]> git.proxmox.com Git - mirror_zfs.git/blob - lib/libefi/rdwr_efi.c
Add PowerPC to supported VTOCs
[mirror_zfs.git] / lib / libefi / rdwr_efi.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25
26 #include <stdio.h>
27 #include <stdlib.h>
28 #include <errno.h>
29 #include <strings.h>
30 #include <unistd.h>
31 #include <uuid/uuid.h>
32 #include <zlib.h>
33 #include <libintl.h>
34 #include <sys/types.h>
35 #include <sys/dkio.h>
36 #include <sys/vtoc.h>
37 #include <sys/mhd.h>
38 #include <sys/param.h>
39 #include <sys/dktp/fdisk.h>
40 #include <sys/efi_partition.h>
41 #include <sys/byteorder.h>
42 #if defined(__linux__)
43 #include <linux/fs.h>
44 #endif
45
46 static struct uuid_to_ptag {
47 struct uuid uuid;
48 } conversion_array[] = {
49 { EFI_UNUSED },
50 { EFI_BOOT },
51 { EFI_ROOT },
52 { EFI_SWAP },
53 { EFI_USR },
54 { EFI_BACKUP },
55 { EFI_UNUSED }, /* STAND is never used */
56 { EFI_VAR },
57 { EFI_HOME },
58 { EFI_ALTSCTR },
59 { EFI_UNUSED }, /* CACHE (cachefs) is never used */
60 { EFI_RESERVED },
61 { EFI_SYSTEM },
62 { EFI_LEGACY_MBR },
63 { EFI_SYMC_PUB },
64 { EFI_SYMC_CDS },
65 { EFI_MSFT_RESV },
66 { EFI_DELL_BASIC },
67 { EFI_DELL_RAID },
68 { EFI_DELL_SWAP },
69 { EFI_DELL_LVM },
70 { EFI_DELL_RESV },
71 { EFI_AAPL_HFS },
72 { EFI_AAPL_UFS }
73 };
74
75 /*
76 * Default vtoc information for non-SVr4 partitions
77 */
78 struct dk_map2 default_vtoc_map[NDKMAP] = {
79 { V_ROOT, 0 }, /* a - 0 */
80 { V_SWAP, V_UNMNT }, /* b - 1 */
81 { V_BACKUP, V_UNMNT }, /* c - 2 */
82 { V_UNASSIGNED, 0 }, /* d - 3 */
83 { V_UNASSIGNED, 0 }, /* e - 4 */
84 { V_UNASSIGNED, 0 }, /* f - 5 */
85 { V_USR, 0 }, /* g - 6 */
86 { V_UNASSIGNED, 0 }, /* h - 7 */
87
88 #if defined(_SUNOS_VTOC_16)
89
90 #if defined(i386) || defined(__amd64) || defined(__arm) || defined(__powerpc)
91 { V_BOOT, V_UNMNT }, /* i - 8 */
92 { V_ALTSCTR, 0 }, /* j - 9 */
93
94 #else
95 #error No VTOC format defined.
96 #endif /* defined(i386) */
97
98 { V_UNASSIGNED, 0 }, /* k - 10 */
99 { V_UNASSIGNED, 0 }, /* l - 11 */
100 { V_UNASSIGNED, 0 }, /* m - 12 */
101 { V_UNASSIGNED, 0 }, /* n - 13 */
102 { V_UNASSIGNED, 0 }, /* o - 14 */
103 { V_UNASSIGNED, 0 }, /* p - 15 */
104 #endif /* defined(_SUNOS_VTOC_16) */
105 };
106
107 #ifdef DEBUG
108 int efi_debug = 1;
109 #else
110 int efi_debug = 0;
111 #endif
112
113 static int efi_read(int, struct dk_gpt *);
114
115 /*
116 * Return a 32-bit CRC of the contents of the buffer. Pre-and-post
117 * one's conditioning will be handled by crc32() internally.
118 */
119 static uint32_t
120 efi_crc32(const unsigned char *buf, unsigned int size)
121 {
122 uint32_t crc = crc32(0, Z_NULL, 0);
123
124 crc = crc32(crc, buf, size);
125
126 return (crc);
127 }
128
129 static int
130 read_disk_info(int fd, diskaddr_t *capacity, uint_t *lbsize)
131 {
132 int sector_size;
133 unsigned long long capacity_size;
134
135 if (ioctl(fd, BLKSSZGET, &sector_size) < 0)
136 return (-1);
137
138 if (ioctl(fd, BLKGETSIZE64, &capacity_size) < 0)
139 return (-1);
140
141 *lbsize = (uint_t)sector_size;
142 *capacity = (diskaddr_t)(capacity_size / sector_size);
143
144 return (0);
145 }
146
147 static int
148 efi_get_info(int fd, struct dk_cinfo *dki_info)
149 {
150 #if defined(__linux__)
151 char *path;
152 char *dev_path;
153 int rval = 0;
154
155 memset(dki_info, 0, sizeof(*dki_info));
156
157 path = calloc(PATH_MAX, 1);
158 if (path == NULL)
159 goto error;
160
161 /*
162 * The simplest way to get the partition number under linux is
163 * to parse it out of the /dev/<disk><parition> block device name.
164 * The kernel creates this using the partition number when it
165 * populates /dev/ so it may be trusted. The tricky bit here is
166 * that the naming convention is based on the block device type.
167 * So we need to take this in to account when parsing out the
168 * partition information. Another issue is that the libefi API
169 * API only provides the open fd and not the file path. To handle
170 * this realpath(3) is used to resolve the block device name from
171 * /proc/self/fd/<fd>. Aside from the partition number we collect
172 * some additional device info.
173 */
174 (void) sprintf(path, "/proc/self/fd/%d", fd);
175 dev_path = realpath(path, NULL);
176 free(path);
177
178 if (dev_path == NULL)
179 goto error;
180
181 if ((strncmp(dev_path, "/dev/sd", 7) == 0)) {
182 strcpy(dki_info->dki_cname, "sd");
183 dki_info->dki_ctype = DKC_SCSI_CCS;
184 rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
185 dki_info->dki_dname,
186 &dki_info->dki_partition);
187 } else if ((strncmp(dev_path, "/dev/hd", 7) == 0)) {
188 strcpy(dki_info->dki_cname, "hd");
189 dki_info->dki_ctype = DKC_DIRECT;
190 rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
191 dki_info->dki_dname,
192 &dki_info->dki_partition);
193 } else if ((strncmp(dev_path, "/dev/md", 7) == 0)) {
194 strcpy(dki_info->dki_cname, "pseudo");
195 dki_info->dki_ctype = DKC_MD;
196 rval = sscanf(dev_path, "/dev/%[a-zA-Z0-9]p%hu",
197 dki_info->dki_dname,
198 &dki_info->dki_partition);
199 } else if ((strncmp(dev_path, "/dev/vd", 7) == 0)) {
200 strcpy(dki_info->dki_cname, "vd");
201 dki_info->dki_ctype = DKC_MD;
202 rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
203 dki_info->dki_dname,
204 &dki_info->dki_partition);
205 } else if ((strncmp(dev_path, "/dev/dm-", 8) == 0)) {
206 strcpy(dki_info->dki_cname, "pseudo");
207 dki_info->dki_ctype = DKC_VBD;
208 rval = sscanf(dev_path, "/dev/%[a-zA-Z0-9-]p%hu",
209 dki_info->dki_dname,
210 &dki_info->dki_partition);
211 } else if ((strncmp(dev_path, "/dev/ram", 8) == 0)) {
212 strcpy(dki_info->dki_cname, "pseudo");
213 dki_info->dki_ctype = DKC_PCMCIA_MEM;
214 rval = sscanf(dev_path, "/dev/%[a-zA-Z0-9]p%hu",
215 dki_info->dki_dname,
216 &dki_info->dki_partition);
217 } else if ((strncmp(dev_path, "/dev/loop", 9) == 0)) {
218 strcpy(dki_info->dki_cname, "pseudo");
219 dki_info->dki_ctype = DKC_VBD;
220 rval = sscanf(dev_path, "/dev/%[a-zA-Z0-9]p%hu",
221 dki_info->dki_dname,
222 &dki_info->dki_partition);
223 } else {
224 strcpy(dki_info->dki_dname, "unknown");
225 strcpy(dki_info->dki_cname, "unknown");
226 dki_info->dki_ctype = DKC_UNKNOWN;
227 }
228
229 switch (rval) {
230 case 0:
231 errno = EINVAL;
232 goto error;
233 case 1:
234 dki_info->dki_partition = 0;
235 }
236
237 free(dev_path);
238 #else
239 if (ioctl(fd, DKIOCINFO, (caddr_t)dki_info) == -1)
240 goto error;
241 #endif
242 return (0);
243 error:
244 if (efi_debug)
245 (void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno);
246
247 switch (errno) {
248 case EIO:
249 return (VT_EIO);
250 case EINVAL:
251 return (VT_EINVAL);
252 default:
253 return (VT_ERROR);
254 }
255 }
256
257 /*
258 * the number of blocks the EFI label takes up (round up to nearest
259 * block)
260 */
261 #define NBLOCKS(p, l) (1 + ((((p) * (int)sizeof (efi_gpe_t)) + \
262 ((l) - 1)) / (l)))
263 /* number of partitions -- limited by what we can malloc */
264 #define MAX_PARTS ((4294967295UL - sizeof (struct dk_gpt)) / \
265 sizeof (struct dk_part))
266
267 int
268 efi_alloc_and_init(int fd, uint32_t nparts, struct dk_gpt **vtoc)
269 {
270 diskaddr_t capacity = 0;
271 uint_t lbsize = 0;
272 uint_t nblocks;
273 size_t length;
274 struct dk_gpt *vptr;
275 struct uuid uuid;
276 struct dk_cinfo dki_info;
277
278 if (read_disk_info(fd, &capacity, &lbsize) != 0)
279 return (-1);
280
281 #if defined(__linux__)
282 if (efi_get_info(fd, &dki_info) != 0)
283 return (-1);
284
285 if (dki_info.dki_partition != 0)
286 return (-1);
287
288 if ((dki_info.dki_ctype == DKC_PCMCIA_MEM) ||
289 (dki_info.dki_ctype == DKC_VBD) ||
290 (dki_info.dki_ctype == DKC_UNKNOWN))
291 return (-1);
292 #endif
293
294 nblocks = NBLOCKS(nparts, lbsize);
295 if ((nblocks * lbsize) < EFI_MIN_ARRAY_SIZE + lbsize) {
296 /* 16K plus one block for the GPT */
297 nblocks = EFI_MIN_ARRAY_SIZE / lbsize + 1;
298 }
299
300 if (nparts > MAX_PARTS) {
301 if (efi_debug) {
302 (void) fprintf(stderr,
303 "the maximum number of partitions supported is %lu\n",
304 MAX_PARTS);
305 }
306 return (-1);
307 }
308
309 length = sizeof (struct dk_gpt) +
310 sizeof (struct dk_part) * (nparts - 1);
311
312 if ((*vtoc = calloc(length, 1)) == NULL)
313 return (-1);
314
315 vptr = *vtoc;
316
317 vptr->efi_version = EFI_VERSION_CURRENT;
318 vptr->efi_lbasize = lbsize;
319 vptr->efi_nparts = nparts;
320 /*
321 * add one block here for the PMBR; on disks with a 512 byte
322 * block size and 128 or fewer partitions, efi_first_u_lba
323 * should work out to "34"
324 */
325 vptr->efi_first_u_lba = nblocks + 1;
326 vptr->efi_last_lba = capacity - 1;
327 vptr->efi_altern_lba = capacity -1;
328 vptr->efi_last_u_lba = vptr->efi_last_lba - nblocks;
329
330 (void) uuid_generate((uchar_t *)&uuid);
331 UUID_LE_CONVERT(vptr->efi_disk_uguid, uuid);
332 return (0);
333 }
334
335 /*
336 * Read EFI - return partition number upon success.
337 */
338 int
339 efi_alloc_and_read(int fd, struct dk_gpt **vtoc)
340 {
341 int rval;
342 uint32_t nparts;
343 int length;
344
345 /* figure out the number of entries that would fit into 16K */
346 nparts = EFI_MIN_ARRAY_SIZE / sizeof (efi_gpe_t);
347 length = (int) sizeof (struct dk_gpt) +
348 (int) sizeof (struct dk_part) * (nparts - 1);
349 if ((*vtoc = calloc(length, 1)) == NULL)
350 return (VT_ERROR);
351
352 (*vtoc)->efi_nparts = nparts;
353 rval = efi_read(fd, *vtoc);
354
355 if ((rval == VT_EINVAL) && (*vtoc)->efi_nparts > nparts) {
356 void *tmp;
357 length = (int) sizeof (struct dk_gpt) +
358 (int) sizeof (struct dk_part) *
359 ((*vtoc)->efi_nparts - 1);
360 nparts = (*vtoc)->efi_nparts;
361 if ((tmp = realloc(*vtoc, length)) == NULL) {
362 free (*vtoc);
363 *vtoc = NULL;
364 return (VT_ERROR);
365 } else {
366 *vtoc = tmp;
367 rval = efi_read(fd, *vtoc);
368 }
369 }
370
371 if (rval < 0) {
372 if (efi_debug) {
373 (void) fprintf(stderr,
374 "read of EFI table failed, rval=%d\n", rval);
375 }
376 free (*vtoc);
377 *vtoc = NULL;
378 }
379
380 return (rval);
381 }
382
383 static int
384 efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc)
385 {
386 void *data = dk_ioc->dki_data;
387 int error;
388 #if defined(__linux__)
389 diskaddr_t capacity;
390 uint_t lbsize;
391
392 /*
393 * When the IO is not being performed in kernel as an ioctl we need
394 * to know the sector size so we can seek to the proper byte offset.
395 */
396 if (read_disk_info(fd, &capacity, &lbsize) == -1) {
397 if (efi_debug)
398 fprintf(stderr,"unable to read disk info: %d",errno);
399
400 errno = EIO;
401 return -1;
402 }
403
404 switch (cmd) {
405 case DKIOCGETEFI:
406 if (lbsize == 0) {
407 if (efi_debug)
408 (void) fprintf(stderr, "DKIOCGETEFI assuming "
409 "LBA %d bytes\n", DEV_BSIZE);
410
411 lbsize = DEV_BSIZE;
412 }
413
414 error = lseek(fd, dk_ioc->dki_lba * lbsize, SEEK_SET);
415 if (error == -1) {
416 if (efi_debug)
417 (void) fprintf(stderr, "DKIOCGETEFI lseek "
418 "error: %d\n", errno);
419 return error;
420 }
421
422 error = read(fd, data, dk_ioc->dki_length);
423 if (error == -1) {
424 if (efi_debug)
425 (void) fprintf(stderr, "DKIOCGETEFI read "
426 "error: %d\n", errno);
427 return error;
428 }
429
430 if (error != dk_ioc->dki_length) {
431 if (efi_debug)
432 (void) fprintf(stderr, "DKIOCGETEFI short "
433 "read of %d bytes\n", error);
434 errno = EIO;
435 return -1;
436 }
437 error = 0;
438 break;
439
440 case DKIOCSETEFI:
441 if (lbsize == 0) {
442 if (efi_debug)
443 (void) fprintf(stderr, "DKIOCSETEFI unknown "
444 "LBA size\n");
445 errno = EIO;
446 return -1;
447 }
448
449 error = lseek(fd, dk_ioc->dki_lba * lbsize, SEEK_SET);
450 if (error == -1) {
451 if (efi_debug)
452 (void) fprintf(stderr, "DKIOCSETEFI lseek "
453 "error: %d\n", errno);
454 return error;
455 }
456
457 error = write(fd, data, dk_ioc->dki_length);
458 if (error == -1) {
459 if (efi_debug)
460 (void) fprintf(stderr, "DKIOCSETEFI write "
461 "error: %d\n", errno);
462 return error;
463 }
464
465 if (error != dk_ioc->dki_length) {
466 if (efi_debug)
467 (void) fprintf(stderr, "DKIOCSETEFI short "
468 "write of %d bytes\n", error);
469 errno = EIO;
470 return -1;
471 }
472
473 /* Sync the new EFI table to disk */
474 error = fsync(fd);
475 if (error == -1)
476 return error;
477
478 /* Ensure any local disk cache is also flushed */
479 if (ioctl(fd, BLKFLSBUF, 0) == -1)
480 return error;
481
482 error = 0;
483 break;
484
485 default:
486 if (efi_debug)
487 (void) fprintf(stderr, "unsupported ioctl()\n");
488
489 errno = EIO;
490 return -1;
491 }
492 #else
493 dk_ioc->dki_data_64 = (uint64_t)(uintptr_t)data;
494 error = ioctl(fd, cmd, (void *)dk_ioc);
495 dk_ioc->dki_data = data;
496 #endif
497 return (error);
498 }
499
500 #if defined(__linux__)
501 static int
502 efi_rescan(int fd)
503 {
504 int retry = 5;
505 int error;
506
507 /* Notify the kernel a devices partition table has been updated */
508 while ((error = ioctl(fd, BLKRRPART)) != 0) {
509 if (--retry == 0) {
510 (void) fprintf(stderr, "the kernel failed to rescan "
511 "the partition table: %d\n", errno);
512 return (-1);
513 }
514 }
515
516 return (0);
517 }
518 #endif
519
520 static int
521 check_label(int fd, dk_efi_t *dk_ioc)
522 {
523 efi_gpt_t *efi;
524 uint_t crc;
525
526 if (efi_ioctl(fd, DKIOCGETEFI, dk_ioc) == -1) {
527 switch (errno) {
528 case EIO:
529 return (VT_EIO);
530 default:
531 return (VT_ERROR);
532 }
533 }
534 efi = dk_ioc->dki_data;
535 if (efi->efi_gpt_Signature != LE_64(EFI_SIGNATURE)) {
536 if (efi_debug)
537 (void) fprintf(stderr,
538 "Bad EFI signature: 0x%llx != 0x%llx\n",
539 (long long)efi->efi_gpt_Signature,
540 (long long)LE_64(EFI_SIGNATURE));
541 return (VT_EINVAL);
542 }
543
544 /*
545 * check CRC of the header; the size of the header should
546 * never be larger than one block
547 */
548 crc = efi->efi_gpt_HeaderCRC32;
549 efi->efi_gpt_HeaderCRC32 = 0;
550 len_t headerSize = (len_t)LE_32(efi->efi_gpt_HeaderSize);
551
552 if(headerSize < EFI_MIN_LABEL_SIZE || headerSize > EFI_LABEL_SIZE) {
553 if (efi_debug)
554 (void) fprintf(stderr,
555 "Invalid EFI HeaderSize %llu. Assuming %d.\n",
556 headerSize, EFI_MIN_LABEL_SIZE);
557 }
558
559 if ((headerSize > dk_ioc->dki_length) ||
560 crc != LE_32(efi_crc32((unsigned char *)efi, headerSize))) {
561 if (efi_debug)
562 (void) fprintf(stderr,
563 "Bad EFI CRC: 0x%x != 0x%x\n",
564 crc, LE_32(efi_crc32((unsigned char *)efi,
565 headerSize)));
566 return (VT_EINVAL);
567 }
568
569 return (0);
570 }
571
572 static int
573 efi_read(int fd, struct dk_gpt *vtoc)
574 {
575 int i, j;
576 int label_len;
577 int rval = 0;
578 int md_flag = 0;
579 int vdc_flag = 0;
580 diskaddr_t capacity = 0;
581 uint_t lbsize = 0;
582 struct dk_minfo disk_info;
583 dk_efi_t dk_ioc;
584 efi_gpt_t *efi;
585 efi_gpe_t *efi_parts;
586 struct dk_cinfo dki_info;
587 uint32_t user_length;
588 boolean_t legacy_label = B_FALSE;
589
590 /*
591 * get the partition number for this file descriptor.
592 */
593 if ((rval = efi_get_info(fd, &dki_info)) != 0)
594 return rval;
595
596 if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) &&
597 (strncmp(dki_info.dki_dname, "md", 3) == 0)) {
598 md_flag++;
599 } else if ((strncmp(dki_info.dki_cname, "vdc", 4) == 0) &&
600 (strncmp(dki_info.dki_dname, "vdc", 4) == 0)) {
601 /*
602 * The controller and drive name "vdc" (virtual disk client)
603 * indicates a LDoms virtual disk.
604 */
605 vdc_flag++;
606 }
607
608 /* get the LBA size */
609 if (read_disk_info(fd, &capacity, &lbsize) == -1) {
610 if (efi_debug) {
611 (void) fprintf(stderr,
612 "unable to read disk info: %d",
613 errno);
614 }
615 return (VT_EINVAL);
616 }
617
618 disk_info.dki_lbsize = lbsize;
619 disk_info.dki_capacity = capacity;
620
621 if (disk_info.dki_lbsize == 0) {
622 if (efi_debug) {
623 (void) fprintf(stderr,
624 "efi_read: assuming LBA 512 bytes\n");
625 }
626 disk_info.dki_lbsize = DEV_BSIZE;
627 }
628 /*
629 * Read the EFI GPT to figure out how many partitions we need
630 * to deal with.
631 */
632 dk_ioc.dki_lba = 1;
633 if (NBLOCKS(vtoc->efi_nparts, disk_info.dki_lbsize) < 34) {
634 label_len = EFI_MIN_ARRAY_SIZE + disk_info.dki_lbsize;
635 } else {
636 label_len = vtoc->efi_nparts * (int) sizeof (efi_gpe_t) +
637 disk_info.dki_lbsize;
638 if (label_len % disk_info.dki_lbsize) {
639 /* pad to physical sector size */
640 label_len += disk_info.dki_lbsize;
641 label_len &= ~(disk_info.dki_lbsize - 1);
642 }
643 }
644
645 if (posix_memalign((void **)&dk_ioc.dki_data,
646 disk_info.dki_lbsize, label_len))
647 return (VT_ERROR);
648
649 memset(dk_ioc.dki_data, 0, label_len);
650 dk_ioc.dki_length = disk_info.dki_lbsize;
651 user_length = vtoc->efi_nparts;
652 efi = dk_ioc.dki_data;
653 if (md_flag) {
654 dk_ioc.dki_length = label_len;
655 if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) {
656 switch (errno) {
657 case EIO:
658 return (VT_EIO);
659 default:
660 return (VT_ERROR);
661 }
662 }
663 } else if ((rval = check_label(fd, &dk_ioc)) == VT_EINVAL) {
664 /*
665 * No valid label here; try the alternate. Note that here
666 * we just read GPT header and save it into dk_ioc.data,
667 * Later, we will read GUID partition entry array if we
668 * can get valid GPT header.
669 */
670
671 /*
672 * This is a workaround for legacy systems. In the past, the
673 * last sector of SCSI disk was invisible on x86 platform. At
674 * that time, backup label was saved on the next to the last
675 * sector. It is possible for users to move a disk from previous
676 * solaris system to present system. Here, we attempt to search
677 * legacy backup EFI label first.
678 */
679 dk_ioc.dki_lba = disk_info.dki_capacity - 2;
680 dk_ioc.dki_length = disk_info.dki_lbsize;
681 rval = check_label(fd, &dk_ioc);
682 if (rval == VT_EINVAL) {
683 /*
684 * we didn't find legacy backup EFI label, try to
685 * search backup EFI label in the last block.
686 */
687 dk_ioc.dki_lba = disk_info.dki_capacity - 1;
688 dk_ioc.dki_length = disk_info.dki_lbsize;
689 rval = check_label(fd, &dk_ioc);
690 if (rval == 0) {
691 legacy_label = B_TRUE;
692 if (efi_debug)
693 (void) fprintf(stderr,
694 "efi_read: primary label corrupt; "
695 "using EFI backup label located on"
696 " the last block\n");
697 }
698 } else {
699 if ((efi_debug) && (rval == 0))
700 (void) fprintf(stderr, "efi_read: primary label"
701 " corrupt; using legacy EFI backup label "
702 " located on the next to last block\n");
703 }
704
705 if (rval == 0) {
706 dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
707 vtoc->efi_flags |= EFI_GPT_PRIMARY_CORRUPT;
708 vtoc->efi_nparts =
709 LE_32(efi->efi_gpt_NumberOfPartitionEntries);
710 /*
711 * Partition tables are between backup GPT header
712 * table and ParitionEntryLBA (the starting LBA of
713 * the GUID partition entries array). Now that we
714 * already got valid GPT header and saved it in
715 * dk_ioc.dki_data, we try to get GUID partition
716 * entry array here.
717 */
718 /* LINTED */
719 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
720 + disk_info.dki_lbsize);
721 if (legacy_label)
722 dk_ioc.dki_length = disk_info.dki_capacity - 1 -
723 dk_ioc.dki_lba;
724 else
725 dk_ioc.dki_length = disk_info.dki_capacity - 2 -
726 dk_ioc.dki_lba;
727 dk_ioc.dki_length *= disk_info.dki_lbsize;
728 if (dk_ioc.dki_length >
729 ((len_t)label_len - sizeof (*dk_ioc.dki_data))) {
730 rval = VT_EINVAL;
731 } else {
732 /*
733 * read GUID partition entry array
734 */
735 rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
736 }
737 }
738
739 } else if (rval == 0) {
740
741 dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
742 /* LINTED */
743 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
744 + disk_info.dki_lbsize);
745 dk_ioc.dki_length = label_len - disk_info.dki_lbsize;
746 rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
747
748 } else if (vdc_flag && rval == VT_ERROR && errno == EINVAL) {
749 /*
750 * When the device is a LDoms virtual disk, the DKIOCGETEFI
751 * ioctl can fail with EINVAL if the virtual disk backend
752 * is a ZFS volume serviced by a domain running an old version
753 * of Solaris. This is because the DKIOCGETEFI ioctl was
754 * initially incorrectly implemented for a ZFS volume and it
755 * expected the GPT and GPE to be retrieved with a single ioctl.
756 * So we try to read the GPT and the GPE using that old style
757 * ioctl.
758 */
759 dk_ioc.dki_lba = 1;
760 dk_ioc.dki_length = label_len;
761 rval = check_label(fd, &dk_ioc);
762 }
763
764 if (rval < 0) {
765 free(efi);
766 return (rval);
767 }
768
769 /* LINTED -- always longlong aligned */
770 efi_parts = (efi_gpe_t *)(((char *)efi) + disk_info.dki_lbsize);
771
772 /*
773 * Assemble this into a "dk_gpt" struct for easier
774 * digestibility by applications.
775 */
776 vtoc->efi_version = LE_32(efi->efi_gpt_Revision);
777 vtoc->efi_nparts = LE_32(efi->efi_gpt_NumberOfPartitionEntries);
778 vtoc->efi_part_size = LE_32(efi->efi_gpt_SizeOfPartitionEntry);
779 vtoc->efi_lbasize = disk_info.dki_lbsize;
780 vtoc->efi_last_lba = disk_info.dki_capacity - 1;
781 vtoc->efi_first_u_lba = LE_64(efi->efi_gpt_FirstUsableLBA);
782 vtoc->efi_last_u_lba = LE_64(efi->efi_gpt_LastUsableLBA);
783 vtoc->efi_altern_lba = LE_64(efi->efi_gpt_AlternateLBA);
784 UUID_LE_CONVERT(vtoc->efi_disk_uguid, efi->efi_gpt_DiskGUID);
785
786 /*
787 * If the array the user passed in is too small, set the length
788 * to what it needs to be and return
789 */
790 if (user_length < vtoc->efi_nparts) {
791 return (VT_EINVAL);
792 }
793
794 for (i = 0; i < vtoc->efi_nparts; i++) {
795
796 UUID_LE_CONVERT(vtoc->efi_parts[i].p_guid,
797 efi_parts[i].efi_gpe_PartitionTypeGUID);
798
799 for (j = 0;
800 j < sizeof (conversion_array)
801 / sizeof (struct uuid_to_ptag); j++) {
802
803 if (bcmp(&vtoc->efi_parts[i].p_guid,
804 &conversion_array[j].uuid,
805 sizeof (struct uuid)) == 0) {
806 vtoc->efi_parts[i].p_tag = j;
807 break;
808 }
809 }
810 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED)
811 continue;
812 vtoc->efi_parts[i].p_flag =
813 LE_16(efi_parts[i].efi_gpe_Attributes.PartitionAttrs);
814 vtoc->efi_parts[i].p_start =
815 LE_64(efi_parts[i].efi_gpe_StartingLBA);
816 vtoc->efi_parts[i].p_size =
817 LE_64(efi_parts[i].efi_gpe_EndingLBA) -
818 vtoc->efi_parts[i].p_start + 1;
819 for (j = 0; j < EFI_PART_NAME_LEN; j++) {
820 vtoc->efi_parts[i].p_name[j] =
821 (uchar_t)LE_16(
822 efi_parts[i].efi_gpe_PartitionName[j]);
823 }
824
825 UUID_LE_CONVERT(vtoc->efi_parts[i].p_uguid,
826 efi_parts[i].efi_gpe_UniquePartitionGUID);
827 }
828 free(efi);
829
830 return (dki_info.dki_partition);
831 }
832
833 /* writes a "protective" MBR */
834 static int
835 write_pmbr(int fd, struct dk_gpt *vtoc)
836 {
837 dk_efi_t dk_ioc;
838 struct mboot mb;
839 uchar_t *cp;
840 diskaddr_t size_in_lba;
841 uchar_t *buf;
842 int len;
843
844 len = (vtoc->efi_lbasize == 0) ? sizeof (mb) : vtoc->efi_lbasize;
845 if (posix_memalign((void **)&buf, len, len))
846 return (VT_ERROR);
847
848 /*
849 * Preserve any boot code and disk signature if the first block is
850 * already an MBR.
851 */
852 memset(buf, 0, len);
853 dk_ioc.dki_lba = 0;
854 dk_ioc.dki_length = len;
855 /* LINTED -- always longlong aligned */
856 dk_ioc.dki_data = (efi_gpt_t *)buf;
857 if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) {
858 (void *) memcpy(&mb, buf, sizeof (mb));
859 bzero(&mb, sizeof (mb));
860 mb.signature = LE_16(MBB_MAGIC);
861 } else {
862 (void *) memcpy(&mb, buf, sizeof (mb));
863 if (mb.signature != LE_16(MBB_MAGIC)) {
864 bzero(&mb, sizeof (mb));
865 mb.signature = LE_16(MBB_MAGIC);
866 }
867 }
868
869 bzero(&mb.parts, sizeof (mb.parts));
870 cp = (uchar_t *)&mb.parts[0];
871 /* bootable or not */
872 *cp++ = 0;
873 /* beginning CHS; 0xffffff if not representable */
874 *cp++ = 0xff;
875 *cp++ = 0xff;
876 *cp++ = 0xff;
877 /* OS type */
878 *cp++ = EFI_PMBR;
879 /* ending CHS; 0xffffff if not representable */
880 *cp++ = 0xff;
881 *cp++ = 0xff;
882 *cp++ = 0xff;
883 /* starting LBA: 1 (little endian format) by EFI definition */
884 *cp++ = 0x01;
885 *cp++ = 0x00;
886 *cp++ = 0x00;
887 *cp++ = 0x00;
888 /* ending LBA: last block on the disk (little endian format) */
889 size_in_lba = vtoc->efi_last_lba;
890 if (size_in_lba < 0xffffffff) {
891 *cp++ = (size_in_lba & 0x000000ff);
892 *cp++ = (size_in_lba & 0x0000ff00) >> 8;
893 *cp++ = (size_in_lba & 0x00ff0000) >> 16;
894 *cp++ = (size_in_lba & 0xff000000) >> 24;
895 } else {
896 *cp++ = 0xff;
897 *cp++ = 0xff;
898 *cp++ = 0xff;
899 *cp++ = 0xff;
900 }
901
902 (void *) memcpy(buf, &mb, sizeof (mb));
903 /* LINTED -- always longlong aligned */
904 dk_ioc.dki_data = (efi_gpt_t *)buf;
905 dk_ioc.dki_lba = 0;
906 dk_ioc.dki_length = len;
907 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
908 free(buf);
909 switch (errno) {
910 case EIO:
911 return (VT_EIO);
912 case EINVAL:
913 return (VT_EINVAL);
914 default:
915 return (VT_ERROR);
916 }
917 }
918 free(buf);
919 return (0);
920 }
921
922 /* make sure the user specified something reasonable */
923 static int
924 check_input(struct dk_gpt *vtoc)
925 {
926 int resv_part = -1;
927 int i, j;
928 diskaddr_t istart, jstart, isize, jsize, endsect;
929
930 /*
931 * Sanity-check the input (make sure no partitions overlap)
932 */
933 for (i = 0; i < vtoc->efi_nparts; i++) {
934 /* It can't be unassigned and have an actual size */
935 if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
936 (vtoc->efi_parts[i].p_size != 0)) {
937 if (efi_debug) {
938 (void) fprintf(stderr, "partition %d is "
939 "\"unassigned\" but has a size of %llu",
940 i, vtoc->efi_parts[i].p_size);
941 }
942 return (VT_EINVAL);
943 }
944 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
945 if (uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid))
946 continue;
947 /* we have encountered an unknown uuid */
948 vtoc->efi_parts[i].p_tag = 0xff;
949 }
950 if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
951 if (resv_part != -1) {
952 if (efi_debug) {
953 (void) fprintf(stderr, "found "
954 "duplicate reserved partition "
955 "at %d\n", i);
956 }
957 return (VT_EINVAL);
958 }
959 resv_part = i;
960 }
961 if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
962 (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
963 if (efi_debug) {
964 (void) fprintf(stderr,
965 "Partition %d starts at %llu. ",
966 i,
967 vtoc->efi_parts[i].p_start);
968 (void) fprintf(stderr,
969 "It must be between %llu and %llu.\n",
970 vtoc->efi_first_u_lba,
971 vtoc->efi_last_u_lba);
972 }
973 return (VT_EINVAL);
974 }
975 if ((vtoc->efi_parts[i].p_start +
976 vtoc->efi_parts[i].p_size <
977 vtoc->efi_first_u_lba) ||
978 (vtoc->efi_parts[i].p_start +
979 vtoc->efi_parts[i].p_size >
980 vtoc->efi_last_u_lba + 1)) {
981 if (efi_debug) {
982 (void) fprintf(stderr,
983 "Partition %d ends at %llu. ",
984 i,
985 vtoc->efi_parts[i].p_start +
986 vtoc->efi_parts[i].p_size);
987 (void) fprintf(stderr,
988 "It must be between %llu and %llu.\n",
989 vtoc->efi_first_u_lba,
990 vtoc->efi_last_u_lba);
991 }
992 return (VT_EINVAL);
993 }
994
995 for (j = 0; j < vtoc->efi_nparts; j++) {
996 isize = vtoc->efi_parts[i].p_size;
997 jsize = vtoc->efi_parts[j].p_size;
998 istart = vtoc->efi_parts[i].p_start;
999 jstart = vtoc->efi_parts[j].p_start;
1000 if ((i != j) && (isize != 0) && (jsize != 0)) {
1001 endsect = jstart + jsize -1;
1002 if ((jstart <= istart) &&
1003 (istart <= endsect)) {
1004 if (efi_debug) {
1005 (void) fprintf(stderr,
1006 "Partition %d overlaps "
1007 "partition %d.", i, j);
1008 }
1009 return (VT_EINVAL);
1010 }
1011 }
1012 }
1013 }
1014 /* just a warning for now */
1015 if ((resv_part == -1) && efi_debug) {
1016 (void) fprintf(stderr,
1017 "no reserved partition found\n");
1018 }
1019 return (0);
1020 }
1021
1022 /*
1023 * add all the unallocated space to the current label
1024 */
1025 int
1026 efi_use_whole_disk(int fd)
1027 {
1028 struct dk_gpt *efi_label;
1029 int rval;
1030 int i;
1031 uint_t resv_index = 0, data_index = 0;
1032 diskaddr_t resv_start = 0, data_start = 0;
1033 diskaddr_t difference;
1034
1035 rval = efi_alloc_and_read(fd, &efi_label);
1036 if (rval < 0) {
1037 return (rval);
1038 }
1039
1040 /*
1041 * If alter_lba is 1, we are using the backup label.
1042 * Since we can locate the backup label by disk capacity,
1043 * there must be no unallocated space.
1044 */
1045 if ((efi_label->efi_altern_lba == 1) || (efi_label->efi_altern_lba
1046 >= efi_label->efi_last_lba)) {
1047 if (efi_debug) {
1048 (void) fprintf(stderr,
1049 "efi_use_whole_disk: requested space not found\n");
1050 }
1051 efi_free(efi_label);
1052 return (VT_ENOSPC);
1053 }
1054
1055 difference = efi_label->efi_last_lba - efi_label->efi_altern_lba;
1056
1057 /*
1058 * Find the last physically non-zero partition.
1059 * This is the reserved partition.
1060 */
1061 for (i = 0; i < efi_label->efi_nparts; i ++) {
1062 if (resv_start < efi_label->efi_parts[i].p_start) {
1063 resv_start = efi_label->efi_parts[i].p_start;
1064 resv_index = i;
1065 }
1066 }
1067
1068 /*
1069 * Find the last physically non-zero partition before that.
1070 * This is the data partition.
1071 */
1072 for (i = 0; i < resv_index; i ++) {
1073 if (data_start < efi_label->efi_parts[i].p_start) {
1074 data_start = efi_label->efi_parts[i].p_start;
1075 data_index = i;
1076 }
1077 }
1078
1079 /*
1080 * Move the reserved partition. There is currently no data in
1081 * here except fabricated devids (which get generated via
1082 * efi_write()). So there is no need to copy data.
1083 */
1084 efi_label->efi_parts[data_index].p_size += difference;
1085 efi_label->efi_parts[resv_index].p_start += difference;
1086 efi_label->efi_last_u_lba += difference;
1087
1088 rval = efi_write(fd, efi_label);
1089 if (rval < 0) {
1090 if (efi_debug) {
1091 (void) fprintf(stderr,
1092 "efi_use_whole_disk:fail to write label, rval=%d\n",
1093 rval);
1094 }
1095 efi_free(efi_label);
1096 return (rval);
1097 }
1098
1099 efi_free(efi_label);
1100 return (0);
1101 }
1102
1103
1104 /*
1105 * write EFI label and backup label
1106 */
1107 int
1108 efi_write(int fd, struct dk_gpt *vtoc)
1109 {
1110 dk_efi_t dk_ioc;
1111 efi_gpt_t *efi;
1112 efi_gpe_t *efi_parts;
1113 int i, j;
1114 struct dk_cinfo dki_info;
1115 int rval;
1116 int md_flag = 0;
1117 int nblocks;
1118 diskaddr_t lba_backup_gpt_hdr;
1119
1120 if ((rval = efi_get_info(fd, &dki_info)) != 0)
1121 return rval;
1122
1123 /* check if we are dealing wih a metadevice */
1124 if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) &&
1125 (strncmp(dki_info.dki_dname, "md", 3) == 0)) {
1126 md_flag = 1;
1127 }
1128
1129 if (check_input(vtoc)) {
1130 /*
1131 * not valid; if it's a metadevice just pass it down
1132 * because SVM will do its own checking
1133 */
1134 if (md_flag == 0) {
1135 return (VT_EINVAL);
1136 }
1137 }
1138
1139 dk_ioc.dki_lba = 1;
1140 if (NBLOCKS(vtoc->efi_nparts, vtoc->efi_lbasize) < 34) {
1141 dk_ioc.dki_length = EFI_MIN_ARRAY_SIZE + vtoc->efi_lbasize;
1142 } else {
1143 dk_ioc.dki_length = NBLOCKS(vtoc->efi_nparts,
1144 vtoc->efi_lbasize) *
1145 vtoc->efi_lbasize;
1146 }
1147
1148 /*
1149 * the number of blocks occupied by GUID partition entry array
1150 */
1151 nblocks = dk_ioc.dki_length / vtoc->efi_lbasize - 1;
1152
1153 /*
1154 * Backup GPT header is located on the block after GUID
1155 * partition entry array. Here, we calculate the address
1156 * for backup GPT header.
1157 */
1158 lba_backup_gpt_hdr = vtoc->efi_last_u_lba + 1 + nblocks;
1159 if (posix_memalign((void **)&dk_ioc.dki_data,
1160 vtoc->efi_lbasize, dk_ioc.dki_length))
1161 return (VT_ERROR);
1162
1163 memset(dk_ioc.dki_data, 0, dk_ioc.dki_length);
1164 efi = dk_ioc.dki_data;
1165
1166 /* stuff user's input into EFI struct */
1167 efi->efi_gpt_Signature = LE_64(EFI_SIGNATURE);
1168 efi->efi_gpt_Revision = LE_32(vtoc->efi_version); /* 0x02000100 */
1169 efi->efi_gpt_HeaderSize = LE_32(sizeof (struct efi_gpt) - LEN_EFI_PAD);
1170 efi->efi_gpt_Reserved1 = 0;
1171 efi->efi_gpt_MyLBA = LE_64(1ULL);
1172 efi->efi_gpt_AlternateLBA = LE_64(lba_backup_gpt_hdr);
1173 efi->efi_gpt_FirstUsableLBA = LE_64(vtoc->efi_first_u_lba);
1174 efi->efi_gpt_LastUsableLBA = LE_64(vtoc->efi_last_u_lba);
1175 efi->efi_gpt_PartitionEntryLBA = LE_64(2ULL);
1176 efi->efi_gpt_NumberOfPartitionEntries = LE_32(vtoc->efi_nparts);
1177 efi->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (struct efi_gpe));
1178 UUID_LE_CONVERT(efi->efi_gpt_DiskGUID, vtoc->efi_disk_uguid);
1179
1180 /* LINTED -- always longlong aligned */
1181 efi_parts = (efi_gpe_t *)((char *)dk_ioc.dki_data + vtoc->efi_lbasize);
1182
1183 for (i = 0; i < vtoc->efi_nparts; i++) {
1184 for (j = 0;
1185 j < sizeof (conversion_array) /
1186 sizeof (struct uuid_to_ptag); j++) {
1187
1188 if (vtoc->efi_parts[i].p_tag == j) {
1189 UUID_LE_CONVERT(
1190 efi_parts[i].efi_gpe_PartitionTypeGUID,
1191 conversion_array[j].uuid);
1192 break;
1193 }
1194 }
1195
1196 if (j == sizeof (conversion_array) /
1197 sizeof (struct uuid_to_ptag)) {
1198 /*
1199 * If we didn't have a matching uuid match, bail here.
1200 * Don't write a label with unknown uuid.
1201 */
1202 if (efi_debug) {
1203 (void) fprintf(stderr,
1204 "Unknown uuid for p_tag %d\n",
1205 vtoc->efi_parts[i].p_tag);
1206 }
1207 return (VT_EINVAL);
1208 }
1209
1210 /* Zero's should be written for empty partitions */
1211 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED)
1212 continue;
1213
1214 efi_parts[i].efi_gpe_StartingLBA =
1215 LE_64(vtoc->efi_parts[i].p_start);
1216 efi_parts[i].efi_gpe_EndingLBA =
1217 LE_64(vtoc->efi_parts[i].p_start +
1218 vtoc->efi_parts[i].p_size - 1);
1219 efi_parts[i].efi_gpe_Attributes.PartitionAttrs =
1220 LE_16(vtoc->efi_parts[i].p_flag);
1221 for (j = 0; j < EFI_PART_NAME_LEN; j++) {
1222 efi_parts[i].efi_gpe_PartitionName[j] =
1223 LE_16((ushort_t)vtoc->efi_parts[i].p_name[j]);
1224 }
1225 if ((vtoc->efi_parts[i].p_tag != V_UNASSIGNED) &&
1226 uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_uguid)) {
1227 (void) uuid_generate((uchar_t *)
1228 &vtoc->efi_parts[i].p_uguid);
1229 }
1230 bcopy(&vtoc->efi_parts[i].p_uguid,
1231 &efi_parts[i].efi_gpe_UniquePartitionGUID,
1232 sizeof (uuid_t));
1233 }
1234 efi->efi_gpt_PartitionEntryArrayCRC32 =
1235 LE_32(efi_crc32((unsigned char *)efi_parts,
1236 vtoc->efi_nparts * (int)sizeof (struct efi_gpe)));
1237 efi->efi_gpt_HeaderCRC32 =
1238 LE_32(efi_crc32((unsigned char *)efi,
1239 LE_32(efi->efi_gpt_HeaderSize)));
1240
1241 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1242 free(dk_ioc.dki_data);
1243 switch (errno) {
1244 case EIO:
1245 return (VT_EIO);
1246 case EINVAL:
1247 return (VT_EINVAL);
1248 default:
1249 return (VT_ERROR);
1250 }
1251 }
1252 /* if it's a metadevice we're done */
1253 if (md_flag) {
1254 free(dk_ioc.dki_data);
1255 return (0);
1256 }
1257
1258 /* write backup partition array */
1259 dk_ioc.dki_lba = vtoc->efi_last_u_lba + 1;
1260 dk_ioc.dki_length -= vtoc->efi_lbasize;
1261 /* LINTED */
1262 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data +
1263 vtoc->efi_lbasize);
1264
1265 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1266 /*
1267 * we wrote the primary label okay, so don't fail
1268 */
1269 if (efi_debug) {
1270 (void) fprintf(stderr,
1271 "write of backup partitions to block %llu "
1272 "failed, errno %d\n",
1273 vtoc->efi_last_u_lba + 1,
1274 errno);
1275 }
1276 }
1277 /*
1278 * now swap MyLBA and AlternateLBA fields and write backup
1279 * partition table header
1280 */
1281 dk_ioc.dki_lba = lba_backup_gpt_hdr;
1282 dk_ioc.dki_length = vtoc->efi_lbasize;
1283 /* LINTED */
1284 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data -
1285 vtoc->efi_lbasize);
1286 efi->efi_gpt_AlternateLBA = LE_64(1ULL);
1287 efi->efi_gpt_MyLBA = LE_64(lba_backup_gpt_hdr);
1288 efi->efi_gpt_PartitionEntryLBA = LE_64(vtoc->efi_last_u_lba + 1);
1289 efi->efi_gpt_HeaderCRC32 = 0;
1290 efi->efi_gpt_HeaderCRC32 =
1291 LE_32(efi_crc32((unsigned char *)dk_ioc.dki_data,
1292 LE_32(efi->efi_gpt_HeaderSize)));
1293
1294 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1295 if (efi_debug) {
1296 (void) fprintf(stderr,
1297 "write of backup header to block %llu failed, "
1298 "errno %d\n",
1299 lba_backup_gpt_hdr,
1300 errno);
1301 }
1302 }
1303 /* write the PMBR */
1304 (void) write_pmbr(fd, vtoc);
1305 free(dk_ioc.dki_data);
1306
1307 #if defined(__linux__)
1308 rval = efi_rescan(fd);
1309 if (rval)
1310 return (VT_ERROR);
1311 #endif
1312
1313 return (0);
1314 }
1315
1316 void
1317 efi_free(struct dk_gpt *ptr)
1318 {
1319 free(ptr);
1320 }
1321
1322 /*
1323 * Input: File descriptor
1324 * Output: 1 if disk has an EFI label, or > 2TB with no VTOC or legacy MBR.
1325 * Otherwise 0.
1326 */
1327 int
1328 efi_type(int fd)
1329 {
1330 #if 0
1331 struct vtoc vtoc;
1332 struct extvtoc extvtoc;
1333
1334 if (ioctl(fd, DKIOCGEXTVTOC, &extvtoc) == -1) {
1335 if (errno == ENOTSUP)
1336 return (1);
1337 else if (errno == ENOTTY) {
1338 if (ioctl(fd, DKIOCGVTOC, &vtoc) == -1)
1339 if (errno == ENOTSUP)
1340 return (1);
1341 }
1342 }
1343 return (0);
1344 #else
1345 return (ENOSYS);
1346 #endif
1347 }
1348
1349 void
1350 efi_err_check(struct dk_gpt *vtoc)
1351 {
1352 int resv_part = -1;
1353 int i, j;
1354 diskaddr_t istart, jstart, isize, jsize, endsect;
1355 int overlap = 0;
1356
1357 /*
1358 * make sure no partitions overlap
1359 */
1360 for (i = 0; i < vtoc->efi_nparts; i++) {
1361 /* It can't be unassigned and have an actual size */
1362 if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
1363 (vtoc->efi_parts[i].p_size != 0)) {
1364 (void) fprintf(stderr,
1365 "partition %d is \"unassigned\" but has a size "
1366 "of %llu\n", i, vtoc->efi_parts[i].p_size);
1367 }
1368 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
1369 continue;
1370 }
1371 if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
1372 if (resv_part != -1) {
1373 (void) fprintf(stderr,
1374 "found duplicate reserved partition at "
1375 "%d\n", i);
1376 }
1377 resv_part = i;
1378 if (vtoc->efi_parts[i].p_size != EFI_MIN_RESV_SIZE)
1379 (void) fprintf(stderr,
1380 "Warning: reserved partition size must "
1381 "be %d sectors\n", EFI_MIN_RESV_SIZE);
1382 }
1383 if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
1384 (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
1385 (void) fprintf(stderr,
1386 "Partition %d starts at %llu\n",
1387 i,
1388 vtoc->efi_parts[i].p_start);
1389 (void) fprintf(stderr,
1390 "It must be between %llu and %llu.\n",
1391 vtoc->efi_first_u_lba,
1392 vtoc->efi_last_u_lba);
1393 }
1394 if ((vtoc->efi_parts[i].p_start +
1395 vtoc->efi_parts[i].p_size <
1396 vtoc->efi_first_u_lba) ||
1397 (vtoc->efi_parts[i].p_start +
1398 vtoc->efi_parts[i].p_size >
1399 vtoc->efi_last_u_lba + 1)) {
1400 (void) fprintf(stderr,
1401 "Partition %d ends at %llu\n",
1402 i,
1403 vtoc->efi_parts[i].p_start +
1404 vtoc->efi_parts[i].p_size);
1405 (void) fprintf(stderr,
1406 "It must be between %llu and %llu.\n",
1407 vtoc->efi_first_u_lba,
1408 vtoc->efi_last_u_lba);
1409 }
1410
1411 for (j = 0; j < vtoc->efi_nparts; j++) {
1412 isize = vtoc->efi_parts[i].p_size;
1413 jsize = vtoc->efi_parts[j].p_size;
1414 istart = vtoc->efi_parts[i].p_start;
1415 jstart = vtoc->efi_parts[j].p_start;
1416 if ((i != j) && (isize != 0) && (jsize != 0)) {
1417 endsect = jstart + jsize -1;
1418 if ((jstart <= istart) &&
1419 (istart <= endsect)) {
1420 if (!overlap) {
1421 (void) fprintf(stderr,
1422 "label error: EFI Labels do not "
1423 "support overlapping partitions\n");
1424 }
1425 (void) fprintf(stderr,
1426 "Partition %d overlaps partition "
1427 "%d.\n", i, j);
1428 overlap = 1;
1429 }
1430 }
1431 }
1432 }
1433 /* make sure there is a reserved partition */
1434 if (resv_part == -1) {
1435 (void) fprintf(stderr,
1436 "no reserved partition found\n");
1437 }
1438 }
1439
1440 /*
1441 * We need to get information necessary to construct a *new* efi
1442 * label type
1443 */
1444 int
1445 efi_auto_sense(int fd, struct dk_gpt **vtoc)
1446 {
1447
1448 int i;
1449
1450 /*
1451 * Now build the default partition table
1452 */
1453 if (efi_alloc_and_init(fd, EFI_NUMPAR, vtoc) != 0) {
1454 if (efi_debug) {
1455 (void) fprintf(stderr, "efi_alloc_and_init failed.\n");
1456 }
1457 return (-1);
1458 }
1459
1460 for (i = 0; i < MIN((*vtoc)->efi_nparts, V_NUMPAR); i++) {
1461 (*vtoc)->efi_parts[i].p_tag = default_vtoc_map[i].p_tag;
1462 (*vtoc)->efi_parts[i].p_flag = default_vtoc_map[i].p_flag;
1463 (*vtoc)->efi_parts[i].p_start = 0;
1464 (*vtoc)->efi_parts[i].p_size = 0;
1465 }
1466 /*
1467 * Make constants first
1468 * and variable partitions later
1469 */
1470
1471 /* root partition - s0 128 MB */
1472 (*vtoc)->efi_parts[0].p_start = 34;
1473 (*vtoc)->efi_parts[0].p_size = 262144;
1474
1475 /* partition - s1 128 MB */
1476 (*vtoc)->efi_parts[1].p_start = 262178;
1477 (*vtoc)->efi_parts[1].p_size = 262144;
1478
1479 /* partition -s2 is NOT the Backup disk */
1480 (*vtoc)->efi_parts[2].p_tag = V_UNASSIGNED;
1481
1482 /* partition -s6 /usr partition - HOG */
1483 (*vtoc)->efi_parts[6].p_start = 524322;
1484 (*vtoc)->efi_parts[6].p_size = (*vtoc)->efi_last_u_lba - 524322
1485 - (1024 * 16);
1486
1487 /* efi reserved partition - s9 16K */
1488 (*vtoc)->efi_parts[8].p_start = (*vtoc)->efi_last_u_lba - (1024 * 16);
1489 (*vtoc)->efi_parts[8].p_size = (1024 * 16);
1490 (*vtoc)->efi_parts[8].p_tag = V_RESERVED;
1491 return (0);
1492 }