]> git.proxmox.com Git - qemu.git/blob - cpus.c
cpu: Move created field to CPUState
[qemu.git] / cpus.c
1 /*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 /* Needed early for CONFIG_BSD etc. */
26 #include "config-host.h"
27
28 #include "monitor.h"
29 #include "sysemu.h"
30 #include "gdbstub.h"
31 #include "dma.h"
32 #include "kvm.h"
33 #include "qmp-commands.h"
34
35 #include "qemu-thread.h"
36 #include "cpus.h"
37 #include "qtest.h"
38 #include "main-loop.h"
39 #include "bitmap.h"
40
41 #ifndef _WIN32
42 #include "compatfd.h"
43 #endif
44
45 #ifdef CONFIG_LINUX
46
47 #include <sys/prctl.h>
48
49 #ifndef PR_MCE_KILL
50 #define PR_MCE_KILL 33
51 #endif
52
53 #ifndef PR_MCE_KILL_SET
54 #define PR_MCE_KILL_SET 1
55 #endif
56
57 #ifndef PR_MCE_KILL_EARLY
58 #define PR_MCE_KILL_EARLY 1
59 #endif
60
61 #endif /* CONFIG_LINUX */
62
63 static CPUArchState *next_cpu;
64
65 static bool cpu_thread_is_idle(CPUArchState *env)
66 {
67 if (env->stop || env->queued_work_first) {
68 return false;
69 }
70 if (env->stopped || !runstate_is_running()) {
71 return true;
72 }
73 if (!env->halted || qemu_cpu_has_work(env) ||
74 kvm_async_interrupts_enabled()) {
75 return false;
76 }
77 return true;
78 }
79
80 static bool all_cpu_threads_idle(void)
81 {
82 CPUArchState *env;
83
84 for (env = first_cpu; env != NULL; env = env->next_cpu) {
85 if (!cpu_thread_is_idle(env)) {
86 return false;
87 }
88 }
89 return true;
90 }
91
92 /***********************************************************/
93 /* guest cycle counter */
94
95 /* Conversion factor from emulated instructions to virtual clock ticks. */
96 static int icount_time_shift;
97 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
98 #define MAX_ICOUNT_SHIFT 10
99 /* Compensate for varying guest execution speed. */
100 static int64_t qemu_icount_bias;
101 static QEMUTimer *icount_rt_timer;
102 static QEMUTimer *icount_vm_timer;
103 static QEMUTimer *icount_warp_timer;
104 static int64_t vm_clock_warp_start;
105 static int64_t qemu_icount;
106
107 typedef struct TimersState {
108 int64_t cpu_ticks_prev;
109 int64_t cpu_ticks_offset;
110 int64_t cpu_clock_offset;
111 int32_t cpu_ticks_enabled;
112 int64_t dummy;
113 } TimersState;
114
115 TimersState timers_state;
116
117 /* Return the virtual CPU time, based on the instruction counter. */
118 int64_t cpu_get_icount(void)
119 {
120 int64_t icount;
121 CPUArchState *env = cpu_single_env;
122
123 icount = qemu_icount;
124 if (env) {
125 if (!can_do_io(env)) {
126 fprintf(stderr, "Bad clock read\n");
127 }
128 icount -= (env->icount_decr.u16.low + env->icount_extra);
129 }
130 return qemu_icount_bias + (icount << icount_time_shift);
131 }
132
133 /* return the host CPU cycle counter and handle stop/restart */
134 int64_t cpu_get_ticks(void)
135 {
136 if (use_icount) {
137 return cpu_get_icount();
138 }
139 if (!timers_state.cpu_ticks_enabled) {
140 return timers_state.cpu_ticks_offset;
141 } else {
142 int64_t ticks;
143 ticks = cpu_get_real_ticks();
144 if (timers_state.cpu_ticks_prev > ticks) {
145 /* Note: non increasing ticks may happen if the host uses
146 software suspend */
147 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
148 }
149 timers_state.cpu_ticks_prev = ticks;
150 return ticks + timers_state.cpu_ticks_offset;
151 }
152 }
153
154 /* return the host CPU monotonic timer and handle stop/restart */
155 int64_t cpu_get_clock(void)
156 {
157 int64_t ti;
158 if (!timers_state.cpu_ticks_enabled) {
159 return timers_state.cpu_clock_offset;
160 } else {
161 ti = get_clock();
162 return ti + timers_state.cpu_clock_offset;
163 }
164 }
165
166 /* enable cpu_get_ticks() */
167 void cpu_enable_ticks(void)
168 {
169 if (!timers_state.cpu_ticks_enabled) {
170 timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
171 timers_state.cpu_clock_offset -= get_clock();
172 timers_state.cpu_ticks_enabled = 1;
173 }
174 }
175
176 /* disable cpu_get_ticks() : the clock is stopped. You must not call
177 cpu_get_ticks() after that. */
178 void cpu_disable_ticks(void)
179 {
180 if (timers_state.cpu_ticks_enabled) {
181 timers_state.cpu_ticks_offset = cpu_get_ticks();
182 timers_state.cpu_clock_offset = cpu_get_clock();
183 timers_state.cpu_ticks_enabled = 0;
184 }
185 }
186
187 /* Correlation between real and virtual time is always going to be
188 fairly approximate, so ignore small variation.
189 When the guest is idle real and virtual time will be aligned in
190 the IO wait loop. */
191 #define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
192
193 static void icount_adjust(void)
194 {
195 int64_t cur_time;
196 int64_t cur_icount;
197 int64_t delta;
198 static int64_t last_delta;
199 /* If the VM is not running, then do nothing. */
200 if (!runstate_is_running()) {
201 return;
202 }
203 cur_time = cpu_get_clock();
204 cur_icount = qemu_get_clock_ns(vm_clock);
205 delta = cur_icount - cur_time;
206 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
207 if (delta > 0
208 && last_delta + ICOUNT_WOBBLE < delta * 2
209 && icount_time_shift > 0) {
210 /* The guest is getting too far ahead. Slow time down. */
211 icount_time_shift--;
212 }
213 if (delta < 0
214 && last_delta - ICOUNT_WOBBLE > delta * 2
215 && icount_time_shift < MAX_ICOUNT_SHIFT) {
216 /* The guest is getting too far behind. Speed time up. */
217 icount_time_shift++;
218 }
219 last_delta = delta;
220 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
221 }
222
223 static void icount_adjust_rt(void *opaque)
224 {
225 qemu_mod_timer(icount_rt_timer,
226 qemu_get_clock_ms(rt_clock) + 1000);
227 icount_adjust();
228 }
229
230 static void icount_adjust_vm(void *opaque)
231 {
232 qemu_mod_timer(icount_vm_timer,
233 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
234 icount_adjust();
235 }
236
237 static int64_t qemu_icount_round(int64_t count)
238 {
239 return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
240 }
241
242 static void icount_warp_rt(void *opaque)
243 {
244 if (vm_clock_warp_start == -1) {
245 return;
246 }
247
248 if (runstate_is_running()) {
249 int64_t clock = qemu_get_clock_ns(rt_clock);
250 int64_t warp_delta = clock - vm_clock_warp_start;
251 if (use_icount == 1) {
252 qemu_icount_bias += warp_delta;
253 } else {
254 /*
255 * In adaptive mode, do not let the vm_clock run too
256 * far ahead of real time.
257 */
258 int64_t cur_time = cpu_get_clock();
259 int64_t cur_icount = qemu_get_clock_ns(vm_clock);
260 int64_t delta = cur_time - cur_icount;
261 qemu_icount_bias += MIN(warp_delta, delta);
262 }
263 if (qemu_clock_expired(vm_clock)) {
264 qemu_notify_event();
265 }
266 }
267 vm_clock_warp_start = -1;
268 }
269
270 void qtest_clock_warp(int64_t dest)
271 {
272 int64_t clock = qemu_get_clock_ns(vm_clock);
273 assert(qtest_enabled());
274 while (clock < dest) {
275 int64_t deadline = qemu_clock_deadline(vm_clock);
276 int64_t warp = MIN(dest - clock, deadline);
277 qemu_icount_bias += warp;
278 qemu_run_timers(vm_clock);
279 clock = qemu_get_clock_ns(vm_clock);
280 }
281 qemu_notify_event();
282 }
283
284 void qemu_clock_warp(QEMUClock *clock)
285 {
286 int64_t deadline;
287
288 /*
289 * There are too many global variables to make the "warp" behavior
290 * applicable to other clocks. But a clock argument removes the
291 * need for if statements all over the place.
292 */
293 if (clock != vm_clock || !use_icount) {
294 return;
295 }
296
297 /*
298 * If the CPUs have been sleeping, advance the vm_clock timer now. This
299 * ensures that the deadline for the timer is computed correctly below.
300 * This also makes sure that the insn counter is synchronized before the
301 * CPU starts running, in case the CPU is woken by an event other than
302 * the earliest vm_clock timer.
303 */
304 icount_warp_rt(NULL);
305 if (!all_cpu_threads_idle() || !qemu_clock_has_timers(vm_clock)) {
306 qemu_del_timer(icount_warp_timer);
307 return;
308 }
309
310 if (qtest_enabled()) {
311 /* When testing, qtest commands advance icount. */
312 return;
313 }
314
315 vm_clock_warp_start = qemu_get_clock_ns(rt_clock);
316 deadline = qemu_clock_deadline(vm_clock);
317 if (deadline > 0) {
318 /*
319 * Ensure the vm_clock proceeds even when the virtual CPU goes to
320 * sleep. Otherwise, the CPU might be waiting for a future timer
321 * interrupt to wake it up, but the interrupt never comes because
322 * the vCPU isn't running any insns and thus doesn't advance the
323 * vm_clock.
324 *
325 * An extreme solution for this problem would be to never let VCPUs
326 * sleep in icount mode if there is a pending vm_clock timer; rather
327 * time could just advance to the next vm_clock event. Instead, we
328 * do stop VCPUs and only advance vm_clock after some "real" time,
329 * (related to the time left until the next event) has passed. This
330 * rt_clock timer will do this. This avoids that the warps are too
331 * visible externally---for example, you will not be sending network
332 * packets continuously instead of every 100ms.
333 */
334 qemu_mod_timer(icount_warp_timer, vm_clock_warp_start + deadline);
335 } else {
336 qemu_notify_event();
337 }
338 }
339
340 static const VMStateDescription vmstate_timers = {
341 .name = "timer",
342 .version_id = 2,
343 .minimum_version_id = 1,
344 .minimum_version_id_old = 1,
345 .fields = (VMStateField[]) {
346 VMSTATE_INT64(cpu_ticks_offset, TimersState),
347 VMSTATE_INT64(dummy, TimersState),
348 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
349 VMSTATE_END_OF_LIST()
350 }
351 };
352
353 void configure_icount(const char *option)
354 {
355 vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
356 if (!option) {
357 return;
358 }
359
360 icount_warp_timer = qemu_new_timer_ns(rt_clock, icount_warp_rt, NULL);
361 if (strcmp(option, "auto") != 0) {
362 icount_time_shift = strtol(option, NULL, 0);
363 use_icount = 1;
364 return;
365 }
366
367 use_icount = 2;
368
369 /* 125MIPS seems a reasonable initial guess at the guest speed.
370 It will be corrected fairly quickly anyway. */
371 icount_time_shift = 3;
372
373 /* Have both realtime and virtual time triggers for speed adjustment.
374 The realtime trigger catches emulated time passing too slowly,
375 the virtual time trigger catches emulated time passing too fast.
376 Realtime triggers occur even when idle, so use them less frequently
377 than VM triggers. */
378 icount_rt_timer = qemu_new_timer_ms(rt_clock, icount_adjust_rt, NULL);
379 qemu_mod_timer(icount_rt_timer,
380 qemu_get_clock_ms(rt_clock) + 1000);
381 icount_vm_timer = qemu_new_timer_ns(vm_clock, icount_adjust_vm, NULL);
382 qemu_mod_timer(icount_vm_timer,
383 qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
384 }
385
386 /***********************************************************/
387 void hw_error(const char *fmt, ...)
388 {
389 va_list ap;
390 CPUArchState *env;
391
392 va_start(ap, fmt);
393 fprintf(stderr, "qemu: hardware error: ");
394 vfprintf(stderr, fmt, ap);
395 fprintf(stderr, "\n");
396 for(env = first_cpu; env != NULL; env = env->next_cpu) {
397 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
398 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_FPU);
399 }
400 va_end(ap);
401 abort();
402 }
403
404 void cpu_synchronize_all_states(void)
405 {
406 CPUArchState *cpu;
407
408 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
409 cpu_synchronize_state(cpu);
410 }
411 }
412
413 void cpu_synchronize_all_post_reset(void)
414 {
415 CPUArchState *cpu;
416
417 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
418 cpu_synchronize_post_reset(cpu);
419 }
420 }
421
422 void cpu_synchronize_all_post_init(void)
423 {
424 CPUArchState *cpu;
425
426 for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
427 cpu_synchronize_post_init(cpu);
428 }
429 }
430
431 int cpu_is_stopped(CPUArchState *env)
432 {
433 return !runstate_is_running() || env->stopped;
434 }
435
436 static void do_vm_stop(RunState state)
437 {
438 if (runstate_is_running()) {
439 cpu_disable_ticks();
440 pause_all_vcpus();
441 runstate_set(state);
442 vm_state_notify(0, state);
443 bdrv_drain_all();
444 bdrv_flush_all();
445 monitor_protocol_event(QEVENT_STOP, NULL);
446 }
447 }
448
449 static int cpu_can_run(CPUArchState *env)
450 {
451 if (env->stop) {
452 return 0;
453 }
454 if (env->stopped || !runstate_is_running()) {
455 return 0;
456 }
457 return 1;
458 }
459
460 static void cpu_handle_guest_debug(CPUArchState *env)
461 {
462 gdb_set_stop_cpu(env);
463 qemu_system_debug_request();
464 env->stopped = 1;
465 }
466
467 static void cpu_signal(int sig)
468 {
469 if (cpu_single_env) {
470 cpu_exit(cpu_single_env);
471 }
472 exit_request = 1;
473 }
474
475 #ifdef CONFIG_LINUX
476 static void sigbus_reraise(void)
477 {
478 sigset_t set;
479 struct sigaction action;
480
481 memset(&action, 0, sizeof(action));
482 action.sa_handler = SIG_DFL;
483 if (!sigaction(SIGBUS, &action, NULL)) {
484 raise(SIGBUS);
485 sigemptyset(&set);
486 sigaddset(&set, SIGBUS);
487 sigprocmask(SIG_UNBLOCK, &set, NULL);
488 }
489 perror("Failed to re-raise SIGBUS!\n");
490 abort();
491 }
492
493 static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo,
494 void *ctx)
495 {
496 if (kvm_on_sigbus(siginfo->ssi_code,
497 (void *)(intptr_t)siginfo->ssi_addr)) {
498 sigbus_reraise();
499 }
500 }
501
502 static void qemu_init_sigbus(void)
503 {
504 struct sigaction action;
505
506 memset(&action, 0, sizeof(action));
507 action.sa_flags = SA_SIGINFO;
508 action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler;
509 sigaction(SIGBUS, &action, NULL);
510
511 prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
512 }
513
514 static void qemu_kvm_eat_signals(CPUArchState *env)
515 {
516 struct timespec ts = { 0, 0 };
517 siginfo_t siginfo;
518 sigset_t waitset;
519 sigset_t chkset;
520 int r;
521
522 sigemptyset(&waitset);
523 sigaddset(&waitset, SIG_IPI);
524 sigaddset(&waitset, SIGBUS);
525
526 do {
527 r = sigtimedwait(&waitset, &siginfo, &ts);
528 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
529 perror("sigtimedwait");
530 exit(1);
531 }
532
533 switch (r) {
534 case SIGBUS:
535 if (kvm_on_sigbus_vcpu(env, siginfo.si_code, siginfo.si_addr)) {
536 sigbus_reraise();
537 }
538 break;
539 default:
540 break;
541 }
542
543 r = sigpending(&chkset);
544 if (r == -1) {
545 perror("sigpending");
546 exit(1);
547 }
548 } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS));
549 }
550
551 #else /* !CONFIG_LINUX */
552
553 static void qemu_init_sigbus(void)
554 {
555 }
556
557 static void qemu_kvm_eat_signals(CPUArchState *env)
558 {
559 }
560 #endif /* !CONFIG_LINUX */
561
562 #ifndef _WIN32
563 static void dummy_signal(int sig)
564 {
565 }
566
567 static void qemu_kvm_init_cpu_signals(CPUArchState *env)
568 {
569 int r;
570 sigset_t set;
571 struct sigaction sigact;
572
573 memset(&sigact, 0, sizeof(sigact));
574 sigact.sa_handler = dummy_signal;
575 sigaction(SIG_IPI, &sigact, NULL);
576
577 pthread_sigmask(SIG_BLOCK, NULL, &set);
578 sigdelset(&set, SIG_IPI);
579 sigdelset(&set, SIGBUS);
580 r = kvm_set_signal_mask(env, &set);
581 if (r) {
582 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
583 exit(1);
584 }
585 }
586
587 static void qemu_tcg_init_cpu_signals(void)
588 {
589 sigset_t set;
590 struct sigaction sigact;
591
592 memset(&sigact, 0, sizeof(sigact));
593 sigact.sa_handler = cpu_signal;
594 sigaction(SIG_IPI, &sigact, NULL);
595
596 sigemptyset(&set);
597 sigaddset(&set, SIG_IPI);
598 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
599 }
600
601 #else /* _WIN32 */
602 static void qemu_kvm_init_cpu_signals(CPUArchState *env)
603 {
604 abort();
605 }
606
607 static void qemu_tcg_init_cpu_signals(void)
608 {
609 }
610 #endif /* _WIN32 */
611
612 static QemuMutex qemu_global_mutex;
613 static QemuCond qemu_io_proceeded_cond;
614 static bool iothread_requesting_mutex;
615
616 static QemuThread io_thread;
617
618 static QemuThread *tcg_cpu_thread;
619 static QemuCond *tcg_halt_cond;
620
621 /* cpu creation */
622 static QemuCond qemu_cpu_cond;
623 /* system init */
624 static QemuCond qemu_pause_cond;
625 static QemuCond qemu_work_cond;
626
627 void qemu_init_cpu_loop(void)
628 {
629 qemu_init_sigbus();
630 qemu_cond_init(&qemu_cpu_cond);
631 qemu_cond_init(&qemu_pause_cond);
632 qemu_cond_init(&qemu_work_cond);
633 qemu_cond_init(&qemu_io_proceeded_cond);
634 qemu_mutex_init(&qemu_global_mutex);
635
636 qemu_thread_get_self(&io_thread);
637 }
638
639 void run_on_cpu(CPUArchState *env, void (*func)(void *data), void *data)
640 {
641 CPUState *cpu = ENV_GET_CPU(env);
642 struct qemu_work_item wi;
643
644 if (qemu_cpu_is_self(cpu)) {
645 func(data);
646 return;
647 }
648
649 wi.func = func;
650 wi.data = data;
651 if (!env->queued_work_first) {
652 env->queued_work_first = &wi;
653 } else {
654 env->queued_work_last->next = &wi;
655 }
656 env->queued_work_last = &wi;
657 wi.next = NULL;
658 wi.done = false;
659
660 qemu_cpu_kick(env);
661 while (!wi.done) {
662 CPUArchState *self_env = cpu_single_env;
663
664 qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex);
665 cpu_single_env = self_env;
666 }
667 }
668
669 static void flush_queued_work(CPUArchState *env)
670 {
671 struct qemu_work_item *wi;
672
673 if (!env->queued_work_first) {
674 return;
675 }
676
677 while ((wi = env->queued_work_first)) {
678 env->queued_work_first = wi->next;
679 wi->func(wi->data);
680 wi->done = true;
681 }
682 env->queued_work_last = NULL;
683 qemu_cond_broadcast(&qemu_work_cond);
684 }
685
686 static void qemu_wait_io_event_common(CPUArchState *env)
687 {
688 CPUState *cpu = ENV_GET_CPU(env);
689
690 if (env->stop) {
691 env->stop = 0;
692 env->stopped = 1;
693 qemu_cond_signal(&qemu_pause_cond);
694 }
695 flush_queued_work(env);
696 cpu->thread_kicked = false;
697 }
698
699 static void qemu_tcg_wait_io_event(void)
700 {
701 CPUArchState *env;
702
703 while (all_cpu_threads_idle()) {
704 /* Start accounting real time to the virtual clock if the CPUs
705 are idle. */
706 qemu_clock_warp(vm_clock);
707 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
708 }
709
710 while (iothread_requesting_mutex) {
711 qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex);
712 }
713
714 for (env = first_cpu; env != NULL; env = env->next_cpu) {
715 qemu_wait_io_event_common(env);
716 }
717 }
718
719 static void qemu_kvm_wait_io_event(CPUArchState *env)
720 {
721 while (cpu_thread_is_idle(env)) {
722 qemu_cond_wait(env->halt_cond, &qemu_global_mutex);
723 }
724
725 qemu_kvm_eat_signals(env);
726 qemu_wait_io_event_common(env);
727 }
728
729 static void *qemu_kvm_cpu_thread_fn(void *arg)
730 {
731 CPUArchState *env = arg;
732 CPUState *cpu = ENV_GET_CPU(env);
733 int r;
734
735 qemu_mutex_lock(&qemu_global_mutex);
736 qemu_thread_get_self(cpu->thread);
737 env->thread_id = qemu_get_thread_id();
738 cpu_single_env = env;
739
740 r = kvm_init_vcpu(env);
741 if (r < 0) {
742 fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
743 exit(1);
744 }
745
746 qemu_kvm_init_cpu_signals(env);
747
748 /* signal CPU creation */
749 cpu->created = true;
750 qemu_cond_signal(&qemu_cpu_cond);
751
752 while (1) {
753 if (cpu_can_run(env)) {
754 r = kvm_cpu_exec(env);
755 if (r == EXCP_DEBUG) {
756 cpu_handle_guest_debug(env);
757 }
758 }
759 qemu_kvm_wait_io_event(env);
760 }
761
762 return NULL;
763 }
764
765 static void *qemu_dummy_cpu_thread_fn(void *arg)
766 {
767 #ifdef _WIN32
768 fprintf(stderr, "qtest is not supported under Windows\n");
769 exit(1);
770 #else
771 CPUArchState *env = arg;
772 CPUState *cpu = ENV_GET_CPU(env);
773 sigset_t waitset;
774 int r;
775
776 qemu_mutex_lock_iothread();
777 qemu_thread_get_self(cpu->thread);
778 env->thread_id = qemu_get_thread_id();
779
780 sigemptyset(&waitset);
781 sigaddset(&waitset, SIG_IPI);
782
783 /* signal CPU creation */
784 cpu->created = true;
785 qemu_cond_signal(&qemu_cpu_cond);
786
787 cpu_single_env = env;
788 while (1) {
789 cpu_single_env = NULL;
790 qemu_mutex_unlock_iothread();
791 do {
792 int sig;
793 r = sigwait(&waitset, &sig);
794 } while (r == -1 && (errno == EAGAIN || errno == EINTR));
795 if (r == -1) {
796 perror("sigwait");
797 exit(1);
798 }
799 qemu_mutex_lock_iothread();
800 cpu_single_env = env;
801 qemu_wait_io_event_common(env);
802 }
803
804 return NULL;
805 #endif
806 }
807
808 static void tcg_exec_all(void);
809
810 static void *qemu_tcg_cpu_thread_fn(void *arg)
811 {
812 CPUArchState *env = arg;
813 CPUState *cpu = ENV_GET_CPU(env);
814
815 qemu_tcg_init_cpu_signals();
816 qemu_thread_get_self(cpu->thread);
817
818 /* signal CPU creation */
819 qemu_mutex_lock(&qemu_global_mutex);
820 for (env = first_cpu; env != NULL; env = env->next_cpu) {
821 cpu = ENV_GET_CPU(env);
822 env->thread_id = qemu_get_thread_id();
823 cpu->created = true;
824 }
825 qemu_cond_signal(&qemu_cpu_cond);
826
827 /* wait for initial kick-off after machine start */
828 while (first_cpu->stopped) {
829 qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
830
831 /* process any pending work */
832 for (env = first_cpu; env != NULL; env = env->next_cpu) {
833 qemu_wait_io_event_common(env);
834 }
835 }
836
837 while (1) {
838 tcg_exec_all();
839 if (use_icount && qemu_clock_deadline(vm_clock) <= 0) {
840 qemu_notify_event();
841 }
842 qemu_tcg_wait_io_event();
843 }
844
845 return NULL;
846 }
847
848 static void qemu_cpu_kick_thread(CPUState *cpu)
849 {
850 #ifndef _WIN32
851 int err;
852
853 err = pthread_kill(cpu->thread->thread, SIG_IPI);
854 if (err) {
855 fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
856 exit(1);
857 }
858 #else /* _WIN32 */
859 if (!qemu_cpu_is_self(cpu)) {
860 SuspendThread(cpu->hThread);
861 cpu_signal(0);
862 ResumeThread(cpu->hThread);
863 }
864 #endif
865 }
866
867 void qemu_cpu_kick(void *_env)
868 {
869 CPUArchState *env = _env;
870 CPUState *cpu = ENV_GET_CPU(env);
871
872 qemu_cond_broadcast(env->halt_cond);
873 if (!tcg_enabled() && !cpu->thread_kicked) {
874 qemu_cpu_kick_thread(cpu);
875 cpu->thread_kicked = true;
876 }
877 }
878
879 void qemu_cpu_kick_self(void)
880 {
881 #ifndef _WIN32
882 assert(cpu_single_env);
883 CPUState *cpu_single_cpu = ENV_GET_CPU(cpu_single_env);
884
885 if (!cpu_single_cpu->thread_kicked) {
886 qemu_cpu_kick_thread(cpu_single_cpu);
887 cpu_single_cpu->thread_kicked = true;
888 }
889 #else
890 abort();
891 #endif
892 }
893
894 bool qemu_cpu_is_self(CPUState *cpu)
895 {
896 return qemu_thread_is_self(cpu->thread);
897 }
898
899 static bool qemu_in_vcpu_thread(void)
900 {
901 return cpu_single_env && qemu_cpu_is_self(ENV_GET_CPU(cpu_single_env));
902 }
903
904 void qemu_mutex_lock_iothread(void)
905 {
906 if (!tcg_enabled()) {
907 qemu_mutex_lock(&qemu_global_mutex);
908 } else {
909 iothread_requesting_mutex = true;
910 if (qemu_mutex_trylock(&qemu_global_mutex)) {
911 qemu_cpu_kick_thread(ENV_GET_CPU(first_cpu));
912 qemu_mutex_lock(&qemu_global_mutex);
913 }
914 iothread_requesting_mutex = false;
915 qemu_cond_broadcast(&qemu_io_proceeded_cond);
916 }
917 }
918
919 void qemu_mutex_unlock_iothread(void)
920 {
921 qemu_mutex_unlock(&qemu_global_mutex);
922 }
923
924 static int all_vcpus_paused(void)
925 {
926 CPUArchState *penv = first_cpu;
927
928 while (penv) {
929 if (!penv->stopped) {
930 return 0;
931 }
932 penv = penv->next_cpu;
933 }
934
935 return 1;
936 }
937
938 void pause_all_vcpus(void)
939 {
940 CPUArchState *penv = first_cpu;
941
942 qemu_clock_enable(vm_clock, false);
943 while (penv) {
944 penv->stop = 1;
945 qemu_cpu_kick(penv);
946 penv = penv->next_cpu;
947 }
948
949 if (qemu_in_vcpu_thread()) {
950 cpu_stop_current();
951 if (!kvm_enabled()) {
952 while (penv) {
953 penv->stop = 0;
954 penv->stopped = 1;
955 penv = penv->next_cpu;
956 }
957 return;
958 }
959 }
960
961 while (!all_vcpus_paused()) {
962 qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
963 penv = first_cpu;
964 while (penv) {
965 qemu_cpu_kick(penv);
966 penv = penv->next_cpu;
967 }
968 }
969 }
970
971 void resume_all_vcpus(void)
972 {
973 CPUArchState *penv = first_cpu;
974
975 qemu_clock_enable(vm_clock, true);
976 while (penv) {
977 penv->stop = 0;
978 penv->stopped = 0;
979 qemu_cpu_kick(penv);
980 penv = penv->next_cpu;
981 }
982 }
983
984 static void qemu_tcg_init_vcpu(void *_env)
985 {
986 CPUArchState *env = _env;
987 CPUState *cpu = ENV_GET_CPU(env);
988
989 /* share a single thread for all cpus with TCG */
990 if (!tcg_cpu_thread) {
991 cpu->thread = g_malloc0(sizeof(QemuThread));
992 env->halt_cond = g_malloc0(sizeof(QemuCond));
993 qemu_cond_init(env->halt_cond);
994 tcg_halt_cond = env->halt_cond;
995 qemu_thread_create(cpu->thread, qemu_tcg_cpu_thread_fn, env,
996 QEMU_THREAD_JOINABLE);
997 #ifdef _WIN32
998 cpu->hThread = qemu_thread_get_handle(cpu->thread);
999 #endif
1000 while (!cpu->created) {
1001 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1002 }
1003 tcg_cpu_thread = cpu->thread;
1004 } else {
1005 cpu->thread = tcg_cpu_thread;
1006 env->halt_cond = tcg_halt_cond;
1007 }
1008 }
1009
1010 static void qemu_kvm_start_vcpu(CPUArchState *env)
1011 {
1012 CPUState *cpu = ENV_GET_CPU(env);
1013
1014 cpu->thread = g_malloc0(sizeof(QemuThread));
1015 env->halt_cond = g_malloc0(sizeof(QemuCond));
1016 qemu_cond_init(env->halt_cond);
1017 qemu_thread_create(cpu->thread, qemu_kvm_cpu_thread_fn, env,
1018 QEMU_THREAD_JOINABLE);
1019 while (!cpu->created) {
1020 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1021 }
1022 }
1023
1024 static void qemu_dummy_start_vcpu(CPUArchState *env)
1025 {
1026 CPUState *cpu = ENV_GET_CPU(env);
1027
1028 cpu->thread = g_malloc0(sizeof(QemuThread));
1029 env->halt_cond = g_malloc0(sizeof(QemuCond));
1030 qemu_cond_init(env->halt_cond);
1031 qemu_thread_create(cpu->thread, qemu_dummy_cpu_thread_fn, env,
1032 QEMU_THREAD_JOINABLE);
1033 while (!cpu->created) {
1034 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1035 }
1036 }
1037
1038 void qemu_init_vcpu(void *_env)
1039 {
1040 CPUArchState *env = _env;
1041
1042 env->nr_cores = smp_cores;
1043 env->nr_threads = smp_threads;
1044 env->stopped = 1;
1045 if (kvm_enabled()) {
1046 qemu_kvm_start_vcpu(env);
1047 } else if (tcg_enabled()) {
1048 qemu_tcg_init_vcpu(env);
1049 } else {
1050 qemu_dummy_start_vcpu(env);
1051 }
1052 }
1053
1054 void cpu_stop_current(void)
1055 {
1056 if (cpu_single_env) {
1057 cpu_single_env->stop = 0;
1058 cpu_single_env->stopped = 1;
1059 cpu_exit(cpu_single_env);
1060 qemu_cond_signal(&qemu_pause_cond);
1061 }
1062 }
1063
1064 void vm_stop(RunState state)
1065 {
1066 if (qemu_in_vcpu_thread()) {
1067 qemu_system_vmstop_request(state);
1068 /*
1069 * FIXME: should not return to device code in case
1070 * vm_stop() has been requested.
1071 */
1072 cpu_stop_current();
1073 return;
1074 }
1075 do_vm_stop(state);
1076 }
1077
1078 /* does a state transition even if the VM is already stopped,
1079 current state is forgotten forever */
1080 void vm_stop_force_state(RunState state)
1081 {
1082 if (runstate_is_running()) {
1083 vm_stop(state);
1084 } else {
1085 runstate_set(state);
1086 }
1087 }
1088
1089 static int tcg_cpu_exec(CPUArchState *env)
1090 {
1091 int ret;
1092 #ifdef CONFIG_PROFILER
1093 int64_t ti;
1094 #endif
1095
1096 #ifdef CONFIG_PROFILER
1097 ti = profile_getclock();
1098 #endif
1099 if (use_icount) {
1100 int64_t count;
1101 int decr;
1102 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
1103 env->icount_decr.u16.low = 0;
1104 env->icount_extra = 0;
1105 count = qemu_icount_round(qemu_clock_deadline(vm_clock));
1106 qemu_icount += count;
1107 decr = (count > 0xffff) ? 0xffff : count;
1108 count -= decr;
1109 env->icount_decr.u16.low = decr;
1110 env->icount_extra = count;
1111 }
1112 ret = cpu_exec(env);
1113 #ifdef CONFIG_PROFILER
1114 qemu_time += profile_getclock() - ti;
1115 #endif
1116 if (use_icount) {
1117 /* Fold pending instructions back into the
1118 instruction counter, and clear the interrupt flag. */
1119 qemu_icount -= (env->icount_decr.u16.low
1120 + env->icount_extra);
1121 env->icount_decr.u32 = 0;
1122 env->icount_extra = 0;
1123 }
1124 return ret;
1125 }
1126
1127 static void tcg_exec_all(void)
1128 {
1129 int r;
1130
1131 /* Account partial waits to the vm_clock. */
1132 qemu_clock_warp(vm_clock);
1133
1134 if (next_cpu == NULL) {
1135 next_cpu = first_cpu;
1136 }
1137 for (; next_cpu != NULL && !exit_request; next_cpu = next_cpu->next_cpu) {
1138 CPUArchState *env = next_cpu;
1139
1140 qemu_clock_enable(vm_clock,
1141 (env->singlestep_enabled & SSTEP_NOTIMER) == 0);
1142
1143 if (cpu_can_run(env)) {
1144 r = tcg_cpu_exec(env);
1145 if (r == EXCP_DEBUG) {
1146 cpu_handle_guest_debug(env);
1147 break;
1148 }
1149 } else if (env->stop || env->stopped) {
1150 break;
1151 }
1152 }
1153 exit_request = 0;
1154 }
1155
1156 void set_numa_modes(void)
1157 {
1158 CPUArchState *env;
1159 int i;
1160
1161 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1162 for (i = 0; i < nb_numa_nodes; i++) {
1163 if (test_bit(env->cpu_index, node_cpumask[i])) {
1164 env->numa_node = i;
1165 }
1166 }
1167 }
1168 }
1169
1170 void set_cpu_log(const char *optarg)
1171 {
1172 int mask;
1173 const CPULogItem *item;
1174
1175 mask = cpu_str_to_log_mask(optarg);
1176 if (!mask) {
1177 printf("Log items (comma separated):\n");
1178 for (item = cpu_log_items; item->mask != 0; item++) {
1179 printf("%-10s %s\n", item->name, item->help);
1180 }
1181 exit(1);
1182 }
1183 cpu_set_log(mask);
1184 }
1185
1186 void set_cpu_log_filename(const char *optarg)
1187 {
1188 cpu_set_log_filename(optarg);
1189 }
1190
1191 void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
1192 {
1193 /* XXX: implement xxx_cpu_list for targets that still miss it */
1194 #if defined(cpu_list)
1195 cpu_list(f, cpu_fprintf);
1196 #endif
1197 }
1198
1199 CpuInfoList *qmp_query_cpus(Error **errp)
1200 {
1201 CpuInfoList *head = NULL, *cur_item = NULL;
1202 CPUArchState *env;
1203
1204 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1205 CpuInfoList *info;
1206
1207 cpu_synchronize_state(env);
1208
1209 info = g_malloc0(sizeof(*info));
1210 info->value = g_malloc0(sizeof(*info->value));
1211 info->value->CPU = env->cpu_index;
1212 info->value->current = (env == first_cpu);
1213 info->value->halted = env->halted;
1214 info->value->thread_id = env->thread_id;
1215 #if defined(TARGET_I386)
1216 info->value->has_pc = true;
1217 info->value->pc = env->eip + env->segs[R_CS].base;
1218 #elif defined(TARGET_PPC)
1219 info->value->has_nip = true;
1220 info->value->nip = env->nip;
1221 #elif defined(TARGET_SPARC)
1222 info->value->has_pc = true;
1223 info->value->pc = env->pc;
1224 info->value->has_npc = true;
1225 info->value->npc = env->npc;
1226 #elif defined(TARGET_MIPS)
1227 info->value->has_PC = true;
1228 info->value->PC = env->active_tc.PC;
1229 #endif
1230
1231 /* XXX: waiting for the qapi to support GSList */
1232 if (!cur_item) {
1233 head = cur_item = info;
1234 } else {
1235 cur_item->next = info;
1236 cur_item = info;
1237 }
1238 }
1239
1240 return head;
1241 }
1242
1243 void qmp_memsave(int64_t addr, int64_t size, const char *filename,
1244 bool has_cpu, int64_t cpu_index, Error **errp)
1245 {
1246 FILE *f;
1247 uint32_t l;
1248 CPUArchState *env;
1249 uint8_t buf[1024];
1250
1251 if (!has_cpu) {
1252 cpu_index = 0;
1253 }
1254
1255 for (env = first_cpu; env; env = env->next_cpu) {
1256 if (cpu_index == env->cpu_index) {
1257 break;
1258 }
1259 }
1260
1261 if (env == NULL) {
1262 error_set(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
1263 "a CPU number");
1264 return;
1265 }
1266
1267 f = fopen(filename, "wb");
1268 if (!f) {
1269 error_set(errp, QERR_OPEN_FILE_FAILED, filename);
1270 return;
1271 }
1272
1273 while (size != 0) {
1274 l = sizeof(buf);
1275 if (l > size)
1276 l = size;
1277 cpu_memory_rw_debug(env, addr, buf, l, 0);
1278 if (fwrite(buf, 1, l, f) != l) {
1279 error_set(errp, QERR_IO_ERROR);
1280 goto exit;
1281 }
1282 addr += l;
1283 size -= l;
1284 }
1285
1286 exit:
1287 fclose(f);
1288 }
1289
1290 void qmp_pmemsave(int64_t addr, int64_t size, const char *filename,
1291 Error **errp)
1292 {
1293 FILE *f;
1294 uint32_t l;
1295 uint8_t buf[1024];
1296
1297 f = fopen(filename, "wb");
1298 if (!f) {
1299 error_set(errp, QERR_OPEN_FILE_FAILED, filename);
1300 return;
1301 }
1302
1303 while (size != 0) {
1304 l = sizeof(buf);
1305 if (l > size)
1306 l = size;
1307 cpu_physical_memory_rw(addr, buf, l, 0);
1308 if (fwrite(buf, 1, l, f) != l) {
1309 error_set(errp, QERR_IO_ERROR);
1310 goto exit;
1311 }
1312 addr += l;
1313 size -= l;
1314 }
1315
1316 exit:
1317 fclose(f);
1318 }
1319
1320 void qmp_inject_nmi(Error **errp)
1321 {
1322 #if defined(TARGET_I386)
1323 CPUArchState *env;
1324
1325 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1326 if (!env->apic_state) {
1327 cpu_interrupt(env, CPU_INTERRUPT_NMI);
1328 } else {
1329 apic_deliver_nmi(env->apic_state);
1330 }
1331 }
1332 #else
1333 error_set(errp, QERR_UNSUPPORTED);
1334 #endif
1335 }