]> git.proxmox.com Git - mirror_zfs.git/blob - lib/libefi/rdwr_efi.c
Linux 3.3 compat, iops->create()/mkdir()/mknod()
[mirror_zfs.git] / lib / libefi / rdwr_efi.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25
26 #include <stdio.h>
27 #include <stdlib.h>
28 #include <errno.h>
29 #include <strings.h>
30 #include <unistd.h>
31 #include <uuid/uuid.h>
32 #include <zlib.h>
33 #include <libintl.h>
34 #include <sys/types.h>
35 #include <sys/dkio.h>
36 #include <sys/vtoc.h>
37 #include <sys/mhd.h>
38 #include <sys/param.h>
39 #include <sys/dktp/fdisk.h>
40 #include <sys/efi_partition.h>
41 #include <sys/byteorder.h>
42 #if defined(__linux__)
43 #include <linux/fs.h>
44 #endif
45
46 static struct uuid_to_ptag {
47 struct uuid uuid;
48 } conversion_array[] = {
49 { EFI_UNUSED },
50 { EFI_BOOT },
51 { EFI_ROOT },
52 { EFI_SWAP },
53 { EFI_USR },
54 { EFI_BACKUP },
55 { EFI_UNUSED }, /* STAND is never used */
56 { EFI_VAR },
57 { EFI_HOME },
58 { EFI_ALTSCTR },
59 { EFI_UNUSED }, /* CACHE (cachefs) is never used */
60 { EFI_RESERVED },
61 { EFI_SYSTEM },
62 { EFI_LEGACY_MBR },
63 { EFI_SYMC_PUB },
64 { EFI_SYMC_CDS },
65 { EFI_MSFT_RESV },
66 { EFI_DELL_BASIC },
67 { EFI_DELL_RAID },
68 { EFI_DELL_SWAP },
69 { EFI_DELL_LVM },
70 { EFI_DELL_RESV },
71 { EFI_AAPL_HFS },
72 { EFI_AAPL_UFS }
73 };
74
75 /*
76 * Default vtoc information for non-SVr4 partitions
77 */
78 struct dk_map2 default_vtoc_map[NDKMAP] = {
79 { V_ROOT, 0 }, /* a - 0 */
80 { V_SWAP, V_UNMNT }, /* b - 1 */
81 { V_BACKUP, V_UNMNT }, /* c - 2 */
82 { V_UNASSIGNED, 0 }, /* d - 3 */
83 { V_UNASSIGNED, 0 }, /* e - 4 */
84 { V_UNASSIGNED, 0 }, /* f - 5 */
85 { V_USR, 0 }, /* g - 6 */
86 { V_UNASSIGNED, 0 }, /* h - 7 */
87
88 #if defined(_SUNOS_VTOC_16)
89
90 #if defined(i386) || defined(__amd64)
91 { V_BOOT, V_UNMNT }, /* i - 8 */
92 { V_ALTSCTR, 0 }, /* j - 9 */
93
94 #else
95 #error No VTOC format defined.
96 #endif /* defined(i386) */
97
98 { V_UNASSIGNED, 0 }, /* k - 10 */
99 { V_UNASSIGNED, 0 }, /* l - 11 */
100 { V_UNASSIGNED, 0 }, /* m - 12 */
101 { V_UNASSIGNED, 0 }, /* n - 13 */
102 { V_UNASSIGNED, 0 }, /* o - 14 */
103 { V_UNASSIGNED, 0 }, /* p - 15 */
104 #endif /* defined(_SUNOS_VTOC_16) */
105 };
106
107 #ifdef DEBUG
108 int efi_debug = 1;
109 #else
110 int efi_debug = 0;
111 #endif
112
113 static int efi_read(int, struct dk_gpt *);
114
115 /*
116 * Return a 32-bit CRC of the contents of the buffer. Pre-and-post
117 * one's conditioning will be handled by crc32() internally.
118 */
119 static uint32_t
120 efi_crc32(const unsigned char *buf, unsigned int size)
121 {
122 uint32_t crc = crc32(0, Z_NULL, 0);
123
124 crc = crc32(crc, buf, size);
125
126 return (crc);
127 }
128
129 static int
130 read_disk_info(int fd, diskaddr_t *capacity, uint_t *lbsize)
131 {
132 int sector_size;
133 unsigned long long capacity_size;
134
135 if (ioctl(fd, BLKSSZGET, &sector_size) < 0)
136 return (-1);
137
138 if (ioctl(fd, BLKGETSIZE64, &capacity_size) < 0)
139 return (-1);
140
141 *lbsize = (uint_t)sector_size;
142 *capacity = (diskaddr_t)(capacity_size / sector_size);
143
144 return (0);
145 }
146
147 static int
148 efi_get_info(int fd, struct dk_cinfo *dki_info)
149 {
150 #if defined(__linux__)
151 char *path;
152 char *dev_path;
153 int rval = 0;
154
155 memset(dki_info, 0, sizeof(*dki_info));
156
157 path = calloc(PATH_MAX, 1);
158 if (path == NULL)
159 goto error;
160
161 /*
162 * The simplest way to get the partition number under linux is
163 * to parse it out of the /dev/<disk><parition> block device name.
164 * The kernel creates this using the partition number when it
165 * populates /dev/ so it may be trusted. The tricky bit here is
166 * that the naming convention is based on the block device type.
167 * So we need to take this in to account when parsing out the
168 * partition information. Another issue is that the libefi API
169 * API only provides the open fd and not the file path. To handle
170 * this realpath(3) is used to resolve the block device name from
171 * /proc/self/fd/<fd>. Aside from the partition number we collect
172 * some additional device info.
173 */
174 (void) sprintf(path, "/proc/self/fd/%d", fd);
175 dev_path = realpath(path, NULL);
176 free(path);
177
178 if (dev_path == NULL)
179 goto error;
180
181 if ((strncmp(dev_path, "/dev/sd", 7) == 0)) {
182 strcpy(dki_info->dki_cname, "sd");
183 dki_info->dki_ctype = DKC_SCSI_CCS;
184 rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
185 dki_info->dki_dname,
186 &dki_info->dki_partition);
187 } else if ((strncmp(dev_path, "/dev/hd", 7) == 0)) {
188 strcpy(dki_info->dki_cname, "hd");
189 dki_info->dki_ctype = DKC_DIRECT;
190 rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
191 dki_info->dki_dname,
192 &dki_info->dki_partition);
193 } else if ((strncmp(dev_path, "/dev/md", 7) == 0)) {
194 strcpy(dki_info->dki_cname, "pseudo");
195 dki_info->dki_ctype = DKC_MD;
196 rval = sscanf(dev_path, "/dev/%[a-zA-Z0-9]p%hu",
197 dki_info->dki_dname,
198 &dki_info->dki_partition);
199 } else if ((strncmp(dev_path, "/dev/vd", 7) == 0)) {
200 strcpy(dki_info->dki_cname, "vd");
201 dki_info->dki_ctype = DKC_MD;
202 rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
203 dki_info->dki_dname,
204 &dki_info->dki_partition);
205 } else if ((strncmp(dev_path, "/dev/dm-", 8) == 0)) {
206 strcpy(dki_info->dki_cname, "pseudo");
207 dki_info->dki_ctype = DKC_VBD;
208 rval = sscanf(dev_path, "/dev/%[a-zA-Z0-9-]p%hu",
209 dki_info->dki_dname,
210 &dki_info->dki_partition);
211 } else if ((strncmp(dev_path, "/dev/ram", 8) == 0)) {
212 strcpy(dki_info->dki_cname, "pseudo");
213 dki_info->dki_ctype = DKC_PCMCIA_MEM;
214 rval = sscanf(dev_path, "/dev/%[a-zA-Z0-9]p%hu",
215 dki_info->dki_dname,
216 &dki_info->dki_partition);
217 } else if ((strncmp(dev_path, "/dev/loop", 9) == 0)) {
218 strcpy(dki_info->dki_cname, "pseudo");
219 dki_info->dki_ctype = DKC_VBD;
220 rval = sscanf(dev_path, "/dev/%[a-zA-Z0-9]p%hu",
221 dki_info->dki_dname,
222 &dki_info->dki_partition);
223 } else {
224 strcpy(dki_info->dki_dname, "unknown");
225 strcpy(dki_info->dki_cname, "unknown");
226 dki_info->dki_ctype = DKC_UNKNOWN;
227 }
228
229 switch (rval) {
230 case 0:
231 errno = EINVAL;
232 goto error;
233 case 1:
234 dki_info->dki_partition = 0;
235 }
236
237 free(dev_path);
238 #else
239 if (ioctl(fd, DKIOCINFO, (caddr_t)dki_info) == -1)
240 goto error;
241 #endif
242 return (0);
243 error:
244 if (efi_debug)
245 (void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno);
246
247 switch (errno) {
248 case EIO:
249 return (VT_EIO);
250 case EINVAL:
251 return (VT_EINVAL);
252 default:
253 return (VT_ERROR);
254 }
255 }
256
257 /*
258 * the number of blocks the EFI label takes up (round up to nearest
259 * block)
260 */
261 #define NBLOCKS(p, l) (1 + ((((p) * (int)sizeof (efi_gpe_t)) + \
262 ((l) - 1)) / (l)))
263 /* number of partitions -- limited by what we can malloc */
264 #define MAX_PARTS ((4294967295UL - sizeof (struct dk_gpt)) / \
265 sizeof (struct dk_part))
266
267 int
268 efi_alloc_and_init(int fd, uint32_t nparts, struct dk_gpt **vtoc)
269 {
270 diskaddr_t capacity = 0;
271 uint_t lbsize = 0;
272 uint_t nblocks;
273 size_t length;
274 struct dk_gpt *vptr;
275 struct uuid uuid;
276 struct dk_cinfo dki_info;
277
278 if (read_disk_info(fd, &capacity, &lbsize) != 0)
279 return (-1);
280
281 #if defined(__linux__)
282 if (efi_get_info(fd, &dki_info) != 0)
283 return (-1);
284
285 if (dki_info.dki_partition != 0)
286 return (-1);
287
288 if ((dki_info.dki_ctype == DKC_PCMCIA_MEM) ||
289 (dki_info.dki_ctype == DKC_VBD) ||
290 (dki_info.dki_ctype == DKC_UNKNOWN))
291 return (-1);
292 #endif
293
294 nblocks = NBLOCKS(nparts, lbsize);
295 if ((nblocks * lbsize) < EFI_MIN_ARRAY_SIZE + lbsize) {
296 /* 16K plus one block for the GPT */
297 nblocks = EFI_MIN_ARRAY_SIZE / lbsize + 1;
298 }
299
300 if (nparts > MAX_PARTS) {
301 if (efi_debug) {
302 (void) fprintf(stderr,
303 "the maximum number of partitions supported is %lu\n",
304 MAX_PARTS);
305 }
306 return (-1);
307 }
308
309 length = sizeof (struct dk_gpt) +
310 sizeof (struct dk_part) * (nparts - 1);
311
312 if ((*vtoc = calloc(length, 1)) == NULL)
313 return (-1);
314
315 vptr = *vtoc;
316
317 vptr->efi_version = EFI_VERSION_CURRENT;
318 vptr->efi_lbasize = lbsize;
319 vptr->efi_nparts = nparts;
320 /*
321 * add one block here for the PMBR; on disks with a 512 byte
322 * block size and 128 or fewer partitions, efi_first_u_lba
323 * should work out to "34"
324 */
325 vptr->efi_first_u_lba = nblocks + 1;
326 vptr->efi_last_lba = capacity - 1;
327 vptr->efi_altern_lba = capacity -1;
328 vptr->efi_last_u_lba = vptr->efi_last_lba - nblocks;
329
330 (void) uuid_generate((uchar_t *)&uuid);
331 UUID_LE_CONVERT(vptr->efi_disk_uguid, uuid);
332 return (0);
333 }
334
335 /*
336 * Read EFI - return partition number upon success.
337 */
338 int
339 efi_alloc_and_read(int fd, struct dk_gpt **vtoc)
340 {
341 int rval;
342 uint32_t nparts;
343 int length;
344
345 /* figure out the number of entries that would fit into 16K */
346 nparts = EFI_MIN_ARRAY_SIZE / sizeof (efi_gpe_t);
347 length = (int) sizeof (struct dk_gpt) +
348 (int) sizeof (struct dk_part) * (nparts - 1);
349 if ((*vtoc = calloc(length, 1)) == NULL)
350 return (VT_ERROR);
351
352 (*vtoc)->efi_nparts = nparts;
353 rval = efi_read(fd, *vtoc);
354
355 if ((rval == VT_EINVAL) && (*vtoc)->efi_nparts > nparts) {
356 void *tmp;
357 length = (int) sizeof (struct dk_gpt) +
358 (int) sizeof (struct dk_part) *
359 ((*vtoc)->efi_nparts - 1);
360 nparts = (*vtoc)->efi_nparts;
361 if ((tmp = realloc(*vtoc, length)) == NULL) {
362 free (*vtoc);
363 *vtoc = NULL;
364 return (VT_ERROR);
365 } else {
366 *vtoc = tmp;
367 rval = efi_read(fd, *vtoc);
368 }
369 }
370
371 if (rval < 0) {
372 if (efi_debug) {
373 (void) fprintf(stderr,
374 "read of EFI table failed, rval=%d\n", rval);
375 }
376 free (*vtoc);
377 *vtoc = NULL;
378 }
379
380 return (rval);
381 }
382
383 static int
384 efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc)
385 {
386 void *data = dk_ioc->dki_data;
387 int error;
388 #if defined(__linux__)
389 diskaddr_t capacity;
390 uint_t lbsize;
391
392 /*
393 * When the IO is not being performed in kernel as an ioctl we need
394 * to know the sector size so we can seek to the proper byte offset.
395 */
396 if (read_disk_info(fd, &capacity, &lbsize) == -1) {
397 if (efi_debug)
398 fprintf(stderr,"unable to read disk info: %d",errno);
399
400 errno = EIO;
401 return -1;
402 }
403
404 switch (cmd) {
405 case DKIOCGETEFI:
406 if (lbsize == 0) {
407 if (efi_debug)
408 (void) fprintf(stderr, "DKIOCGETEFI assuming "
409 "LBA %d bytes\n", DEV_BSIZE);
410
411 lbsize = DEV_BSIZE;
412 }
413
414 error = lseek(fd, dk_ioc->dki_lba * lbsize, SEEK_SET);
415 if (error == -1) {
416 if (efi_debug)
417 (void) fprintf(stderr, "DKIOCGETEFI lseek "
418 "error: %d\n", errno);
419 return error;
420 }
421
422 error = read(fd, data, dk_ioc->dki_length);
423 if (error == -1) {
424 if (efi_debug)
425 (void) fprintf(stderr, "DKIOCGETEFI read "
426 "error: %d\n", errno);
427 return error;
428 }
429
430 if (error != dk_ioc->dki_length) {
431 if (efi_debug)
432 (void) fprintf(stderr, "DKIOCGETEFI short "
433 "read of %d bytes\n", error);
434 errno = EIO;
435 return -1;
436 }
437 error = 0;
438 break;
439
440 case DKIOCSETEFI:
441 if (lbsize == 0) {
442 if (efi_debug)
443 (void) fprintf(stderr, "DKIOCSETEFI unknown "
444 "LBA size\n");
445 errno = EIO;
446 return -1;
447 }
448
449 error = lseek(fd, dk_ioc->dki_lba * lbsize, SEEK_SET);
450 if (error == -1) {
451 if (efi_debug)
452 (void) fprintf(stderr, "DKIOCSETEFI lseek "
453 "error: %d\n", errno);
454 return error;
455 }
456
457 error = write(fd, data, dk_ioc->dki_length);
458 if (error == -1) {
459 if (efi_debug)
460 (void) fprintf(stderr, "DKIOCSETEFI write "
461 "error: %d\n", errno);
462 return error;
463 }
464
465 if (error != dk_ioc->dki_length) {
466 if (efi_debug)
467 (void) fprintf(stderr, "DKIOCSETEFI short "
468 "write of %d bytes\n", error);
469 errno = EIO;
470 return -1;
471 }
472
473 /* Sync the new EFI table to disk */
474 error = fsync(fd);
475 if (error == -1)
476 return error;
477
478 /* Ensure any local disk cache is also flushed */
479 if (ioctl(fd, BLKFLSBUF, 0) == -1)
480 return error;
481
482 error = 0;
483 break;
484
485 default:
486 if (efi_debug)
487 (void) fprintf(stderr, "unsupported ioctl()\n");
488
489 errno = EIO;
490 return -1;
491 }
492 #else
493 dk_ioc->dki_data_64 = (uint64_t)(uintptr_t)data;
494 error = ioctl(fd, cmd, (void *)dk_ioc);
495 dk_ioc->dki_data = data;
496 #endif
497 return (error);
498 }
499
500 #if defined(__linux__)
501 static int
502 efi_rescan(int fd)
503 {
504 int retry = 5;
505 int error;
506
507 /* Notify the kernel a devices partition table has been updated */
508 while ((error = ioctl(fd, BLKRRPART)) != 0) {
509 if (--retry == 0) {
510 (void) fprintf(stderr, "the kernel failed to rescan "
511 "the partition table: %d\n", errno);
512 return (-1);
513 }
514 }
515
516 return (0);
517 }
518 #endif
519
520 static int
521 check_label(int fd, dk_efi_t *dk_ioc)
522 {
523 efi_gpt_t *efi;
524 uint_t crc;
525
526 if (efi_ioctl(fd, DKIOCGETEFI, dk_ioc) == -1) {
527 switch (errno) {
528 case EIO:
529 return (VT_EIO);
530 default:
531 return (VT_ERROR);
532 }
533 }
534 efi = dk_ioc->dki_data;
535 if (efi->efi_gpt_Signature != LE_64(EFI_SIGNATURE)) {
536 if (efi_debug)
537 (void) fprintf(stderr,
538 "Bad EFI signature: 0x%llx != 0x%llx\n",
539 (long long)efi->efi_gpt_Signature,
540 (long long)LE_64(EFI_SIGNATURE));
541 return (VT_EINVAL);
542 }
543
544 /*
545 * check CRC of the header; the size of the header should
546 * never be larger than one block
547 */
548 crc = efi->efi_gpt_HeaderCRC32;
549 efi->efi_gpt_HeaderCRC32 = 0;
550 len_t headerSize = (len_t)LE_32(efi->efi_gpt_HeaderSize);
551
552 if(headerSize < EFI_MIN_LABEL_SIZE || headerSize > EFI_LABEL_SIZE) {
553 if (efi_debug)
554 (void) fprintf(stderr,
555 "Invalid EFI HeaderSize %llu. Assuming %d.\n",
556 headerSize, EFI_MIN_LABEL_SIZE);
557 }
558
559 if ((headerSize > dk_ioc->dki_length) ||
560 crc != LE_32(efi_crc32((unsigned char *)efi, headerSize))) {
561 if (efi_debug)
562 (void) fprintf(stderr,
563 "Bad EFI CRC: 0x%x != 0x%x\n",
564 crc, LE_32(efi_crc32((unsigned char *)efi,
565 headerSize)));
566 return (VT_EINVAL);
567 }
568
569 return (0);
570 }
571
572 static int
573 efi_read(int fd, struct dk_gpt *vtoc)
574 {
575 int i, j;
576 int label_len;
577 int rval = 0;
578 int md_flag = 0;
579 int vdc_flag = 0;
580 diskaddr_t capacity = 0;
581 uint_t lbsize = 0;
582 struct dk_minfo disk_info;
583 dk_efi_t dk_ioc;
584 efi_gpt_t *efi;
585 efi_gpe_t *efi_parts;
586 struct dk_cinfo dki_info;
587 uint32_t user_length;
588 boolean_t legacy_label = B_FALSE;
589
590 /*
591 * get the partition number for this file descriptor.
592 */
593 if ((rval = efi_get_info(fd, &dki_info)) != 0)
594 return rval;
595
596 if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) &&
597 (strncmp(dki_info.dki_dname, "md", 3) == 0)) {
598 md_flag++;
599 } else if ((strncmp(dki_info.dki_cname, "vdc", 4) == 0) &&
600 (strncmp(dki_info.dki_dname, "vdc", 4) == 0)) {
601 /*
602 * The controller and drive name "vdc" (virtual disk client)
603 * indicates a LDoms virtual disk.
604 */
605 vdc_flag++;
606 }
607
608 /* get the LBA size */
609 if (read_disk_info(fd, &capacity, &lbsize) == -1) {
610 if (efi_debug) {
611 (void) fprintf(stderr,
612 "unable to read disk info: %d",
613 errno);
614 }
615 return (VT_EINVAL);
616 }
617
618 disk_info.dki_lbsize = lbsize;
619 disk_info.dki_capacity = capacity;
620
621 if (disk_info.dki_lbsize == 0) {
622 if (efi_debug) {
623 (void) fprintf(stderr,
624 "efi_read: assuming LBA 512 bytes\n");
625 }
626 disk_info.dki_lbsize = DEV_BSIZE;
627 }
628 /*
629 * Read the EFI GPT to figure out how many partitions we need
630 * to deal with.
631 */
632 dk_ioc.dki_lba = 1;
633 if (NBLOCKS(vtoc->efi_nparts, disk_info.dki_lbsize) < 34) {
634 label_len = EFI_MIN_ARRAY_SIZE + disk_info.dki_lbsize;
635 } else {
636 label_len = vtoc->efi_nparts * (int) sizeof (efi_gpe_t) +
637 disk_info.dki_lbsize;
638 if (label_len % disk_info.dki_lbsize) {
639 /* pad to physical sector size */
640 label_len += disk_info.dki_lbsize;
641 label_len &= ~(disk_info.dki_lbsize - 1);
642 }
643 }
644
645 if (posix_memalign((void **)&dk_ioc.dki_data,
646 disk_info.dki_lbsize, label_len))
647 return (VT_ERROR);
648
649 memset(dk_ioc.dki_data, 0, label_len);
650 dk_ioc.dki_length = disk_info.dki_lbsize;
651 user_length = vtoc->efi_nparts;
652 efi = dk_ioc.dki_data;
653 if (md_flag) {
654 dk_ioc.dki_length = label_len;
655 if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) {
656 switch (errno) {
657 case EIO:
658 return (VT_EIO);
659 default:
660 return (VT_ERROR);
661 }
662 }
663 } else if ((rval = check_label(fd, &dk_ioc)) == VT_EINVAL) {
664 /*
665 * No valid label here; try the alternate. Note that here
666 * we just read GPT header and save it into dk_ioc.data,
667 * Later, we will read GUID partition entry array if we
668 * can get valid GPT header.
669 */
670
671 /*
672 * This is a workaround for legacy systems. In the past, the
673 * last sector of SCSI disk was invisible on x86 platform. At
674 * that time, backup label was saved on the next to the last
675 * sector. It is possible for users to move a disk from previous
676 * solaris system to present system. Here, we attempt to search
677 * legacy backup EFI label first.
678 */
679 dk_ioc.dki_lba = disk_info.dki_capacity - 2;
680 dk_ioc.dki_length = disk_info.dki_lbsize;
681 rval = check_label(fd, &dk_ioc);
682 if (rval == VT_EINVAL) {
683 /*
684 * we didn't find legacy backup EFI label, try to
685 * search backup EFI label in the last block.
686 */
687 dk_ioc.dki_lba = disk_info.dki_capacity - 1;
688 dk_ioc.dki_length = disk_info.dki_lbsize;
689 rval = check_label(fd, &dk_ioc);
690 if (rval == 0) {
691 legacy_label = B_TRUE;
692 if (efi_debug)
693 (void) fprintf(stderr,
694 "efi_read: primary label corrupt; "
695 "using EFI backup label located on"
696 " the last block\n");
697 }
698 } else {
699 if ((efi_debug) && (rval == 0))
700 (void) fprintf(stderr, "efi_read: primary label"
701 " corrupt; using legacy EFI backup label "
702 " located on the next to last block\n");
703 }
704
705 if (rval == 0) {
706 dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
707 vtoc->efi_flags |= EFI_GPT_PRIMARY_CORRUPT;
708 vtoc->efi_nparts =
709 LE_32(efi->efi_gpt_NumberOfPartitionEntries);
710 /*
711 * Partition tables are between backup GPT header
712 * table and ParitionEntryLBA (the starting LBA of
713 * the GUID partition entries array). Now that we
714 * already got valid GPT header and saved it in
715 * dk_ioc.dki_data, we try to get GUID partition
716 * entry array here.
717 */
718 /* LINTED */
719 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
720 + disk_info.dki_lbsize);
721 if (legacy_label)
722 dk_ioc.dki_length = disk_info.dki_capacity - 1 -
723 dk_ioc.dki_lba;
724 else
725 dk_ioc.dki_length = disk_info.dki_capacity - 2 -
726 dk_ioc.dki_lba;
727 dk_ioc.dki_length *= disk_info.dki_lbsize;
728 if (dk_ioc.dki_length >
729 ((len_t)label_len - sizeof (*dk_ioc.dki_data))) {
730 rval = VT_EINVAL;
731 } else {
732 /*
733 * read GUID partition entry array
734 */
735 rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
736 }
737 }
738
739 } else if (rval == 0) {
740
741 dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
742 /* LINTED */
743 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
744 + disk_info.dki_lbsize);
745 dk_ioc.dki_length = label_len - disk_info.dki_lbsize;
746 rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
747
748 } else if (vdc_flag && rval == VT_ERROR && errno == EINVAL) {
749 /*
750 * When the device is a LDoms virtual disk, the DKIOCGETEFI
751 * ioctl can fail with EINVAL if the virtual disk backend
752 * is a ZFS volume serviced by a domain running an old version
753 * of Solaris. This is because the DKIOCGETEFI ioctl was
754 * initially incorrectly implemented for a ZFS volume and it
755 * expected the GPT and GPE to be retrieved with a single ioctl.
756 * So we try to read the GPT and the GPE using that old style
757 * ioctl.
758 */
759 dk_ioc.dki_lba = 1;
760 dk_ioc.dki_length = label_len;
761 rval = check_label(fd, &dk_ioc);
762 }
763
764 if (rval < 0) {
765 free(efi);
766 return (rval);
767 }
768
769 /* LINTED -- always longlong aligned */
770 efi_parts = (efi_gpe_t *)(((char *)efi) + disk_info.dki_lbsize);
771
772 /*
773 * Assemble this into a "dk_gpt" struct for easier
774 * digestibility by applications.
775 */
776 vtoc->efi_version = LE_32(efi->efi_gpt_Revision);
777 vtoc->efi_nparts = LE_32(efi->efi_gpt_NumberOfPartitionEntries);
778 vtoc->efi_part_size = LE_32(efi->efi_gpt_SizeOfPartitionEntry);
779 vtoc->efi_lbasize = disk_info.dki_lbsize;
780 vtoc->efi_last_lba = disk_info.dki_capacity - 1;
781 vtoc->efi_first_u_lba = LE_64(efi->efi_gpt_FirstUsableLBA);
782 vtoc->efi_last_u_lba = LE_64(efi->efi_gpt_LastUsableLBA);
783 vtoc->efi_altern_lba = LE_64(efi->efi_gpt_AlternateLBA);
784 UUID_LE_CONVERT(vtoc->efi_disk_uguid, efi->efi_gpt_DiskGUID);
785
786 /*
787 * If the array the user passed in is too small, set the length
788 * to what it needs to be and return
789 */
790 if (user_length < vtoc->efi_nparts) {
791 return (VT_EINVAL);
792 }
793
794 for (i = 0; i < vtoc->efi_nparts; i++) {
795
796 UUID_LE_CONVERT(vtoc->efi_parts[i].p_guid,
797 efi_parts[i].efi_gpe_PartitionTypeGUID);
798
799 for (j = 0;
800 j < sizeof (conversion_array)
801 / sizeof (struct uuid_to_ptag); j++) {
802
803 if (bcmp(&vtoc->efi_parts[i].p_guid,
804 &conversion_array[j].uuid,
805 sizeof (struct uuid)) == 0) {
806 vtoc->efi_parts[i].p_tag = j;
807 break;
808 }
809 }
810 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED)
811 continue;
812 vtoc->efi_parts[i].p_flag =
813 LE_16(efi_parts[i].efi_gpe_Attributes.PartitionAttrs);
814 vtoc->efi_parts[i].p_start =
815 LE_64(efi_parts[i].efi_gpe_StartingLBA);
816 vtoc->efi_parts[i].p_size =
817 LE_64(efi_parts[i].efi_gpe_EndingLBA) -
818 vtoc->efi_parts[i].p_start + 1;
819 for (j = 0; j < EFI_PART_NAME_LEN; j++) {
820 vtoc->efi_parts[i].p_name[j] =
821 (uchar_t)LE_16(
822 efi_parts[i].efi_gpe_PartitionName[j]);
823 }
824
825 UUID_LE_CONVERT(vtoc->efi_parts[i].p_uguid,
826 efi_parts[i].efi_gpe_UniquePartitionGUID);
827 }
828 free(efi);
829
830 return (dki_info.dki_partition);
831 }
832
833 /* writes a "protective" MBR */
834 static int
835 write_pmbr(int fd, struct dk_gpt *vtoc)
836 {
837 dk_efi_t dk_ioc;
838 struct mboot mb;
839 uchar_t *cp;
840 diskaddr_t size_in_lba;
841 uchar_t *buf;
842 int len;
843
844 len = (vtoc->efi_lbasize == 0) ? sizeof (mb) : vtoc->efi_lbasize;
845 if (posix_memalign((void **)&buf, len, len))
846 return (VT_ERROR);
847
848 /*
849 * Preserve any boot code and disk signature if the first block is
850 * already an MBR.
851 */
852 memset(buf, 0, len);
853 dk_ioc.dki_lba = 0;
854 dk_ioc.dki_length = len;
855 /* LINTED -- always longlong aligned */
856 dk_ioc.dki_data = (efi_gpt_t *)buf;
857 if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) {
858 (void *) memcpy(&mb, buf, sizeof (mb));
859 bzero(&mb, sizeof (mb));
860 mb.signature = LE_16(MBB_MAGIC);
861 } else {
862 (void *) memcpy(&mb, buf, sizeof (mb));
863 if (mb.signature != LE_16(MBB_MAGIC)) {
864 bzero(&mb, sizeof (mb));
865 mb.signature = LE_16(MBB_MAGIC);
866 }
867 }
868
869 bzero(&mb.parts, sizeof (mb.parts));
870 cp = (uchar_t *)&mb.parts[0];
871 /* bootable or not */
872 *cp++ = 0;
873 /* beginning CHS; 0xffffff if not representable */
874 *cp++ = 0xff;
875 *cp++ = 0xff;
876 *cp++ = 0xff;
877 /* OS type */
878 *cp++ = EFI_PMBR;
879 /* ending CHS; 0xffffff if not representable */
880 *cp++ = 0xff;
881 *cp++ = 0xff;
882 *cp++ = 0xff;
883 /* starting LBA: 1 (little endian format) by EFI definition */
884 *cp++ = 0x01;
885 *cp++ = 0x00;
886 *cp++ = 0x00;
887 *cp++ = 0x00;
888 /* ending LBA: last block on the disk (little endian format) */
889 size_in_lba = vtoc->efi_last_lba;
890 if (size_in_lba < 0xffffffff) {
891 *cp++ = (size_in_lba & 0x000000ff);
892 *cp++ = (size_in_lba & 0x0000ff00) >> 8;
893 *cp++ = (size_in_lba & 0x00ff0000) >> 16;
894 *cp++ = (size_in_lba & 0xff000000) >> 24;
895 } else {
896 *cp++ = 0xff;
897 *cp++ = 0xff;
898 *cp++ = 0xff;
899 *cp++ = 0xff;
900 }
901
902 (void *) memcpy(buf, &mb, sizeof (mb));
903 /* LINTED -- always longlong aligned */
904 dk_ioc.dki_data = (efi_gpt_t *)buf;
905 dk_ioc.dki_lba = 0;
906 dk_ioc.dki_length = len;
907 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
908 free(buf);
909 switch (errno) {
910 case EIO:
911 return (VT_EIO);
912 case EINVAL:
913 return (VT_EINVAL);
914 default:
915 return (VT_ERROR);
916 }
917 }
918 free(buf);
919 return (0);
920 }
921
922 /* make sure the user specified something reasonable */
923 static int
924 check_input(struct dk_gpt *vtoc)
925 {
926 int resv_part = -1;
927 int i, j;
928 diskaddr_t istart, jstart, isize, jsize, endsect;
929
930 /*
931 * Sanity-check the input (make sure no partitions overlap)
932 */
933 for (i = 0; i < vtoc->efi_nparts; i++) {
934 /* It can't be unassigned and have an actual size */
935 if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
936 (vtoc->efi_parts[i].p_size != 0)) {
937 if (efi_debug) {
938 (void) fprintf(stderr, "partition %d is "
939 "\"unassigned\" but has a size of %llu",
940 i, vtoc->efi_parts[i].p_size);
941 }
942 return (VT_EINVAL);
943 }
944 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
945 if (uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid))
946 continue;
947 /* we have encountered an unknown uuid */
948 vtoc->efi_parts[i].p_tag = 0xff;
949 }
950 if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
951 if (resv_part != -1) {
952 if (efi_debug) {
953 (void) fprintf(stderr, "found "
954 "duplicate reserved partition "
955 "at %d\n", i);
956 }
957 return (VT_EINVAL);
958 }
959 resv_part = i;
960 }
961 if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
962 (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
963 if (efi_debug) {
964 (void) fprintf(stderr,
965 "Partition %d starts at %llu. ",
966 i,
967 vtoc->efi_parts[i].p_start);
968 (void) fprintf(stderr,
969 "It must be between %llu and %llu.\n",
970 vtoc->efi_first_u_lba,
971 vtoc->efi_last_u_lba);
972 }
973 return (VT_EINVAL);
974 }
975 if ((vtoc->efi_parts[i].p_start +
976 vtoc->efi_parts[i].p_size <
977 vtoc->efi_first_u_lba) ||
978 (vtoc->efi_parts[i].p_start +
979 vtoc->efi_parts[i].p_size >
980 vtoc->efi_last_u_lba + 1)) {
981 if (efi_debug) {
982 (void) fprintf(stderr,
983 "Partition %d ends at %llu. ",
984 i,
985 vtoc->efi_parts[i].p_start +
986 vtoc->efi_parts[i].p_size);
987 (void) fprintf(stderr,
988 "It must be between %llu and %llu.\n",
989 vtoc->efi_first_u_lba,
990 vtoc->efi_last_u_lba);
991 }
992 return (VT_EINVAL);
993 }
994
995 for (j = 0; j < vtoc->efi_nparts; j++) {
996 isize = vtoc->efi_parts[i].p_size;
997 jsize = vtoc->efi_parts[j].p_size;
998 istart = vtoc->efi_parts[i].p_start;
999 jstart = vtoc->efi_parts[j].p_start;
1000 if ((i != j) && (isize != 0) && (jsize != 0)) {
1001 endsect = jstart + jsize -1;
1002 if ((jstart <= istart) &&
1003 (istart <= endsect)) {
1004 if (efi_debug) {
1005 (void) fprintf(stderr,
1006 "Partition %d overlaps "
1007 "partition %d.", i, j);
1008 }
1009 return (VT_EINVAL);
1010 }
1011 }
1012 }
1013 }
1014 /* just a warning for now */
1015 if ((resv_part == -1) && efi_debug) {
1016 (void) fprintf(stderr,
1017 "no reserved partition found\n");
1018 }
1019 return (0);
1020 }
1021
1022 /*
1023 * add all the unallocated space to the current label
1024 */
1025 int
1026 efi_use_whole_disk(int fd)
1027 {
1028 struct dk_gpt *efi_label;
1029 int rval;
1030 int i;
1031 uint_t phy_last_slice = 0;
1032 diskaddr_t pl_start = 0;
1033 diskaddr_t pl_size;
1034
1035 rval = efi_alloc_and_read(fd, &efi_label);
1036 if (rval < 0) {
1037 return (rval);
1038 }
1039
1040 /* find the last physically non-zero partition */
1041 for (i = 0; i < efi_label->efi_nparts - 2; i ++) {
1042 if (pl_start < efi_label->efi_parts[i].p_start) {
1043 pl_start = efi_label->efi_parts[i].p_start;
1044 phy_last_slice = i;
1045 }
1046 }
1047 pl_size = efi_label->efi_parts[phy_last_slice].p_size;
1048
1049 /*
1050 * If alter_lba is 1, we are using the backup label.
1051 * Since we can locate the backup label by disk capacity,
1052 * there must be no unallocated space.
1053 */
1054 if ((efi_label->efi_altern_lba == 1) || (efi_label->efi_altern_lba
1055 >= efi_label->efi_last_lba)) {
1056 if (efi_debug) {
1057 (void) fprintf(stderr,
1058 "efi_use_whole_disk: requested space not found\n");
1059 }
1060 efi_free(efi_label);
1061 return (VT_ENOSPC);
1062 }
1063
1064 /*
1065 * If there is space between the last physically non-zero partition
1066 * and the reserved partition, just add the unallocated space to this
1067 * area. Otherwise, the unallocated space is added to the last
1068 * physically non-zero partition.
1069 */
1070 if (pl_start + pl_size - 1 == efi_label->efi_last_u_lba -
1071 EFI_MIN_RESV_SIZE) {
1072 efi_label->efi_parts[phy_last_slice].p_size +=
1073 efi_label->efi_last_lba - efi_label->efi_altern_lba;
1074 }
1075
1076 /*
1077 * Move the reserved partition. There is currently no data in
1078 * here except fabricated devids (which get generated via
1079 * efi_write()). So there is no need to copy data.
1080 */
1081 efi_label->efi_parts[efi_label->efi_nparts - 1].p_start +=
1082 efi_label->efi_last_lba - efi_label->efi_altern_lba;
1083 efi_label->efi_last_u_lba += efi_label->efi_last_lba
1084 - efi_label->efi_altern_lba;
1085
1086 rval = efi_write(fd, efi_label);
1087 if (rval < 0) {
1088 if (efi_debug) {
1089 (void) fprintf(stderr,
1090 "efi_use_whole_disk:fail to write label, rval=%d\n",
1091 rval);
1092 }
1093 efi_free(efi_label);
1094 return (rval);
1095 }
1096
1097 efi_free(efi_label);
1098 return (0);
1099 }
1100
1101
1102 /*
1103 * write EFI label and backup label
1104 */
1105 int
1106 efi_write(int fd, struct dk_gpt *vtoc)
1107 {
1108 dk_efi_t dk_ioc;
1109 efi_gpt_t *efi;
1110 efi_gpe_t *efi_parts;
1111 int i, j;
1112 struct dk_cinfo dki_info;
1113 int rval;
1114 int md_flag = 0;
1115 int nblocks;
1116 diskaddr_t lba_backup_gpt_hdr;
1117
1118 if ((rval = efi_get_info(fd, &dki_info)) != 0)
1119 return rval;
1120
1121 /* check if we are dealing wih a metadevice */
1122 if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) &&
1123 (strncmp(dki_info.dki_dname, "md", 3) == 0)) {
1124 md_flag = 1;
1125 }
1126
1127 if (check_input(vtoc)) {
1128 /*
1129 * not valid; if it's a metadevice just pass it down
1130 * because SVM will do its own checking
1131 */
1132 if (md_flag == 0) {
1133 return (VT_EINVAL);
1134 }
1135 }
1136
1137 dk_ioc.dki_lba = 1;
1138 if (NBLOCKS(vtoc->efi_nparts, vtoc->efi_lbasize) < 34) {
1139 dk_ioc.dki_length = EFI_MIN_ARRAY_SIZE + vtoc->efi_lbasize;
1140 } else {
1141 dk_ioc.dki_length = NBLOCKS(vtoc->efi_nparts,
1142 vtoc->efi_lbasize) *
1143 vtoc->efi_lbasize;
1144 }
1145
1146 /*
1147 * the number of blocks occupied by GUID partition entry array
1148 */
1149 nblocks = dk_ioc.dki_length / vtoc->efi_lbasize - 1;
1150
1151 /*
1152 * Backup GPT header is located on the block after GUID
1153 * partition entry array. Here, we calculate the address
1154 * for backup GPT header.
1155 */
1156 lba_backup_gpt_hdr = vtoc->efi_last_u_lba + 1 + nblocks;
1157 if (posix_memalign((void **)&dk_ioc.dki_data,
1158 vtoc->efi_lbasize, dk_ioc.dki_length))
1159 return (VT_ERROR);
1160
1161 memset(dk_ioc.dki_data, 0, dk_ioc.dki_length);
1162 efi = dk_ioc.dki_data;
1163
1164 /* stuff user's input into EFI struct */
1165 efi->efi_gpt_Signature = LE_64(EFI_SIGNATURE);
1166 efi->efi_gpt_Revision = LE_32(vtoc->efi_version); /* 0x02000100 */
1167 efi->efi_gpt_HeaderSize = LE_32(sizeof (struct efi_gpt) - LEN_EFI_PAD);
1168 efi->efi_gpt_Reserved1 = 0;
1169 efi->efi_gpt_MyLBA = LE_64(1ULL);
1170 efi->efi_gpt_AlternateLBA = LE_64(lba_backup_gpt_hdr);
1171 efi->efi_gpt_FirstUsableLBA = LE_64(vtoc->efi_first_u_lba);
1172 efi->efi_gpt_LastUsableLBA = LE_64(vtoc->efi_last_u_lba);
1173 efi->efi_gpt_PartitionEntryLBA = LE_64(2ULL);
1174 efi->efi_gpt_NumberOfPartitionEntries = LE_32(vtoc->efi_nparts);
1175 efi->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (struct efi_gpe));
1176 UUID_LE_CONVERT(efi->efi_gpt_DiskGUID, vtoc->efi_disk_uguid);
1177
1178 /* LINTED -- always longlong aligned */
1179 efi_parts = (efi_gpe_t *)((char *)dk_ioc.dki_data + vtoc->efi_lbasize);
1180
1181 for (i = 0; i < vtoc->efi_nparts; i++) {
1182 for (j = 0;
1183 j < sizeof (conversion_array) /
1184 sizeof (struct uuid_to_ptag); j++) {
1185
1186 if (vtoc->efi_parts[i].p_tag == j) {
1187 UUID_LE_CONVERT(
1188 efi_parts[i].efi_gpe_PartitionTypeGUID,
1189 conversion_array[j].uuid);
1190 break;
1191 }
1192 }
1193
1194 if (j == sizeof (conversion_array) /
1195 sizeof (struct uuid_to_ptag)) {
1196 /*
1197 * If we didn't have a matching uuid match, bail here.
1198 * Don't write a label with unknown uuid.
1199 */
1200 if (efi_debug) {
1201 (void) fprintf(stderr,
1202 "Unknown uuid for p_tag %d\n",
1203 vtoc->efi_parts[i].p_tag);
1204 }
1205 return (VT_EINVAL);
1206 }
1207
1208 /* Zero's should be written for empty partitions */
1209 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED)
1210 continue;
1211
1212 efi_parts[i].efi_gpe_StartingLBA =
1213 LE_64(vtoc->efi_parts[i].p_start);
1214 efi_parts[i].efi_gpe_EndingLBA =
1215 LE_64(vtoc->efi_parts[i].p_start +
1216 vtoc->efi_parts[i].p_size - 1);
1217 efi_parts[i].efi_gpe_Attributes.PartitionAttrs =
1218 LE_16(vtoc->efi_parts[i].p_flag);
1219 for (j = 0; j < EFI_PART_NAME_LEN; j++) {
1220 efi_parts[i].efi_gpe_PartitionName[j] =
1221 LE_16((ushort_t)vtoc->efi_parts[i].p_name[j]);
1222 }
1223 if ((vtoc->efi_parts[i].p_tag != V_UNASSIGNED) &&
1224 uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_uguid)) {
1225 (void) uuid_generate((uchar_t *)
1226 &vtoc->efi_parts[i].p_uguid);
1227 }
1228 bcopy(&vtoc->efi_parts[i].p_uguid,
1229 &efi_parts[i].efi_gpe_UniquePartitionGUID,
1230 sizeof (uuid_t));
1231 }
1232 efi->efi_gpt_PartitionEntryArrayCRC32 =
1233 LE_32(efi_crc32((unsigned char *)efi_parts,
1234 vtoc->efi_nparts * (int)sizeof (struct efi_gpe)));
1235 efi->efi_gpt_HeaderCRC32 =
1236 LE_32(efi_crc32((unsigned char *)efi,
1237 LE_32(efi->efi_gpt_HeaderSize)));
1238
1239 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1240 free(dk_ioc.dki_data);
1241 switch (errno) {
1242 case EIO:
1243 return (VT_EIO);
1244 case EINVAL:
1245 return (VT_EINVAL);
1246 default:
1247 return (VT_ERROR);
1248 }
1249 }
1250 /* if it's a metadevice we're done */
1251 if (md_flag) {
1252 free(dk_ioc.dki_data);
1253 return (0);
1254 }
1255
1256 /* write backup partition array */
1257 dk_ioc.dki_lba = vtoc->efi_last_u_lba + 1;
1258 dk_ioc.dki_length -= vtoc->efi_lbasize;
1259 /* LINTED */
1260 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data +
1261 vtoc->efi_lbasize);
1262
1263 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1264 /*
1265 * we wrote the primary label okay, so don't fail
1266 */
1267 if (efi_debug) {
1268 (void) fprintf(stderr,
1269 "write of backup partitions to block %llu "
1270 "failed, errno %d\n",
1271 vtoc->efi_last_u_lba + 1,
1272 errno);
1273 }
1274 }
1275 /*
1276 * now swap MyLBA and AlternateLBA fields and write backup
1277 * partition table header
1278 */
1279 dk_ioc.dki_lba = lba_backup_gpt_hdr;
1280 dk_ioc.dki_length = vtoc->efi_lbasize;
1281 /* LINTED */
1282 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data -
1283 vtoc->efi_lbasize);
1284 efi->efi_gpt_AlternateLBA = LE_64(1ULL);
1285 efi->efi_gpt_MyLBA = LE_64(lba_backup_gpt_hdr);
1286 efi->efi_gpt_PartitionEntryLBA = LE_64(vtoc->efi_last_u_lba + 1);
1287 efi->efi_gpt_HeaderCRC32 = 0;
1288 efi->efi_gpt_HeaderCRC32 =
1289 LE_32(efi_crc32((unsigned char *)dk_ioc.dki_data,
1290 LE_32(efi->efi_gpt_HeaderSize)));
1291
1292 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1293 if (efi_debug) {
1294 (void) fprintf(stderr,
1295 "write of backup header to block %llu failed, "
1296 "errno %d\n",
1297 lba_backup_gpt_hdr,
1298 errno);
1299 }
1300 }
1301 /* write the PMBR */
1302 (void) write_pmbr(fd, vtoc);
1303 free(dk_ioc.dki_data);
1304
1305 #if defined(__linux__)
1306 rval = efi_rescan(fd);
1307 if (rval)
1308 return (VT_ERROR);
1309 #endif
1310
1311 return (0);
1312 }
1313
1314 void
1315 efi_free(struct dk_gpt *ptr)
1316 {
1317 free(ptr);
1318 }
1319
1320 /*
1321 * Input: File descriptor
1322 * Output: 1 if disk has an EFI label, or > 2TB with no VTOC or legacy MBR.
1323 * Otherwise 0.
1324 */
1325 int
1326 efi_type(int fd)
1327 {
1328 #if 0
1329 struct vtoc vtoc;
1330 struct extvtoc extvtoc;
1331
1332 if (ioctl(fd, DKIOCGEXTVTOC, &extvtoc) == -1) {
1333 if (errno == ENOTSUP)
1334 return (1);
1335 else if (errno == ENOTTY) {
1336 if (ioctl(fd, DKIOCGVTOC, &vtoc) == -1)
1337 if (errno == ENOTSUP)
1338 return (1);
1339 }
1340 }
1341 return (0);
1342 #else
1343 return (ENOSYS);
1344 #endif
1345 }
1346
1347 void
1348 efi_err_check(struct dk_gpt *vtoc)
1349 {
1350 int resv_part = -1;
1351 int i, j;
1352 diskaddr_t istart, jstart, isize, jsize, endsect;
1353 int overlap = 0;
1354
1355 /*
1356 * make sure no partitions overlap
1357 */
1358 for (i = 0; i < vtoc->efi_nparts; i++) {
1359 /* It can't be unassigned and have an actual size */
1360 if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
1361 (vtoc->efi_parts[i].p_size != 0)) {
1362 (void) fprintf(stderr,
1363 "partition %d is \"unassigned\" but has a size "
1364 "of %llu\n", i, vtoc->efi_parts[i].p_size);
1365 }
1366 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
1367 continue;
1368 }
1369 if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
1370 if (resv_part != -1) {
1371 (void) fprintf(stderr,
1372 "found duplicate reserved partition at "
1373 "%d\n", i);
1374 }
1375 resv_part = i;
1376 if (vtoc->efi_parts[i].p_size != EFI_MIN_RESV_SIZE)
1377 (void) fprintf(stderr,
1378 "Warning: reserved partition size must "
1379 "be %d sectors\n", EFI_MIN_RESV_SIZE);
1380 }
1381 if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
1382 (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
1383 (void) fprintf(stderr,
1384 "Partition %d starts at %llu\n",
1385 i,
1386 vtoc->efi_parts[i].p_start);
1387 (void) fprintf(stderr,
1388 "It must be between %llu and %llu.\n",
1389 vtoc->efi_first_u_lba,
1390 vtoc->efi_last_u_lba);
1391 }
1392 if ((vtoc->efi_parts[i].p_start +
1393 vtoc->efi_parts[i].p_size <
1394 vtoc->efi_first_u_lba) ||
1395 (vtoc->efi_parts[i].p_start +
1396 vtoc->efi_parts[i].p_size >
1397 vtoc->efi_last_u_lba + 1)) {
1398 (void) fprintf(stderr,
1399 "Partition %d ends at %llu\n",
1400 i,
1401 vtoc->efi_parts[i].p_start +
1402 vtoc->efi_parts[i].p_size);
1403 (void) fprintf(stderr,
1404 "It must be between %llu and %llu.\n",
1405 vtoc->efi_first_u_lba,
1406 vtoc->efi_last_u_lba);
1407 }
1408
1409 for (j = 0; j < vtoc->efi_nparts; j++) {
1410 isize = vtoc->efi_parts[i].p_size;
1411 jsize = vtoc->efi_parts[j].p_size;
1412 istart = vtoc->efi_parts[i].p_start;
1413 jstart = vtoc->efi_parts[j].p_start;
1414 if ((i != j) && (isize != 0) && (jsize != 0)) {
1415 endsect = jstart + jsize -1;
1416 if ((jstart <= istart) &&
1417 (istart <= endsect)) {
1418 if (!overlap) {
1419 (void) fprintf(stderr,
1420 "label error: EFI Labels do not "
1421 "support overlapping partitions\n");
1422 }
1423 (void) fprintf(stderr,
1424 "Partition %d overlaps partition "
1425 "%d.\n", i, j);
1426 overlap = 1;
1427 }
1428 }
1429 }
1430 }
1431 /* make sure there is a reserved partition */
1432 if (resv_part == -1) {
1433 (void) fprintf(stderr,
1434 "no reserved partition found\n");
1435 }
1436 }
1437
1438 /*
1439 * We need to get information necessary to construct a *new* efi
1440 * label type
1441 */
1442 int
1443 efi_auto_sense(int fd, struct dk_gpt **vtoc)
1444 {
1445
1446 int i;
1447
1448 /*
1449 * Now build the default partition table
1450 */
1451 if (efi_alloc_and_init(fd, EFI_NUMPAR, vtoc) != 0) {
1452 if (efi_debug) {
1453 (void) fprintf(stderr, "efi_alloc_and_init failed.\n");
1454 }
1455 return (-1);
1456 }
1457
1458 for (i = 0; i < MIN((*vtoc)->efi_nparts, V_NUMPAR); i++) {
1459 (*vtoc)->efi_parts[i].p_tag = default_vtoc_map[i].p_tag;
1460 (*vtoc)->efi_parts[i].p_flag = default_vtoc_map[i].p_flag;
1461 (*vtoc)->efi_parts[i].p_start = 0;
1462 (*vtoc)->efi_parts[i].p_size = 0;
1463 }
1464 /*
1465 * Make constants first
1466 * and variable partitions later
1467 */
1468
1469 /* root partition - s0 128 MB */
1470 (*vtoc)->efi_parts[0].p_start = 34;
1471 (*vtoc)->efi_parts[0].p_size = 262144;
1472
1473 /* partition - s1 128 MB */
1474 (*vtoc)->efi_parts[1].p_start = 262178;
1475 (*vtoc)->efi_parts[1].p_size = 262144;
1476
1477 /* partition -s2 is NOT the Backup disk */
1478 (*vtoc)->efi_parts[2].p_tag = V_UNASSIGNED;
1479
1480 /* partition -s6 /usr partition - HOG */
1481 (*vtoc)->efi_parts[6].p_start = 524322;
1482 (*vtoc)->efi_parts[6].p_size = (*vtoc)->efi_last_u_lba - 524322
1483 - (1024 * 16);
1484
1485 /* efi reserved partition - s9 16K */
1486 (*vtoc)->efi_parts[8].p_start = (*vtoc)->efi_last_u_lba - (1024 * 16);
1487 (*vtoc)->efi_parts[8].p_size = (1024 * 16);
1488 (*vtoc)->efi_parts[8].p_tag = V_RESERVED;
1489 return (0);
1490 }