]> git.proxmox.com Git - mirror_zfs.git/blob - lib/libefi/rdwr_efi.c
Always check -Wno-unused-but-set-variable gcc support
[mirror_zfs.git] / lib / libefi / rdwr_efi.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25
26 #include <stdio.h>
27 #include <stdlib.h>
28 #include <errno.h>
29 #include <strings.h>
30 #include <unistd.h>
31 #include <uuid/uuid.h>
32 #include <zlib.h>
33 #include <libintl.h>
34 #include <sys/types.h>
35 #include <sys/dkio.h>
36 #include <sys/vtoc.h>
37 #include <sys/mhd.h>
38 #include <sys/param.h>
39 #include <sys/dktp/fdisk.h>
40 #include <sys/efi_partition.h>
41 #include <sys/byteorder.h>
42 #if defined(__linux__)
43 #include <linux/fs.h>
44 #endif
45
46 static struct uuid_to_ptag {
47 struct uuid uuid;
48 } conversion_array[] = {
49 { EFI_UNUSED },
50 { EFI_BOOT },
51 { EFI_ROOT },
52 { EFI_SWAP },
53 { EFI_USR },
54 { EFI_BACKUP },
55 { EFI_UNUSED }, /* STAND is never used */
56 { EFI_VAR },
57 { EFI_HOME },
58 { EFI_ALTSCTR },
59 { EFI_UNUSED }, /* CACHE (cachefs) is never used */
60 { EFI_RESERVED },
61 { EFI_SYSTEM },
62 { EFI_LEGACY_MBR },
63 { EFI_SYMC_PUB },
64 { EFI_SYMC_CDS },
65 { EFI_MSFT_RESV },
66 { EFI_DELL_BASIC },
67 { EFI_DELL_RAID },
68 { EFI_DELL_SWAP },
69 { EFI_DELL_LVM },
70 { EFI_DELL_RESV },
71 { EFI_AAPL_HFS },
72 { EFI_AAPL_UFS }
73 };
74
75 /*
76 * Default vtoc information for non-SVr4 partitions
77 */
78 struct dk_map2 default_vtoc_map[NDKMAP] = {
79 { V_ROOT, 0 }, /* a - 0 */
80 { V_SWAP, V_UNMNT }, /* b - 1 */
81 { V_BACKUP, V_UNMNT }, /* c - 2 */
82 { V_UNASSIGNED, 0 }, /* d - 3 */
83 { V_UNASSIGNED, 0 }, /* e - 4 */
84 { V_UNASSIGNED, 0 }, /* f - 5 */
85 { V_USR, 0 }, /* g - 6 */
86 { V_UNASSIGNED, 0 }, /* h - 7 */
87
88 #if defined(_SUNOS_VTOC_16)
89
90 #if defined(i386) || defined(__amd64)
91 { V_BOOT, V_UNMNT }, /* i - 8 */
92 { V_ALTSCTR, 0 }, /* j - 9 */
93
94 #else
95 #error No VTOC format defined.
96 #endif /* defined(i386) */
97
98 { V_UNASSIGNED, 0 }, /* k - 10 */
99 { V_UNASSIGNED, 0 }, /* l - 11 */
100 { V_UNASSIGNED, 0 }, /* m - 12 */
101 { V_UNASSIGNED, 0 }, /* n - 13 */
102 { V_UNASSIGNED, 0 }, /* o - 14 */
103 { V_UNASSIGNED, 0 }, /* p - 15 */
104 #endif /* defined(_SUNOS_VTOC_16) */
105 };
106
107 #ifdef DEBUG
108 int efi_debug = 1;
109 #else
110 int efi_debug = 0;
111 #endif
112
113 static int efi_read(int, struct dk_gpt *);
114
115 /*
116 * Return a 32-bit CRC of the contents of the buffer. Pre-and-post
117 * one's conditioning will be handled by crc32() internally.
118 */
119 static uint32_t
120 efi_crc32(const unsigned char *buf, unsigned int size)
121 {
122 uint32_t crc = crc32(0, Z_NULL, 0);
123
124 crc = crc32(crc, buf, size);
125
126 return (crc);
127 }
128
129 static int
130 read_disk_info(int fd, diskaddr_t *capacity, uint_t *lbsize)
131 {
132 int sector_size;
133 unsigned long long capacity_size;
134
135 if (ioctl(fd, BLKSSZGET, &sector_size) < 0)
136 return (-1);
137
138 if (ioctl(fd, BLKGETSIZE64, &capacity_size) < 0)
139 return (-1);
140
141 *lbsize = (uint_t)sector_size;
142 *capacity = (diskaddr_t)(capacity_size / sector_size);
143
144 return (0);
145 }
146
147 static int
148 efi_get_info(int fd, struct dk_cinfo *dki_info)
149 {
150 #if defined(__linux__)
151 char *path;
152 char *dev_path;
153 int rval = 0;
154
155 memset(dki_info, 0, sizeof(*dki_info));
156
157 path = calloc(PATH_MAX, 1);
158 if (path == NULL)
159 goto error;
160
161 /*
162 * The simplest way to get the partition number under linux is
163 * to parse it out of the /dev/<disk><parition> block device name.
164 * The kernel creates this using the partition number when it
165 * populates /dev/ so it may be trusted. The tricky bit here is
166 * that the naming convention is based on the block device type.
167 * So we need to take this in to account when parsing out the
168 * partition information. Another issue is that the libefi API
169 * API only provides the open fd and not the file path. To handle
170 * this realpath(3) is used to resolve the block device name from
171 * /proc/self/fd/<fd>. Aside from the partition number we collect
172 * some additional device info.
173 */
174 (void) sprintf(path, "/proc/self/fd/%d", fd);
175 dev_path = realpath(path, NULL);
176 free(path);
177
178 if (dev_path == NULL)
179 goto error;
180
181 if ((strncmp(dev_path, "/dev/sd", 7) == 0)) {
182 strcpy(dki_info->dki_cname, "sd");
183 dki_info->dki_ctype = DKC_SCSI_CCS;
184 rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
185 dki_info->dki_dname,
186 &dki_info->dki_partition);
187 } else if ((strncmp(dev_path, "/dev/hd", 7) == 0)) {
188 strcpy(dki_info->dki_cname, "hd");
189 dki_info->dki_ctype = DKC_DIRECT;
190 rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
191 dki_info->dki_dname,
192 &dki_info->dki_partition);
193 } else if ((strncmp(dev_path, "/dev/md", 7) == 0)) {
194 strcpy(dki_info->dki_cname, "pseudo");
195 dki_info->dki_ctype = DKC_MD;
196 rval = sscanf(dev_path, "/dev/%[a-zA-Z0-9]p%hu",
197 dki_info->dki_dname,
198 &dki_info->dki_partition);
199 } else if ((strncmp(dev_path, "/dev/dm-", 8) == 0)) {
200 strcpy(dki_info->dki_cname, "pseudo");
201 dki_info->dki_ctype = DKC_VBD;
202 rval = sscanf(dev_path, "/dev/%[a-zA-Z0-9-]p%hu",
203 dki_info->dki_dname,
204 &dki_info->dki_partition);
205 } else if ((strncmp(dev_path, "/dev/ram", 8) == 0)) {
206 strcpy(dki_info->dki_cname, "pseudo");
207 dki_info->dki_ctype = DKC_PCMCIA_MEM;
208 rval = sscanf(dev_path, "/dev/%[a-zA-Z0-9]p%hu",
209 dki_info->dki_dname,
210 &dki_info->dki_partition);
211 } else if ((strncmp(dev_path, "/dev/loop", 9) == 0)) {
212 strcpy(dki_info->dki_cname, "pseudo");
213 dki_info->dki_ctype = DKC_VBD;
214 rval = sscanf(dev_path, "/dev/%[a-zA-Z0-9]p%hu",
215 dki_info->dki_dname,
216 &dki_info->dki_partition);
217 } else {
218 strcpy(dki_info->dki_dname, "unknown");
219 strcpy(dki_info->dki_cname, "unknown");
220 dki_info->dki_ctype = DKC_UNKNOWN;
221 }
222
223 switch (rval) {
224 case 0:
225 errno = EINVAL;
226 goto error;
227 case 1:
228 dki_info->dki_partition = 0;
229 }
230
231 free(dev_path);
232 #else
233 if (ioctl(fd, DKIOCINFO, (caddr_t)dki_info) == -1)
234 goto error;
235 #endif
236 return (0);
237 error:
238 if (efi_debug)
239 (void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno);
240
241 switch (errno) {
242 case EIO:
243 return (VT_EIO);
244 case EINVAL:
245 return (VT_EINVAL);
246 default:
247 return (VT_ERROR);
248 }
249 }
250
251 /*
252 * the number of blocks the EFI label takes up (round up to nearest
253 * block)
254 */
255 #define NBLOCKS(p, l) (1 + ((((p) * (int)sizeof (efi_gpe_t)) + \
256 ((l) - 1)) / (l)))
257 /* number of partitions -- limited by what we can malloc */
258 #define MAX_PARTS ((4294967295UL - sizeof (struct dk_gpt)) / \
259 sizeof (struct dk_part))
260
261 int
262 efi_alloc_and_init(int fd, uint32_t nparts, struct dk_gpt **vtoc)
263 {
264 diskaddr_t capacity = 0;
265 uint_t lbsize = 0;
266 uint_t nblocks;
267 size_t length;
268 struct dk_gpt *vptr;
269 struct uuid uuid;
270 struct dk_cinfo dki_info;
271
272 if (read_disk_info(fd, &capacity, &lbsize) != 0)
273 return (-1);
274
275 #if defined(__linux__)
276 if (efi_get_info(fd, &dki_info) != 0)
277 return (-1);
278
279 if (dki_info.dki_partition != 0)
280 return (-1);
281
282 if ((dki_info.dki_ctype == DKC_PCMCIA_MEM) ||
283 (dki_info.dki_ctype == DKC_VBD) ||
284 (dki_info.dki_ctype == DKC_UNKNOWN))
285 return (-1);
286 #endif
287
288 nblocks = NBLOCKS(nparts, lbsize);
289 if ((nblocks * lbsize) < EFI_MIN_ARRAY_SIZE + lbsize) {
290 /* 16K plus one block for the GPT */
291 nblocks = EFI_MIN_ARRAY_SIZE / lbsize + 1;
292 }
293
294 if (nparts > MAX_PARTS) {
295 if (efi_debug) {
296 (void) fprintf(stderr,
297 "the maximum number of partitions supported is %lu\n",
298 MAX_PARTS);
299 }
300 return (-1);
301 }
302
303 length = sizeof (struct dk_gpt) +
304 sizeof (struct dk_part) * (nparts - 1);
305
306 if ((*vtoc = calloc(length, 1)) == NULL)
307 return (-1);
308
309 vptr = *vtoc;
310
311 vptr->efi_version = EFI_VERSION_CURRENT;
312 vptr->efi_lbasize = lbsize;
313 vptr->efi_nparts = nparts;
314 /*
315 * add one block here for the PMBR; on disks with a 512 byte
316 * block size and 128 or fewer partitions, efi_first_u_lba
317 * should work out to "34"
318 */
319 vptr->efi_first_u_lba = nblocks + 1;
320 vptr->efi_last_lba = capacity - 1;
321 vptr->efi_altern_lba = capacity -1;
322 vptr->efi_last_u_lba = vptr->efi_last_lba - nblocks;
323
324 (void) uuid_generate((uchar_t *)&uuid);
325 UUID_LE_CONVERT(vptr->efi_disk_uguid, uuid);
326 return (0);
327 }
328
329 /*
330 * Read EFI - return partition number upon success.
331 */
332 int
333 efi_alloc_and_read(int fd, struct dk_gpt **vtoc)
334 {
335 int rval;
336 uint32_t nparts;
337 int length;
338
339 /* figure out the number of entries that would fit into 16K */
340 nparts = EFI_MIN_ARRAY_SIZE / sizeof (efi_gpe_t);
341 length = (int) sizeof (struct dk_gpt) +
342 (int) sizeof (struct dk_part) * (nparts - 1);
343 if ((*vtoc = calloc(length, 1)) == NULL)
344 return (VT_ERROR);
345
346 (*vtoc)->efi_nparts = nparts;
347 rval = efi_read(fd, *vtoc);
348
349 if ((rval == VT_EINVAL) && (*vtoc)->efi_nparts > nparts) {
350 void *tmp;
351 length = (int) sizeof (struct dk_gpt) +
352 (int) sizeof (struct dk_part) *
353 ((*vtoc)->efi_nparts - 1);
354 nparts = (*vtoc)->efi_nparts;
355 if ((tmp = realloc(*vtoc, length)) == NULL) {
356 free (*vtoc);
357 *vtoc = NULL;
358 return (VT_ERROR);
359 } else {
360 *vtoc = tmp;
361 rval = efi_read(fd, *vtoc);
362 }
363 }
364
365 if (rval < 0) {
366 if (efi_debug) {
367 (void) fprintf(stderr,
368 "read of EFI table failed, rval=%d\n", rval);
369 }
370 free (*vtoc);
371 *vtoc = NULL;
372 }
373
374 return (rval);
375 }
376
377 static int
378 efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc)
379 {
380 void *data = dk_ioc->dki_data;
381 int error;
382 #if defined(__linux__)
383 diskaddr_t capacity;
384 uint_t lbsize;
385
386 /*
387 * When the IO is not being performed in kernel as an ioctl we need
388 * to know the sector size so we can seek to the proper byte offset.
389 */
390 if (read_disk_info(fd, &capacity, &lbsize) == -1) {
391 if (efi_debug)
392 fprintf(stderr,"unable to read disk info: %d",errno);
393
394 errno = EIO;
395 return -1;
396 }
397
398 switch (cmd) {
399 case DKIOCGETEFI:
400 if (lbsize == 0) {
401 if (efi_debug)
402 (void) fprintf(stderr, "DKIOCGETEFI assuming "
403 "LBA %d bytes\n", DEV_BSIZE);
404
405 lbsize = DEV_BSIZE;
406 }
407
408 error = lseek(fd, dk_ioc->dki_lba * lbsize, SEEK_SET);
409 if (error == -1) {
410 if (efi_debug)
411 (void) fprintf(stderr, "DKIOCGETEFI lseek "
412 "error: %d\n", errno);
413 return error;
414 }
415
416 error = read(fd, data, dk_ioc->dki_length);
417 if (error == -1) {
418 if (efi_debug)
419 (void) fprintf(stderr, "DKIOCGETEFI read "
420 "error: %d\n", errno);
421 return error;
422 }
423
424 if (error != dk_ioc->dki_length) {
425 if (efi_debug)
426 (void) fprintf(stderr, "DKIOCGETEFI short "
427 "read of %d bytes\n", error);
428 errno = EIO;
429 return -1;
430 }
431 error = 0;
432 break;
433
434 case DKIOCSETEFI:
435 if (lbsize == 0) {
436 if (efi_debug)
437 (void) fprintf(stderr, "DKIOCSETEFI unknown "
438 "LBA size\n");
439 errno = EIO;
440 return -1;
441 }
442
443 error = lseek(fd, dk_ioc->dki_lba * lbsize, SEEK_SET);
444 if (error == -1) {
445 if (efi_debug)
446 (void) fprintf(stderr, "DKIOCSETEFI lseek "
447 "error: %d\n", errno);
448 return error;
449 }
450
451 error = write(fd, data, dk_ioc->dki_length);
452 if (error == -1) {
453 if (efi_debug)
454 (void) fprintf(stderr, "DKIOCSETEFI write "
455 "error: %d\n", errno);
456 return error;
457 }
458
459 if (error != dk_ioc->dki_length) {
460 if (efi_debug)
461 (void) fprintf(stderr, "DKIOCSETEFI short "
462 "write of %d bytes\n", error);
463 errno = EIO;
464 return -1;
465 }
466
467 /* Sync the new EFI table to disk */
468 error = fsync(fd);
469 if (error == -1)
470 return error;
471
472 /* Ensure any local disk cache is also flushed */
473 if (ioctl(fd, BLKFLSBUF, 0) == -1)
474 return error;
475
476 error = 0;
477 break;
478
479 default:
480 if (efi_debug)
481 (void) fprintf(stderr, "unsupported ioctl()\n");
482
483 errno = EIO;
484 return -1;
485 }
486 #else
487 dk_ioc->dki_data_64 = (uint64_t)(uintptr_t)data;
488 error = ioctl(fd, cmd, (void *)dk_ioc);
489 dk_ioc->dki_data = data;
490 #endif
491 return (error);
492 }
493
494 #if defined(__linux__)
495 static int
496 efi_rescan(int fd)
497 {
498 int retry = 5;
499 int error;
500
501 /* Notify the kernel a devices partition table has been updated */
502 while ((error = ioctl(fd, BLKRRPART)) != 0) {
503 if (--retry == 0) {
504 (void) fprintf(stderr, "the kernel failed to rescan "
505 "the partition table: %d\n", errno);
506 return (-1);
507 }
508 }
509
510 return (0);
511 }
512 #endif
513
514 static int
515 check_label(int fd, dk_efi_t *dk_ioc)
516 {
517 efi_gpt_t *efi;
518 uint_t crc;
519
520 if (efi_ioctl(fd, DKIOCGETEFI, dk_ioc) == -1) {
521 switch (errno) {
522 case EIO:
523 return (VT_EIO);
524 default:
525 return (VT_ERROR);
526 }
527 }
528 efi = dk_ioc->dki_data;
529 if (efi->efi_gpt_Signature != LE_64(EFI_SIGNATURE)) {
530 if (efi_debug)
531 (void) fprintf(stderr,
532 "Bad EFI signature: 0x%llx != 0x%llx\n",
533 (long long)efi->efi_gpt_Signature,
534 (long long)LE_64(EFI_SIGNATURE));
535 return (VT_EINVAL);
536 }
537
538 /*
539 * check CRC of the header; the size of the header should
540 * never be larger than one block
541 */
542 crc = efi->efi_gpt_HeaderCRC32;
543 efi->efi_gpt_HeaderCRC32 = 0;
544
545 if (((len_t)LE_32(efi->efi_gpt_HeaderSize) > dk_ioc->dki_length) ||
546 crc != LE_32(efi_crc32((unsigned char *)efi,
547 LE_32(efi->efi_gpt_HeaderSize)))) {
548 if (efi_debug)
549 (void) fprintf(stderr,
550 "Bad EFI CRC: 0x%x != 0x%x\n",
551 crc,
552 LE_32(efi_crc32((unsigned char *)efi,
553 sizeof (struct efi_gpt))));
554 return (VT_EINVAL);
555 }
556
557 return (0);
558 }
559
560 static int
561 efi_read(int fd, struct dk_gpt *vtoc)
562 {
563 int i, j;
564 int label_len;
565 int rval = 0;
566 int md_flag = 0;
567 int vdc_flag = 0;
568 diskaddr_t capacity = 0;
569 uint_t lbsize = 0;
570 struct dk_minfo disk_info;
571 dk_efi_t dk_ioc;
572 efi_gpt_t *efi;
573 efi_gpe_t *efi_parts;
574 struct dk_cinfo dki_info;
575 uint32_t user_length;
576 boolean_t legacy_label = B_FALSE;
577
578 /*
579 * get the partition number for this file descriptor.
580 */
581 if ((rval = efi_get_info(fd, &dki_info)) != 0)
582 return rval;
583
584 if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) &&
585 (strncmp(dki_info.dki_dname, "md", 3) == 0)) {
586 md_flag++;
587 } else if ((strncmp(dki_info.dki_cname, "vdc", 4) == 0) &&
588 (strncmp(dki_info.dki_dname, "vdc", 4) == 0)) {
589 /*
590 * The controller and drive name "vdc" (virtual disk client)
591 * indicates a LDoms virtual disk.
592 */
593 vdc_flag++;
594 }
595
596 /* get the LBA size */
597 if (read_disk_info(fd, &capacity, &lbsize) == -1) {
598 if (efi_debug) {
599 (void) fprintf(stderr,
600 "unable to read disk info: %d",
601 errno);
602 }
603 return (VT_EINVAL);
604 }
605
606 disk_info.dki_lbsize = lbsize;
607 disk_info.dki_capacity = capacity;
608
609 if (disk_info.dki_lbsize == 0) {
610 if (efi_debug) {
611 (void) fprintf(stderr,
612 "efi_read: assuming LBA 512 bytes\n");
613 }
614 disk_info.dki_lbsize = DEV_BSIZE;
615 }
616 /*
617 * Read the EFI GPT to figure out how many partitions we need
618 * to deal with.
619 */
620 dk_ioc.dki_lba = 1;
621 if (NBLOCKS(vtoc->efi_nparts, disk_info.dki_lbsize) < 34) {
622 label_len = EFI_MIN_ARRAY_SIZE + disk_info.dki_lbsize;
623 } else {
624 label_len = vtoc->efi_nparts * (int) sizeof (efi_gpe_t) +
625 disk_info.dki_lbsize;
626 if (label_len % disk_info.dki_lbsize) {
627 /* pad to physical sector size */
628 label_len += disk_info.dki_lbsize;
629 label_len &= ~(disk_info.dki_lbsize - 1);
630 }
631 }
632
633 if (posix_memalign((void **)&dk_ioc.dki_data,
634 disk_info.dki_lbsize, label_len))
635 return (VT_ERROR);
636
637 memset(dk_ioc.dki_data, 0, label_len);
638 dk_ioc.dki_length = disk_info.dki_lbsize;
639 user_length = vtoc->efi_nparts;
640 efi = dk_ioc.dki_data;
641 if (md_flag) {
642 dk_ioc.dki_length = label_len;
643 if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) {
644 switch (errno) {
645 case EIO:
646 return (VT_EIO);
647 default:
648 return (VT_ERROR);
649 }
650 }
651 } else if ((rval = check_label(fd, &dk_ioc)) == VT_EINVAL) {
652 /*
653 * No valid label here; try the alternate. Note that here
654 * we just read GPT header and save it into dk_ioc.data,
655 * Later, we will read GUID partition entry array if we
656 * can get valid GPT header.
657 */
658
659 /*
660 * This is a workaround for legacy systems. In the past, the
661 * last sector of SCSI disk was invisible on x86 platform. At
662 * that time, backup label was saved on the next to the last
663 * sector. It is possible for users to move a disk from previous
664 * solaris system to present system. Here, we attempt to search
665 * legacy backup EFI label first.
666 */
667 dk_ioc.dki_lba = disk_info.dki_capacity - 2;
668 dk_ioc.dki_length = disk_info.dki_lbsize;
669 rval = check_label(fd, &dk_ioc);
670 if (rval == VT_EINVAL) {
671 /*
672 * we didn't find legacy backup EFI label, try to
673 * search backup EFI label in the last block.
674 */
675 dk_ioc.dki_lba = disk_info.dki_capacity - 1;
676 dk_ioc.dki_length = disk_info.dki_lbsize;
677 rval = check_label(fd, &dk_ioc);
678 if (rval == 0) {
679 legacy_label = B_TRUE;
680 if (efi_debug)
681 (void) fprintf(stderr,
682 "efi_read: primary label corrupt; "
683 "using EFI backup label located on"
684 " the last block\n");
685 }
686 } else {
687 if ((efi_debug) && (rval == 0))
688 (void) fprintf(stderr, "efi_read: primary label"
689 " corrupt; using legacy EFI backup label "
690 " located on the next to last block\n");
691 }
692
693 if (rval == 0) {
694 dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
695 vtoc->efi_flags |= EFI_GPT_PRIMARY_CORRUPT;
696 vtoc->efi_nparts =
697 LE_32(efi->efi_gpt_NumberOfPartitionEntries);
698 /*
699 * Partition tables are between backup GPT header
700 * table and ParitionEntryLBA (the starting LBA of
701 * the GUID partition entries array). Now that we
702 * already got valid GPT header and saved it in
703 * dk_ioc.dki_data, we try to get GUID partition
704 * entry array here.
705 */
706 /* LINTED */
707 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
708 + disk_info.dki_lbsize);
709 if (legacy_label)
710 dk_ioc.dki_length = disk_info.dki_capacity - 1 -
711 dk_ioc.dki_lba;
712 else
713 dk_ioc.dki_length = disk_info.dki_capacity - 2 -
714 dk_ioc.dki_lba;
715 dk_ioc.dki_length *= disk_info.dki_lbsize;
716 if (dk_ioc.dki_length >
717 ((len_t)label_len - sizeof (*dk_ioc.dki_data))) {
718 rval = VT_EINVAL;
719 } else {
720 /*
721 * read GUID partition entry array
722 */
723 rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
724 }
725 }
726
727 } else if (rval == 0) {
728
729 dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
730 /* LINTED */
731 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
732 + disk_info.dki_lbsize);
733 dk_ioc.dki_length = label_len - disk_info.dki_lbsize;
734 rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
735
736 } else if (vdc_flag && rval == VT_ERROR && errno == EINVAL) {
737 /*
738 * When the device is a LDoms virtual disk, the DKIOCGETEFI
739 * ioctl can fail with EINVAL if the virtual disk backend
740 * is a ZFS volume serviced by a domain running an old version
741 * of Solaris. This is because the DKIOCGETEFI ioctl was
742 * initially incorrectly implemented for a ZFS volume and it
743 * expected the GPT and GPE to be retrieved with a single ioctl.
744 * So we try to read the GPT and the GPE using that old style
745 * ioctl.
746 */
747 dk_ioc.dki_lba = 1;
748 dk_ioc.dki_length = label_len;
749 rval = check_label(fd, &dk_ioc);
750 }
751
752 if (rval < 0) {
753 free(efi);
754 return (rval);
755 }
756
757 /* LINTED -- always longlong aligned */
758 efi_parts = (efi_gpe_t *)(((char *)efi) + disk_info.dki_lbsize);
759
760 /*
761 * Assemble this into a "dk_gpt" struct for easier
762 * digestibility by applications.
763 */
764 vtoc->efi_version = LE_32(efi->efi_gpt_Revision);
765 vtoc->efi_nparts = LE_32(efi->efi_gpt_NumberOfPartitionEntries);
766 vtoc->efi_part_size = LE_32(efi->efi_gpt_SizeOfPartitionEntry);
767 vtoc->efi_lbasize = disk_info.dki_lbsize;
768 vtoc->efi_last_lba = disk_info.dki_capacity - 1;
769 vtoc->efi_first_u_lba = LE_64(efi->efi_gpt_FirstUsableLBA);
770 vtoc->efi_last_u_lba = LE_64(efi->efi_gpt_LastUsableLBA);
771 vtoc->efi_altern_lba = LE_64(efi->efi_gpt_AlternateLBA);
772 UUID_LE_CONVERT(vtoc->efi_disk_uguid, efi->efi_gpt_DiskGUID);
773
774 /*
775 * If the array the user passed in is too small, set the length
776 * to what it needs to be and return
777 */
778 if (user_length < vtoc->efi_nparts) {
779 return (VT_EINVAL);
780 }
781
782 for (i = 0; i < vtoc->efi_nparts; i++) {
783
784 UUID_LE_CONVERT(vtoc->efi_parts[i].p_guid,
785 efi_parts[i].efi_gpe_PartitionTypeGUID);
786
787 for (j = 0;
788 j < sizeof (conversion_array)
789 / sizeof (struct uuid_to_ptag); j++) {
790
791 if (bcmp(&vtoc->efi_parts[i].p_guid,
792 &conversion_array[j].uuid,
793 sizeof (struct uuid)) == 0) {
794 vtoc->efi_parts[i].p_tag = j;
795 break;
796 }
797 }
798 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED)
799 continue;
800 vtoc->efi_parts[i].p_flag =
801 LE_16(efi_parts[i].efi_gpe_Attributes.PartitionAttrs);
802 vtoc->efi_parts[i].p_start =
803 LE_64(efi_parts[i].efi_gpe_StartingLBA);
804 vtoc->efi_parts[i].p_size =
805 LE_64(efi_parts[i].efi_gpe_EndingLBA) -
806 vtoc->efi_parts[i].p_start + 1;
807 for (j = 0; j < EFI_PART_NAME_LEN; j++) {
808 vtoc->efi_parts[i].p_name[j] =
809 (uchar_t)LE_16(
810 efi_parts[i].efi_gpe_PartitionName[j]);
811 }
812
813 UUID_LE_CONVERT(vtoc->efi_parts[i].p_uguid,
814 efi_parts[i].efi_gpe_UniquePartitionGUID);
815 }
816 free(efi);
817
818 return (dki_info.dki_partition);
819 }
820
821 /* writes a "protective" MBR */
822 static int
823 write_pmbr(int fd, struct dk_gpt *vtoc)
824 {
825 dk_efi_t dk_ioc;
826 struct mboot mb;
827 uchar_t *cp;
828 diskaddr_t size_in_lba;
829 uchar_t *buf;
830 int len;
831
832 len = (vtoc->efi_lbasize == 0) ? sizeof (mb) : vtoc->efi_lbasize;
833 if (posix_memalign((void **)&buf, len, len))
834 return (VT_ERROR);
835
836 /*
837 * Preserve any boot code and disk signature if the first block is
838 * already an MBR.
839 */
840 memset(buf, 0, len);
841 dk_ioc.dki_lba = 0;
842 dk_ioc.dki_length = len;
843 /* LINTED -- always longlong aligned */
844 dk_ioc.dki_data = (efi_gpt_t *)buf;
845 if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) {
846 (void *) memcpy(&mb, buf, sizeof (mb));
847 bzero(&mb, sizeof (mb));
848 mb.signature = LE_16(MBB_MAGIC);
849 } else {
850 (void *) memcpy(&mb, buf, sizeof (mb));
851 if (mb.signature != LE_16(MBB_MAGIC)) {
852 bzero(&mb, sizeof (mb));
853 mb.signature = LE_16(MBB_MAGIC);
854 }
855 }
856
857 bzero(&mb.parts, sizeof (mb.parts));
858 cp = (uchar_t *)&mb.parts[0];
859 /* bootable or not */
860 *cp++ = 0;
861 /* beginning CHS; 0xffffff if not representable */
862 *cp++ = 0xff;
863 *cp++ = 0xff;
864 *cp++ = 0xff;
865 /* OS type */
866 *cp++ = EFI_PMBR;
867 /* ending CHS; 0xffffff if not representable */
868 *cp++ = 0xff;
869 *cp++ = 0xff;
870 *cp++ = 0xff;
871 /* starting LBA: 1 (little endian format) by EFI definition */
872 *cp++ = 0x01;
873 *cp++ = 0x00;
874 *cp++ = 0x00;
875 *cp++ = 0x00;
876 /* ending LBA: last block on the disk (little endian format) */
877 size_in_lba = vtoc->efi_last_lba;
878 if (size_in_lba < 0xffffffff) {
879 *cp++ = (size_in_lba & 0x000000ff);
880 *cp++ = (size_in_lba & 0x0000ff00) >> 8;
881 *cp++ = (size_in_lba & 0x00ff0000) >> 16;
882 *cp++ = (size_in_lba & 0xff000000) >> 24;
883 } else {
884 *cp++ = 0xff;
885 *cp++ = 0xff;
886 *cp++ = 0xff;
887 *cp++ = 0xff;
888 }
889
890 (void *) memcpy(buf, &mb, sizeof (mb));
891 /* LINTED -- always longlong aligned */
892 dk_ioc.dki_data = (efi_gpt_t *)buf;
893 dk_ioc.dki_lba = 0;
894 dk_ioc.dki_length = len;
895 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
896 free(buf);
897 switch (errno) {
898 case EIO:
899 return (VT_EIO);
900 case EINVAL:
901 return (VT_EINVAL);
902 default:
903 return (VT_ERROR);
904 }
905 }
906 free(buf);
907 return (0);
908 }
909
910 /* make sure the user specified something reasonable */
911 static int
912 check_input(struct dk_gpt *vtoc)
913 {
914 int resv_part = -1;
915 int i, j;
916 diskaddr_t istart, jstart, isize, jsize, endsect;
917
918 /*
919 * Sanity-check the input (make sure no partitions overlap)
920 */
921 for (i = 0; i < vtoc->efi_nparts; i++) {
922 /* It can't be unassigned and have an actual size */
923 if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
924 (vtoc->efi_parts[i].p_size != 0)) {
925 if (efi_debug) {
926 (void) fprintf(stderr, "partition %d is "
927 "\"unassigned\" but has a size of %llu",
928 i, vtoc->efi_parts[i].p_size);
929 }
930 return (VT_EINVAL);
931 }
932 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
933 if (uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid))
934 continue;
935 /* we have encountered an unknown uuid */
936 vtoc->efi_parts[i].p_tag = 0xff;
937 }
938 if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
939 if (resv_part != -1) {
940 if (efi_debug) {
941 (void) fprintf(stderr, "found "
942 "duplicate reserved partition "
943 "at %d\n", i);
944 }
945 return (VT_EINVAL);
946 }
947 resv_part = i;
948 }
949 if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
950 (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
951 if (efi_debug) {
952 (void) fprintf(stderr,
953 "Partition %d starts at %llu. ",
954 i,
955 vtoc->efi_parts[i].p_start);
956 (void) fprintf(stderr,
957 "It must be between %llu and %llu.\n",
958 vtoc->efi_first_u_lba,
959 vtoc->efi_last_u_lba);
960 }
961 return (VT_EINVAL);
962 }
963 if ((vtoc->efi_parts[i].p_start +
964 vtoc->efi_parts[i].p_size <
965 vtoc->efi_first_u_lba) ||
966 (vtoc->efi_parts[i].p_start +
967 vtoc->efi_parts[i].p_size >
968 vtoc->efi_last_u_lba + 1)) {
969 if (efi_debug) {
970 (void) fprintf(stderr,
971 "Partition %d ends at %llu. ",
972 i,
973 vtoc->efi_parts[i].p_start +
974 vtoc->efi_parts[i].p_size);
975 (void) fprintf(stderr,
976 "It must be between %llu and %llu.\n",
977 vtoc->efi_first_u_lba,
978 vtoc->efi_last_u_lba);
979 }
980 return (VT_EINVAL);
981 }
982
983 for (j = 0; j < vtoc->efi_nparts; j++) {
984 isize = vtoc->efi_parts[i].p_size;
985 jsize = vtoc->efi_parts[j].p_size;
986 istart = vtoc->efi_parts[i].p_start;
987 jstart = vtoc->efi_parts[j].p_start;
988 if ((i != j) && (isize != 0) && (jsize != 0)) {
989 endsect = jstart + jsize -1;
990 if ((jstart <= istart) &&
991 (istart <= endsect)) {
992 if (efi_debug) {
993 (void) fprintf(stderr,
994 "Partition %d overlaps "
995 "partition %d.", i, j);
996 }
997 return (VT_EINVAL);
998 }
999 }
1000 }
1001 }
1002 /* just a warning for now */
1003 if ((resv_part == -1) && efi_debug) {
1004 (void) fprintf(stderr,
1005 "no reserved partition found\n");
1006 }
1007 return (0);
1008 }
1009
1010 /*
1011 * add all the unallocated space to the current label
1012 */
1013 int
1014 efi_use_whole_disk(int fd)
1015 {
1016 struct dk_gpt *efi_label;
1017 int rval;
1018 int i;
1019 uint_t phy_last_slice = 0;
1020 diskaddr_t pl_start = 0;
1021 diskaddr_t pl_size;
1022
1023 rval = efi_alloc_and_read(fd, &efi_label);
1024 if (rval < 0) {
1025 return (rval);
1026 }
1027
1028 /* find the last physically non-zero partition */
1029 for (i = 0; i < efi_label->efi_nparts - 2; i ++) {
1030 if (pl_start < efi_label->efi_parts[i].p_start) {
1031 pl_start = efi_label->efi_parts[i].p_start;
1032 phy_last_slice = i;
1033 }
1034 }
1035 pl_size = efi_label->efi_parts[phy_last_slice].p_size;
1036
1037 /*
1038 * If alter_lba is 1, we are using the backup label.
1039 * Since we can locate the backup label by disk capacity,
1040 * there must be no unallocated space.
1041 */
1042 if ((efi_label->efi_altern_lba == 1) || (efi_label->efi_altern_lba
1043 >= efi_label->efi_last_lba)) {
1044 if (efi_debug) {
1045 (void) fprintf(stderr,
1046 "efi_use_whole_disk: requested space not found\n");
1047 }
1048 efi_free(efi_label);
1049 return (VT_ENOSPC);
1050 }
1051
1052 /*
1053 * If there is space between the last physically non-zero partition
1054 * and the reserved partition, just add the unallocated space to this
1055 * area. Otherwise, the unallocated space is added to the last
1056 * physically non-zero partition.
1057 */
1058 if (pl_start + pl_size - 1 == efi_label->efi_last_u_lba -
1059 EFI_MIN_RESV_SIZE) {
1060 efi_label->efi_parts[phy_last_slice].p_size +=
1061 efi_label->efi_last_lba - efi_label->efi_altern_lba;
1062 }
1063
1064 /*
1065 * Move the reserved partition. There is currently no data in
1066 * here except fabricated devids (which get generated via
1067 * efi_write()). So there is no need to copy data.
1068 */
1069 efi_label->efi_parts[efi_label->efi_nparts - 1].p_start +=
1070 efi_label->efi_last_lba - efi_label->efi_altern_lba;
1071 efi_label->efi_last_u_lba += efi_label->efi_last_lba
1072 - efi_label->efi_altern_lba;
1073
1074 rval = efi_write(fd, efi_label);
1075 if (rval < 0) {
1076 if (efi_debug) {
1077 (void) fprintf(stderr,
1078 "efi_use_whole_disk:fail to write label, rval=%d\n",
1079 rval);
1080 }
1081 efi_free(efi_label);
1082 return (rval);
1083 }
1084
1085 efi_free(efi_label);
1086 return (0);
1087 }
1088
1089
1090 /*
1091 * write EFI label and backup label
1092 */
1093 int
1094 efi_write(int fd, struct dk_gpt *vtoc)
1095 {
1096 dk_efi_t dk_ioc;
1097 efi_gpt_t *efi;
1098 efi_gpe_t *efi_parts;
1099 int i, j;
1100 struct dk_cinfo dki_info;
1101 int rval;
1102 int md_flag = 0;
1103 int nblocks;
1104 diskaddr_t lba_backup_gpt_hdr;
1105
1106 if ((rval = efi_get_info(fd, &dki_info)) != 0)
1107 return rval;
1108
1109 /* check if we are dealing wih a metadevice */
1110 if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) &&
1111 (strncmp(dki_info.dki_dname, "md", 3) == 0)) {
1112 md_flag = 1;
1113 }
1114
1115 if (check_input(vtoc)) {
1116 /*
1117 * not valid; if it's a metadevice just pass it down
1118 * because SVM will do its own checking
1119 */
1120 if (md_flag == 0) {
1121 return (VT_EINVAL);
1122 }
1123 }
1124
1125 dk_ioc.dki_lba = 1;
1126 if (NBLOCKS(vtoc->efi_nparts, vtoc->efi_lbasize) < 34) {
1127 dk_ioc.dki_length = EFI_MIN_ARRAY_SIZE + vtoc->efi_lbasize;
1128 } else {
1129 dk_ioc.dki_length = NBLOCKS(vtoc->efi_nparts,
1130 vtoc->efi_lbasize) *
1131 vtoc->efi_lbasize;
1132 }
1133
1134 /*
1135 * the number of blocks occupied by GUID partition entry array
1136 */
1137 nblocks = dk_ioc.dki_length / vtoc->efi_lbasize - 1;
1138
1139 /*
1140 * Backup GPT header is located on the block after GUID
1141 * partition entry array. Here, we calculate the address
1142 * for backup GPT header.
1143 */
1144 lba_backup_gpt_hdr = vtoc->efi_last_u_lba + 1 + nblocks;
1145 if (posix_memalign((void **)&dk_ioc.dki_data,
1146 vtoc->efi_lbasize, dk_ioc.dki_length))
1147 return (VT_ERROR);
1148
1149 memset(dk_ioc.dki_data, 0, dk_ioc.dki_length);
1150 efi = dk_ioc.dki_data;
1151
1152 /* stuff user's input into EFI struct */
1153 efi->efi_gpt_Signature = LE_64(EFI_SIGNATURE);
1154 efi->efi_gpt_Revision = LE_32(vtoc->efi_version); /* 0x02000100 */
1155 efi->efi_gpt_HeaderSize = LE_32(sizeof (struct efi_gpt));
1156 efi->efi_gpt_Reserved1 = 0;
1157 efi->efi_gpt_MyLBA = LE_64(1ULL);
1158 efi->efi_gpt_AlternateLBA = LE_64(lba_backup_gpt_hdr);
1159 efi->efi_gpt_FirstUsableLBA = LE_64(vtoc->efi_first_u_lba);
1160 efi->efi_gpt_LastUsableLBA = LE_64(vtoc->efi_last_u_lba);
1161 efi->efi_gpt_PartitionEntryLBA = LE_64(2ULL);
1162 efi->efi_gpt_NumberOfPartitionEntries = LE_32(vtoc->efi_nparts);
1163 efi->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (struct efi_gpe));
1164 UUID_LE_CONVERT(efi->efi_gpt_DiskGUID, vtoc->efi_disk_uguid);
1165
1166 /* LINTED -- always longlong aligned */
1167 efi_parts = (efi_gpe_t *)((char *)dk_ioc.dki_data + vtoc->efi_lbasize);
1168
1169 for (i = 0; i < vtoc->efi_nparts; i++) {
1170 for (j = 0;
1171 j < sizeof (conversion_array) /
1172 sizeof (struct uuid_to_ptag); j++) {
1173
1174 if (vtoc->efi_parts[i].p_tag == j) {
1175 UUID_LE_CONVERT(
1176 efi_parts[i].efi_gpe_PartitionTypeGUID,
1177 conversion_array[j].uuid);
1178 break;
1179 }
1180 }
1181
1182 if (j == sizeof (conversion_array) /
1183 sizeof (struct uuid_to_ptag)) {
1184 /*
1185 * If we didn't have a matching uuid match, bail here.
1186 * Don't write a label with unknown uuid.
1187 */
1188 if (efi_debug) {
1189 (void) fprintf(stderr,
1190 "Unknown uuid for p_tag %d\n",
1191 vtoc->efi_parts[i].p_tag);
1192 }
1193 return (VT_EINVAL);
1194 }
1195
1196 /* Zero's should be written for empty partitions */
1197 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED)
1198 continue;
1199
1200 efi_parts[i].efi_gpe_StartingLBA =
1201 LE_64(vtoc->efi_parts[i].p_start);
1202 efi_parts[i].efi_gpe_EndingLBA =
1203 LE_64(vtoc->efi_parts[i].p_start +
1204 vtoc->efi_parts[i].p_size - 1);
1205 efi_parts[i].efi_gpe_Attributes.PartitionAttrs =
1206 LE_16(vtoc->efi_parts[i].p_flag);
1207 for (j = 0; j < EFI_PART_NAME_LEN; j++) {
1208 efi_parts[i].efi_gpe_PartitionName[j] =
1209 LE_16((ushort_t)vtoc->efi_parts[i].p_name[j]);
1210 }
1211 if ((vtoc->efi_parts[i].p_tag != V_UNASSIGNED) &&
1212 uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_uguid)) {
1213 (void) uuid_generate((uchar_t *)
1214 &vtoc->efi_parts[i].p_uguid);
1215 }
1216 bcopy(&vtoc->efi_parts[i].p_uguid,
1217 &efi_parts[i].efi_gpe_UniquePartitionGUID,
1218 sizeof (uuid_t));
1219 }
1220 efi->efi_gpt_PartitionEntryArrayCRC32 =
1221 LE_32(efi_crc32((unsigned char *)efi_parts,
1222 vtoc->efi_nparts * (int)sizeof (struct efi_gpe)));
1223 efi->efi_gpt_HeaderCRC32 =
1224 LE_32(efi_crc32((unsigned char *)efi, sizeof (struct efi_gpt)));
1225
1226 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1227 free(dk_ioc.dki_data);
1228 switch (errno) {
1229 case EIO:
1230 return (VT_EIO);
1231 case EINVAL:
1232 return (VT_EINVAL);
1233 default:
1234 return (VT_ERROR);
1235 }
1236 }
1237 /* if it's a metadevice we're done */
1238 if (md_flag) {
1239 free(dk_ioc.dki_data);
1240 return (0);
1241 }
1242
1243 /* write backup partition array */
1244 dk_ioc.dki_lba = vtoc->efi_last_u_lba + 1;
1245 dk_ioc.dki_length -= vtoc->efi_lbasize;
1246 /* LINTED */
1247 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data +
1248 vtoc->efi_lbasize);
1249
1250 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1251 /*
1252 * we wrote the primary label okay, so don't fail
1253 */
1254 if (efi_debug) {
1255 (void) fprintf(stderr,
1256 "write of backup partitions to block %llu "
1257 "failed, errno %d\n",
1258 vtoc->efi_last_u_lba + 1,
1259 errno);
1260 }
1261 }
1262 /*
1263 * now swap MyLBA and AlternateLBA fields and write backup
1264 * partition table header
1265 */
1266 dk_ioc.dki_lba = lba_backup_gpt_hdr;
1267 dk_ioc.dki_length = vtoc->efi_lbasize;
1268 /* LINTED */
1269 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data -
1270 vtoc->efi_lbasize);
1271 efi->efi_gpt_AlternateLBA = LE_64(1ULL);
1272 efi->efi_gpt_MyLBA = LE_64(lba_backup_gpt_hdr);
1273 efi->efi_gpt_PartitionEntryLBA = LE_64(vtoc->efi_last_u_lba + 1);
1274 efi->efi_gpt_HeaderCRC32 = 0;
1275 efi->efi_gpt_HeaderCRC32 =
1276 LE_32(efi_crc32((unsigned char *)dk_ioc.dki_data,
1277 sizeof (struct efi_gpt)));
1278
1279 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1280 if (efi_debug) {
1281 (void) fprintf(stderr,
1282 "write of backup header to block %llu failed, "
1283 "errno %d\n",
1284 lba_backup_gpt_hdr,
1285 errno);
1286 }
1287 }
1288 /* write the PMBR */
1289 (void) write_pmbr(fd, vtoc);
1290 free(dk_ioc.dki_data);
1291
1292 #if defined(__linux__)
1293 rval = efi_rescan(fd);
1294 if (rval)
1295 return (VT_ERROR);
1296 #endif
1297
1298 return (0);
1299 }
1300
1301 void
1302 efi_free(struct dk_gpt *ptr)
1303 {
1304 free(ptr);
1305 }
1306
1307 /*
1308 * Input: File descriptor
1309 * Output: 1 if disk has an EFI label, or > 2TB with no VTOC or legacy MBR.
1310 * Otherwise 0.
1311 */
1312 int
1313 efi_type(int fd)
1314 {
1315 #if 0
1316 struct vtoc vtoc;
1317 struct extvtoc extvtoc;
1318
1319 if (ioctl(fd, DKIOCGEXTVTOC, &extvtoc) == -1) {
1320 if (errno == ENOTSUP)
1321 return (1);
1322 else if (errno == ENOTTY) {
1323 if (ioctl(fd, DKIOCGVTOC, &vtoc) == -1)
1324 if (errno == ENOTSUP)
1325 return (1);
1326 }
1327 }
1328 return (0);
1329 #else
1330 return (ENOSYS);
1331 #endif
1332 }
1333
1334 void
1335 efi_err_check(struct dk_gpt *vtoc)
1336 {
1337 int resv_part = -1;
1338 int i, j;
1339 diskaddr_t istart, jstart, isize, jsize, endsect;
1340 int overlap = 0;
1341
1342 /*
1343 * make sure no partitions overlap
1344 */
1345 for (i = 0; i < vtoc->efi_nparts; i++) {
1346 /* It can't be unassigned and have an actual size */
1347 if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
1348 (vtoc->efi_parts[i].p_size != 0)) {
1349 (void) fprintf(stderr,
1350 "partition %d is \"unassigned\" but has a size "
1351 "of %llu\n", i, vtoc->efi_parts[i].p_size);
1352 }
1353 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
1354 continue;
1355 }
1356 if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
1357 if (resv_part != -1) {
1358 (void) fprintf(stderr,
1359 "found duplicate reserved partition at "
1360 "%d\n", i);
1361 }
1362 resv_part = i;
1363 if (vtoc->efi_parts[i].p_size != EFI_MIN_RESV_SIZE)
1364 (void) fprintf(stderr,
1365 "Warning: reserved partition size must "
1366 "be %d sectors\n", EFI_MIN_RESV_SIZE);
1367 }
1368 if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
1369 (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
1370 (void) fprintf(stderr,
1371 "Partition %d starts at %llu\n",
1372 i,
1373 vtoc->efi_parts[i].p_start);
1374 (void) fprintf(stderr,
1375 "It must be between %llu and %llu.\n",
1376 vtoc->efi_first_u_lba,
1377 vtoc->efi_last_u_lba);
1378 }
1379 if ((vtoc->efi_parts[i].p_start +
1380 vtoc->efi_parts[i].p_size <
1381 vtoc->efi_first_u_lba) ||
1382 (vtoc->efi_parts[i].p_start +
1383 vtoc->efi_parts[i].p_size >
1384 vtoc->efi_last_u_lba + 1)) {
1385 (void) fprintf(stderr,
1386 "Partition %d ends at %llu\n",
1387 i,
1388 vtoc->efi_parts[i].p_start +
1389 vtoc->efi_parts[i].p_size);
1390 (void) fprintf(stderr,
1391 "It must be between %llu and %llu.\n",
1392 vtoc->efi_first_u_lba,
1393 vtoc->efi_last_u_lba);
1394 }
1395
1396 for (j = 0; j < vtoc->efi_nparts; j++) {
1397 isize = vtoc->efi_parts[i].p_size;
1398 jsize = vtoc->efi_parts[j].p_size;
1399 istart = vtoc->efi_parts[i].p_start;
1400 jstart = vtoc->efi_parts[j].p_start;
1401 if ((i != j) && (isize != 0) && (jsize != 0)) {
1402 endsect = jstart + jsize -1;
1403 if ((jstart <= istart) &&
1404 (istart <= endsect)) {
1405 if (!overlap) {
1406 (void) fprintf(stderr,
1407 "label error: EFI Labels do not "
1408 "support overlapping partitions\n");
1409 }
1410 (void) fprintf(stderr,
1411 "Partition %d overlaps partition "
1412 "%d.\n", i, j);
1413 overlap = 1;
1414 }
1415 }
1416 }
1417 }
1418 /* make sure there is a reserved partition */
1419 if (resv_part == -1) {
1420 (void) fprintf(stderr,
1421 "no reserved partition found\n");
1422 }
1423 }
1424
1425 /*
1426 * We need to get information necessary to construct a *new* efi
1427 * label type
1428 */
1429 int
1430 efi_auto_sense(int fd, struct dk_gpt **vtoc)
1431 {
1432
1433 int i;
1434
1435 /*
1436 * Now build the default partition table
1437 */
1438 if (efi_alloc_and_init(fd, EFI_NUMPAR, vtoc) != 0) {
1439 if (efi_debug) {
1440 (void) fprintf(stderr, "efi_alloc_and_init failed.\n");
1441 }
1442 return (-1);
1443 }
1444
1445 for (i = 0; i < MIN((*vtoc)->efi_nparts, V_NUMPAR); i++) {
1446 (*vtoc)->efi_parts[i].p_tag = default_vtoc_map[i].p_tag;
1447 (*vtoc)->efi_parts[i].p_flag = default_vtoc_map[i].p_flag;
1448 (*vtoc)->efi_parts[i].p_start = 0;
1449 (*vtoc)->efi_parts[i].p_size = 0;
1450 }
1451 /*
1452 * Make constants first
1453 * and variable partitions later
1454 */
1455
1456 /* root partition - s0 128 MB */
1457 (*vtoc)->efi_parts[0].p_start = 34;
1458 (*vtoc)->efi_parts[0].p_size = 262144;
1459
1460 /* partition - s1 128 MB */
1461 (*vtoc)->efi_parts[1].p_start = 262178;
1462 (*vtoc)->efi_parts[1].p_size = 262144;
1463
1464 /* partition -s2 is NOT the Backup disk */
1465 (*vtoc)->efi_parts[2].p_tag = V_UNASSIGNED;
1466
1467 /* partition -s6 /usr partition - HOG */
1468 (*vtoc)->efi_parts[6].p_start = 524322;
1469 (*vtoc)->efi_parts[6].p_size = (*vtoc)->efi_last_u_lba - 524322
1470 - (1024 * 16);
1471
1472 /* efi reserved partition - s9 16K */
1473 (*vtoc)->efi_parts[8].p_start = (*vtoc)->efi_last_u_lba - (1024 * 16);
1474 (*vtoc)->efi_parts[8].p_size = (1024 * 16);
1475 (*vtoc)->efi_parts[8].p_tag = V_RESERVED;
1476 return (0);
1477 }