]> git.proxmox.com Git - mirror_zfs.git/blob - include/sys/spa.h
Fixes for SNPRINTF_BLKPTR with encrypted BP's
[mirror_zfs.git] / include / sys / spa.h
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright 2013 Saso Kiselkov. All rights reserved.
27 * Copyright (c) 2014 Integros [integros.com]
28 * Copyright 2017 Joyent, Inc.
29 * Copyright (c) 2017 Datto Inc.
30 */
31
32 #ifndef _SYS_SPA_H
33 #define _SYS_SPA_H
34
35 #include <sys/avl.h>
36 #include <sys/zfs_context.h>
37 #include <sys/kstat.h>
38 #include <sys/nvpair.h>
39 #include <sys/sysmacros.h>
40 #include <sys/types.h>
41 #include <sys/fs/zfs.h>
42 #include <sys/spa_checksum.h>
43 #include <sys/dmu.h>
44
45 #ifdef __cplusplus
46 extern "C" {
47 #endif
48
49 /*
50 * Forward references that lots of things need.
51 */
52 typedef struct spa spa_t;
53 typedef struct vdev vdev_t;
54 typedef struct metaslab metaslab_t;
55 typedef struct metaslab_group metaslab_group_t;
56 typedef struct metaslab_class metaslab_class_t;
57 typedef struct zio zio_t;
58 typedef struct zilog zilog_t;
59 typedef struct spa_aux_vdev spa_aux_vdev_t;
60 typedef struct ddt ddt_t;
61 typedef struct ddt_entry ddt_entry_t;
62 typedef struct zbookmark_phys zbookmark_phys_t;
63
64 struct dsl_pool;
65 struct dsl_dataset;
66 struct dsl_crypto_params;
67
68 /*
69 * General-purpose 32-bit and 64-bit bitfield encodings.
70 */
71 #define BF32_DECODE(x, low, len) P2PHASE((x) >> (low), 1U << (len))
72 #define BF64_DECODE(x, low, len) P2PHASE((x) >> (low), 1ULL << (len))
73 #define BF32_ENCODE(x, low, len) (P2PHASE((x), 1U << (len)) << (low))
74 #define BF64_ENCODE(x, low, len) (P2PHASE((x), 1ULL << (len)) << (low))
75
76 #define BF32_GET(x, low, len) BF32_DECODE(x, low, len)
77 #define BF64_GET(x, low, len) BF64_DECODE(x, low, len)
78
79 #define BF32_SET(x, low, len, val) do { \
80 ASSERT3U(val, <, 1U << (len)); \
81 ASSERT3U(low + len, <=, 32); \
82 (x) ^= BF32_ENCODE((x >> low) ^ (val), low, len); \
83 _NOTE(CONSTCOND) } while (0)
84
85 #define BF64_SET(x, low, len, val) do { \
86 ASSERT3U(val, <, 1ULL << (len)); \
87 ASSERT3U(low + len, <=, 64); \
88 ((x) ^= BF64_ENCODE((x >> low) ^ (val), low, len)); \
89 _NOTE(CONSTCOND) } while (0)
90
91 #define BF32_GET_SB(x, low, len, shift, bias) \
92 ((BF32_GET(x, low, len) + (bias)) << (shift))
93 #define BF64_GET_SB(x, low, len, shift, bias) \
94 ((BF64_GET(x, low, len) + (bias)) << (shift))
95
96 #define BF32_SET_SB(x, low, len, shift, bias, val) do { \
97 ASSERT(IS_P2ALIGNED(val, 1U << shift)); \
98 ASSERT3S((val) >> (shift), >=, bias); \
99 BF32_SET(x, low, len, ((val) >> (shift)) - (bias)); \
100 _NOTE(CONSTCOND) } while (0)
101 #define BF64_SET_SB(x, low, len, shift, bias, val) do { \
102 ASSERT(IS_P2ALIGNED(val, 1ULL << shift)); \
103 ASSERT3S((val) >> (shift), >=, bias); \
104 BF64_SET(x, low, len, ((val) >> (shift)) - (bias)); \
105 _NOTE(CONSTCOND) } while (0)
106
107 /*
108 * We currently support block sizes from 512 bytes to 16MB.
109 * The benefits of larger blocks, and thus larger IO, need to be weighed
110 * against the cost of COWing a giant block to modify one byte, and the
111 * large latency of reading or writing a large block.
112 *
113 * Note that although blocks up to 16MB are supported, the recordsize
114 * property can not be set larger than zfs_max_recordsize (default 1MB).
115 * See the comment near zfs_max_recordsize in dsl_dataset.c for details.
116 *
117 * Note that although the LSIZE field of the blkptr_t can store sizes up
118 * to 32MB, the dnode's dn_datablkszsec can only store sizes up to
119 * 32MB - 512 bytes. Therefore, we limit SPA_MAXBLOCKSIZE to 16MB.
120 */
121 #define SPA_MINBLOCKSHIFT 9
122 #define SPA_OLD_MAXBLOCKSHIFT 17
123 #define SPA_MAXBLOCKSHIFT 24
124 #define SPA_MINBLOCKSIZE (1ULL << SPA_MINBLOCKSHIFT)
125 #define SPA_OLD_MAXBLOCKSIZE (1ULL << SPA_OLD_MAXBLOCKSHIFT)
126 #define SPA_MAXBLOCKSIZE (1ULL << SPA_MAXBLOCKSHIFT)
127
128 /*
129 * Alignment Shift (ashift) is an immutable, internal top-level vdev property
130 * which can only be set at vdev creation time. Physical writes are always done
131 * according to it, which makes 2^ashift the smallest possible IO on a vdev.
132 *
133 * We currently allow values ranging from 512 bytes (2^9 = 512) to 64 KiB
134 * (2^16 = 65,536).
135 */
136 #define ASHIFT_MIN 9
137 #define ASHIFT_MAX 16
138
139 /*
140 * Size of block to hold the configuration data (a packed nvlist)
141 */
142 #define SPA_CONFIG_BLOCKSIZE (1ULL << 14)
143
144 /*
145 * The DVA size encodings for LSIZE and PSIZE support blocks up to 32MB.
146 * The ASIZE encoding should be at least 64 times larger (6 more bits)
147 * to support up to 4-way RAID-Z mirror mode with worst-case gang block
148 * overhead, three DVAs per bp, plus one more bit in case we do anything
149 * else that expands the ASIZE.
150 */
151 #define SPA_LSIZEBITS 16 /* LSIZE up to 32M (2^16 * 512) */
152 #define SPA_PSIZEBITS 16 /* PSIZE up to 32M (2^16 * 512) */
153 #define SPA_ASIZEBITS 24 /* ASIZE up to 64 times larger */
154
155 #define SPA_COMPRESSBITS 7
156
157 /*
158 * All SPA data is represented by 128-bit data virtual addresses (DVAs).
159 * The members of the dva_t should be considered opaque outside the SPA.
160 */
161 typedef struct dva {
162 uint64_t dva_word[2];
163 } dva_t;
164
165
166 /*
167 * Some checksums/hashes need a 256-bit initialization salt. This salt is kept
168 * secret and is suitable for use in MAC algorithms as the key.
169 */
170 typedef struct zio_cksum_salt {
171 uint8_t zcs_bytes[32];
172 } zio_cksum_salt_t;
173
174 /*
175 * Each block is described by its DVAs, time of birth, checksum, etc.
176 * The word-by-word, bit-by-bit layout of the blkptr is as follows:
177 *
178 * 64 56 48 40 32 24 16 8 0
179 * +-------+-------+-------+-------+-------+-------+-------+-------+
180 * 0 | vdev1 | GRID | ASIZE |
181 * +-------+-------+-------+-------+-------+-------+-------+-------+
182 * 1 |G| offset1 |
183 * +-------+-------+-------+-------+-------+-------+-------+-------+
184 * 2 | vdev2 | GRID | ASIZE |
185 * +-------+-------+-------+-------+-------+-------+-------+-------+
186 * 3 |G| offset2 |
187 * +-------+-------+-------+-------+-------+-------+-------+-------+
188 * 4 | vdev3 | GRID | ASIZE |
189 * +-------+-------+-------+-------+-------+-------+-------+-------+
190 * 5 |G| offset3 |
191 * +-------+-------+-------+-------+-------+-------+-------+-------+
192 * 6 |BDX|lvl| type | cksum |E| comp| PSIZE | LSIZE |
193 * +-------+-------+-------+-------+-------+-------+-------+-------+
194 * 7 | padding |
195 * +-------+-------+-------+-------+-------+-------+-------+-------+
196 * 8 | padding |
197 * +-------+-------+-------+-------+-------+-------+-------+-------+
198 * 9 | physical birth txg |
199 * +-------+-------+-------+-------+-------+-------+-------+-------+
200 * a | logical birth txg |
201 * +-------+-------+-------+-------+-------+-------+-------+-------+
202 * b | fill count |
203 * +-------+-------+-------+-------+-------+-------+-------+-------+
204 * c | checksum[0] |
205 * +-------+-------+-------+-------+-------+-------+-------+-------+
206 * d | checksum[1] |
207 * +-------+-------+-------+-------+-------+-------+-------+-------+
208 * e | checksum[2] |
209 * +-------+-------+-------+-------+-------+-------+-------+-------+
210 * f | checksum[3] |
211 * +-------+-------+-------+-------+-------+-------+-------+-------+
212 *
213 * Legend:
214 *
215 * vdev virtual device ID
216 * offset offset into virtual device
217 * LSIZE logical size
218 * PSIZE physical size (after compression)
219 * ASIZE allocated size (including RAID-Z parity and gang block headers)
220 * GRID RAID-Z layout information (reserved for future use)
221 * cksum checksum function
222 * comp compression function
223 * G gang block indicator
224 * B byteorder (endianness)
225 * D dedup
226 * X encryption
227 * E blkptr_t contains embedded data (see below)
228 * lvl level of indirection
229 * type DMU object type
230 * phys birth txg of block allocation; zero if same as logical birth txg
231 * log. birth transaction group in which the block was logically born
232 * fill count number of non-zero blocks under this bp
233 * checksum[4] 256-bit checksum of the data this bp describes
234 */
235
236 /*
237 * The blkptr_t's of encrypted blocks also need to store the encryption
238 * parameters so that the block can be decrypted. This layout is as follows:
239 *
240 * 64 56 48 40 32 24 16 8 0
241 * +-------+-------+-------+-------+-------+-------+-------+-------+
242 * 0 | vdev1 | GRID | ASIZE |
243 * +-------+-------+-------+-------+-------+-------+-------+-------+
244 * 1 |G| offset1 |
245 * +-------+-------+-------+-------+-------+-------+-------+-------+
246 * 2 | vdev2 | GRID | ASIZE |
247 * +-------+-------+-------+-------+-------+-------+-------+-------+
248 * 3 |G| offset2 |
249 * +-------+-------+-------+-------+-------+-------+-------+-------+
250 * 4 | salt |
251 * +-------+-------+-------+-------+-------+-------+-------+-------+
252 * 5 | IV1 |
253 * +-------+-------+-------+-------+-------+-------+-------+-------+
254 * 6 |BDX|lvl| type | cksum |E| comp| PSIZE | LSIZE |
255 * +-------+-------+-------+-------+-------+-------+-------+-------+
256 * 7 | padding |
257 * +-------+-------+-------+-------+-------+-------+-------+-------+
258 * 8 | padding |
259 * +-------+-------+-------+-------+-------+-------+-------+-------+
260 * 9 | physical birth txg |
261 * +-------+-------+-------+-------+-------+-------+-------+-------+
262 * a | logical birth txg |
263 * +-------+-------+-------+-------+-------+-------+-------+-------+
264 * b | IV2 | fill count |
265 * +-------+-------+-------+-------+-------+-------+-------+-------+
266 * c | checksum[0] |
267 * +-------+-------+-------+-------+-------+-------+-------+-------+
268 * d | checksum[1] |
269 * +-------+-------+-------+-------+-------+-------+-------+-------+
270 * e | MAC[0] |
271 * +-------+-------+-------+-------+-------+-------+-------+-------+
272 * f | MAC[1] |
273 * +-------+-------+-------+-------+-------+-------+-------+-------+
274 *
275 * Legend:
276 *
277 * salt Salt for generating encryption keys
278 * IV1 First 64 bits of encryption IV
279 * X Block requires encryption handling (set to 1)
280 * E blkptr_t contains embedded data (set to 0, see below)
281 * fill count number of non-zero blocks under this bp (truncated to 32 bits)
282 * IV2 Last 32 bits of encryption IV
283 * checksum[2] 128-bit checksum of the data this bp describes
284 * MAC[2] 128-bit message authentication code for this data
285 *
286 * The X bit being set indicates that this block is one of 3 types. If this is
287 * a level 0 block with an encrypted object type, the block is encrypted
288 * (see BP_IS_ENCRYPTED()). If this is a level 0 block with an unencrypted
289 * object type, this block is authenticated with an HMAC (see
290 * BP_IS_AUTHENTICATED()). Otherwise (if level > 0), this bp will use the MAC
291 * words to store a checksum-of-MACs from the level below (see
292 * BP_HAS_INDIRECT_MAC_CKSUM()). For convenience in the code, BP_IS_PROTECTED()
293 * refers to both encrypted and authenticated blocks and BP_USES_CRYPT()
294 * refers to any of these 3 kinds of blocks.
295 *
296 * The additional encryption parameters are the salt, IV, and MAC which are
297 * explained in greater detail in the block comment at the top of zio_crypt.c.
298 * The MAC occupies half of the checksum space since it serves a very similar
299 * purpose: to prevent data corruption on disk. The only functional difference
300 * is that the checksum is used to detect on-disk corruption whether or not the
301 * encryption key is loaded and the MAC provides additional protection against
302 * malicious disk tampering. We use the 3rd DVA to store the salt and first
303 * 64 bits of the IV. As a result encrypted blocks can only have 2 copies
304 * maximum instead of the normal 3. The last 32 bits of the IV are stored in
305 * the upper bits of what is usually the fill count. Note that only blocks at
306 * level 0 or -2 are ever encrypted, which allows us to guarantee that these
307 * 32 bits are not trampled over by other code (see zio_crypt.c for details).
308 * The salt and IV are not used for authenticated bps or bps with an indirect
309 * MAC checksum, so these blocks can utilize all 3 DVAs and the full 64 bits
310 * for the fill count.
311 */
312
313 /*
314 * "Embedded" blkptr_t's don't actually point to a block, instead they
315 * have a data payload embedded in the blkptr_t itself. See the comment
316 * in blkptr.c for more details.
317 *
318 * The blkptr_t is laid out as follows:
319 *
320 * 64 56 48 40 32 24 16 8 0
321 * +-------+-------+-------+-------+-------+-------+-------+-------+
322 * 0 | payload |
323 * 1 | payload |
324 * 2 | payload |
325 * 3 | payload |
326 * 4 | payload |
327 * 5 | payload |
328 * +-------+-------+-------+-------+-------+-------+-------+-------+
329 * 6 |BDX|lvl| type | etype |E| comp| PSIZE| LSIZE |
330 * +-------+-------+-------+-------+-------+-------+-------+-------+
331 * 7 | payload |
332 * 8 | payload |
333 * 9 | payload |
334 * +-------+-------+-------+-------+-------+-------+-------+-------+
335 * a | logical birth txg |
336 * +-------+-------+-------+-------+-------+-------+-------+-------+
337 * b | payload |
338 * c | payload |
339 * d | payload |
340 * e | payload |
341 * f | payload |
342 * +-------+-------+-------+-------+-------+-------+-------+-------+
343 *
344 * Legend:
345 *
346 * payload contains the embedded data
347 * B (byteorder) byteorder (endianness)
348 * D (dedup) padding (set to zero)
349 * X encryption (set to zero)
350 * E (embedded) set to one
351 * lvl indirection level
352 * type DMU object type
353 * etype how to interpret embedded data (BP_EMBEDDED_TYPE_*)
354 * comp compression function of payload
355 * PSIZE size of payload after compression, in bytes
356 * LSIZE logical size of payload, in bytes
357 * note that 25 bits is enough to store the largest
358 * "normal" BP's LSIZE (2^16 * 2^9) in bytes
359 * log. birth transaction group in which the block was logically born
360 *
361 * Note that LSIZE and PSIZE are stored in bytes, whereas for non-embedded
362 * bp's they are stored in units of SPA_MINBLOCKSHIFT.
363 * Generally, the generic BP_GET_*() macros can be used on embedded BP's.
364 * The B, D, X, lvl, type, and comp fields are stored the same as with normal
365 * BP's so the BP_SET_* macros can be used with them. etype, PSIZE, LSIZE must
366 * be set with the BPE_SET_* macros. BP_SET_EMBEDDED() should be called before
367 * other macros, as they assert that they are only used on BP's of the correct
368 * "embedded-ness". Encrypted blkptr_t's cannot be embedded because they use
369 * the payload space for encryption parameters (see the comment above on
370 * how encryption parameters are stored).
371 */
372
373 #define BPE_GET_ETYPE(bp) \
374 (ASSERT(BP_IS_EMBEDDED(bp)), \
375 BF64_GET((bp)->blk_prop, 40, 8))
376 #define BPE_SET_ETYPE(bp, t) do { \
377 ASSERT(BP_IS_EMBEDDED(bp)); \
378 BF64_SET((bp)->blk_prop, 40, 8, t); \
379 _NOTE(CONSTCOND) } while (0)
380
381 #define BPE_GET_LSIZE(bp) \
382 (ASSERT(BP_IS_EMBEDDED(bp)), \
383 BF64_GET_SB((bp)->blk_prop, 0, 25, 0, 1))
384 #define BPE_SET_LSIZE(bp, x) do { \
385 ASSERT(BP_IS_EMBEDDED(bp)); \
386 BF64_SET_SB((bp)->blk_prop, 0, 25, 0, 1, x); \
387 _NOTE(CONSTCOND) } while (0)
388
389 #define BPE_GET_PSIZE(bp) \
390 (ASSERT(BP_IS_EMBEDDED(bp)), \
391 BF64_GET_SB((bp)->blk_prop, 25, 7, 0, 1))
392 #define BPE_SET_PSIZE(bp, x) do { \
393 ASSERT(BP_IS_EMBEDDED(bp)); \
394 BF64_SET_SB((bp)->blk_prop, 25, 7, 0, 1, x); \
395 _NOTE(CONSTCOND) } while (0)
396
397 typedef enum bp_embedded_type {
398 BP_EMBEDDED_TYPE_DATA,
399 BP_EMBEDDED_TYPE_RESERVED, /* Reserved for an unintegrated feature. */
400 NUM_BP_EMBEDDED_TYPES = BP_EMBEDDED_TYPE_RESERVED
401 } bp_embedded_type_t;
402
403 #define BPE_NUM_WORDS 14
404 #define BPE_PAYLOAD_SIZE (BPE_NUM_WORDS * sizeof (uint64_t))
405 #define BPE_IS_PAYLOADWORD(bp, wp) \
406 ((wp) != &(bp)->blk_prop && (wp) != &(bp)->blk_birth)
407
408 #define SPA_BLKPTRSHIFT 7 /* blkptr_t is 128 bytes */
409 #define SPA_DVAS_PER_BP 3 /* Number of DVAs in a bp */
410
411 /*
412 * A block is a hole when it has either 1) never been written to, or
413 * 2) is zero-filled. In both cases, ZFS can return all zeroes for all reads
414 * without physically allocating disk space. Holes are represented in the
415 * blkptr_t structure by zeroed blk_dva. Correct checking for holes is
416 * done through the BP_IS_HOLE macro. For holes, the logical size, level,
417 * DMU object type, and birth times are all also stored for holes that
418 * were written to at some point (i.e. were punched after having been filled).
419 */
420 typedef struct blkptr {
421 dva_t blk_dva[SPA_DVAS_PER_BP]; /* Data Virtual Addresses */
422 uint64_t blk_prop; /* size, compression, type, etc */
423 uint64_t blk_pad[2]; /* Extra space for the future */
424 uint64_t blk_phys_birth; /* txg when block was allocated */
425 uint64_t blk_birth; /* transaction group at birth */
426 uint64_t blk_fill; /* fill count */
427 zio_cksum_t blk_cksum; /* 256-bit checksum */
428 } blkptr_t;
429
430 /*
431 * Macros to get and set fields in a bp or DVA.
432 */
433 #define DVA_GET_ASIZE(dva) \
434 BF64_GET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, SPA_MINBLOCKSHIFT, 0)
435 #define DVA_SET_ASIZE(dva, x) \
436 BF64_SET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, \
437 SPA_MINBLOCKSHIFT, 0, x)
438
439 #define DVA_GET_GRID(dva) BF64_GET((dva)->dva_word[0], 24, 8)
440 #define DVA_SET_GRID(dva, x) BF64_SET((dva)->dva_word[0], 24, 8, x)
441
442 #define DVA_GET_VDEV(dva) BF64_GET((dva)->dva_word[0], 32, 32)
443 #define DVA_SET_VDEV(dva, x) BF64_SET((dva)->dva_word[0], 32, 32, x)
444
445 #define DVA_GET_OFFSET(dva) \
446 BF64_GET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0)
447 #define DVA_SET_OFFSET(dva, x) \
448 BF64_SET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0, x)
449
450 #define DVA_GET_GANG(dva) BF64_GET((dva)->dva_word[1], 63, 1)
451 #define DVA_SET_GANG(dva, x) BF64_SET((dva)->dva_word[1], 63, 1, x)
452
453 #define BP_GET_LSIZE(bp) \
454 (BP_IS_EMBEDDED(bp) ? \
455 (BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA ? BPE_GET_LSIZE(bp) : 0): \
456 BF64_GET_SB((bp)->blk_prop, 0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1))
457 #define BP_SET_LSIZE(bp, x) do { \
458 ASSERT(!BP_IS_EMBEDDED(bp)); \
459 BF64_SET_SB((bp)->blk_prop, \
460 0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1, x); \
461 _NOTE(CONSTCOND) } while (0)
462
463 #define BP_GET_PSIZE(bp) \
464 (BP_IS_EMBEDDED(bp) ? 0 : \
465 BF64_GET_SB((bp)->blk_prop, 16, SPA_PSIZEBITS, SPA_MINBLOCKSHIFT, 1))
466 #define BP_SET_PSIZE(bp, x) do { \
467 ASSERT(!BP_IS_EMBEDDED(bp)); \
468 BF64_SET_SB((bp)->blk_prop, \
469 16, SPA_PSIZEBITS, SPA_MINBLOCKSHIFT, 1, x); \
470 _NOTE(CONSTCOND) } while (0)
471
472 #define BP_GET_COMPRESS(bp) \
473 BF64_GET((bp)->blk_prop, 32, SPA_COMPRESSBITS)
474 #define BP_SET_COMPRESS(bp, x) \
475 BF64_SET((bp)->blk_prop, 32, SPA_COMPRESSBITS, x)
476
477 #define BP_IS_EMBEDDED(bp) BF64_GET((bp)->blk_prop, 39, 1)
478 #define BP_SET_EMBEDDED(bp, x) BF64_SET((bp)->blk_prop, 39, 1, x)
479
480 #define BP_GET_CHECKSUM(bp) \
481 (BP_IS_EMBEDDED(bp) ? ZIO_CHECKSUM_OFF : \
482 BF64_GET((bp)->blk_prop, 40, 8))
483 #define BP_SET_CHECKSUM(bp, x) do { \
484 ASSERT(!BP_IS_EMBEDDED(bp)); \
485 BF64_SET((bp)->blk_prop, 40, 8, x); \
486 _NOTE(CONSTCOND) } while (0)
487
488 #define BP_GET_TYPE(bp) BF64_GET((bp)->blk_prop, 48, 8)
489 #define BP_SET_TYPE(bp, x) BF64_SET((bp)->blk_prop, 48, 8, x)
490
491 #define BP_GET_LEVEL(bp) BF64_GET((bp)->blk_prop, 56, 5)
492 #define BP_SET_LEVEL(bp, x) BF64_SET((bp)->blk_prop, 56, 5, x)
493
494 /* encrypted, authenticated, and MAC cksum bps use the same bit */
495 #define BP_USES_CRYPT(bp) BF64_GET((bp)->blk_prop, 61, 1)
496 #define BP_SET_CRYPT(bp, x) BF64_SET((bp)->blk_prop, 61, 1, x)
497
498 #define BP_IS_ENCRYPTED(bp) \
499 (BP_USES_CRYPT(bp) && \
500 BP_GET_LEVEL(bp) <= 0 && \
501 DMU_OT_IS_ENCRYPTED(BP_GET_TYPE(bp)))
502
503 #define BP_IS_AUTHENTICATED(bp) \
504 (BP_USES_CRYPT(bp) && \
505 BP_GET_LEVEL(bp) <= 0 && \
506 !DMU_OT_IS_ENCRYPTED(BP_GET_TYPE(bp)))
507
508 #define BP_HAS_INDIRECT_MAC_CKSUM(bp) \
509 (BP_USES_CRYPT(bp) && BP_GET_LEVEL(bp) > 0)
510
511 #define BP_IS_PROTECTED(bp) \
512 (BP_IS_ENCRYPTED(bp) || BP_IS_AUTHENTICATED(bp))
513
514 #define BP_GET_DEDUP(bp) BF64_GET((bp)->blk_prop, 62, 1)
515 #define BP_SET_DEDUP(bp, x) BF64_SET((bp)->blk_prop, 62, 1, x)
516
517 #define BP_GET_BYTEORDER(bp) BF64_GET((bp)->blk_prop, 63, 1)
518 #define BP_SET_BYTEORDER(bp, x) BF64_SET((bp)->blk_prop, 63, 1, x)
519
520 #define BP_PHYSICAL_BIRTH(bp) \
521 (BP_IS_EMBEDDED(bp) ? 0 : \
522 (bp)->blk_phys_birth ? (bp)->blk_phys_birth : (bp)->blk_birth)
523
524 #define BP_SET_BIRTH(bp, logical, physical) \
525 { \
526 ASSERT(!BP_IS_EMBEDDED(bp)); \
527 (bp)->blk_birth = (logical); \
528 (bp)->blk_phys_birth = ((logical) == (physical) ? 0 : (physical)); \
529 }
530
531 #define BP_GET_FILL(bp) \
532 ((BP_IS_ENCRYPTED(bp)) ? BF64_GET((bp)->blk_fill, 0, 32) : \
533 ((BP_IS_EMBEDDED(bp)) ? 1 : (bp)->blk_fill))
534
535 #define BP_SET_FILL(bp, fill) \
536 { \
537 if (BP_IS_ENCRYPTED(bp)) \
538 BF64_SET((bp)->blk_fill, 0, 32, fill); \
539 else \
540 (bp)->blk_fill = fill; \
541 }
542
543 #define BP_GET_IV2(bp) \
544 (ASSERT(BP_IS_ENCRYPTED(bp)), \
545 BF64_GET((bp)->blk_fill, 32, 32))
546 #define BP_SET_IV2(bp, iv2) \
547 { \
548 ASSERT(BP_IS_ENCRYPTED(bp)); \
549 BF64_SET((bp)->blk_fill, 32, 32, iv2); \
550 }
551
552 #define BP_IS_METADATA(bp) \
553 (BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp)))
554
555 #define BP_GET_ASIZE(bp) \
556 (BP_IS_EMBEDDED(bp) ? 0 : \
557 DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \
558 DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \
559 (DVA_GET_ASIZE(&(bp)->blk_dva[2]) * !BP_IS_ENCRYPTED(bp)))
560
561 #define BP_GET_UCSIZE(bp) \
562 (BP_IS_METADATA(bp) ? BP_GET_PSIZE(bp) : BP_GET_LSIZE(bp))
563
564 #define BP_GET_NDVAS(bp) \
565 (BP_IS_EMBEDDED(bp) ? 0 : \
566 !!DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \
567 !!DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \
568 (!!DVA_GET_ASIZE(&(bp)->blk_dva[2]) * !BP_IS_ENCRYPTED(bp)))
569
570 #define BP_COUNT_GANG(bp) \
571 (BP_IS_EMBEDDED(bp) ? 0 : \
572 (DVA_GET_GANG(&(bp)->blk_dva[0]) + \
573 DVA_GET_GANG(&(bp)->blk_dva[1]) + \
574 (DVA_GET_GANG(&(bp)->blk_dva[2]) * !BP_IS_ENCRYPTED(bp))))
575
576 #define DVA_EQUAL(dva1, dva2) \
577 ((dva1)->dva_word[1] == (dva2)->dva_word[1] && \
578 (dva1)->dva_word[0] == (dva2)->dva_word[0])
579
580 #define BP_EQUAL(bp1, bp2) \
581 (BP_PHYSICAL_BIRTH(bp1) == BP_PHYSICAL_BIRTH(bp2) && \
582 (bp1)->blk_birth == (bp2)->blk_birth && \
583 DVA_EQUAL(&(bp1)->blk_dva[0], &(bp2)->blk_dva[0]) && \
584 DVA_EQUAL(&(bp1)->blk_dva[1], &(bp2)->blk_dva[1]) && \
585 DVA_EQUAL(&(bp1)->blk_dva[2], &(bp2)->blk_dva[2]))
586
587
588 #define DVA_IS_VALID(dva) (DVA_GET_ASIZE(dva) != 0)
589
590 #define BP_IDENTITY(bp) (ASSERT(!BP_IS_EMBEDDED(bp)), &(bp)->blk_dva[0])
591 #define BP_IS_GANG(bp) \
592 (BP_IS_EMBEDDED(bp) ? B_FALSE : DVA_GET_GANG(BP_IDENTITY(bp)))
593 #define DVA_IS_EMPTY(dva) ((dva)->dva_word[0] == 0ULL && \
594 (dva)->dva_word[1] == 0ULL)
595 #define BP_IS_HOLE(bp) \
596 (!BP_IS_EMBEDDED(bp) && DVA_IS_EMPTY(BP_IDENTITY(bp)))
597
598 /* BP_IS_RAIDZ(bp) assumes no block compression */
599 #define BP_IS_RAIDZ(bp) (DVA_GET_ASIZE(&(bp)->blk_dva[0]) > \
600 BP_GET_PSIZE(bp))
601
602 #define BP_ZERO(bp) \
603 { \
604 (bp)->blk_dva[0].dva_word[0] = 0; \
605 (bp)->blk_dva[0].dva_word[1] = 0; \
606 (bp)->blk_dva[1].dva_word[0] = 0; \
607 (bp)->blk_dva[1].dva_word[1] = 0; \
608 (bp)->blk_dva[2].dva_word[0] = 0; \
609 (bp)->blk_dva[2].dva_word[1] = 0; \
610 (bp)->blk_prop = 0; \
611 (bp)->blk_pad[0] = 0; \
612 (bp)->blk_pad[1] = 0; \
613 (bp)->blk_phys_birth = 0; \
614 (bp)->blk_birth = 0; \
615 (bp)->blk_fill = 0; \
616 ZIO_SET_CHECKSUM(&(bp)->blk_cksum, 0, 0, 0, 0); \
617 }
618
619 #ifdef _BIG_ENDIAN
620 #define ZFS_HOST_BYTEORDER (0ULL)
621 #else
622 #define ZFS_HOST_BYTEORDER (1ULL)
623 #endif
624
625 #define BP_SHOULD_BYTESWAP(bp) (BP_GET_BYTEORDER(bp) != ZFS_HOST_BYTEORDER)
626
627 #define BP_SPRINTF_LEN 400
628
629 /*
630 * This macro allows code sharing between zfs, libzpool, and mdb.
631 * 'func' is either snprintf() or mdb_snprintf().
632 * 'ws' (whitespace) can be ' ' for single-line format, '\n' for multi-line.
633 */
634 #define SNPRINTF_BLKPTR(func, ws, buf, size, bp, type, checksum, compress) \
635 { \
636 static const char *copyname[] = \
637 { "zero", "single", "double", "triple" }; \
638 int len = 0; \
639 int copies = 0; \
640 const char *crypt_type; \
641 if (bp != NULL) { \
642 if (BP_IS_ENCRYPTED(bp)) { \
643 crypt_type = "encrypted"; \
644 /* LINTED E_SUSPICIOUS_COMPARISON */ \
645 } else if (BP_IS_AUTHENTICATED(bp)) { \
646 crypt_type = "authenticated"; \
647 } else if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) { \
648 crypt_type = "indirect-MAC"; \
649 } else { \
650 crypt_type = "unencrypted"; \
651 } \
652 } \
653 if (bp == NULL) { \
654 len += func(buf + len, size - len, "<NULL>"); \
655 } else if (BP_IS_HOLE(bp)) { \
656 len += func(buf + len, size - len, \
657 "HOLE [L%llu %s] " \
658 "size=%llxL birth=%lluL", \
659 (u_longlong_t)BP_GET_LEVEL(bp), \
660 type, \
661 (u_longlong_t)BP_GET_LSIZE(bp), \
662 (u_longlong_t)bp->blk_birth); \
663 } else if (BP_IS_EMBEDDED(bp)) { \
664 len = func(buf + len, size - len, \
665 "EMBEDDED [L%llu %s] et=%u %s " \
666 "size=%llxL/%llxP birth=%lluL", \
667 (u_longlong_t)BP_GET_LEVEL(bp), \
668 type, \
669 (int)BPE_GET_ETYPE(bp), \
670 compress, \
671 (u_longlong_t)BPE_GET_LSIZE(bp), \
672 (u_longlong_t)BPE_GET_PSIZE(bp), \
673 (u_longlong_t)bp->blk_birth); \
674 } else { \
675 for (int d = 0; d < BP_GET_NDVAS(bp); d++) { \
676 const dva_t *dva = &bp->blk_dva[d]; \
677 if (DVA_IS_VALID(dva)) \
678 copies++; \
679 len += func(buf + len, size - len, \
680 "DVA[%d]=<%llu:%llx:%llx>%c", d, \
681 (u_longlong_t)DVA_GET_VDEV(dva), \
682 (u_longlong_t)DVA_GET_OFFSET(dva), \
683 (u_longlong_t)DVA_GET_ASIZE(dva), \
684 ws); \
685 } \
686 if (BP_IS_ENCRYPTED(bp)) { \
687 len += func(buf + len, size - len, \
688 "salt=%llx iv=%llx:%llx%c", \
689 (u_longlong_t)bp->blk_dva[2].dva_word[0], \
690 (u_longlong_t)bp->blk_dva[2].dva_word[1], \
691 (u_longlong_t)BP_GET_IV2(bp), \
692 ws); \
693 } \
694 if (BP_IS_GANG(bp) && \
695 DVA_GET_ASIZE(&bp->blk_dva[2]) <= \
696 DVA_GET_ASIZE(&bp->blk_dva[1]) / 2) \
697 copies--; \
698 len += func(buf + len, size - len, \
699 "[L%llu %s] %s %s %s %s %s %s %s%c" \
700 "size=%llxL/%llxP birth=%lluL/%lluP fill=%llu%c" \
701 "cksum=%llx:%llx:%llx:%llx", \
702 (u_longlong_t)BP_GET_LEVEL(bp), \
703 type, \
704 checksum, \
705 compress, \
706 crypt_type, \
707 BP_GET_BYTEORDER(bp) == 0 ? "BE" : "LE", \
708 BP_IS_GANG(bp) ? "gang" : "contiguous", \
709 BP_GET_DEDUP(bp) ? "dedup" : "unique", \
710 copyname[copies], \
711 ws, \
712 (u_longlong_t)BP_GET_LSIZE(bp), \
713 (u_longlong_t)BP_GET_PSIZE(bp), \
714 (u_longlong_t)bp->blk_birth, \
715 (u_longlong_t)BP_PHYSICAL_BIRTH(bp), \
716 (u_longlong_t)BP_GET_FILL(bp), \
717 ws, \
718 (u_longlong_t)bp->blk_cksum.zc_word[0], \
719 (u_longlong_t)bp->blk_cksum.zc_word[1], \
720 (u_longlong_t)bp->blk_cksum.zc_word[2], \
721 (u_longlong_t)bp->blk_cksum.zc_word[3]); \
722 } \
723 ASSERT(len < size); \
724 }
725
726 #define BP_GET_BUFC_TYPE(bp) \
727 (BP_IS_METADATA(bp) ? ARC_BUFC_METADATA : ARC_BUFC_DATA)
728
729 typedef enum spa_import_type {
730 SPA_IMPORT_EXISTING,
731 SPA_IMPORT_ASSEMBLE
732 } spa_import_type_t;
733
734 /* state manipulation functions */
735 extern int spa_open(const char *pool, spa_t **, void *tag);
736 extern int spa_open_rewind(const char *pool, spa_t **, void *tag,
737 nvlist_t *policy, nvlist_t **config);
738 extern int spa_get_stats(const char *pool, nvlist_t **config, char *altroot,
739 size_t buflen);
740 extern int spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
741 nvlist_t *zplprops, struct dsl_crypto_params *dcp);
742 extern int spa_import(char *pool, nvlist_t *config, nvlist_t *props,
743 uint64_t flags);
744 extern nvlist_t *spa_tryimport(nvlist_t *tryconfig);
745 extern int spa_destroy(char *pool);
746 extern int spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
747 boolean_t hardforce);
748 extern int spa_reset(char *pool);
749 extern void spa_async_request(spa_t *spa, int flag);
750 extern void spa_async_unrequest(spa_t *spa, int flag);
751 extern void spa_async_suspend(spa_t *spa);
752 extern void spa_async_resume(spa_t *spa);
753 extern spa_t *spa_inject_addref(char *pool);
754 extern void spa_inject_delref(spa_t *spa);
755 extern void spa_scan_stat_init(spa_t *spa);
756 extern int spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps);
757
758 #define SPA_ASYNC_CONFIG_UPDATE 0x01
759 #define SPA_ASYNC_REMOVE 0x02
760 #define SPA_ASYNC_PROBE 0x04
761 #define SPA_ASYNC_RESILVER_DONE 0x08
762 #define SPA_ASYNC_RESILVER 0x10
763 #define SPA_ASYNC_AUTOEXPAND 0x20
764 #define SPA_ASYNC_REMOVE_DONE 0x40
765 #define SPA_ASYNC_REMOVE_STOP 0x80
766
767 /*
768 * Controls the behavior of spa_vdev_remove().
769 */
770 #define SPA_REMOVE_UNSPARE 0x01
771 #define SPA_REMOVE_DONE 0x02
772
773 /* device manipulation */
774 extern int spa_vdev_add(spa_t *spa, nvlist_t *nvroot);
775 extern int spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot,
776 int replacing);
777 extern int spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid,
778 int replace_done);
779 extern int spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare);
780 extern boolean_t spa_vdev_remove_active(spa_t *spa);
781 extern int spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath);
782 extern int spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru);
783 extern int spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
784 nvlist_t *props, boolean_t exp);
785
786 /* spare state (which is global across all pools) */
787 extern void spa_spare_add(vdev_t *vd);
788 extern void spa_spare_remove(vdev_t *vd);
789 extern boolean_t spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt);
790 extern void spa_spare_activate(vdev_t *vd);
791
792 /* L2ARC state (which is global across all pools) */
793 extern void spa_l2cache_add(vdev_t *vd);
794 extern void spa_l2cache_remove(vdev_t *vd);
795 extern boolean_t spa_l2cache_exists(uint64_t guid, uint64_t *pool);
796 extern void spa_l2cache_activate(vdev_t *vd);
797 extern void spa_l2cache_drop(spa_t *spa);
798
799 /* scanning */
800 extern int spa_scan(spa_t *spa, pool_scan_func_t func);
801 extern int spa_scan_stop(spa_t *spa);
802 extern int spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t flag);
803
804 /* spa syncing */
805 extern void spa_sync(spa_t *spa, uint64_t txg); /* only for DMU use */
806 extern void spa_sync_allpools(void);
807
808 extern int zfs_sync_pass_deferred_free;
809
810 /* spa namespace global mutex */
811 extern kmutex_t spa_namespace_lock;
812
813 /*
814 * SPA configuration functions in spa_config.c
815 */
816
817 #define SPA_CONFIG_UPDATE_POOL 0
818 #define SPA_CONFIG_UPDATE_VDEVS 1
819
820 extern void spa_config_sync(spa_t *, boolean_t, boolean_t);
821 extern void spa_config_load(void);
822 extern nvlist_t *spa_all_configs(uint64_t *);
823 extern void spa_config_set(spa_t *spa, nvlist_t *config);
824 extern nvlist_t *spa_config_generate(spa_t *spa, vdev_t *vd, uint64_t txg,
825 int getstats);
826 extern void spa_config_update(spa_t *spa, int what);
827
828 /*
829 * Miscellaneous SPA routines in spa_misc.c
830 */
831
832 /* Namespace manipulation */
833 extern spa_t *spa_lookup(const char *name);
834 extern spa_t *spa_add(const char *name, nvlist_t *config, const char *altroot);
835 extern void spa_remove(spa_t *spa);
836 extern spa_t *spa_next(spa_t *prev);
837
838 /* Refcount functions */
839 extern void spa_open_ref(spa_t *spa, void *tag);
840 extern void spa_close(spa_t *spa, void *tag);
841 extern void spa_async_close(spa_t *spa, void *tag);
842 extern boolean_t spa_refcount_zero(spa_t *spa);
843
844 #define SCL_NONE 0x00
845 #define SCL_CONFIG 0x01
846 #define SCL_STATE 0x02
847 #define SCL_L2ARC 0x04 /* hack until L2ARC 2.0 */
848 #define SCL_ALLOC 0x08
849 #define SCL_ZIO 0x10
850 #define SCL_FREE 0x20
851 #define SCL_VDEV 0x40
852 #define SCL_LOCKS 7
853 #define SCL_ALL ((1 << SCL_LOCKS) - 1)
854 #define SCL_STATE_ALL (SCL_STATE | SCL_L2ARC | SCL_ZIO)
855
856 /* Historical pool statistics */
857 typedef struct spa_stats_history {
858 kmutex_t lock;
859 uint64_t count;
860 uint64_t size;
861 kstat_t *kstat;
862 void *private;
863 list_t list;
864 } spa_stats_history_t;
865
866 typedef struct spa_stats {
867 spa_stats_history_t read_history;
868 spa_stats_history_t txg_history;
869 spa_stats_history_t tx_assign_histogram;
870 spa_stats_history_t io_history;
871 spa_stats_history_t mmp_history;
872 } spa_stats_t;
873
874 typedef enum txg_state {
875 TXG_STATE_BIRTH = 0,
876 TXG_STATE_OPEN = 1,
877 TXG_STATE_QUIESCED = 2,
878 TXG_STATE_WAIT_FOR_SYNC = 3,
879 TXG_STATE_SYNCED = 4,
880 TXG_STATE_COMMITTED = 5,
881 } txg_state_t;
882
883 typedef struct txg_stat {
884 vdev_stat_t vs1;
885 vdev_stat_t vs2;
886 uint64_t txg;
887 uint64_t ndirty;
888 } txg_stat_t;
889
890 extern void spa_stats_init(spa_t *spa);
891 extern void spa_stats_destroy(spa_t *spa);
892 extern void spa_read_history_add(spa_t *spa, const zbookmark_phys_t *zb,
893 uint32_t aflags);
894 extern void spa_txg_history_add(spa_t *spa, uint64_t txg, hrtime_t birth_time);
895 extern int spa_txg_history_set(spa_t *spa, uint64_t txg,
896 txg_state_t completed_state, hrtime_t completed_time);
897 extern txg_stat_t *spa_txg_history_init_io(spa_t *, uint64_t,
898 struct dsl_pool *);
899 extern void spa_txg_history_fini_io(spa_t *, txg_stat_t *);
900 extern void spa_tx_assign_add_nsecs(spa_t *spa, uint64_t nsecs);
901 extern int spa_mmp_history_set_skip(spa_t *spa, uint64_t mmp_kstat_id);
902 extern int spa_mmp_history_set(spa_t *spa, uint64_t mmp_kstat_id, int io_error,
903 hrtime_t duration);
904 extern void *spa_mmp_history_add(spa_t *spa, uint64_t txg, uint64_t timestamp,
905 uint64_t mmp_delay, vdev_t *vd, int label, uint64_t mmp_kstat_id,
906 int error);
907
908 /* Pool configuration locks */
909 extern int spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw);
910 extern void spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw);
911 extern void spa_config_exit(spa_t *spa, int locks, void *tag);
912 extern int spa_config_held(spa_t *spa, int locks, krw_t rw);
913
914 /* Pool vdev add/remove lock */
915 extern uint64_t spa_vdev_enter(spa_t *spa);
916 extern uint64_t spa_vdev_config_enter(spa_t *spa);
917 extern void spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg,
918 int error, char *tag);
919 extern int spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error);
920
921 /* Pool vdev state change lock */
922 extern void spa_vdev_state_enter(spa_t *spa, int oplock);
923 extern int spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error);
924
925 /* Log state */
926 typedef enum spa_log_state {
927 SPA_LOG_UNKNOWN = 0, /* unknown log state */
928 SPA_LOG_MISSING, /* missing log(s) */
929 SPA_LOG_CLEAR, /* clear the log(s) */
930 SPA_LOG_GOOD, /* log(s) are good */
931 } spa_log_state_t;
932
933 extern spa_log_state_t spa_get_log_state(spa_t *spa);
934 extern void spa_set_log_state(spa_t *spa, spa_log_state_t state);
935 extern int spa_offline_log(spa_t *spa);
936
937 /* Log claim callback */
938 extern void spa_claim_notify(zio_t *zio);
939 extern void spa_deadman(void *);
940
941 /* Accessor functions */
942 extern boolean_t spa_shutting_down(spa_t *spa);
943 extern struct dsl_pool *spa_get_dsl(spa_t *spa);
944 extern boolean_t spa_is_initializing(spa_t *spa);
945 extern blkptr_t *spa_get_rootblkptr(spa_t *spa);
946 extern void spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp);
947 extern void spa_altroot(spa_t *, char *, size_t);
948 extern int spa_sync_pass(spa_t *spa);
949 extern char *spa_name(spa_t *spa);
950 extern uint64_t spa_guid(spa_t *spa);
951 extern uint64_t spa_load_guid(spa_t *spa);
952 extern uint64_t spa_last_synced_txg(spa_t *spa);
953 extern uint64_t spa_first_txg(spa_t *spa);
954 extern uint64_t spa_syncing_txg(spa_t *spa);
955 extern uint64_t spa_final_dirty_txg(spa_t *spa);
956 extern uint64_t spa_version(spa_t *spa);
957 extern pool_state_t spa_state(spa_t *spa);
958 extern spa_load_state_t spa_load_state(spa_t *spa);
959 extern uint64_t spa_freeze_txg(spa_t *spa);
960 extern uint64_t spa_get_worst_case_asize(spa_t *spa, uint64_t lsize);
961 extern uint64_t spa_get_dspace(spa_t *spa);
962 extern uint64_t spa_get_slop_space(spa_t *spa);
963 extern void spa_update_dspace(spa_t *spa);
964 extern uint64_t spa_version(spa_t *spa);
965 extern boolean_t spa_deflate(spa_t *spa);
966 extern metaslab_class_t *spa_normal_class(spa_t *spa);
967 extern metaslab_class_t *spa_log_class(spa_t *spa);
968 extern void spa_evicting_os_register(spa_t *, objset_t *os);
969 extern void spa_evicting_os_deregister(spa_t *, objset_t *os);
970 extern void spa_evicting_os_wait(spa_t *spa);
971 extern int spa_max_replication(spa_t *spa);
972 extern int spa_prev_software_version(spa_t *spa);
973 extern uint64_t spa_get_failmode(spa_t *spa);
974 extern uint64_t spa_get_deadman_failmode(spa_t *spa);
975 extern void spa_set_deadman_failmode(spa_t *spa, const char *failmode);
976 extern boolean_t spa_suspended(spa_t *spa);
977 extern uint64_t spa_bootfs(spa_t *spa);
978 extern uint64_t spa_delegation(spa_t *spa);
979 extern objset_t *spa_meta_objset(spa_t *spa);
980 extern uint64_t spa_deadman_synctime(spa_t *spa);
981 extern uint64_t spa_deadman_ziotime(spa_t *spa);
982
983 /* Miscellaneous support routines */
984 extern void spa_activate_mos_feature(spa_t *spa, const char *feature,
985 dmu_tx_t *tx);
986 extern void spa_deactivate_mos_feature(spa_t *spa, const char *feature);
987 extern int spa_rename(const char *oldname, const char *newname);
988 extern spa_t *spa_by_guid(uint64_t pool_guid, uint64_t device_guid);
989 extern boolean_t spa_guid_exists(uint64_t pool_guid, uint64_t device_guid);
990 extern char *spa_strdup(const char *);
991 extern void spa_strfree(char *);
992 extern uint64_t spa_get_random(uint64_t range);
993 extern uint64_t spa_generate_guid(spa_t *spa);
994 extern void snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp);
995 extern void spa_freeze(spa_t *spa);
996 extern int spa_change_guid(spa_t *spa);
997 extern void spa_upgrade(spa_t *spa, uint64_t version);
998 extern void spa_evict_all(void);
999 extern vdev_t *spa_lookup_by_guid(spa_t *spa, uint64_t guid,
1000 boolean_t l2cache);
1001 extern boolean_t spa_has_spare(spa_t *, uint64_t guid);
1002 extern uint64_t dva_get_dsize_sync(spa_t *spa, const dva_t *dva);
1003 extern uint64_t bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp);
1004 extern uint64_t bp_get_dsize(spa_t *spa, const blkptr_t *bp);
1005 extern boolean_t spa_has_slogs(spa_t *spa);
1006 extern boolean_t spa_is_root(spa_t *spa);
1007 extern boolean_t spa_writeable(spa_t *spa);
1008 extern boolean_t spa_has_pending_synctask(spa_t *spa);
1009 extern int spa_maxblocksize(spa_t *spa);
1010 extern int spa_maxdnodesize(spa_t *spa);
1011 extern void zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp);
1012 extern boolean_t spa_multihost(spa_t *spa);
1013 extern unsigned long spa_get_hostid(void);
1014
1015 extern int spa_mode(spa_t *spa);
1016 extern uint64_t zfs_strtonum(const char *str, char **nptr);
1017
1018 extern char *spa_his_ievent_table[];
1019
1020 extern void spa_history_create_obj(spa_t *spa, dmu_tx_t *tx);
1021 extern int spa_history_get(spa_t *spa, uint64_t *offset, uint64_t *len_read,
1022 char *his_buf);
1023 extern int spa_history_log(spa_t *spa, const char *his_buf);
1024 extern int spa_history_log_nvl(spa_t *spa, nvlist_t *nvl);
1025 extern void spa_history_log_version(spa_t *spa, const char *operation,
1026 dmu_tx_t *tx);
1027 extern void spa_history_log_internal(spa_t *spa, const char *operation,
1028 dmu_tx_t *tx, const char *fmt, ...);
1029 extern void spa_history_log_internal_ds(struct dsl_dataset *ds, const char *op,
1030 dmu_tx_t *tx, const char *fmt, ...);
1031 extern void spa_history_log_internal_dd(dsl_dir_t *dd, const char *operation,
1032 dmu_tx_t *tx, const char *fmt, ...);
1033
1034 /* error handling */
1035 struct zbookmark_phys;
1036 extern void spa_log_error(spa_t *spa, const zbookmark_phys_t *zb);
1037 extern void zfs_ereport_post(const char *class, spa_t *spa, vdev_t *vd,
1038 const zbookmark_phys_t *zb, zio_t *zio, uint64_t stateoroffset,
1039 uint64_t length);
1040 extern nvlist_t *zfs_event_create(spa_t *spa, vdev_t *vd, const char *type,
1041 const char *name, nvlist_t *aux);
1042 extern void zfs_post_remove(spa_t *spa, vdev_t *vd);
1043 extern void zfs_post_state_change(spa_t *spa, vdev_t *vd, uint64_t laststate);
1044 extern void zfs_post_autoreplace(spa_t *spa, vdev_t *vd);
1045 extern uint64_t spa_get_errlog_size(spa_t *spa);
1046 extern int spa_get_errlog(spa_t *spa, void *uaddr, size_t *count);
1047 extern void spa_errlog_rotate(spa_t *spa);
1048 extern void spa_errlog_drain(spa_t *spa);
1049 extern void spa_errlog_sync(spa_t *spa, uint64_t txg);
1050 extern void spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub);
1051
1052 /* vdev cache */
1053 extern void vdev_cache_stat_init(void);
1054 extern void vdev_cache_stat_fini(void);
1055
1056 /* vdev mirror */
1057 extern void vdev_mirror_stat_init(void);
1058 extern void vdev_mirror_stat_fini(void);
1059
1060 /* Initialization and termination */
1061 extern void spa_init(int flags);
1062 extern void spa_fini(void);
1063 extern void spa_boot_init(void);
1064
1065 /* properties */
1066 extern int spa_prop_set(spa_t *spa, nvlist_t *nvp);
1067 extern int spa_prop_get(spa_t *spa, nvlist_t **nvp);
1068 extern void spa_prop_clear_bootfs(spa_t *spa, uint64_t obj, dmu_tx_t *tx);
1069 extern void spa_configfile_set(spa_t *, nvlist_t *, boolean_t);
1070
1071 /* asynchronous event notification */
1072 extern void spa_event_notify(spa_t *spa, vdev_t *vdev, nvlist_t *hist_nvl,
1073 const char *name);
1074
1075 #ifdef ZFS_DEBUG
1076 #define dprintf_bp(bp, fmt, ...) do { \
1077 if (zfs_flags & ZFS_DEBUG_DPRINTF) { \
1078 char *__blkbuf = kmem_alloc(BP_SPRINTF_LEN, KM_SLEEP); \
1079 snprintf_blkptr(__blkbuf, BP_SPRINTF_LEN, (bp)); \
1080 dprintf(fmt " %s\n", __VA_ARGS__, __blkbuf); \
1081 kmem_free(__blkbuf, BP_SPRINTF_LEN); \
1082 } \
1083 _NOTE(CONSTCOND) } while (0)
1084 #else
1085 #define dprintf_bp(bp, fmt, ...)
1086 #endif
1087
1088 extern boolean_t spa_debug_enabled(spa_t *spa);
1089 #define spa_dbgmsg(spa, ...) \
1090 { \
1091 if (spa_debug_enabled(spa)) \
1092 zfs_dbgmsg(__VA_ARGS__); \
1093 }
1094
1095 extern int spa_mode_global; /* mode, e.g. FREAD | FWRITE */
1096 extern int zfs_deadman_enabled;
1097 extern unsigned long zfs_deadman_synctime_ms;
1098 extern unsigned long zfs_deadman_ziotime_ms;
1099 extern unsigned long zfs_deadman_checktime_ms;
1100
1101 #ifdef __cplusplus
1102 }
1103 #endif
1104
1105 #endif /* _SYS_SPA_H */