]> git.proxmox.com Git - mirror_zfs.git/blob - include/sys/spa.h
Finish refactoring for ZFS_MODULE_PARAM_CALL
[mirror_zfs.git] / include / sys / spa.h
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright 2013 Saso Kiselkov. All rights reserved.
27 * Copyright (c) 2014 Integros [integros.com]
28 * Copyright 2017 Joyent, Inc.
29 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
30 * Copyright (c) 2017, Intel Corporation.
31 */
32
33 #ifndef _SYS_SPA_H
34 #define _SYS_SPA_H
35
36 #include <sys/avl.h>
37 #include <sys/zfs_context.h>
38 #include <sys/kstat.h>
39 #include <sys/nvpair.h>
40 #include <sys/sysmacros.h>
41 #include <sys/types.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/spa_checksum.h>
44 #include <sys/dmu.h>
45 #include <sys/space_map.h>
46 #include <sys/bitops.h>
47
48 #ifdef __cplusplus
49 extern "C" {
50 #endif
51
52 /*
53 * Forward references that lots of things need.
54 */
55 typedef struct spa spa_t;
56 typedef struct vdev vdev_t;
57 typedef struct metaslab metaslab_t;
58 typedef struct metaslab_group metaslab_group_t;
59 typedef struct metaslab_class metaslab_class_t;
60 typedef struct zio zio_t;
61 typedef struct zilog zilog_t;
62 typedef struct spa_aux_vdev spa_aux_vdev_t;
63 typedef struct ddt ddt_t;
64 typedef struct ddt_entry ddt_entry_t;
65 typedef struct zbookmark_phys zbookmark_phys_t;
66
67 struct bpobj;
68 struct bplist;
69 struct dsl_pool;
70 struct dsl_dataset;
71 struct dsl_crypto_params;
72
73 /*
74 * We currently support block sizes from 512 bytes to 16MB.
75 * The benefits of larger blocks, and thus larger IO, need to be weighed
76 * against the cost of COWing a giant block to modify one byte, and the
77 * large latency of reading or writing a large block.
78 *
79 * Note that although blocks up to 16MB are supported, the recordsize
80 * property can not be set larger than zfs_max_recordsize (default 1MB).
81 * See the comment near zfs_max_recordsize in dsl_dataset.c for details.
82 *
83 * Note that although the LSIZE field of the blkptr_t can store sizes up
84 * to 32MB, the dnode's dn_datablkszsec can only store sizes up to
85 * 32MB - 512 bytes. Therefore, we limit SPA_MAXBLOCKSIZE to 16MB.
86 */
87 #define SPA_MINBLOCKSHIFT 9
88 #define SPA_OLD_MAXBLOCKSHIFT 17
89 #define SPA_MAXBLOCKSHIFT 24
90 #define SPA_MINBLOCKSIZE (1ULL << SPA_MINBLOCKSHIFT)
91 #define SPA_OLD_MAXBLOCKSIZE (1ULL << SPA_OLD_MAXBLOCKSHIFT)
92 #define SPA_MAXBLOCKSIZE (1ULL << SPA_MAXBLOCKSHIFT)
93
94 /*
95 * Alignment Shift (ashift) is an immutable, internal top-level vdev property
96 * which can only be set at vdev creation time. Physical writes are always done
97 * according to it, which makes 2^ashift the smallest possible IO on a vdev.
98 *
99 * We currently allow values ranging from 512 bytes (2^9 = 512) to 64 KiB
100 * (2^16 = 65,536).
101 */
102 #define ASHIFT_MIN 9
103 #define ASHIFT_MAX 16
104
105 /*
106 * Size of block to hold the configuration data (a packed nvlist)
107 */
108 #define SPA_CONFIG_BLOCKSIZE (1ULL << 14)
109
110 /*
111 * The DVA size encodings for LSIZE and PSIZE support blocks up to 32MB.
112 * The ASIZE encoding should be at least 64 times larger (6 more bits)
113 * to support up to 4-way RAID-Z mirror mode with worst-case gang block
114 * overhead, three DVAs per bp, plus one more bit in case we do anything
115 * else that expands the ASIZE.
116 */
117 #define SPA_LSIZEBITS 16 /* LSIZE up to 32M (2^16 * 512) */
118 #define SPA_PSIZEBITS 16 /* PSIZE up to 32M (2^16 * 512) */
119 #define SPA_ASIZEBITS 24 /* ASIZE up to 64 times larger */
120
121 #define SPA_COMPRESSBITS 7
122 #define SPA_VDEVBITS 24
123
124 /*
125 * All SPA data is represented by 128-bit data virtual addresses (DVAs).
126 * The members of the dva_t should be considered opaque outside the SPA.
127 */
128 typedef struct dva {
129 uint64_t dva_word[2];
130 } dva_t;
131
132
133 /*
134 * Some checksums/hashes need a 256-bit initialization salt. This salt is kept
135 * secret and is suitable for use in MAC algorithms as the key.
136 */
137 typedef struct zio_cksum_salt {
138 uint8_t zcs_bytes[32];
139 } zio_cksum_salt_t;
140
141 /*
142 * Each block is described by its DVAs, time of birth, checksum, etc.
143 * The word-by-word, bit-by-bit layout of the blkptr is as follows:
144 *
145 * 64 56 48 40 32 24 16 8 0
146 * +-------+-------+-------+-------+-------+-------+-------+-------+
147 * 0 | pad | vdev1 | GRID | ASIZE |
148 * +-------+-------+-------+-------+-------+-------+-------+-------+
149 * 1 |G| offset1 |
150 * +-------+-------+-------+-------+-------+-------+-------+-------+
151 * 2 | pad | vdev2 | GRID | ASIZE |
152 * +-------+-------+-------+-------+-------+-------+-------+-------+
153 * 3 |G| offset2 |
154 * +-------+-------+-------+-------+-------+-------+-------+-------+
155 * 4 | pad | vdev3 | GRID | ASIZE |
156 * +-------+-------+-------+-------+-------+-------+-------+-------+
157 * 5 |G| offset3 |
158 * +-------+-------+-------+-------+-------+-------+-------+-------+
159 * 6 |BDX|lvl| type | cksum |E| comp| PSIZE | LSIZE |
160 * +-------+-------+-------+-------+-------+-------+-------+-------+
161 * 7 | padding |
162 * +-------+-------+-------+-------+-------+-------+-------+-------+
163 * 8 | padding |
164 * +-------+-------+-------+-------+-------+-------+-------+-------+
165 * 9 | physical birth txg |
166 * +-------+-------+-------+-------+-------+-------+-------+-------+
167 * a | logical birth txg |
168 * +-------+-------+-------+-------+-------+-------+-------+-------+
169 * b | fill count |
170 * +-------+-------+-------+-------+-------+-------+-------+-------+
171 * c | checksum[0] |
172 * +-------+-------+-------+-------+-------+-------+-------+-------+
173 * d | checksum[1] |
174 * +-------+-------+-------+-------+-------+-------+-------+-------+
175 * e | checksum[2] |
176 * +-------+-------+-------+-------+-------+-------+-------+-------+
177 * f | checksum[3] |
178 * +-------+-------+-------+-------+-------+-------+-------+-------+
179 *
180 * Legend:
181 *
182 * vdev virtual device ID
183 * offset offset into virtual device
184 * LSIZE logical size
185 * PSIZE physical size (after compression)
186 * ASIZE allocated size (including RAID-Z parity and gang block headers)
187 * GRID RAID-Z layout information (reserved for future use)
188 * cksum checksum function
189 * comp compression function
190 * G gang block indicator
191 * B byteorder (endianness)
192 * D dedup
193 * X encryption
194 * E blkptr_t contains embedded data (see below)
195 * lvl level of indirection
196 * type DMU object type
197 * phys birth txg when dva[0] was written; zero if same as logical birth txg
198 * note that typically all the dva's would be written in this
199 * txg, but they could be different if they were moved by
200 * device removal.
201 * log. birth transaction group in which the block was logically born
202 * fill count number of non-zero blocks under this bp
203 * checksum[4] 256-bit checksum of the data this bp describes
204 */
205
206 /*
207 * The blkptr_t's of encrypted blocks also need to store the encryption
208 * parameters so that the block can be decrypted. This layout is as follows:
209 *
210 * 64 56 48 40 32 24 16 8 0
211 * +-------+-------+-------+-------+-------+-------+-------+-------+
212 * 0 | vdev1 | GRID | ASIZE |
213 * +-------+-------+-------+-------+-------+-------+-------+-------+
214 * 1 |G| offset1 |
215 * +-------+-------+-------+-------+-------+-------+-------+-------+
216 * 2 | vdev2 | GRID | ASIZE |
217 * +-------+-------+-------+-------+-------+-------+-------+-------+
218 * 3 |G| offset2 |
219 * +-------+-------+-------+-------+-------+-------+-------+-------+
220 * 4 | salt |
221 * +-------+-------+-------+-------+-------+-------+-------+-------+
222 * 5 | IV1 |
223 * +-------+-------+-------+-------+-------+-------+-------+-------+
224 * 6 |BDX|lvl| type | cksum |E| comp| PSIZE | LSIZE |
225 * +-------+-------+-------+-------+-------+-------+-------+-------+
226 * 7 | padding |
227 * +-------+-------+-------+-------+-------+-------+-------+-------+
228 * 8 | padding |
229 * +-------+-------+-------+-------+-------+-------+-------+-------+
230 * 9 | physical birth txg |
231 * +-------+-------+-------+-------+-------+-------+-------+-------+
232 * a | logical birth txg |
233 * +-------+-------+-------+-------+-------+-------+-------+-------+
234 * b | IV2 | fill count |
235 * +-------+-------+-------+-------+-------+-------+-------+-------+
236 * c | checksum[0] |
237 * +-------+-------+-------+-------+-------+-------+-------+-------+
238 * d | checksum[1] |
239 * +-------+-------+-------+-------+-------+-------+-------+-------+
240 * e | MAC[0] |
241 * +-------+-------+-------+-------+-------+-------+-------+-------+
242 * f | MAC[1] |
243 * +-------+-------+-------+-------+-------+-------+-------+-------+
244 *
245 * Legend:
246 *
247 * salt Salt for generating encryption keys
248 * IV1 First 64 bits of encryption IV
249 * X Block requires encryption handling (set to 1)
250 * E blkptr_t contains embedded data (set to 0, see below)
251 * fill count number of non-zero blocks under this bp (truncated to 32 bits)
252 * IV2 Last 32 bits of encryption IV
253 * checksum[2] 128-bit checksum of the data this bp describes
254 * MAC[2] 128-bit message authentication code for this data
255 *
256 * The X bit being set indicates that this block is one of 3 types. If this is
257 * a level 0 block with an encrypted object type, the block is encrypted
258 * (see BP_IS_ENCRYPTED()). If this is a level 0 block with an unencrypted
259 * object type, this block is authenticated with an HMAC (see
260 * BP_IS_AUTHENTICATED()). Otherwise (if level > 0), this bp will use the MAC
261 * words to store a checksum-of-MACs from the level below (see
262 * BP_HAS_INDIRECT_MAC_CKSUM()). For convenience in the code, BP_IS_PROTECTED()
263 * refers to both encrypted and authenticated blocks and BP_USES_CRYPT()
264 * refers to any of these 3 kinds of blocks.
265 *
266 * The additional encryption parameters are the salt, IV, and MAC which are
267 * explained in greater detail in the block comment at the top of zio_crypt.c.
268 * The MAC occupies half of the checksum space since it serves a very similar
269 * purpose: to prevent data corruption on disk. The only functional difference
270 * is that the checksum is used to detect on-disk corruption whether or not the
271 * encryption key is loaded and the MAC provides additional protection against
272 * malicious disk tampering. We use the 3rd DVA to store the salt and first
273 * 64 bits of the IV. As a result encrypted blocks can only have 2 copies
274 * maximum instead of the normal 3. The last 32 bits of the IV are stored in
275 * the upper bits of what is usually the fill count. Note that only blocks at
276 * level 0 or -2 are ever encrypted, which allows us to guarantee that these
277 * 32 bits are not trampled over by other code (see zio_crypt.c for details).
278 * The salt and IV are not used for authenticated bps or bps with an indirect
279 * MAC checksum, so these blocks can utilize all 3 DVAs and the full 64 bits
280 * for the fill count.
281 */
282
283 /*
284 * "Embedded" blkptr_t's don't actually point to a block, instead they
285 * have a data payload embedded in the blkptr_t itself. See the comment
286 * in blkptr.c for more details.
287 *
288 * The blkptr_t is laid out as follows:
289 *
290 * 64 56 48 40 32 24 16 8 0
291 * +-------+-------+-------+-------+-------+-------+-------+-------+
292 * 0 | payload |
293 * 1 | payload |
294 * 2 | payload |
295 * 3 | payload |
296 * 4 | payload |
297 * 5 | payload |
298 * +-------+-------+-------+-------+-------+-------+-------+-------+
299 * 6 |BDX|lvl| type | etype |E| comp| PSIZE| LSIZE |
300 * +-------+-------+-------+-------+-------+-------+-------+-------+
301 * 7 | payload |
302 * 8 | payload |
303 * 9 | payload |
304 * +-------+-------+-------+-------+-------+-------+-------+-------+
305 * a | logical birth txg |
306 * +-------+-------+-------+-------+-------+-------+-------+-------+
307 * b | payload |
308 * c | payload |
309 * d | payload |
310 * e | payload |
311 * f | payload |
312 * +-------+-------+-------+-------+-------+-------+-------+-------+
313 *
314 * Legend:
315 *
316 * payload contains the embedded data
317 * B (byteorder) byteorder (endianness)
318 * D (dedup) padding (set to zero)
319 * X encryption (set to zero)
320 * E (embedded) set to one
321 * lvl indirection level
322 * type DMU object type
323 * etype how to interpret embedded data (BP_EMBEDDED_TYPE_*)
324 * comp compression function of payload
325 * PSIZE size of payload after compression, in bytes
326 * LSIZE logical size of payload, in bytes
327 * note that 25 bits is enough to store the largest
328 * "normal" BP's LSIZE (2^16 * 2^9) in bytes
329 * log. birth transaction group in which the block was logically born
330 *
331 * Note that LSIZE and PSIZE are stored in bytes, whereas for non-embedded
332 * bp's they are stored in units of SPA_MINBLOCKSHIFT.
333 * Generally, the generic BP_GET_*() macros can be used on embedded BP's.
334 * The B, D, X, lvl, type, and comp fields are stored the same as with normal
335 * BP's so the BP_SET_* macros can be used with them. etype, PSIZE, LSIZE must
336 * be set with the BPE_SET_* macros. BP_SET_EMBEDDED() should be called before
337 * other macros, as they assert that they are only used on BP's of the correct
338 * "embedded-ness". Encrypted blkptr_t's cannot be embedded because they use
339 * the payload space for encryption parameters (see the comment above on
340 * how encryption parameters are stored).
341 */
342
343 #define BPE_GET_ETYPE(bp) \
344 (ASSERT(BP_IS_EMBEDDED(bp)), \
345 BF64_GET((bp)->blk_prop, 40, 8))
346 #define BPE_SET_ETYPE(bp, t) do { \
347 ASSERT(BP_IS_EMBEDDED(bp)); \
348 BF64_SET((bp)->blk_prop, 40, 8, t); \
349 _NOTE(CONSTCOND) } while (0)
350
351 #define BPE_GET_LSIZE(bp) \
352 (ASSERT(BP_IS_EMBEDDED(bp)), \
353 BF64_GET_SB((bp)->blk_prop, 0, 25, 0, 1))
354 #define BPE_SET_LSIZE(bp, x) do { \
355 ASSERT(BP_IS_EMBEDDED(bp)); \
356 BF64_SET_SB((bp)->blk_prop, 0, 25, 0, 1, x); \
357 _NOTE(CONSTCOND) } while (0)
358
359 #define BPE_GET_PSIZE(bp) \
360 (ASSERT(BP_IS_EMBEDDED(bp)), \
361 BF64_GET_SB((bp)->blk_prop, 25, 7, 0, 1))
362 #define BPE_SET_PSIZE(bp, x) do { \
363 ASSERT(BP_IS_EMBEDDED(bp)); \
364 BF64_SET_SB((bp)->blk_prop, 25, 7, 0, 1, x); \
365 _NOTE(CONSTCOND) } while (0)
366
367 typedef enum bp_embedded_type {
368 BP_EMBEDDED_TYPE_DATA,
369 BP_EMBEDDED_TYPE_RESERVED, /* Reserved for Delphix byteswap feature. */
370 BP_EMBEDDED_TYPE_REDACTED,
371 NUM_BP_EMBEDDED_TYPES
372 } bp_embedded_type_t;
373
374 #define BPE_NUM_WORDS 14
375 #define BPE_PAYLOAD_SIZE (BPE_NUM_WORDS * sizeof (uint64_t))
376 #define BPE_IS_PAYLOADWORD(bp, wp) \
377 ((wp) != &(bp)->blk_prop && (wp) != &(bp)->blk_birth)
378
379 #define SPA_BLKPTRSHIFT 7 /* blkptr_t is 128 bytes */
380 #define SPA_DVAS_PER_BP 3 /* Number of DVAs in a bp */
381 #define SPA_SYNC_MIN_VDEVS 3 /* min vdevs to update during sync */
382
383 /*
384 * A block is a hole when it has either 1) never been written to, or
385 * 2) is zero-filled. In both cases, ZFS can return all zeroes for all reads
386 * without physically allocating disk space. Holes are represented in the
387 * blkptr_t structure by zeroed blk_dva. Correct checking for holes is
388 * done through the BP_IS_HOLE macro. For holes, the logical size, level,
389 * DMU object type, and birth times are all also stored for holes that
390 * were written to at some point (i.e. were punched after having been filled).
391 */
392 typedef struct blkptr {
393 dva_t blk_dva[SPA_DVAS_PER_BP]; /* Data Virtual Addresses */
394 uint64_t blk_prop; /* size, compression, type, etc */
395 uint64_t blk_pad[2]; /* Extra space for the future */
396 uint64_t blk_phys_birth; /* txg when block was allocated */
397 uint64_t blk_birth; /* transaction group at birth */
398 uint64_t blk_fill; /* fill count */
399 zio_cksum_t blk_cksum; /* 256-bit checksum */
400 } blkptr_t;
401
402 /*
403 * Macros to get and set fields in a bp or DVA.
404 */
405 #define DVA_GET_ASIZE(dva) \
406 BF64_GET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, SPA_MINBLOCKSHIFT, 0)
407 #define DVA_SET_ASIZE(dva, x) \
408 BF64_SET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, \
409 SPA_MINBLOCKSHIFT, 0, x)
410
411 #define DVA_GET_GRID(dva) BF64_GET((dva)->dva_word[0], 24, 8)
412 #define DVA_SET_GRID(dva, x) BF64_SET((dva)->dva_word[0], 24, 8, x)
413
414 #define DVA_GET_VDEV(dva) BF64_GET((dva)->dva_word[0], 32, SPA_VDEVBITS)
415 #define DVA_SET_VDEV(dva, x) \
416 BF64_SET((dva)->dva_word[0], 32, SPA_VDEVBITS, x)
417
418 #define DVA_GET_OFFSET(dva) \
419 BF64_GET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0)
420 #define DVA_SET_OFFSET(dva, x) \
421 BF64_SET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0, x)
422
423 #define DVA_GET_GANG(dva) BF64_GET((dva)->dva_word[1], 63, 1)
424 #define DVA_SET_GANG(dva, x) BF64_SET((dva)->dva_word[1], 63, 1, x)
425
426 #define BP_GET_LSIZE(bp) \
427 (BP_IS_EMBEDDED(bp) ? \
428 (BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA ? BPE_GET_LSIZE(bp) : 0): \
429 BF64_GET_SB((bp)->blk_prop, 0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1))
430 #define BP_SET_LSIZE(bp, x) do { \
431 ASSERT(!BP_IS_EMBEDDED(bp)); \
432 BF64_SET_SB((bp)->blk_prop, \
433 0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1, x); \
434 _NOTE(CONSTCOND) } while (0)
435
436 #define BP_GET_PSIZE(bp) \
437 (BP_IS_EMBEDDED(bp) ? 0 : \
438 BF64_GET_SB((bp)->blk_prop, 16, SPA_PSIZEBITS, SPA_MINBLOCKSHIFT, 1))
439 #define BP_SET_PSIZE(bp, x) do { \
440 ASSERT(!BP_IS_EMBEDDED(bp)); \
441 BF64_SET_SB((bp)->blk_prop, \
442 16, SPA_PSIZEBITS, SPA_MINBLOCKSHIFT, 1, x); \
443 _NOTE(CONSTCOND) } while (0)
444
445 #define BP_GET_COMPRESS(bp) \
446 BF64_GET((bp)->blk_prop, 32, SPA_COMPRESSBITS)
447 #define BP_SET_COMPRESS(bp, x) \
448 BF64_SET((bp)->blk_prop, 32, SPA_COMPRESSBITS, x)
449
450 #define BP_IS_EMBEDDED(bp) BF64_GET((bp)->blk_prop, 39, 1)
451 #define BP_SET_EMBEDDED(bp, x) BF64_SET((bp)->blk_prop, 39, 1, x)
452
453 #define BP_GET_CHECKSUM(bp) \
454 (BP_IS_EMBEDDED(bp) ? ZIO_CHECKSUM_OFF : \
455 BF64_GET((bp)->blk_prop, 40, 8))
456 #define BP_SET_CHECKSUM(bp, x) do { \
457 ASSERT(!BP_IS_EMBEDDED(bp)); \
458 BF64_SET((bp)->blk_prop, 40, 8, x); \
459 _NOTE(CONSTCOND) } while (0)
460
461 #define BP_GET_TYPE(bp) BF64_GET((bp)->blk_prop, 48, 8)
462 #define BP_SET_TYPE(bp, x) BF64_SET((bp)->blk_prop, 48, 8, x)
463
464 #define BP_GET_LEVEL(bp) BF64_GET((bp)->blk_prop, 56, 5)
465 #define BP_SET_LEVEL(bp, x) BF64_SET((bp)->blk_prop, 56, 5, x)
466
467 /* encrypted, authenticated, and MAC cksum bps use the same bit */
468 #define BP_USES_CRYPT(bp) BF64_GET((bp)->blk_prop, 61, 1)
469 #define BP_SET_CRYPT(bp, x) BF64_SET((bp)->blk_prop, 61, 1, x)
470
471 #define BP_IS_ENCRYPTED(bp) \
472 (BP_USES_CRYPT(bp) && \
473 BP_GET_LEVEL(bp) <= 0 && \
474 DMU_OT_IS_ENCRYPTED(BP_GET_TYPE(bp)))
475
476 #define BP_IS_AUTHENTICATED(bp) \
477 (BP_USES_CRYPT(bp) && \
478 BP_GET_LEVEL(bp) <= 0 && \
479 !DMU_OT_IS_ENCRYPTED(BP_GET_TYPE(bp)))
480
481 #define BP_HAS_INDIRECT_MAC_CKSUM(bp) \
482 (BP_USES_CRYPT(bp) && BP_GET_LEVEL(bp) > 0)
483
484 #define BP_IS_PROTECTED(bp) \
485 (BP_IS_ENCRYPTED(bp) || BP_IS_AUTHENTICATED(bp))
486
487 #define BP_GET_DEDUP(bp) BF64_GET((bp)->blk_prop, 62, 1)
488 #define BP_SET_DEDUP(bp, x) BF64_SET((bp)->blk_prop, 62, 1, x)
489
490 #define BP_GET_BYTEORDER(bp) BF64_GET((bp)->blk_prop, 63, 1)
491 #define BP_SET_BYTEORDER(bp, x) BF64_SET((bp)->blk_prop, 63, 1, x)
492
493 #define BP_GET_FREE(bp) BF64_GET((bp)->blk_fill, 0, 1)
494 #define BP_SET_FREE(bp, x) BF64_SET((bp)->blk_fill, 0, 1, x)
495
496 #define BP_PHYSICAL_BIRTH(bp) \
497 (BP_IS_EMBEDDED(bp) ? 0 : \
498 (bp)->blk_phys_birth ? (bp)->blk_phys_birth : (bp)->blk_birth)
499
500 #define BP_SET_BIRTH(bp, logical, physical) \
501 { \
502 ASSERT(!BP_IS_EMBEDDED(bp)); \
503 (bp)->blk_birth = (logical); \
504 (bp)->blk_phys_birth = ((logical) == (physical) ? 0 : (physical)); \
505 }
506
507 #define BP_GET_FILL(bp) \
508 ((BP_IS_ENCRYPTED(bp)) ? BF64_GET((bp)->blk_fill, 0, 32) : \
509 ((BP_IS_EMBEDDED(bp)) ? 1 : (bp)->blk_fill))
510
511 #define BP_SET_FILL(bp, fill) \
512 { \
513 if (BP_IS_ENCRYPTED(bp)) \
514 BF64_SET((bp)->blk_fill, 0, 32, fill); \
515 else \
516 (bp)->blk_fill = fill; \
517 }
518
519 #define BP_GET_IV2(bp) \
520 (ASSERT(BP_IS_ENCRYPTED(bp)), \
521 BF64_GET((bp)->blk_fill, 32, 32))
522 #define BP_SET_IV2(bp, iv2) \
523 { \
524 ASSERT(BP_IS_ENCRYPTED(bp)); \
525 BF64_SET((bp)->blk_fill, 32, 32, iv2); \
526 }
527
528 #define BP_IS_METADATA(bp) \
529 (BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp)))
530
531 #define BP_GET_ASIZE(bp) \
532 (BP_IS_EMBEDDED(bp) ? 0 : \
533 DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \
534 DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \
535 (DVA_GET_ASIZE(&(bp)->blk_dva[2]) * !BP_IS_ENCRYPTED(bp)))
536
537 #define BP_GET_UCSIZE(bp) \
538 (BP_IS_METADATA(bp) ? BP_GET_PSIZE(bp) : BP_GET_LSIZE(bp))
539
540 #define BP_GET_NDVAS(bp) \
541 (BP_IS_EMBEDDED(bp) ? 0 : \
542 !!DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \
543 !!DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \
544 (!!DVA_GET_ASIZE(&(bp)->blk_dva[2]) * !BP_IS_ENCRYPTED(bp)))
545
546 #define BP_COUNT_GANG(bp) \
547 (BP_IS_EMBEDDED(bp) ? 0 : \
548 (DVA_GET_GANG(&(bp)->blk_dva[0]) + \
549 DVA_GET_GANG(&(bp)->blk_dva[1]) + \
550 (DVA_GET_GANG(&(bp)->blk_dva[2]) * !BP_IS_ENCRYPTED(bp))))
551
552 #define DVA_EQUAL(dva1, dva2) \
553 ((dva1)->dva_word[1] == (dva2)->dva_word[1] && \
554 (dva1)->dva_word[0] == (dva2)->dva_word[0])
555
556 #define BP_EQUAL(bp1, bp2) \
557 (BP_PHYSICAL_BIRTH(bp1) == BP_PHYSICAL_BIRTH(bp2) && \
558 (bp1)->blk_birth == (bp2)->blk_birth && \
559 DVA_EQUAL(&(bp1)->blk_dva[0], &(bp2)->blk_dva[0]) && \
560 DVA_EQUAL(&(bp1)->blk_dva[1], &(bp2)->blk_dva[1]) && \
561 DVA_EQUAL(&(bp1)->blk_dva[2], &(bp2)->blk_dva[2]))
562
563
564 #define DVA_IS_VALID(dva) (DVA_GET_ASIZE(dva) != 0)
565
566 #define BP_IDENTITY(bp) (ASSERT(!BP_IS_EMBEDDED(bp)), &(bp)->blk_dva[0])
567 #define BP_IS_GANG(bp) \
568 (BP_IS_EMBEDDED(bp) ? B_FALSE : DVA_GET_GANG(BP_IDENTITY(bp)))
569 #define DVA_IS_EMPTY(dva) ((dva)->dva_word[0] == 0ULL && \
570 (dva)->dva_word[1] == 0ULL)
571 #define BP_IS_HOLE(bp) \
572 (!BP_IS_EMBEDDED(bp) && DVA_IS_EMPTY(BP_IDENTITY(bp)))
573
574 #define BP_SET_REDACTED(bp) \
575 { \
576 BP_SET_EMBEDDED(bp, B_TRUE); \
577 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_REDACTED); \
578 }
579 #define BP_IS_REDACTED(bp) \
580 (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_REDACTED)
581
582 /* BP_IS_RAIDZ(bp) assumes no block compression */
583 #define BP_IS_RAIDZ(bp) (DVA_GET_ASIZE(&(bp)->blk_dva[0]) > \
584 BP_GET_PSIZE(bp))
585
586 #define BP_ZERO(bp) \
587 { \
588 (bp)->blk_dva[0].dva_word[0] = 0; \
589 (bp)->blk_dva[0].dva_word[1] = 0; \
590 (bp)->blk_dva[1].dva_word[0] = 0; \
591 (bp)->blk_dva[1].dva_word[1] = 0; \
592 (bp)->blk_dva[2].dva_word[0] = 0; \
593 (bp)->blk_dva[2].dva_word[1] = 0; \
594 (bp)->blk_prop = 0; \
595 (bp)->blk_pad[0] = 0; \
596 (bp)->blk_pad[1] = 0; \
597 (bp)->blk_phys_birth = 0; \
598 (bp)->blk_birth = 0; \
599 (bp)->blk_fill = 0; \
600 ZIO_SET_CHECKSUM(&(bp)->blk_cksum, 0, 0, 0, 0); \
601 }
602
603 #ifdef _BIG_ENDIAN
604 #define ZFS_HOST_BYTEORDER (0ULL)
605 #else
606 #define ZFS_HOST_BYTEORDER (1ULL)
607 #endif
608
609 #define BP_SHOULD_BYTESWAP(bp) (BP_GET_BYTEORDER(bp) != ZFS_HOST_BYTEORDER)
610
611 #define BP_SPRINTF_LEN 400
612
613 /*
614 * This macro allows code sharing between zfs, libzpool, and mdb.
615 * 'func' is either snprintf() or mdb_snprintf().
616 * 'ws' (whitespace) can be ' ' for single-line format, '\n' for multi-line.
617 */
618
619 #define SNPRINTF_BLKPTR(func, ws, buf, size, bp, type, checksum, compress) \
620 { \
621 static const char *copyname[] = \
622 { "zero", "single", "double", "triple" }; \
623 int len = 0; \
624 int copies = 0; \
625 const char *crypt_type; \
626 if (bp != NULL) { \
627 if (BP_IS_ENCRYPTED(bp)) { \
628 crypt_type = "encrypted"; \
629 /* LINTED E_SUSPICIOUS_COMPARISON */ \
630 } else if (BP_IS_AUTHENTICATED(bp)) { \
631 crypt_type = "authenticated"; \
632 } else if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) { \
633 crypt_type = "indirect-MAC"; \
634 } else { \
635 crypt_type = "unencrypted"; \
636 } \
637 } \
638 if (bp == NULL) { \
639 len += func(buf + len, size - len, "<NULL>"); \
640 } else if (BP_IS_HOLE(bp)) { \
641 len += func(buf + len, size - len, \
642 "HOLE [L%llu %s] " \
643 "size=%llxL birth=%lluL", \
644 (u_longlong_t)BP_GET_LEVEL(bp), \
645 type, \
646 (u_longlong_t)BP_GET_LSIZE(bp), \
647 (u_longlong_t)bp->blk_birth); \
648 } else if (BP_IS_EMBEDDED(bp)) { \
649 len = func(buf + len, size - len, \
650 "EMBEDDED [L%llu %s] et=%u %s " \
651 "size=%llxL/%llxP birth=%lluL", \
652 (u_longlong_t)BP_GET_LEVEL(bp), \
653 type, \
654 (int)BPE_GET_ETYPE(bp), \
655 compress, \
656 (u_longlong_t)BPE_GET_LSIZE(bp), \
657 (u_longlong_t)BPE_GET_PSIZE(bp), \
658 (u_longlong_t)bp->blk_birth); \
659 } else if (BP_IS_REDACTED(bp)) { \
660 len += func(buf + len, size - len, \
661 "REDACTED [L%llu %s] size=%llxL birth=%lluL", \
662 (u_longlong_t)BP_GET_LEVEL(bp), \
663 type, \
664 (u_longlong_t)BP_GET_LSIZE(bp), \
665 (u_longlong_t)bp->blk_birth); \
666 } else { \
667 for (int d = 0; d < BP_GET_NDVAS(bp); d++) { \
668 const dva_t *dva = &bp->blk_dva[d]; \
669 if (DVA_IS_VALID(dva)) \
670 copies++; \
671 len += func(buf + len, size - len, \
672 "DVA[%d]=<%llu:%llx:%llx>%c", d, \
673 (u_longlong_t)DVA_GET_VDEV(dva), \
674 (u_longlong_t)DVA_GET_OFFSET(dva), \
675 (u_longlong_t)DVA_GET_ASIZE(dva), \
676 ws); \
677 } \
678 if (BP_IS_ENCRYPTED(bp)) { \
679 len += func(buf + len, size - len, \
680 "salt=%llx iv=%llx:%llx%c", \
681 (u_longlong_t)bp->blk_dva[2].dva_word[0], \
682 (u_longlong_t)bp->blk_dva[2].dva_word[1], \
683 (u_longlong_t)BP_GET_IV2(bp), \
684 ws); \
685 } \
686 if (BP_IS_GANG(bp) && \
687 DVA_GET_ASIZE(&bp->blk_dva[2]) <= \
688 DVA_GET_ASIZE(&bp->blk_dva[1]) / 2) \
689 copies--; \
690 len += func(buf + len, size - len, \
691 "[L%llu %s] %s %s %s %s %s %s %s%c" \
692 "size=%llxL/%llxP birth=%lluL/%lluP fill=%llu%c" \
693 "cksum=%llx:%llx:%llx:%llx", \
694 (u_longlong_t)BP_GET_LEVEL(bp), \
695 type, \
696 checksum, \
697 compress, \
698 crypt_type, \
699 BP_GET_BYTEORDER(bp) == 0 ? "BE" : "LE", \
700 BP_IS_GANG(bp) ? "gang" : "contiguous", \
701 BP_GET_DEDUP(bp) ? "dedup" : "unique", \
702 copyname[copies], \
703 ws, \
704 (u_longlong_t)BP_GET_LSIZE(bp), \
705 (u_longlong_t)BP_GET_PSIZE(bp), \
706 (u_longlong_t)bp->blk_birth, \
707 (u_longlong_t)BP_PHYSICAL_BIRTH(bp), \
708 (u_longlong_t)BP_GET_FILL(bp), \
709 ws, \
710 (u_longlong_t)bp->blk_cksum.zc_word[0], \
711 (u_longlong_t)bp->blk_cksum.zc_word[1], \
712 (u_longlong_t)bp->blk_cksum.zc_word[2], \
713 (u_longlong_t)bp->blk_cksum.zc_word[3]); \
714 } \
715 ASSERT(len < size); \
716 }
717
718 #define BP_GET_BUFC_TYPE(bp) \
719 (BP_IS_METADATA(bp) ? ARC_BUFC_METADATA : ARC_BUFC_DATA)
720
721 typedef enum spa_import_type {
722 SPA_IMPORT_EXISTING,
723 SPA_IMPORT_ASSEMBLE
724 } spa_import_type_t;
725
726 typedef enum spa_mode {
727 SPA_MODE_UNINIT = 0,
728 SPA_MODE_READ = 1,
729 SPA_MODE_WRITE = 2,
730 } spa_mode_t;
731
732 /*
733 * Send TRIM commands in-line during normal pool operation while deleting.
734 * OFF: no
735 * ON: yes
736 */
737 typedef enum {
738 SPA_AUTOTRIM_OFF = 0, /* default */
739 SPA_AUTOTRIM_ON
740 } spa_autotrim_t;
741
742 /*
743 * Reason TRIM command was issued, used internally for accounting purposes.
744 */
745 typedef enum trim_type {
746 TRIM_TYPE_MANUAL = 0,
747 TRIM_TYPE_AUTO = 1,
748 } trim_type_t;
749
750 /* state manipulation functions */
751 extern int spa_open(const char *pool, spa_t **, void *tag);
752 extern int spa_open_rewind(const char *pool, spa_t **, void *tag,
753 nvlist_t *policy, nvlist_t **config);
754 extern int spa_get_stats(const char *pool, nvlist_t **config, char *altroot,
755 size_t buflen);
756 extern int spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
757 nvlist_t *zplprops, struct dsl_crypto_params *dcp);
758 extern int spa_import(char *pool, nvlist_t *config, nvlist_t *props,
759 uint64_t flags);
760 extern nvlist_t *spa_tryimport(nvlist_t *tryconfig);
761 extern int spa_destroy(char *pool);
762 extern int spa_checkpoint(const char *pool);
763 extern int spa_checkpoint_discard(const char *pool);
764 extern int spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
765 boolean_t hardforce);
766 extern int spa_reset(char *pool);
767 extern void spa_async_request(spa_t *spa, int flag);
768 extern void spa_async_unrequest(spa_t *spa, int flag);
769 extern void spa_async_suspend(spa_t *spa);
770 extern void spa_async_resume(spa_t *spa);
771 extern int spa_async_tasks(spa_t *spa);
772 extern spa_t *spa_inject_addref(char *pool);
773 extern void spa_inject_delref(spa_t *spa);
774 extern void spa_scan_stat_init(spa_t *spa);
775 extern int spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps);
776 extern int bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx);
777 extern int bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx);
778
779 #define SPA_ASYNC_CONFIG_UPDATE 0x01
780 #define SPA_ASYNC_REMOVE 0x02
781 #define SPA_ASYNC_PROBE 0x04
782 #define SPA_ASYNC_RESILVER_DONE 0x08
783 #define SPA_ASYNC_RESILVER 0x10
784 #define SPA_ASYNC_AUTOEXPAND 0x20
785 #define SPA_ASYNC_REMOVE_DONE 0x40
786 #define SPA_ASYNC_REMOVE_STOP 0x80
787 #define SPA_ASYNC_INITIALIZE_RESTART 0x100
788 #define SPA_ASYNC_TRIM_RESTART 0x200
789 #define SPA_ASYNC_AUTOTRIM_RESTART 0x400
790
791 /*
792 * Controls the behavior of spa_vdev_remove().
793 */
794 #define SPA_REMOVE_UNSPARE 0x01
795 #define SPA_REMOVE_DONE 0x02
796
797 /* device manipulation */
798 extern int spa_vdev_add(spa_t *spa, nvlist_t *nvroot);
799 extern int spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot,
800 int replacing);
801 extern int spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid,
802 int replace_done);
803 extern int spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare);
804 extern boolean_t spa_vdev_remove_active(spa_t *spa);
805 extern int spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
806 nvlist_t *vdev_errlist);
807 extern int spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
808 uint64_t rate, boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist);
809 extern int spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath);
810 extern int spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru);
811 extern int spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
812 nvlist_t *props, boolean_t exp);
813
814 /* spare state (which is global across all pools) */
815 extern void spa_spare_add(vdev_t *vd);
816 extern void spa_spare_remove(vdev_t *vd);
817 extern boolean_t spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt);
818 extern void spa_spare_activate(vdev_t *vd);
819
820 /* L2ARC state (which is global across all pools) */
821 extern void spa_l2cache_add(vdev_t *vd);
822 extern void spa_l2cache_remove(vdev_t *vd);
823 extern boolean_t spa_l2cache_exists(uint64_t guid, uint64_t *pool);
824 extern void spa_l2cache_activate(vdev_t *vd);
825 extern void spa_l2cache_drop(spa_t *spa);
826
827 /* scanning */
828 extern int spa_scan(spa_t *spa, pool_scan_func_t func);
829 extern int spa_scan_stop(spa_t *spa);
830 extern int spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t flag);
831
832 /* spa syncing */
833 extern void spa_sync(spa_t *spa, uint64_t txg); /* only for DMU use */
834 extern void spa_sync_allpools(void);
835
836 extern int zfs_sync_pass_deferred_free;
837
838 /* spa namespace global mutex */
839 extern kmutex_t spa_namespace_lock;
840
841 /*
842 * SPA configuration functions in spa_config.c
843 */
844
845 #define SPA_CONFIG_UPDATE_POOL 0
846 #define SPA_CONFIG_UPDATE_VDEVS 1
847
848 extern void spa_write_cachefile(spa_t *, boolean_t, boolean_t);
849 extern void spa_config_load(void);
850 extern nvlist_t *spa_all_configs(uint64_t *);
851 extern void spa_config_set(spa_t *spa, nvlist_t *config);
852 extern nvlist_t *spa_config_generate(spa_t *spa, vdev_t *vd, uint64_t txg,
853 int getstats);
854 extern void spa_config_update(spa_t *spa, int what);
855 extern int spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv,
856 vdev_t *parent, uint_t id, int atype);
857
858
859 /*
860 * Miscellaneous SPA routines in spa_misc.c
861 */
862
863 /* Namespace manipulation */
864 extern spa_t *spa_lookup(const char *name);
865 extern spa_t *spa_add(const char *name, nvlist_t *config, const char *altroot);
866 extern void spa_remove(spa_t *spa);
867 extern spa_t *spa_next(spa_t *prev);
868
869 /* Refcount functions */
870 extern void spa_open_ref(spa_t *spa, void *tag);
871 extern void spa_close(spa_t *spa, void *tag);
872 extern void spa_async_close(spa_t *spa, void *tag);
873 extern boolean_t spa_refcount_zero(spa_t *spa);
874
875 #define SCL_NONE 0x00
876 #define SCL_CONFIG 0x01
877 #define SCL_STATE 0x02
878 #define SCL_L2ARC 0x04 /* hack until L2ARC 2.0 */
879 #define SCL_ALLOC 0x08
880 #define SCL_ZIO 0x10
881 #define SCL_FREE 0x20
882 #define SCL_VDEV 0x40
883 #define SCL_LOCKS 7
884 #define SCL_ALL ((1 << SCL_LOCKS) - 1)
885 #define SCL_STATE_ALL (SCL_STATE | SCL_L2ARC | SCL_ZIO)
886
887 /* Historical pool statistics */
888 typedef struct spa_history_kstat {
889 kmutex_t lock;
890 uint64_t count;
891 uint64_t size;
892 kstat_t *kstat;
893 void *private;
894 list_t list;
895 } spa_history_kstat_t;
896
897 typedef struct spa_history_list {
898 uint64_t size;
899 procfs_list_t procfs_list;
900 } spa_history_list_t;
901
902 typedef struct spa_stats {
903 spa_history_list_t read_history;
904 spa_history_list_t txg_history;
905 spa_history_kstat_t tx_assign_histogram;
906 spa_history_kstat_t io_history;
907 spa_history_list_t mmp_history;
908 spa_history_kstat_t state; /* pool state */
909 spa_history_kstat_t iostats;
910 } spa_stats_t;
911
912 typedef enum txg_state {
913 TXG_STATE_BIRTH = 0,
914 TXG_STATE_OPEN = 1,
915 TXG_STATE_QUIESCED = 2,
916 TXG_STATE_WAIT_FOR_SYNC = 3,
917 TXG_STATE_SYNCED = 4,
918 TXG_STATE_COMMITTED = 5,
919 } txg_state_t;
920
921 typedef struct txg_stat {
922 vdev_stat_t vs1;
923 vdev_stat_t vs2;
924 uint64_t txg;
925 uint64_t ndirty;
926 } txg_stat_t;
927
928 /* Assorted pool IO kstats */
929 typedef struct spa_iostats {
930 kstat_named_t trim_extents_written;
931 kstat_named_t trim_bytes_written;
932 kstat_named_t trim_extents_skipped;
933 kstat_named_t trim_bytes_skipped;
934 kstat_named_t trim_extents_failed;
935 kstat_named_t trim_bytes_failed;
936 kstat_named_t autotrim_extents_written;
937 kstat_named_t autotrim_bytes_written;
938 kstat_named_t autotrim_extents_skipped;
939 kstat_named_t autotrim_bytes_skipped;
940 kstat_named_t autotrim_extents_failed;
941 kstat_named_t autotrim_bytes_failed;
942 } spa_iostats_t;
943
944 extern void spa_stats_init(spa_t *spa);
945 extern void spa_stats_destroy(spa_t *spa);
946 extern void spa_read_history_add(spa_t *spa, const zbookmark_phys_t *zb,
947 uint32_t aflags);
948 extern void spa_txg_history_add(spa_t *spa, uint64_t txg, hrtime_t birth_time);
949 extern int spa_txg_history_set(spa_t *spa, uint64_t txg,
950 txg_state_t completed_state, hrtime_t completed_time);
951 extern txg_stat_t *spa_txg_history_init_io(spa_t *, uint64_t,
952 struct dsl_pool *);
953 extern void spa_txg_history_fini_io(spa_t *, txg_stat_t *);
954 extern void spa_tx_assign_add_nsecs(spa_t *spa, uint64_t nsecs);
955 extern int spa_mmp_history_set_skip(spa_t *spa, uint64_t mmp_kstat_id);
956 extern int spa_mmp_history_set(spa_t *spa, uint64_t mmp_kstat_id, int io_error,
957 hrtime_t duration);
958 extern void spa_mmp_history_add(spa_t *spa, uint64_t txg, uint64_t timestamp,
959 uint64_t mmp_delay, vdev_t *vd, int label, uint64_t mmp_kstat_id,
960 int error);
961 extern void spa_iostats_trim_add(spa_t *spa, trim_type_t type,
962 uint64_t extents_written, uint64_t bytes_written,
963 uint64_t extents_skipped, uint64_t bytes_skipped,
964 uint64_t extents_failed, uint64_t bytes_failed);
965 extern void spa_import_progress_add(spa_t *spa);
966 extern void spa_import_progress_remove(uint64_t spa_guid);
967 extern int spa_import_progress_set_mmp_check(uint64_t pool_guid,
968 uint64_t mmp_sec_remaining);
969 extern int spa_import_progress_set_max_txg(uint64_t pool_guid,
970 uint64_t max_txg);
971 extern int spa_import_progress_set_state(uint64_t pool_guid,
972 spa_load_state_t spa_load_state);
973
974 /* Pool configuration locks */
975 extern int spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw);
976 extern void spa_config_enter(spa_t *spa, int locks, const void *tag, krw_t rw);
977 extern void spa_config_exit(spa_t *spa, int locks, const void *tag);
978 extern int spa_config_held(spa_t *spa, int locks, krw_t rw);
979
980 /* Pool vdev add/remove lock */
981 extern uint64_t spa_vdev_enter(spa_t *spa);
982 extern uint64_t spa_vdev_config_enter(spa_t *spa);
983 extern void spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg,
984 int error, char *tag);
985 extern int spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error);
986
987 /* Pool vdev state change lock */
988 extern void spa_vdev_state_enter(spa_t *spa, int oplock);
989 extern int spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error);
990
991 /* Log state */
992 typedef enum spa_log_state {
993 SPA_LOG_UNKNOWN = 0, /* unknown log state */
994 SPA_LOG_MISSING, /* missing log(s) */
995 SPA_LOG_CLEAR, /* clear the log(s) */
996 SPA_LOG_GOOD, /* log(s) are good */
997 } spa_log_state_t;
998
999 extern spa_log_state_t spa_get_log_state(spa_t *spa);
1000 extern void spa_set_log_state(spa_t *spa, spa_log_state_t state);
1001 extern int spa_reset_logs(spa_t *spa);
1002
1003 /* Log claim callback */
1004 extern void spa_claim_notify(zio_t *zio);
1005 extern void spa_deadman(void *);
1006
1007 /* Accessor functions */
1008 extern boolean_t spa_shutting_down(spa_t *spa);
1009 extern struct dsl_pool *spa_get_dsl(spa_t *spa);
1010 extern boolean_t spa_is_initializing(spa_t *spa);
1011 extern boolean_t spa_indirect_vdevs_loaded(spa_t *spa);
1012 extern blkptr_t *spa_get_rootblkptr(spa_t *spa);
1013 extern void spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp);
1014 extern void spa_altroot(spa_t *, char *, size_t);
1015 extern int spa_sync_pass(spa_t *spa);
1016 extern char *spa_name(spa_t *spa);
1017 extern uint64_t spa_guid(spa_t *spa);
1018 extern uint64_t spa_load_guid(spa_t *spa);
1019 extern uint64_t spa_last_synced_txg(spa_t *spa);
1020 extern uint64_t spa_first_txg(spa_t *spa);
1021 extern uint64_t spa_syncing_txg(spa_t *spa);
1022 extern uint64_t spa_final_dirty_txg(spa_t *spa);
1023 extern uint64_t spa_version(spa_t *spa);
1024 extern pool_state_t spa_state(spa_t *spa);
1025 extern spa_load_state_t spa_load_state(spa_t *spa);
1026 extern uint64_t spa_freeze_txg(spa_t *spa);
1027 extern uint64_t spa_get_worst_case_asize(spa_t *spa, uint64_t lsize);
1028 extern uint64_t spa_get_dspace(spa_t *spa);
1029 extern uint64_t spa_get_checkpoint_space(spa_t *spa);
1030 extern uint64_t spa_get_slop_space(spa_t *spa);
1031 extern void spa_update_dspace(spa_t *spa);
1032 extern uint64_t spa_version(spa_t *spa);
1033 extern boolean_t spa_deflate(spa_t *spa);
1034 extern metaslab_class_t *spa_normal_class(spa_t *spa);
1035 extern metaslab_class_t *spa_log_class(spa_t *spa);
1036 extern metaslab_class_t *spa_special_class(spa_t *spa);
1037 extern metaslab_class_t *spa_dedup_class(spa_t *spa);
1038 extern metaslab_class_t *spa_preferred_class(spa_t *spa, uint64_t size,
1039 dmu_object_type_t objtype, uint_t level, uint_t special_smallblk);
1040
1041 extern void spa_evicting_os_register(spa_t *, objset_t *os);
1042 extern void spa_evicting_os_deregister(spa_t *, objset_t *os);
1043 extern void spa_evicting_os_wait(spa_t *spa);
1044 extern int spa_max_replication(spa_t *spa);
1045 extern int spa_prev_software_version(spa_t *spa);
1046 extern uint64_t spa_get_failmode(spa_t *spa);
1047 extern uint64_t spa_get_deadman_failmode(spa_t *spa);
1048 extern void spa_set_deadman_failmode(spa_t *spa, const char *failmode);
1049 extern boolean_t spa_suspended(spa_t *spa);
1050 extern uint64_t spa_bootfs(spa_t *spa);
1051 extern uint64_t spa_delegation(spa_t *spa);
1052 extern objset_t *spa_meta_objset(spa_t *spa);
1053 extern space_map_t *spa_syncing_log_sm(spa_t *spa);
1054 extern uint64_t spa_deadman_synctime(spa_t *spa);
1055 extern uint64_t spa_deadman_ziotime(spa_t *spa);
1056 extern uint64_t spa_dirty_data(spa_t *spa);
1057 extern spa_autotrim_t spa_get_autotrim(spa_t *spa);
1058
1059 /* Miscellaneous support routines */
1060 extern void spa_load_failed(spa_t *spa, const char *fmt, ...);
1061 extern void spa_load_note(spa_t *spa, const char *fmt, ...);
1062 extern void spa_activate_mos_feature(spa_t *spa, const char *feature,
1063 dmu_tx_t *tx);
1064 extern void spa_deactivate_mos_feature(spa_t *spa, const char *feature);
1065 extern spa_t *spa_by_guid(uint64_t pool_guid, uint64_t device_guid);
1066 extern boolean_t spa_guid_exists(uint64_t pool_guid, uint64_t device_guid);
1067 extern char *spa_strdup(const char *);
1068 extern void spa_strfree(char *);
1069 extern uint64_t spa_get_random(uint64_t range);
1070 extern uint64_t spa_generate_guid(spa_t *spa);
1071 extern void snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp);
1072 extern void spa_freeze(spa_t *spa);
1073 extern int spa_change_guid(spa_t *spa);
1074 extern void spa_upgrade(spa_t *spa, uint64_t version);
1075 extern void spa_evict_all(void);
1076 extern vdev_t *spa_lookup_by_guid(spa_t *spa, uint64_t guid,
1077 boolean_t l2cache);
1078 extern boolean_t spa_has_spare(spa_t *, uint64_t guid);
1079 extern uint64_t dva_get_dsize_sync(spa_t *spa, const dva_t *dva);
1080 extern uint64_t bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp);
1081 extern uint64_t bp_get_dsize(spa_t *spa, const blkptr_t *bp);
1082 extern boolean_t spa_has_slogs(spa_t *spa);
1083 extern boolean_t spa_is_root(spa_t *spa);
1084 extern boolean_t spa_writeable(spa_t *spa);
1085 extern boolean_t spa_has_pending_synctask(spa_t *spa);
1086 extern int spa_maxblocksize(spa_t *spa);
1087 extern int spa_maxdnodesize(spa_t *spa);
1088 extern boolean_t spa_has_checkpoint(spa_t *spa);
1089 extern boolean_t spa_importing_readonly_checkpoint(spa_t *spa);
1090 extern boolean_t spa_suspend_async_destroy(spa_t *spa);
1091 extern uint64_t spa_min_claim_txg(spa_t *spa);
1092 extern boolean_t zfs_dva_valid(spa_t *spa, const dva_t *dva,
1093 const blkptr_t *bp);
1094 typedef void (*spa_remap_cb_t)(uint64_t vdev, uint64_t offset, uint64_t size,
1095 void *arg);
1096 extern boolean_t spa_remap_blkptr(spa_t *spa, blkptr_t *bp,
1097 spa_remap_cb_t callback, void *arg);
1098 extern uint64_t spa_get_last_removal_txg(spa_t *spa);
1099 extern boolean_t spa_trust_config(spa_t *spa);
1100 extern uint64_t spa_missing_tvds_allowed(spa_t *spa);
1101 extern void spa_set_missing_tvds(spa_t *spa, uint64_t missing);
1102 extern boolean_t spa_top_vdevs_spacemap_addressable(spa_t *spa);
1103 extern uint64_t spa_total_metaslabs(spa_t *spa);
1104 extern boolean_t spa_multihost(spa_t *spa);
1105 extern uint32_t spa_get_hostid(spa_t *spa);
1106 extern void spa_activate_allocation_classes(spa_t *, dmu_tx_t *);
1107 extern boolean_t spa_livelist_delete_check(spa_t *spa);
1108
1109 extern spa_mode_t spa_mode(spa_t *spa);
1110 extern uint64_t zfs_strtonum(const char *str, char **nptr);
1111
1112 extern char *spa_his_ievent_table[];
1113
1114 extern void spa_history_create_obj(spa_t *spa, dmu_tx_t *tx);
1115 extern int spa_history_get(spa_t *spa, uint64_t *offset, uint64_t *len_read,
1116 char *his_buf);
1117 extern int spa_history_log(spa_t *spa, const char *his_buf);
1118 extern int spa_history_log_nvl(spa_t *spa, nvlist_t *nvl);
1119 extern void spa_history_log_version(spa_t *spa, const char *operation,
1120 dmu_tx_t *tx);
1121 extern void spa_history_log_internal(spa_t *spa, const char *operation,
1122 dmu_tx_t *tx, const char *fmt, ...) __printflike(4, 5);
1123 extern void spa_history_log_internal_ds(struct dsl_dataset *ds, const char *op,
1124 dmu_tx_t *tx, const char *fmt, ...) __printflike(4, 5);
1125 extern void spa_history_log_internal_dd(dsl_dir_t *dd, const char *operation,
1126 dmu_tx_t *tx, const char *fmt, ...) __printflike(4, 5);
1127
1128 extern const char *spa_state_to_name(spa_t *spa);
1129
1130 /* error handling */
1131 struct zbookmark_phys;
1132 extern void spa_log_error(spa_t *spa, const zbookmark_phys_t *zb);
1133 extern int zfs_ereport_post(const char *class, spa_t *spa, vdev_t *vd,
1134 const zbookmark_phys_t *zb, zio_t *zio, uint64_t stateoroffset,
1135 uint64_t length);
1136 extern boolean_t zfs_ereport_is_valid(const char *class, spa_t *spa, vdev_t *vd,
1137 zio_t *zio);
1138 extern nvlist_t *zfs_event_create(spa_t *spa, vdev_t *vd, const char *type,
1139 const char *name, nvlist_t *aux);
1140 extern void zfs_post_remove(spa_t *spa, vdev_t *vd);
1141 extern void zfs_post_state_change(spa_t *spa, vdev_t *vd, uint64_t laststate);
1142 extern void zfs_post_autoreplace(spa_t *spa, vdev_t *vd);
1143 extern uint64_t spa_get_errlog_size(spa_t *spa);
1144 extern int spa_get_errlog(spa_t *spa, void *uaddr, size_t *count);
1145 extern void spa_errlog_rotate(spa_t *spa);
1146 extern void spa_errlog_drain(spa_t *spa);
1147 extern void spa_errlog_sync(spa_t *spa, uint64_t txg);
1148 extern void spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub);
1149
1150 /* vdev cache */
1151 extern void vdev_cache_stat_init(void);
1152 extern void vdev_cache_stat_fini(void);
1153
1154 /* vdev mirror */
1155 extern void vdev_mirror_stat_init(void);
1156 extern void vdev_mirror_stat_fini(void);
1157
1158 /* Initialization and termination */
1159 extern void spa_init(spa_mode_t mode);
1160 extern void spa_fini(void);
1161 extern void spa_boot_init(void);
1162
1163 /* properties */
1164 extern int spa_prop_set(spa_t *spa, nvlist_t *nvp);
1165 extern int spa_prop_get(spa_t *spa, nvlist_t **nvp);
1166 extern void spa_prop_clear_bootfs(spa_t *spa, uint64_t obj, dmu_tx_t *tx);
1167 extern void spa_configfile_set(spa_t *, nvlist_t *, boolean_t);
1168
1169 /* asynchronous event notification */
1170 extern void spa_event_notify(spa_t *spa, vdev_t *vdev, nvlist_t *hist_nvl,
1171 const char *name);
1172
1173 /* waiting for pool activities to complete */
1174 extern int spa_wait(const char *pool, zpool_wait_activity_t activity,
1175 boolean_t *waited);
1176 extern int spa_wait_tag(const char *name, zpool_wait_activity_t activity,
1177 uint64_t tag, boolean_t *waited);
1178 extern void spa_notify_waiters(spa_t *spa);
1179 extern void spa_wake_waiters(spa_t *spa);
1180
1181 /* module param call functions */
1182 int param_set_deadman_ziotime(ZFS_MODULE_PARAM_ARGS);
1183 int param_set_deadman_synctime(ZFS_MODULE_PARAM_ARGS);
1184 int param_set_slop_shift(ZFS_MODULE_PARAM_ARGS);
1185 int param_set_deadman_failmode(ZFS_MODULE_PARAM_ARGS);
1186
1187 #ifdef ZFS_DEBUG
1188 #define dprintf_bp(bp, fmt, ...) do { \
1189 if (zfs_flags & ZFS_DEBUG_DPRINTF) { \
1190 char *__blkbuf = kmem_alloc(BP_SPRINTF_LEN, KM_SLEEP); \
1191 snprintf_blkptr(__blkbuf, BP_SPRINTF_LEN, (bp)); \
1192 dprintf(fmt " %s\n", __VA_ARGS__, __blkbuf); \
1193 kmem_free(__blkbuf, BP_SPRINTF_LEN); \
1194 } \
1195 _NOTE(CONSTCOND) } while (0)
1196 #else
1197 #define dprintf_bp(bp, fmt, ...)
1198 #endif
1199
1200 extern spa_mode_t spa_mode_global;
1201 extern int zfs_deadman_enabled;
1202 extern unsigned long zfs_deadman_synctime_ms;
1203 extern unsigned long zfs_deadman_ziotime_ms;
1204 extern unsigned long zfs_deadman_checktime_ms;
1205
1206 #ifdef __cplusplus
1207 }
1208 #endif
1209
1210 #endif /* _SYS_SPA_H */