]> git.proxmox.com Git - mirror_zfs.git/blob - include/sys/spa.h
Use a helper function to clarify gang block size
[mirror_zfs.git] / include / sys / spa.h
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright 2013 Saso Kiselkov. All rights reserved.
27 * Copyright (c) 2014 Integros [integros.com]
28 * Copyright 2017 Joyent, Inc.
29 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
30 * Copyright (c) 2017, Intel Corporation.
31 * Copyright (c) 2019, Allan Jude
32 * Copyright (c) 2019, Klara Inc.
33 */
34
35 #ifndef _SYS_SPA_H
36 #define _SYS_SPA_H
37
38 #include <sys/avl.h>
39 #include <sys/zfs_context.h>
40 #include <sys/kstat.h>
41 #include <sys/nvpair.h>
42 #include <sys/sysmacros.h>
43 #include <sys/types.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/spa_checksum.h>
46 #include <sys/dmu.h>
47 #include <sys/space_map.h>
48 #include <sys/bitops.h>
49
50 #ifdef __cplusplus
51 extern "C" {
52 #endif
53
54 /*
55 * Forward references that lots of things need.
56 */
57 typedef struct spa spa_t;
58 typedef struct vdev vdev_t;
59 typedef struct metaslab metaslab_t;
60 typedef struct metaslab_group metaslab_group_t;
61 typedef struct metaslab_class metaslab_class_t;
62 typedef struct zio zio_t;
63 typedef struct zilog zilog_t;
64 typedef struct spa_aux_vdev spa_aux_vdev_t;
65 typedef struct ddt ddt_t;
66 typedef struct ddt_entry ddt_entry_t;
67 typedef struct zbookmark_phys zbookmark_phys_t;
68
69 struct bpobj;
70 struct bplist;
71 struct dsl_pool;
72 struct dsl_dataset;
73 struct dsl_crypto_params;
74
75 /*
76 * We currently support block sizes from 512 bytes to 16MB.
77 * The benefits of larger blocks, and thus larger IO, need to be weighed
78 * against the cost of COWing a giant block to modify one byte, and the
79 * large latency of reading or writing a large block.
80 *
81 * Note that although blocks up to 16MB are supported, the recordsize
82 * property can not be set larger than zfs_max_recordsize (default 1MB).
83 * See the comment near zfs_max_recordsize in dsl_dataset.c for details.
84 *
85 * Note that although the LSIZE field of the blkptr_t can store sizes up
86 * to 32MB, the dnode's dn_datablkszsec can only store sizes up to
87 * 32MB - 512 bytes. Therefore, we limit SPA_MAXBLOCKSIZE to 16MB.
88 */
89 #define SPA_MINBLOCKSHIFT 9
90 #define SPA_OLD_MAXBLOCKSHIFT 17
91 #define SPA_MAXBLOCKSHIFT 24
92 #define SPA_MINBLOCKSIZE (1ULL << SPA_MINBLOCKSHIFT)
93 #define SPA_OLD_MAXBLOCKSIZE (1ULL << SPA_OLD_MAXBLOCKSHIFT)
94 #define SPA_MAXBLOCKSIZE (1ULL << SPA_MAXBLOCKSHIFT)
95
96 /*
97 * Alignment Shift (ashift) is an immutable, internal top-level vdev property
98 * which can only be set at vdev creation time. Physical writes are always done
99 * according to it, which makes 2^ashift the smallest possible IO on a vdev.
100 *
101 * We currently allow values ranging from 512 bytes (2^9 = 512) to 64 KiB
102 * (2^16 = 65,536).
103 */
104 #define ASHIFT_MIN 9
105 #define ASHIFT_MAX 16
106
107 /*
108 * Size of block to hold the configuration data (a packed nvlist)
109 */
110 #define SPA_CONFIG_BLOCKSIZE (1ULL << 14)
111
112 /*
113 * The DVA size encodings for LSIZE and PSIZE support blocks up to 32MB.
114 * The ASIZE encoding should be at least 64 times larger (6 more bits)
115 * to support up to 4-way RAID-Z mirror mode with worst-case gang block
116 * overhead, three DVAs per bp, plus one more bit in case we do anything
117 * else that expands the ASIZE.
118 */
119 #define SPA_LSIZEBITS 16 /* LSIZE up to 32M (2^16 * 512) */
120 #define SPA_PSIZEBITS 16 /* PSIZE up to 32M (2^16 * 512) */
121 #define SPA_ASIZEBITS 24 /* ASIZE up to 64 times larger */
122
123 #define SPA_COMPRESSBITS 7
124 #define SPA_VDEVBITS 24
125 #define SPA_COMPRESSMASK ((1U << SPA_COMPRESSBITS) - 1)
126
127 /*
128 * All SPA data is represented by 128-bit data virtual addresses (DVAs).
129 * The members of the dva_t should be considered opaque outside the SPA.
130 */
131 typedef struct dva {
132 uint64_t dva_word[2];
133 } dva_t;
134
135
136 /*
137 * Some checksums/hashes need a 256-bit initialization salt. This salt is kept
138 * secret and is suitable for use in MAC algorithms as the key.
139 */
140 typedef struct zio_cksum_salt {
141 uint8_t zcs_bytes[32];
142 } zio_cksum_salt_t;
143
144 /*
145 * Each block is described by its DVAs, time of birth, checksum, etc.
146 * The word-by-word, bit-by-bit layout of the blkptr is as follows:
147 *
148 * 64 56 48 40 32 24 16 8 0
149 * +-------+-------+-------+-------+-------+-------+-------+-------+
150 * 0 | pad | vdev1 | GRID | ASIZE |
151 * +-------+-------+-------+-------+-------+-------+-------+-------+
152 * 1 |G| offset1 |
153 * +-------+-------+-------+-------+-------+-------+-------+-------+
154 * 2 | pad | vdev2 | GRID | ASIZE |
155 * +-------+-------+-------+-------+-------+-------+-------+-------+
156 * 3 |G| offset2 |
157 * +-------+-------+-------+-------+-------+-------+-------+-------+
158 * 4 | pad | vdev3 | GRID | ASIZE |
159 * +-------+-------+-------+-------+-------+-------+-------+-------+
160 * 5 |G| offset3 |
161 * +-------+-------+-------+-------+-------+-------+-------+-------+
162 * 6 |BDX|lvl| type | cksum |E| comp| PSIZE | LSIZE |
163 * +-------+-------+-------+-------+-------+-------+-------+-------+
164 * 7 | padding |
165 * +-------+-------+-------+-------+-------+-------+-------+-------+
166 * 8 | padding |
167 * +-------+-------+-------+-------+-------+-------+-------+-------+
168 * 9 | physical birth txg |
169 * +-------+-------+-------+-------+-------+-------+-------+-------+
170 * a | logical birth txg |
171 * +-------+-------+-------+-------+-------+-------+-------+-------+
172 * b | fill count |
173 * +-------+-------+-------+-------+-------+-------+-------+-------+
174 * c | checksum[0] |
175 * +-------+-------+-------+-------+-------+-------+-------+-------+
176 * d | checksum[1] |
177 * +-------+-------+-------+-------+-------+-------+-------+-------+
178 * e | checksum[2] |
179 * +-------+-------+-------+-------+-------+-------+-------+-------+
180 * f | checksum[3] |
181 * +-------+-------+-------+-------+-------+-------+-------+-------+
182 *
183 * Legend:
184 *
185 * vdev virtual device ID
186 * offset offset into virtual device
187 * LSIZE logical size
188 * PSIZE physical size (after compression)
189 * ASIZE allocated size (including RAID-Z parity and gang block headers)
190 * GRID RAID-Z layout information (reserved for future use)
191 * cksum checksum function
192 * comp compression function
193 * G gang block indicator
194 * B byteorder (endianness)
195 * D dedup
196 * X encryption
197 * E blkptr_t contains embedded data (see below)
198 * lvl level of indirection
199 * type DMU object type
200 * phys birth txg when dva[0] was written; zero if same as logical birth txg
201 * note that typically all the dva's would be written in this
202 * txg, but they could be different if they were moved by
203 * device removal.
204 * log. birth transaction group in which the block was logically born
205 * fill count number of non-zero blocks under this bp
206 * checksum[4] 256-bit checksum of the data this bp describes
207 */
208
209 /*
210 * The blkptr_t's of encrypted blocks also need to store the encryption
211 * parameters so that the block can be decrypted. This layout is as follows:
212 *
213 * 64 56 48 40 32 24 16 8 0
214 * +-------+-------+-------+-------+-------+-------+-------+-------+
215 * 0 | vdev1 | GRID | ASIZE |
216 * +-------+-------+-------+-------+-------+-------+-------+-------+
217 * 1 |G| offset1 |
218 * +-------+-------+-------+-------+-------+-------+-------+-------+
219 * 2 | vdev2 | GRID | ASIZE |
220 * +-------+-------+-------+-------+-------+-------+-------+-------+
221 * 3 |G| offset2 |
222 * +-------+-------+-------+-------+-------+-------+-------+-------+
223 * 4 | salt |
224 * +-------+-------+-------+-------+-------+-------+-------+-------+
225 * 5 | IV1 |
226 * +-------+-------+-------+-------+-------+-------+-------+-------+
227 * 6 |BDX|lvl| type | cksum |E| comp| PSIZE | LSIZE |
228 * +-------+-------+-------+-------+-------+-------+-------+-------+
229 * 7 | padding |
230 * +-------+-------+-------+-------+-------+-------+-------+-------+
231 * 8 | padding |
232 * +-------+-------+-------+-------+-------+-------+-------+-------+
233 * 9 | physical birth txg |
234 * +-------+-------+-------+-------+-------+-------+-------+-------+
235 * a | logical birth txg |
236 * +-------+-------+-------+-------+-------+-------+-------+-------+
237 * b | IV2 | fill count |
238 * +-------+-------+-------+-------+-------+-------+-------+-------+
239 * c | checksum[0] |
240 * +-------+-------+-------+-------+-------+-------+-------+-------+
241 * d | checksum[1] |
242 * +-------+-------+-------+-------+-------+-------+-------+-------+
243 * e | MAC[0] |
244 * +-------+-------+-------+-------+-------+-------+-------+-------+
245 * f | MAC[1] |
246 * +-------+-------+-------+-------+-------+-------+-------+-------+
247 *
248 * Legend:
249 *
250 * salt Salt for generating encryption keys
251 * IV1 First 64 bits of encryption IV
252 * X Block requires encryption handling (set to 1)
253 * E blkptr_t contains embedded data (set to 0, see below)
254 * fill count number of non-zero blocks under this bp (truncated to 32 bits)
255 * IV2 Last 32 bits of encryption IV
256 * checksum[2] 128-bit checksum of the data this bp describes
257 * MAC[2] 128-bit message authentication code for this data
258 *
259 * The X bit being set indicates that this block is one of 3 types. If this is
260 * a level 0 block with an encrypted object type, the block is encrypted
261 * (see BP_IS_ENCRYPTED()). If this is a level 0 block with an unencrypted
262 * object type, this block is authenticated with an HMAC (see
263 * BP_IS_AUTHENTICATED()). Otherwise (if level > 0), this bp will use the MAC
264 * words to store a checksum-of-MACs from the level below (see
265 * BP_HAS_INDIRECT_MAC_CKSUM()). For convenience in the code, BP_IS_PROTECTED()
266 * refers to both encrypted and authenticated blocks and BP_USES_CRYPT()
267 * refers to any of these 3 kinds of blocks.
268 *
269 * The additional encryption parameters are the salt, IV, and MAC which are
270 * explained in greater detail in the block comment at the top of zio_crypt.c.
271 * The MAC occupies half of the checksum space since it serves a very similar
272 * purpose: to prevent data corruption on disk. The only functional difference
273 * is that the checksum is used to detect on-disk corruption whether or not the
274 * encryption key is loaded and the MAC provides additional protection against
275 * malicious disk tampering. We use the 3rd DVA to store the salt and first
276 * 64 bits of the IV. As a result encrypted blocks can only have 2 copies
277 * maximum instead of the normal 3. The last 32 bits of the IV are stored in
278 * the upper bits of what is usually the fill count. Note that only blocks at
279 * level 0 or -2 are ever encrypted, which allows us to guarantee that these
280 * 32 bits are not trampled over by other code (see zio_crypt.c for details).
281 * The salt and IV are not used for authenticated bps or bps with an indirect
282 * MAC checksum, so these blocks can utilize all 3 DVAs and the full 64 bits
283 * for the fill count.
284 */
285
286 /*
287 * "Embedded" blkptr_t's don't actually point to a block, instead they
288 * have a data payload embedded in the blkptr_t itself. See the comment
289 * in blkptr.c for more details.
290 *
291 * The blkptr_t is laid out as follows:
292 *
293 * 64 56 48 40 32 24 16 8 0
294 * +-------+-------+-------+-------+-------+-------+-------+-------+
295 * 0 | payload |
296 * 1 | payload |
297 * 2 | payload |
298 * 3 | payload |
299 * 4 | payload |
300 * 5 | payload |
301 * +-------+-------+-------+-------+-------+-------+-------+-------+
302 * 6 |BDX|lvl| type | etype |E| comp| PSIZE| LSIZE |
303 * +-------+-------+-------+-------+-------+-------+-------+-------+
304 * 7 | payload |
305 * 8 | payload |
306 * 9 | payload |
307 * +-------+-------+-------+-------+-------+-------+-------+-------+
308 * a | logical birth txg |
309 * +-------+-------+-------+-------+-------+-------+-------+-------+
310 * b | payload |
311 * c | payload |
312 * d | payload |
313 * e | payload |
314 * f | payload |
315 * +-------+-------+-------+-------+-------+-------+-------+-------+
316 *
317 * Legend:
318 *
319 * payload contains the embedded data
320 * B (byteorder) byteorder (endianness)
321 * D (dedup) padding (set to zero)
322 * X encryption (set to zero)
323 * E (embedded) set to one
324 * lvl indirection level
325 * type DMU object type
326 * etype how to interpret embedded data (BP_EMBEDDED_TYPE_*)
327 * comp compression function of payload
328 * PSIZE size of payload after compression, in bytes
329 * LSIZE logical size of payload, in bytes
330 * note that 25 bits is enough to store the largest
331 * "normal" BP's LSIZE (2^16 * 2^9) in bytes
332 * log. birth transaction group in which the block was logically born
333 *
334 * Note that LSIZE and PSIZE are stored in bytes, whereas for non-embedded
335 * bp's they are stored in units of SPA_MINBLOCKSHIFT.
336 * Generally, the generic BP_GET_*() macros can be used on embedded BP's.
337 * The B, D, X, lvl, type, and comp fields are stored the same as with normal
338 * BP's so the BP_SET_* macros can be used with them. etype, PSIZE, LSIZE must
339 * be set with the BPE_SET_* macros. BP_SET_EMBEDDED() should be called before
340 * other macros, as they assert that they are only used on BP's of the correct
341 * "embedded-ness". Encrypted blkptr_t's cannot be embedded because they use
342 * the payload space for encryption parameters (see the comment above on
343 * how encryption parameters are stored).
344 */
345
346 #define BPE_GET_ETYPE(bp) \
347 (ASSERT(BP_IS_EMBEDDED(bp)), \
348 BF64_GET((bp)->blk_prop, 40, 8))
349 #define BPE_SET_ETYPE(bp, t) do { \
350 ASSERT(BP_IS_EMBEDDED(bp)); \
351 BF64_SET((bp)->blk_prop, 40, 8, t); \
352 _NOTE(CONSTCOND) } while (0)
353
354 #define BPE_GET_LSIZE(bp) \
355 (ASSERT(BP_IS_EMBEDDED(bp)), \
356 BF64_GET_SB((bp)->blk_prop, 0, 25, 0, 1))
357 #define BPE_SET_LSIZE(bp, x) do { \
358 ASSERT(BP_IS_EMBEDDED(bp)); \
359 BF64_SET_SB((bp)->blk_prop, 0, 25, 0, 1, x); \
360 _NOTE(CONSTCOND) } while (0)
361
362 #define BPE_GET_PSIZE(bp) \
363 (ASSERT(BP_IS_EMBEDDED(bp)), \
364 BF64_GET_SB((bp)->blk_prop, 25, 7, 0, 1))
365 #define BPE_SET_PSIZE(bp, x) do { \
366 ASSERT(BP_IS_EMBEDDED(bp)); \
367 BF64_SET_SB((bp)->blk_prop, 25, 7, 0, 1, x); \
368 _NOTE(CONSTCOND) } while (0)
369
370 typedef enum bp_embedded_type {
371 BP_EMBEDDED_TYPE_DATA,
372 BP_EMBEDDED_TYPE_RESERVED, /* Reserved for Delphix byteswap feature. */
373 BP_EMBEDDED_TYPE_REDACTED,
374 NUM_BP_EMBEDDED_TYPES
375 } bp_embedded_type_t;
376
377 #define BPE_NUM_WORDS 14
378 #define BPE_PAYLOAD_SIZE (BPE_NUM_WORDS * sizeof (uint64_t))
379 #define BPE_IS_PAYLOADWORD(bp, wp) \
380 ((wp) != &(bp)->blk_prop && (wp) != &(bp)->blk_birth)
381
382 #define SPA_BLKPTRSHIFT 7 /* blkptr_t is 128 bytes */
383 #define SPA_DVAS_PER_BP 3 /* Number of DVAs in a bp */
384 #define SPA_SYNC_MIN_VDEVS 3 /* min vdevs to update during sync */
385
386 /*
387 * A block is a hole when it has either 1) never been written to, or
388 * 2) is zero-filled. In both cases, ZFS can return all zeroes for all reads
389 * without physically allocating disk space. Holes are represented in the
390 * blkptr_t structure by zeroed blk_dva. Correct checking for holes is
391 * done through the BP_IS_HOLE macro. For holes, the logical size, level,
392 * DMU object type, and birth times are all also stored for holes that
393 * were written to at some point (i.e. were punched after having been filled).
394 */
395 typedef struct blkptr {
396 dva_t blk_dva[SPA_DVAS_PER_BP]; /* Data Virtual Addresses */
397 uint64_t blk_prop; /* size, compression, type, etc */
398 uint64_t blk_pad[2]; /* Extra space for the future */
399 uint64_t blk_phys_birth; /* txg when block was allocated */
400 uint64_t blk_birth; /* transaction group at birth */
401 uint64_t blk_fill; /* fill count */
402 zio_cksum_t blk_cksum; /* 256-bit checksum */
403 } blkptr_t;
404
405 /*
406 * Macros to get and set fields in a bp or DVA.
407 */
408
409 /*
410 * Note, for gang blocks, DVA_GET_ASIZE() is the total space allocated for
411 * this gang DVA including its children BP's. The space allocated at this
412 * DVA's vdev/offset is vdev_gang_header_asize(vdev).
413 */
414 #define DVA_GET_ASIZE(dva) \
415 BF64_GET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, SPA_MINBLOCKSHIFT, 0)
416 #define DVA_SET_ASIZE(dva, x) \
417 BF64_SET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, \
418 SPA_MINBLOCKSHIFT, 0, x)
419
420 #define DVA_GET_GRID(dva) BF64_GET((dva)->dva_word[0], 24, 8)
421 #define DVA_SET_GRID(dva, x) BF64_SET((dva)->dva_word[0], 24, 8, x)
422
423 #define DVA_GET_VDEV(dva) BF64_GET((dva)->dva_word[0], 32, SPA_VDEVBITS)
424 #define DVA_SET_VDEV(dva, x) \
425 BF64_SET((dva)->dva_word[0], 32, SPA_VDEVBITS, x)
426
427 #define DVA_GET_OFFSET(dva) \
428 BF64_GET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0)
429 #define DVA_SET_OFFSET(dva, x) \
430 BF64_SET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0, x)
431
432 #define DVA_GET_GANG(dva) BF64_GET((dva)->dva_word[1], 63, 1)
433 #define DVA_SET_GANG(dva, x) BF64_SET((dva)->dva_word[1], 63, 1, x)
434
435 #define BP_GET_LSIZE(bp) \
436 (BP_IS_EMBEDDED(bp) ? \
437 (BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA ? BPE_GET_LSIZE(bp) : 0): \
438 BF64_GET_SB((bp)->blk_prop, 0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1))
439 #define BP_SET_LSIZE(bp, x) do { \
440 ASSERT(!BP_IS_EMBEDDED(bp)); \
441 BF64_SET_SB((bp)->blk_prop, \
442 0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1, x); \
443 _NOTE(CONSTCOND) } while (0)
444
445 #define BP_GET_PSIZE(bp) \
446 (BP_IS_EMBEDDED(bp) ? 0 : \
447 BF64_GET_SB((bp)->blk_prop, 16, SPA_PSIZEBITS, SPA_MINBLOCKSHIFT, 1))
448 #define BP_SET_PSIZE(bp, x) do { \
449 ASSERT(!BP_IS_EMBEDDED(bp)); \
450 BF64_SET_SB((bp)->blk_prop, \
451 16, SPA_PSIZEBITS, SPA_MINBLOCKSHIFT, 1, x); \
452 _NOTE(CONSTCOND) } while (0)
453
454 #define BP_GET_COMPRESS(bp) \
455 BF64_GET((bp)->blk_prop, 32, SPA_COMPRESSBITS)
456 #define BP_SET_COMPRESS(bp, x) \
457 BF64_SET((bp)->blk_prop, 32, SPA_COMPRESSBITS, x)
458
459 #define BP_IS_EMBEDDED(bp) BF64_GET((bp)->blk_prop, 39, 1)
460 #define BP_SET_EMBEDDED(bp, x) BF64_SET((bp)->blk_prop, 39, 1, x)
461
462 #define BP_GET_CHECKSUM(bp) \
463 (BP_IS_EMBEDDED(bp) ? ZIO_CHECKSUM_OFF : \
464 BF64_GET((bp)->blk_prop, 40, 8))
465 #define BP_SET_CHECKSUM(bp, x) do { \
466 ASSERT(!BP_IS_EMBEDDED(bp)); \
467 BF64_SET((bp)->blk_prop, 40, 8, x); \
468 _NOTE(CONSTCOND) } while (0)
469
470 #define BP_GET_TYPE(bp) BF64_GET((bp)->blk_prop, 48, 8)
471 #define BP_SET_TYPE(bp, x) BF64_SET((bp)->blk_prop, 48, 8, x)
472
473 #define BP_GET_LEVEL(bp) BF64_GET((bp)->blk_prop, 56, 5)
474 #define BP_SET_LEVEL(bp, x) BF64_SET((bp)->blk_prop, 56, 5, x)
475
476 /* encrypted, authenticated, and MAC cksum bps use the same bit */
477 #define BP_USES_CRYPT(bp) BF64_GET((bp)->blk_prop, 61, 1)
478 #define BP_SET_CRYPT(bp, x) BF64_SET((bp)->blk_prop, 61, 1, x)
479
480 #define BP_IS_ENCRYPTED(bp) \
481 (BP_USES_CRYPT(bp) && \
482 BP_GET_LEVEL(bp) <= 0 && \
483 DMU_OT_IS_ENCRYPTED(BP_GET_TYPE(bp)))
484
485 #define BP_IS_AUTHENTICATED(bp) \
486 (BP_USES_CRYPT(bp) && \
487 BP_GET_LEVEL(bp) <= 0 && \
488 !DMU_OT_IS_ENCRYPTED(BP_GET_TYPE(bp)))
489
490 #define BP_HAS_INDIRECT_MAC_CKSUM(bp) \
491 (BP_USES_CRYPT(bp) && BP_GET_LEVEL(bp) > 0)
492
493 #define BP_IS_PROTECTED(bp) \
494 (BP_IS_ENCRYPTED(bp) || BP_IS_AUTHENTICATED(bp))
495
496 #define BP_GET_DEDUP(bp) BF64_GET((bp)->blk_prop, 62, 1)
497 #define BP_SET_DEDUP(bp, x) BF64_SET((bp)->blk_prop, 62, 1, x)
498
499 #define BP_GET_BYTEORDER(bp) BF64_GET((bp)->blk_prop, 63, 1)
500 #define BP_SET_BYTEORDER(bp, x) BF64_SET((bp)->blk_prop, 63, 1, x)
501
502 #define BP_GET_FREE(bp) BF64_GET((bp)->blk_fill, 0, 1)
503 #define BP_SET_FREE(bp, x) BF64_SET((bp)->blk_fill, 0, 1, x)
504
505 #define BP_PHYSICAL_BIRTH(bp) \
506 (BP_IS_EMBEDDED(bp) ? 0 : \
507 (bp)->blk_phys_birth ? (bp)->blk_phys_birth : (bp)->blk_birth)
508
509 #define BP_SET_BIRTH(bp, logical, physical) \
510 { \
511 ASSERT(!BP_IS_EMBEDDED(bp)); \
512 (bp)->blk_birth = (logical); \
513 (bp)->blk_phys_birth = ((logical) == (physical) ? 0 : (physical)); \
514 }
515
516 #define BP_GET_FILL(bp) \
517 ((BP_IS_ENCRYPTED(bp)) ? BF64_GET((bp)->blk_fill, 0, 32) : \
518 ((BP_IS_EMBEDDED(bp)) ? 1 : (bp)->blk_fill))
519
520 #define BP_SET_FILL(bp, fill) \
521 { \
522 if (BP_IS_ENCRYPTED(bp)) \
523 BF64_SET((bp)->blk_fill, 0, 32, fill); \
524 else \
525 (bp)->blk_fill = fill; \
526 }
527
528 #define BP_GET_IV2(bp) \
529 (ASSERT(BP_IS_ENCRYPTED(bp)), \
530 BF64_GET((bp)->blk_fill, 32, 32))
531 #define BP_SET_IV2(bp, iv2) \
532 { \
533 ASSERT(BP_IS_ENCRYPTED(bp)); \
534 BF64_SET((bp)->blk_fill, 32, 32, iv2); \
535 }
536
537 #define BP_IS_METADATA(bp) \
538 (BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp)))
539
540 #define BP_GET_ASIZE(bp) \
541 (BP_IS_EMBEDDED(bp) ? 0 : \
542 DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \
543 DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \
544 (DVA_GET_ASIZE(&(bp)->blk_dva[2]) * !BP_IS_ENCRYPTED(bp)))
545
546 #define BP_GET_UCSIZE(bp) \
547 (BP_IS_METADATA(bp) ? BP_GET_PSIZE(bp) : BP_GET_LSIZE(bp))
548
549 #define BP_GET_NDVAS(bp) \
550 (BP_IS_EMBEDDED(bp) ? 0 : \
551 !!DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \
552 !!DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \
553 (!!DVA_GET_ASIZE(&(bp)->blk_dva[2]) * !BP_IS_ENCRYPTED(bp)))
554
555 #define BP_COUNT_GANG(bp) \
556 (BP_IS_EMBEDDED(bp) ? 0 : \
557 (DVA_GET_GANG(&(bp)->blk_dva[0]) + \
558 DVA_GET_GANG(&(bp)->blk_dva[1]) + \
559 (DVA_GET_GANG(&(bp)->blk_dva[2]) * !BP_IS_ENCRYPTED(bp))))
560
561 #define DVA_EQUAL(dva1, dva2) \
562 ((dva1)->dva_word[1] == (dva2)->dva_word[1] && \
563 (dva1)->dva_word[0] == (dva2)->dva_word[0])
564
565 #define BP_EQUAL(bp1, bp2) \
566 (BP_PHYSICAL_BIRTH(bp1) == BP_PHYSICAL_BIRTH(bp2) && \
567 (bp1)->blk_birth == (bp2)->blk_birth && \
568 DVA_EQUAL(&(bp1)->blk_dva[0], &(bp2)->blk_dva[0]) && \
569 DVA_EQUAL(&(bp1)->blk_dva[1], &(bp2)->blk_dva[1]) && \
570 DVA_EQUAL(&(bp1)->blk_dva[2], &(bp2)->blk_dva[2]))
571
572
573 #define DVA_IS_VALID(dva) (DVA_GET_ASIZE(dva) != 0)
574
575 #define BP_IDENTITY(bp) (ASSERT(!BP_IS_EMBEDDED(bp)), &(bp)->blk_dva[0])
576 #define BP_IS_GANG(bp) \
577 (BP_IS_EMBEDDED(bp) ? B_FALSE : DVA_GET_GANG(BP_IDENTITY(bp)))
578 #define DVA_IS_EMPTY(dva) ((dva)->dva_word[0] == 0ULL && \
579 (dva)->dva_word[1] == 0ULL)
580 #define BP_IS_HOLE(bp) \
581 (!BP_IS_EMBEDDED(bp) && DVA_IS_EMPTY(BP_IDENTITY(bp)))
582
583 #define BP_SET_REDACTED(bp) \
584 { \
585 BP_SET_EMBEDDED(bp, B_TRUE); \
586 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_REDACTED); \
587 }
588 #define BP_IS_REDACTED(bp) \
589 (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_REDACTED)
590
591 /* BP_IS_RAIDZ(bp) assumes no block compression */
592 #define BP_IS_RAIDZ(bp) (DVA_GET_ASIZE(&(bp)->blk_dva[0]) > \
593 BP_GET_PSIZE(bp))
594
595 #define BP_ZERO(bp) \
596 { \
597 (bp)->blk_dva[0].dva_word[0] = 0; \
598 (bp)->blk_dva[0].dva_word[1] = 0; \
599 (bp)->blk_dva[1].dva_word[0] = 0; \
600 (bp)->blk_dva[1].dva_word[1] = 0; \
601 (bp)->blk_dva[2].dva_word[0] = 0; \
602 (bp)->blk_dva[2].dva_word[1] = 0; \
603 (bp)->blk_prop = 0; \
604 (bp)->blk_pad[0] = 0; \
605 (bp)->blk_pad[1] = 0; \
606 (bp)->blk_phys_birth = 0; \
607 (bp)->blk_birth = 0; \
608 (bp)->blk_fill = 0; \
609 ZIO_SET_CHECKSUM(&(bp)->blk_cksum, 0, 0, 0, 0); \
610 }
611
612 #ifdef _ZFS_BIG_ENDIAN
613 #define ZFS_HOST_BYTEORDER (0ULL)
614 #else
615 #define ZFS_HOST_BYTEORDER (1ULL)
616 #endif
617
618 #define BP_SHOULD_BYTESWAP(bp) (BP_GET_BYTEORDER(bp) != ZFS_HOST_BYTEORDER)
619
620 #define BP_SPRINTF_LEN 400
621
622 /*
623 * This macro allows code sharing between zfs, libzpool, and mdb.
624 * 'func' is either snprintf() or mdb_snprintf().
625 * 'ws' (whitespace) can be ' ' for single-line format, '\n' for multi-line.
626 */
627
628 #define SNPRINTF_BLKPTR(func, ws, buf, size, bp, type, checksum, compress) \
629 { \
630 static const char *copyname[] = \
631 { "zero", "single", "double", "triple" }; \
632 int len = 0; \
633 int copies = 0; \
634 const char *crypt_type; \
635 if (bp != NULL) { \
636 if (BP_IS_ENCRYPTED(bp)) { \
637 crypt_type = "encrypted"; \
638 /* LINTED E_SUSPICIOUS_COMPARISON */ \
639 } else if (BP_IS_AUTHENTICATED(bp)) { \
640 crypt_type = "authenticated"; \
641 } else if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) { \
642 crypt_type = "indirect-MAC"; \
643 } else { \
644 crypt_type = "unencrypted"; \
645 } \
646 } \
647 if (bp == NULL) { \
648 len += func(buf + len, size - len, "<NULL>"); \
649 } else if (BP_IS_HOLE(bp)) { \
650 len += func(buf + len, size - len, \
651 "HOLE [L%llu %s] " \
652 "size=%llxL birth=%lluL", \
653 (u_longlong_t)BP_GET_LEVEL(bp), \
654 type, \
655 (u_longlong_t)BP_GET_LSIZE(bp), \
656 (u_longlong_t)bp->blk_birth); \
657 } else if (BP_IS_EMBEDDED(bp)) { \
658 len = func(buf + len, size - len, \
659 "EMBEDDED [L%llu %s] et=%u %s " \
660 "size=%llxL/%llxP birth=%lluL", \
661 (u_longlong_t)BP_GET_LEVEL(bp), \
662 type, \
663 (int)BPE_GET_ETYPE(bp), \
664 compress, \
665 (u_longlong_t)BPE_GET_LSIZE(bp), \
666 (u_longlong_t)BPE_GET_PSIZE(bp), \
667 (u_longlong_t)bp->blk_birth); \
668 } else if (BP_IS_REDACTED(bp)) { \
669 len += func(buf + len, size - len, \
670 "REDACTED [L%llu %s] size=%llxL birth=%lluL", \
671 (u_longlong_t)BP_GET_LEVEL(bp), \
672 type, \
673 (u_longlong_t)BP_GET_LSIZE(bp), \
674 (u_longlong_t)bp->blk_birth); \
675 } else { \
676 for (int d = 0; d < BP_GET_NDVAS(bp); d++) { \
677 const dva_t *dva = &bp->blk_dva[d]; \
678 if (DVA_IS_VALID(dva)) \
679 copies++; \
680 len += func(buf + len, size - len, \
681 "DVA[%d]=<%llu:%llx:%llx>%c", d, \
682 (u_longlong_t)DVA_GET_VDEV(dva), \
683 (u_longlong_t)DVA_GET_OFFSET(dva), \
684 (u_longlong_t)DVA_GET_ASIZE(dva), \
685 ws); \
686 } \
687 if (BP_IS_ENCRYPTED(bp)) { \
688 len += func(buf + len, size - len, \
689 "salt=%llx iv=%llx:%llx%c", \
690 (u_longlong_t)bp->blk_dva[2].dva_word[0], \
691 (u_longlong_t)bp->blk_dva[2].dva_word[1], \
692 (u_longlong_t)BP_GET_IV2(bp), \
693 ws); \
694 } \
695 if (BP_IS_GANG(bp) && \
696 DVA_GET_ASIZE(&bp->blk_dva[2]) <= \
697 DVA_GET_ASIZE(&bp->blk_dva[1]) / 2) \
698 copies--; \
699 len += func(buf + len, size - len, \
700 "[L%llu %s] %s %s %s %s %s %s %s%c" \
701 "size=%llxL/%llxP birth=%lluL/%lluP fill=%llu%c" \
702 "cksum=%llx:%llx:%llx:%llx", \
703 (u_longlong_t)BP_GET_LEVEL(bp), \
704 type, \
705 checksum, \
706 compress, \
707 crypt_type, \
708 BP_GET_BYTEORDER(bp) == 0 ? "BE" : "LE", \
709 BP_IS_GANG(bp) ? "gang" : "contiguous", \
710 BP_GET_DEDUP(bp) ? "dedup" : "unique", \
711 copyname[copies], \
712 ws, \
713 (u_longlong_t)BP_GET_LSIZE(bp), \
714 (u_longlong_t)BP_GET_PSIZE(bp), \
715 (u_longlong_t)bp->blk_birth, \
716 (u_longlong_t)BP_PHYSICAL_BIRTH(bp), \
717 (u_longlong_t)BP_GET_FILL(bp), \
718 ws, \
719 (u_longlong_t)bp->blk_cksum.zc_word[0], \
720 (u_longlong_t)bp->blk_cksum.zc_word[1], \
721 (u_longlong_t)bp->blk_cksum.zc_word[2], \
722 (u_longlong_t)bp->blk_cksum.zc_word[3]); \
723 } \
724 ASSERT(len < size); \
725 }
726
727 #define BP_GET_BUFC_TYPE(bp) \
728 (BP_IS_METADATA(bp) ? ARC_BUFC_METADATA : ARC_BUFC_DATA)
729
730 typedef enum spa_import_type {
731 SPA_IMPORT_EXISTING,
732 SPA_IMPORT_ASSEMBLE
733 } spa_import_type_t;
734
735 typedef enum spa_mode {
736 SPA_MODE_UNINIT = 0,
737 SPA_MODE_READ = 1,
738 SPA_MODE_WRITE = 2,
739 } spa_mode_t;
740
741 /*
742 * Send TRIM commands in-line during normal pool operation while deleting.
743 * OFF: no
744 * ON: yes
745 * NB: IN_FREEBSD_BASE is defined within the FreeBSD sources.
746 */
747 typedef enum {
748 SPA_AUTOTRIM_OFF = 0, /* default */
749 SPA_AUTOTRIM_ON,
750 #ifdef IN_FREEBSD_BASE
751 SPA_AUTOTRIM_DEFAULT = SPA_AUTOTRIM_ON,
752 #else
753 SPA_AUTOTRIM_DEFAULT = SPA_AUTOTRIM_OFF,
754 #endif
755 } spa_autotrim_t;
756
757 /*
758 * Reason TRIM command was issued, used internally for accounting purposes.
759 */
760 typedef enum trim_type {
761 TRIM_TYPE_MANUAL = 0,
762 TRIM_TYPE_AUTO = 1,
763 TRIM_TYPE_SIMPLE = 2
764 } trim_type_t;
765
766 /* state manipulation functions */
767 extern int spa_open(const char *pool, spa_t **, void *tag);
768 extern int spa_open_rewind(const char *pool, spa_t **, void *tag,
769 nvlist_t *policy, nvlist_t **config);
770 extern int spa_get_stats(const char *pool, nvlist_t **config, char *altroot,
771 size_t buflen);
772 extern int spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
773 nvlist_t *zplprops, struct dsl_crypto_params *dcp);
774 extern int spa_import(char *pool, nvlist_t *config, nvlist_t *props,
775 uint64_t flags);
776 extern nvlist_t *spa_tryimport(nvlist_t *tryconfig);
777 extern int spa_destroy(const char *pool);
778 extern int spa_checkpoint(const char *pool);
779 extern int spa_checkpoint_discard(const char *pool);
780 extern int spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force,
781 boolean_t hardforce);
782 extern int spa_reset(const char *pool);
783 extern void spa_async_request(spa_t *spa, int flag);
784 extern void spa_async_unrequest(spa_t *spa, int flag);
785 extern void spa_async_suspend(spa_t *spa);
786 extern void spa_async_resume(spa_t *spa);
787 extern int spa_async_tasks(spa_t *spa);
788 extern spa_t *spa_inject_addref(char *pool);
789 extern void spa_inject_delref(spa_t *spa);
790 extern void spa_scan_stat_init(spa_t *spa);
791 extern int spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps);
792 extern int bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx);
793 extern int bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx);
794
795 #define SPA_ASYNC_CONFIG_UPDATE 0x01
796 #define SPA_ASYNC_REMOVE 0x02
797 #define SPA_ASYNC_PROBE 0x04
798 #define SPA_ASYNC_RESILVER_DONE 0x08
799 #define SPA_ASYNC_RESILVER 0x10
800 #define SPA_ASYNC_AUTOEXPAND 0x20
801 #define SPA_ASYNC_REMOVE_DONE 0x40
802 #define SPA_ASYNC_REMOVE_STOP 0x80
803 #define SPA_ASYNC_INITIALIZE_RESTART 0x100
804 #define SPA_ASYNC_TRIM_RESTART 0x200
805 #define SPA_ASYNC_AUTOTRIM_RESTART 0x400
806 #define SPA_ASYNC_L2CACHE_REBUILD 0x800
807 #define SPA_ASYNC_L2CACHE_TRIM 0x1000
808 #define SPA_ASYNC_REBUILD_DONE 0x2000
809
810 /* device manipulation */
811 extern int spa_vdev_add(spa_t *spa, nvlist_t *nvroot);
812 extern int spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot,
813 int replacing, int rebuild);
814 extern int spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid,
815 int replace_done);
816 extern int spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare);
817 extern boolean_t spa_vdev_remove_active(spa_t *spa);
818 extern int spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
819 nvlist_t *vdev_errlist);
820 extern int spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
821 uint64_t rate, boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist);
822 extern int spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath);
823 extern int spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru);
824 extern int spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
825 nvlist_t *props, boolean_t exp);
826
827 /* spare state (which is global across all pools) */
828 extern void spa_spare_add(vdev_t *vd);
829 extern void spa_spare_remove(vdev_t *vd);
830 extern boolean_t spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt);
831 extern void spa_spare_activate(vdev_t *vd);
832
833 /* L2ARC state (which is global across all pools) */
834 extern void spa_l2cache_add(vdev_t *vd);
835 extern void spa_l2cache_remove(vdev_t *vd);
836 extern boolean_t spa_l2cache_exists(uint64_t guid, uint64_t *pool);
837 extern void spa_l2cache_activate(vdev_t *vd);
838 extern void spa_l2cache_drop(spa_t *spa);
839
840 /* scanning */
841 extern int spa_scan(spa_t *spa, pool_scan_func_t func);
842 extern int spa_scan_stop(spa_t *spa);
843 extern int spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t flag);
844
845 /* spa syncing */
846 extern void spa_sync(spa_t *spa, uint64_t txg); /* only for DMU use */
847 extern void spa_sync_allpools(void);
848
849 extern int zfs_sync_pass_deferred_free;
850
851 /* spa namespace global mutex */
852 extern kmutex_t spa_namespace_lock;
853
854 /*
855 * SPA configuration functions in spa_config.c
856 */
857
858 #define SPA_CONFIG_UPDATE_POOL 0
859 #define SPA_CONFIG_UPDATE_VDEVS 1
860
861 extern void spa_write_cachefile(spa_t *, boolean_t, boolean_t);
862 extern void spa_config_load(void);
863 extern nvlist_t *spa_all_configs(uint64_t *);
864 extern void spa_config_set(spa_t *spa, nvlist_t *config);
865 extern nvlist_t *spa_config_generate(spa_t *spa, vdev_t *vd, uint64_t txg,
866 int getstats);
867 extern void spa_config_update(spa_t *spa, int what);
868 extern int spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv,
869 vdev_t *parent, uint_t id, int atype);
870
871
872 /*
873 * Miscellaneous SPA routines in spa_misc.c
874 */
875
876 /* Namespace manipulation */
877 extern spa_t *spa_lookup(const char *name);
878 extern spa_t *spa_add(const char *name, nvlist_t *config, const char *altroot);
879 extern void spa_remove(spa_t *spa);
880 extern spa_t *spa_next(spa_t *prev);
881
882 /* Refcount functions */
883 extern void spa_open_ref(spa_t *spa, void *tag);
884 extern void spa_close(spa_t *spa, void *tag);
885 extern void spa_async_close(spa_t *spa, void *tag);
886 extern boolean_t spa_refcount_zero(spa_t *spa);
887
888 #define SCL_NONE 0x00
889 #define SCL_CONFIG 0x01
890 #define SCL_STATE 0x02
891 #define SCL_L2ARC 0x04 /* hack until L2ARC 2.0 */
892 #define SCL_ALLOC 0x08
893 #define SCL_ZIO 0x10
894 #define SCL_FREE 0x20
895 #define SCL_VDEV 0x40
896 #define SCL_LOCKS 7
897 #define SCL_ALL ((1 << SCL_LOCKS) - 1)
898 #define SCL_STATE_ALL (SCL_STATE | SCL_L2ARC | SCL_ZIO)
899
900 /* Historical pool statistics */
901 typedef struct spa_history_kstat {
902 kmutex_t lock;
903 uint64_t count;
904 uint64_t size;
905 kstat_t *kstat;
906 void *priv;
907 list_t list;
908 } spa_history_kstat_t;
909
910 typedef struct spa_history_list {
911 uint64_t size;
912 procfs_list_t procfs_list;
913 } spa_history_list_t;
914
915 typedef struct spa_stats {
916 spa_history_list_t read_history;
917 spa_history_list_t txg_history;
918 spa_history_kstat_t tx_assign_histogram;
919 spa_history_kstat_t io_history;
920 spa_history_list_t mmp_history;
921 spa_history_kstat_t state; /* pool state */
922 spa_history_kstat_t iostats;
923 } spa_stats_t;
924
925 typedef enum txg_state {
926 TXG_STATE_BIRTH = 0,
927 TXG_STATE_OPEN = 1,
928 TXG_STATE_QUIESCED = 2,
929 TXG_STATE_WAIT_FOR_SYNC = 3,
930 TXG_STATE_SYNCED = 4,
931 TXG_STATE_COMMITTED = 5,
932 } txg_state_t;
933
934 typedef struct txg_stat {
935 vdev_stat_t vs1;
936 vdev_stat_t vs2;
937 uint64_t txg;
938 uint64_t ndirty;
939 } txg_stat_t;
940
941 /* Assorted pool IO kstats */
942 typedef struct spa_iostats {
943 kstat_named_t trim_extents_written;
944 kstat_named_t trim_bytes_written;
945 kstat_named_t trim_extents_skipped;
946 kstat_named_t trim_bytes_skipped;
947 kstat_named_t trim_extents_failed;
948 kstat_named_t trim_bytes_failed;
949 kstat_named_t autotrim_extents_written;
950 kstat_named_t autotrim_bytes_written;
951 kstat_named_t autotrim_extents_skipped;
952 kstat_named_t autotrim_bytes_skipped;
953 kstat_named_t autotrim_extents_failed;
954 kstat_named_t autotrim_bytes_failed;
955 kstat_named_t simple_trim_extents_written;
956 kstat_named_t simple_trim_bytes_written;
957 kstat_named_t simple_trim_extents_skipped;
958 kstat_named_t simple_trim_bytes_skipped;
959 kstat_named_t simple_trim_extents_failed;
960 kstat_named_t simple_trim_bytes_failed;
961 } spa_iostats_t;
962
963 extern void spa_stats_init(spa_t *spa);
964 extern void spa_stats_destroy(spa_t *spa);
965 extern void spa_read_history_add(spa_t *spa, const zbookmark_phys_t *zb,
966 uint32_t aflags);
967 extern void spa_txg_history_add(spa_t *spa, uint64_t txg, hrtime_t birth_time);
968 extern int spa_txg_history_set(spa_t *spa, uint64_t txg,
969 txg_state_t completed_state, hrtime_t completed_time);
970 extern txg_stat_t *spa_txg_history_init_io(spa_t *, uint64_t,
971 struct dsl_pool *);
972 extern void spa_txg_history_fini_io(spa_t *, txg_stat_t *);
973 extern void spa_tx_assign_add_nsecs(spa_t *spa, uint64_t nsecs);
974 extern int spa_mmp_history_set_skip(spa_t *spa, uint64_t mmp_kstat_id);
975 extern int spa_mmp_history_set(spa_t *spa, uint64_t mmp_kstat_id, int io_error,
976 hrtime_t duration);
977 extern void spa_mmp_history_add(spa_t *spa, uint64_t txg, uint64_t timestamp,
978 uint64_t mmp_delay, vdev_t *vd, int label, uint64_t mmp_kstat_id,
979 int error);
980 extern void spa_iostats_trim_add(spa_t *spa, trim_type_t type,
981 uint64_t extents_written, uint64_t bytes_written,
982 uint64_t extents_skipped, uint64_t bytes_skipped,
983 uint64_t extents_failed, uint64_t bytes_failed);
984 extern void spa_import_progress_add(spa_t *spa);
985 extern void spa_import_progress_remove(uint64_t spa_guid);
986 extern int spa_import_progress_set_mmp_check(uint64_t pool_guid,
987 uint64_t mmp_sec_remaining);
988 extern int spa_import_progress_set_max_txg(uint64_t pool_guid,
989 uint64_t max_txg);
990 extern int spa_import_progress_set_state(uint64_t pool_guid,
991 spa_load_state_t spa_load_state);
992
993 /* Pool configuration locks */
994 extern int spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw);
995 extern void spa_config_enter(spa_t *spa, int locks, const void *tag, krw_t rw);
996 extern void spa_config_exit(spa_t *spa, int locks, const void *tag);
997 extern int spa_config_held(spa_t *spa, int locks, krw_t rw);
998
999 /* Pool vdev add/remove lock */
1000 extern uint64_t spa_vdev_enter(spa_t *spa);
1001 extern uint64_t spa_vdev_detach_enter(spa_t *spa, uint64_t guid);
1002 extern uint64_t spa_vdev_config_enter(spa_t *spa);
1003 extern void spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg,
1004 int error, char *tag);
1005 extern int spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error);
1006
1007 /* Pool vdev state change lock */
1008 extern void spa_vdev_state_enter(spa_t *spa, int oplock);
1009 extern int spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error);
1010
1011 /* Log state */
1012 typedef enum spa_log_state {
1013 SPA_LOG_UNKNOWN = 0, /* unknown log state */
1014 SPA_LOG_MISSING, /* missing log(s) */
1015 SPA_LOG_CLEAR, /* clear the log(s) */
1016 SPA_LOG_GOOD, /* log(s) are good */
1017 } spa_log_state_t;
1018
1019 extern spa_log_state_t spa_get_log_state(spa_t *spa);
1020 extern void spa_set_log_state(spa_t *spa, spa_log_state_t state);
1021 extern int spa_reset_logs(spa_t *spa);
1022
1023 /* Log claim callback */
1024 extern void spa_claim_notify(zio_t *zio);
1025 extern void spa_deadman(void *);
1026
1027 /* Accessor functions */
1028 extern boolean_t spa_shutting_down(spa_t *spa);
1029 extern struct dsl_pool *spa_get_dsl(spa_t *spa);
1030 extern boolean_t spa_is_initializing(spa_t *spa);
1031 extern boolean_t spa_indirect_vdevs_loaded(spa_t *spa);
1032 extern blkptr_t *spa_get_rootblkptr(spa_t *spa);
1033 extern void spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp);
1034 extern void spa_altroot(spa_t *, char *, size_t);
1035 extern int spa_sync_pass(spa_t *spa);
1036 extern char *spa_name(spa_t *spa);
1037 extern uint64_t spa_guid(spa_t *spa);
1038 extern uint64_t spa_load_guid(spa_t *spa);
1039 extern uint64_t spa_last_synced_txg(spa_t *spa);
1040 extern uint64_t spa_first_txg(spa_t *spa);
1041 extern uint64_t spa_syncing_txg(spa_t *spa);
1042 extern uint64_t spa_final_dirty_txg(spa_t *spa);
1043 extern uint64_t spa_version(spa_t *spa);
1044 extern pool_state_t spa_state(spa_t *spa);
1045 extern spa_load_state_t spa_load_state(spa_t *spa);
1046 extern uint64_t spa_freeze_txg(spa_t *spa);
1047 extern uint64_t spa_get_worst_case_asize(spa_t *spa, uint64_t lsize);
1048 extern uint64_t spa_get_dspace(spa_t *spa);
1049 extern uint64_t spa_get_checkpoint_space(spa_t *spa);
1050 extern uint64_t spa_get_slop_space(spa_t *spa);
1051 extern void spa_update_dspace(spa_t *spa);
1052 extern uint64_t spa_version(spa_t *spa);
1053 extern boolean_t spa_deflate(spa_t *spa);
1054 extern metaslab_class_t *spa_normal_class(spa_t *spa);
1055 extern metaslab_class_t *spa_log_class(spa_t *spa);
1056 extern metaslab_class_t *spa_embedded_log_class(spa_t *spa);
1057 extern metaslab_class_t *spa_special_class(spa_t *spa);
1058 extern metaslab_class_t *spa_dedup_class(spa_t *spa);
1059 extern metaslab_class_t *spa_preferred_class(spa_t *spa, uint64_t size,
1060 dmu_object_type_t objtype, uint_t level, uint_t special_smallblk);
1061
1062 extern void spa_evicting_os_register(spa_t *, objset_t *os);
1063 extern void spa_evicting_os_deregister(spa_t *, objset_t *os);
1064 extern void spa_evicting_os_wait(spa_t *spa);
1065 extern int spa_max_replication(spa_t *spa);
1066 extern int spa_prev_software_version(spa_t *spa);
1067 extern uint64_t spa_get_failmode(spa_t *spa);
1068 extern uint64_t spa_get_deadman_failmode(spa_t *spa);
1069 extern void spa_set_deadman_failmode(spa_t *spa, const char *failmode);
1070 extern boolean_t spa_suspended(spa_t *spa);
1071 extern uint64_t spa_bootfs(spa_t *spa);
1072 extern uint64_t spa_delegation(spa_t *spa);
1073 extern objset_t *spa_meta_objset(spa_t *spa);
1074 extern space_map_t *spa_syncing_log_sm(spa_t *spa);
1075 extern uint64_t spa_deadman_synctime(spa_t *spa);
1076 extern uint64_t spa_deadman_ziotime(spa_t *spa);
1077 extern uint64_t spa_dirty_data(spa_t *spa);
1078 extern spa_autotrim_t spa_get_autotrim(spa_t *spa);
1079
1080 /* Miscellaneous support routines */
1081 extern void spa_load_failed(spa_t *spa, const char *fmt, ...);
1082 extern void spa_load_note(spa_t *spa, const char *fmt, ...);
1083 extern void spa_activate_mos_feature(spa_t *spa, const char *feature,
1084 dmu_tx_t *tx);
1085 extern void spa_deactivate_mos_feature(spa_t *spa, const char *feature);
1086 extern spa_t *spa_by_guid(uint64_t pool_guid, uint64_t device_guid);
1087 extern boolean_t spa_guid_exists(uint64_t pool_guid, uint64_t device_guid);
1088 extern char *spa_strdup(const char *);
1089 extern void spa_strfree(char *);
1090 extern uint64_t spa_get_random(uint64_t range);
1091 extern uint64_t spa_generate_guid(spa_t *spa);
1092 extern void snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp);
1093 extern void spa_freeze(spa_t *spa);
1094 extern int spa_change_guid(spa_t *spa);
1095 extern void spa_upgrade(spa_t *spa, uint64_t version);
1096 extern void spa_evict_all(void);
1097 extern vdev_t *spa_lookup_by_guid(spa_t *spa, uint64_t guid,
1098 boolean_t l2cache);
1099 extern boolean_t spa_has_spare(spa_t *, uint64_t guid);
1100 extern uint64_t dva_get_dsize_sync(spa_t *spa, const dva_t *dva);
1101 extern uint64_t bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp);
1102 extern uint64_t bp_get_dsize(spa_t *spa, const blkptr_t *bp);
1103 extern boolean_t spa_has_slogs(spa_t *spa);
1104 extern boolean_t spa_is_root(spa_t *spa);
1105 extern boolean_t spa_writeable(spa_t *spa);
1106 extern boolean_t spa_has_pending_synctask(spa_t *spa);
1107 extern int spa_maxblocksize(spa_t *spa);
1108 extern int spa_maxdnodesize(spa_t *spa);
1109 extern boolean_t spa_has_checkpoint(spa_t *spa);
1110 extern boolean_t spa_importing_readonly_checkpoint(spa_t *spa);
1111 extern boolean_t spa_suspend_async_destroy(spa_t *spa);
1112 extern uint64_t spa_min_claim_txg(spa_t *spa);
1113 extern boolean_t zfs_dva_valid(spa_t *spa, const dva_t *dva,
1114 const blkptr_t *bp);
1115 typedef void (*spa_remap_cb_t)(uint64_t vdev, uint64_t offset, uint64_t size,
1116 void *arg);
1117 extern boolean_t spa_remap_blkptr(spa_t *spa, blkptr_t *bp,
1118 spa_remap_cb_t callback, void *arg);
1119 extern uint64_t spa_get_last_removal_txg(spa_t *spa);
1120 extern boolean_t spa_trust_config(spa_t *spa);
1121 extern uint64_t spa_missing_tvds_allowed(spa_t *spa);
1122 extern void spa_set_missing_tvds(spa_t *spa, uint64_t missing);
1123 extern boolean_t spa_top_vdevs_spacemap_addressable(spa_t *spa);
1124 extern uint64_t spa_total_metaslabs(spa_t *spa);
1125 extern boolean_t spa_multihost(spa_t *spa);
1126 extern uint32_t spa_get_hostid(spa_t *spa);
1127 extern void spa_activate_allocation_classes(spa_t *, dmu_tx_t *);
1128 extern boolean_t spa_livelist_delete_check(spa_t *spa);
1129
1130 extern spa_mode_t spa_mode(spa_t *spa);
1131 extern uint64_t zfs_strtonum(const char *str, char **nptr);
1132
1133 extern char *spa_his_ievent_table[];
1134
1135 extern void spa_history_create_obj(spa_t *spa, dmu_tx_t *tx);
1136 extern int spa_history_get(spa_t *spa, uint64_t *offset, uint64_t *len_read,
1137 char *his_buf);
1138 extern int spa_history_log(spa_t *spa, const char *his_buf);
1139 extern int spa_history_log_nvl(spa_t *spa, nvlist_t *nvl);
1140 extern void spa_history_log_version(spa_t *spa, const char *operation,
1141 dmu_tx_t *tx);
1142 extern void spa_history_log_internal(spa_t *spa, const char *operation,
1143 dmu_tx_t *tx, const char *fmt, ...) __printflike(4, 5);
1144 extern void spa_history_log_internal_ds(struct dsl_dataset *ds, const char *op,
1145 dmu_tx_t *tx, const char *fmt, ...) __printflike(4, 5);
1146 extern void spa_history_log_internal_dd(dsl_dir_t *dd, const char *operation,
1147 dmu_tx_t *tx, const char *fmt, ...) __printflike(4, 5);
1148
1149 extern const char *spa_state_to_name(spa_t *spa);
1150
1151 /* error handling */
1152 struct zbookmark_phys;
1153 extern void spa_log_error(spa_t *spa, const zbookmark_phys_t *zb);
1154 extern int zfs_ereport_post(const char *clazz, spa_t *spa, vdev_t *vd,
1155 const zbookmark_phys_t *zb, zio_t *zio, uint64_t state);
1156 extern boolean_t zfs_ereport_is_valid(const char *clazz, spa_t *spa, vdev_t *vd,
1157 zio_t *zio);
1158 extern void zfs_ereport_taskq_fini(void);
1159 extern void zfs_ereport_clear(spa_t *spa, vdev_t *vd);
1160 extern nvlist_t *zfs_event_create(spa_t *spa, vdev_t *vd, const char *type,
1161 const char *name, nvlist_t *aux);
1162 extern void zfs_post_remove(spa_t *spa, vdev_t *vd);
1163 extern void zfs_post_state_change(spa_t *spa, vdev_t *vd, uint64_t laststate);
1164 extern void zfs_post_autoreplace(spa_t *spa, vdev_t *vd);
1165 extern uint64_t spa_get_errlog_size(spa_t *spa);
1166 extern int spa_get_errlog(spa_t *spa, void *uaddr, size_t *count);
1167 extern void spa_errlog_rotate(spa_t *spa);
1168 extern void spa_errlog_drain(spa_t *spa);
1169 extern void spa_errlog_sync(spa_t *spa, uint64_t txg);
1170 extern void spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub);
1171
1172 /* vdev cache */
1173 extern void vdev_cache_stat_init(void);
1174 extern void vdev_cache_stat_fini(void);
1175
1176 /* vdev mirror */
1177 extern void vdev_mirror_stat_init(void);
1178 extern void vdev_mirror_stat_fini(void);
1179
1180 /* Initialization and termination */
1181 extern void spa_init(spa_mode_t mode);
1182 extern void spa_fini(void);
1183 extern void spa_boot_init(void);
1184
1185 /* properties */
1186 extern int spa_prop_set(spa_t *spa, nvlist_t *nvp);
1187 extern int spa_prop_get(spa_t *spa, nvlist_t **nvp);
1188 extern void spa_prop_clear_bootfs(spa_t *spa, uint64_t obj, dmu_tx_t *tx);
1189 extern void spa_configfile_set(spa_t *, nvlist_t *, boolean_t);
1190
1191 /* asynchronous event notification */
1192 extern void spa_event_notify(spa_t *spa, vdev_t *vdev, nvlist_t *hist_nvl,
1193 const char *name);
1194
1195 /* waiting for pool activities to complete */
1196 extern int spa_wait(const char *pool, zpool_wait_activity_t activity,
1197 boolean_t *waited);
1198 extern int spa_wait_tag(const char *name, zpool_wait_activity_t activity,
1199 uint64_t tag, boolean_t *waited);
1200 extern void spa_notify_waiters(spa_t *spa);
1201 extern void spa_wake_waiters(spa_t *spa);
1202
1203 /* module param call functions */
1204 int param_set_deadman_ziotime(ZFS_MODULE_PARAM_ARGS);
1205 int param_set_deadman_synctime(ZFS_MODULE_PARAM_ARGS);
1206 int param_set_slop_shift(ZFS_MODULE_PARAM_ARGS);
1207 int param_set_deadman_failmode(ZFS_MODULE_PARAM_ARGS);
1208
1209 #ifdef ZFS_DEBUG
1210 #define dprintf_bp(bp, fmt, ...) do { \
1211 if (zfs_flags & ZFS_DEBUG_DPRINTF) { \
1212 char *__blkbuf = kmem_alloc(BP_SPRINTF_LEN, KM_SLEEP); \
1213 snprintf_blkptr(__blkbuf, BP_SPRINTF_LEN, (bp)); \
1214 dprintf(fmt " %s\n", __VA_ARGS__, __blkbuf); \
1215 kmem_free(__blkbuf, BP_SPRINTF_LEN); \
1216 } \
1217 _NOTE(CONSTCOND) } while (0)
1218 #else
1219 #define dprintf_bp(bp, fmt, ...)
1220 #endif
1221
1222 extern spa_mode_t spa_mode_global;
1223 extern int zfs_deadman_enabled;
1224 extern unsigned long zfs_deadman_synctime_ms;
1225 extern unsigned long zfs_deadman_ziotime_ms;
1226 extern unsigned long zfs_deadman_checktime_ms;
1227
1228 #ifdef __cplusplus
1229 }
1230 #endif
1231
1232 #endif /* _SYS_SPA_H */