]> git.proxmox.com Git - mirror_zfs.git/blob - include/sys/dmu.h
Set aside a metaslab for ZIL blocks
[mirror_zfs.git] / include / sys / dmu.h
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
26 * Copyright 2014 HybridCluster. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 * Copyright 2013 Saso Kiselkov. All rights reserved.
29 * Copyright (c) 2017, Intel Corporation.
30 */
31
32 /* Portions Copyright 2010 Robert Milkowski */
33
34 #ifndef _SYS_DMU_H
35 #define _SYS_DMU_H
36
37 /*
38 * This file describes the interface that the DMU provides for its
39 * consumers.
40 *
41 * The DMU also interacts with the SPA. That interface is described in
42 * dmu_spa.h.
43 */
44
45 #include <sys/zfs_context.h>
46 #include <sys/inttypes.h>
47 #include <sys/cred.h>
48 #include <sys/fs/zfs.h>
49 #include <sys/zio_compress.h>
50 #include <sys/zio_priority.h>
51 #include <sys/uio.h>
52 #include <sys/zfs_file.h>
53
54 #ifdef __cplusplus
55 extern "C" {
56 #endif
57
58 struct page;
59 struct vnode;
60 struct spa;
61 struct zilog;
62 struct zio;
63 struct blkptr;
64 struct zap_cursor;
65 struct dsl_dataset;
66 struct dsl_pool;
67 struct dnode;
68 struct drr_begin;
69 struct drr_end;
70 struct zbookmark_phys;
71 struct spa;
72 struct nvlist;
73 struct arc_buf;
74 struct zio_prop;
75 struct sa_handle;
76 struct dsl_crypto_params;
77 struct locked_range;
78
79 typedef struct objset objset_t;
80 typedef struct dmu_tx dmu_tx_t;
81 typedef struct dsl_dir dsl_dir_t;
82 typedef struct dnode dnode_t;
83
84 typedef enum dmu_object_byteswap {
85 DMU_BSWAP_UINT8,
86 DMU_BSWAP_UINT16,
87 DMU_BSWAP_UINT32,
88 DMU_BSWAP_UINT64,
89 DMU_BSWAP_ZAP,
90 DMU_BSWAP_DNODE,
91 DMU_BSWAP_OBJSET,
92 DMU_BSWAP_ZNODE,
93 DMU_BSWAP_OLDACL,
94 DMU_BSWAP_ACL,
95 /*
96 * Allocating a new byteswap type number makes the on-disk format
97 * incompatible with any other format that uses the same number.
98 *
99 * Data can usually be structured to work with one of the
100 * DMU_BSWAP_UINT* or DMU_BSWAP_ZAP types.
101 */
102 DMU_BSWAP_NUMFUNCS
103 } dmu_object_byteswap_t;
104
105 #define DMU_OT_NEWTYPE 0x80
106 #define DMU_OT_METADATA 0x40
107 #define DMU_OT_ENCRYPTED 0x20
108 #define DMU_OT_BYTESWAP_MASK 0x1f
109
110 /*
111 * Defines a uint8_t object type. Object types specify if the data
112 * in the object is metadata (boolean) and how to byteswap the data
113 * (dmu_object_byteswap_t). All of the types created by this method
114 * are cached in the dbuf metadata cache.
115 */
116 #define DMU_OT(byteswap, metadata, encrypted) \
117 (DMU_OT_NEWTYPE | \
118 ((metadata) ? DMU_OT_METADATA : 0) | \
119 ((encrypted) ? DMU_OT_ENCRYPTED : 0) | \
120 ((byteswap) & DMU_OT_BYTESWAP_MASK))
121
122 #define DMU_OT_IS_VALID(ot) (((ot) & DMU_OT_NEWTYPE) ? \
123 ((ot) & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS : \
124 (ot) < DMU_OT_NUMTYPES)
125
126 #define DMU_OT_IS_METADATA_CACHED(ot) (((ot) & DMU_OT_NEWTYPE) ? \
127 B_TRUE : dmu_ot[(ot)].ot_dbuf_metadata_cache)
128
129 /*
130 * MDB doesn't have dmu_ot; it defines these macros itself.
131 */
132 #ifndef ZFS_MDB
133 #define DMU_OT_IS_METADATA_IMPL(ot) (dmu_ot[ot].ot_metadata)
134 #define DMU_OT_IS_ENCRYPTED_IMPL(ot) (dmu_ot[ot].ot_encrypt)
135 #define DMU_OT_BYTESWAP_IMPL(ot) (dmu_ot[ot].ot_byteswap)
136 #endif
137
138 #define DMU_OT_IS_METADATA(ot) (((ot) & DMU_OT_NEWTYPE) ? \
139 ((ot) & DMU_OT_METADATA) : \
140 DMU_OT_IS_METADATA_IMPL(ot))
141
142 #define DMU_OT_IS_DDT(ot) \
143 ((ot) == DMU_OT_DDT_ZAP)
144
145 /* Note: ztest uses DMU_OT_UINT64_OTHER as a proxy for file blocks */
146 #define DMU_OT_IS_FILE(ot) \
147 ((ot) == DMU_OT_PLAIN_FILE_CONTENTS || (ot) == DMU_OT_UINT64_OTHER)
148
149 #define DMU_OT_IS_ENCRYPTED(ot) (((ot) & DMU_OT_NEWTYPE) ? \
150 ((ot) & DMU_OT_ENCRYPTED) : \
151 DMU_OT_IS_ENCRYPTED_IMPL(ot))
152
153 /*
154 * These object types use bp_fill != 1 for their L0 bp's. Therefore they can't
155 * have their data embedded (i.e. use a BP_IS_EMBEDDED() bp), because bp_fill
156 * is repurposed for embedded BPs.
157 */
158 #define DMU_OT_HAS_FILL(ot) \
159 ((ot) == DMU_OT_DNODE || (ot) == DMU_OT_OBJSET)
160
161 #define DMU_OT_BYTESWAP(ot) (((ot) & DMU_OT_NEWTYPE) ? \
162 ((ot) & DMU_OT_BYTESWAP_MASK) : \
163 DMU_OT_BYTESWAP_IMPL(ot))
164
165 typedef enum dmu_object_type {
166 DMU_OT_NONE,
167 /* general: */
168 DMU_OT_OBJECT_DIRECTORY, /* ZAP */
169 DMU_OT_OBJECT_ARRAY, /* UINT64 */
170 DMU_OT_PACKED_NVLIST, /* UINT8 (XDR by nvlist_pack/unpack) */
171 DMU_OT_PACKED_NVLIST_SIZE, /* UINT64 */
172 DMU_OT_BPOBJ, /* UINT64 */
173 DMU_OT_BPOBJ_HDR, /* UINT64 */
174 /* spa: */
175 DMU_OT_SPACE_MAP_HEADER, /* UINT64 */
176 DMU_OT_SPACE_MAP, /* UINT64 */
177 /* zil: */
178 DMU_OT_INTENT_LOG, /* UINT64 */
179 /* dmu: */
180 DMU_OT_DNODE, /* DNODE */
181 DMU_OT_OBJSET, /* OBJSET */
182 /* dsl: */
183 DMU_OT_DSL_DIR, /* UINT64 */
184 DMU_OT_DSL_DIR_CHILD_MAP, /* ZAP */
185 DMU_OT_DSL_DS_SNAP_MAP, /* ZAP */
186 DMU_OT_DSL_PROPS, /* ZAP */
187 DMU_OT_DSL_DATASET, /* UINT64 */
188 /* zpl: */
189 DMU_OT_ZNODE, /* ZNODE */
190 DMU_OT_OLDACL, /* Old ACL */
191 DMU_OT_PLAIN_FILE_CONTENTS, /* UINT8 */
192 DMU_OT_DIRECTORY_CONTENTS, /* ZAP */
193 DMU_OT_MASTER_NODE, /* ZAP */
194 DMU_OT_UNLINKED_SET, /* ZAP */
195 /* zvol: */
196 DMU_OT_ZVOL, /* UINT8 */
197 DMU_OT_ZVOL_PROP, /* ZAP */
198 /* other; for testing only! */
199 DMU_OT_PLAIN_OTHER, /* UINT8 */
200 DMU_OT_UINT64_OTHER, /* UINT64 */
201 DMU_OT_ZAP_OTHER, /* ZAP */
202 /* new object types: */
203 DMU_OT_ERROR_LOG, /* ZAP */
204 DMU_OT_SPA_HISTORY, /* UINT8 */
205 DMU_OT_SPA_HISTORY_OFFSETS, /* spa_his_phys_t */
206 DMU_OT_POOL_PROPS, /* ZAP */
207 DMU_OT_DSL_PERMS, /* ZAP */
208 DMU_OT_ACL, /* ACL */
209 DMU_OT_SYSACL, /* SYSACL */
210 DMU_OT_FUID, /* FUID table (Packed NVLIST UINT8) */
211 DMU_OT_FUID_SIZE, /* FUID table size UINT64 */
212 DMU_OT_NEXT_CLONES, /* ZAP */
213 DMU_OT_SCAN_QUEUE, /* ZAP */
214 DMU_OT_USERGROUP_USED, /* ZAP */
215 DMU_OT_USERGROUP_QUOTA, /* ZAP */
216 DMU_OT_USERREFS, /* ZAP */
217 DMU_OT_DDT_ZAP, /* ZAP */
218 DMU_OT_DDT_STATS, /* ZAP */
219 DMU_OT_SA, /* System attr */
220 DMU_OT_SA_MASTER_NODE, /* ZAP */
221 DMU_OT_SA_ATTR_REGISTRATION, /* ZAP */
222 DMU_OT_SA_ATTR_LAYOUTS, /* ZAP */
223 DMU_OT_SCAN_XLATE, /* ZAP */
224 DMU_OT_DEDUP, /* fake dedup BP from ddt_bp_create() */
225 DMU_OT_DEADLIST, /* ZAP */
226 DMU_OT_DEADLIST_HDR, /* UINT64 */
227 DMU_OT_DSL_CLONES, /* ZAP */
228 DMU_OT_BPOBJ_SUBOBJ, /* UINT64 */
229 /*
230 * Do not allocate new object types here. Doing so makes the on-disk
231 * format incompatible with any other format that uses the same object
232 * type number.
233 *
234 * When creating an object which does not have one of the above types
235 * use the DMU_OTN_* type with the correct byteswap and metadata
236 * values.
237 *
238 * The DMU_OTN_* types do not have entries in the dmu_ot table,
239 * use the DMU_OT_IS_METADATA() and DMU_OT_BYTESWAP() macros instead
240 * of indexing into dmu_ot directly (this works for both DMU_OT_* types
241 * and DMU_OTN_* types).
242 */
243 DMU_OT_NUMTYPES,
244
245 /*
246 * Names for valid types declared with DMU_OT().
247 */
248 DMU_OTN_UINT8_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE, B_FALSE),
249 DMU_OTN_UINT8_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE, B_FALSE),
250 DMU_OTN_UINT16_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE, B_FALSE),
251 DMU_OTN_UINT16_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE, B_FALSE),
252 DMU_OTN_UINT32_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE, B_FALSE),
253 DMU_OTN_UINT32_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE, B_FALSE),
254 DMU_OTN_UINT64_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE, B_FALSE),
255 DMU_OTN_UINT64_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE, B_FALSE),
256 DMU_OTN_ZAP_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE, B_FALSE),
257 DMU_OTN_ZAP_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE, B_FALSE),
258
259 DMU_OTN_UINT8_ENC_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE, B_TRUE),
260 DMU_OTN_UINT8_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE, B_TRUE),
261 DMU_OTN_UINT16_ENC_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE, B_TRUE),
262 DMU_OTN_UINT16_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE, B_TRUE),
263 DMU_OTN_UINT32_ENC_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE, B_TRUE),
264 DMU_OTN_UINT32_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE, B_TRUE),
265 DMU_OTN_UINT64_ENC_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE, B_TRUE),
266 DMU_OTN_UINT64_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE, B_TRUE),
267 DMU_OTN_ZAP_ENC_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE, B_TRUE),
268 DMU_OTN_ZAP_ENC_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE, B_TRUE),
269 } dmu_object_type_t;
270
271 /*
272 * These flags are intended to be used to specify the "txg_how"
273 * parameter when calling the dmu_tx_assign() function. See the comment
274 * above dmu_tx_assign() for more details on the meaning of these flags.
275 */
276 #define TXG_NOWAIT (0ULL)
277 #define TXG_WAIT (1ULL<<0)
278 #define TXG_NOTHROTTLE (1ULL<<1)
279
280 void byteswap_uint64_array(void *buf, size_t size);
281 void byteswap_uint32_array(void *buf, size_t size);
282 void byteswap_uint16_array(void *buf, size_t size);
283 void byteswap_uint8_array(void *buf, size_t size);
284 void zap_byteswap(void *buf, size_t size);
285 void zfs_oldacl_byteswap(void *buf, size_t size);
286 void zfs_acl_byteswap(void *buf, size_t size);
287 void zfs_znode_byteswap(void *buf, size_t size);
288
289 #define DS_FIND_SNAPSHOTS (1<<0)
290 #define DS_FIND_CHILDREN (1<<1)
291 #define DS_FIND_SERIALIZE (1<<2)
292
293 /*
294 * The maximum number of bytes that can be accessed as part of one
295 * operation, including metadata.
296 */
297 #define DMU_MAX_ACCESS (64 * 1024 * 1024) /* 64MB */
298 #define DMU_MAX_DELETEBLKCNT (20480) /* ~5MB of indirect blocks */
299
300 #define DMU_USERUSED_OBJECT (-1ULL)
301 #define DMU_GROUPUSED_OBJECT (-2ULL)
302 #define DMU_PROJECTUSED_OBJECT (-3ULL)
303
304 /*
305 * Zap prefix for object accounting in DMU_{USER,GROUP,PROJECT}USED_OBJECT.
306 */
307 #define DMU_OBJACCT_PREFIX "obj-"
308 #define DMU_OBJACCT_PREFIX_LEN 4
309
310 /*
311 * artificial blkids for bonus buffer and spill blocks
312 */
313 #define DMU_BONUS_BLKID (-1ULL)
314 #define DMU_SPILL_BLKID (-2ULL)
315
316 /*
317 * Public routines to create, destroy, open, and close objsets.
318 */
319 typedef void dmu_objset_create_sync_func_t(objset_t *os, void *arg,
320 cred_t *cr, dmu_tx_t *tx);
321
322 int dmu_objset_hold(const char *name, void *tag, objset_t **osp);
323 int dmu_objset_own(const char *name, dmu_objset_type_t type,
324 boolean_t readonly, boolean_t key_required, void *tag, objset_t **osp);
325 void dmu_objset_rele(objset_t *os, void *tag);
326 void dmu_objset_disown(objset_t *os, boolean_t key_required, void *tag);
327 int dmu_objset_open_ds(struct dsl_dataset *ds, objset_t **osp);
328
329 void dmu_objset_evict_dbufs(objset_t *os);
330 int dmu_objset_create(const char *name, dmu_objset_type_t type, uint64_t flags,
331 struct dsl_crypto_params *dcp, dmu_objset_create_sync_func_t func,
332 void *arg);
333 int dmu_objset_clone(const char *name, const char *origin);
334 int dsl_destroy_snapshots_nvl(struct nvlist *snaps, boolean_t defer,
335 struct nvlist *errlist);
336 int dmu_objset_snapshot_one(const char *fsname, const char *snapname);
337 int dmu_objset_find(const char *name, int func(const char *, void *), void *arg,
338 int flags);
339 void dmu_objset_byteswap(void *buf, size_t size);
340 int dsl_dataset_rename_snapshot(const char *fsname,
341 const char *oldsnapname, const char *newsnapname, boolean_t recursive);
342
343 typedef struct dmu_buf {
344 uint64_t db_object; /* object that this buffer is part of */
345 uint64_t db_offset; /* byte offset in this object */
346 uint64_t db_size; /* size of buffer in bytes */
347 void *db_data; /* data in buffer */
348 } dmu_buf_t;
349
350 /*
351 * The names of zap entries in the DIRECTORY_OBJECT of the MOS.
352 */
353 #define DMU_POOL_DIRECTORY_OBJECT 1
354 #define DMU_POOL_CONFIG "config"
355 #define DMU_POOL_FEATURES_FOR_WRITE "features_for_write"
356 #define DMU_POOL_FEATURES_FOR_READ "features_for_read"
357 #define DMU_POOL_FEATURE_DESCRIPTIONS "feature_descriptions"
358 #define DMU_POOL_FEATURE_ENABLED_TXG "feature_enabled_txg"
359 #define DMU_POOL_ROOT_DATASET "root_dataset"
360 #define DMU_POOL_SYNC_BPOBJ "sync_bplist"
361 #define DMU_POOL_ERRLOG_SCRUB "errlog_scrub"
362 #define DMU_POOL_ERRLOG_LAST "errlog_last"
363 #define DMU_POOL_SPARES "spares"
364 #define DMU_POOL_DEFLATE "deflate"
365 #define DMU_POOL_HISTORY "history"
366 #define DMU_POOL_PROPS "pool_props"
367 #define DMU_POOL_L2CACHE "l2cache"
368 #define DMU_POOL_TMP_USERREFS "tmp_userrefs"
369 #define DMU_POOL_DDT "DDT-%s-%s-%s"
370 #define DMU_POOL_DDT_STATS "DDT-statistics"
371 #define DMU_POOL_CREATION_VERSION "creation_version"
372 #define DMU_POOL_SCAN "scan"
373 #define DMU_POOL_FREE_BPOBJ "free_bpobj"
374 #define DMU_POOL_BPTREE_OBJ "bptree_obj"
375 #define DMU_POOL_EMPTY_BPOBJ "empty_bpobj"
376 #define DMU_POOL_CHECKSUM_SALT "org.illumos:checksum_salt"
377 #define DMU_POOL_VDEV_ZAP_MAP "com.delphix:vdev_zap_map"
378 #define DMU_POOL_REMOVING "com.delphix:removing"
379 #define DMU_POOL_OBSOLETE_BPOBJ "com.delphix:obsolete_bpobj"
380 #define DMU_POOL_CONDENSING_INDIRECT "com.delphix:condensing_indirect"
381 #define DMU_POOL_ZPOOL_CHECKPOINT "com.delphix:zpool_checkpoint"
382 #define DMU_POOL_LOG_SPACEMAP_ZAP "com.delphix:log_spacemap_zap"
383 #define DMU_POOL_DELETED_CLONES "com.delphix:deleted_clones"
384
385 /*
386 * Allocate an object from this objset. The range of object numbers
387 * available is (0, DN_MAX_OBJECT). Object 0 is the meta-dnode.
388 *
389 * The transaction must be assigned to a txg. The newly allocated
390 * object will be "held" in the transaction (ie. you can modify the
391 * newly allocated object in this transaction).
392 *
393 * dmu_object_alloc() chooses an object and returns it in *objectp.
394 *
395 * dmu_object_claim() allocates a specific object number. If that
396 * number is already allocated, it fails and returns EEXIST.
397 *
398 * Return 0 on success, or ENOSPC or EEXIST as specified above.
399 */
400 uint64_t dmu_object_alloc(objset_t *os, dmu_object_type_t ot,
401 int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
402 uint64_t dmu_object_alloc_ibs(objset_t *os, dmu_object_type_t ot, int blocksize,
403 int indirect_blockshift,
404 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
405 uint64_t dmu_object_alloc_dnsize(objset_t *os, dmu_object_type_t ot,
406 int blocksize, dmu_object_type_t bonus_type, int bonus_len,
407 int dnodesize, dmu_tx_t *tx);
408 uint64_t dmu_object_alloc_hold(objset_t *os, dmu_object_type_t ot,
409 int blocksize, int indirect_blockshift, dmu_object_type_t bonustype,
410 int bonuslen, int dnodesize, dnode_t **allocated_dnode, void *tag,
411 dmu_tx_t *tx);
412 int dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot,
413 int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
414 int dmu_object_claim_dnsize(objset_t *os, uint64_t object, dmu_object_type_t ot,
415 int blocksize, dmu_object_type_t bonus_type, int bonus_len,
416 int dnodesize, dmu_tx_t *tx);
417 int dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot,
418 int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *txp);
419 int dmu_object_reclaim_dnsize(objset_t *os, uint64_t object,
420 dmu_object_type_t ot, int blocksize, dmu_object_type_t bonustype,
421 int bonuslen, int dnodesize, boolean_t keep_spill, dmu_tx_t *tx);
422 int dmu_object_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx);
423
424 /*
425 * Free an object from this objset.
426 *
427 * The object's data will be freed as well (ie. you don't need to call
428 * dmu_free(object, 0, -1, tx)).
429 *
430 * The object need not be held in the transaction.
431 *
432 * If there are any holds on this object's buffers (via dmu_buf_hold()),
433 * or tx holds on the object (via dmu_tx_hold_object()), you can not
434 * free it; it fails and returns EBUSY.
435 *
436 * If the object is not allocated, it fails and returns ENOENT.
437 *
438 * Return 0 on success, or EBUSY or ENOENT as specified above.
439 */
440 int dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx);
441
442 /*
443 * Find the next allocated or free object.
444 *
445 * The objectp parameter is in-out. It will be updated to be the next
446 * object which is allocated. Ignore objects which have not been
447 * modified since txg.
448 *
449 * XXX Can only be called on a objset with no dirty data.
450 *
451 * Returns 0 on success, or ENOENT if there are no more objects.
452 */
453 int dmu_object_next(objset_t *os, uint64_t *objectp,
454 boolean_t hole, uint64_t txg);
455
456 /*
457 * Set the number of levels on a dnode. nlevels must be greater than the
458 * current number of levels or an EINVAL will be returned.
459 */
460 int dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels,
461 dmu_tx_t *tx);
462
463 /*
464 * Set the data blocksize for an object.
465 *
466 * The object cannot have any blocks allocated beyond the first. If
467 * the first block is allocated already, the new size must be greater
468 * than the current block size. If these conditions are not met,
469 * ENOTSUP will be returned.
470 *
471 * Returns 0 on success, or EBUSY if there are any holds on the object
472 * contents, or ENOTSUP as described above.
473 */
474 int dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size,
475 int ibs, dmu_tx_t *tx);
476
477 /*
478 * Manually set the maxblkid on a dnode. This will adjust nlevels accordingly
479 * to accommodate the change. When calling this function, the caller must
480 * ensure that the object's nlevels can sufficiently support the new maxblkid.
481 */
482 int dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid,
483 dmu_tx_t *tx);
484
485 /*
486 * Set the checksum property on a dnode. The new checksum algorithm will
487 * apply to all newly written blocks; existing blocks will not be affected.
488 */
489 void dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
490 dmu_tx_t *tx);
491
492 /*
493 * Set the compress property on a dnode. The new compression algorithm will
494 * apply to all newly written blocks; existing blocks will not be affected.
495 */
496 void dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
497 dmu_tx_t *tx);
498
499 void dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
500 void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
501 int compressed_size, int byteorder, dmu_tx_t *tx);
502 void dmu_redact(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
503 dmu_tx_t *tx);
504
505 /*
506 * Decide how to write a block: checksum, compression, number of copies, etc.
507 */
508 #define WP_NOFILL 0x1
509 #define WP_DMU_SYNC 0x2
510 #define WP_SPILL 0x4
511
512 void dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp,
513 struct zio_prop *zp);
514
515 /*
516 * The bonus data is accessed more or less like a regular buffer.
517 * You must dmu_bonus_hold() to get the buffer, which will give you a
518 * dmu_buf_t with db_offset==-1ULL, and db_size = the size of the bonus
519 * data. As with any normal buffer, you must call dmu_buf_will_dirty()
520 * before modifying it, and the
521 * object must be held in an assigned transaction before calling
522 * dmu_buf_will_dirty. You may use dmu_buf_set_user() on the bonus
523 * buffer as well. You must release what you hold with dmu_buf_rele().
524 *
525 * Returns ENOENT, EIO, or 0.
526 */
527 int dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp);
528 int dmu_bonus_hold_by_dnode(dnode_t *dn, void *tag, dmu_buf_t **dbp,
529 uint32_t flags);
530 int dmu_bonus_max(void);
531 int dmu_set_bonus(dmu_buf_t *, int, dmu_tx_t *);
532 int dmu_set_bonustype(dmu_buf_t *, dmu_object_type_t, dmu_tx_t *);
533 dmu_object_type_t dmu_get_bonustype(dmu_buf_t *);
534 int dmu_rm_spill(objset_t *, uint64_t, dmu_tx_t *);
535
536 /*
537 * Special spill buffer support used by "SA" framework
538 */
539
540 int dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, void *tag,
541 dmu_buf_t **dbp);
542 int dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags,
543 void *tag, dmu_buf_t **dbp);
544 int dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp);
545
546 /*
547 * Obtain the DMU buffer from the specified object which contains the
548 * specified offset. dmu_buf_hold() puts a "hold" on the buffer, so
549 * that it will remain in memory. You must release the hold with
550 * dmu_buf_rele(). You must not access the dmu_buf_t after releasing
551 * what you hold. You must have a hold on any dmu_buf_t* you pass to the DMU.
552 *
553 * You must call dmu_buf_read, dmu_buf_will_dirty, or dmu_buf_will_fill
554 * on the returned buffer before reading or writing the buffer's
555 * db_data. The comments for those routines describe what particular
556 * operations are valid after calling them.
557 *
558 * The object number must be a valid, allocated object number.
559 */
560 int dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
561 void *tag, dmu_buf_t **, int flags);
562 int dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
563 void *tag, dmu_buf_t **dbp, int flags);
564 int dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset,
565 uint64_t length, boolean_t read, void *tag, int *numbufsp,
566 dmu_buf_t ***dbpp, uint32_t flags);
567 /*
568 * Add a reference to a dmu buffer that has already been held via
569 * dmu_buf_hold() in the current context.
570 */
571 void dmu_buf_add_ref(dmu_buf_t *db, void* tag);
572
573 /*
574 * Attempt to add a reference to a dmu buffer that is in an unknown state,
575 * using a pointer that may have been invalidated by eviction processing.
576 * The request will succeed if the passed in dbuf still represents the
577 * same os/object/blkid, is ineligible for eviction, and has at least
578 * one hold by a user other than the syncer.
579 */
580 boolean_t dmu_buf_try_add_ref(dmu_buf_t *, objset_t *os, uint64_t object,
581 uint64_t blkid, void *tag);
582
583 void dmu_buf_rele(dmu_buf_t *db, void *tag);
584 uint64_t dmu_buf_refcount(dmu_buf_t *db);
585 uint64_t dmu_buf_user_refcount(dmu_buf_t *db);
586
587 /*
588 * dmu_buf_hold_array holds the DMU buffers which contain all bytes in a
589 * range of an object. A pointer to an array of dmu_buf_t*'s is
590 * returned (in *dbpp).
591 *
592 * dmu_buf_rele_array releases the hold on an array of dmu_buf_t*'s, and
593 * frees the array. The hold on the array of buffers MUST be released
594 * with dmu_buf_rele_array. You can NOT release the hold on each buffer
595 * individually with dmu_buf_rele.
596 */
597 int dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset,
598 uint64_t length, boolean_t read, void *tag,
599 int *numbufsp, dmu_buf_t ***dbpp);
600 void dmu_buf_rele_array(dmu_buf_t **, int numbufs, void *tag);
601
602 typedef void dmu_buf_evict_func_t(void *user_ptr);
603
604 /*
605 * A DMU buffer user object may be associated with a dbuf for the
606 * duration of its lifetime. This allows the user of a dbuf (client)
607 * to attach private data to a dbuf (e.g. in-core only data such as a
608 * dnode_children_t, zap_t, or zap_leaf_t) and be optionally notified
609 * when that dbuf has been evicted. Clients typically respond to the
610 * eviction notification by freeing their private data, thus ensuring
611 * the same lifetime for both dbuf and private data.
612 *
613 * The mapping from a dmu_buf_user_t to any client private data is the
614 * client's responsibility. All current consumers of the API with private
615 * data embed a dmu_buf_user_t as the first member of the structure for
616 * their private data. This allows conversions between the two types
617 * with a simple cast. Since the DMU buf user API never needs access
618 * to the private data, other strategies can be employed if necessary
619 * or convenient for the client (e.g. using container_of() to do the
620 * conversion for private data that cannot have the dmu_buf_user_t as
621 * its first member).
622 *
623 * Eviction callbacks are executed without the dbuf mutex held or any
624 * other type of mechanism to guarantee that the dbuf is still available.
625 * For this reason, users must assume the dbuf has already been freed
626 * and not reference the dbuf from the callback context.
627 *
628 * Users requesting "immediate eviction" are notified as soon as the dbuf
629 * is only referenced by dirty records (dirties == holds). Otherwise the
630 * notification occurs after eviction processing for the dbuf begins.
631 */
632 typedef struct dmu_buf_user {
633 /*
634 * Asynchronous user eviction callback state.
635 */
636 taskq_ent_t dbu_tqent;
637
638 /*
639 * This instance's eviction function pointers.
640 *
641 * dbu_evict_func_sync is called synchronously and then
642 * dbu_evict_func_async is executed asynchronously on a taskq.
643 */
644 dmu_buf_evict_func_t *dbu_evict_func_sync;
645 dmu_buf_evict_func_t *dbu_evict_func_async;
646 #ifdef ZFS_DEBUG
647 /*
648 * Pointer to user's dbuf pointer. NULL for clients that do
649 * not associate a dbuf with their user data.
650 *
651 * The dbuf pointer is cleared upon eviction so as to catch
652 * use-after-evict bugs in clients.
653 */
654 dmu_buf_t **dbu_clear_on_evict_dbufp;
655 #endif
656 } dmu_buf_user_t;
657
658 /*
659 * Initialize the given dmu_buf_user_t instance with the eviction function
660 * evict_func, to be called when the user is evicted.
661 *
662 * NOTE: This function should only be called once on a given dmu_buf_user_t.
663 * To allow enforcement of this, dbu must already be zeroed on entry.
664 */
665 /*ARGSUSED*/
666 static inline void
667 dmu_buf_init_user(dmu_buf_user_t *dbu, dmu_buf_evict_func_t *evict_func_sync,
668 dmu_buf_evict_func_t *evict_func_async,
669 dmu_buf_t **clear_on_evict_dbufp __maybe_unused)
670 {
671 ASSERT(dbu->dbu_evict_func_sync == NULL);
672 ASSERT(dbu->dbu_evict_func_async == NULL);
673
674 /* must have at least one evict func */
675 IMPLY(evict_func_sync == NULL, evict_func_async != NULL);
676 dbu->dbu_evict_func_sync = evict_func_sync;
677 dbu->dbu_evict_func_async = evict_func_async;
678 taskq_init_ent(&dbu->dbu_tqent);
679 #ifdef ZFS_DEBUG
680 dbu->dbu_clear_on_evict_dbufp = clear_on_evict_dbufp;
681 #endif
682 }
683
684 /*
685 * Attach user data to a dbuf and mark it for normal (when the dbuf's
686 * data is cleared or its reference count goes to zero) eviction processing.
687 *
688 * Returns NULL on success, or the existing user if another user currently
689 * owns the buffer.
690 */
691 void *dmu_buf_set_user(dmu_buf_t *db, dmu_buf_user_t *user);
692
693 /*
694 * Attach user data to a dbuf and mark it for immediate (its dirty and
695 * reference counts are equal) eviction processing.
696 *
697 * Returns NULL on success, or the existing user if another user currently
698 * owns the buffer.
699 */
700 void *dmu_buf_set_user_ie(dmu_buf_t *db, dmu_buf_user_t *user);
701
702 /*
703 * Replace the current user of a dbuf.
704 *
705 * If given the current user of a dbuf, replaces the dbuf's user with
706 * "new_user" and returns the user data pointer that was replaced.
707 * Otherwise returns the current, and unmodified, dbuf user pointer.
708 */
709 void *dmu_buf_replace_user(dmu_buf_t *db,
710 dmu_buf_user_t *old_user, dmu_buf_user_t *new_user);
711
712 /*
713 * Remove the specified user data for a DMU buffer.
714 *
715 * Returns the user that was removed on success, or the current user if
716 * another user currently owns the buffer.
717 */
718 void *dmu_buf_remove_user(dmu_buf_t *db, dmu_buf_user_t *user);
719
720 /*
721 * Returns the user data (dmu_buf_user_t *) associated with this dbuf.
722 */
723 void *dmu_buf_get_user(dmu_buf_t *db);
724
725 objset_t *dmu_buf_get_objset(dmu_buf_t *db);
726 dnode_t *dmu_buf_dnode_enter(dmu_buf_t *db);
727 void dmu_buf_dnode_exit(dmu_buf_t *db);
728
729 /* Block until any in-progress dmu buf user evictions complete. */
730 void dmu_buf_user_evict_wait(void);
731
732 /*
733 * Returns the blkptr associated with this dbuf, or NULL if not set.
734 */
735 struct blkptr *dmu_buf_get_blkptr(dmu_buf_t *db);
736
737 /*
738 * Indicate that you are going to modify the buffer's data (db_data).
739 *
740 * The transaction (tx) must be assigned to a txg (ie. you've called
741 * dmu_tx_assign()). The buffer's object must be held in the tx
742 * (ie. you've called dmu_tx_hold_object(tx, db->db_object)).
743 */
744 void dmu_buf_will_dirty(dmu_buf_t *db, dmu_tx_t *tx);
745 boolean_t dmu_buf_is_dirty(dmu_buf_t *db, dmu_tx_t *tx);
746 void dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder,
747 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx);
748
749 /*
750 * You must create a transaction, then hold the objects which you will
751 * (or might) modify as part of this transaction. Then you must assign
752 * the transaction to a transaction group. Once the transaction has
753 * been assigned, you can modify buffers which belong to held objects as
754 * part of this transaction. You can't modify buffers before the
755 * transaction has been assigned; you can't modify buffers which don't
756 * belong to objects which this transaction holds; you can't hold
757 * objects once the transaction has been assigned. You may hold an
758 * object which you are going to free (with dmu_object_free()), but you
759 * don't have to.
760 *
761 * You can abort the transaction before it has been assigned.
762 *
763 * Note that you may hold buffers (with dmu_buf_hold) at any time,
764 * regardless of transaction state.
765 */
766
767 #define DMU_NEW_OBJECT (-1ULL)
768 #define DMU_OBJECT_END (-1ULL)
769
770 dmu_tx_t *dmu_tx_create(objset_t *os);
771 void dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len);
772 void dmu_tx_hold_write_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off,
773 int len);
774 void dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off,
775 uint64_t len);
776 void dmu_tx_hold_free_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off,
777 uint64_t len);
778 void dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name);
779 void dmu_tx_hold_zap_by_dnode(dmu_tx_t *tx, dnode_t *dn, int add,
780 const char *name);
781 void dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object);
782 void dmu_tx_hold_bonus_by_dnode(dmu_tx_t *tx, dnode_t *dn);
783 void dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object);
784 void dmu_tx_hold_sa(dmu_tx_t *tx, struct sa_handle *hdl, boolean_t may_grow);
785 void dmu_tx_hold_sa_create(dmu_tx_t *tx, int total_size);
786 void dmu_tx_abort(dmu_tx_t *tx);
787 int dmu_tx_assign(dmu_tx_t *tx, uint64_t txg_how);
788 void dmu_tx_wait(dmu_tx_t *tx);
789 void dmu_tx_commit(dmu_tx_t *tx);
790 void dmu_tx_mark_netfree(dmu_tx_t *tx);
791
792 /*
793 * To register a commit callback, dmu_tx_callback_register() must be called.
794 *
795 * dcb_data is a pointer to caller private data that is passed on as a
796 * callback parameter. The caller is responsible for properly allocating and
797 * freeing it.
798 *
799 * When registering a callback, the transaction must be already created, but
800 * it cannot be committed or aborted. It can be assigned to a txg or not.
801 *
802 * The callback will be called after the transaction has been safely written
803 * to stable storage and will also be called if the dmu_tx is aborted.
804 * If there is any error which prevents the transaction from being committed to
805 * disk, the callback will be called with a value of error != 0.
806 *
807 * When multiple callbacks are registered to the transaction, the callbacks
808 * will be called in reverse order to let Lustre, the only user of commit
809 * callback currently, take the fast path of its commit callback handling.
810 */
811 typedef void dmu_tx_callback_func_t(void *dcb_data, int error);
812
813 void dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *dcb_func,
814 void *dcb_data);
815 void dmu_tx_do_callbacks(list_t *cb_list, int error);
816
817 /*
818 * Free up the data blocks for a defined range of a file. If size is
819 * -1, the range from offset to end-of-file is freed.
820 */
821 int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
822 uint64_t size, dmu_tx_t *tx);
823 int dmu_free_long_range(objset_t *os, uint64_t object, uint64_t offset,
824 uint64_t size);
825 int dmu_free_long_object(objset_t *os, uint64_t object);
826
827 /*
828 * Convenience functions.
829 *
830 * Canfail routines will return 0 on success, or an errno if there is a
831 * nonrecoverable I/O error.
832 */
833 #define DMU_READ_PREFETCH 0 /* prefetch */
834 #define DMU_READ_NO_PREFETCH 1 /* don't prefetch */
835 #define DMU_READ_NO_DECRYPT 2 /* don't decrypt */
836 int dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
837 void *buf, uint32_t flags);
838 int dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
839 uint32_t flags);
840 void dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
841 const void *buf, dmu_tx_t *tx);
842 void dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
843 const void *buf, dmu_tx_t *tx);
844 void dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
845 dmu_tx_t *tx);
846 #ifdef _KERNEL
847 int dmu_read_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size);
848 int dmu_read_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size);
849 int dmu_read_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size);
850 int dmu_write_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size,
851 dmu_tx_t *tx);
852 int dmu_write_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size,
853 dmu_tx_t *tx);
854 int dmu_write_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size,
855 dmu_tx_t *tx);
856 #endif
857 struct arc_buf *dmu_request_arcbuf(dmu_buf_t *handle, int size);
858 void dmu_return_arcbuf(struct arc_buf *buf);
859 int dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset,
860 struct arc_buf *buf, dmu_tx_t *tx);
861 int dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset,
862 struct arc_buf *buf, dmu_tx_t *tx);
863 #define dmu_assign_arcbuf dmu_assign_arcbuf_by_dbuf
864 extern int zfs_prefetch_disable;
865 extern int zfs_max_recordsize;
866
867 /*
868 * Asynchronously try to read in the data.
869 */
870 void dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
871 uint64_t len, enum zio_priority pri);
872
873 typedef struct dmu_object_info {
874 /* All sizes are in bytes unless otherwise indicated. */
875 uint32_t doi_data_block_size;
876 uint32_t doi_metadata_block_size;
877 dmu_object_type_t doi_type;
878 dmu_object_type_t doi_bonus_type;
879 uint64_t doi_bonus_size;
880 uint8_t doi_indirection; /* 2 = dnode->indirect->data */
881 uint8_t doi_checksum;
882 uint8_t doi_compress;
883 uint8_t doi_nblkptr;
884 uint8_t doi_pad[4];
885 uint64_t doi_dnodesize;
886 uint64_t doi_physical_blocks_512; /* data + metadata, 512b blks */
887 uint64_t doi_max_offset;
888 uint64_t doi_fill_count; /* number of non-empty blocks */
889 } dmu_object_info_t;
890
891 typedef void (*const arc_byteswap_func_t)(void *buf, size_t size);
892
893 typedef struct dmu_object_type_info {
894 dmu_object_byteswap_t ot_byteswap;
895 boolean_t ot_metadata;
896 boolean_t ot_dbuf_metadata_cache;
897 boolean_t ot_encrypt;
898 char *ot_name;
899 } dmu_object_type_info_t;
900
901 typedef const struct dmu_object_byteswap_info {
902 arc_byteswap_func_t ob_func;
903 char *ob_name;
904 } dmu_object_byteswap_info_t;
905
906 extern const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES];
907 extern const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS];
908
909 /*
910 * Get information on a DMU object.
911 *
912 * Return 0 on success or ENOENT if object is not allocated.
913 *
914 * If doi is NULL, just indicates whether the object exists.
915 */
916 int dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi);
917 void __dmu_object_info_from_dnode(struct dnode *dn, dmu_object_info_t *doi);
918 /* Like dmu_object_info, but faster if you have a held dnode in hand. */
919 void dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi);
920 /* Like dmu_object_info, but faster if you have a held dbuf in hand. */
921 void dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi);
922 /*
923 * Like dmu_object_info_from_db, but faster still when you only care about
924 * the size.
925 */
926 void dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize,
927 u_longlong_t *nblk512);
928
929 void dmu_object_dnsize_from_db(dmu_buf_t *db, int *dnsize);
930
931 typedef struct dmu_objset_stats {
932 uint64_t dds_num_clones; /* number of clones of this */
933 uint64_t dds_creation_txg;
934 uint64_t dds_guid;
935 dmu_objset_type_t dds_type;
936 uint8_t dds_is_snapshot;
937 uint8_t dds_inconsistent;
938 uint8_t dds_redacted;
939 char dds_origin[ZFS_MAX_DATASET_NAME_LEN];
940 } dmu_objset_stats_t;
941
942 /*
943 * Get stats on a dataset.
944 */
945 void dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat);
946
947 /*
948 * Add entries to the nvlist for all the objset's properties. See
949 * zfs_prop_table[] and zfs(1m) for details on the properties.
950 */
951 void dmu_objset_stats(objset_t *os, struct nvlist *nv);
952
953 /*
954 * Get the space usage statistics for statvfs().
955 *
956 * refdbytes is the amount of space "referenced" by this objset.
957 * availbytes is the amount of space available to this objset, taking
958 * into account quotas & reservations, assuming that no other objsets
959 * use the space first. These values correspond to the 'referenced' and
960 * 'available' properties, described in the zfs(1m) manpage.
961 *
962 * usedobjs and availobjs are the number of objects currently allocated,
963 * and available.
964 */
965 void dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp,
966 uint64_t *usedobjsp, uint64_t *availobjsp);
967
968 /*
969 * The fsid_guid is a 56-bit ID that can change to avoid collisions.
970 * (Contrast with the ds_guid which is a 64-bit ID that will never
971 * change, so there is a small probability that it will collide.)
972 */
973 uint64_t dmu_objset_fsid_guid(objset_t *os);
974
975 /*
976 * Get the [cm]time for an objset's snapshot dir
977 */
978 inode_timespec_t dmu_objset_snap_cmtime(objset_t *os);
979
980 int dmu_objset_is_snapshot(objset_t *os);
981
982 extern struct spa *dmu_objset_spa(objset_t *os);
983 extern struct zilog *dmu_objset_zil(objset_t *os);
984 extern struct dsl_pool *dmu_objset_pool(objset_t *os);
985 extern struct dsl_dataset *dmu_objset_ds(objset_t *os);
986 extern void dmu_objset_name(objset_t *os, char *buf);
987 extern dmu_objset_type_t dmu_objset_type(objset_t *os);
988 extern uint64_t dmu_objset_id(objset_t *os);
989 extern uint64_t dmu_objset_dnodesize(objset_t *os);
990 extern zfs_sync_type_t dmu_objset_syncprop(objset_t *os);
991 extern zfs_logbias_op_t dmu_objset_logbias(objset_t *os);
992 extern int dmu_objset_blksize(objset_t *os);
993 extern int dmu_snapshot_list_next(objset_t *os, int namelen, char *name,
994 uint64_t *id, uint64_t *offp, boolean_t *case_conflict);
995 extern int dmu_snapshot_lookup(objset_t *os, const char *name, uint64_t *val);
996 extern int dmu_snapshot_realname(objset_t *os, const char *name, char *real,
997 int maxlen, boolean_t *conflict);
998 extern int dmu_dir_list_next(objset_t *os, int namelen, char *name,
999 uint64_t *idp, uint64_t *offp);
1000
1001 typedef struct zfs_file_info {
1002 uint64_t zfi_user;
1003 uint64_t zfi_group;
1004 uint64_t zfi_project;
1005 uint64_t zfi_generation;
1006 } zfs_file_info_t;
1007
1008 typedef int file_info_cb_t(dmu_object_type_t bonustype, const void *data,
1009 struct zfs_file_info *zoi);
1010 extern void dmu_objset_register_type(dmu_objset_type_t ost,
1011 file_info_cb_t *cb);
1012 extern void dmu_objset_set_user(objset_t *os, void *user_ptr);
1013 extern void *dmu_objset_get_user(objset_t *os);
1014
1015 /*
1016 * Return the txg number for the given assigned transaction.
1017 */
1018 uint64_t dmu_tx_get_txg(dmu_tx_t *tx);
1019
1020 /*
1021 * Synchronous write.
1022 * If a parent zio is provided this function initiates a write on the
1023 * provided buffer as a child of the parent zio.
1024 * In the absence of a parent zio, the write is completed synchronously.
1025 * At write completion, blk is filled with the bp of the written block.
1026 * Note that while the data covered by this function will be on stable
1027 * storage when the write completes this new data does not become a
1028 * permanent part of the file until the associated transaction commits.
1029 */
1030
1031 /*
1032 * {zfs,zvol,ztest}_get_done() args
1033 */
1034 typedef struct zgd {
1035 struct lwb *zgd_lwb;
1036 struct blkptr *zgd_bp;
1037 dmu_buf_t *zgd_db;
1038 struct zfs_locked_range *zgd_lr;
1039 void *zgd_private;
1040 } zgd_t;
1041
1042 typedef void dmu_sync_cb_t(zgd_t *arg, int error);
1043 int dmu_sync(struct zio *zio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd);
1044
1045 /*
1046 * Find the next hole or data block in file starting at *off
1047 * Return found offset in *off. Return ESRCH for end of file.
1048 */
1049 int dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole,
1050 uint64_t *off);
1051
1052 /*
1053 * Initial setup and final teardown.
1054 */
1055 extern void dmu_init(void);
1056 extern void dmu_fini(void);
1057
1058 typedef void (*dmu_traverse_cb_t)(objset_t *os, void *arg, struct blkptr *bp,
1059 uint64_t object, uint64_t offset, int len);
1060 void dmu_traverse_objset(objset_t *os, uint64_t txg_start,
1061 dmu_traverse_cb_t cb, void *arg);
1062
1063 int dmu_diff(const char *tosnap_name, const char *fromsnap_name,
1064 zfs_file_t *fp, offset_t *offp);
1065
1066 /* CRC64 table */
1067 #define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */
1068 extern uint64_t zfs_crc64_table[256];
1069
1070 #ifdef __cplusplus
1071 }
1072 #endif
1073
1074 #endif /* _SYS_DMU_H */