]> git.proxmox.com Git - mirror_zfs.git/blob - include/sys/dmu.h
OpenZFS 7004 - dmu_tx_hold_zap() does dnode_hold() 7x on same object
[mirror_zfs.git] / include / sys / dmu.h
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
26 * Copyright 2014 HybridCluster. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 */
29
30 /* Portions Copyright 2010 Robert Milkowski */
31
32 #ifndef _SYS_DMU_H
33 #define _SYS_DMU_H
34
35 /*
36 * This file describes the interface that the DMU provides for its
37 * consumers.
38 *
39 * The DMU also interacts with the SPA. That interface is described in
40 * dmu_spa.h.
41 */
42
43 #include <sys/zfs_context.h>
44 #include <sys/inttypes.h>
45 #include <sys/cred.h>
46 #include <sys/fs/zfs.h>
47 #include <sys/zio_priority.h>
48 #include <sys/uio.h>
49
50 #ifdef __cplusplus
51 extern "C" {
52 #endif
53
54 struct page;
55 struct vnode;
56 struct spa;
57 struct zilog;
58 struct zio;
59 struct blkptr;
60 struct zap_cursor;
61 struct dsl_dataset;
62 struct dsl_pool;
63 struct dnode;
64 struct drr_begin;
65 struct drr_end;
66 struct zbookmark_phys;
67 struct spa;
68 struct nvlist;
69 struct arc_buf;
70 struct zio_prop;
71 struct sa_handle;
72
73 typedef struct objset objset_t;
74 typedef struct dmu_tx dmu_tx_t;
75 typedef struct dsl_dir dsl_dir_t;
76 typedef struct dnode dnode_t;
77
78 typedef enum dmu_object_byteswap {
79 DMU_BSWAP_UINT8,
80 DMU_BSWAP_UINT16,
81 DMU_BSWAP_UINT32,
82 DMU_BSWAP_UINT64,
83 DMU_BSWAP_ZAP,
84 DMU_BSWAP_DNODE,
85 DMU_BSWAP_OBJSET,
86 DMU_BSWAP_ZNODE,
87 DMU_BSWAP_OLDACL,
88 DMU_BSWAP_ACL,
89 /*
90 * Allocating a new byteswap type number makes the on-disk format
91 * incompatible with any other format that uses the same number.
92 *
93 * Data can usually be structured to work with one of the
94 * DMU_BSWAP_UINT* or DMU_BSWAP_ZAP types.
95 */
96 DMU_BSWAP_NUMFUNCS
97 } dmu_object_byteswap_t;
98
99 #define DMU_OT_NEWTYPE 0x80
100 #define DMU_OT_METADATA 0x40
101 #define DMU_OT_BYTESWAP_MASK 0x3f
102
103 /*
104 * Defines a uint8_t object type. Object types specify if the data
105 * in the object is metadata (boolean) and how to byteswap the data
106 * (dmu_object_byteswap_t).
107 */
108 #define DMU_OT(byteswap, metadata) \
109 (DMU_OT_NEWTYPE | \
110 ((metadata) ? DMU_OT_METADATA : 0) | \
111 ((byteswap) & DMU_OT_BYTESWAP_MASK))
112
113 #define DMU_OT_IS_VALID(ot) (((ot) & DMU_OT_NEWTYPE) ? \
114 ((ot) & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS : \
115 (ot) < DMU_OT_NUMTYPES)
116
117 #define DMU_OT_IS_METADATA(ot) (((ot) & DMU_OT_NEWTYPE) ? \
118 ((ot) & DMU_OT_METADATA) : \
119 dmu_ot[(int)(ot)].ot_metadata)
120
121 /*
122 * These object types use bp_fill != 1 for their L0 bp's. Therefore they can't
123 * have their data embedded (i.e. use a BP_IS_EMBEDDED() bp), because bp_fill
124 * is repurposed for embedded BPs.
125 */
126 #define DMU_OT_HAS_FILL(ot) \
127 ((ot) == DMU_OT_DNODE || (ot) == DMU_OT_OBJSET)
128
129 #define DMU_OT_BYTESWAP(ot) (((ot) & DMU_OT_NEWTYPE) ? \
130 ((ot) & DMU_OT_BYTESWAP_MASK) : \
131 dmu_ot[(int)(ot)].ot_byteswap)
132
133 typedef enum dmu_object_type {
134 DMU_OT_NONE,
135 /* general: */
136 DMU_OT_OBJECT_DIRECTORY, /* ZAP */
137 DMU_OT_OBJECT_ARRAY, /* UINT64 */
138 DMU_OT_PACKED_NVLIST, /* UINT8 (XDR by nvlist_pack/unpack) */
139 DMU_OT_PACKED_NVLIST_SIZE, /* UINT64 */
140 DMU_OT_BPOBJ, /* UINT64 */
141 DMU_OT_BPOBJ_HDR, /* UINT64 */
142 /* spa: */
143 DMU_OT_SPACE_MAP_HEADER, /* UINT64 */
144 DMU_OT_SPACE_MAP, /* UINT64 */
145 /* zil: */
146 DMU_OT_INTENT_LOG, /* UINT64 */
147 /* dmu: */
148 DMU_OT_DNODE, /* DNODE */
149 DMU_OT_OBJSET, /* OBJSET */
150 /* dsl: */
151 DMU_OT_DSL_DIR, /* UINT64 */
152 DMU_OT_DSL_DIR_CHILD_MAP, /* ZAP */
153 DMU_OT_DSL_DS_SNAP_MAP, /* ZAP */
154 DMU_OT_DSL_PROPS, /* ZAP */
155 DMU_OT_DSL_DATASET, /* UINT64 */
156 /* zpl: */
157 DMU_OT_ZNODE, /* ZNODE */
158 DMU_OT_OLDACL, /* Old ACL */
159 DMU_OT_PLAIN_FILE_CONTENTS, /* UINT8 */
160 DMU_OT_DIRECTORY_CONTENTS, /* ZAP */
161 DMU_OT_MASTER_NODE, /* ZAP */
162 DMU_OT_UNLINKED_SET, /* ZAP */
163 /* zvol: */
164 DMU_OT_ZVOL, /* UINT8 */
165 DMU_OT_ZVOL_PROP, /* ZAP */
166 /* other; for testing only! */
167 DMU_OT_PLAIN_OTHER, /* UINT8 */
168 DMU_OT_UINT64_OTHER, /* UINT64 */
169 DMU_OT_ZAP_OTHER, /* ZAP */
170 /* new object types: */
171 DMU_OT_ERROR_LOG, /* ZAP */
172 DMU_OT_SPA_HISTORY, /* UINT8 */
173 DMU_OT_SPA_HISTORY_OFFSETS, /* spa_his_phys_t */
174 DMU_OT_POOL_PROPS, /* ZAP */
175 DMU_OT_DSL_PERMS, /* ZAP */
176 DMU_OT_ACL, /* ACL */
177 DMU_OT_SYSACL, /* SYSACL */
178 DMU_OT_FUID, /* FUID table (Packed NVLIST UINT8) */
179 DMU_OT_FUID_SIZE, /* FUID table size UINT64 */
180 DMU_OT_NEXT_CLONES, /* ZAP */
181 DMU_OT_SCAN_QUEUE, /* ZAP */
182 DMU_OT_USERGROUP_USED, /* ZAP */
183 DMU_OT_USERGROUP_QUOTA, /* ZAP */
184 DMU_OT_USERREFS, /* ZAP */
185 DMU_OT_DDT_ZAP, /* ZAP */
186 DMU_OT_DDT_STATS, /* ZAP */
187 DMU_OT_SA, /* System attr */
188 DMU_OT_SA_MASTER_NODE, /* ZAP */
189 DMU_OT_SA_ATTR_REGISTRATION, /* ZAP */
190 DMU_OT_SA_ATTR_LAYOUTS, /* ZAP */
191 DMU_OT_SCAN_XLATE, /* ZAP */
192 DMU_OT_DEDUP, /* fake dedup BP from ddt_bp_create() */
193 DMU_OT_DEADLIST, /* ZAP */
194 DMU_OT_DEADLIST_HDR, /* UINT64 */
195 DMU_OT_DSL_CLONES, /* ZAP */
196 DMU_OT_BPOBJ_SUBOBJ, /* UINT64 */
197 /*
198 * Do not allocate new object types here. Doing so makes the on-disk
199 * format incompatible with any other format that uses the same object
200 * type number.
201 *
202 * When creating an object which does not have one of the above types
203 * use the DMU_OTN_* type with the correct byteswap and metadata
204 * values.
205 *
206 * The DMU_OTN_* types do not have entries in the dmu_ot table,
207 * use the DMU_OT_IS_METDATA() and DMU_OT_BYTESWAP() macros instead
208 * of indexing into dmu_ot directly (this works for both DMU_OT_* types
209 * and DMU_OTN_* types).
210 */
211 DMU_OT_NUMTYPES,
212
213 /*
214 * Names for valid types declared with DMU_OT().
215 */
216 DMU_OTN_UINT8_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE),
217 DMU_OTN_UINT8_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE),
218 DMU_OTN_UINT16_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE),
219 DMU_OTN_UINT16_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE),
220 DMU_OTN_UINT32_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE),
221 DMU_OTN_UINT32_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE),
222 DMU_OTN_UINT64_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE),
223 DMU_OTN_UINT64_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE),
224 DMU_OTN_ZAP_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE),
225 DMU_OTN_ZAP_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE),
226 } dmu_object_type_t;
227
228 typedef enum txg_how {
229 TXG_WAIT = 1,
230 TXG_NOWAIT,
231 TXG_WAITED,
232 } txg_how_t;
233
234 void byteswap_uint64_array(void *buf, size_t size);
235 void byteswap_uint32_array(void *buf, size_t size);
236 void byteswap_uint16_array(void *buf, size_t size);
237 void byteswap_uint8_array(void *buf, size_t size);
238 void zap_byteswap(void *buf, size_t size);
239 void zfs_oldacl_byteswap(void *buf, size_t size);
240 void zfs_acl_byteswap(void *buf, size_t size);
241 void zfs_znode_byteswap(void *buf, size_t size);
242
243 #define DS_FIND_SNAPSHOTS (1<<0)
244 #define DS_FIND_CHILDREN (1<<1)
245 #define DS_FIND_SERIALIZE (1<<2)
246
247 /*
248 * The maximum number of bytes that can be accessed as part of one
249 * operation, including metadata.
250 */
251 #define DMU_MAX_ACCESS (64 * 1024 * 1024) /* 64MB */
252 #define DMU_MAX_DELETEBLKCNT (20480) /* ~5MB of indirect blocks */
253
254 #define DMU_USERUSED_OBJECT (-1ULL)
255 #define DMU_GROUPUSED_OBJECT (-2ULL)
256
257 /*
258 * artificial blkids for bonus buffer and spill blocks
259 */
260 #define DMU_BONUS_BLKID (-1ULL)
261 #define DMU_SPILL_BLKID (-2ULL)
262 /*
263 * Public routines to create, destroy, open, and close objsets.
264 */
265 int dmu_objset_hold(const char *name, void *tag, objset_t **osp);
266 int dmu_objset_own(const char *name, dmu_objset_type_t type,
267 boolean_t readonly, void *tag, objset_t **osp);
268 void dmu_objset_rele(objset_t *os, void *tag);
269 void dmu_objset_disown(objset_t *os, void *tag);
270 int dmu_objset_open_ds(struct dsl_dataset *ds, objset_t **osp);
271
272 void dmu_objset_evict_dbufs(objset_t *os);
273 int dmu_objset_create(const char *name, dmu_objset_type_t type, uint64_t flags,
274 void (*func)(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx), void *arg);
275 int dmu_objset_clone(const char *name, const char *origin);
276 int dsl_destroy_snapshots_nvl(struct nvlist *snaps, boolean_t defer,
277 struct nvlist *errlist);
278 int dmu_objset_snapshot_one(const char *fsname, const char *snapname);
279 int dmu_objset_snapshot_tmp(const char *, const char *, int);
280 int dmu_objset_find(char *name, int func(const char *, void *), void *arg,
281 int flags);
282 void dmu_objset_byteswap(void *buf, size_t size);
283 int dsl_dataset_rename_snapshot(const char *fsname,
284 const char *oldsnapname, const char *newsnapname, boolean_t recursive);
285
286 typedef struct dmu_buf {
287 uint64_t db_object; /* object that this buffer is part of */
288 uint64_t db_offset; /* byte offset in this object */
289 uint64_t db_size; /* size of buffer in bytes */
290 void *db_data; /* data in buffer */
291 } dmu_buf_t;
292
293 /*
294 * The names of zap entries in the DIRECTORY_OBJECT of the MOS.
295 */
296 #define DMU_POOL_DIRECTORY_OBJECT 1
297 #define DMU_POOL_CONFIG "config"
298 #define DMU_POOL_FEATURES_FOR_WRITE "features_for_write"
299 #define DMU_POOL_FEATURES_FOR_READ "features_for_read"
300 #define DMU_POOL_FEATURE_DESCRIPTIONS "feature_descriptions"
301 #define DMU_POOL_FEATURE_ENABLED_TXG "feature_enabled_txg"
302 #define DMU_POOL_ROOT_DATASET "root_dataset"
303 #define DMU_POOL_SYNC_BPOBJ "sync_bplist"
304 #define DMU_POOL_ERRLOG_SCRUB "errlog_scrub"
305 #define DMU_POOL_ERRLOG_LAST "errlog_last"
306 #define DMU_POOL_SPARES "spares"
307 #define DMU_POOL_DEFLATE "deflate"
308 #define DMU_POOL_HISTORY "history"
309 #define DMU_POOL_PROPS "pool_props"
310 #define DMU_POOL_L2CACHE "l2cache"
311 #define DMU_POOL_TMP_USERREFS "tmp_userrefs"
312 #define DMU_POOL_DDT "DDT-%s-%s-%s"
313 #define DMU_POOL_DDT_STATS "DDT-statistics"
314 #define DMU_POOL_CREATION_VERSION "creation_version"
315 #define DMU_POOL_SCAN "scan"
316 #define DMU_POOL_FREE_BPOBJ "free_bpobj"
317 #define DMU_POOL_BPTREE_OBJ "bptree_obj"
318 #define DMU_POOL_EMPTY_BPOBJ "empty_bpobj"
319 #define DMU_POOL_VDEV_ZAP_MAP "com.delphix:vdev_zap_map"
320
321 /*
322 * Allocate an object from this objset. The range of object numbers
323 * available is (0, DN_MAX_OBJECT). Object 0 is the meta-dnode.
324 *
325 * The transaction must be assigned to a txg. The newly allocated
326 * object will be "held" in the transaction (ie. you can modify the
327 * newly allocated object in this transaction).
328 *
329 * dmu_object_alloc() chooses an object and returns it in *objectp.
330 *
331 * dmu_object_claim() allocates a specific object number. If that
332 * number is already allocated, it fails and returns EEXIST.
333 *
334 * Return 0 on success, or ENOSPC or EEXIST as specified above.
335 */
336 uint64_t dmu_object_alloc(objset_t *os, dmu_object_type_t ot,
337 int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
338 uint64_t dmu_object_alloc_dnsize(objset_t *os, dmu_object_type_t ot,
339 int blocksize, dmu_object_type_t bonus_type, int bonus_len,
340 int dnodesize, dmu_tx_t *tx);
341 int dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot,
342 int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
343 int dmu_object_claim_dnsize(objset_t *os, uint64_t object, dmu_object_type_t ot,
344 int blocksize, dmu_object_type_t bonus_type, int bonus_len,
345 int dnodesize, dmu_tx_t *tx);
346 int dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot,
347 int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *txp);
348 int dmu_object_reclaim_dnsize(objset_t *os, uint64_t object,
349 dmu_object_type_t ot, int blocksize, dmu_object_type_t bonustype,
350 int bonuslen, int dnodesize, dmu_tx_t *txp);
351
352 /*
353 * Free an object from this objset.
354 *
355 * The object's data will be freed as well (ie. you don't need to call
356 * dmu_free(object, 0, -1, tx)).
357 *
358 * The object need not be held in the transaction.
359 *
360 * If there are any holds on this object's buffers (via dmu_buf_hold()),
361 * or tx holds on the object (via dmu_tx_hold_object()), you can not
362 * free it; it fails and returns EBUSY.
363 *
364 * If the object is not allocated, it fails and returns ENOENT.
365 *
366 * Return 0 on success, or EBUSY or ENOENT as specified above.
367 */
368 int dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx);
369
370 /*
371 * Find the next allocated or free object.
372 *
373 * The objectp parameter is in-out. It will be updated to be the next
374 * object which is allocated. Ignore objects which have not been
375 * modified since txg.
376 *
377 * XXX Can only be called on a objset with no dirty data.
378 *
379 * Returns 0 on success, or ENOENT if there are no more objects.
380 */
381 int dmu_object_next(objset_t *os, uint64_t *objectp,
382 boolean_t hole, uint64_t txg);
383
384 /*
385 * Set the data blocksize for an object.
386 *
387 * The object cannot have any blocks allcated beyond the first. If
388 * the first block is allocated already, the new size must be greater
389 * than the current block size. If these conditions are not met,
390 * ENOTSUP will be returned.
391 *
392 * Returns 0 on success, or EBUSY if there are any holds on the object
393 * contents, or ENOTSUP as described above.
394 */
395 int dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size,
396 int ibs, dmu_tx_t *tx);
397
398 /*
399 * Set the checksum property on a dnode. The new checksum algorithm will
400 * apply to all newly written blocks; existing blocks will not be affected.
401 */
402 void dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
403 dmu_tx_t *tx);
404
405 /*
406 * Set the compress property on a dnode. The new compression algorithm will
407 * apply to all newly written blocks; existing blocks will not be affected.
408 */
409 void dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
410 dmu_tx_t *tx);
411
412 void
413 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
414 void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
415 int compressed_size, int byteorder, dmu_tx_t *tx);
416
417 /*
418 * Decide how to write a block: checksum, compression, number of copies, etc.
419 */
420 #define WP_NOFILL 0x1
421 #define WP_DMU_SYNC 0x2
422 #define WP_SPILL 0x4
423
424 void dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp,
425 struct zio_prop *zp);
426 /*
427 * The bonus data is accessed more or less like a regular buffer.
428 * You must dmu_bonus_hold() to get the buffer, which will give you a
429 * dmu_buf_t with db_offset==-1ULL, and db_size = the size of the bonus
430 * data. As with any normal buffer, you must call dmu_buf_read() to
431 * read db_data, dmu_buf_will_dirty() before modifying it, and the
432 * object must be held in an assigned transaction before calling
433 * dmu_buf_will_dirty. You may use dmu_buf_set_user() on the bonus
434 * buffer as well. You must release what you hold with dmu_buf_rele().
435 *
436 * Returns ENOENT, EIO, or 0.
437 */
438 int dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **);
439 int dmu_bonus_max(void);
440 int dmu_set_bonus(dmu_buf_t *, int, dmu_tx_t *);
441 int dmu_set_bonustype(dmu_buf_t *, dmu_object_type_t, dmu_tx_t *);
442 dmu_object_type_t dmu_get_bonustype(dmu_buf_t *);
443 int dmu_rm_spill(objset_t *, uint64_t, dmu_tx_t *);
444
445 /*
446 * Special spill buffer support used by "SA" framework
447 */
448
449 int dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp);
450 int dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags,
451 void *tag, dmu_buf_t **dbp);
452 int dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp);
453
454 /*
455 * Obtain the DMU buffer from the specified object which contains the
456 * specified offset. dmu_buf_hold() puts a "hold" on the buffer, so
457 * that it will remain in memory. You must release the hold with
458 * dmu_buf_rele(). You must not access the dmu_buf_t after releasing
459 * what you hold. You must have a hold on any dmu_buf_t* you pass to the DMU.
460 *
461 * You must call dmu_buf_read, dmu_buf_will_dirty, or dmu_buf_will_fill
462 * on the returned buffer before reading or writing the buffer's
463 * db_data. The comments for those routines describe what particular
464 * operations are valid after calling them.
465 *
466 * The object number must be a valid, allocated object number.
467 */
468 int dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
469 void *tag, dmu_buf_t **, int flags);
470 int dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
471 void *tag, dmu_buf_t **dbp, int flags);
472
473 /*
474 * Add a reference to a dmu buffer that has already been held via
475 * dmu_buf_hold() in the current context.
476 */
477 void dmu_buf_add_ref(dmu_buf_t *db, void* tag);
478
479 /*
480 * Attempt to add a reference to a dmu buffer that is in an unknown state,
481 * using a pointer that may have been invalidated by eviction processing.
482 * The request will succeed if the passed in dbuf still represents the
483 * same os/object/blkid, is ineligible for eviction, and has at least
484 * one hold by a user other than the syncer.
485 */
486 boolean_t dmu_buf_try_add_ref(dmu_buf_t *, objset_t *os, uint64_t object,
487 uint64_t blkid, void *tag);
488
489 void dmu_buf_rele(dmu_buf_t *db, void *tag);
490 uint64_t dmu_buf_refcount(dmu_buf_t *db);
491
492 /*
493 * dmu_buf_hold_array holds the DMU buffers which contain all bytes in a
494 * range of an object. A pointer to an array of dmu_buf_t*'s is
495 * returned (in *dbpp).
496 *
497 * dmu_buf_rele_array releases the hold on an array of dmu_buf_t*'s, and
498 * frees the array. The hold on the array of buffers MUST be released
499 * with dmu_buf_rele_array. You can NOT release the hold on each buffer
500 * individually with dmu_buf_rele.
501 */
502 int dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset,
503 uint64_t length, boolean_t read, void *tag,
504 int *numbufsp, dmu_buf_t ***dbpp);
505 void dmu_buf_rele_array(dmu_buf_t **, int numbufs, void *tag);
506
507 typedef void dmu_buf_evict_func_t(void *user_ptr);
508
509 /*
510 * A DMU buffer user object may be associated with a dbuf for the
511 * duration of its lifetime. This allows the user of a dbuf (client)
512 * to attach private data to a dbuf (e.g. in-core only data such as a
513 * dnode_children_t, zap_t, or zap_leaf_t) and be optionally notified
514 * when that dbuf has been evicted. Clients typically respond to the
515 * eviction notification by freeing their private data, thus ensuring
516 * the same lifetime for both dbuf and private data.
517 *
518 * The mapping from a dmu_buf_user_t to any client private data is the
519 * client's responsibility. All current consumers of the API with private
520 * data embed a dmu_buf_user_t as the first member of the structure for
521 * their private data. This allows conversions between the two types
522 * with a simple cast. Since the DMU buf user API never needs access
523 * to the private data, other strategies can be employed if necessary
524 * or convenient for the client (e.g. using container_of() to do the
525 * conversion for private data that cannot have the dmu_buf_user_t as
526 * its first member).
527 *
528 * Eviction callbacks are executed without the dbuf mutex held or any
529 * other type of mechanism to guarantee that the dbuf is still available.
530 * For this reason, users must assume the dbuf has already been freed
531 * and not reference the dbuf from the callback context.
532 *
533 * Users requesting "immediate eviction" are notified as soon as the dbuf
534 * is only referenced by dirty records (dirties == holds). Otherwise the
535 * notification occurs after eviction processing for the dbuf begins.
536 */
537 typedef struct dmu_buf_user {
538 /*
539 * Asynchronous user eviction callback state.
540 */
541 taskq_ent_t dbu_tqent;
542
543 /* This instance's eviction function pointer. */
544 dmu_buf_evict_func_t *dbu_evict_func;
545 #ifdef ZFS_DEBUG
546 /*
547 * Pointer to user's dbuf pointer. NULL for clients that do
548 * not associate a dbuf with their user data.
549 *
550 * The dbuf pointer is cleared upon eviction so as to catch
551 * use-after-evict bugs in clients.
552 */
553 dmu_buf_t **dbu_clear_on_evict_dbufp;
554 #endif
555 } dmu_buf_user_t;
556
557 /*
558 * Initialize the given dmu_buf_user_t instance with the eviction function
559 * evict_func, to be called when the user is evicted.
560 *
561 * NOTE: This function should only be called once on a given dmu_buf_user_t.
562 * To allow enforcement of this, dbu must already be zeroed on entry.
563 */
564 #ifdef __lint
565 /* Very ugly, but it beats issuing suppression directives in many Makefiles. */
566 extern void
567 dmu_buf_init_user(dmu_buf_user_t *dbu, dmu_buf_evict_func_t *evict_func,
568 dmu_buf_t **clear_on_evict_dbufp);
569 #else /* __lint */
570 static inline void
571 dmu_buf_init_user(dmu_buf_user_t *dbu, dmu_buf_evict_func_t *evict_func,
572 dmu_buf_t **clear_on_evict_dbufp)
573 {
574 ASSERT(dbu->dbu_evict_func == NULL);
575 ASSERT(evict_func != NULL);
576 dbu->dbu_evict_func = evict_func;
577 taskq_init_ent(&dbu->dbu_tqent);
578 #ifdef ZFS_DEBUG
579 dbu->dbu_clear_on_evict_dbufp = clear_on_evict_dbufp;
580 #endif
581 }
582 #endif /* __lint */
583
584 /*
585 * Attach user data to a dbuf and mark it for normal (when the dbuf's
586 * data is cleared or its reference count goes to zero) eviction processing.
587 *
588 * Returns NULL on success, or the existing user if another user currently
589 * owns the buffer.
590 */
591 void *dmu_buf_set_user(dmu_buf_t *db, dmu_buf_user_t *user);
592
593 /*
594 * Attach user data to a dbuf and mark it for immediate (its dirty and
595 * reference counts are equal) eviction processing.
596 *
597 * Returns NULL on success, or the existing user if another user currently
598 * owns the buffer.
599 */
600 void *dmu_buf_set_user_ie(dmu_buf_t *db, dmu_buf_user_t *user);
601
602 /*
603 * Replace the current user of a dbuf.
604 *
605 * If given the current user of a dbuf, replaces the dbuf's user with
606 * "new_user" and returns the user data pointer that was replaced.
607 * Otherwise returns the current, and unmodified, dbuf user pointer.
608 */
609 void *dmu_buf_replace_user(dmu_buf_t *db,
610 dmu_buf_user_t *old_user, dmu_buf_user_t *new_user);
611
612 /*
613 * Remove the specified user data for a DMU buffer.
614 *
615 * Returns the user that was removed on success, or the current user if
616 * another user currently owns the buffer.
617 */
618 void *dmu_buf_remove_user(dmu_buf_t *db, dmu_buf_user_t *user);
619
620 /*
621 * Returns the user data (dmu_buf_user_t *) associated with this dbuf.
622 */
623 void *dmu_buf_get_user(dmu_buf_t *db);
624
625 objset_t *dmu_buf_get_objset(dmu_buf_t *db);
626 dnode_t *dmu_buf_dnode_enter(dmu_buf_t *db);
627 void dmu_buf_dnode_exit(dmu_buf_t *db);
628
629 /* Block until any in-progress dmu buf user evictions complete. */
630 void dmu_buf_user_evict_wait(void);
631
632 /*
633 * Returns the blkptr associated with this dbuf, or NULL if not set.
634 */
635 struct blkptr *dmu_buf_get_blkptr(dmu_buf_t *db);
636
637 /*
638 * Indicate that you are going to modify the buffer's data (db_data).
639 *
640 * The transaction (tx) must be assigned to a txg (ie. you've called
641 * dmu_tx_assign()). The buffer's object must be held in the tx
642 * (ie. you've called dmu_tx_hold_object(tx, db->db_object)).
643 */
644 void dmu_buf_will_dirty(dmu_buf_t *db, dmu_tx_t *tx);
645
646 /*
647 * Tells if the given dbuf is freeable.
648 */
649 boolean_t dmu_buf_freeable(dmu_buf_t *);
650
651 /*
652 * You must create a transaction, then hold the objects which you will
653 * (or might) modify as part of this transaction. Then you must assign
654 * the transaction to a transaction group. Once the transaction has
655 * been assigned, you can modify buffers which belong to held objects as
656 * part of this transaction. You can't modify buffers before the
657 * transaction has been assigned; you can't modify buffers which don't
658 * belong to objects which this transaction holds; you can't hold
659 * objects once the transaction has been assigned. You may hold an
660 * object which you are going to free (with dmu_object_free()), but you
661 * don't have to.
662 *
663 * You can abort the transaction before it has been assigned.
664 *
665 * Note that you may hold buffers (with dmu_buf_hold) at any time,
666 * regardless of transaction state.
667 */
668
669 #define DMU_NEW_OBJECT (-1ULL)
670 #define DMU_OBJECT_END (-1ULL)
671
672 dmu_tx_t *dmu_tx_create(objset_t *os);
673 void dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len);
674 void dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off,
675 uint64_t len);
676 void dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name);
677 void dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object);
678 void dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object);
679 void dmu_tx_hold_sa(dmu_tx_t *tx, struct sa_handle *hdl, boolean_t may_grow);
680 void dmu_tx_hold_sa_create(dmu_tx_t *tx, int total_size);
681 void dmu_tx_abort(dmu_tx_t *tx);
682 int dmu_tx_assign(dmu_tx_t *tx, enum txg_how txg_how);
683 void dmu_tx_wait(dmu_tx_t *tx);
684 void dmu_tx_commit(dmu_tx_t *tx);
685 void dmu_tx_mark_netfree(dmu_tx_t *tx);
686
687 /*
688 * To register a commit callback, dmu_tx_callback_register() must be called.
689 *
690 * dcb_data is a pointer to caller private data that is passed on as a
691 * callback parameter. The caller is responsible for properly allocating and
692 * freeing it.
693 *
694 * When registering a callback, the transaction must be already created, but
695 * it cannot be committed or aborted. It can be assigned to a txg or not.
696 *
697 * The callback will be called after the transaction has been safely written
698 * to stable storage and will also be called if the dmu_tx is aborted.
699 * If there is any error which prevents the transaction from being committed to
700 * disk, the callback will be called with a value of error != 0.
701 */
702 typedef void dmu_tx_callback_func_t(void *dcb_data, int error);
703
704 void dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *dcb_func,
705 void *dcb_data);
706
707 /*
708 * Free up the data blocks for a defined range of a file. If size is
709 * -1, the range from offset to end-of-file is freed.
710 */
711 int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
712 uint64_t size, dmu_tx_t *tx);
713 int dmu_free_long_range(objset_t *os, uint64_t object, uint64_t offset,
714 uint64_t size);
715 int dmu_free_long_object(objset_t *os, uint64_t object);
716
717 /*
718 * Convenience functions.
719 *
720 * Canfail routines will return 0 on success, or an errno if there is a
721 * nonrecoverable I/O error.
722 */
723 #define DMU_READ_PREFETCH 0 /* prefetch */
724 #define DMU_READ_NO_PREFETCH 1 /* don't prefetch */
725 int dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
726 void *buf, uint32_t flags);
727 void dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
728 const void *buf, dmu_tx_t *tx);
729 void dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
730 dmu_tx_t *tx);
731 #ifdef _KERNEL
732 #include <linux/blkdev_compat.h>
733 int dmu_read_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size);
734 int dmu_read_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size);
735 int dmu_write_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size,
736 dmu_tx_t *tx);
737 int dmu_write_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size,
738 dmu_tx_t *tx);
739 #endif
740 struct arc_buf *dmu_request_arcbuf(dmu_buf_t *handle, int size);
741 void dmu_return_arcbuf(struct arc_buf *buf);
742 void dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, struct arc_buf *buf,
743 dmu_tx_t *tx);
744 int dmu_xuio_init(struct xuio *uio, int niov);
745 void dmu_xuio_fini(struct xuio *uio);
746 int dmu_xuio_add(struct xuio *uio, struct arc_buf *abuf, offset_t off,
747 size_t n);
748 int dmu_xuio_cnt(struct xuio *uio);
749 struct arc_buf *dmu_xuio_arcbuf(struct xuio *uio, int i);
750 void dmu_xuio_clear(struct xuio *uio, int i);
751 void xuio_stat_wbuf_copied(void);
752 void xuio_stat_wbuf_nocopy(void);
753
754 extern int zfs_prefetch_disable;
755 extern int zfs_max_recordsize;
756
757 /*
758 * Asynchronously try to read in the data.
759 */
760 void dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
761 uint64_t len, enum zio_priority pri);
762
763 typedef struct dmu_object_info {
764 /* All sizes are in bytes unless otherwise indicated. */
765 uint32_t doi_data_block_size;
766 uint32_t doi_metadata_block_size;
767 dmu_object_type_t doi_type;
768 dmu_object_type_t doi_bonus_type;
769 uint64_t doi_bonus_size;
770 uint8_t doi_indirection; /* 2 = dnode->indirect->data */
771 uint8_t doi_checksum;
772 uint8_t doi_compress;
773 uint8_t doi_nblkptr;
774 uint8_t doi_pad[4];
775 uint64_t doi_dnodesize;
776 uint64_t doi_physical_blocks_512; /* data + metadata, 512b blks */
777 uint64_t doi_max_offset;
778 uint64_t doi_fill_count; /* number of non-empty blocks */
779 } dmu_object_info_t;
780
781 typedef void (*const arc_byteswap_func_t)(void *buf, size_t size);
782
783 typedef struct dmu_object_type_info {
784 dmu_object_byteswap_t ot_byteswap;
785 boolean_t ot_metadata;
786 char *ot_name;
787 } dmu_object_type_info_t;
788
789 typedef const struct dmu_object_byteswap_info {
790 arc_byteswap_func_t ob_func;
791 char *ob_name;
792 } dmu_object_byteswap_info_t;
793
794 extern const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES];
795 extern const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS];
796
797 /*
798 * Get information on a DMU object.
799 *
800 * Return 0 on success or ENOENT if object is not allocated.
801 *
802 * If doi is NULL, just indicates whether the object exists.
803 */
804 int dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi);
805 void __dmu_object_info_from_dnode(struct dnode *dn, dmu_object_info_t *doi);
806 /* Like dmu_object_info, but faster if you have a held dnode in hand. */
807 void dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi);
808 /* Like dmu_object_info, but faster if you have a held dbuf in hand. */
809 void dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi);
810 /*
811 * Like dmu_object_info_from_db, but faster still when you only care about
812 * the size. This is specifically optimized for zfs_getattr().
813 */
814 void dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize,
815 u_longlong_t *nblk512);
816
817 void dmu_object_dnsize_from_db(dmu_buf_t *db, int *dnsize);
818
819 typedef struct dmu_objset_stats {
820 uint64_t dds_num_clones; /* number of clones of this */
821 uint64_t dds_creation_txg;
822 uint64_t dds_guid;
823 dmu_objset_type_t dds_type;
824 uint8_t dds_is_snapshot;
825 uint8_t dds_inconsistent;
826 char dds_origin[ZFS_MAX_DATASET_NAME_LEN];
827 } dmu_objset_stats_t;
828
829 /*
830 * Get stats on a dataset.
831 */
832 void dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat);
833
834 /*
835 * Add entries to the nvlist for all the objset's properties. See
836 * zfs_prop_table[] and zfs(1m) for details on the properties.
837 */
838 void dmu_objset_stats(objset_t *os, struct nvlist *nv);
839
840 /*
841 * Get the space usage statistics for statvfs().
842 *
843 * refdbytes is the amount of space "referenced" by this objset.
844 * availbytes is the amount of space available to this objset, taking
845 * into account quotas & reservations, assuming that no other objsets
846 * use the space first. These values correspond to the 'referenced' and
847 * 'available' properties, described in the zfs(1m) manpage.
848 *
849 * usedobjs and availobjs are the number of objects currently allocated,
850 * and available.
851 */
852 void dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp,
853 uint64_t *usedobjsp, uint64_t *availobjsp);
854
855 /*
856 * The fsid_guid is a 56-bit ID that can change to avoid collisions.
857 * (Contrast with the ds_guid which is a 64-bit ID that will never
858 * change, so there is a small probability that it will collide.)
859 */
860 uint64_t dmu_objset_fsid_guid(objset_t *os);
861
862 /*
863 * Get the [cm]time for an objset's snapshot dir
864 */
865 timestruc_t dmu_objset_snap_cmtime(objset_t *os);
866
867 int dmu_objset_is_snapshot(objset_t *os);
868
869 extern struct spa *dmu_objset_spa(objset_t *os);
870 extern struct zilog *dmu_objset_zil(objset_t *os);
871 extern struct dsl_pool *dmu_objset_pool(objset_t *os);
872 extern struct dsl_dataset *dmu_objset_ds(objset_t *os);
873 extern void dmu_objset_name(objset_t *os, char *buf);
874 extern dmu_objset_type_t dmu_objset_type(objset_t *os);
875 extern uint64_t dmu_objset_id(objset_t *os);
876 extern uint64_t dmu_objset_dnodesize(objset_t *os);
877 extern zfs_sync_type_t dmu_objset_syncprop(objset_t *os);
878 extern zfs_logbias_op_t dmu_objset_logbias(objset_t *os);
879 extern int dmu_snapshot_list_next(objset_t *os, int namelen, char *name,
880 uint64_t *id, uint64_t *offp, boolean_t *case_conflict);
881 extern int dmu_snapshot_lookup(objset_t *os, const char *name, uint64_t *val);
882 extern int dmu_snapshot_realname(objset_t *os, char *name, char *real,
883 int maxlen, boolean_t *conflict);
884 extern int dmu_dir_list_next(objset_t *os, int namelen, char *name,
885 uint64_t *idp, uint64_t *offp);
886
887 typedef int objset_used_cb_t(dmu_object_type_t bonustype,
888 void *bonus, uint64_t *userp, uint64_t *groupp);
889 extern void dmu_objset_register_type(dmu_objset_type_t ost,
890 objset_used_cb_t *cb);
891 extern void dmu_objset_set_user(objset_t *os, void *user_ptr);
892 extern void *dmu_objset_get_user(objset_t *os);
893
894 /*
895 * Return the txg number for the given assigned transaction.
896 */
897 uint64_t dmu_tx_get_txg(dmu_tx_t *tx);
898
899 /*
900 * Synchronous write.
901 * If a parent zio is provided this function initiates a write on the
902 * provided buffer as a child of the parent zio.
903 * In the absence of a parent zio, the write is completed synchronously.
904 * At write completion, blk is filled with the bp of the written block.
905 * Note that while the data covered by this function will be on stable
906 * storage when the write completes this new data does not become a
907 * permanent part of the file until the associated transaction commits.
908 */
909
910 /*
911 * {zfs,zvol,ztest}_get_done() args
912 */
913 typedef struct zgd {
914 struct zilog *zgd_zilog;
915 struct blkptr *zgd_bp;
916 dmu_buf_t *zgd_db;
917 struct rl *zgd_rl;
918 void *zgd_private;
919 } zgd_t;
920
921 typedef void dmu_sync_cb_t(zgd_t *arg, int error);
922 int dmu_sync(struct zio *zio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd);
923
924 /*
925 * Find the next hole or data block in file starting at *off
926 * Return found offset in *off. Return ESRCH for end of file.
927 */
928 int dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole,
929 uint64_t *off);
930
931 /*
932 * Initial setup and final teardown.
933 */
934 extern void dmu_init(void);
935 extern void dmu_fini(void);
936
937 typedef void (*dmu_traverse_cb_t)(objset_t *os, void *arg, struct blkptr *bp,
938 uint64_t object, uint64_t offset, int len);
939 void dmu_traverse_objset(objset_t *os, uint64_t txg_start,
940 dmu_traverse_cb_t cb, void *arg);
941
942 int dmu_diff(const char *tosnap_name, const char *fromsnap_name,
943 struct vnode *vp, offset_t *offp);
944
945 /* CRC64 table */
946 #define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */
947 extern uint64_t zfs_crc64_table[256];
948
949 extern int zfs_mdcomp_disable;
950
951 #ifdef __cplusplus
952 }
953 #endif
954
955 #endif /* _SYS_DMU_H */