 ztest_block_tag_t *bbt;
2281 uint64_t txg, lrtxg, crtxg, dnodesize;
2282
2283 if (byteswap)
2284 byteswap_uint64_array(lr, sizeof (*lr));
2285
2286 ztest_object_lock(zd, lr->lr_foid, RL_WRITER);
2287
2288 VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2289
2290 tx = dmu_tx_create(os);
2291 dmu_tx_hold_bonus(tx, lr->lr_foid);
2292
2293 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2294 if (txg == 0) {
2295 dmu_buf_rele(db, FTAG);
2296 ztest_object_unlock(zd, lr->lr_foid);
2297 return (ENOSPC);
2298 }
2299
2300 bbt = ztest_bt_bonus(db);
2301 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2302 crtxg = bbt->bt_crtxg;
2303 lrtxg = lr->lr_common.lrc_txg;
2304 dnodesize = bbt->bt_dnodesize;
2305
2306 if (zd->zd_zilog->zl_replay) {
2307 ASSERT3U(lr->lr_size, !=, 0);
2308 ASSERT3U(lr->lr_mode, !=, 0);
2309 ASSERT3U(lrtxg, !=, 0);
2310 } else {
2311 /*
2312 * Randomly change the size and increment the generation.
2313 */
2314 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
2315 sizeof (*bbt);
2316 lr->lr_mode = bbt->bt_gen + 1;
2317 ASSERT0(lrtxg);
2318 }
2319
2320 /*
2321 * Verify that the current bonus buffer is not newer than our txg.
2322 */
2323 ztest_bt_verify(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
2324 MAX(txg, lrtxg), crtxg);
2325
2326 dmu_buf_will_dirty(db, tx);
2327
2328 ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
2329 ASSERT3U(lr->lr_size, <=, db->db_size);
2330 VERIFY0(dmu_set_bonus(db, lr->lr_size, tx));
2331 bbt = ztest_bt_bonus(db);
2332
2333 ztest_bt_generate(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
2334 txg, crtxg);
2335 ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, bbt->bt_gen);
2336 dmu_buf_rele(db, FTAG);
2337
2338 (void) ztest_log_setattr(zd, tx, lr);
2339
2340 dmu_tx_commit(tx);
2341
2342 ztest_object_unlock(zd, lr->lr_foid);
2343
2344 return (0);
2345 }
2346
2347 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
2348 NULL, /* 0 no such transaction type */
2349 ztest_replay_create, /* TX_CREATE */
2350 NULL, /* TX_MKDIR */
2351 NULL, /* TX_MKXATTR */
2352 NULL, /* TX_SYMLINK */
2353 ztest_replay_remove, /* TX_REMOVE */
2354 NULL, /* TX_RMDIR */
2355 NULL, /* TX_LINK */
2356 NULL, /* TX_RENAME */
2357 ztest_replay_write, /* TX_WRITE */
2358 ztest_replay_truncate, /* TX_TRUNCATE */
2359 ztest_replay_setattr, /* TX_SETATTR */
2360 NULL, /* TX_ACL */
2361 NULL, /* TX_CREATE_ACL */
2362 NULL, /* TX_CREATE_ATTR */
2363 NULL, /* TX_CREATE_ACL_ATTR */
2364 NULL, /* TX_MKDIR_ACL */
2365 NULL, /* TX_MKDIR_ATTR */
2366 NULL, /* TX_MKDIR_ACL_ATTR */
2367 NULL, /* TX_WRITE2 */
2368 NULL, /* TX_SETSAXATTR */
2369 };
2370
2371 /*
2372 * ZIL get_data callbacks
2373 */
2374
2375 static void
2376 ztest_get_done(zgd_t *zgd, int error)
2377 {
2378 (void) error;
2379 ztest_ds_t *zd = zgd->zgd_private;
2380 uint64_t object = ((rl_t *)zgd->zgd_lr)->rl_object;
2381
2382 if (zgd->zgd_db)
2383 dmu_buf_rele(zgd->zgd_db, zgd);
2384
2385 ztest_range_unlock((rl_t *)zgd->zgd_lr);
2386 ztest_object_unlock(zd, object);
2387
2388 umem_free(zgd, sizeof (*zgd));
2389 }
2390
2391 static int
2392 ztest_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf,
2393 struct lwb *lwb, zio_t *zio)
2394 {
2395 (void) arg2;
2396 ztest_ds_t *zd = arg;
2397 objset_t *os = zd->zd_os;
2398 uint64_t object = lr->lr_foid;
2399 uint64_t offset = lr->lr_offset;
2400 uint64_t size = lr->lr_length;
2401 uint64_t txg = lr->lr_common.lrc_txg;
2402 uint64_t crtxg;
2403 dmu_object_info_t doi;
2404 dmu_buf_t *db;
2405 zgd_t *zgd;
2406 int error;
2407
2408 ASSERT3P(lwb, !=, NULL);
2409 ASSERT3P(zio, !=, NULL);
2410 ASSERT3U(size, !=, 0);
2411
2412 ztest_object_lock(zd, object, RL_READER);
2413 error = dmu_bonus_hold(os, object, FTAG, &db);
2414 if (error) {
2415 ztest_object_unlock(zd, object);
2416 return (error);
2417 }
2418
2419 crtxg = ztest_bt_bonus(db)->bt_crtxg;
2420
2421 if (crtxg == 0 || crtxg > txg) {
2422 dmu_buf_rele(db, FTAG);
2423 ztest_object_unlock(zd, object);
2424 return (ENOENT);
2425 }
2426
2427 dmu_object_info_from_db(db, &doi);
2428 dmu_buf_rele(db, FTAG);
2429 db = NULL;
2430
2431 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
2432 zgd->zgd_lwb = lwb;
2433 zgd->zgd_private = zd;
2434
2435 if (buf != NULL) { /* immediate write */
2436 zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd,
2437 object, offset, size, RL_READER);
2438
2439 error = dmu_read(os, object, offset, size, buf,
2440 DMU_READ_NO_PREFETCH);
2441 ASSERT0(error);
2442 } else {
2443 size = doi.doi_data_block_size;
2444 if (ISP2(size)) {
2445 offset = P2ALIGN(offset, size);
2446 } else {
2447 ASSERT3U(offset, <, size);
2448 offset = 0;
2449 }
2450
2451 zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd,
2452 object, offset, size, RL_READER);
2453
2454 error = dmu_buf_hold(os, object, offset, zgd, &db,
2455 DMU_READ_NO_PREFETCH);
2456
2457 if (error == 0) {
2458 blkptr_t *bp = &lr->lr_blkptr;
2459
2460 zgd->zgd_db = db;
2461 zgd->zgd_bp = bp;
2462
2463 ASSERT3U(db->db_offset, ==, offset);
2464 ASSERT3U(db->db_size, ==, size);
2465
2466 error = dmu_sync(zio, lr->lr_common.lrc_txg,
2467 ztest_get_done, zgd);
2468
2469 if (error == 0)
2470 return (0);
2471 }
2472 }
2473
2474 ztest_get_done(zgd, error);
2475
2476 return (error);
2477 }
2478
2479 static void *
2480 ztest_lr_alloc(size_t lrsize, char *name)
2481 {
2482 char *lr;
2483 size_t namesize = name ? strlen(name) + 1 : 0;
2484
2485 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
2486
2487 if (name)
2488 memcpy(lr + lrsize, name, namesize);
2489
2490 return (lr);
2491 }
2492
2493 static void
2494 ztest_lr_free(void *lr, size_t lrsize, char *name)
2495 {
2496 size_t namesize = name ? strlen(name) + 1 : 0;
2497
2498 umem_free(lr, lrsize + namesize);
2499 }
2500
2501 /*
2502 * Lookup a bunch of objects. Returns the number of objects not found.
2503 */
2504 static int
2505 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
2506 {
2507 int missing = 0;
2508 int error;
2509 int i;
2510
2511 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2512
2513 for (i = 0; i < count; i++, od++) {
2514 od->od_object = 0;
2515 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
2516 sizeof (uint64_t), 1, &od->od_object);
2517 if (error) {
2518 ASSERT3S(error, ==, ENOENT);
2519 ASSERT0(od->od_object);
2520 missing++;
2521 } else {
2522 dmu_buf_t *db;
2523 ztest_block_tag_t *bbt;
2524 dmu_object_info_t doi;
2525
2526 ASSERT3U(od->od_object, !=, 0);
2527 ASSERT0(missing); /* there should be no gaps */
2528
2529 ztest_object_lock(zd, od->od_object, RL_READER);
2530 VERIFY0(dmu_bonus_hold(zd->zd_os, od->od_object,
2531 FTAG, &db));
2532 dmu_object_info_from_db(db, &doi);
2533 bbt = ztest_bt_bonus(db);
2534 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2535 od->od_type = doi.doi_type;
2536 od->od_blocksize = doi.doi_data_block_size;
2537 od->od_gen = bbt->bt_gen;
2538 dmu_buf_rele(db, FTAG);
2539 ztest_object_unlock(zd, od->od_object);
2540 }
2541 }
2542
2543 return (missing);
2544 }
2545
2546 static int
2547 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
2548 {
2549 int missing = 0;
2550 int i;
2551
2552 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2553
2554 for (i = 0; i < count; i++, od++) {
2555 if (missing) {
2556 od->od_object = 0;
2557 missing++;
2558 continue;
2559 }
2560
2561 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2562
2563 lr->lr_doid = od->od_dir;
2564 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */
2565 lr->lrz_type = od->od_crtype;
2566 lr->lrz_blocksize = od->od_crblocksize;
2567 lr->lrz_ibshift = ztest_random_ibshift();
2568 lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
2569 lr->lrz_dnodesize = od->od_crdnodesize;
2570 lr->lr_gen = od->od_crgen;
2571 lr->lr_crtime[0] = time(NULL);
2572
2573 if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
2574 ASSERT0(missing);
2575 od->od_object = 0;
2576 missing++;
2577 } else {
2578 od->od_object = lr->lr_foid;
2579 od->od_type = od->od_crtype;
2580 od->od_blocksize = od->od_crblocksize;
2581 od->od_gen = od->od_crgen;
2582 ASSERT3U(od->od_object, !=, 0);
2583 }
2584
2585 ztest_lr_free(lr, sizeof (*lr), od->od_name);
2586 }
2587
2588 return (missing);
2589 }
2590
2591 static int
2592 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
2593 {
2594 int missing = 0;
2595 int error;
2596 int i;
2597
2598 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2599
2600 od += count - 1;
2601
2602 for (i = count - 1; i >= 0; i--, od--) {
2603 if (missing) {
2604 missing++;
2605 continue;
2606 }
2607
2608 /*
2609 * No object was found.
2610 */
2611 if (od->od_object == 0)
2612 continue;
2613
2614 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2615
2616 lr->lr_doid = od->od_dir;
2617
2618 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
2619 ASSERT3U(error, ==, ENOSPC);
2620 missing++;
2621 } else {
2622 od->od_object = 0;
2623 }
2624 ztest_lr_free(lr, sizeof (*lr), od->od_name);
2625 }
2626
2627 return (missing);
2628 }
2629
2630 static int
2631 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
2632 void *data)
2633 {
2634 lr_write_t *lr;
2635 int error;
2636
2637 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
2638
2639 lr->lr_foid = object;
2640 lr->lr_offset = offset;
2641 lr->lr_length = size;
2642 lr->lr_blkoff = 0;
2643 BP_ZERO(&lr->lr_blkptr);
2644
2645 memcpy(lr + 1, data, size);
2646
2647 error = ztest_replay_write(zd, lr, B_FALSE);
2648
2649 ztest_lr_free(lr, sizeof (*lr) + size, NULL);
2650
2651 return (error);
2652 }
2653
2654 static int
2655 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2656 {
2657 lr_truncate_t *lr;
2658 int error;
2659
2660 lr = ztest_lr_alloc(sizeof (*lr), NULL);
2661
2662 lr->lr_foid = object;
2663 lr->lr_offset = offset;
2664 lr->lr_length = size;
2665
2666 error = ztest_replay_truncate(zd, lr, B_FALSE);
2667
2668 ztest_lr_free(lr, sizeof (*lr), NULL);
2669
2670 return (error);
2671 }
2672
2673 static int
2674 ztest_setattr(ztest_ds_t *zd, uint64_t object)
2675 {
2676 lr_setattr_t *lr;
2677 int error;
2678
2679 lr = ztest_lr_alloc(sizeof (*lr), NULL);
2680
2681 lr->lr_foid = object;
2682 lr->lr_size = 0;
2683 lr->lr_mode = 0;
2684
2685 error = ztest_replay_setattr(zd, lr, B_FALSE);
2686
2687 ztest_lr_free(lr, sizeof (*lr), NULL);
2688
2689 return (error);
2690 }
2691
2692 static void
2693 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2694 {
2695 objset_t *os = zd->zd_os;
2696 dmu_tx_t *tx;
2697 uint64_t txg;
2698 rl_t *rl;
2699
2700 txg_wait_synced(dmu_objset_pool(os), 0);
2701
2702 ztest_object_lock(zd, object, RL_READER);
2703 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER);
2704
2705 tx = dmu_tx_create(os);
2706
2707 dmu_tx_hold_write(tx, object, offset, size);
2708
2709 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2710
2711 if (txg != 0) {
2712 dmu_prealloc(os, object, offset, size, tx);
2713 dmu_tx_commit(tx);
2714 txg_wait_synced(dmu_objset_pool(os), txg);
2715 } else {
2716 (void) dmu_free_long_range(os, object, offset, size);
2717 }
2718
2719 ztest_range_unlock(rl);
2720 ztest_object_unlock(zd, object);
2721 }
2722
2723 static void
2724 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
2725 {
2726 int err;
2727 ztest_block_tag_t wbt;
2728 dmu_object_info_t doi;
2729 enum ztest_io_type io_type;
2730 uint64_t blocksize;
2731 void *data;
2732
2733 VERIFY0(dmu_object_info(zd->zd_os, object, &doi));
2734 blocksize = doi.doi_data_block_size;
2735 data = umem_alloc(blocksize, UMEM_NOFAIL);
2736
2737 /*
2738 * Pick an i/o type at random, biased toward writing block tags.
2739 */
2740 io_type = ztest_random(ZTEST_IO_TYPES);
2741 if (ztest_random(2) == 0)
2742 io_type = ZTEST_IO_WRITE_TAG;
2743
2744 (void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
2745
2746 switch (io_type) {
2747
2748 case ZTEST_IO_WRITE_TAG:
2749 ztest_bt_generate(&wbt, zd->zd_os, object, doi.doi_dnodesize,
2750 offset, 0, 0, 0);
2751 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
2752 break;
2753
2754 case ZTEST_IO_WRITE_PATTERN:
2755 (void) memset(data, 'a' + (object + offset) % 5, blocksize);
2756 if (ztest_random(2) == 0) {
2757 /*
2758 * Induce fletcher2 collisions to ensure that
2759 * zio_ddt_collision() detects and resolves them
2760 * when using fletcher2-verify for deduplication.
2761 */
2762 ((uint64_t *)data)[0] ^= 1ULL << 63;
2763 ((uint64_t *)data)[4] ^= 1ULL << 63;
2764 }
2765 (void) ztest_write(zd, object, offset, blocksize, data);
2766 break;
2767
2768 case ZTEST_IO_WRITE_ZEROES:
2769 memset(data, 0, blocksize);
2770 (void) ztest_write(zd, object, offset, blocksize, data);
2771 break;
2772
2773 case ZTEST_IO_TRUNCATE:
2774 (void) ztest_truncate(zd, object, offset, blocksize);
2775 break;
2776
2777 case ZTEST_IO_SETATTR:
2778 (void) ztest_setattr(zd, object);
2779 break;
2780 default:
2781 break;
2782
2783 case ZTEST_IO_REWRITE:
2784 (void) pthread_rwlock_rdlock(&ztest_name_lock);
2785 err = ztest_dsl_prop_set_uint64(zd->zd_name,
2786 ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa),
2787 B_FALSE);
2788 VERIFY(err == 0 || err == ENOSPC);
2789 err = ztest_dsl_prop_set_uint64(zd->zd_name,
2790 ZFS_PROP_COMPRESSION,
2791 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION),
2792 B_FALSE);
2793 VERIFY(err == 0 || err == ENOSPC);
2794 (void) pthread_rwlock_unlock(&ztest_name_lock);
2795
2796 VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data,
2797 DMU_READ_NO_PREFETCH));
2798
2799 (void) ztest_write(zd, object, offset, blocksize, data);
2800 break;
2801 }
2802
2803 (void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2804
2805 umem_free(data, blocksize);
2806 }
2807
2808 /*
2809 * Initialize an object description template.
2810 */
2811 static void
2812 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index,
2813 dmu_object_type_t type, uint64_t blocksize, uint64_t dnodesize,
2814 uint64_t gen)
2815 {
2816 od->od_dir = ZTEST_DIROBJ;
2817 od->od_object = 0;
2818
2819 od->od_crtype = type;
2820 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
2821 od->od_crdnodesize = dnodesize ? dnodesize : ztest_random_dnodesize();
2822 od->od_crgen = gen;
2823
2824 od->od_type = DMU_OT_NONE;
2825 od->od_blocksize = 0;
2826 od->od_gen = 0;
2827
2828 (void) snprintf(od->od_name, sizeof (od->od_name),
2829 "%s(%"PRId64")[%"PRIu64"]",
2830 tag, id, index);
2831 }
2832
2833 /*
2834 * Lookup or create the objects for a test using the od template.
2835 * If the objects do not all exist, or if 'remove' is specified,
2836 * remove any existing objects and create new ones. Otherwise,
2837 * use the existing objects.
2838 */
2839 static int
2840 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
2841 {
2842 int count = size / sizeof (*od);
2843 int rv = 0;
2844
2845 mutex_enter(&zd->zd_dirobj_lock);
2846 if ((ztest_lookup(zd, od, count) != 0 || remove) &&
2847 (ztest_remove(zd, od, count) != 0 ||
2848 ztest_create(zd, od, count) != 0))
2849 rv = -1;
2850 zd->zd_od = od;
2851 mutex_exit(&zd->zd_dirobj_lock);
2852
2853 return (rv);
2854 }
2855
2856 void
2857 ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
2858 {
2859 (void) id;
2860 zilog_t *zilog = zd->zd_zilog;
2861
2862 (void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
2863
2864 zil_commit(zilog, ztest_random(ZTEST_OBJECTS));
2865
2866 /*
2867 * Remember the committed values in zd, which is in parent/child
2868 * shared memory. If we die, the next iteration of ztest_run()
2869 * will verify that the log really does contain this record.
2870 */
2871 mutex_enter(&zilog->zl_lock);
2872 ASSERT3P(zd->zd_shared, !=, NULL);
2873 ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq);
2874 zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq;
2875 mutex_exit(&zilog->zl_lock);
2876
2877 (void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2878 }
2879
2880 /*
2881 * This function is designed to simulate the operations that occur during a
2882 * mount/unmount operation. We hold the dataset across these operations in an
2883 * attempt to expose any implicit assumptions about ZIL management.
2884 */
2885 void
2886 ztest_zil_remount(ztest_ds_t *zd, uint64_t id)
2887 {
2888 (void) id;
2889 objset_t *os = zd->zd_os;
2890
2891 /*
2892 * We hold the ztest_vdev_lock so we don't cause problems with
2893 * other threads that wish to remove a log device, such as
2894 * ztest_device_removal().
2895 */
2896 mutex_enter(&ztest_vdev_lock);
2897
2898 /*
2899 * We grab the zd_dirobj_lock to ensure that no other thread is
2900 * updating the zil (i.e. adding in-memory log records) and the
2901 * zd_zilog_lock to block any I/O.
2902 */
2903 mutex_enter(&zd->zd_dirobj_lock);
2904 (void) pthread_rwlock_wrlock(&zd->zd_zilog_lock);
2905
2906 /* zfsvfs_teardown() */
2907 zil_close(zd->zd_zilog);
2908
2909 /* zfsvfs_setup() */
2910 VERIFY3P(zil_open(os, ztest_get_data), ==, zd->zd_zilog);
2911 zil_replay(os, zd, ztest_replay_vector);
2912
2913 (void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2914 mutex_exit(&zd->zd_dirobj_lock);
2915 mutex_exit(&ztest_vdev_lock);
2916 }
2917
2918 /*
2919 * Verify that we can't destroy an active pool, create an existing pool,
2920 * or create a pool with a bad vdev spec.
2921 */
2922 void
2923 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
2924 {
2925 (void) zd, (void) id;
2926 ztest_shared_opts_t *zo = &ztest_opts;
2927 spa_t *spa;
2928 nvlist_t *nvroot;
2929
2930 if (zo->zo_mmp_test)
2931 return;
2932
2933 /*
2934 * Attempt to create using a bad file.
2935 */
2936 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
2937 VERIFY3U(ENOENT, ==,
2938 spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL));
2939 fnvlist_free(nvroot);
2940
2941 /*
2942 * Attempt to create using a bad mirror.
2943 */
2944 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 2, 1);
2945 VERIFY3U(ENOENT, ==,
2946 spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL));
2947 fnvlist_free(nvroot);
2948
2949 /*
2950 * Attempt to create an existing pool. It shouldn't matter
2951 * what's in the nvroot; we should fail with EEXIST.
2952 */
2953 (void) pthread_rwlock_rdlock(&ztest_name_lock);
2954 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
2955 VERIFY3U(EEXIST, ==,
2956 spa_create(zo->zo_pool, nvroot, NULL, NULL, NULL));
2957 fnvlist_free(nvroot);
2958
2959 /*
2960 * We open a reference to the spa and then we try to export it
2961 * expecting one of the following errors:
2962 *
2963 * EBUSY
2964 * Because of the reference we just opened.
2965 *
2966 * ZFS_ERR_EXPORT_IN_PROGRESS
2967 * For the case that there is another ztest thread doing
2968 * an export concurrently.
2969 */
2970 VERIFY0(spa_open(zo->zo_pool, &spa, FTAG));
2971 int error = spa_destroy(zo->zo_pool);
2972 if (error != EBUSY && error != ZFS_ERR_EXPORT_IN_PROGRESS) {
2973 fatal(B_FALSE, "spa_destroy(%s) returned unexpected value %d",
2974 spa->spa_name, error);
2975 }
2976 spa_close(spa, FTAG);
2977
2978 (void) pthread_rwlock_unlock(&ztest_name_lock);
2979 }
2980
2981 /*
2982 * Start and then stop the MMP threads to ensure the startup and shutdown code
2983 * works properly. Actual protection and property-related code tested via ZTS.
2984 */
2985 void
2986 ztest_mmp_enable_disable(ztest_ds_t *zd, uint64_t id)
2987 {
2988 (void) zd, (void) id;
2989 ztest_shared_opts_t *zo = &ztest_opts;
2990 spa_t *spa = ztest_spa;
2991
2992 if (zo->zo_mmp_test)
2993 return;
2994
2995 /*
2996 * Since enabling MMP involves setting a property, it could not be done
2997 * while the pool is suspended.
2998 */
2999 if (spa_suspended(spa))
3000 return;
3001
3002 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3003 mutex_enter(&spa->spa_props_lock);
3004
3005 zfs_multihost_fail_intervals = 0;
3006
3007 if (!spa_multihost(spa)) {
3008 spa->spa_multihost = B_TRUE;
3009 mmp_thread_start(spa);
3010 }
3011
3012 mutex_exit(&spa->spa_props_lock);
3013 spa_config_exit(spa, SCL_CONFIG, FTAG);
3014
3015 txg_wait_synced(spa_get_dsl(spa), 0);
3016 mmp_signal_all_threads();
3017 txg_wait_synced(spa_get_dsl(spa), 0);
3018
3019 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3020 mutex_enter(&spa->spa_props_lock);
3021
3022 if (spa_multihost(spa)) {
3023 mmp_thread_stop(spa);
3024 spa->spa_multihost = B_FALSE;
3025 }
3026
3027 mutex_exit(&spa->spa_props_lock);
3028 spa_config_exit(spa, SCL_CONFIG, FTAG);
3029 }
3030
3031 void
3032 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id)
3033 {
3034 (void) zd, (void) id;
3035 spa_t *spa;
3036 uint64_t initial_version = SPA_VERSION_INITIAL;
3037 uint64_t version, newversion;
3038 nvlist_t *nvroot, *props;
3039 char *name;
3040
3041 if (ztest_opts.zo_mmp_test)
3042 return;
3043
3044 /* dRAID added after feature flags, skip upgrade test. */
3045 if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0)
3046 return;
3047
3048 mutex_enter(&ztest_vdev_lock);
3049 name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool);
3050
3051 /*
3052 * Clean up from previous runs.
3053 */
3054 (void) spa_destroy(name);
3055
3056 nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0,
3057 NULL, ztest_opts.zo_raid_children, ztest_opts.zo_mirrors, 1);
3058
3059 /*
3060 * If we're configuring a RAIDZ device then make sure that the
3061 * initial version is capable of supporting that feature.
3062 */
3063 switch (ztest_opts.zo_raid_parity) {
3064 case 0:
3065 case 1:
3066 initial_version = SPA_VERSION_INITIAL;
3067 break;
3068 case 2:
3069 initial_version = SPA_VERSION_RAIDZ2;
3070 break;
3071 case 3:
3072 initial_version = SPA_VERSION_RAIDZ3;
3073 break;
3074 }
3075
3076 /*
3077 * Create a pool with a spa version that can be upgraded. Pick
3078 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
3079 */
3080 do {
3081 version = ztest_random_spa_version(initial_version);
3082 } while (version > SPA_VERSION_BEFORE_FEATURES);
3083
3084 props = fnvlist_alloc();
3085 fnvlist_add_uint64(props,
3086 zpool_prop_to_name(ZPOOL_PROP_VERSION), version);
3087 VERIFY0(spa_create(name, nvroot, props, NULL, NULL));
3088 fnvlist_free(nvroot);
3089 fnvlist_free(props);
3090
3091 VERIFY0(spa_open(name, &spa, FTAG));
3092 VERIFY3U(spa_version(spa), ==, version);
3093 newversion = ztest_random_spa_version(version + 1);
3094
3095 if (ztest_opts.zo_verbose >= 4) {
3096 (void) printf("upgrading spa version from "
3097 "%"PRIu64" to %"PRIu64"\n",
3098 version, newversion);
3099 }
3100
3101 spa_upgrade(spa, newversion);
3102 VERIFY3U(spa_version(spa), >, version);
3103 VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config,
3104 zpool_prop_to_name(ZPOOL_PROP_VERSION)));
3105 spa_close(spa, FTAG);
3106
3107 kmem_strfree(name);
3108 mutex_exit(&ztest_vdev_lock);
3109 }
3110
3111 static void
3112 ztest_spa_checkpoint(spa_t *spa)
3113 {
3114 ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
3115
3116 int error = spa_checkpoint(spa->spa_name);
3117
3118 switch (error) {
3119 case 0:
3120 case ZFS_ERR_DEVRM_IN_PROGRESS:
3121 case ZFS_ERR_DISCARDING_CHECKPOINT:
3122 case ZFS_ERR_CHECKPOINT_EXISTS:
3123 break;
3124 case ENOSPC:
3125 ztest_record_enospc(FTAG);
3126 break;
3127 default:
3128 fatal(B_FALSE, "spa_checkpoint(%s) = %d", spa->spa_name, error);
3129 }
3130 }
3131
3132 static void
3133 ztest_spa_discard_checkpoint(spa_t *spa)
3134 {
3135 ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
3136
3137 int error = spa_checkpoint_discard(spa->spa_name);
3138
3139 switch (error) {
3140 case 0:
3141 case ZFS_ERR_DISCARDING_CHECKPOINT:
3142 case ZFS_ERR_NO_CHECKPOINT:
3143 break;
3144 default:
3145 fatal(B_FALSE, "spa_discard_checkpoint(%s) = %d",
3146 spa->spa_name, error);
3147 }
3148
3149 }
3150
3151 void
3152 ztest_spa_checkpoint_create_discard(ztest_ds_t *zd, uint64_t id)
3153 {
3154 (void) zd, (void) id;
3155 spa_t *spa = ztest_spa;
3156
3157 mutex_enter(&ztest_checkpoint_lock);
3158 if (ztest_random(2) == 0) {
3159 ztest_spa_checkpoint(spa);
3160 } else {
3161 ztest_spa_discard_checkpoint(spa);
3162 }
3163 mutex_exit(&ztest_checkpoint_lock);
3164 }
3165
3166
3167 static vdev_t *
3168 vdev_lookup_by_path(vdev_t *vd, const char *path)
3169 {
3170 vdev_t *mvd;
3171 int c;
3172
3173 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
3174 return (vd);
3175
3176 for (c = 0; c < vd->vdev_children; c++)
3177 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
3178 NULL)
3179 return (mvd);
3180
3181 return (NULL);
3182 }
3183
3184 static int
3185 spa_num_top_vdevs(spa_t *spa)
3186 {
3187 vdev_t *rvd = spa->spa_root_vdev;
3188 ASSERT3U(spa_config_held(spa, SCL_VDEV, RW_READER), ==, SCL_VDEV);
3189 return (rvd->vdev_children);
3190 }
3191
3192 /*
3193 * Verify that vdev_add() works as expected.
3194 */
3195 void
3196 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
3197 {
3198 (void) zd, (void) id;
3199 ztest_shared_t *zs = ztest_shared;
3200 spa_t *spa = ztest_spa;
3201 uint64_t leaves;
3202 uint64_t guid;
3203 nvlist_t *nvroot;
3204 int error;
3205
3206 if (ztest_opts.zo_mmp_test)
3207 return;
3208
3209 mutex_enter(&ztest_vdev_lock);
3210 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) *
3211 ztest_opts.zo_raid_children;
3212
3213 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3214
3215 ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
3216
3217 /*
3218 * If we have slogs then remove them 1/4 of the time.
3219 */
3220 if (spa_has_slogs(spa) && ztest_random(4) == 0) {
3221 metaslab_group_t *mg;
3222
3223 /*
3224 * find the first real slog in log allocation class
3225 */
3226 mg = spa_log_class(spa)->mc_allocator[0].mca_rotor;
3227 while (!mg->mg_vd->vdev_islog)
3228 mg = mg->mg_next;
3229
3230 guid = mg->mg_vd->vdev_guid;
3231
3232 spa_config_exit(spa, SCL_VDEV, FTAG);
3233
3234 /*
3235 * We have to grab the zs_name_lock as writer to
3236 * prevent a race between removing a slog (dmu_objset_find)
3237 * and destroying a dataset. Removing the slog will
3238 * grab a reference on the dataset which may cause
3239 * dsl_destroy_head() to fail with EBUSY thus
3240 * leaving the dataset in an inconsistent state.
3241 */
3242 pthread_rwlock_wrlock(&ztest_name_lock);
3243 error = spa_vdev_remove(spa, guid, B_FALSE);
3244 pthread_rwlock_unlock(&ztest_name_lock);
3245
3246 switch (error) {
3247 case 0:
3248 case EEXIST: /* Generic zil_reset() error */
3249 case EBUSY: /* Replay required */
3250 case EACCES: /* Crypto key not loaded */
3251 case ZFS_ERR_CHECKPOINT_EXISTS:
3252 case ZFS_ERR_DISCARDING_CHECKPOINT:
3253 break;
3254 default:
3255 fatal(B_FALSE, "spa_vdev_remove() = %d", error);
3256 }
3257 } else {
3258 spa_config_exit(spa, SCL_VDEV, FTAG);
3259
3260 /*
3261 * Make 1/4 of the devices be log devices
3262 */
3263 nvroot = make_vdev_root(NULL, NULL, NULL,
3264 ztest_opts.zo_vdev_size, 0, (ztest_random(4) == 0) ?
3265 "log" : NULL, ztest_opts.zo_raid_children, zs->zs_mirrors,
3266 1);
3267
3268 error = spa_vdev_add(spa, nvroot);
3269 fnvlist_free(nvroot);
3270
3271 switch (error) {
3272 case 0:
3273 break;
3274 case ENOSPC:
3275 ztest_record_enospc("spa_vdev_add");
3276 break;
3277 default:
3278 fatal(B_FALSE, "spa_vdev_add() = %d", error);
3279 }
3280 }
3281
3282 mutex_exit(&ztest_vdev_lock);
3283 }
3284
3285 void
3286 ztest_vdev_class_add(ztest_ds_t *zd, uint64_t id)
3287 {
3288 (void) zd, (void) id;
3289 ztest_shared_t *zs = ztest_shared;
3290 spa_t *spa = ztest_spa;
3291 uint64_t leaves;
3292 nvlist_t *nvroot;
3293 const char *class = (ztest_random(2) == 0) ?
3294 VDEV_ALLOC_BIAS_SPECIAL : VDEV_ALLOC_BIAS_DEDUP;
3295 int error;
3296
3297 /*
3298 * By default add a special vdev 50% of the time
3299 */
3300 if ((ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_OFF) ||
3301 (ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_RND &&
3302 ztest_random(2) == 0)) {
3303 return;
3304 }
3305
3306 mutex_enter(&ztest_vdev_lock);
3307
3308 /* Only test with mirrors */
3309 if (zs->zs_mirrors < 2) {
3310 mutex_exit(&ztest_vdev_lock);
3311 return;
3312 }
3313
3314 /* requires feature@allocation_classes */
3315 if (!spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)) {
3316 mutex_exit(&ztest_vdev_lock);
3317 return;
3318 }
3319
3320 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) *
3321 ztest_opts.zo_raid_children;
3322
3323 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3324 ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
3325 spa_config_exit(spa, SCL_VDEV, FTAG);
3326
3327 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
3328 class, ztest_opts.zo_raid_children, zs->zs_mirrors, 1);
3329
3330 error = spa_vdev_add(spa, nvroot);
3331 fnvlist_free(nvroot);
3332
3333 if (error == ENOSPC)
3334 ztest_record_enospc("spa_vdev_add");
3335 else if (error != 0)
3336 fatal(B_FALSE, "spa_vdev_add() = %d", error);
3337
3338 /*
3339 * 50% of the time allow small blocks in the special class
3340 */
3341 if (error == 0 &&
3342 spa_special_class(spa)->mc_groups == 1 && ztest_random(2) == 0) {
3343 if (ztest_opts.zo_verbose >= 3)
3344 (void) printf("Enabling special VDEV small blocks\n");
3345 (void) ztest_dsl_prop_set_uint64(zd->zd_name,
3346 ZFS_PROP_SPECIAL_SMALL_BLOCKS, 32768, B_FALSE);
3347 }
3348
3349 mutex_exit(&ztest_vdev_lock);
3350
3351 if (ztest_opts.zo_verbose >= 3) {
3352 metaslab_class_t *mc;
3353
3354 if (strcmp(class, VDEV_ALLOC_BIAS_SPECIAL) == 0)
3355 mc = spa_special_class(spa);
3356 else
3357 mc = spa_dedup_class(spa);
3358 (void) printf("Added a %s mirrored vdev (of %d)\n",
3359 class, (int)mc->mc_groups);
3360 }
3361 }
3362
3363 /*
3364 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
3365 */
3366 void
3367 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
3368 {
3369 (void) zd, (void) id;
3370 ztest_shared_t *zs = ztest_shared;
3371 spa_t *spa = ztest_spa;
3372 vdev_t *rvd = spa->spa_root_vdev;
3373 spa_aux_vdev_t *sav;
3374 char *aux;
3375 char *path;
3376 uint64_t guid = 0;
3377 int error, ignore_err = 0;
3378
3379 if (ztest_opts.zo_mmp_test)
3380 return;
3381
3382 path = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3383
3384 if (ztest_random(2) == 0) {
3385 sav = &spa->spa_spares;
3386 aux = ZPOOL_CONFIG_SPARES;
3387 } else {
3388 sav = &spa->spa_l2cache;
3389 aux = ZPOOL_CONFIG_L2CACHE;
3390 }
3391
3392 mutex_enter(&ztest_vdev_lock);
3393
3394 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3395
3396 if (sav->sav_count != 0 && ztest_random(4) == 0) {
3397 /*
3398 * Pick a random device to remove.
3399 */
3400 vdev_t *svd = sav->sav_vdevs[ztest_random(sav->sav_count)];
3401
3402 /* dRAID spares cannot be removed; try anyways to see ENOTSUP */
3403 if (strstr(svd->vdev_path, VDEV_TYPE_DRAID) != NULL)
3404 ignore_err = ENOTSUP;
3405
3406 guid = svd->vdev_guid;
3407 } else {
3408 /*
3409 * Find an unused device we can add.
3410 */
3411 zs->zs_vdev_aux = 0;
3412 for (;;) {
3413 int c;
3414 (void) snprintf(path, MAXPATHLEN, ztest_aux_template,
3415 ztest_opts.zo_dir, ztest_opts.zo_pool, aux,
3416 zs->zs_vdev_aux);
3417 for (c = 0; c < sav->sav_count; c++)
3418 if (strcmp(sav->sav_vdevs[c]->vdev_path,
3419 path) == 0)
3420 break;
3421 if (c == sav->sav_count &&
3422 vdev_lookup_by_path(rvd, path) == NULL)
3423 break;
3424 zs->zs_vdev_aux++;
3425 }
3426 }
3427
3428 spa_config_exit(spa, SCL_VDEV, FTAG);
3429
3430 if (guid == 0) {
3431 /*
3432 * Add a new device.
3433 */
3434 nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL,
3435 (ztest_opts.zo_vdev_size * 5) / 4, 0, NULL, 0, 0, 1);
3436 error = spa_vdev_add(spa, nvroot);
3437
3438 switch (error) {
3439 case 0:
3440 break;
3441 default:
3442 fatal(B_FALSE, "spa_vdev_add(%p) = %d", nvroot, error);
3443 }
3444 fnvlist_free(nvroot);
3445 } else {
3446 /*
3447 * Remove an existing device. Sometimes, dirty its
3448 * vdev state first to make sure we handle removal
3449 * of devices that have pending state changes.
3450 */
3451 if (ztest_random(2) == 0)
3452 (void) vdev_online(spa, guid, 0, NULL);
3453
3454 error = spa_vdev_remove(spa, guid, B_FALSE);
3455
3456 switch (error) {
3457 case 0:
3458 case EBUSY:
3459 case ZFS_ERR_CHECKPOINT_EXISTS:
3460 case ZFS_ERR_DISCARDING_CHECKPOINT:
3461 break;
3462 default:
3463 if (error != ignore_err)
3464 fatal(B_FALSE,
3465 "spa_vdev_remove(%"PRIu64") = %d",
3466 guid, error);
3467 }
3468 }
3469
3470 mutex_exit(&ztest_vdev_lock);
3471
3472 umem_free(path, MAXPATHLEN);
3473 }
3474
3475 /*
3476 * split a pool if it has mirror tlvdevs
3477 */
3478 void
3479 ztest_split_pool(ztest_ds_t *zd, uint64_t id)
3480 {
3481 (void) zd, (void) id;
3482 ztest_shared_t *zs = ztest_shared;
3483 spa_t *spa = ztest_spa;
3484 vdev_t *rvd = spa->spa_root_vdev;
3485 nvlist_t *tree, **child, *config, *split, **schild;
3486 uint_t c, children, schildren = 0, lastlogid = 0;
3487 int error = 0;
3488
3489 if (ztest_opts.zo_mmp_test)
3490 return;
3491
3492 mutex_enter(&ztest_vdev_lock);
3493
3494 /* ensure we have a usable config; mirrors of raidz aren't supported */
3495 if (zs->zs_mirrors < 3 || ztest_opts.zo_raid_children > 1) {
3496 mutex_exit(&ztest_vdev_lock);
3497 return;
3498 }
3499
3500 /* clean up the old pool, if any */
3501 (void) spa_destroy("splitp");
3502
3503 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3504
3505 /* generate a config from the existing config */
3506 mutex_enter(&spa->spa_props_lock);
3507 tree = fnvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE);
3508 mutex_exit(&spa->spa_props_lock);
3509
3510 VERIFY0(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN,
3511 &child, &children));
3512
3513 schild = malloc(rvd->vdev_children * sizeof (nvlist_t *));
3514 for (c = 0; c < children; c++) {
3515 vdev_t *tvd = rvd->vdev_child[c];
3516 nvlist_t **mchild;
3517 uint_t mchildren;
3518
3519 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
3520 schild[schildren] = fnvlist_alloc();
3521 fnvlist_add_string(schild[schildren],
3522 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE);
3523 fnvlist_add_uint64(schild[schildren],
3524 ZPOOL_CONFIG_IS_HOLE, 1);
3525 if (lastlogid == 0)
3526 lastlogid = schildren;
3527 ++schildren;
3528 continue;
3529 }
3530 lastlogid = 0;
3531 VERIFY0(nvlist_lookup_nvlist_array(child[c],
3532 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren));
3533 schild[schildren++] = fnvlist_dup(mchild[0]);
3534 }
3535
3536 /* OK, create a config that can be used to split */
3537 split = fnvlist_alloc();
3538 fnvlist_add_string(split, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT);
3539 fnvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN,
3540 (const nvlist_t **)schild, lastlogid != 0 ? lastlogid : schildren);
3541
3542 config = fnvlist_alloc();
3543 fnvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split);
3544
3545 for (c = 0; c < schildren; c++)
3546 fnvlist_free(schild[c]);
3547 free(schild);
3548 fnvlist_free(split);
3549
3550 spa_config_exit(spa, SCL_VDEV, FTAG);
3551
3552 (void) pthread_rwlock_wrlock(&ztest_name_lock);
3553 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
3554 (void) pthread_rwlock_unlock(&ztest_name_lock);
3555
3556 fnvlist_free(config);
3557
3558 if (error == 0) {
3559 (void) printf("successful split - results:\n");
3560 mutex_enter(&spa_namespace_lock);
3561 show_pool_stats(spa);
3562 show_pool_stats(spa_lookup("splitp"));
3563 mutex_exit(&spa_namespace_lock);
3564 ++zs->zs_splits;
3565 --zs->zs_mirrors;
3566 }
3567 mutex_exit(&ztest_vdev_lock);
3568 }
3569
3570 /*
3571 * Verify that we can attach and detach devices.
3572 */
3573 void
3574 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
3575 {
3576 (void) zd, (void) id;
3577 ztest_shared_t *zs = ztest_shared;
3578 spa_t *spa = ztest_spa;
3579 spa_aux_vdev_t *sav = &spa->spa_spares;
3580 vdev_t *rvd = spa->spa_root_vdev;
3581 vdev_t *oldvd, *newvd, *pvd;
3582 nvlist_t *root;
3583 uint64_t leaves;
3584 uint64_t leaf, top;
3585 uint64_t ashift = ztest_get_ashift();
3586 uint64_t oldguid, pguid;
3587 uint64_t oldsize, newsize;
3588 char *oldpath, *newpath;
3589 int replacing;
3590 int oldvd_has_siblings = B_FALSE;
3591 int newvd_is_spare = B_FALSE;
3592 int newvd_is_dspare = B_FALSE;
3593 int oldvd_is_log;
3594 int error, expected_error;
3595
3596 if (ztest_opts.zo_mmp_test)
3597 return;
3598
3599 oldpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3600 newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3601
3602 mutex_enter(&ztest_vdev_lock);
3603 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raid_children;
3604
3605 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3606
3607 /*
3608 * If a vdev is in the process of being removed, its removal may
3609 * finish while we are in progress, leading to an unexpected error
3610 * value. Don't bother trying to attach while we are in the middle
3611 * of removal.
3612 */
3613 if (ztest_device_removal_active) {
3614 spa_config_exit(spa, SCL_ALL, FTAG);
3615 goto out;
3616 }
3617
3618 /*
3619 * Decide whether to do an attach or a replace.
3620 */
3621 replacing = ztest_random(2);
3622
3623 /*
3624 * Pick a random top-level vdev.
3625 */
3626 top = ztest_random_vdev_top(spa, B_TRUE);
3627
3628 /*
3629 * Pick a random leaf within it.
3630 */
3631 leaf = ztest_random(leaves);
3632
3633 /*
3634 * Locate this vdev.
3635 */
3636 oldvd = rvd->vdev_child[top];
3637
3638 /* pick a child from the mirror */
3639 if (zs->zs_mirrors >= 1) {
3640 ASSERT3P(oldvd->vdev_ops, ==, &vdev_mirror_ops);
3641 ASSERT3U(oldvd->vdev_children, >=, zs->zs_mirrors);
3642 oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raid_children];
3643 }
3644
3645 /* pick a child out of the raidz group */
3646 if (ztest_opts.zo_raid_children > 1) {
3647 if (strcmp(oldvd->vdev_ops->vdev_op_type, "raidz") == 0)
3648 ASSERT3P(oldvd->vdev_ops, ==, &vdev_raidz_ops);
3649 else
3650 ASSERT3P(oldvd->vdev_ops, ==, &vdev_draid_ops);
3651 ASSERT3U(oldvd->vdev_children, ==, ztest_opts.zo_raid_children);
3652 oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raid_children];
3653 }
3654
3655 /*
3656 * If we're already doing an attach or replace, oldvd may be a
3657 * mirror vdev -- in which case, pick a random child.
3658 */
3659 while (oldvd->vdev_children != 0) {
3660 oldvd_has_siblings = B_TRUE;
3661 ASSERT3U(oldvd->vdev_children, >=, 2);
3662 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
3663 }
3664
3665 oldguid = oldvd->vdev_guid;
3666 oldsize = vdev_get_min_asize(oldvd);
3667 oldvd_is_log = oldvd->vdev_top->vdev_islog;
3668 (void) strcpy(oldpath, oldvd->vdev_path);
3669 pvd = oldvd->vdev_parent;
3670 pguid = pvd->vdev_guid;
3671
3672 /*
3673 * If oldvd has siblings, then half of the time, detach it. Prior
3674 * to the detach the pool is scrubbed in order to prevent creating
3675 * unrepairable blocks as a result of the data corruption injection.
3676 */
3677 if (oldvd_has_siblings && ztest_random(2) == 0) {
3678 spa_config_exit(spa, SCL_ALL, FTAG);
3679
3680 error = ztest_scrub_impl(spa);
3681 if (error)
3682 goto out;
3683
3684 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
3685 if (error != 0 && error != ENODEV && error != EBUSY &&
3686 error != ENOTSUP && error != ZFS_ERR_CHECKPOINT_EXISTS &&
3687 error != ZFS_ERR_DISCARDING_CHECKPOINT)
3688 fatal(B_FALSE, "detach (%s) returned %d",
3689 oldpath, error);
3690 goto out;
3691 }
3692
3693 /*
3694 * For the new vdev, choose with equal probability between the two
3695 * standard paths (ending in either 'a' or 'b') or a random hot spare.
3696 */
3697 if (sav->sav_count != 0 && ztest_random(3) == 0) {
3698 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
3699 newvd_is_spare = B_TRUE;
3700
3701 if (newvd->vdev_ops == &vdev_draid_spare_ops)
3702 newvd_is_dspare = B_TRUE;
3703
3704 (void) strcpy(newpath, newvd->vdev_path);
3705 } else {
3706 (void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
3707 ztest_opts.zo_dir, ztest_opts.zo_pool,
3708 top * leaves + leaf);
3709 if (ztest_random(2) == 0)
3710 newpath[strlen(newpath) - 1] = 'b';
3711 newvd = vdev_lookup_by_path(rvd, newpath);
3712 }
3713
3714 if (newvd) {
3715 /*
3716 * Reopen to ensure the vdev's asize field isn't stale.
3717 */
3718 vdev_reopen(newvd);
3719 newsize = vdev_get_min_asize(newvd);
3720 } else {
3721 /*
3722 * Make newsize a little bigger or smaller than oldsize.
3723 * If it's smaller, the attach should fail.
3724 * If it's larger, and we're doing a replace,
3725 * we should get dynamic LUN growth when we're done.
3726 */
3727 newsize = 10 * oldsize / (9 + ztest_random(3));
3728 }
3729
3730 /*
3731 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
3732 * unless it's a replace; in that case any non-replacing parent is OK.
3733 *
3734 * If newvd is already part of the pool, it should fail with EBUSY.
3735 *
3736 * If newvd is too small, it should fail with EOVERFLOW.
3737 *
3738 * If newvd is a distributed spare and it's being attached to a
3739 * dRAID which is not its parent it should fail with EINVAL.
3740 */
3741 if (pvd->vdev_ops != &vdev_mirror_ops &&
3742 pvd->vdev_ops != &vdev_root_ops && (!replacing ||
3743 pvd->vdev_ops == &vdev_replacing_ops ||
3744 pvd->vdev_ops == &vdev_spare_ops))
3745 expected_error = ENOTSUP;
3746 else if (newvd_is_spare && (!replacing || oldvd_is_log))
3747 expected_error = ENOTSUP;
3748 else if (newvd == oldvd)
3749 expected_error = replacing ? 0 : EBUSY;
3750 else if (vdev_lookup_by_path(rvd, newpath) != NULL)
3751 expected_error = EBUSY;
3752 else if (!newvd_is_dspare && newsize < oldsize)
3753 expected_error = EOVERFLOW;
3754 else if (ashift > oldvd->vdev_top->vdev_ashift)
3755 expected_error = EDOM;
3756 else if (newvd_is_dspare && pvd != vdev_draid_spare_get_parent(newvd))
3757 expected_error = ENOTSUP;
3758 else
3759 expected_error = 0;
3760
3761 spa_config_exit(spa, SCL_ALL, FTAG);
3762
3763 /*
3764 * Build the nvlist describing newpath.
3765 */
3766 root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0,
3767 ashift, NULL, 0, 0, 1);
3768
3769 /*
3770 * When supported select either a healing or sequential resilver.
3771 */
3772 boolean_t rebuilding = B_FALSE;
3773 if (pvd->vdev_ops == &vdev_mirror_ops ||
3774 pvd->vdev_ops == &vdev_root_ops) {
3775 rebuilding = !!ztest_random(2);
3776 }
3777
3778 error = spa_vdev_attach(spa, oldguid, root, replacing, rebuilding);
3779
3780 fnvlist_free(root);
3781
3782 /*
3783 * If our parent was the replacing vdev, but the replace completed,
3784 * then instead of failing with ENOTSUP we may either succeed,
3785 * fail with ENODEV, or fail with EOVERFLOW.
3786 */
3787 if (expected_error == ENOTSUP &&
3788 (error == 0 || error == ENODEV || error == EOVERFLOW))
3789 expected_error = error;
3790
3791 /*
3792 * If someone grew the LUN, the replacement may be too small.
3793 */
3794 if (error == EOVERFLOW || error == EBUSY)
3795 expected_error = error;
3796
3797 if (error == ZFS_ERR_CHECKPOINT_EXISTS ||
3798 error == ZFS_ERR_DISCARDING_CHECKPOINT ||
3799 error == ZFS_ERR_RESILVER_IN_PROGRESS ||
3800 error == ZFS_ERR_REBUILD_IN_PROGRESS)
3801 expected_error = error;
3802
3803 if (error != expected_error && expected_error != EBUSY) {
3804 fatal(B_FALSE, "attach (%s %"PRIu64", %s %"PRIu64", %d) "
3805 "returned %d, expected %d",
3806 oldpath, oldsize, newpath,
3807 newsize, replacing, error, expected_error);
3808 }
3809 out:
3810 mutex_exit(&ztest_vdev_lock);
3811
3812 umem_free(oldpath, MAXPATHLEN);
3813 umem_free(newpath, MAXPATHLEN);
3814 }
3815
3816 void
3817 ztest_device_removal(ztest_ds_t *zd, uint64_t id)
3818 {
3819 (void) zd, (void) id;
3820 spa_t *spa = ztest_spa;
3821 vdev_t *vd;
3822 uint64_t guid;
3823 int error;
3824
3825 mutex_enter(&ztest_vdev_lock);
3826
3827 if (ztest_device_removal_active) {
3828 mutex_exit(&ztest_vdev_lock);
3829 return;
3830 }
3831
3832 /*
3833 * Remove a random top-level vdev and wait for removal to finish.
3834 */
3835 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3836 vd = vdev_lookup_top(spa, ztest_random_vdev_top(spa, B_FALSE));
3837 guid = vd->vdev_guid;
3838 spa_config_exit(spa, SCL_VDEV, FTAG);
3839
3840 error = spa_vdev_remove(spa, guid, B_FALSE);
3841 if (error == 0) {
3842 ztest_device_removal_active = B_TRUE;
3843 mutex_exit(&ztest_vdev_lock);
3844
3845 /*
3846 * spa->spa_vdev_removal is created in a sync task that
3847 * is initiated via dsl_sync_task_nowait(). Since the
3848 * task may not run before spa_vdev_remove() returns, we
3849 * must wait at least 1 txg to ensure that the removal
3850 * struct has been created.
3851 */
3852 txg_wait_synced(spa_get_dsl(spa), 0);
3853
3854 while (spa->spa_removing_phys.sr_state == DSS_SCANNING)
3855 txg_wait_synced(spa_get_dsl(spa), 0);
3856 } else {
3857 mutex_exit(&ztest_vdev_lock);
3858 return;
3859 }
3860
3861 /*
3862 * The pool needs to be scrubbed after completing device removal.
3863 * Failure to do so may result in checksum errors due to the
3864 * strategy employed by ztest_fault_inject() when selecting which
3865 * offset are redundant and can be damaged.
3866 */
3867 error = spa_scan(spa, POOL_SCAN_SCRUB);
3868 if (error == 0) {
3869 while (dsl_scan_scrubbing(spa_get_dsl(spa)))
3870 txg_wait_synced(spa_get_dsl(spa), 0);
3871 }
3872
3873 mutex_enter(&ztest_vdev_lock);
3874 ztest_device_removal_active = B_FALSE;
3875 mutex_exit(&ztest_vdev_lock);
3876 }
3877
3878 /*
3879 * Callback function which expands the physical size of the vdev.
3880 */
3881 static vdev_t *
3882 grow_vdev(vdev_t *vd, void *arg)
3883 {
3884 spa_t *spa __maybe_unused = vd->vdev_spa;
3885 size_t *newsize = arg;
3886 size_t fsize;
3887 int fd;
3888
3889 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), ==, SCL_STATE);
3890 ASSERT(vd->vdev_ops->vdev_op_leaf);
3891
3892 if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
3893 return (vd);
3894
3895 fsize = lseek(fd, 0, SEEK_END);
3896 VERIFY0(ftruncate(fd, *newsize));
3897
3898 if (ztest_opts.zo_verbose >= 6) {
3899 (void) printf("%s grew from %lu to %lu bytes\n",
3900 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
3901 }
3902 (void) close(fd);
3903 return (NULL);
3904 }
3905
3906 /*
3907 * Callback function which expands a given vdev by calling vdev_online().
3908 */
3909 static vdev_t *
3910 online_vdev(vdev_t *vd, void *arg)
3911 {
3912 (void) arg;
3913 spa_t *spa = vd->vdev_spa;
3914 vdev_t *tvd = vd->vdev_top;
3915 uint64_t guid = vd->vdev_guid;
3916 uint64_t generation = spa->spa_config_generation + 1;
3917 vdev_state_t newstate = VDEV_STATE_UNKNOWN;
3918 int error;
3919
3920 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), ==, SCL_STATE);
3921 ASSERT(vd->vdev_ops->vdev_op_leaf);
3922
3923 /* Calling vdev_online will initialize the new metaslabs */
3924 spa_config_exit(spa, SCL_STATE, spa);
3925 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
3926 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3927
3928 /*
3929 * If vdev_online returned an error or the underlying vdev_open
3930 * failed then we abort the expand. The only way to know that
3931 * vdev_open fails is by checking the returned newstate.
3932 */
3933 if (error || newstate != VDEV_STATE_HEALTHY) {
3934 if (ztest_opts.zo_verbose >= 5) {
3935 (void) printf("Unable to expand vdev, state %u, "
3936 "error %d\n", newstate, error);
3937 }
3938 return (vd);
3939 }
3940 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
3941
3942 /*
3943 * Since we dropped the lock we need to ensure that we're
3944 * still talking to the original vdev. It's possible this
3945 * vdev may have been detached/replaced while we were
3946 * trying to online it.
3947 */
3948 if (generation != spa->spa_config_generation) {
3949 if (ztest_opts.zo_verbose >= 5) {
3950 (void) printf("vdev configuration has changed, "
3951 "guid %"PRIu64", state %"PRIu64", "
3952 "expected gen %"PRIu64", got gen %"PRIu64"\n",
3953 guid,
3954 tvd->vdev_state,
3955 generation,
3956 spa->spa_config_generation);
3957 }
3958 return (vd);
3959 }
3960 return (NULL);
3961 }
3962
3963 /*
3964 * Traverse the vdev tree calling the supplied function.
3965 * We continue to walk the tree until we either have walked all
3966 * children or we receive a non-NULL return from the callback.
3967 * If a NULL callback is passed, then we just return back the first
3968 * leaf vdev we encounter.
3969 */
3970 static vdev_t *
3971 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
3972 {
3973 uint_t c;
3974
3975 if (vd->vdev_ops->vdev_op_leaf) {
3976 if (func == NULL)
3977 return (vd);
3978 else
3979 return (func(vd, arg));
3980 }
3981
3982 for (c = 0; c < vd->vdev_children; c++) {
3983 vdev_t *cvd = vd->vdev_child[c];
3984 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
3985 return (cvd);
3986 }
3987 return (NULL);
3988 }
3989
3990 /*
3991 * Verify that dynamic LUN growth works as expected.
3992 */
3993 void
3994 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
3995 {
3996 (void) zd, (void) id;
3997 spa_t *spa = ztest_spa;
3998 vdev_t *vd, *tvd;
3999 metaslab_class_t *mc;
4000 metaslab_group_t *mg;
4001 size_t psize, newsize;
4002 uint64_t top;
4003 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
4004
4005 mutex_enter(&ztest_checkpoint_lock);
4006 mutex_enter(&ztest_vdev_lock);
4007 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
4008
4009 /*
4010 * If there is a vdev removal in progress, it could complete while
4011 * we are running, in which case we would not be able to verify
4012 * that the metaslab_class space increased (because it decreases
4013 * when the device removal completes).
4014 */
4015 if (ztest_device_removal_active) {
4016 spa_config_exit(spa, SCL_STATE, spa);
4017 mutex_exit(&ztest_vdev_lock);
4018 mutex_exit(&ztest_checkpoint_lock);
4019 return;
4020 }
4021
4022 top = ztest_random_vdev_top(spa, B_TRUE);
4023
4024 tvd = spa->spa_root_vdev->vdev_child[top];
4025 mg = tvd->vdev_mg;
4026 mc = mg->mg_class;
4027 old_ms_count = tvd->vdev_ms_count;
4028 old_class_space = metaslab_class_get_space(mc);
4029
4030 /*
4031 * Determine the size of the first leaf vdev associated with
4032 * our top-level device.
4033 */
4034 vd = vdev_walk_tree(tvd, NULL, NULL);
4035 ASSERT3P(vd, !=, NULL);
4036 ASSERT(vd->vdev_ops->vdev_op_leaf);
4037
4038 psize = vd->vdev_psize;
4039
4040 /*
4041 * We only try to expand the vdev if it's healthy, less than 4x its
4042 * original size, and it has a valid psize.
4043 */
4044 if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
4045 psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) {
4046 spa_config_exit(spa, SCL_STATE, spa);
4047 mutex_exit(&ztest_vdev_lock);
4048 mutex_exit(&ztest_checkpoint_lock);
4049 return;
4050 }
4051 ASSERT3U(psize, >, 0);
4052 newsize = psize + MAX(psize / 8, SPA_MAXBLOCKSIZE);
4053 ASSERT3U(newsize, >, psize);
4054
4055 if (ztest_opts.zo_verbose >= 6) {
4056 (void) printf("Expanding LUN %s from %lu to %lu\n",
4057 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
4058 }
4059
4060 /*
4061 * Growing the vdev is a two step process:
4062 * 1). expand the physical size (i.e. relabel)
4063 * 2). online the vdev to create the new metaslabs
4064 */
4065 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
4066 vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
4067 tvd->vdev_state != VDEV_STATE_HEALTHY) {
4068 if (ztest_opts.zo_verbose >= 5) {
4069 (void) printf("Could not expand LUN because "
4070 "the vdev configuration changed.\n");
4071 }
4072 spa_config_exit(spa, SCL_STATE, spa);
4073 mutex_exit(&ztest_vdev_lock);
4074 mutex_exit(&ztest_checkpoint_lock);
4075 return;
4076 }
4077
4078 spa_config_exit(spa, SCL_STATE, spa);
4079
4080 /*
4081 * Expanding the LUN will update the config asynchronously,
4082 * thus we must wait for the async thread to complete any
4083 * pending tasks before proceeding.
4084 */
4085 for (;;) {
4086 boolean_t done;
4087 mutex_enter(&spa->spa_async_lock);
4088 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
4089 mutex_exit(&spa->spa_async_lock);
4090 if (done)
4091 break;
4092 txg_wait_synced(spa_get_dsl(spa), 0);
4093 (void) poll(NULL, 0, 100);
4094 }
4095
4096 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
4097
4098 tvd = spa->spa_root_vdev->vdev_child[top];
4099 new_ms_count = tvd->vdev_ms_count;
4100 new_class_space = metaslab_class_get_space(mc);
4101
4102 if (tvd->vdev_mg != mg || mg->mg_class != mc) {
4103 if (ztest_opts.zo_verbose >= 5) {
4104 (void) printf("Could not verify LUN expansion due to "
4105 "intervening vdev offline or remove.\n");
4106 }
4107 spa_config_exit(spa, SCL_STATE, spa);
4108 mutex_exit(&ztest_vdev_lock);
4109 mutex_exit(&ztest_checkpoint_lock);
4110 return;
4111 }
4112
4113 /*
4114 * Make sure we were able to grow the vdev.
4115 */
4116 if (new_ms_count <= old_ms_count) {
4117 fatal(B_FALSE,
4118 "LUN expansion failed: ms_count %"PRIu64" < %"PRIu64"\n",
4119 old_ms_count, new_ms_count);
4120 }
4121
4122 /*
4123 * Make sure we were able to grow the pool.
4124 */
4125 if (new_class_space <= old_class_space) {
4126 fatal(B_FALSE,
4127 "LUN expansion failed: class_space %"PRIu64" < %"PRIu64"\n",
4128 old_class_space, new_class_space);
4129 }
4130
4131 if (ztest_opts.zo_verbose >= 5) {
4132 char oldnumbuf[NN_NUMBUF_SZ], newnumbuf[NN_NUMBUF_SZ];
4133
4134 nicenum(old_class_space, oldnumbuf, sizeof (oldnumbuf));
4135 nicenum(new_class_space, newnumbuf, sizeof (newnumbuf));
4136 (void) printf("%s grew from %s to %s\n",
4137 spa->spa_name, oldnumbuf, newnumbuf);
4138 }
4139
4140 spa_config_exit(spa, SCL_STATE, spa);
4141 mutex_exit(&ztest_vdev_lock);
4142 mutex_exit(&ztest_checkpoint_lock);
4143 }
4144
4145 /*
4146 * Verify that dmu_objset_{create,destroy,open,close} work as expected.
4147 */
4148 static void
4149 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
4150 {
4151 (void) arg, (void) cr;
4152
4153 /*
4154 * Create the objects common to all ztest datasets.
4155 */
4156 VERIFY0(zap_create_claim(os, ZTEST_DIROBJ,
4157 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx));
4158 }
4159
4160 static int
4161 ztest_dataset_create(char *dsname)
4162 {
4163 int err;
4164 uint64_t rand;
4165 dsl_crypto_params_t *dcp = NULL;
4166
4167 /*
4168 * 50% of the time, we create encrypted datasets
4169 * using a random cipher suite and a hard-coded
4170 * wrapping key.
4171 */
4172 rand = ztest_random(2);
4173 if (rand != 0) {
4174 nvlist_t *crypto_args = fnvlist_alloc();
4175 nvlist_t *props = fnvlist_alloc();
4176
4177 /* slight bias towards the default cipher suite */
4178 rand = ztest_random(ZIO_CRYPT_FUNCTIONS);
4179 if (rand < ZIO_CRYPT_AES_128_CCM)
4180 rand = ZIO_CRYPT_ON;
4181
4182 fnvlist_add_uint64(props,
4183 zfs_prop_to_name(ZFS_PROP_ENCRYPTION), rand);
4184 fnvlist_add_uint8_array(crypto_args, "wkeydata",
4185 (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
4186
4187 /*
4188 * These parameters aren't really used by the kernel. They
4189 * are simply stored so that userspace knows how to load
4190 * the wrapping key.
4191 */
4192 fnvlist_add_uint64(props,
4193 zfs_prop_to_name(ZFS_PROP_KEYFORMAT), ZFS_KEYFORMAT_RAW);
4194 fnvlist_add_string(props,
4195 zfs_prop_to_name(ZFS_PROP_KEYLOCATION), "prompt");
4196 fnvlist_add_uint64(props,
4197 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 0ULL);
4198 fnvlist_add_uint64(props,
4199 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 0ULL);
4200
4201 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, props,
4202 crypto_args, &dcp));
4203
4204 /*
4205 * Cycle through all available encryption implementations
4206 * to verify interoperability.
4207 */
4208 VERIFY0(gcm_impl_set("cycle"));
4209 VERIFY0(aes_impl_set("cycle"));
4210
4211 fnvlist_free(crypto_args);
4212 fnvlist_free(props);
4213 }
4214
4215 err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, dcp,
4216 ztest_objset_create_cb, NULL);
4217 dsl_crypto_params_free(dcp, !!err);
4218
4219 rand = ztest_random(100);
4220 if (err || rand < 80)
4221 return (err);
4222
4223 if (ztest_opts.zo_verbose >= 5)
4224 (void) printf("Setting dataset %s to sync always\n", dsname);
4225 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
4226 ZFS_SYNC_ALWAYS, B_FALSE));
4227 }
4228
4229 static int
4230 ztest_objset_destroy_cb(const char *name, void *arg)
4231 {
4232 (void) arg;
4233 objset_t *os;
4234 dmu_object_info_t doi;
4235 int error;
4236
4237 /*
4238 * Verify that the dataset contains a directory object.
4239 */
4240 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
4241 B_TRUE, FTAG, &os));
4242 error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
4243 if (error != ENOENT) {
4244 /* We could have crashed in the middle of destroying it */
4245 ASSERT0(error);
4246 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
4247 ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
4248 }
4249 dmu_objset_disown(os, B_TRUE, FTAG);
4250
4251 /*
4252 * Destroy the dataset.
4253 */
4254 if (strchr(name, '@') != NULL) {
4255 error = dsl_destroy_snapshot(name, B_TRUE);
4256 if (error != ECHRNG) {
4257 /*
4258 * The program was executed, but encountered a runtime
4259 * error, such as insufficient slop, or a hold on the
4260 * dataset.
4261 */
4262 ASSERT0(error);
4263 }
4264 } else {
4265 error = dsl_destroy_head(name);
4266 if (error == ENOSPC) {
4267 /* There could be checkpoint or insufficient slop */
4268 ztest_record_enospc(FTAG);
4269 } else if (error != EBUSY) {
4270 /* There could be a hold on this dataset */
4271 ASSERT0(error);
4272 }
4273 }
4274 return (0);
4275 }
4276
4277 static boolean_t
4278 ztest_snapshot_create(char *osname, uint64_t id)
4279 {
4280 char snapname[ZFS_MAX_DATASET_NAME_LEN];
4281 int error;
4282
4283 (void) snprintf(snapname, sizeof (snapname), "%"PRIu64"", id);
4284
4285 error = dmu_objset_snapshot_one(osname, snapname);
4286 if (error == ENOSPC) {
4287 ztest_record_enospc(FTAG);
4288 return (B_FALSE);
4289 }
4290 if (error != 0 && error != EEXIST) {
4291 fatal(B_FALSE, "ztest_snapshot_create(%s@%s) = %d", osname,
4292 snapname, error);
4293 }
4294 return (B_TRUE);
4295 }
4296
4297 static boolean_t
4298 ztest_snapshot_destroy(char *osname, uint64_t id)
4299 {
4300 char snapname[ZFS_MAX_DATASET_NAME_LEN];
4301 int error;
4302
4303 (void) snprintf(snapname, sizeof (snapname), "%s@%"PRIu64"",
4304 osname, id);
4305
4306 error = dsl_destroy_snapshot(snapname, B_FALSE);
4307 if (error != 0 && error != ENOENT)
4308 fatal(B_FALSE, "ztest_snapshot_destroy(%s) = %d",
4309 snapname, error);
4310 return (B_TRUE);
4311 }
4312
4313 void
4314 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
4315 {
4316 (void) zd;
4317 ztest_ds_t *zdtmp;
4318 int iters;
4319 int error;
4320 objset_t *os, *os2;
4321 char name[ZFS_MAX_DATASET_NAME_LEN];
4322 zilog_t *zilog;
4323 int i;
4324
4325 zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
4326
4327 (void) pthread_rwlock_rdlock(&ztest_name_lock);
4328
4329 (void) snprintf(name, sizeof (name), "%s/temp_%"PRIu64"",
4330 ztest_opts.zo_pool, id);
4331
4332 /*
4333 * If this dataset exists from a previous run, process its replay log
4334 * half of the time. If we don't replay it, then dsl_destroy_head()
4335 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
4336 */
4337 if (ztest_random(2) == 0 &&
4338 ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
4339 B_TRUE, FTAG, &os) == 0) {
4340 ztest_zd_init(zdtmp, NULL, os);
4341 zil_replay(os, zdtmp, ztest_replay_vector);
4342 ztest_zd_fini(zdtmp);
4343 dmu_objset_disown(os, B_TRUE, FTAG);
4344 }
4345
4346 /*
4347 * There may be an old instance of the dataset we're about to
4348 * create lying around from a previous run. If so, destroy it
4349 * and all of its snapshots.
4350 */
4351 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
4352 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
4353
4354 /*
4355 * Verify that the destroyed dataset is no longer in the namespace.
4356 */
4357 VERIFY3U(ENOENT, ==, ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
4358 B_TRUE, FTAG, &os));
4359
4360 /*
4361 * Verify that we can create a new dataset.
4362 */
4363 error = ztest_dataset_create(name);
4364 if (error) {
4365 if (error == ENOSPC) {
4366 ztest_record_enospc(FTAG);
4367 goto out;
4368 }
4369 fatal(B_FALSE, "dmu_objset_create(%s) = %d", name, error);
4370 }
4371
4372 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, B_TRUE,
4373 FTAG, &os));
4374
4375 ztest_zd_init(zdtmp, NULL, os);
4376
4377 /*
4378 * Open the intent log for it.
4379 */
4380 zilog = zil_open(os, ztest_get_data);
4381
4382 /*
4383 * Put some objects in there, do a little I/O to them,
4384 * and randomly take a couple of snapshots along the way.
4385 */
4386 iters = ztest_random(5);
4387 for (i = 0; i < iters; i++) {
4388 ztest_dmu_object_alloc_free(zdtmp, id);
4389 if (ztest_random(iters) == 0)
4390 (void) ztest_snapshot_create(name, i);
4391 }
4392
4393 /*
4394 * Verify that we cannot create an existing dataset.
4395 */
4396 VERIFY3U(EEXIST, ==,
4397 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL, NULL));
4398
4399 /*
4400 * Verify that we can hold an objset that is also owned.
4401 */
4402 VERIFY0(dmu_objset_hold(name, FTAG, &os2));
4403 dmu_objset_rele(os2, FTAG);
4404
4405 /*
4406 * Verify that we cannot own an objset that is already owned.
4407 */
4408 VERIFY3U(EBUSY, ==, ztest_dmu_objset_own(name, DMU_OST_OTHER,
4409 B_FALSE, B_TRUE, FTAG, &os2));
4410
4411 zil_close(zilog);
4412 dmu_objset_disown(os, B_TRUE, FTAG);
4413 ztest_zd_fini(zdtmp);
4414 out:
4415 (void) pthread_rwlock_unlock(&ztest_name_lock);
4416
4417 umem_free(zdtmp, sizeof (ztest_ds_t));
4418 }
4419
4420 /*
4421 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
4422 */
4423 void
4424 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
4425 {
4426 (void) pthread_rwlock_rdlock(&ztest_name_lock);
4427 (void) ztest_snapshot_destroy(zd->zd_name, id);
4428 (void) ztest_snapshot_create(zd->zd_name, id);
4429 (void) pthread_rwlock_unlock(&ztest_name_lock);
4430 }
4431
4432 /*
4433 * Cleanup non-standard snapshots and clones.
4434 */
4435 static void
4436 ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
4437 {
4438 char *snap1name;
4439 char *clone1name;
4440 char *snap2name;
4441 char *clone2name;
4442 char *snap3name;
4443 int error;
4444
4445 snap1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4446 clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4447 snap2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4448 clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4449 snap3name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4450
4451 (void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN, "%s@s1_%"PRIu64"",
4452 osname, id);
4453 (void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN, "%s/c1_%"PRIu64"",
4454 osname, id);
4455 (void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN, "%s@s2_%"PRIu64"",
4456 clone1name, id);
4457 (void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN, "%s/c2_%"PRIu64"",
4458 osname, id);
4459 (void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN, "%s@s3_%"PRIu64"",
4460 clone1name, id);
4461
4462 error = dsl_destroy_head(clone2name);
4463 if (error && error != ENOENT)
4464 fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clone2name, error);
4465 error = dsl_destroy_snapshot(snap3name, B_FALSE);
4466 if (error && error != ENOENT)
4467 fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
4468 snap3name, error);
4469 error = dsl_destroy_snapshot(snap2name, B_FALSE);
4470 if (error && error != ENOENT)
4471 fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
4472 snap2name, error);
4473 error = dsl_destroy_head(clone1name);
4474 if (error && error != ENOENT)
4475 fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clone1name, error);
4476 error = dsl_destroy_snapshot(snap1name, B_FALSE);
4477 if (error && error != ENOENT)
4478 fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
4479 snap1name, error);
4480
4481 umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
4482 umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
4483 umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
4484 umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
4485 umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
4486 }
4487
4488 /*
4489 * Verify dsl_dataset_promote handles EBUSY
4490 */
4491 void
4492 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
4493 {
4494 objset_t *os;
4495 char *snap1name;
4496 char *clone1name;
4497 char *snap2name;
4498 char *clone2name;
4499 char *snap3name;
4500 char *osname = zd->zd_name;
4501 int error;
4502
4503 snap1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4504 clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4505 snap2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4506 clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4507 snap3name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4508
4509 (void) pthread_rwlock_rdlock(&ztest_name_lock);
4510
4511 ztest_dsl_dataset_cleanup(osname, id);
4512
4513 (void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN, "%s@s1_%"PRIu64"",
4514 osname, id);
4515 (void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN, "%s/c1_%"PRIu64"",
4516 osname, id);
4517 (void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN, "%s@s2_%"PRIu64"",
4518 clone1name, id);
4519 (void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN, "%s/c2_%"PRIu64"",
4520 osname, id);
4521 (void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN, "%s@s3_%"PRIu64"",
4522 clone1name, id);
4523
4524 error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1);
4525 if (error && error != EEXIST) {
4526 if (error == ENOSPC) {
4527 ztest_record_enospc(FTAG);
4528 goto out;
4529 }
4530 fatal(B_FALSE, "dmu_take_snapshot(%s) = %d", snap1name, error);
4531 }
4532
4533 error = dmu_objset_clone(clone1name, snap1name);
4534 if (error) {
4535 if (error == ENOSPC) {
4536 ztest_record_enospc(FTAG);
4537 goto out;
4538 }
4539 fatal(B_FALSE, "dmu_objset_create(%s) = %d", clone1name, error);
4540 }
4541
4542 error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1);
4543 if (error && error != EEXIST) {
4544 if (error == ENOSPC) {
4545 ztest_record_enospc(FTAG);
4546 goto out;
4547 }
4548 fatal(B_FALSE, "dmu_open_snapshot(%s) = %d", snap2name, error);
4549 }
4550
4551 error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1);
4552 if (error && error != EEXIST) {
4553 if (error == ENOSPC) {
4554 ztest_record_enospc(FTAG);
4555 goto out;
4556 }
4557 fatal(B_FALSE, "dmu_open_snapshot(%s) = %d", snap3name, error);
4558 }
4559
4560 error = dmu_objset_clone(clone2name, snap3name);
4561 if (error) {
4562 if (error == ENOSPC) {
4563 ztest_record_enospc(FTAG);
4564 goto out;
4565 }
4566 fatal(B_FALSE, "dmu_objset_create(%s) = %d", clone2name, error);
4567 }
4568
4569 error = ztest_dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, B_TRUE,
4570 FTAG, &os);
4571 if (error)
4572 fatal(B_FALSE, "dmu_objset_own(%s) = %d", snap2name, error);
4573 error = dsl_dataset_promote(clone2name, NULL);
4574 if (error == ENOSPC) {
4575 dmu_objset_disown(os, B_TRUE, FTAG);
4576 ztest_record_enospc(FTAG);
4577 goto out;
4578 }
4579 if (error != EBUSY)
4580 fatal(B_FALSE, "dsl_dataset_promote(%s), %d, not EBUSY",
4581 clone2name, error);
4582 dmu_objset_disown(os, B_TRUE, FTAG);
4583
4584 out:
4585 ztest_dsl_dataset_cleanup(osname, id);
4586
4587 (void) pthread_rwlock_unlock(&ztest_name_lock);
4588
4589 umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
4590 umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
4591 umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
4592 umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
4593 umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
4594 }
4595
4596 #undef OD_ARRAY_SIZE
4597 #define OD_ARRAY_SIZE 4
4598
4599 /*
4600 * Verify that dmu_object_{alloc,free} work as expected.
4601 */
4602 void
4603 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
4604 {
4605 ztest_od_t *od;
4606 int batchsize;
4607 int size;
4608 int b;
4609
4610 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
4611 od = umem_alloc(size, UMEM_NOFAIL);
4612 batchsize = OD_ARRAY_SIZE;
4613
4614 for (b = 0; b < batchsize; b++)
4615 ztest_od_init(od + b, id, FTAG, b, DMU_OT_UINT64_OTHER,
4616 0, 0, 0);
4617
4618 /*
4619 * Destroy the previous batch of objects, create a new batch,
4620 * and do some I/O on the new objects.
4621 */
4622 if (ztest_object_init(zd, od, size, B_TRUE) != 0)
4623 return;
4624
4625 while (ztest_random(4 * batchsize) != 0)
4626 ztest_io(zd, od[ztest_random(batchsize)].od_object,
4627 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4628
4629 umem_free(od, size);
4630 }
4631
4632 /*
4633 * Rewind the global allocator to verify object allocation backfilling.
4634 */
4635 void
4636 ztest_dmu_object_next_chunk(ztest_ds_t *zd, uint64_t id)
4637 {
4638 (void) id;
4639 objset_t *os = zd->zd_os;
4640 int dnodes_per_chunk = 1 << dmu_object_alloc_chunk_shift;
4641 uint64_t object;
4642
4643 /*
4644 * Rewind the global allocator randomly back to a lower object number
4645 * to force backfilling and reclamation of recently freed dnodes.
4646 */
4647 mutex_enter(&os->os_obj_lock);
4648 object = ztest_random(os->os_obj_next_chunk);
4649 os->os_obj_next_chunk = P2ALIGN(object, dnodes_per_chunk);
4650 mutex_exit(&os->os_obj_lock);
4651 }
4652
4653 #undef OD_ARRAY_SIZE
4654 #define OD_ARRAY_SIZE 2
4655
4656 /*
4657 * Verify that dmu_{read,write} work as expected.
4658 */
4659 void
4660 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
4661 {
4662 int size;
4663 ztest_od_t *od;
4664
4665 objset_t *os = zd->zd_os;
4666 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
4667 od = umem_alloc(size, UMEM_NOFAIL);
4668 dmu_tx_t *tx;
4669 int freeit, error;
4670 uint64_t i, n, s, txg;
4671 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
4672 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
4673 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
4674 uint64_t regions = 997;
4675 uint64_t stride = 123456789ULL;
4676 uint64_t width = 40;
4677 int free_percent = 5;
4678
4679 /*
4680 * This test uses two objects, packobj and bigobj, that are always
4681 * updated together (i.e. in the same tx) so that their contents are
4682 * in sync and can be compared. Their contents relate to each other
4683 * in a simple way: packobj is a dense array of 'bufwad' structures,
4684 * while bigobj is a sparse array of the same bufwads. Specifically,
4685 * for any index n, there are three bufwads that should be identical:
4686 *
4687 * packobj, at offset n * sizeof (bufwad_t)
4688 * bigobj, at the head of the nth chunk
4689 * bigobj, at the tail of the nth chunk
4690 *
4691 * The chunk size is arbitrary. It doesn't have to be a power of two,
4692 * and it doesn't have any relation to the object blocksize.
4693 * The only requirement is that it can hold at least two bufwads.
4694 *
4695 * Normally, we write the bufwad to each of these locations.
4696 * However, free_percent of the time we instead write zeroes to
4697 * packobj and perform a dmu_free_range() on bigobj. By comparing
4698 * bigobj to packobj, we can verify that the DMU is correctly
4699 * tracking which parts of an object are allocated and free,
4700 * and that the contents of the allocated blocks are correct.
4701 */
4702
4703 /*
4704 * Read the directory info. If it's the first time, set things up.
4705 */
4706 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, chunksize);
4707 ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
4708 chunksize);
4709
4710 if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
4711 umem_free(od, size);
4712 return;
4713 }
4714
4715 bigobj = od[0].od_object;
4716 packobj = od[1].od_object;
4717 chunksize = od[0].od_gen;
4718 ASSERT3U(chunksize, ==, od[1].od_gen);
4719
4720 /*
4721 * Prefetch a random chunk of the big object.
4722 * Our aim here is to get some async reads in flight
4723 * for blocks that we may free below; the DMU should
4724 * handle this race correctly.
4725 */
4726 n = ztest_random(regions) * stride + ztest_random(width);
4727 s = 1 + ztest_random(2 * width - 1);
4728 dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize,
4729 ZIO_PRIORITY_SYNC_READ);
4730
4731 /*
4732 * Pick a random index and compute the offsets into packobj and bigobj.
4733 */
4734 n = ztest_random(regions) * stride + ztest_random(width);
4735 s = 1 + ztest_random(width - 1);
4736
4737 packoff = n * sizeof (bufwad_t);
4738 packsize = s * sizeof (bufwad_t);
4739
4740 bigoff = n * chunksize;
4741 bigsize = s * chunksize;
4742
4743 packbuf = umem_alloc(packsize, UMEM_NOFAIL);
4744 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
4745
4746 /*
4747 * free_percent of the time, free a range of bigobj rather than
4748 * overwriting it.
4749 */
4750 freeit = (ztest_random(100) < free_percent);
4751
4752 /*
4753 * Read the current contents of our objects.
4754 */
4755 error = dmu_read(os, packobj, packoff, packsize, packbuf,
4756 DMU_READ_PREFETCH);
4757 ASSERT0(error);
4758 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
4759 DMU_READ_PREFETCH);
4760 ASSERT0(error);
4761
4762 /*
4763 * Get a tx for the mods to both packobj and bigobj.
4764 */
4765 tx = dmu_tx_create(os);
4766
4767 dmu_tx_hold_write(tx, packobj, packoff, packsize);
4768
4769 if (freeit)
4770 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
4771 else
4772 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
4773
4774 /* This accounts for setting the checksum/compression. */
4775 dmu_tx_hold_bonus(tx, bigobj);
4776
4777 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4778 if (txg == 0) {
4779 umem_free(packbuf, packsize);
4780 umem_free(bigbuf, bigsize);
4781 umem_free(od, size);
4782 return;
4783 }
4784
4785 enum zio_checksum cksum;
4786 do {
4787 cksum = (enum zio_checksum)
4788 ztest_random_dsl_prop(ZFS_PROP_CHECKSUM);
4789 } while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS);
4790 dmu_object_set_checksum(os, bigobj, cksum, tx);
4791
4792 enum zio_compress comp;
4793 do {
4794 comp = (enum zio_compress)
4795 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION);
4796 } while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS);
4797 dmu_object_set_compress(os, bigobj, comp, tx);
4798
4799 /*
4800 * For each index from n to n + s, verify that the existing bufwad
4801 * in packobj matches the bufwads at the head and tail of the
4802 * corresponding chunk in bigobj. Then update all three bufwads
4803 * with the new values we want to write out.
4804 */
4805 for (i = 0; i < s; i++) {
4806 /* LINTED */
4807 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
4808 /* LINTED */
4809 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
4810 /* LINTED */
4811 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
4812
4813 ASSERT3U((uintptr_t)bigH - (uintptr_t)bigbuf, <, bigsize);
4814 ASSERT3U((uintptr_t)bigT - (uintptr_t)bigbuf, <, bigsize);
4815
4816 if (pack->bw_txg > txg)
4817 fatal(B_FALSE,
4818 "future leak: got %"PRIx64", open txg is %"PRIx64"",
4819 pack->bw_txg, txg);
4820
4821 if (pack->bw_data != 0 && pack->bw_index != n + i)
4822 fatal(B_FALSE, "wrong index: "
4823 "got %"PRIx64", wanted %"PRIx64"+%"PRIx64"",
4824 pack->bw_index, n, i);
4825
4826 if (memcmp(pack, bigH, sizeof (bufwad_t)) != 0)
4827 fatal(B_FALSE, "pack/bigH mismatch in %p/%p",
4828 pack, bigH);
4829
4830 if (memcmp(pack, bigT, sizeof (bufwad_t)) != 0)
4831 fatal(B_FALSE, "pack/bigT mismatch in %p/%p",
4832 pack, bigT);
4833
4834 if (freeit) {
4835 memset(pack, 0, sizeof (bufwad_t));
4836 } else {
4837 pack->bw_index = n + i;
4838 pack->bw_txg = txg;
4839 pack->bw_data = 1 + ztest_random(-2ULL);
4840 }
4841 *bigH = *pack;
4842 *bigT = *pack;
4843 }
4844
4845 /*
4846 * We've verified all the old bufwads, and made new ones.
4847 * Now write them out.
4848 */
4849 dmu_write(os, packobj, packoff, packsize, packbuf, tx);
4850
4851 if (freeit) {
4852 if (ztest_opts.zo_verbose >= 7) {
4853 (void) printf("freeing offset %"PRIx64" size %"PRIx64""
4854 " txg %"PRIx64"\n",
4855 bigoff, bigsize, txg);
4856 }
4857 VERIFY0(dmu_free_range(os, bigobj, bigoff, bigsize, tx));
4858 } else {
4859 if (ztest_opts.zo_verbose >= 7) {
4860 (void) printf("writing offset %"PRIx64" size %"PRIx64""
4861 " txg %"PRIx64"\n",
4862 bigoff, bigsize, txg);
4863 }
4864 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);
4865 }
4866
4867 dmu_tx_commit(tx);
4868
4869 /*
4870 * Sanity check the stuff we just wrote.
4871 */
4872 {
4873 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
4874 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
4875
4876 VERIFY0(dmu_read(os, packobj, packoff,
4877 packsize, packcheck, DMU_READ_PREFETCH));
4878 VERIFY0(dmu_read(os, bigobj, bigoff,
4879 bigsize, bigcheck, DMU_READ_PREFETCH));
4880
4881 ASSERT0(memcmp(packbuf, packcheck, packsize));
4882 ASSERT0(memcmp(bigbuf, bigcheck, bigsize));
4883
4884 umem_free(packcheck, packsize);
4885 umem_free(bigcheck, bigsize);
4886 }
4887
4888 umem_free(packbuf, packsize);
4889 umem_free(bigbuf, bigsize);
4890 umem_free(od, size);
4891 }
4892
4893 static void
4894 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
4895 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
4896 {
4897 uint64_t i;
4898 bufwad_t *pack;
4899 bufwad_t *bigH;
4900 bufwad_t *bigT;
4901
4902 /*
4903 * For each index from n to n + s, verify that the existing bufwad
4904 * in packobj matches the bufwads at the head and tail of the
4905 * corresponding chunk in bigobj. Then update all three bufwads
4906 * with the new values we want to write out.
4907 */
4908 for (i = 0; i < s; i++) {
4909 /* LINTED */
4910 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
4911 /* LINTED */
4912 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
4913 /* LINTED */
4914 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
4915
4916 ASSERT3U((uintptr_t)bigH - (uintptr_t)bigbuf, <, bigsize);
4917 ASSERT3U((uintptr_t)bigT - (uintptr_t)bigbuf, <, bigsize);
4918
4919 if (pack->bw_txg > txg)
4920 fatal(B_FALSE,
4921 "future leak: got %"PRIx64", open txg is %"PRIx64"",
4922 pack->bw_txg, txg);
4923
4924 if (pack->bw_data != 0 && pack->bw_index != n + i)
4925 fatal(B_FALSE, "wrong index: "
4926 "got %"PRIx64", wanted %"PRIx64"+%"PRIx64"",
4927 pack->bw_index, n, i);
4928
4929 if (memcmp(pack, bigH, sizeof (bufwad_t)) != 0)
4930 fatal(B_FALSE, "pack/bigH mismatch in %p/%p",
4931 pack, bigH);
4932
4933 if (memcmp(pack, bigT, sizeof (bufwad_t)) != 0)
4934 fatal(B_FALSE, "pack/bigT mismatch in %p/%p",
4935 pack, bigT);
4936
4937 pack->bw_index = n + i;
4938 pack->bw_txg = txg;
4939 pack->bw_data = 1 + ztest_random(-2ULL);
4940
4941 *bigH = *pack;
4942 *bigT = *pack;
4943 }
4944 }
4945
4946 #undef OD_ARRAY_SIZE
4947 #define OD_ARRAY_SIZE 2
4948
4949 void
4950 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
4951 {
4952 objset_t *os = zd->zd_os;
4953 ztest_od_t *od;
4954 dmu_tx_t *tx;
4955 uint64_t i;
4956 int error;
4957 int size;
4958 uint64_t n, s, txg;
4959 bufwad_t *packbuf, *bigbuf;
4960 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
4961 uint64_t blocksize = ztest_random_blocksize();
4962 uint64_t chunksize = blocksize;
4963 uint64_t regions = 997;
4964 uint64_t stride = 123456789ULL;
4965 uint64_t width = 9;
4966 dmu_buf_t *bonus_db;
4967 arc_buf_t **bigbuf_arcbufs;
4968 dmu_object_info_t doi;
4969
4970 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
4971 od = umem_alloc(size, UMEM_NOFAIL);
4972
4973 /*
4974 * This test uses two objects, packobj and bigobj, that are always
4975 * updated together (i.e. in the same tx) so that their contents are
4976 * in sync and can be compared. Their contents relate to each other
4977 * in a simple way: packobj is a dense array of 'bufwad' structures,
4978 * while bigobj is a sparse array of the same bufwads. Specifically,
4979 * for any index n, there are three bufwads that should be identical:
4980 *
4981 * packobj, at offset n * sizeof (bufwad_t)
4982 * bigobj, at the head of the nth chunk
4983 * bigobj, at the tail of the nth chunk
4984 *
4985 * The chunk size is set equal to bigobj block size so that
4986 * dmu_assign_arcbuf_by_dbuf() can be tested for object updates.
4987 */
4988
4989 /*
4990 * Read the directory info. If it's the first time, set things up.
4991 */
4992 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
4993 ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
4994 chunksize);
4995
4996
4997 if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
4998 umem_free(od, size);
4999 return;
5000 }
5001
5002 bigobj = od[0].od_object;
5003 packobj = od[1].od_object;
5004 blocksize = od[0].od_blocksize;
5005 chunksize = blocksize;
5006 ASSERT3U(chunksize, ==, od[1].od_gen);
5007
5008 VERIFY0(dmu_object_info(os, bigobj, &doi));
5009 VERIFY(ISP2(doi.doi_data_block_size));
5010 VERIFY3U(chunksize, ==, doi.doi_data_block_size);
5011 VERIFY3U(chunksize, >=, 2 * sizeof (bufwad_t));
5012
5013 /*
5014 * Pick a random index and compute the offsets into packobj and bigobj.
5015 */
5016 n = ztest_random(regions) * stride + ztest_random(width);
5017 s = 1 + ztest_random(width - 1);
5018
5019 packoff = n * sizeof (bufwad_t);
5020 packsize = s * sizeof (bufwad_t);
5021
5022 bigoff = n * chunksize;
5023 bigsize = s * chunksize;
5024
5025 packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
5026 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
5027
5028 VERIFY0(dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
5029
5030 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
5031
5032 /*
5033 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
5034 * Iteration 1 test zcopy to already referenced dbufs.
5035 * Iteration 2 test zcopy to dirty dbuf in the same txg.
5036 * Iteration 3 test zcopy to dbuf dirty in previous txg.
5037 * Iteration 4 test zcopy when dbuf is no longer dirty.
5038 * Iteration 5 test zcopy when it can't be done.
5039 * Iteration 6 one more zcopy write.
5040 */
5041 for (i = 0; i < 7; i++) {
5042 uint64_t j;
5043 uint64_t off;
5044
5045 /*
5046 * In iteration 5 (i == 5) use arcbufs
5047 * that don't match bigobj blksz to test
5048 * dmu_assign_arcbuf_by_dbuf() when it can't directly
5049 * assign an arcbuf to a dbuf.
5050 */
5051 for (j = 0; j < s; j++) {
5052 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5053 bigbuf_arcbufs[j] =
5054 dmu_request_arcbuf(bonus_db, chunksize);
5055 } else {
5056 bigbuf_arcbufs[2 * j] =
5057 dmu_request_arcbuf(bonus_db, chunksize / 2);
5058 bigbuf_arcbufs[2 * j + 1] =
5059 dmu_request_arcbuf(bonus_db, chunksize / 2);
5060 }
5061 }
5062
5063 /*
5064 * Get a tx for the mods to both packobj and bigobj.
5065 */
5066 tx = dmu_tx_create(os);
5067
5068 dmu_tx_hold_write(tx, packobj, packoff, packsize);
5069 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
5070
5071 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5072 if (txg == 0) {
5073 umem_free(packbuf, packsize);
5074 umem_free(bigbuf, bigsize);
5075 for (j = 0; j < s; j++) {
5076 if (i != 5 ||
5077 chunksize < (SPA_MINBLOCKSIZE * 2)) {
5078 dmu_return_arcbuf(bigbuf_arcbufs[j]);
5079 } else {
5080 dmu_return_arcbuf(
5081 bigbuf_arcbufs[2 * j]);
5082 dmu_return_arcbuf(
5083 bigbuf_arcbufs[2 * j + 1]);
5084 }
5085 }
5086 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
5087 umem_free(od, size);
5088 dmu_buf_rele(bonus_db, FTAG);
5089 return;
5090 }
5091
5092 /*
5093 * 50% of the time don't read objects in the 1st iteration to
5094 * test dmu_assign_arcbuf_by_dbuf() for the case when there are
5095 * no existing dbufs for the specified offsets.
5096 */
5097 if (i != 0 || ztest_random(2) != 0) {
5098 error = dmu_read(os, packobj, packoff,
5099 packsize, packbuf, DMU_READ_PREFETCH);
5100 ASSERT0(error);
5101 error = dmu_read(os, bigobj, bigoff, bigsize,
5102 bigbuf, DMU_READ_PREFETCH);
5103 ASSERT0(error);
5104 }
5105 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
5106 n, chunksize, txg);
5107
5108 /*
5109 * We've verified all the old bufwads, and made new ones.
5110 * Now write them out.
5111 */
5112 dmu_write(os, packobj, packoff, packsize, packbuf, tx);
5113 if (ztest_opts.zo_verbose >= 7) {
5114 (void) printf("writing offset %"PRIx64" size %"PRIx64""
5115 " txg %"PRIx64"\n",
5116 bigoff, bigsize, txg);
5117 }
5118 for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
5119 dmu_buf_t *dbt;
5120 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5121 memcpy(bigbuf_arcbufs[j]->b_data,
5122 (caddr_t)bigbuf + (off - bigoff),
5123 chunksize);
5124 } else {
5125 memcpy(bigbuf_arcbufs[2 * j]->b_data,
5126 (caddr_t)bigbuf + (off - bigoff),
5127 chunksize / 2);
5128 memcpy(bigbuf_arcbufs[2 * j + 1]->b_data,
5129 (caddr_t)bigbuf + (off - bigoff) +
5130 chunksize / 2,
5131 chunksize / 2);
5132 }
5133
5134 if (i == 1) {
5135 VERIFY(dmu_buf_hold(os, bigobj, off,
5136 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0);
5137 }
5138 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5139 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5140 off, bigbuf_arcbufs[j], tx));
5141 } else {
5142 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5143 off, bigbuf_arcbufs[2 * j], tx));
5144 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5145 off + chunksize / 2,
5146 bigbuf_arcbufs[2 * j + 1], tx));
5147 }
5148 if (i == 1) {
5149 dmu_buf_rele(dbt, FTAG);
5150 }
5151 }
5152 dmu_tx_commit(tx);
5153
5154 /*
5155 * Sanity check the stuff we just wrote.
5156 */
5157 {
5158 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
5159 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
5160
5161 VERIFY0(dmu_read(os, packobj, packoff,
5162 packsize, packcheck, DMU_READ_PREFETCH));
5163 VERIFY0(dmu_read(os, bigobj, bigoff,
5164 bigsize, bigcheck, DMU_READ_PREFETCH));
5165
5166 ASSERT0(memcmp(packbuf, packcheck, packsize));
5167 ASSERT0(memcmp(bigbuf, bigcheck, bigsize));
5168
5169 umem_free(packcheck, packsize);
5170 umem_free(bigcheck, bigsize);
5171 }
5172 if (i == 2) {
5173 txg_wait_open(dmu_objset_pool(os), 0, B_TRUE);
5174 } else if (i == 3) {
5175 txg_wait_synced(dmu_objset_pool(os), 0);
5176 }
5177 }
5178
5179 dmu_buf_rele(bonus_db, FTAG);
5180 umem_free(packbuf, packsize);
5181 umem_free(bigbuf, bigsize);
5182 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
5183 umem_free(od, size);
5184 }
5185
5186 void
5187 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
5188 {
5189 (void) id;
5190 ztest_od_t *od;
5191
5192 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5193 uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
5194 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5195
5196 /*
5197 * Have multiple threads write to large offsets in an object
5198 * to verify that parallel writes to an object -- even to the
5199 * same blocks within the object -- doesn't cause any trouble.
5200 */
5201 ztest_od_init(od, ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
5202
5203 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0)
5204 return;
5205
5206 while (ztest_random(10) != 0)
5207 ztest_io(zd, od->od_object, offset);
5208
5209 umem_free(od, sizeof (ztest_od_t));
5210 }
5211
5212 void
5213 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
5214 {
5215 ztest_od_t *od;
5216 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
5217 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5218 uint64_t count = ztest_random(20) + 1;
5219 uint64_t blocksize = ztest_random_blocksize();
5220 void *data;
5221
5222 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5223
5224 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
5225
5226 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5227 !ztest_random(2)) != 0) {
5228 umem_free(od, sizeof (ztest_od_t));
5229 return;
5230 }
5231
5232 if (ztest_truncate(zd, od->od_object, offset, count * blocksize) != 0) {
5233 umem_free(od, sizeof (ztest_od_t));
5234 return;
5235 }
5236
5237 ztest_prealloc(zd, od->od_object, offset, count * blocksize);
5238
5239 data = umem_zalloc(blocksize, UMEM_NOFAIL);
5240
5241 while (ztest_random(count) != 0) {
5242 uint64_t randoff = offset + (ztest_random(count) * blocksize);
5243 if (ztest_write(zd, od->od_object, randoff, blocksize,
5244 data) != 0)
5245 break;
5246 while (ztest_random(4) != 0)
5247 ztest_io(zd, od->od_object, randoff);
5248 }
5249
5250 umem_free(data, blocksize);
5251 umem_free(od, sizeof (ztest_od_t));
5252 }
5253
5254 /*
5255 * Verify that zap_{create,destroy,add,remove,update} work as expected.
5256 */
5257 #define ZTEST_ZAP_MIN_INTS 1
5258 #define ZTEST_ZAP_MAX_INTS 4
5259 #define ZTEST_ZAP_MAX_PROPS 1000
5260
5261 void
5262 ztest_zap(ztest_ds_t *zd, uint64_t id)
5263 {
5264 objset_t *os = zd->zd_os;
5265 ztest_od_t *od;
5266 uint64_t object;
5267 uint64_t txg, last_txg;
5268 uint64_t value[ZTEST_ZAP_MAX_INTS];
5269 uint64_t zl_ints, zl_intsize, prop;
5270 int i, ints;
5271 dmu_tx_t *tx;
5272 char propname[100], txgname[100];
5273 int error;
5274 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
5275
5276 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5277 ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
5278
5279 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5280 !ztest_random(2)) != 0)
5281 goto out;
5282
5283 object = od->od_object;
5284
5285 /*
5286 * Generate a known hash collision, and verify that
5287 * we can lookup and remove both entries.
5288 */
5289 tx = dmu_tx_create(os);
5290 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5291 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5292 if (txg == 0)
5293 goto out;
5294 for (i = 0; i < 2; i++) {
5295 value[i] = i;
5296 VERIFY0(zap_add(os, object, hc[i], sizeof (uint64_t),
5297 1, &value[i], tx));
5298 }
5299 for (i = 0; i < 2; i++) {
5300 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
5301 sizeof (uint64_t), 1, &value[i], tx));
5302 VERIFY0(
5303 zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
5304 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5305 ASSERT3U(zl_ints, ==, 1);
5306 }
5307 for (i = 0; i < 2; i++) {
5308 VERIFY0(zap_remove(os, object, hc[i], tx));
5309 }
5310 dmu_tx_commit(tx);
5311
5312 /*
5313 * Generate a bunch of random entries.
5314 */
5315 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
5316
5317 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
5318 (void) sprintf(propname, "prop_%"PRIu64"", prop);
5319 (void) sprintf(txgname, "txg_%"PRIu64"", prop);
5320 memset(value, 0, sizeof (value));
5321 last_txg = 0;
5322
5323 /*
5324 * If these zap entries already exist, validate their contents.
5325 */
5326 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
5327 if (error == 0) {
5328 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5329 ASSERT3U(zl_ints, ==, 1);
5330
5331 VERIFY0(zap_lookup(os, object, txgname, zl_intsize,
5332 zl_ints, &last_txg));
5333
5334 VERIFY0(zap_length(os, object, propname, &zl_intsize,
5335 &zl_ints));
5336
5337 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5338 ASSERT3U(zl_ints, ==, ints);
5339
5340 VERIFY0(zap_lookup(os, object, propname, zl_intsize,
5341 zl_ints, value));
5342
5343 for (i = 0; i < ints; i++) {
5344 ASSERT3U(value[i], ==, last_txg + object + i);
5345 }
5346 } else {
5347 ASSERT3U(error, ==, ENOENT);
5348 }
5349
5350 /*
5351 * Atomically update two entries in our zap object.
5352 * The first is named txg_%llu, and contains the txg
5353 * in which the property was last updated. The second
5354 * is named prop_%llu, and the nth element of its value
5355 * should be txg + object + n.
5356 */
5357 tx = dmu_tx_create(os);
5358 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5359 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5360 if (txg == 0)
5361 goto out;
5362
5363 if (last_txg > txg)
5364 fatal(B_FALSE, "zap future leak: old %"PRIu64" new %"PRIu64"",
5365 last_txg, txg);
5366
5367 for (i = 0; i < ints; i++)
5368 value[i] = txg + object + i;
5369
5370 VERIFY0(zap_update(os, object, txgname, sizeof (uint64_t),
5371 1, &txg, tx));
5372 VERIFY0(zap_update(os, object, propname, sizeof (uint64_t),
5373 ints, value, tx));
5374
5375 dmu_tx_commit(tx);
5376
5377 /*
5378 * Remove a random pair of entries.
5379 */
5380 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
5381 (void) sprintf(propname, "prop_%"PRIu64"", prop);
5382 (void) sprintf(txgname, "txg_%"PRIu64"", prop);
5383
5384 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
5385
5386 if (error == ENOENT)
5387 goto out;
5388
5389 ASSERT0(error);
5390
5391 tx = dmu_tx_create(os);
5392 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5393 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5394 if (txg == 0)
5395 goto out;
5396 VERIFY0(zap_remove(os, object, txgname, tx));
5397 VERIFY0(zap_remove(os, object, propname, tx));
5398 dmu_tx_commit(tx);
5399 out:
5400 umem_free(od, sizeof (ztest_od_t));
5401 }
5402
5403 /*
5404 * Test case to test the upgrading of a microzap to fatzap.
5405 */
5406 void
5407 ztest_fzap(ztest_ds_t *zd, uint64_t id)
5408 {
5409 objset_t *os = zd->zd_os;
5410 ztest_od_t *od;
5411 uint64_t object, txg, value;
5412
5413 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5414 ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
5415
5416 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5417 !ztest_random(2)) != 0)
5418 goto out;
5419 object = od->od_object;
5420
5421 /*
5422 * Add entries to this ZAP and make sure it spills over
5423 * and gets upgraded to a fatzap. Also, since we are adding
5424 * 2050 entries we should see ptrtbl growth and leaf-block split.
5425 */
5426 for (value = 0; value < 2050; value++) {
5427 char name[ZFS_MAX_DATASET_NAME_LEN];
5428 dmu_tx_t *tx;
5429 int error;
5430
5431 (void) snprintf(name, sizeof (name), "fzap-%"PRIu64"-%"PRIu64"",
5432 id, value);
5433
5434 tx = dmu_tx_create(os);
5435 dmu_tx_hold_zap(tx, object, B_TRUE, name);
5436 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5437 if (txg == 0)
5438 goto out;
5439 error = zap_add(os, object, name, sizeof (uint64_t), 1,
5440 &value, tx);
5441 ASSERT(error == 0 || error == EEXIST);
5442 dmu_tx_commit(tx);
5443 }
5444 out:
5445 umem_free(od, sizeof (ztest_od_t));
5446 }
5447
5448 void
5449 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
5450 {
5451 (void) id;
5452 objset_t *os = zd->zd_os;
5453 ztest_od_t *od;
5454 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
5455 dmu_tx_t *tx;
5456 int i, namelen, error;
5457 int micro = ztest_random(2);
5458 char name[20], string_value[20];
5459 void *data;
5460
5461 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5462 ztest_od_init(od, ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0, 0);
5463
5464 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
5465 umem_free(od, sizeof (ztest_od_t));
5466 return;
5467 }
5468
5469 object = od->od_object;
5470
5471 /*
5472 * Generate a random name of the form 'xxx.....' where each
5473 * x is a random printable character and the dots are dots.
5474 * There are 94 such characters, and the name length goes from
5475 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
5476 */
5477 namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
5478
5479 for (i = 0; i < 3; i++)
5480 name[i] = '!' + ztest_random('~' - '!' + 1);
5481 for (; i < namelen - 1; i++)
5482 name[i] = '.';
5483 name[i] = '\0';
5484
5485 if ((namelen & 1) || micro) {
5486 wsize = sizeof (txg);
5487 wc = 1;
5488 data = &txg;
5489 } else {
5490 wsize = 1;
5491 wc = namelen;
5492 data = string_value;
5493 }
5494
5495 count = -1ULL;
5496 VERIFY0(zap_count(os, object, &count));
5497 ASSERT3S(count, !=, -1ULL);
5498
5499 /*
5500 * Select an operation: length, lookup, add, update, remove.
5501 */
5502 i = ztest_random(5);
5503
5504 if (i >= 2) {
5505 tx = dmu_tx_create(os);
5506 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5507 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5508 if (txg == 0) {
5509 umem_free(od, sizeof (ztest_od_t));
5510 return;
5511 }
5512 memcpy(string_value, name, namelen);
5513 } else {
5514 tx = NULL;
5515 txg = 0;
5516 memset(string_value, 0, namelen);
5517 }
5518
5519 switch (i) {
5520
5521 case 0:
5522 error = zap_length(os, object, name, &zl_wsize, &zl_wc);
5523 if (error == 0) {
5524 ASSERT3U(wsize, ==, zl_wsize);
5525 ASSERT3U(wc, ==, zl_wc);
5526 } else {
5527 ASSERT3U(error, ==, ENOENT);
5528 }
5529 break;
5530
5531 case 1:
5532 error = zap_lookup(os, object, name, wsize, wc, data);
5533 if (error == 0) {
5534 if (data == string_value &&
5535 memcmp(name, data, namelen) != 0)
5536 fatal(B_FALSE, "name '%s' != val '%s' len %d",
5537 name, (char *)data, namelen);
5538 } else {
5539 ASSERT3U(error, ==, ENOENT);
5540 }
5541 break;
5542
5543 case 2:
5544 error = zap_add(os, object, name, wsize, wc, data, tx);
5545 ASSERT(error == 0 || error == EEXIST);
5546 break;
5547
5548 case 3:
5549 VERIFY0(zap_update(os, object, name, wsize, wc, data, tx));
5550 break;
5551
5552 case 4:
5553 error = zap_remove(os, object, name, tx);
5554 ASSERT(error == 0 || error == ENOENT);
5555 break;
5556 }
5557
5558 if (tx != NULL)
5559 dmu_tx_commit(tx);
5560
5561 umem_free(od, sizeof (ztest_od_t));
5562 }
5563
5564 /*
5565 * Commit callback data.
5566 */
5567 typedef struct ztest_cb_data {
5568 list_node_t zcd_node;
5569 uint64_t zcd_txg;
5570 int zcd_expected_err;
5571 boolean_t zcd_added;
5572 boolean_t zcd_called;
5573 spa_t *zcd_spa;
5574 } ztest_cb_data_t;
5575
5576 /* This is the actual commit callback function */
5577 static void
5578 ztest_commit_callback(void *arg, int error)
5579 {
5580 ztest_cb_data_t *data = arg;
5581 uint64_t synced_txg;
5582
5583 VERIFY3P(data, !=, NULL);
5584 VERIFY3S(data->zcd_expected_err, ==, error);
5585 VERIFY(!data->zcd_called);
5586
5587 synced_txg = spa_last_synced_txg(data->zcd_spa);
5588 if (data->zcd_txg > synced_txg)
5589 fatal(B_FALSE,
5590 "commit callback of txg %"PRIu64" called prematurely, "
5591 "last synced txg = %"PRIu64"\n",
5592 data->zcd_txg, synced_txg);
5593
5594 data->zcd_called = B_TRUE;
5595
5596 if (error == ECANCELED) {
5597 ASSERT0(data->zcd_txg);
5598 ASSERT(!data->zcd_added);
5599
5600 /*
5601 * The private callback data should be destroyed here, but
5602 * since we are going to check the zcd_called field after
5603 * dmu_tx_abort(), we will destroy it there.
5604 */
5605 return;
5606 }
5607
5608 ASSERT(data->zcd_added);
5609 ASSERT3U(data->zcd_txg, !=, 0);
5610
5611 (void) mutex_enter(&zcl.zcl_callbacks_lock);
5612
5613 /* See if this cb was called more quickly */
5614 if ((synced_txg - data->zcd_txg) < zc_min_txg_delay)
5615 zc_min_txg_delay = synced_txg - data->zcd_txg;
5616
5617 /* Remove our callback from the list */
5618 list_remove(&zcl.zcl_callbacks, data);
5619
5620 (void) mutex_exit(&zcl.zcl_callbacks_lock);
5621
5622 umem_free(data, sizeof (ztest_cb_data_t));
5623 }
5624
5625 /* Allocate and initialize callback data structure */
5626 static ztest_cb_data_t *
5627 ztest_create_cb_data(objset_t *os, uint64_t txg)
5628 {
5629 ztest_cb_data_t *cb_data;
5630
5631 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
5632
5633 cb_data->zcd_txg = txg;
5634 cb_data->zcd_spa = dmu_objset_spa(os);
5635 list_link_init(&cb_data->zcd_node);
5636
5637 return (cb_data);
5638 }
5639
5640 /*
5641 * Commit callback test.
5642 */
5643 void
5644 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
5645 {
5646 objset_t *os = zd->zd_os;
5647 ztest_od_t *od;
5648 dmu_tx_t *tx;
5649 ztest_cb_data_t *cb_data[3], *tmp_cb;
5650 uint64_t old_txg, txg;
5651 int i, error = 0;
5652
5653 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5654 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
5655
5656 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
5657 umem_free(od, sizeof (ztest_od_t));
5658 return;
5659 }
5660
5661 tx = dmu_tx_create(os);
5662
5663 cb_data[0] = ztest_create_cb_data(os, 0);
5664 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
5665
5666 dmu_tx_hold_write(tx, od->od_object, 0, sizeof (uint64_t));
5667
5668 /* Every once in a while, abort the transaction on purpose */
5669 if (ztest_random(100) == 0)
5670 error = -1;
5671
5672 if (!error)
5673 error = dmu_tx_assign(tx, TXG_NOWAIT);
5674
5675 txg = error ? 0 : dmu_tx_get_txg(tx);
5676
5677 cb_data[0]->zcd_txg = txg;
5678 cb_data[1] = ztest_create_cb_data(os, txg);
5679 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
5680
5681 if (error) {
5682 /*
5683 * It's not a strict requirement to call the registered
5684 * callbacks from inside dmu_tx_abort(), but that's what
5685 * it's supposed to happen in the current implementation
5686 * so we will check for that.
5687 */
5688 for (i = 0; i < 2; i++) {
5689 cb_data[i]->zcd_expected_err = ECANCELED;
5690 VERIFY(!cb_data[i]->zcd_called);
5691 }
5692
5693 dmu_tx_abort(tx);
5694
5695 for (i = 0; i < 2; i++) {
5696 VERIFY(cb_data[i]->zcd_called);
5697 umem_free(cb_data[i], sizeof (ztest_cb_data_t));
5698 }
5699
5700 umem_free(od, sizeof (ztest_od_t));
5701 return;
5702 }
5703
5704 cb_data[2] = ztest_create_cb_data(os, txg);
5705 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
5706
5707 /*
5708 * Read existing data to make sure there isn't a future leak.
5709 */
5710 VERIFY0(dmu_read(os, od->od_object, 0, sizeof (uint64_t),
5711 &old_txg, DMU_READ_PREFETCH));
5712
5713 if (old_txg > txg)
5714 fatal(B_FALSE,
5715 "future leak: got %"PRIu64", open txg is %"PRIu64"",
5716 old_txg, txg);
5717
5718 dmu_write(os, od->od_object, 0, sizeof (uint64_t), &txg, tx);
5719
5720 (void) mutex_enter(&zcl.zcl_callbacks_lock);
5721
5722 /*
5723 * Since commit callbacks don't have any ordering requirement and since
5724 * it is theoretically possible for a commit callback to be called
5725 * after an arbitrary amount of time has elapsed since its txg has been
5726 * synced, it is difficult to reliably determine whether a commit
5727 * callback hasn't been called due to high load or due to a flawed
5728 * implementation.
5729 *
5730 * In practice, we will assume that if after a certain number of txgs a
5731 * commit callback hasn't been called, then most likely there's an
5732 * implementation bug..
5733 */
5734 tmp_cb = list_head(&zcl.zcl_callbacks);
5735 if (tmp_cb != NULL &&
5736 tmp_cb->zcd_txg + ZTEST_COMMIT_CB_THRESH < txg) {
5737 fatal(B_FALSE,
5738 "Commit callback threshold exceeded, "
5739 "oldest txg: %"PRIu64", open txg: %"PRIu64"\n",
5740 tmp_cb->zcd_txg, txg);
5741 }
5742
5743 /*
5744 * Let's find the place to insert our callbacks.
5745 *
5746 * Even though the list is ordered by txg, it is possible for the
5747 * insertion point to not be the end because our txg may already be
5748 * quiescing at this point and other callbacks in the open txg
5749 * (from other objsets) may have sneaked in.
5750 */
5751 tmp_cb = list_tail(&zcl.zcl_callbacks);
5752 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
5753 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
5754
5755 /* Add the 3 callbacks to the list */
5756 for (i = 0; i < 3; i++) {
5757 if (tmp_cb == NULL)
5758 list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
5759 else
5760 list_insert_after(&zcl.zcl_callbacks, tmp_cb,
5761 cb_data[i]);
5762
5763 cb_data[i]->zcd_added = B_TRUE;
5764 VERIFY(!cb_data[i]->zcd_called);
5765
5766 tmp_cb = cb_data[i];
5767 }
5768
5769 zc_cb_counter += 3;
5770
5771 (void) mutex_exit(&zcl.zcl_callbacks_lock);
5772
5773 dmu_tx_commit(tx);
5774
5775 umem_free(od, sizeof (ztest_od_t));
5776 }
5777
5778 /*
5779 * Visit each object in the dataset. Verify that its properties
5780 * are consistent what was stored in the block tag when it was created,
5781 * and that its unused bonus buffer space has not been overwritten.
5782 */
5783 void
5784 ztest_verify_dnode_bt(ztest_ds_t *zd, uint64_t id)
5785 {
5786 (void) id;
5787 objset_t *os = zd->zd_os;
5788 uint64_t obj;
5789 int err = 0;
5790
5791 for (obj = 0; err == 0; err = dmu_object_next(os, &obj, FALSE, 0)) {
5792 ztest_block_tag_t *bt = NULL;
5793 dmu_object_info_t doi;
5794 dmu_buf_t *db;
5795
5796 ztest_object_lock(zd, obj, RL_READER);
5797 if (dmu_bonus_hold(os, obj, FTAG, &db) != 0) {
5798 ztest_object_unlock(zd, obj);
5799 continue;
5800 }
5801
5802 dmu_object_info_from_db(db, &doi);
5803 if (doi.doi_bonus_size >= sizeof (*bt))
5804 bt = ztest_bt_bonus(db);
5805
5806 if (bt && bt->bt_magic == BT_MAGIC) {
5807 ztest_bt_verify(bt, os, obj, doi.doi_dnodesize,
5808 bt->bt_offset, bt->bt_gen, bt->bt_txg,
5809 bt->bt_crtxg);
5810 ztest_verify_unused_bonus(db, bt, obj, os, bt->bt_gen);
5811 }
5812
5813 dmu_buf_rele(db, FTAG);
5814 ztest_object_unlock(zd, obj);
5815 }
5816 }
5817
5818 void
5819 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
5820 {
5821 (void) id;
5822 zfs_prop_t proplist[] = {
5823 ZFS_PROP_CHECKSUM,
5824 ZFS_PROP_COMPRESSION,
5825 ZFS_PROP_COPIES,
5826 ZFS_PROP_DEDUP
5827 };
5828
5829 (void) pthread_rwlock_rdlock(&ztest_name_lock);
5830
5831 for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++)
5832 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
5833 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
5834
5835 VERIFY0(ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_RECORDSIZE,
5836 ztest_random_blocksize(), (int)ztest_random(2)));
5837
5838 (void) pthread_rwlock_unlock(&ztest_name_lock);
5839 }
5840
5841 void
5842 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
5843 {
5844 (void) zd, (void) id;
5845 nvlist_t *props = NULL;
5846
5847 (void) pthread_rwlock_rdlock(&ztest_name_lock);
5848
5849 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_AUTOTRIM, ztest_random(2));
5850
5851 VERIFY0(spa_prop_get(ztest_spa, &props));
5852
5853 if (ztest_opts.zo_verbose >= 6)
5854 dump_nvlist(props, 4);
5855
5856 fnvlist_free(props);
5857
5858 (void) pthread_rwlock_unlock(&ztest_name_lock);
5859 }
5860
5861 static int
5862 user_release_one(const char *snapname, const char *holdname)
5863 {
5864 nvlist_t *snaps, *holds;
5865 int error;
5866
5867 snaps = fnvlist_alloc();
5868 holds = fnvlist_alloc();
5869 fnvlist_add_boolean(holds, holdname);
5870 fnvlist_add_nvlist(snaps, snapname, holds);
5871 fnvlist_free(holds);
5872 error = dsl_dataset_user_release(snaps, NULL);
5873 fnvlist_free(snaps);
5874 return (error);
5875 }
5876
5877 /*
5878 * Test snapshot hold/release and deferred destroy.
5879 */
5880 void
5881 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
5882 {
5883 int error;
5884 objset_t *os = zd->zd_os;
5885 objset_t *origin;
5886 char snapname[100];
5887 char fullname[100];
5888 char clonename[100];
5889 char tag[100];
5890 char osname[ZFS_MAX_DATASET_NAME_LEN];
5891 nvlist_t *holds;
5892
5893 (void) pthread_rwlock_rdlock(&ztest_name_lock);
5894
5895 dmu_objset_name(os, osname);
5896
5897 (void) snprintf(snapname, sizeof (snapname), "sh1_%"PRIu64"", id);
5898 (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname);
5899 (void) snprintf(clonename, sizeof (clonename), "%s/ch1_%"PRIu64"",
5900 osname, id);
5901 (void) snprintf(tag, sizeof (tag), "tag_%"PRIu64"", id);
5902
5903 /*
5904 * Clean up from any previous run.
5905 */
5906 error = dsl_destroy_head(clonename);
5907 if (error != ENOENT)
5908 ASSERT0(error);
5909 error = user_release_one(fullname, tag);
5910 if (error != ESRCH && error != ENOENT)
5911 ASSERT0(error);
5912 error = dsl_destroy_snapshot(fullname, B_FALSE);
5913 if (error != ENOENT)
5914 ASSERT0(error);
5915
5916 /*
5917 * Create snapshot, clone it, mark snap for deferred destroy,
5918 * destroy clone, verify snap was also destroyed.
5919 */
5920 error = dmu_objset_snapshot_one(osname, snapname);
5921 if (error) {
5922 if (error == ENOSPC) {
5923 ztest_record_enospc("dmu_objset_snapshot");
5924 goto out;
5925 }
5926 fatal(B_FALSE, "dmu_objset_snapshot(%s) = %d", fullname, error);
5927 }
5928
5929 error = dmu_objset_clone(clonename, fullname);
5930 if (error) {
5931 if (error == ENOSPC) {
5932 ztest_record_enospc("dmu_objset_clone");
5933 goto out;
5934 }
5935 fatal(B_FALSE, "dmu_objset_clone(%s) = %d", clonename, error);
5936 }
5937
5938 error = dsl_destroy_snapshot(fullname, B_TRUE);
5939 if (error) {
5940 fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
5941 fullname, error);
5942 }
5943
5944 error = dsl_destroy_head(clonename);
5945 if (error)
5946 fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clonename, error);
5947
5948 error = dmu_objset_hold(fullname, FTAG, &origin);
5949 if (error != ENOENT)
5950 fatal(B_FALSE, "dmu_objset_hold(%s) = %d", fullname, error);
5951
5952 /*
5953 * Create snapshot, add temporary hold, verify that we can't
5954 * destroy a held snapshot, mark for deferred destroy,
5955 * release hold, verify snapshot was destroyed.
5956 */
5957 error = dmu_objset_snapshot_one(osname, snapname);
5958 if (error) {
5959 if (error == ENOSPC) {
5960 ztest_record_enospc("dmu_objset_snapshot");
5961 goto out;
5962 }
5963 fatal(B_FALSE, "dmu_objset_snapshot(%s) = %d", fullname, error);
5964 }
5965
5966 holds = fnvlist_alloc();
5967 fnvlist_add_string(holds, fullname, tag);
5968 error = dsl_dataset_user_hold(holds, 0, NULL);
5969 fnvlist_free(holds);
5970
5971 if (error == ENOSPC) {
5972 ztest_record_enospc("dsl_dataset_user_hold");
5973 goto out;
5974 } else if (error) {
5975 fatal(B_FALSE, "dsl_dataset_user_hold(%s, %s) = %u",
5976 fullname, tag, error);
5977 }
5978
5979 error = dsl_destroy_snapshot(fullname, B_FALSE);
5980 if (error != EBUSY) {
5981 fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
5982 fullname, error);
5983 }
5984
5985 error = dsl_destroy_snapshot(fullname, B_TRUE);
5986 if (error) {
5987 fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
5988 fullname, error);
5989 }
5990
5991 error = user_release_one(fullname, tag);
5992 if (error)
5993 fatal(B_FALSE, "user_release_one(%s, %s) = %d",
5994 fullname, tag, error);
5995
5996 VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT);
5997
5998 out:
5999 (void) pthread_rwlock_unlock(&ztest_name_lock);
6000 }
6001
6002 /*
6003 * Inject random faults into the on-disk data.
6004 */
6005 void
6006 ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
6007 {
6008 (void) zd, (void) id;
6009 ztest_shared_t *zs = ztest_shared;
6010 spa_t *spa = ztest_spa;
6011 int fd;
6012 uint64_t offset;
6013 uint64_t leaves;
6014 uint64_t bad = 0x1990c0ffeedecadeull;
6015 uint64_t top, leaf;
6016 char *path0;
6017 char *pathrand;
6018 size_t fsize;
6019 int bshift = SPA_MAXBLOCKSHIFT + 2;
6020 int iters = 1000;
6021 int maxfaults;
6022 int mirror_save;
6023 vdev_t *vd0 = NULL;
6024 uint64_t guid0 = 0;
6025 boolean_t islog = B_FALSE;
6026
6027 path0 = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6028 pathrand = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6029
6030 mutex_enter(&ztest_vdev_lock);
6031
6032 /*
6033 * Device removal is in progress, fault injection must be disabled
6034 * until it completes and the pool is scrubbed. The fault injection
6035 * strategy for damaging blocks does not take in to account evacuated
6036 * blocks which may have already been damaged.
6037 */
6038 if (ztest_device_removal_active) {
6039 mutex_exit(&ztest_vdev_lock);
6040 goto out;
6041 }
6042
6043 maxfaults = MAXFAULTS(zs);
6044 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raid_children;
6045 mirror_save = zs->zs_mirrors;
6046 mutex_exit(&ztest_vdev_lock);
6047
6048 ASSERT3U(leaves, >=, 1);
6049
6050 /*
6051 * While ztest is running the number of leaves will not change. This
6052 * is critical for the fault injection logic as it determines where
6053 * errors can be safely injected such that they are always repairable.
6054 *
6055 * When restarting ztest a different number of leaves may be requested
6056 * which will shift the regions to be damaged. This is fine as long
6057 * as the pool has been scrubbed prior to using the new mapping.
6058 * Failure to do can result in non-repairable damage being injected.
6059 */
6060 if (ztest_pool_scrubbed == B_FALSE)
6061 goto out;
6062
6063 /*
6064 * Grab the name lock as reader. There are some operations
6065 * which don't like to have their vdevs changed while
6066 * they are in progress (i.e. spa_change_guid). Those
6067 * operations will have grabbed the name lock as writer.
6068 */
6069 (void) pthread_rwlock_rdlock(&ztest_name_lock);
6070
6071 /*
6072 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
6073 */
6074 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6075
6076 if (ztest_random(2) == 0) {
6077 /*
6078 * Inject errors on a normal data device or slog device.
6079 */
6080 top = ztest_random_vdev_top(spa, B_TRUE);
6081 leaf = ztest_random(leaves) + zs->zs_splits;
6082
6083 /*
6084 * Generate paths to the first leaf in this top-level vdev,
6085 * and to the random leaf we selected. We'll induce transient
6086 * write failures and random online/offline activity on leaf 0,
6087 * and we'll write random garbage to the randomly chosen leaf.
6088 */
6089 (void) snprintf(path0, MAXPATHLEN, ztest_dev_template,
6090 ztest_opts.zo_dir, ztest_opts.zo_pool,
6091 top * leaves + zs->zs_splits);
6092 (void) snprintf(pathrand, MAXPATHLEN, ztest_dev_template,
6093 ztest_opts.zo_dir, ztest_opts.zo_pool,
6094 top * leaves + leaf);
6095
6096 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
6097 if (vd0 != NULL && vd0->vdev_top->vdev_islog)
6098 islog = B_TRUE;
6099
6100 /*
6101 * If the top-level vdev needs to be resilvered
6102 * then we only allow faults on the device that is
6103 * resilvering.
6104 */
6105 if (vd0 != NULL && maxfaults != 1 &&
6106 (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) ||
6107 vd0->vdev_resilver_txg != 0)) {
6108 /*
6109 * Make vd0 explicitly claim to be unreadable,
6110 * or unwritable, or reach behind its back
6111 * and close the underlying fd. We can do this if
6112 * maxfaults == 0 because we'll fail and reexecute,
6113 * and we can do it if maxfaults >= 2 because we'll
6114 * have enough redundancy. If maxfaults == 1, the
6115 * combination of this with injection of random data
6116 * corruption below exceeds the pool's fault tolerance.
6117 */
6118 vdev_file_t *vf = vd0->vdev_tsd;
6119
6120 zfs_dbgmsg("injecting fault to vdev %llu; maxfaults=%d",
6121 (long long)vd0->vdev_id, (int)maxfaults);
6122
6123 if (vf != NULL && ztest_random(3) == 0) {
6124 (void) close(vf->vf_file->f_fd);
6125 vf->vf_file->f_fd = -1;
6126 } else if (ztest_random(2) == 0) {
6127 vd0->vdev_cant_read = B_TRUE;
6128 } else {
6129 vd0->vdev_cant_write = B_TRUE;
6130 }
6131 guid0 = vd0->vdev_guid;
6132 }
6133 } else {
6134 /*
6135 * Inject errors on an l2cache device.
6136 */
6137 spa_aux_vdev_t *sav = &spa->spa_l2cache;
6138
6139 if (sav->sav_count == 0) {
6140 spa_config_exit(spa, SCL_STATE, FTAG);
6141 (void) pthread_rwlock_unlock(&ztest_name_lock);
6142 goto out;
6143 }
6144 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
6145 guid0 = vd0->vdev_guid;
6146 (void) strcpy(path0, vd0->vdev_path);
6147 (void) strcpy(pathrand, vd0->vdev_path);
6148
6149 leaf = 0;
6150 leaves = 1;
6151 maxfaults = INT_MAX; /* no limit on cache devices */
6152 }
6153
6154 spa_config_exit(spa, SCL_STATE, FTAG);
6155 (void) pthread_rwlock_unlock(&ztest_name_lock);
6156
6157 /*
6158 * If we can tolerate two or more faults, or we're dealing
6159 * with a slog, randomly online/offline vd0.
6160 */
6161 if ((maxfaults >= 2 || islog) && guid0 != 0) {
6162 if (ztest_random(10) < 6) {
6163 int flags = (ztest_random(2) == 0 ?
6164 ZFS_OFFLINE_TEMPORARY : 0);
6165
6166 /*
6167 * We have to grab the zs_name_lock as writer to
6168 * prevent a race between offlining a slog and
6169 * destroying a dataset. Offlining the slog will
6170 * grab a reference on the dataset which may cause
6171 * dsl_destroy_head() to fail with EBUSY thus
6172 * leaving the dataset in an inconsistent state.
6173 */
6174 if (islog)
6175 (void) pthread_rwlock_wrlock(&ztest_name_lock);
6176
6177 VERIFY3U(vdev_offline(spa, guid0, flags), !=, EBUSY);
6178
6179 if (islog)
6180 (void) pthread_rwlock_unlock(&ztest_name_lock);
6181 } else {
6182 /*
6183 * Ideally we would like to be able to randomly
6184 * call vdev_[on|off]line without holding locks
6185 * to force unpredictable failures but the side
6186 * effects of vdev_[on|off]line prevent us from
6187 * doing so. We grab the ztest_vdev_lock here to
6188 * prevent a race between injection testing and
6189 * aux_vdev removal.
6190 */
6191 mutex_enter(&ztest_vdev_lock);
6192 (void) vdev_online(spa, guid0, 0, NULL);
6193 mutex_exit(&ztest_vdev_lock);
6194 }
6195 }
6196
6197 if (maxfaults == 0)
6198 goto out;
6199
6200 /*
6201 * We have at least single-fault tolerance, so inject data corruption.
6202 */
6203 fd = open(pathrand, O_RDWR);
6204
6205 if (fd == -1) /* we hit a gap in the device namespace */
6206 goto out;
6207
6208 fsize = lseek(fd, 0, SEEK_END);
6209
6210 while (--iters != 0) {
6211 /*
6212 * The offset must be chosen carefully to ensure that
6213 * we do not inject a given logical block with errors
6214 * on two different leaf devices, because ZFS can not
6215 * tolerate that (if maxfaults==1).
6216 *
6217 * To achieve this we divide each leaf device into
6218 * chunks of size (# leaves * SPA_MAXBLOCKSIZE * 4).
6219 * Each chunk is further divided into error-injection
6220 * ranges (can accept errors) and clear ranges (we do
6221 * not inject errors in those). Each error-injection
6222 * range can accept errors only for a single leaf vdev.
6223 * Error-injection ranges are separated by clear ranges.
6224 *
6225 * For example, with 3 leaves, each chunk looks like:
6226 * 0 to 32M: injection range for leaf 0
6227 * 32M to 64M: clear range - no injection allowed
6228 * 64M to 96M: injection range for leaf 1
6229 * 96M to 128M: clear range - no injection allowed
6230 * 128M to 160M: injection range for leaf 2
6231 * 160M to 192M: clear range - no injection allowed
6232 *
6233 * Each clear range must be large enough such that a
6234 * single block cannot straddle it. This way a block
6235 * can't be a target in two different injection ranges
6236 * (on different leaf vdevs).
6237 */
6238 offset = ztest_random(fsize / (leaves << bshift)) *
6239 (leaves << bshift) + (leaf << bshift) +
6240 (ztest_random(1ULL << (bshift - 1)) & -8ULL);
6241
6242 /*
6243 * Only allow damage to the labels at one end of the vdev.
6244 *
6245 * If all labels are damaged, the device will be totally
6246 * inaccessible, which will result in loss of data,
6247 * because we also damage (parts of) the other side of
6248 * the mirror/raidz.
6249 *
6250 * Additionally, we will always have both an even and an
6251 * odd label, so that we can handle crashes in the
6252 * middle of vdev_config_sync().
6253 */
6254 if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE)
6255 continue;
6256
6257 /*
6258 * The two end labels are stored at the "end" of the disk, but
6259 * the end of the disk (vdev_psize) is aligned to
6260 * sizeof (vdev_label_t).
6261 */
6262 uint64_t psize = P2ALIGN(fsize, sizeof (vdev_label_t));
6263 if ((leaf & 1) == 1 &&
6264 offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE)
6265 continue;
6266
6267 mutex_enter(&ztest_vdev_lock);
6268 if (mirror_save != zs->zs_mirrors) {
6269 mutex_exit(&ztest_vdev_lock);
6270 (void) close(fd);
6271 goto out;
6272 }
6273
6274 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
6275 fatal(B_TRUE,
6276 "can't inject bad word at 0x%"PRIx64" in %s",
6277 offset, pathrand);
6278
6279 mutex_exit(&ztest_vdev_lock);
6280
6281 if (ztest_opts.zo_verbose >= 7)
6282 (void) printf("injected bad word into %s,"
6283 " offset 0x%"PRIx64"\n", pathrand, offset);
6284 }
6285
6286 (void) close(fd);
6287 out:
6288 umem_free(path0, MAXPATHLEN);
6289 umem_free(pathrand, MAXPATHLEN);
6290 }
6291
6292 /*
6293 * By design ztest will never inject uncorrectable damage in to the pool.
6294 * Issue a scrub, wait for it to complete, and verify there is never any
6295 * persistent damage.
6296 *
6297 * Only after a full scrub has been completed is it safe to start injecting
6298 * data corruption. See the comment in zfs_fault_inject().
6299 */
6300 static int
6301 ztest_scrub_impl(spa_t *spa)
6302 {
6303 int error = spa_scan(spa, POOL_SCAN_SCRUB);
6304 if (error)
6305 return (error);
6306
6307 while (dsl_scan_scrubbing(spa_get_dsl(spa)))
6308 txg_wait_synced(spa_get_dsl(spa), 0);
6309
6310 if (spa_get_errlog_size(spa) > 0)
6311 return (ECKSUM);
6312
6313 ztest_pool_scrubbed = B_TRUE;
6314
6315 return (0);
6316 }
6317
6318 /*
6319 * Scrub the pool.
6320 */
6321 void
6322 ztest_scrub(ztest_ds_t *zd, uint64_t id)
6323 {
6324 (void) zd, (void) id;
6325 spa_t *spa = ztest_spa;
6326 int error;
6327
6328 /*
6329 * Scrub in progress by device removal.
6330 */
6331 if (ztest_device_removal_active)
6332 return;
6333
6334 /*
6335 * Start a scrub, wait a moment, then force a restart.
6336 */
6337 (void) spa_scan(spa, POOL_SCAN_SCRUB);
6338 (void) poll(NULL, 0, 100);
6339
6340 error = ztest_scrub_impl(spa);
6341 if (error == EBUSY)
6342 error = 0;
6343 ASSERT0(error);
6344 }
6345
6346 /*
6347 * Change the guid for the pool.
6348 */
6349 void
6350 ztest_reguid(ztest_ds_t *zd, uint64_t id)
6351 {
6352 (void) zd, (void) id;
6353 spa_t *spa = ztest_spa;
6354 uint64_t orig, load;
6355 int error;
6356
6357 if (ztest_opts.zo_mmp_test)
6358 return;
6359
6360 orig = spa_guid(spa);
6361 load = spa_load_guid(spa);
6362
6363 (void) pthread_rwlock_wrlock(&ztest_name_lock);
6364 error = spa_change_guid(spa);
6365 (void) pthread_rwlock_unlock(&ztest_name_lock);
6366
6367 if (error != 0)
6368 return;
6369
6370 if (ztest_opts.zo_verbose >= 4) {
6371 (void) printf("Changed guid old %"PRIu64" -> %"PRIu64"\n",
6372 orig, spa_guid(spa));
6373 }
6374
6375 VERIFY3U(orig, !=, spa_guid(spa));
6376 VERIFY3U(load, ==, spa_load_guid(spa));
6377 }
6378
6379 void
6380 ztest_blake3(ztest_ds_t *zd, uint64_t id)
6381 {
6382 (void) zd, (void) id;
6383 hrtime_t end = gethrtime() + NANOSEC;
6384 zio_cksum_salt_t salt;
6385 void *salt_ptr = &salt.zcs_bytes;
6386 struct abd *abd_data, *abd_meta;
6387 void *buf, *templ;
6388 int i, *ptr;
6389 uint32_t size;
6390 BLAKE3_CTX ctx;
6391
6392 size = ztest_random_blocksize();
6393 buf = umem_alloc(size, UMEM_NOFAIL);
6394 abd_data = abd_alloc(size, B_FALSE);
6395 abd_meta = abd_alloc(size, B_TRUE);
6396
6397 for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6398 *ptr = ztest_random(UINT_MAX);
6399 memset(salt_ptr, 'A', 32);
6400
6401 abd_copy_from_buf_off(abd_data, buf, 0, size);
6402 abd_copy_from_buf_off(abd_meta, buf, 0, size);
6403
6404 while (gethrtime() <= end) {
6405 int run_count = 100;
6406 zio_cksum_t zc_ref1, zc_ref2;
6407 zio_cksum_t zc_res1, zc_res2;
6408
6409 void *ref1 = &zc_ref1;
6410 void *ref2 = &zc_ref2;
6411 void *res1 = &zc_res1;
6412 void *res2 = &zc_res2;
6413
6414 /* BLAKE3_KEY_LEN = 32 */
6415 VERIFY0(blake3_set_impl_name("generic"));
6416 templ = abd_checksum_blake3_tmpl_init(&salt);
6417 Blake3_InitKeyed(&ctx, salt_ptr);
6418 Blake3_Update(&ctx, buf, size);
6419 Blake3_Final(&ctx, ref1);
6420 zc_ref2 = zc_ref1;
6421 ZIO_CHECKSUM_BSWAP(&zc_ref2);
6422 abd_checksum_blake3_tmpl_free(templ);
6423
6424 VERIFY0(blake3_set_impl_name("cycle"));
6425 while (run_count-- > 0) {
6426
6427 /* Test current implementation */
6428 Blake3_InitKeyed(&ctx, salt_ptr);
6429 Blake3_Update(&ctx, buf, size);
6430 Blake3_Final(&ctx, res1);
6431 zc_res2 = zc_res1;
6432 ZIO_CHECKSUM_BSWAP(&zc_res2);
6433
6434 VERIFY0(memcmp(ref1, res1, 32));
6435 VERIFY0(memcmp(ref2, res2, 32));
6436
6437 /* Test ABD - data */
6438 templ = abd_checksum_blake3_tmpl_init(&salt);
6439 abd_checksum_blake3_native(abd_data, size,
6440 templ, &zc_res1);
6441 abd_checksum_blake3_byteswap(abd_data, size,
6442 templ, &zc_res2);
6443
6444 VERIFY0(memcmp(ref1, res1, 32));
6445 VERIFY0(memcmp(ref2, res2, 32));
6446
6447 /* Test ABD - metadata */
6448 abd_checksum_blake3_native(abd_meta, size,
6449 templ, &zc_res1);
6450 abd_checksum_blake3_byteswap(abd_meta, size,
6451 templ, &zc_res2);
6452 abd_checksum_blake3_tmpl_free(templ);
6453
6454 VERIFY0(memcmp(ref1, res1, 32));
6455 VERIFY0(memcmp(ref2, res2, 32));
6456
6457 }
6458 }
6459
6460 abd_free(abd_data);
6461 abd_free(abd_meta);
6462 umem_free(buf, size);
6463 }
6464
6465 void
6466 ztest_fletcher(ztest_ds_t *zd, uint64_t id)
6467 {
6468 (void) zd, (void) id;
6469 hrtime_t end = gethrtime() + NANOSEC;
6470
6471 while (gethrtime() <= end) {
6472 int run_count = 100;
6473 void *buf;
6474 struct abd *abd_data, *abd_meta;
6475 uint32_t size;
6476 int *ptr;
6477 int i;
6478 zio_cksum_t zc_ref;
6479 zio_cksum_t zc_ref_byteswap;
6480
6481 size = ztest_random_blocksize();
6482
6483 buf = umem_alloc(size, UMEM_NOFAIL);
6484 abd_data = abd_alloc(size, B_FALSE);
6485 abd_meta = abd_alloc(size, B_TRUE);
6486
6487 for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6488 *ptr = ztest_random(UINT_MAX);
6489
6490 abd_copy_from_buf_off(abd_data, buf, 0, size);
6491 abd_copy_from_buf_off(abd_meta, buf, 0, size);
6492
6493 VERIFY0(fletcher_4_impl_set("scalar"));
6494 fletcher_4_native(buf, size, NULL, &zc_ref);
6495 fletcher_4_byteswap(buf, size, NULL, &zc_ref_byteswap);
6496
6497 VERIFY0(fletcher_4_impl_set("cycle"));
6498 while (run_count-- > 0) {
6499 zio_cksum_t zc;
6500 zio_cksum_t zc_byteswap;
6501
6502 fletcher_4_byteswap(buf, size, NULL, &zc_byteswap);
6503 fletcher_4_native(buf, size, NULL, &zc);
6504
6505 VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
6506 VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
6507 sizeof (zc_byteswap)));
6508
6509 /* Test ABD - data */
6510 abd_fletcher_4_byteswap(abd_data, size, NULL,
6511 &zc_byteswap);
6512 abd_fletcher_4_native(abd_data, size, NULL, &zc);
6513
6514 VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
6515 VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
6516 sizeof (zc_byteswap)));
6517
6518 /* Test ABD - metadata */
6519 abd_fletcher_4_byteswap(abd_meta, size, NULL,
6520 &zc_byteswap);
6521 abd_fletcher_4_native(abd_meta, size, NULL, &zc);
6522
6523 VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
6524 VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
6525 sizeof (zc_byteswap)));
6526
6527 }
6528
6529 umem_free(buf, size);
6530 abd_free(abd_data);
6531 abd_free(abd_meta);
6532 }
6533 }
6534
6535 void
6536 ztest_fletcher_incr(ztest_ds_t *zd, uint64_t id)
6537 {
6538 (void) zd, (void) id;
6539 void *buf;
6540 size_t size;
6541 int *ptr;
6542 int i;
6543 zio_cksum_t zc_ref;
6544 zio_cksum_t zc_ref_bswap;
6545
6546 hrtime_t end = gethrtime() + NANOSEC;
6547
6548 while (gethrtime() <= end) {
6549 int run_count = 100;
6550
6551 size = ztest_random_blocksize();
6552 buf = umem_alloc(size, UMEM_NOFAIL);
6553
6554 for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6555 *ptr = ztest_random(UINT_MAX);
6556
6557 VERIFY0(fletcher_4_impl_set("scalar"));
6558 fletcher_4_native(buf, size, NULL, &zc_ref);
6559 fletcher_4_byteswap(buf, size, NULL, &zc_ref_bswap);
6560
6561 VERIFY0(fletcher_4_impl_set("cycle"));
6562
6563 while (run_count-- > 0) {
6564 zio_cksum_t zc;
6565 zio_cksum_t zc_bswap;
6566 size_t pos = 0;
6567
6568 ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
6569 ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
6570
6571 while (pos < size) {
6572 size_t inc = 64 * ztest_random(size / 67);
6573 /* sometimes add few bytes to test non-simd */
6574 if (ztest_random(100) < 10)
6575 inc += P2ALIGN(ztest_random(64),
6576 sizeof (uint32_t));
6577
6578 if (inc > (size - pos))
6579 inc = size - pos;
6580
6581 fletcher_4_incremental_native(buf + pos, inc,
6582 &zc);
6583 fletcher_4_incremental_byteswap(buf + pos, inc,
6584 &zc_bswap);
6585
6586 pos += inc;
6587 }
6588
6589 VERIFY3U(pos, ==, size);
6590
6591 VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
6592 VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
6593
6594 /*
6595 * verify if incremental on the whole buffer is
6596 * equivalent to non-incremental version
6597 */
6598 ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
6599 ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
6600
6601 fletcher_4_incremental_native(buf, size, &zc);
6602 fletcher_4_incremental_byteswap(buf, size, &zc_bswap);
6603
6604 VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
6605 VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
6606 }
6607
6608 umem_free(buf, size);
6609 }
6610 }
6611
6612 static int
6613 ztest_set_global_vars(void)
6614 {
6615 for (size_t i = 0; i < ztest_opts.zo_gvars_count; i++) {
6616 char *kv = ztest_opts.zo_gvars[i];
6617 VERIFY3U(strlen(kv), <=, ZO_GVARS_MAX_ARGLEN);
6618 VERIFY3U(strlen(kv), >, 0);
6619 int err = set_global_var(kv);
6620 if (ztest_opts.zo_verbose > 0) {
6621 (void) printf("setting global var %s ... %s\n", kv,
6622 err ? "failed" : "ok");
6623 }
6624 if (err != 0) {
6625 (void) fprintf(stderr,
6626 "failed to set global var '%s'\n", kv);
6627 return (err);
6628 }
6629 }
6630 return (0);
6631 }
6632
6633 static char **
6634 ztest_global_vars_to_zdb_args(void)
6635 {
6636 char **args = calloc(2*ztest_opts.zo_gvars_count + 1, sizeof (char *));
6637 char **cur = args;
6638 for (size_t i = 0; i < ztest_opts.zo_gvars_count; i++) {
6639 char *kv = ztest_opts.zo_gvars[i];
6640 *cur = "-o";
6641 cur++;
6642 *cur = strdup(kv);
6643 cur++;
6644 }
6645 ASSERT3P(cur, ==, &args[2*ztest_opts.zo_gvars_count]);
6646 *cur = NULL;
6647 return (args);
6648 }
6649
6650 /* The end of strings is indicated by a NULL element */
6651 static char *
6652 join_strings(char **strings, const char *sep)
6653 {
6654 size_t totallen = 0;
6655 for (char **sp = strings; *sp != NULL; sp++) {
6656 totallen += strlen(*sp);
6657 totallen += strlen(sep);
6658 }
6659 if (totallen > 0) {
6660 ASSERT(totallen >= strlen(sep));
6661 totallen -= strlen(sep);
6662 }
6663
6664 size_t buflen = totallen + 1;
6665 char *o = malloc(buflen); /* trailing 0 byte */
6666 o[0] = '\0';
6667 for (char **sp = strings; *sp != NULL; sp++) {
6668 size_t would;
6669 would = strlcat(o, *sp, buflen);
6670 VERIFY3U(would, <, buflen);
6671 if (*(sp+1) == NULL) {
6672 break;
6673 }
6674 would = strlcat(o, sep, buflen);
6675 VERIFY3U(would, <, buflen);
6676 }
6677 ASSERT3S(strlen(o), ==, totallen);
6678 return (o);
6679 }
6680
6681 static int
6682 ztest_check_path(char *path)
6683 {
6684 struct stat s;
6685 /* return true on success */
6686 return (!stat(path, &s));
6687 }
6688
6689 static void
6690 ztest_get_zdb_bin(char *bin, int len)
6691 {
6692 char *zdb_path;
6693 /*
6694 * Try to use $ZDB and in-tree zdb path. If not successful, just
6695 * let popen to search through PATH.
6696 */
6697 if ((zdb_path = getenv("ZDB"))) {
6698 strlcpy(bin, zdb_path, len); /* In env */
6699 if (!ztest_check_path(bin)) {
6700 ztest_dump_core = 0;
6701 fatal(B_TRUE, "invalid ZDB '%s'", bin);
6702 }
6703 return;
6704 }
6705
6706 VERIFY3P(realpath(getexecname(), bin), !=, NULL);
6707 if (strstr(bin, ".libs/ztest")) {
6708 strstr(bin, ".libs/ztest")[0] = '\0'; /* In-tree */
6709 strcat(bin, "zdb");
6710 if (ztest_check_path(bin))
6711 return;
6712 }
6713 strcpy(bin, "zdb");
6714 }
6715
6716 static vdev_t *
6717 ztest_random_concrete_vdev_leaf(vdev_t *vd)
6718 {
6719 if (vd == NULL)
6720 return (NULL);
6721
6722 if (vd->vdev_children == 0)
6723 return (vd);
6724
6725 vdev_t *eligible[vd->vdev_children];
6726 int eligible_idx = 0, i;
6727 for (i = 0; i < vd->vdev_children; i++) {
6728 vdev_t *cvd = vd->vdev_child[i];
6729 if (cvd->vdev_top->vdev_removing)
6730 continue;
6731 if (cvd->vdev_children > 0 ||
6732 (vdev_is_concrete(cvd) && !cvd->vdev_detached)) {
6733 eligible[eligible_idx++] = cvd;
6734 }
6735 }
6736 VERIFY3S(eligible_idx, >, 0);
6737
6738 uint64_t child_no = ztest_random(eligible_idx);
6739 return (ztest_random_concrete_vdev_leaf(eligible[child_no]));
6740 }
6741
6742 void
6743 ztest_initialize(ztest_ds_t *zd, uint64_t id)
6744 {
6745 (void) zd, (void) id;
6746 spa_t *spa = ztest_spa;
6747 int error = 0;
6748
6749 mutex_enter(&ztest_vdev_lock);
6750
6751 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
6752
6753 /* Random leaf vdev */
6754 vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev);
6755 if (rand_vd == NULL) {
6756 spa_config_exit(spa, SCL_VDEV, FTAG);
6757 mutex_exit(&ztest_vdev_lock);
6758 return;
6759 }
6760
6761 /*
6762 * The random vdev we've selected may change as soon as we
6763 * drop the spa_config_lock. We create local copies of things
6764 * we're interested in.
6765 */
6766 uint64_t guid = rand_vd->vdev_guid;
6767 char *path = strdup(rand_vd->vdev_path);
6768 boolean_t active = rand_vd->vdev_initialize_thread != NULL;
6769
6770 zfs_dbgmsg("vd %px, guid %llu", rand_vd, (u_longlong_t)guid);
6771 spa_config_exit(spa, SCL_VDEV, FTAG);
6772
6773 uint64_t cmd = ztest_random(POOL_INITIALIZE_FUNCS);
6774
6775 nvlist_t *vdev_guids = fnvlist_alloc();
6776 nvlist_t *vdev_errlist = fnvlist_alloc();
6777 fnvlist_add_uint64(vdev_guids, path, guid);
6778 error = spa_vdev_initialize(spa, vdev_guids, cmd, vdev_errlist);
6779 fnvlist_free(vdev_guids);
6780 fnvlist_free(vdev_errlist);
6781
6782 switch (cmd) {
6783 case POOL_INITIALIZE_CANCEL:
6784 if (ztest_opts.zo_verbose >= 4) {
6785 (void) printf("Cancel initialize %s", path);
6786 if (!active)
6787 (void) printf(" failed (no initialize active)");
6788 (void) printf("\n");
6789 }
6790 break;
6791 case POOL_INITIALIZE_START:
6792 if (ztest_opts.zo_verbose >= 4) {
6793 (void) printf("Start initialize %s", path);
6794 if (active && error == 0)
6795 (void) printf(" failed (already active)");
6796 else if (error != 0)
6797 (void) printf(" failed (error %d)", error);
6798 (void) printf("\n");
6799 }
6800 break;
6801 case POOL_INITIALIZE_SUSPEND:
6802 if (ztest_opts.zo_verbose >= 4) {
6803 (void) printf("Suspend initialize %s", path);
6804 if (!active)
6805 (void) printf(" failed (no initialize active)");
6806 (void) printf("\n");
6807 }
6808 break;
6809 }
6810 free(path);
6811 mutex_exit(&ztest_vdev_lock);
6812 }
6813
6814 void
6815 ztest_trim(ztest_ds_t *zd, uint64_t id)
6816 {
6817 (void) zd, (void) id;
6818 spa_t *spa = ztest_spa;
6819 int error = 0;
6820
6821 mutex_enter(&ztest_vdev_lock);
6822
6823 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
6824
6825 /* Random leaf vdev */
6826 vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev);
6827 if (rand_vd == NULL) {
6828 spa_config_exit(spa, SCL_VDEV, FTAG);
6829 mutex_exit(&ztest_vdev_lock);
6830 return;
6831 }
6832
6833 /*
6834 * The random vdev we've selected may change as soon as we
6835 * drop the spa_config_lock. We create local copies of things
6836 * we're interested in.
6837 */
6838 uint64_t guid = rand_vd->vdev_guid;
6839 char *path = strdup(rand_vd->vdev_path);
6840 boolean_t active = rand_vd->vdev_trim_thread != NULL;
6841
6842 zfs_dbgmsg("vd %p, guid %llu", rand_vd, (u_longlong_t)guid);
6843 spa_config_exit(spa, SCL_VDEV, FTAG);
6844
6845 uint64_t cmd = ztest_random(POOL_TRIM_FUNCS);
6846 uint64_t rate = 1 << ztest_random(30);
6847 boolean_t partial = (ztest_random(5) > 0);
6848 boolean_t secure = (ztest_random(5) > 0);
6849
6850 nvlist_t *vdev_guids = fnvlist_alloc();
6851 nvlist_t *vdev_errlist = fnvlist_alloc();
6852 fnvlist_add_uint64(vdev_guids, path, guid);
6853 error = spa_vdev_trim(spa, vdev_guids, cmd, rate, partial,
6854 secure, vdev_errlist);
6855 fnvlist_free(vdev_guids);
6856 fnvlist_free(vdev_errlist);
6857
6858 switch (cmd) {
6859 case POOL_TRIM_CANCEL:
6860 if (ztest_opts.zo_verbose >= 4) {
6861 (void) printf("Cancel TRIM %s", path);
6862 if (!active)
6863 (void) printf(" failed (no TRIM active)");
6864 (void) printf("\n");
6865 }
6866 break;
6867 case POOL_TRIM_START:
6868 if (ztest_opts.zo_verbose >= 4) {
6869 (void) printf("Start TRIM %s", path);
6870 if (active && error == 0)
6871 (void) printf(" failed (already active)");
6872 else if (error != 0)
6873 (void) printf(" failed (error %d)", error);
6874 (void) printf("\n");
6875 }
6876 break;
6877 case POOL_TRIM_SUSPEND:
6878 if (ztest_opts.zo_verbose >= 4) {
6879 (void) printf("Suspend TRIM %s", path);
6880 if (!active)
6881 (void) printf(" failed (no TRIM active)");
6882 (void) printf("\n");
6883 }
6884 break;
6885 }
6886 free(path);
6887 mutex_exit(&ztest_vdev_lock);
6888 }
6889
6890 /*
6891 * Verify pool integrity by running zdb.
6892 */
6893 static void
6894 ztest_run_zdb(char *pool)
6895 {
6896 int status;
6897 char *bin;
6898 char *zdb;
6899 char *zbuf;
6900 const int len = MAXPATHLEN + MAXNAMELEN + 20;
6901 FILE *fp;
6902
6903 bin = umem_alloc(len, UMEM_NOFAIL);
6904 zdb = umem_alloc(len, UMEM_NOFAIL);
6905 zbuf = umem_alloc(1024, UMEM_NOFAIL);
6906
6907 ztest_get_zdb_bin(bin, len);
6908
6909 char **set_gvars_args = ztest_global_vars_to_zdb_args();
6910 char *set_gvars_args_joined = join_strings(set_gvars_args, " ");
6911 free(set_gvars_args);
6912
6913 size_t would = snprintf(zdb, len,
6914 "%s -bcc%s%s -G -d -Y -e -y %s -p %s %s",
6915 bin,
6916 ztest_opts.zo_verbose >= 3 ? "s" : "",
6917 ztest_opts.zo_verbose >= 4 ? "v" : "",
6918 set_gvars_args_joined,
6919 ztest_opts.zo_dir,
6920 pool);
6921 ASSERT3U(would, <, len);
6922
6923 free(set_gvars_args_joined);
6924
6925 if (ztest_opts.zo_verbose >= 5)
6926 (void) printf("Executing %s\n", zdb);
6927
6928 fp = popen(zdb, "r");
6929
6930 while (fgets(zbuf, 1024, fp) != NULL)
6931 if (ztest_opts.zo_verbose >= 3)
6932 (void) printf("%s", zbuf);
6933
6934 status = pclose(fp);
6935
6936 if (status == 0)
6937 goto out;
6938
6939 ztest_dump_core = 0;
6940 if (WIFEXITED(status))
6941 fatal(B_FALSE, "'%s' exit code %d", zdb, WEXITSTATUS(status));
6942 else
6943 fatal(B_FALSE, "'%s' died with signal %d",
6944 zdb, WTERMSIG(status));
6945 out:
6946 umem_free(bin, len);
6947 umem_free(zdb, len);
6948 umem_free(zbuf, 1024);
6949 }
6950
6951 static void
6952 ztest_walk_pool_directory(char *header)
6953 {
6954 spa_t *spa = NULL;
6955
6956 if (ztest_opts.zo_verbose >= 6)
6957 (void) printf("%s\n", header);
6958
6959 mutex_enter(&spa_namespace_lock);
6960 while ((spa = spa_next(spa)) != NULL)
6961 if (ztest_opts.zo_verbose >= 6)
6962 (void) printf("\t%s\n", spa_name(spa));
6963 mutex_exit(&spa_namespace_lock);
6964 }
6965
6966 static void
6967 ztest_spa_import_export(char *oldname, char *newname)
6968 {
6969 nvlist_t *config, *newconfig;
6970 uint64_t pool_guid;
6971 spa_t *spa;
6972 int error;
6973
6974 if (ztest_opts.zo_verbose >= 4) {
6975 (void) printf("import/export: old = %s, new = %s\n",
6976 oldname, newname);
6977 }
6978
6979 /*
6980 * Clean up from previous runs.
6981 */
6982 (void) spa_destroy(newname);
6983
6984 /*
6985 * Get the pool's configuration and guid.
6986 */
6987 VERIFY0(spa_open(oldname, &spa, FTAG));
6988
6989 /*
6990 * Kick off a scrub to tickle scrub/export races.
6991 */
6992 if (ztest_random(2) == 0)
6993 (void) spa_scan(spa, POOL_SCAN_SCRUB);
6994
6995 pool_guid = spa_guid(spa);
6996 spa_close(spa, FTAG);
6997
6998 ztest_walk_pool_directory("pools before export");
6999
7000 /*
7001 * Export it.
7002 */
7003 VERIFY0(spa_export(oldname, &config, B_FALSE, B_FALSE));
7004
7005 ztest_walk_pool_directory("pools after export");
7006
7007 /*
7008 * Try to import it.
7009 */
7010 newconfig = spa_tryimport(config);
7011 ASSERT3P(newconfig, !=, NULL);
7012 fnvlist_free(newconfig);
7013
7014 /*
7015 * Import it under the new name.
7016 */
7017 error = spa_import(newname, config, NULL, 0);
7018 if (error != 0) {
7019 dump_nvlist(config, 0);
7020 fatal(B_FALSE, "couldn't import pool %s as %s: error %u",
7021 oldname, newname, error);
7022 }
7023
7024 ztest_walk_pool_directory("pools after import");
7025
7026 /*
7027 * Try to import it again -- should fail with EEXIST.
7028 */
7029 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0));
7030
7031 /*
7032 * Try to import it under a different name -- should fail with EEXIST.
7033 */
7034 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0));
7035
7036 /*
7037 * Verify that the pool is no longer visible under the old name.
7038 */
7039 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
7040
7041 /*
7042 * Verify that we can open and close the pool using the new name.
7043 */
7044 VERIFY0(spa_open(newname, &spa, FTAG));
7045 ASSERT3U(pool_guid, ==, spa_guid(spa));
7046 spa_close(spa, FTAG);
7047
7048 fnvlist_free(config);
7049 }
7050
7051 static void
7052 ztest_resume(spa_t *spa)
7053 {
7054 if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6)
7055 (void) printf("resuming from suspended state\n");
7056 spa_vdev_state_enter(spa, SCL_NONE);
7057 vdev_clear(spa, NULL);
7058 (void) spa_vdev_state_exit(spa, NULL, 0);
7059 (void) zio_resume(spa);
7060 }
7061
7062 static __attribute__((noreturn)) void
7063 ztest_resume_thread(void *arg)
7064 {
7065 spa_t *spa = arg;
7066
7067 while (!ztest_exiting) {
7068 if (spa_suspended(spa))
7069 ztest_resume(spa);
7070 (void) poll(NULL, 0, 100);
7071
7072 /*
7073 * Periodically change the zfs_compressed_arc_enabled setting.
7074 */
7075 if (ztest_random(10) == 0)
7076 zfs_compressed_arc_enabled = ztest_random(2);
7077
7078 /*
7079 * Periodically change the zfs_abd_scatter_enabled setting.
7080 */
7081 if (ztest_random(10) == 0)
7082 zfs_abd_scatter_enabled = ztest_random(2);
7083 }
7084
7085 thread_exit();
7086 }
7087
7088 static __attribute__((noreturn)) void
7089 ztest_deadman_thread(void *arg)
7090 {
7091 ztest_shared_t *zs = arg;
7092 spa_t *spa = ztest_spa;
7093 hrtime_t delay, overdue, last_run = gethrtime();
7094
7095 delay = (zs->zs_thread_stop - zs->zs_thread_start) +
7096 MSEC2NSEC(zfs_deadman_synctime_ms);
7097
7098 while (!ztest_exiting) {
7099 /*
7100 * Wait for the delay timer while checking occasionally
7101 * if we should stop.
7102 */
7103 if (gethrtime() < last_run + delay) {
7104 (void) poll(NULL, 0, 1000);
7105 continue;
7106 }
7107
7108 /*
7109 * If the pool is suspended then fail immediately. Otherwise,
7110 * check to see if the pool is making any progress. If
7111 * vdev_deadman() discovers that there hasn't been any recent
7112 * I/Os then it will end up aborting the tests.
7113 */
7114 if (spa_suspended(spa) || spa->spa_root_vdev == NULL) {
7115 fatal(B_FALSE,
7116 "aborting test after %lu seconds because "
7117 "pool has transitioned to a suspended state.",
7118 zfs_deadman_synctime_ms / 1000);
7119 }
7120 vdev_deadman(spa->spa_root_vdev, FTAG);
7121
7122 /*
7123 * If the process doesn't complete within a grace period of
7124 * zfs_deadman_synctime_ms over the expected finish time,
7125 * then it may be hung and is terminated.
7126 */
7127 overdue = zs->zs_proc_stop + MSEC2NSEC(zfs_deadman_synctime_ms);
7128 if (gethrtime() > overdue) {
7129 fatal(B_FALSE,
7130 "aborting test after %llu seconds because "
7131 "the process is overdue for termination.",
7132 (gethrtime() - zs->zs_proc_start) / NANOSEC);
7133 }
7134
7135 (void) printf("ztest has been running for %lld seconds\n",
7136 (gethrtime() - zs->zs_proc_start) / NANOSEC);
7137
7138 last_run = gethrtime();
7139 delay = MSEC2NSEC(zfs_deadman_checktime_ms);
7140 }
7141
7142 thread_exit();
7143 }
7144
7145 static void
7146 ztest_execute(int test, ztest_info_t *zi, uint64_t id)
7147 {
7148 ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets];
7149 ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test);
7150 hrtime_t functime = gethrtime();
7151 int i;
7152
7153 for (i = 0; i < zi->zi_iters; i++)
7154 zi->zi_func(zd, id);
7155
7156 functime = gethrtime() - functime;
7157
7158 atomic_add_64(&zc->zc_count, 1);
7159 atomic_add_64(&zc->zc_time, functime);
7160
7161 if (ztest_opts.zo_verbose >= 4)
7162 (void) printf("%6.2f sec in %s\n",
7163 (double)functime / NANOSEC, zi->zi_funcname);
7164 }
7165
7166 static __attribute__((noreturn)) void
7167 ztest_thread(void *arg)
7168 {
7169 int rand;
7170 uint64_t id = (uintptr_t)arg;
7171 ztest_shared_t *zs = ztest_shared;
7172 uint64_t call_next;
7173 hrtime_t now;
7174 ztest_info_t *zi;
7175 ztest_shared_callstate_t *zc;
7176
7177 while ((now = gethrtime()) < zs->zs_thread_stop) {
7178 /*
7179 * See if it's time to force a crash.
7180 */
7181 if (now > zs->zs_thread_kill)
7182 ztest_kill(zs);
7183
7184 /*
7185 * If we're getting ENOSPC with some regularity, stop.
7186 */
7187 if (zs->zs_enospc_count > 10)
7188 break;
7189
7190 /*
7191 * Pick a random function to execute.
7192 */
7193 rand = ztest_random(ZTEST_FUNCS);
7194 zi = &ztest_info[rand];
7195 zc = ZTEST_GET_SHARED_CALLSTATE(rand);
7196 call_next = zc->zc_next;
7197
7198 if (now >= call_next &&
7199 atomic_cas_64(&zc->zc_next, call_next, call_next +
7200 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) {
7201 ztest_execute(rand, zi, id);
7202 }
7203 }
7204
7205 thread_exit();
7206 }
7207
7208 static void
7209 ztest_dataset_name(char *dsname, char *pool, int d)
7210 {
7211 (void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d);
7212 }
7213
7214 static void
7215 ztest_dataset_destroy(int d)
7216 {
7217 char name[ZFS_MAX_DATASET_NAME_LEN];
7218 int t;
7219
7220 ztest_dataset_name(name, ztest_opts.zo_pool, d);
7221
7222 if (ztest_opts.zo_verbose >= 3)
7223 (void) printf("Destroying %s to free up space\n", name);
7224
7225 /*
7226 * Cleanup any non-standard clones and snapshots. In general,
7227 * ztest thread t operates on dataset (t % zopt_datasets),
7228 * so there may be more than one thing to clean up.
7229 */
7230 for (t = d; t < ztest_opts.zo_threads;
7231 t += ztest_opts.zo_datasets)
7232 ztest_dsl_dataset_cleanup(name, t);
7233
7234 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
7235 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
7236 }
7237
7238 static void
7239 ztest_dataset_dirobj_verify(ztest_ds_t *zd)
7240 {
7241 uint64_t usedobjs, dirobjs, scratch;
7242
7243 /*
7244 * ZTEST_DIROBJ is the object directory for the entire dataset.
7245 * Therefore, the number of objects in use should equal the
7246 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
7247 * If not, we have an object leak.
7248 *
7249 * Note that we can only check this in ztest_dataset_open(),
7250 * when the open-context and syncing-context values agree.
7251 * That's because zap_count() returns the open-context value,
7252 * while dmu_objset_space() returns the rootbp fill count.
7253 */
7254 VERIFY0(zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
7255 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
7256 ASSERT3U(dirobjs + 1, ==, usedobjs);
7257 }
7258
7259 static int
7260 ztest_dataset_open(int d)
7261 {
7262 ztest_ds_t *zd = &ztest_ds[d];
7263 uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq;
7264 objset_t *os;
7265 zilog_t *zilog;
7266 char name[ZFS_MAX_DATASET_NAME_LEN];
7267 int error;
7268
7269 ztest_dataset_name(name, ztest_opts.zo_pool, d);
7270
7271 (void) pthread_rwlock_rdlock(&ztest_name_lock);
7272
7273 error = ztest_dataset_create(name);
7274 if (error == ENOSPC) {
7275 (void) pthread_rwlock_unlock(&ztest_name_lock);
7276 ztest_record_enospc(FTAG);
7277 return (error);
7278 }
7279 ASSERT(error == 0 || error == EEXIST);
7280
7281 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
7282 B_TRUE, zd, &os));
7283 (void) pthread_rwlock_unlock(&ztest_name_lock);
7284
7285 ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os);
7286
7287 zilog = zd->zd_zilog;
7288
7289 if (zilog->zl_header->zh_claim_lr_seq != 0 &&
7290 zilog->zl_header->zh_claim_lr_seq < committed_seq)
7291 fatal(B_FALSE, "missing log records: "
7292 "claimed %"PRIu64" < committed %"PRIu64"",
7293 zilog->zl_header->zh_claim_lr_seq, committed_seq);
7294
7295 ztest_dataset_dirobj_verify(zd);
7296
7297 zil_replay(os, zd, ztest_replay_vector);
7298
7299 ztest_dataset_dirobj_verify(zd);
7300
7301 if (ztest_opts.zo_verbose >= 6)
7302 (void) printf("%s replay %"PRIu64" blocks, "
7303 "%"PRIu64" records, seq %"PRIu64"\n",
7304 zd->zd_name,
7305 zilog->zl_parse_blk_count,
7306 zilog->zl_parse_lr_count,
7307 zilog->zl_replaying_seq);
7308
7309 zilog = zil_open(os, ztest_get_data);
7310
7311 if (zilog->zl_replaying_seq != 0 &&
7312 zilog->zl_replaying_seq < committed_seq)
7313 fatal(B_FALSE, "missing log records: "
7314 "replayed %"PRIu64" < committed %"PRIu64"",
7315 zilog->zl_replaying_seq, committed_seq);
7316
7317 return (0);
7318 }
7319
7320 static void
7321 ztest_dataset_close(int d)
7322 {
7323 ztest_ds_t *zd = &ztest_ds[d];
7324
7325 zil_close(zd->zd_zilog);
7326 dmu_objset_disown(zd->zd_os, B_TRUE, zd);
7327
7328 ztest_zd_fini(zd);
7329 }
7330
7331 static int
7332 ztest_replay_zil_cb(const char *name, void *arg)
7333 {
7334 (void) arg;
7335 objset_t *os;
7336 ztest_ds_t *zdtmp;
7337
7338 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_ANY, B_TRUE,
7339 B_TRUE, FTAG, &os));
7340
7341 zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
7342
7343 ztest_zd_init(zdtmp, NULL, os);
7344 zil_replay(os, zdtmp, ztest_replay_vector);
7345 ztest_zd_fini(zdtmp);
7346
7347 if (dmu_objset_zil(os)->zl_parse_lr_count != 0 &&
7348 ztest_opts.zo_verbose >= 6) {
7349 zilog_t *zilog = dmu_objset_zil(os);
7350
7351 (void) printf("%s replay %"PRIu64" blocks, "
7352 "%"PRIu64" records, seq %"PRIu64"\n",
7353 name,
7354 zilog->zl_parse_blk_count,
7355 zilog->zl_parse_lr_count,
7356 zilog->zl_replaying_seq);
7357 }
7358
7359 umem_free(zdtmp, sizeof (ztest_ds_t));
7360
7361 dmu_objset_disown(os, B_TRUE, FTAG);
7362 return (0);
7363 }
7364
7365 static void
7366 ztest_freeze(void)
7367 {
7368 ztest_ds_t *zd = &ztest_ds[0];
7369 spa_t *spa;
7370 int numloops = 0;
7371
7372 if (ztest_opts.zo_verbose >= 3)
7373 (void) printf("testing spa_freeze()...\n");
7374
7375 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7376 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7377 VERIFY0(ztest_dataset_open(0));
7378 ztest_spa = spa;
7379
7380 /*
7381 * Force the first log block to be transactionally allocated.
7382 * We have to do this before we freeze the pool -- otherwise
7383 * the log chain won't be anchored.
7384 */
7385 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
7386 ztest_dmu_object_alloc_free(zd, 0);
7387 zil_commit(zd->zd_zilog, 0);
7388 }
7389
7390 txg_wait_synced(spa_get_dsl(spa), 0);
7391
7392 /*
7393 * Freeze the pool. This stops spa_sync() from doing anything,
7394 * so that the only way to record changes from now on is the ZIL.
7395 */
7396 spa_freeze(spa);
7397
7398 /*
7399 * Because it is hard to predict how much space a write will actually
7400 * require beforehand, we leave ourselves some fudge space to write over
7401 * capacity.
7402 */
7403 uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2;
7404
7405 /*
7406 * Run tests that generate log records but don't alter the pool config
7407 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
7408 * We do a txg_wait_synced() after each iteration to force the txg
7409 * to increase well beyond the last synced value in the uberblock.
7410 * The ZIL should be OK with that.
7411 *
7412 * Run a random number of times less than zo_maxloops and ensure we do
7413 * not run out of space on the pool.
7414 */
7415 while (ztest_random(10) != 0 &&
7416 numloops++ < ztest_opts.zo_maxloops &&
7417 metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) {
7418 ztest_od_t od;
7419 ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
7420 VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE));
7421 ztest_io(zd, od.od_object,
7422 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
7423 txg_wait_synced(spa_get_dsl(spa), 0);
7424 }
7425
7426 /*
7427 * Commit all of the changes we just generated.
7428 */
7429 zil_commit(zd->zd_zilog, 0);
7430 txg_wait_synced(spa_get_dsl(spa), 0);
7431
7432 /*
7433 * Close our dataset and close the pool.
7434 */
7435 ztest_dataset_close(0);
7436 spa_close(spa, FTAG);
7437 kernel_fini();
7438
7439 /*
7440 * Open and close the pool and dataset to induce log replay.
7441 */
7442 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7443 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7444 ASSERT3U(spa_freeze_txg(spa), ==, UINT64_MAX);
7445 VERIFY0(ztest_dataset_open(0));
7446 ztest_spa = spa;
7447 txg_wait_synced(spa_get_dsl(spa), 0);
7448 ztest_dataset_close(0);
7449 ztest_reguid(NULL, 0);
7450
7451 spa_close(spa, FTAG);
7452 kernel_fini();
7453 }
7454
7455 static void
7456 ztest_import_impl(void)
7457 {
7458 importargs_t args = { 0 };
7459 nvlist_t *cfg = NULL;
7460 int nsearch = 1;
7461 char *searchdirs[nsearch];
7462 int flags = ZFS_IMPORT_MISSING_LOG;
7463
7464 searchdirs[0] = ztest_opts.zo_dir;
7465 args.paths = nsearch;
7466 args.path = searchdirs;
7467 args.can_be_active = B_FALSE;
7468
7469 VERIFY0(zpool_find_config(NULL, ztest_opts.zo_pool, &cfg, &args,
7470 &libzpool_config_ops));
7471 VERIFY0(spa_import(ztest_opts.zo_pool, cfg, NULL, flags));
7472 fnvlist_free(cfg);
7473 }
7474
7475 /*
7476 * Import a storage pool with the given name.
7477 */
7478 static void
7479 ztest_import(ztest_shared_t *zs)
7480 {
7481 spa_t *spa;
7482
7483 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
7484 mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
7485 VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
7486
7487 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7488
7489 ztest_import_impl();
7490
7491 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7492 zs->zs_metaslab_sz =
7493 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
7494 spa_close(spa, FTAG);
7495
7496 kernel_fini();
7497
7498 if (!ztest_opts.zo_mmp_test) {
7499 ztest_run_zdb(ztest_opts.zo_pool);
7500 ztest_freeze();
7501 ztest_run_zdb(ztest_opts.zo_pool);
7502 }
7503
7504 (void) pthread_rwlock_destroy(&ztest_name_lock);
7505 mutex_destroy(&ztest_vdev_lock);
7506 mutex_destroy(&ztest_checkpoint_lock);
7507 }
7508
7509 /*
7510 * Kick off threads to run tests on all datasets in parallel.
7511 */
7512 static void
7513 ztest_run(ztest_shared_t *zs)
7514 {
7515 spa_t *spa;
7516 objset_t *os;
7517 kthread_t *resume_thread, *deadman_thread;
7518 kthread_t **run_threads;
7519 uint64_t object;
7520 int error;
7521 int t, d;
7522
7523 ztest_exiting = B_FALSE;
7524
7525 /*
7526 * Initialize parent/child shared state.
7527 */
7528 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
7529 mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
7530 VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
7531
7532 zs->zs_thread_start = gethrtime();
7533 zs->zs_thread_stop =
7534 zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC;
7535 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
7536 zs->zs_thread_kill = zs->zs_thread_stop;
7537 if (ztest_random(100) < ztest_opts.zo_killrate) {
7538 zs->zs_thread_kill -=
7539 ztest_random(ztest_opts.zo_passtime * NANOSEC);
7540 }
7541
7542 mutex_init(&zcl.zcl_callbacks_lock, NULL, MUTEX_DEFAULT, NULL);
7543
7544 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
7545 offsetof(ztest_cb_data_t, zcd_node));
7546
7547 /*
7548 * Open our pool. It may need to be imported first depending on
7549 * what tests were running when the previous pass was terminated.
7550 */
7551 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7552 error = spa_open(ztest_opts.zo_pool, &spa, FTAG);
7553 if (error) {
7554 VERIFY3S(error, ==, ENOENT);
7555 ztest_import_impl();
7556 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7557 zs->zs_metaslab_sz =
7558 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
7559 }
7560
7561 metaslab_preload_limit = ztest_random(20) + 1;
7562 ztest_spa = spa;
7563
7564 VERIFY0(vdev_raidz_impl_set("cycle"));
7565
7566 dmu_objset_stats_t dds;
7567 VERIFY0(ztest_dmu_objset_own(ztest_opts.zo_pool,
7568 DMU_OST_ANY, B_TRUE, B_TRUE, FTAG, &os));
7569 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
7570 dmu_objset_fast_stat(os, &dds);
7571 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
7572 zs->zs_guid = dds.dds_guid;
7573 dmu_objset_disown(os, B_TRUE, FTAG);
7574
7575 /*
7576 * Create a thread to periodically resume suspended I/O.
7577 */
7578 resume_thread = thread_create(NULL, 0, ztest_resume_thread,
7579 spa, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
7580
7581 /*
7582 * Create a deadman thread and set to panic if we hang.
7583 */
7584 deadman_thread = thread_create(NULL, 0, ztest_deadman_thread,
7585 zs, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
7586
7587 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
7588
7589 /*
7590 * Verify that we can safely inquire about any object,
7591 * whether it's allocated or not. To make it interesting,
7592 * we probe a 5-wide window around each power of two.
7593 * This hits all edge cases, including zero and the max.
7594 */
7595 for (t = 0; t < 64; t++) {
7596 for (d = -5; d <= 5; d++) {
7597 error = dmu_object_info(spa->spa_meta_objset,
7598 (1ULL << t) + d, NULL);
7599 ASSERT(error == 0 || error == ENOENT ||
7600 error == EINVAL);
7601 }
7602 }
7603
7604 /*
7605 * If we got any ENOSPC errors on the previous run, destroy something.
7606 */
7607 if (zs->zs_enospc_count != 0) {
7608 int d = ztest_random(ztest_opts.zo_datasets);
7609 ztest_dataset_destroy(d);
7610 }
7611 zs->zs_enospc_count = 0;
7612
7613 /*
7614 * If we were in the middle of ztest_device_removal() and were killed
7615 * we need to ensure the removal and scrub complete before running
7616 * any tests that check ztest_device_removal_active. The removal will
7617 * be restarted automatically when the spa is opened, but we need to
7618 * initiate the scrub manually if it is not already in progress. Note
7619 * that we always run the scrub whenever an indirect vdev exists
7620 * because we have no way of knowing for sure if ztest_device_removal()
7621 * fully completed its scrub before the pool was reimported.
7622 */
7623 if (spa->spa_removing_phys.sr_state == DSS_SCANNING ||
7624 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
7625 while (spa->spa_removing_phys.sr_state == DSS_SCANNING)
7626 txg_wait_synced(spa_get_dsl(spa), 0);
7627
7628 error = ztest_scrub_impl(spa);
7629 if (error == EBUSY)
7630 error = 0;
7631 ASSERT0(error);
7632 }
7633
7634 run_threads = umem_zalloc(ztest_opts.zo_threads * sizeof (kthread_t *),
7635 UMEM_NOFAIL);
7636
7637 if (ztest_opts.zo_verbose >= 4)
7638 (void) printf("starting main threads...\n");
7639
7640 /*
7641 * Replay all logs of all datasets in the pool. This is primarily for
7642 * temporary datasets which wouldn't otherwise get replayed, which
7643 * can trigger failures when attempting to offline a SLOG in
7644 * ztest_fault_inject().
7645 */
7646 (void) dmu_objset_find(ztest_opts.zo_pool, ztest_replay_zil_cb,
7647 NULL, DS_FIND_CHILDREN);
7648
7649 /*
7650 * Kick off all the tests that run in parallel.
7651 */
7652 for (t = 0; t < ztest_opts.zo_threads; t++) {
7653 if (t < ztest_opts.zo_datasets && ztest_dataset_open(t) != 0) {
7654 umem_free(run_threads, ztest_opts.zo_threads *
7655 sizeof (kthread_t *));
7656 return;
7657 }
7658
7659 run_threads[t] = thread_create(NULL, 0, ztest_thread,
7660 (void *)(uintptr_t)t, 0, NULL, TS_RUN | TS_JOINABLE,
7661 defclsyspri);
7662 }
7663
7664 /*
7665 * Wait for all of the tests to complete.
7666 */
7667 for (t = 0; t < ztest_opts.zo_threads; t++)
7668 VERIFY0(thread_join(run_threads[t]));
7669
7670 /*
7671 * Close all datasets. This must be done after all the threads
7672 * are joined so we can be sure none of the datasets are in-use
7673 * by any of the threads.
7674 */
7675 for (t = 0; t < ztest_opts.zo_threads; t++) {
7676 if (t < ztest_opts.zo_datasets)
7677 ztest_dataset_close(t);
7678 }
7679
7680 txg_wait_synced(spa_get_dsl(spa), 0);
7681
7682 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
7683 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
7684
7685 umem_free(run_threads, ztest_opts.zo_threads * sizeof (kthread_t *));
7686
7687 /* Kill the resume and deadman threads */
7688 ztest_exiting = B_TRUE;
7689 VERIFY0(thread_join(resume_thread));
7690 VERIFY0(thread_join(deadman_thread));
7691 ztest_resume(spa);
7692
7693 /*
7694 * Right before closing the pool, kick off a bunch of async I/O;
7695 * spa_close() should wait for it to complete.
7696 */
7697 for (object = 1; object < 50; object++) {
7698 dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20,
7699 ZIO_PRIORITY_SYNC_READ);
7700 }
7701
7702 /* Verify that at least one commit cb was called in a timely fashion */
7703 if (zc_cb_counter >= ZTEST_COMMIT_CB_MIN_REG)
7704 VERIFY0(zc_min_txg_delay);
7705
7706 spa_close(spa, FTAG);
7707
7708 /*
7709 * Verify that we can loop over all pools.
7710 */
7711 mutex_enter(&spa_namespace_lock);
7712 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
7713 if (ztest_opts.zo_verbose > 3)
7714 (void) printf("spa_next: found %s\n", spa_name(spa));
7715 mutex_exit(&spa_namespace_lock);
7716
7717 /*
7718 * Verify that we can export the pool and reimport it under a
7719 * different name.
7720 */
7721 if ((ztest_random(2) == 0) && !ztest_opts.zo_mmp_test) {
7722 char name[ZFS_MAX_DATASET_NAME_LEN];
7723 (void) snprintf(name, sizeof (name), "%s_import",
7724 ztest_opts.zo_pool);
7725 ztest_spa_import_export(ztest_opts.zo_pool, name);
7726 ztest_spa_import_export(name, ztest_opts.zo_pool);
7727 }
7728
7729 kernel_fini();
7730
7731 list_destroy(&zcl.zcl_callbacks);
7732 mutex_destroy(&zcl.zcl_callbacks_lock);
7733 (void) pthread_rwlock_destroy(&ztest_name_lock);
7734 mutex_destroy(&ztest_vdev_lock);
7735 mutex_destroy(&ztest_checkpoint_lock);
7736 }
7737
7738 static void
7739 print_time(hrtime_t t, char *timebuf)
7740 {
7741 hrtime_t s = t / NANOSEC;
7742 hrtime_t m = s / 60;
7743 hrtime_t h = m / 60;
7744 hrtime_t d = h / 24;
7745
7746 s -= m * 60;
7747 m -= h * 60;
7748 h -= d * 24;
7749
7750 timebuf[0] = '\0';
7751
7752 if (d)
7753 (void) sprintf(timebuf,
7754 "%llud%02lluh%02llum%02llus", d, h, m, s);
7755 else if (h)
7756 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
7757 else if (m)
7758 (void) sprintf(timebuf, "%llum%02llus", m, s);
7759 else
7760 (void) sprintf(timebuf, "%llus", s);
7761 }
7762
7763 static nvlist_t *
7764 make_random_props(void)
7765 {
7766 nvlist_t *props;
7767
7768 props = fnvlist_alloc();
7769
7770 if (ztest_random(2) == 0)
7771 return (props);
7772
7773 fnvlist_add_uint64(props,
7774 zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE), 1);
7775
7776 return (props);
7777 }
7778
7779 /*
7780 * Create a storage pool with the given name and initial vdev size.
7781 * Then test spa_freeze() functionality.
7782 */
7783 static void
7784 ztest_init(ztest_shared_t *zs)
7785 {
7786 spa_t *spa;
7787 nvlist_t *nvroot, *props;
7788 int i;
7789
7790 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
7791 mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
7792 VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
7793
7794 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7795
7796 /*
7797 * Create the storage pool.
7798 */
7799 (void) spa_destroy(ztest_opts.zo_pool);
7800 ztest_shared->zs_vdev_next_leaf = 0;
7801 zs->zs_splits = 0;
7802 zs->zs_mirrors = ztest_opts.zo_mirrors;
7803 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
7804 NULL, ztest_opts.zo_raid_children, zs->zs_mirrors, 1);
7805 props = make_random_props();
7806
7807 /*
7808 * We don't expect the pool to suspend unless maxfaults == 0,
7809 * in which case ztest_fault_inject() temporarily takes away
7810 * the only valid replica.
7811 */
7812 fnvlist_add_uint64(props,
7813 zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
7814 MAXFAULTS(zs) ? ZIO_FAILURE_MODE_PANIC : ZIO_FAILURE_MODE_WAIT);
7815
7816 for (i = 0; i < SPA_FEATURES; i++) {
7817 char *buf;
7818
7819 if (!spa_feature_table[i].fi_zfs_mod_supported)
7820 continue;
7821
7822 /*
7823 * 75% chance of using the log space map feature. We want ztest
7824 * to exercise both the code paths that use the log space map
7825 * feature and the ones that don't.
7826 */
7827 if (i == SPA_FEATURE_LOG_SPACEMAP && ztest_random(4) == 0)
7828 continue;
7829
7830 VERIFY3S(-1, !=, asprintf(&buf, "feature@%s",
7831 spa_feature_table[i].fi_uname));
7832 fnvlist_add_uint64(props, buf, 0);
7833 free(buf);
7834 }
7835
7836 VERIFY0(spa_create(ztest_opts.zo_pool, nvroot, props, NULL, NULL));
7837 fnvlist_free(nvroot);
7838 fnvlist_free(props);
7839
7840 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7841 zs->zs_metaslab_sz =
7842 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
7843 spa_close(spa, FTAG);
7844
7845 kernel_fini();
7846
7847 if (!ztest_opts.zo_mmp_test) {
7848 ztest_run_zdb(ztest_opts.zo_pool);
7849 ztest_freeze();
7850 ztest_run_zdb(ztest_opts.zo_pool);
7851 }
7852
7853 (void) pthread_rwlock_destroy(&ztest_name_lock);
7854 mutex_destroy(&ztest_vdev_lock);
7855 mutex_destroy(&ztest_checkpoint_lock);
7856 }
7857
7858 static void
7859 setup_data_fd(void)
7860 {
7861 static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX";
7862
7863 ztest_fd_data = mkstemp(ztest_name_data);
7864 ASSERT3S(ztest_fd_data, >=, 0);
7865 (void) unlink(ztest_name_data);
7866 }
7867
7868 static int
7869 shared_data_size(ztest_shared_hdr_t *hdr)
7870 {
7871 int size;
7872
7873 size = hdr->zh_hdr_size;
7874 size += hdr->zh_opts_size;
7875 size += hdr->zh_size;
7876 size += hdr->zh_stats_size * hdr->zh_stats_count;
7877 size += hdr->zh_ds_size * hdr->zh_ds_count;
7878
7879 return (size);
7880 }
7881
7882 static void
7883 setup_hdr(void)
7884 {
7885 int size;
7886 ztest_shared_hdr_t *hdr;
7887
7888 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
7889 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
7890 ASSERT3P(hdr, !=, MAP_FAILED);
7891
7892 VERIFY0(ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t)));
7893
7894 hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t);
7895 hdr->zh_opts_size = sizeof (ztest_shared_opts_t);
7896 hdr->zh_size = sizeof (ztest_shared_t);
7897 hdr->zh_stats_size = sizeof (ztest_shared_callstate_t);
7898 hdr->zh_stats_count = ZTEST_FUNCS;
7899 hdr->zh_ds_size = sizeof (ztest_shared_ds_t);
7900 hdr->zh_ds_count = ztest_opts.zo_datasets;
7901
7902 size = shared_data_size(hdr);
7903 VERIFY0(ftruncate(ztest_fd_data, size));
7904
7905 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
7906 }
7907
7908 static void
7909 setup_data(void)
7910 {
7911 int size, offset;
7912 ztest_shared_hdr_t *hdr;
7913 uint8_t *buf;
7914
7915 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
7916 PROT_READ, MAP_SHARED, ztest_fd_data, 0);
7917 ASSERT3P(hdr, !=, MAP_FAILED);
7918
7919 size = shared_data_size(hdr);
7920
7921 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
7922 hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()),
7923 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
7924 ASSERT3P(hdr, !=, MAP_FAILED);
7925 buf = (uint8_t *)hdr;
7926
7927 offset = hdr->zh_hdr_size;
7928 ztest_shared_opts = (void *)&buf[offset];
7929 offset += hdr->zh_opts_size;
7930 ztest_shared = (void *)&buf[offset];
7931 offset += hdr->zh_size;
7932 ztest_shared_callstate = (void *)&buf[offset];
7933 offset += hdr->zh_stats_size * hdr->zh_stats_count;
7934 ztest_shared_ds = (void *)&buf[offset];
7935 }
7936
7937 static boolean_t
7938 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp)
7939 {
7940 pid_t pid;
7941 int status;
7942 char *cmdbuf = NULL;
7943
7944 pid = fork();
7945
7946 if (cmd == NULL) {
7947 cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
7948 (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN);
7949 cmd = cmdbuf;
7950 }
7951
7952 if (pid == -1)
7953 fatal(B_TRUE, "fork failed");
7954
7955 if (pid == 0) { /* child */
7956 char fd_data_str[12];
7957
7958 VERIFY3S(11, >=,
7959 snprintf(fd_data_str, 12, "%d", ztest_fd_data));
7960 VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1));
7961
7962 if (libpath != NULL) {
7963 const char *curlp = getenv("LD_LIBRARY_PATH");
7964 if (curlp == NULL)
7965 VERIFY0(setenv("LD_LIBRARY_PATH", libpath, 1));
7966 else {
7967 char *newlp = NULL;
7968 VERIFY3S(-1, !=,
7969 asprintf(&newlp, "%s:%s", libpath, curlp));
7970 VERIFY0(setenv("LD_LIBRARY_PATH", newlp, 1));
7971 }
7972 }
7973 (void) execl(cmd, cmd, (char *)NULL);
7974 ztest_dump_core = B_FALSE;
7975 fatal(B_TRUE, "exec failed: %s", cmd);
7976 }
7977
7978 if (cmdbuf != NULL) {
7979 umem_free(cmdbuf, MAXPATHLEN);
7980 cmd = NULL;
7981 }
7982
7983 while (waitpid(pid, &status, 0) != pid)
7984 continue;
7985 if (statusp != NULL)
7986 *statusp = status;
7987
7988 if (WIFEXITED(status)) {
7989 if (WEXITSTATUS(status) != 0) {
7990 (void) fprintf(stderr, "child exited with code %d\n",
7991 WEXITSTATUS(status));
7992 exit(2);
7993 }
7994 return (B_FALSE);
7995 } else if (WIFSIGNALED(status)) {
7996 if (!ignorekill || WTERMSIG(status) != SIGKILL) {
7997 (void) fprintf(stderr, "child died with signal %d\n",
7998 WTERMSIG(status));
7999 exit(3);
8000 }
8001 return (B_TRUE);
8002 } else {
8003 (void) fprintf(stderr, "something strange happened to child\n");
8004 exit(4);
8005 }
8006 }
8007
8008 static void
8009 ztest_run_init(void)
8010 {
8011 int i;
8012
8013 ztest_shared_t *zs = ztest_shared;
8014
8015 /*
8016 * Blow away any existing copy of zpool.cache
8017 */
8018 (void) remove(spa_config_path);
8019
8020 if (ztest_opts.zo_init == 0) {
8021 if (ztest_opts.zo_verbose >= 1)
8022 (void) printf("Importing pool %s\n",
8023 ztest_opts.zo_pool);
8024 ztest_import(zs);
8025 return;
8026 }
8027
8028 /*
8029 * Create and initialize our storage pool.
8030 */
8031 for (i = 1; i <= ztest_opts.zo_init; i++) {
8032 memset(zs, 0, sizeof (*zs));
8033 if (ztest_opts.zo_verbose >= 3 &&
8034 ztest_opts.zo_init != 1) {
8035 (void) printf("ztest_init(), pass %d\n", i);
8036 }
8037 ztest_init(zs);
8038 }
8039 }
8040
8041 int
8042 main(int argc, char **argv)
8043 {
8044 int kills = 0;
8045 int iters = 0;
8046 int older = 0;
8047 int newer = 0;
8048 ztest_shared_t *zs;
8049 ztest_info_t *zi;
8050 ztest_shared_callstate_t *zc;
8051 char timebuf[100];
8052 char numbuf[NN_NUMBUF_SZ];
8053 char *cmd;
8054 boolean_t hasalt;
8055 int f, err;
8056 char *fd_data_str = getenv("ZTEST_FD_DATA");
8057 struct sigaction action;
8058
8059 (void) setvbuf(stdout, NULL, _IOLBF, 0);
8060
8061 dprintf_setup(&argc, argv);
8062 zfs_deadman_synctime_ms = 300000;
8063 zfs_deadman_checktime_ms = 30000;
8064 /*
8065 * As two-word space map entries may not come up often (especially
8066 * if pool and vdev sizes are small) we want to force at least some
8067 * of them so the feature get tested.
8068 */
8069 zfs_force_some_double_word_sm_entries = B_TRUE;
8070
8071 /*
8072 * Verify that even extensively damaged split blocks with many
8073 * segments can be reconstructed in a reasonable amount of time
8074 * when reconstruction is known to be possible.
8075 *
8076 * Note: the lower this value is, the more damage we inflict, and
8077 * the more time ztest spends in recovering that damage. We chose
8078 * to induce damage 1/100th of the time so recovery is tested but
8079 * not so frequently that ztest doesn't get to test other code paths.
8080 */
8081 zfs_reconstruct_indirect_damage_fraction = 100;
8082
8083 action.sa_handler = sig_handler;
8084 sigemptyset(&action.sa_mask);
8085 action.sa_flags = 0;
8086
8087 if (sigaction(SIGSEGV, &action, NULL) < 0) {
8088 (void) fprintf(stderr, "ztest: cannot catch SIGSEGV: %s.\n",
8089 strerror(errno));
8090 exit(EXIT_FAILURE);
8091 }
8092
8093 if (sigaction(SIGABRT, &action, NULL) < 0) {
8094 (void) fprintf(stderr, "ztest: cannot catch SIGABRT: %s.\n",
8095 strerror(errno));
8096 exit(EXIT_FAILURE);
8097 }
8098
8099 /*
8100 * Force random_get_bytes() to use /dev/urandom in order to prevent
8101 * ztest from needlessly depleting the system entropy pool.
8102 */
8103 random_path = "/dev/urandom";
8104 ztest_fd_rand = open(random_path, O_RDONLY | O_CLOEXEC);
8105 ASSERT3S(ztest_fd_rand, >=, 0);
8106
8107 if (!fd_data_str) {
8108 process_options(argc, argv);
8109
8110 setup_data_fd();
8111 setup_hdr();
8112 setup_data();
8113 memcpy(ztest_shared_opts, &ztest_opts,
8114 sizeof (*ztest_shared_opts));
8115 } else {
8116 ztest_fd_data = atoi(fd_data_str);
8117 setup_data();
8118 memcpy(&ztest_opts, ztest_shared_opts, sizeof (ztest_opts));
8119 }
8120 ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count);
8121
8122 err = ztest_set_global_vars();
8123 if (err != 0 && !fd_data_str) {
8124 /* error message done by ztest_set_global_vars */
8125 exit(EXIT_FAILURE);
8126 } else {
8127 /* children should not be spawned if setting gvars fails */
8128 VERIFY3S(err, ==, 0);
8129 }
8130
8131 /* Override location of zpool.cache */
8132 VERIFY3S(asprintf((char **)&spa_config_path, "%s/zpool.cache",
8133 ztest_opts.zo_dir), !=, -1);
8134
8135 ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t),
8136 UMEM_NOFAIL);
8137 zs = ztest_shared;
8138
8139 if (fd_data_str) {
8140 metaslab_force_ganging = ztest_opts.zo_metaslab_force_ganging;
8141 metaslab_df_alloc_threshold =
8142 zs->zs_metaslab_df_alloc_threshold;
8143
8144 if (zs->zs_do_init)
8145 ztest_run_init();
8146 else
8147 ztest_run(zs);
8148 exit(0);
8149 }
8150
8151 hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0);
8152
8153 if (ztest_opts.zo_verbose >= 1) {
8154 (void) printf("%"PRIu64" vdevs, %d datasets, %d threads,"
8155 "%d %s disks, %"PRIu64" seconds...\n\n",
8156 ztest_opts.zo_vdevs,
8157 ztest_opts.zo_datasets,
8158 ztest_opts.zo_threads,
8159 ztest_opts.zo_raid_children,
8160 ztest_opts.zo_raid_type,
8161 ztest_opts.zo_time);
8162 }
8163
8164 cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
8165 (void) strlcpy(cmd, getexecname(), MAXNAMELEN);
8166
8167 zs->zs_do_init = B_TRUE;
8168 if (strlen(ztest_opts.zo_alt_ztest) != 0) {
8169 if (ztest_opts.zo_verbose >= 1) {
8170 (void) printf("Executing older ztest for "
8171 "initialization: %s\n", ztest_opts.zo_alt_ztest);
8172 }
8173 VERIFY(!exec_child(ztest_opts.zo_alt_ztest,
8174 ztest_opts.zo_alt_libpath, B_FALSE, NULL));
8175 } else {
8176 VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL));
8177 }
8178 zs->zs_do_init = B_FALSE;
8179
8180 zs->zs_proc_start = gethrtime();
8181 zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC;
8182
8183 for (f = 0; f < ZTEST_FUNCS; f++) {
8184 zi = &ztest_info[f];
8185 zc = ZTEST_GET_SHARED_CALLSTATE(f);
8186 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
8187 zc->zc_next = UINT64_MAX;
8188 else
8189 zc->zc_next = zs->zs_proc_start +
8190 ztest_random(2 * zi->zi_interval[0] + 1);
8191 }
8192
8193 /*
8194 * Run the tests in a loop. These tests include fault injection
8195 * to verify that self-healing data works, and forced crashes
8196 * to verify that we never lose on-disk consistency.
8197 */
8198 while (gethrtime() < zs->zs_proc_stop) {
8199 int status;
8200 boolean_t killed;
8201
8202 /*
8203 * Initialize the workload counters for each function.
8204 */
8205 for (f = 0; f < ZTEST_FUNCS; f++) {
8206 zc = ZTEST_GET_SHARED_CALLSTATE(f);
8207 zc->zc_count = 0;
8208 zc->zc_time = 0;
8209 }
8210
8211 /* Set the allocation switch size */
8212 zs->zs_metaslab_df_alloc_threshold =
8213 ztest_random(zs->zs_metaslab_sz / 4) + 1;
8214
8215 if (!hasalt || ztest_random(2) == 0) {
8216 if (hasalt && ztest_opts.zo_verbose >= 1) {
8217 (void) printf("Executing newer ztest: %s\n",
8218 cmd);
8219 }
8220 newer++;
8221 killed = exec_child(cmd, NULL, B_TRUE, &status);
8222 } else {
8223 if (hasalt && ztest_opts.zo_verbose >= 1) {
8224 (void) printf("Executing older ztest: %s\n",
8225 ztest_opts.zo_alt_ztest);
8226 }
8227 older++;
8228 killed = exec_child(ztest_opts.zo_alt_ztest,
8229 ztest_opts.zo_alt_libpath, B_TRUE, &status);
8230 }
8231
8232 if (killed)
8233 kills++;
8234 iters++;
8235
8236 if (ztest_opts.zo_verbose >= 1) {
8237 hrtime_t now = gethrtime();
8238
8239 now = MIN(now, zs->zs_proc_stop);
8240 print_time(zs->zs_proc_stop - now, timebuf);
8241 nicenum(zs->zs_space, numbuf, sizeof (numbuf));
8242
8243 (void) printf("Pass %3d, %8s, %3"PRIu64" ENOSPC, "
8244 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
8245 iters,
8246 WIFEXITED(status) ? "Complete" : "SIGKILL",
8247 zs->zs_enospc_count,
8248 100.0 * zs->zs_alloc / zs->zs_space,
8249 numbuf,
8250 100.0 * (now - zs->zs_proc_start) /
8251 (ztest_opts.zo_time * NANOSEC), timebuf);
8252 }
8253
8254 if (ztest_opts.zo_verbose >= 2) {
8255 (void) printf("\nWorkload summary:\n\n");
8256 (void) printf("%7s %9s %s\n",
8257 "Calls", "Time", "Function");
8258 (void) printf("%7s %9s %s\n",
8259 "-----", "----", "--------");
8260 for (f = 0; f < ZTEST_FUNCS; f++) {
8261 zi = &ztest_info[f];
8262 zc = ZTEST_GET_SHARED_CALLSTATE(f);
8263 print_time(zc->zc_time, timebuf);
8264 (void) printf("%7"PRIu64" %9s %s\n",
8265 zc->zc_count, timebuf,
8266 zi->zi_funcname);
8267 }
8268 (void) printf("\n");
8269 }
8270
8271 if (!ztest_opts.zo_mmp_test)
8272 ztest_run_zdb(ztest_opts.zo_pool);
8273 }
8274
8275 if (ztest_opts.zo_verbose >= 1) {
8276 if (hasalt) {
8277 (void) printf("%d runs of older ztest: %s\n", older,
8278 ztest_opts.zo_alt_ztest);
8279 (void) printf("%d runs of newer ztest: %s\n", newer,
8280 cmd);
8281 }
8282 (void) printf("%d killed, %d completed, %.0f%% kill rate\n",
8283 kills, iters - kills, (100.0 * kills) / MAX(1, iters));
8284 }
8285
8286 umem_free(cmd, MAXNAMELEN);
8287
8288 return (0);
8289 }