]> git.proxmox.com Git - mirror_zfs.git/blob - include/sys/dmu.h
Illumos 5531 - NULL pointer dereference in dsl_prop_get_ds()
[mirror_zfs.git] / include / sys / dmu.h
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
26 * Copyright 2014 HybridCluster. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 */
29
30 /* Portions Copyright 2010 Robert Milkowski */
31
32 #ifndef _SYS_DMU_H
33 #define _SYS_DMU_H
34
35 /*
36 * This file describes the interface that the DMU provides for its
37 * consumers.
38 *
39 * The DMU also interacts with the SPA. That interface is described in
40 * dmu_spa.h.
41 */
42
43 #include <sys/zfs_context.h>
44 #include <sys/inttypes.h>
45 #include <sys/cred.h>
46 #include <sys/fs/zfs.h>
47 #include <sys/uio.h>
48
49 #ifdef __cplusplus
50 extern "C" {
51 #endif
52
53 struct page;
54 struct vnode;
55 struct spa;
56 struct zilog;
57 struct zio;
58 struct blkptr;
59 struct zap_cursor;
60 struct dsl_dataset;
61 struct dsl_pool;
62 struct dnode;
63 struct drr_begin;
64 struct drr_end;
65 struct zbookmark_phys;
66 struct spa;
67 struct nvlist;
68 struct arc_buf;
69 struct zio_prop;
70 struct sa_handle;
71
72 typedef struct objset objset_t;
73 typedef struct dmu_tx dmu_tx_t;
74 typedef struct dsl_dir dsl_dir_t;
75
76 typedef enum dmu_object_byteswap {
77 DMU_BSWAP_UINT8,
78 DMU_BSWAP_UINT16,
79 DMU_BSWAP_UINT32,
80 DMU_BSWAP_UINT64,
81 DMU_BSWAP_ZAP,
82 DMU_BSWAP_DNODE,
83 DMU_BSWAP_OBJSET,
84 DMU_BSWAP_ZNODE,
85 DMU_BSWAP_OLDACL,
86 DMU_BSWAP_ACL,
87 /*
88 * Allocating a new byteswap type number makes the on-disk format
89 * incompatible with any other format that uses the same number.
90 *
91 * Data can usually be structured to work with one of the
92 * DMU_BSWAP_UINT* or DMU_BSWAP_ZAP types.
93 */
94 DMU_BSWAP_NUMFUNCS
95 } dmu_object_byteswap_t;
96
97 #define DMU_OT_NEWTYPE 0x80
98 #define DMU_OT_METADATA 0x40
99 #define DMU_OT_BYTESWAP_MASK 0x3f
100
101 /*
102 * Defines a uint8_t object type. Object types specify if the data
103 * in the object is metadata (boolean) and how to byteswap the data
104 * (dmu_object_byteswap_t).
105 */
106 #define DMU_OT(byteswap, metadata) \
107 (DMU_OT_NEWTYPE | \
108 ((metadata) ? DMU_OT_METADATA : 0) | \
109 ((byteswap) & DMU_OT_BYTESWAP_MASK))
110
111 #define DMU_OT_IS_VALID(ot) (((ot) & DMU_OT_NEWTYPE) ? \
112 ((ot) & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS : \
113 (ot) < DMU_OT_NUMTYPES)
114
115 #define DMU_OT_IS_METADATA(ot) (((ot) & DMU_OT_NEWTYPE) ? \
116 ((ot) & DMU_OT_METADATA) : \
117 dmu_ot[(int)(ot)].ot_metadata)
118
119 /*
120 * These object types use bp_fill != 1 for their L0 bp's. Therefore they can't
121 * have their data embedded (i.e. use a BP_IS_EMBEDDED() bp), because bp_fill
122 * is repurposed for embedded BPs.
123 */
124 #define DMU_OT_HAS_FILL(ot) \
125 ((ot) == DMU_OT_DNODE || (ot) == DMU_OT_OBJSET)
126
127 #define DMU_OT_BYTESWAP(ot) (((ot) & DMU_OT_NEWTYPE) ? \
128 ((ot) & DMU_OT_BYTESWAP_MASK) : \
129 dmu_ot[(int)(ot)].ot_byteswap)
130
131 typedef enum dmu_object_type {
132 DMU_OT_NONE,
133 /* general: */
134 DMU_OT_OBJECT_DIRECTORY, /* ZAP */
135 DMU_OT_OBJECT_ARRAY, /* UINT64 */
136 DMU_OT_PACKED_NVLIST, /* UINT8 (XDR by nvlist_pack/unpack) */
137 DMU_OT_PACKED_NVLIST_SIZE, /* UINT64 */
138 DMU_OT_BPOBJ, /* UINT64 */
139 DMU_OT_BPOBJ_HDR, /* UINT64 */
140 /* spa: */
141 DMU_OT_SPACE_MAP_HEADER, /* UINT64 */
142 DMU_OT_SPACE_MAP, /* UINT64 */
143 /* zil: */
144 DMU_OT_INTENT_LOG, /* UINT64 */
145 /* dmu: */
146 DMU_OT_DNODE, /* DNODE */
147 DMU_OT_OBJSET, /* OBJSET */
148 /* dsl: */
149 DMU_OT_DSL_DIR, /* UINT64 */
150 DMU_OT_DSL_DIR_CHILD_MAP, /* ZAP */
151 DMU_OT_DSL_DS_SNAP_MAP, /* ZAP */
152 DMU_OT_DSL_PROPS, /* ZAP */
153 DMU_OT_DSL_DATASET, /* UINT64 */
154 /* zpl: */
155 DMU_OT_ZNODE, /* ZNODE */
156 DMU_OT_OLDACL, /* Old ACL */
157 DMU_OT_PLAIN_FILE_CONTENTS, /* UINT8 */
158 DMU_OT_DIRECTORY_CONTENTS, /* ZAP */
159 DMU_OT_MASTER_NODE, /* ZAP */
160 DMU_OT_UNLINKED_SET, /* ZAP */
161 /* zvol: */
162 DMU_OT_ZVOL, /* UINT8 */
163 DMU_OT_ZVOL_PROP, /* ZAP */
164 /* other; for testing only! */
165 DMU_OT_PLAIN_OTHER, /* UINT8 */
166 DMU_OT_UINT64_OTHER, /* UINT64 */
167 DMU_OT_ZAP_OTHER, /* ZAP */
168 /* new object types: */
169 DMU_OT_ERROR_LOG, /* ZAP */
170 DMU_OT_SPA_HISTORY, /* UINT8 */
171 DMU_OT_SPA_HISTORY_OFFSETS, /* spa_his_phys_t */
172 DMU_OT_POOL_PROPS, /* ZAP */
173 DMU_OT_DSL_PERMS, /* ZAP */
174 DMU_OT_ACL, /* ACL */
175 DMU_OT_SYSACL, /* SYSACL */
176 DMU_OT_FUID, /* FUID table (Packed NVLIST UINT8) */
177 DMU_OT_FUID_SIZE, /* FUID table size UINT64 */
178 DMU_OT_NEXT_CLONES, /* ZAP */
179 DMU_OT_SCAN_QUEUE, /* ZAP */
180 DMU_OT_USERGROUP_USED, /* ZAP */
181 DMU_OT_USERGROUP_QUOTA, /* ZAP */
182 DMU_OT_USERREFS, /* ZAP */
183 DMU_OT_DDT_ZAP, /* ZAP */
184 DMU_OT_DDT_STATS, /* ZAP */
185 DMU_OT_SA, /* System attr */
186 DMU_OT_SA_MASTER_NODE, /* ZAP */
187 DMU_OT_SA_ATTR_REGISTRATION, /* ZAP */
188 DMU_OT_SA_ATTR_LAYOUTS, /* ZAP */
189 DMU_OT_SCAN_XLATE, /* ZAP */
190 DMU_OT_DEDUP, /* fake dedup BP from ddt_bp_create() */
191 DMU_OT_DEADLIST, /* ZAP */
192 DMU_OT_DEADLIST_HDR, /* UINT64 */
193 DMU_OT_DSL_CLONES, /* ZAP */
194 DMU_OT_BPOBJ_SUBOBJ, /* UINT64 */
195 /*
196 * Do not allocate new object types here. Doing so makes the on-disk
197 * format incompatible with any other format that uses the same object
198 * type number.
199 *
200 * When creating an object which does not have one of the above types
201 * use the DMU_OTN_* type with the correct byteswap and metadata
202 * values.
203 *
204 * The DMU_OTN_* types do not have entries in the dmu_ot table,
205 * use the DMU_OT_IS_METDATA() and DMU_OT_BYTESWAP() macros instead
206 * of indexing into dmu_ot directly (this works for both DMU_OT_* types
207 * and DMU_OTN_* types).
208 */
209 DMU_OT_NUMTYPES,
210
211 /*
212 * Names for valid types declared with DMU_OT().
213 */
214 DMU_OTN_UINT8_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE),
215 DMU_OTN_UINT8_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE),
216 DMU_OTN_UINT16_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE),
217 DMU_OTN_UINT16_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE),
218 DMU_OTN_UINT32_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE),
219 DMU_OTN_UINT32_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE),
220 DMU_OTN_UINT64_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE),
221 DMU_OTN_UINT64_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE),
222 DMU_OTN_ZAP_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE),
223 DMU_OTN_ZAP_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE),
224 } dmu_object_type_t;
225
226 typedef enum txg_how {
227 TXG_WAIT = 1,
228 TXG_NOWAIT,
229 TXG_WAITED,
230 } txg_how_t;
231
232 void byteswap_uint64_array(void *buf, size_t size);
233 void byteswap_uint32_array(void *buf, size_t size);
234 void byteswap_uint16_array(void *buf, size_t size);
235 void byteswap_uint8_array(void *buf, size_t size);
236 void zap_byteswap(void *buf, size_t size);
237 void zfs_oldacl_byteswap(void *buf, size_t size);
238 void zfs_acl_byteswap(void *buf, size_t size);
239 void zfs_znode_byteswap(void *buf, size_t size);
240
241 #define DS_FIND_SNAPSHOTS (1<<0)
242 #define DS_FIND_CHILDREN (1<<1)
243
244 /*
245 * The maximum number of bytes that can be accessed as part of one
246 * operation, including metadata.
247 */
248 #define DMU_MAX_ACCESS (10<<20) /* 10MB */
249 #define DMU_MAX_DELETEBLKCNT (20480) /* ~5MB of indirect blocks */
250
251 #define DMU_USERUSED_OBJECT (-1ULL)
252 #define DMU_GROUPUSED_OBJECT (-2ULL)
253
254 /*
255 * artificial blkids for bonus buffer and spill blocks
256 */
257 #define DMU_BONUS_BLKID (-1ULL)
258 #define DMU_SPILL_BLKID (-2ULL)
259 /*
260 * Public routines to create, destroy, open, and close objsets.
261 */
262 int dmu_objset_hold(const char *name, void *tag, objset_t **osp);
263 int dmu_objset_own(const char *name, dmu_objset_type_t type,
264 boolean_t readonly, void *tag, objset_t **osp);
265 void dmu_objset_rele(objset_t *os, void *tag);
266 void dmu_objset_disown(objset_t *os, void *tag);
267 int dmu_objset_open_ds(struct dsl_dataset *ds, objset_t **osp);
268
269 void dmu_objset_evict_dbufs(objset_t *os);
270 int dmu_objset_create(const char *name, dmu_objset_type_t type, uint64_t flags,
271 void (*func)(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx), void *arg);
272 int dmu_objset_clone(const char *name, const char *origin);
273 int dsl_destroy_snapshots_nvl(struct nvlist *snaps, boolean_t defer,
274 struct nvlist *errlist);
275 int dmu_objset_snapshot_one(const char *fsname, const char *snapname);
276 int dmu_objset_snapshot_tmp(const char *, const char *, int);
277 int dmu_objset_find(char *name, int func(const char *, void *), void *arg,
278 int flags);
279 void dmu_objset_byteswap(void *buf, size_t size);
280 int dsl_dataset_rename_snapshot(const char *fsname,
281 const char *oldsnapname, const char *newsnapname, boolean_t recursive);
282
283 typedef struct dmu_buf {
284 uint64_t db_object; /* object that this buffer is part of */
285 uint64_t db_offset; /* byte offset in this object */
286 uint64_t db_size; /* size of buffer in bytes */
287 void *db_data; /* data in buffer */
288 } dmu_buf_t;
289
290 /*
291 * The names of zap entries in the DIRECTORY_OBJECT of the MOS.
292 */
293 #define DMU_POOL_DIRECTORY_OBJECT 1
294 #define DMU_POOL_CONFIG "config"
295 #define DMU_POOL_FEATURES_FOR_WRITE "features_for_write"
296 #define DMU_POOL_FEATURES_FOR_READ "features_for_read"
297 #define DMU_POOL_FEATURE_DESCRIPTIONS "feature_descriptions"
298 #define DMU_POOL_FEATURE_ENABLED_TXG "feature_enabled_txg"
299 #define DMU_POOL_ROOT_DATASET "root_dataset"
300 #define DMU_POOL_SYNC_BPOBJ "sync_bplist"
301 #define DMU_POOL_ERRLOG_SCRUB "errlog_scrub"
302 #define DMU_POOL_ERRLOG_LAST "errlog_last"
303 #define DMU_POOL_SPARES "spares"
304 #define DMU_POOL_DEFLATE "deflate"
305 #define DMU_POOL_HISTORY "history"
306 #define DMU_POOL_PROPS "pool_props"
307 #define DMU_POOL_L2CACHE "l2cache"
308 #define DMU_POOL_TMP_USERREFS "tmp_userrefs"
309 #define DMU_POOL_DDT "DDT-%s-%s-%s"
310 #define DMU_POOL_DDT_STATS "DDT-statistics"
311 #define DMU_POOL_CREATION_VERSION "creation_version"
312 #define DMU_POOL_SCAN "scan"
313 #define DMU_POOL_FREE_BPOBJ "free_bpobj"
314 #define DMU_POOL_BPTREE_OBJ "bptree_obj"
315 #define DMU_POOL_EMPTY_BPOBJ "empty_bpobj"
316
317 /*
318 * Allocate an object from this objset. The range of object numbers
319 * available is (0, DN_MAX_OBJECT). Object 0 is the meta-dnode.
320 *
321 * The transaction must be assigned to a txg. The newly allocated
322 * object will be "held" in the transaction (ie. you can modify the
323 * newly allocated object in this transaction).
324 *
325 * dmu_object_alloc() chooses an object and returns it in *objectp.
326 *
327 * dmu_object_claim() allocates a specific object number. If that
328 * number is already allocated, it fails and returns EEXIST.
329 *
330 * Return 0 on success, or ENOSPC or EEXIST as specified above.
331 */
332 uint64_t dmu_object_alloc(objset_t *os, dmu_object_type_t ot,
333 int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
334 int dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot,
335 int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
336 int dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot,
337 int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *txp);
338
339 /*
340 * Free an object from this objset.
341 *
342 * The object's data will be freed as well (ie. you don't need to call
343 * dmu_free(object, 0, -1, tx)).
344 *
345 * The object need not be held in the transaction.
346 *
347 * If there are any holds on this object's buffers (via dmu_buf_hold()),
348 * or tx holds on the object (via dmu_tx_hold_object()), you can not
349 * free it; it fails and returns EBUSY.
350 *
351 * If the object is not allocated, it fails and returns ENOENT.
352 *
353 * Return 0 on success, or EBUSY or ENOENT as specified above.
354 */
355 int dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx);
356
357 /*
358 * Find the next allocated or free object.
359 *
360 * The objectp parameter is in-out. It will be updated to be the next
361 * object which is allocated. Ignore objects which have not been
362 * modified since txg.
363 *
364 * XXX Can only be called on a objset with no dirty data.
365 *
366 * Returns 0 on success, or ENOENT if there are no more objects.
367 */
368 int dmu_object_next(objset_t *os, uint64_t *objectp,
369 boolean_t hole, uint64_t txg);
370
371 /*
372 * Set the data blocksize for an object.
373 *
374 * The object cannot have any blocks allcated beyond the first. If
375 * the first block is allocated already, the new size must be greater
376 * than the current block size. If these conditions are not met,
377 * ENOTSUP will be returned.
378 *
379 * Returns 0 on success, or EBUSY if there are any holds on the object
380 * contents, or ENOTSUP as described above.
381 */
382 int dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size,
383 int ibs, dmu_tx_t *tx);
384
385 /*
386 * Set the checksum property on a dnode. The new checksum algorithm will
387 * apply to all newly written blocks; existing blocks will not be affected.
388 */
389 void dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
390 dmu_tx_t *tx);
391
392 /*
393 * Set the compress property on a dnode. The new compression algorithm will
394 * apply to all newly written blocks; existing blocks will not be affected.
395 */
396 void dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
397 dmu_tx_t *tx);
398
399 void
400 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
401 void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
402 int compressed_size, int byteorder, dmu_tx_t *tx);
403
404 /*
405 * Decide how to write a block: checksum, compression, number of copies, etc.
406 */
407 #define WP_NOFILL 0x1
408 #define WP_DMU_SYNC 0x2
409 #define WP_SPILL 0x4
410
411 void dmu_write_policy(objset_t *os, struct dnode *dn, int level, int wp,
412 struct zio_prop *zp);
413 /*
414 * The bonus data is accessed more or less like a regular buffer.
415 * You must dmu_bonus_hold() to get the buffer, which will give you a
416 * dmu_buf_t with db_offset==-1ULL, and db_size = the size of the bonus
417 * data. As with any normal buffer, you must call dmu_buf_read() to
418 * read db_data, dmu_buf_will_dirty() before modifying it, and the
419 * object must be held in an assigned transaction before calling
420 * dmu_buf_will_dirty. You may use dmu_buf_set_user() on the bonus
421 * buffer as well. You must release what you hold with dmu_buf_rele().
422 *
423 * Returns ENOENT, EIO, or 0.
424 */
425 int dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **);
426 int dmu_bonus_max(void);
427 int dmu_set_bonus(dmu_buf_t *, int, dmu_tx_t *);
428 int dmu_set_bonustype(dmu_buf_t *, dmu_object_type_t, dmu_tx_t *);
429 dmu_object_type_t dmu_get_bonustype(dmu_buf_t *);
430 int dmu_rm_spill(objset_t *, uint64_t, dmu_tx_t *);
431
432 /*
433 * Special spill buffer support used by "SA" framework
434 */
435
436 int dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp);
437 int dmu_spill_hold_by_dnode(struct dnode *dn, uint32_t flags,
438 void *tag, dmu_buf_t **dbp);
439 int dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp);
440
441 /*
442 * Obtain the DMU buffer from the specified object which contains the
443 * specified offset. dmu_buf_hold() puts a "hold" on the buffer, so
444 * that it will remain in memory. You must release the hold with
445 * dmu_buf_rele(). You must not access the dmu_buf_t after releasing
446 * what you hold. You must have a hold on any dmu_buf_t* you pass to the DMU.
447 *
448 * You must call dmu_buf_read, dmu_buf_will_dirty, or dmu_buf_will_fill
449 * on the returned buffer before reading or writing the buffer's
450 * db_data. The comments for those routines describe what particular
451 * operations are valid after calling them.
452 *
453 * The object number must be a valid, allocated object number.
454 */
455 int dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
456 void *tag, dmu_buf_t **, int flags);
457
458 /*
459 * Add a reference to a dmu buffer that has already been held via
460 * dmu_buf_hold() in the current context.
461 */
462 void dmu_buf_add_ref(dmu_buf_t *db, void* tag);
463
464 /*
465 * Attempt to add a reference to a dmu buffer that is in an unknown state,
466 * using a pointer that may have been invalidated by eviction processing.
467 * The request will succeed if the passed in dbuf still represents the
468 * same os/object/blkid, is ineligible for eviction, and has at least
469 * one hold by a user other than the syncer.
470 */
471 boolean_t dmu_buf_try_add_ref(dmu_buf_t *, objset_t *os, uint64_t object,
472 uint64_t blkid, void *tag);
473
474 void dmu_buf_rele(dmu_buf_t *db, void *tag);
475 uint64_t dmu_buf_refcount(dmu_buf_t *db);
476
477 /*
478 * dmu_buf_hold_array holds the DMU buffers which contain all bytes in a
479 * range of an object. A pointer to an array of dmu_buf_t*'s is
480 * returned (in *dbpp).
481 *
482 * dmu_buf_rele_array releases the hold on an array of dmu_buf_t*'s, and
483 * frees the array. The hold on the array of buffers MUST be released
484 * with dmu_buf_rele_array. You can NOT release the hold on each buffer
485 * individually with dmu_buf_rele.
486 */
487 int dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset,
488 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp);
489 void dmu_buf_rele_array(dmu_buf_t **, int numbufs, void *tag);
490
491 typedef void dmu_buf_evict_func_t(void *user_ptr);
492
493 /*
494 * A DMU buffer user object may be associated with a dbuf for the
495 * duration of its lifetime. This allows the user of a dbuf (client)
496 * to attach private data to a dbuf (e.g. in-core only data such as a
497 * dnode_children_t, zap_t, or zap_leaf_t) and be optionally notified
498 * when that dbuf has been evicted. Clients typically respond to the
499 * eviction notification by freeing their private data, thus ensuring
500 * the same lifetime for both dbuf and private data.
501 *
502 * The mapping from a dmu_buf_user_t to any client private data is the
503 * client's responsibility. All current consumers of the API with private
504 * data embed a dmu_buf_user_t as the first member of the structure for
505 * their private data. This allows conversions between the two types
506 * with a simple cast. Since the DMU buf user API never needs access
507 * to the private data, other strategies can be employed if necessary
508 * or convenient for the client (e.g. using container_of() to do the
509 * conversion for private data that cannot have the dmu_buf_user_t as
510 * its first member).
511 *
512 * Eviction callbacks are executed without the dbuf mutex held or any
513 * other type of mechanism to guarantee that the dbuf is still available.
514 * For this reason, users must assume the dbuf has already been freed
515 * and not reference the dbuf from the callback context.
516 *
517 * Users requesting "immediate eviction" are notified as soon as the dbuf
518 * is only referenced by dirty records (dirties == holds). Otherwise the
519 * notification occurs after eviction processing for the dbuf begins.
520 */
521 typedef struct dmu_buf_user {
522 /*
523 * Asynchronous user eviction callback state.
524 */
525 taskq_ent_t dbu_tqent;
526
527 /* This instance's eviction function pointer. */
528 dmu_buf_evict_func_t *dbu_evict_func;
529 #ifdef ZFS_DEBUG
530 /*
531 * Pointer to user's dbuf pointer. NULL for clients that do
532 * not associate a dbuf with their user data.
533 *
534 * The dbuf pointer is cleared upon eviction so as to catch
535 * use-after-evict bugs in clients.
536 */
537 dmu_buf_t **dbu_clear_on_evict_dbufp;
538 #endif
539 } dmu_buf_user_t;
540
541 /*
542 * Initialize the given dmu_buf_user_t instance with the eviction function
543 * evict_func, to be called when the user is evicted.
544 *
545 * NOTE: This function should only be called once on a given dmu_buf_user_t.
546 * To allow enforcement of this, dbu must already be zeroed on entry.
547 */
548 #ifdef __lint
549 /* Very ugly, but it beats issuing suppression directives in many Makefiles. */
550 extern void
551 dmu_buf_init_user(dmu_buf_user_t *dbu, dmu_buf_evict_func_t *evict_func,
552 dmu_buf_t **clear_on_evict_dbufp);
553 #else /* __lint */
554 static inline void
555 dmu_buf_init_user(dmu_buf_user_t *dbu, dmu_buf_evict_func_t *evict_func,
556 dmu_buf_t **clear_on_evict_dbufp)
557 {
558 ASSERT(dbu->dbu_evict_func == NULL);
559 ASSERT(evict_func != NULL);
560 dbu->dbu_evict_func = evict_func;
561 #ifdef ZFS_DEBUG
562 dbu->dbu_clear_on_evict_dbufp = clear_on_evict_dbufp;
563 #endif
564 }
565 #endif /* __lint */
566
567 /*
568 * Attach user data to a dbuf and mark it for normal (when the dbuf's
569 * data is cleared or its reference count goes to zero) eviction processing.
570 *
571 * Returns NULL on success, or the existing user if another user currently
572 * owns the buffer.
573 */
574 void *dmu_buf_set_user(dmu_buf_t *db, dmu_buf_user_t *user);
575
576 /*
577 * Attach user data to a dbuf and mark it for immediate (its dirty and
578 * reference counts are equal) eviction processing.
579 *
580 * Returns NULL on success, or the existing user if another user currently
581 * owns the buffer.
582 */
583 void *dmu_buf_set_user_ie(dmu_buf_t *db, dmu_buf_user_t *user);
584
585 /*
586 * Replace the current user of a dbuf.
587 *
588 * If given the current user of a dbuf, replaces the dbuf's user with
589 * "new_user" and returns the user data pointer that was replaced.
590 * Otherwise returns the current, and unmodified, dbuf user pointer.
591 */
592 void *dmu_buf_replace_user(dmu_buf_t *db,
593 dmu_buf_user_t *old_user, dmu_buf_user_t *new_user);
594
595 /*
596 * Remove the specified user data for a DMU buffer.
597 *
598 * Returns the user that was removed on success, or the current user if
599 * another user currently owns the buffer.
600 */
601 void *dmu_buf_remove_user(dmu_buf_t *db, dmu_buf_user_t *user);
602
603 /*
604 * Returns the user data (dmu_buf_user_t *) associated with this dbuf.
605 */
606 void *dmu_buf_get_user(dmu_buf_t *db);
607
608 /* Block until any in-progress dmu buf user evictions complete. */
609 void dmu_buf_user_evict_wait(void);
610
611 /*
612 * Returns the blkptr associated with this dbuf, or NULL if not set.
613 */
614 struct blkptr *dmu_buf_get_blkptr(dmu_buf_t *db);
615
616 /*
617 * Indicate that you are going to modify the buffer's data (db_data).
618 *
619 * The transaction (tx) must be assigned to a txg (ie. you've called
620 * dmu_tx_assign()). The buffer's object must be held in the tx
621 * (ie. you've called dmu_tx_hold_object(tx, db->db_object)).
622 */
623 void dmu_buf_will_dirty(dmu_buf_t *db, dmu_tx_t *tx);
624
625 /*
626 * Tells if the given dbuf is freeable.
627 */
628 boolean_t dmu_buf_freeable(dmu_buf_t *);
629
630 /*
631 * You must create a transaction, then hold the objects which you will
632 * (or might) modify as part of this transaction. Then you must assign
633 * the transaction to a transaction group. Once the transaction has
634 * been assigned, you can modify buffers which belong to held objects as
635 * part of this transaction. You can't modify buffers before the
636 * transaction has been assigned; you can't modify buffers which don't
637 * belong to objects which this transaction holds; you can't hold
638 * objects once the transaction has been assigned. You may hold an
639 * object which you are going to free (with dmu_object_free()), but you
640 * don't have to.
641 *
642 * You can abort the transaction before it has been assigned.
643 *
644 * Note that you may hold buffers (with dmu_buf_hold) at any time,
645 * regardless of transaction state.
646 */
647
648 #define DMU_NEW_OBJECT (-1ULL)
649 #define DMU_OBJECT_END (-1ULL)
650
651 dmu_tx_t *dmu_tx_create(objset_t *os);
652 void dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len);
653 void dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off,
654 uint64_t len);
655 void dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name);
656 void dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object);
657 void dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object);
658 void dmu_tx_hold_sa(dmu_tx_t *tx, struct sa_handle *hdl, boolean_t may_grow);
659 void dmu_tx_hold_sa_create(dmu_tx_t *tx, int total_size);
660 void dmu_tx_abort(dmu_tx_t *tx);
661 int dmu_tx_assign(dmu_tx_t *tx, enum txg_how txg_how);
662 void dmu_tx_wait(dmu_tx_t *tx);
663 void dmu_tx_commit(dmu_tx_t *tx);
664
665 /*
666 * To register a commit callback, dmu_tx_callback_register() must be called.
667 *
668 * dcb_data is a pointer to caller private data that is passed on as a
669 * callback parameter. The caller is responsible for properly allocating and
670 * freeing it.
671 *
672 * When registering a callback, the transaction must be already created, but
673 * it cannot be committed or aborted. It can be assigned to a txg or not.
674 *
675 * The callback will be called after the transaction has been safely written
676 * to stable storage and will also be called if the dmu_tx is aborted.
677 * If there is any error which prevents the transaction from being committed to
678 * disk, the callback will be called with a value of error != 0.
679 */
680 typedef void dmu_tx_callback_func_t(void *dcb_data, int error);
681
682 void dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *dcb_func,
683 void *dcb_data);
684
685 /*
686 * Free up the data blocks for a defined range of a file. If size is
687 * -1, the range from offset to end-of-file is freed.
688 */
689 int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
690 uint64_t size, dmu_tx_t *tx);
691 int dmu_free_long_range(objset_t *os, uint64_t object, uint64_t offset,
692 uint64_t size);
693 int dmu_free_long_object(objset_t *os, uint64_t object);
694
695 /*
696 * Convenience functions.
697 *
698 * Canfail routines will return 0 on success, or an errno if there is a
699 * nonrecoverable I/O error.
700 */
701 #define DMU_READ_PREFETCH 0 /* prefetch */
702 #define DMU_READ_NO_PREFETCH 1 /* don't prefetch */
703 int dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
704 void *buf, uint32_t flags);
705 void dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
706 const void *buf, dmu_tx_t *tx);
707 void dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
708 dmu_tx_t *tx);
709 #ifdef _KERNEL
710 #include <linux/blkdev_compat.h>
711 int dmu_read_req(objset_t *os, uint64_t object, struct request *req);
712 int dmu_write_req(objset_t *os, uint64_t object, struct request *req,
713 dmu_tx_t *tx);
714 int dmu_read_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size);
715 int dmu_write_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size,
716 dmu_tx_t *tx);
717 int dmu_write_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size,
718 dmu_tx_t *tx);
719 #endif
720 struct arc_buf *dmu_request_arcbuf(dmu_buf_t *handle, int size);
721 void dmu_return_arcbuf(struct arc_buf *buf);
722 void dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, struct arc_buf *buf,
723 dmu_tx_t *tx);
724 int dmu_xuio_init(struct xuio *uio, int niov);
725 void dmu_xuio_fini(struct xuio *uio);
726 int dmu_xuio_add(struct xuio *uio, struct arc_buf *abuf, offset_t off,
727 size_t n);
728 int dmu_xuio_cnt(struct xuio *uio);
729 struct arc_buf *dmu_xuio_arcbuf(struct xuio *uio, int i);
730 void dmu_xuio_clear(struct xuio *uio, int i);
731 void xuio_stat_wbuf_copied(void);
732 void xuio_stat_wbuf_nocopy(void);
733
734 extern int zfs_prefetch_disable;
735
736 /*
737 * Asynchronously try to read in the data.
738 */
739 void dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset,
740 uint64_t len);
741
742 typedef struct dmu_object_info {
743 /* All sizes are in bytes unless otherwise indicated. */
744 uint32_t doi_data_block_size;
745 uint32_t doi_metadata_block_size;
746 dmu_object_type_t doi_type;
747 dmu_object_type_t doi_bonus_type;
748 uint64_t doi_bonus_size;
749 uint8_t doi_indirection; /* 2 = dnode->indirect->data */
750 uint8_t doi_checksum;
751 uint8_t doi_compress;
752 uint8_t doi_nblkptr;
753 uint8_t doi_pad[4];
754 uint64_t doi_physical_blocks_512; /* data + metadata, 512b blks */
755 uint64_t doi_max_offset;
756 uint64_t doi_fill_count; /* number of non-empty blocks */
757 } dmu_object_info_t;
758
759 typedef void (*const arc_byteswap_func_t)(void *buf, size_t size);
760
761 typedef struct dmu_object_type_info {
762 dmu_object_byteswap_t ot_byteswap;
763 boolean_t ot_metadata;
764 char *ot_name;
765 } dmu_object_type_info_t;
766
767 typedef const struct dmu_object_byteswap_info {
768 arc_byteswap_func_t ob_func;
769 char *ob_name;
770 } dmu_object_byteswap_info_t;
771
772 extern const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES];
773 extern const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS];
774
775 /*
776 * Get information on a DMU object.
777 *
778 * Return 0 on success or ENOENT if object is not allocated.
779 *
780 * If doi is NULL, just indicates whether the object exists.
781 */
782 int dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi);
783 void __dmu_object_info_from_dnode(struct dnode *dn, dmu_object_info_t *doi);
784 /* Like dmu_object_info, but faster if you have a held dnode in hand. */
785 void dmu_object_info_from_dnode(struct dnode *dn, dmu_object_info_t *doi);
786 /* Like dmu_object_info, but faster if you have a held dbuf in hand. */
787 void dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi);
788 /*
789 * Like dmu_object_info_from_db, but faster still when you only care about
790 * the size. This is specifically optimized for zfs_getattr().
791 */
792 void dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize,
793 u_longlong_t *nblk512);
794
795 typedef struct dmu_objset_stats {
796 uint64_t dds_num_clones; /* number of clones of this */
797 uint64_t dds_creation_txg;
798 uint64_t dds_guid;
799 dmu_objset_type_t dds_type;
800 uint8_t dds_is_snapshot;
801 uint8_t dds_inconsistent;
802 char dds_origin[MAXNAMELEN];
803 } dmu_objset_stats_t;
804
805 /*
806 * Get stats on a dataset.
807 */
808 void dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat);
809
810 /*
811 * Add entries to the nvlist for all the objset's properties. See
812 * zfs_prop_table[] and zfs(1m) for details on the properties.
813 */
814 void dmu_objset_stats(objset_t *os, struct nvlist *nv);
815
816 /*
817 * Get the space usage statistics for statvfs().
818 *
819 * refdbytes is the amount of space "referenced" by this objset.
820 * availbytes is the amount of space available to this objset, taking
821 * into account quotas & reservations, assuming that no other objsets
822 * use the space first. These values correspond to the 'referenced' and
823 * 'available' properties, described in the zfs(1m) manpage.
824 *
825 * usedobjs and availobjs are the number of objects currently allocated,
826 * and available.
827 */
828 void dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp,
829 uint64_t *usedobjsp, uint64_t *availobjsp);
830
831 /*
832 * The fsid_guid is a 56-bit ID that can change to avoid collisions.
833 * (Contrast with the ds_guid which is a 64-bit ID that will never
834 * change, so there is a small probability that it will collide.)
835 */
836 uint64_t dmu_objset_fsid_guid(objset_t *os);
837
838 /*
839 * Get the [cm]time for an objset's snapshot dir
840 */
841 timestruc_t dmu_objset_snap_cmtime(objset_t *os);
842
843 int dmu_objset_is_snapshot(objset_t *os);
844
845 extern struct spa *dmu_objset_spa(objset_t *os);
846 extern struct zilog *dmu_objset_zil(objset_t *os);
847 extern struct dsl_pool *dmu_objset_pool(objset_t *os);
848 extern struct dsl_dataset *dmu_objset_ds(objset_t *os);
849 extern void dmu_objset_name(objset_t *os, char *buf);
850 extern dmu_objset_type_t dmu_objset_type(objset_t *os);
851 extern uint64_t dmu_objset_id(objset_t *os);
852 extern zfs_sync_type_t dmu_objset_syncprop(objset_t *os);
853 extern zfs_logbias_op_t dmu_objset_logbias(objset_t *os);
854 extern int dmu_snapshot_list_next(objset_t *os, int namelen, char *name,
855 uint64_t *id, uint64_t *offp, boolean_t *case_conflict);
856 extern int dmu_snapshot_lookup(objset_t *os, const char *name, uint64_t *val);
857 extern int dmu_snapshot_realname(objset_t *os, char *name, char *real,
858 int maxlen, boolean_t *conflict);
859 extern int dmu_dir_list_next(objset_t *os, int namelen, char *name,
860 uint64_t *idp, uint64_t *offp);
861
862 typedef int objset_used_cb_t(dmu_object_type_t bonustype,
863 void *bonus, uint64_t *userp, uint64_t *groupp);
864 extern void dmu_objset_register_type(dmu_objset_type_t ost,
865 objset_used_cb_t *cb);
866 extern void dmu_objset_set_user(objset_t *os, void *user_ptr);
867 extern void *dmu_objset_get_user(objset_t *os);
868
869 /*
870 * Return the txg number for the given assigned transaction.
871 */
872 uint64_t dmu_tx_get_txg(dmu_tx_t *tx);
873
874 /*
875 * Synchronous write.
876 * If a parent zio is provided this function initiates a write on the
877 * provided buffer as a child of the parent zio.
878 * In the absence of a parent zio, the write is completed synchronously.
879 * At write completion, blk is filled with the bp of the written block.
880 * Note that while the data covered by this function will be on stable
881 * storage when the write completes this new data does not become a
882 * permanent part of the file until the associated transaction commits.
883 */
884
885 /*
886 * {zfs,zvol,ztest}_get_done() args
887 */
888 typedef struct zgd {
889 struct zilog *zgd_zilog;
890 struct blkptr *zgd_bp;
891 dmu_buf_t *zgd_db;
892 struct rl *zgd_rl;
893 void *zgd_private;
894 } zgd_t;
895
896 typedef void dmu_sync_cb_t(zgd_t *arg, int error);
897 int dmu_sync(struct zio *zio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd);
898
899 /*
900 * Find the next hole or data block in file starting at *off
901 * Return found offset in *off. Return ESRCH for end of file.
902 */
903 int dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole,
904 uint64_t *off);
905
906 /*
907 * Initial setup and final teardown.
908 */
909 extern void dmu_init(void);
910 extern void dmu_fini(void);
911
912 typedef void (*dmu_traverse_cb_t)(objset_t *os, void *arg, struct blkptr *bp,
913 uint64_t object, uint64_t offset, int len);
914 void dmu_traverse_objset(objset_t *os, uint64_t txg_start,
915 dmu_traverse_cb_t cb, void *arg);
916
917 int dmu_diff(const char *tosnap_name, const char *fromsnap_name,
918 struct vnode *vp, offset_t *offp);
919
920 /* CRC64 table */
921 #define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */
922 extern uint64_t zfs_crc64_table[256];
923
924 extern int zfs_mdcomp_disable;
925
926 #ifdef __cplusplus
927 }
928 #endif
929
930 #endif /* _SYS_DMU_H */