]> git.proxmox.com Git - mirror_zfs-debian.git/blob - lib/libefi/rdwr_efi.c
Add linux user disk support
[mirror_zfs-debian.git] / lib / libefi / rdwr_efi.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25
26 #include <stdio.h>
27 #include <stdlib.h>
28 #include <errno.h>
29 #include <strings.h>
30 #include <unistd.h>
31 #include <uuid/uuid.h>
32 #include <zlib.h>
33 #include <libintl.h>
34 #include <sys/types.h>
35 #include <sys/dkio.h>
36 #include <sys/vtoc.h>
37 #include <sys/mhd.h>
38 #include <sys/param.h>
39 #include <sys/dktp/fdisk.h>
40 #include <sys/efi_partition.h>
41 #include <sys/byteorder.h>
42 #if defined(__linux__)
43 #include <linux/fs.h>
44 #endif
45
46 static struct uuid_to_ptag {
47 struct uuid uuid;
48 } conversion_array[] = {
49 { EFI_UNUSED },
50 { EFI_BOOT },
51 { EFI_ROOT },
52 { EFI_SWAP },
53 { EFI_USR },
54 { EFI_BACKUP },
55 { EFI_UNUSED }, /* STAND is never used */
56 { EFI_VAR },
57 { EFI_HOME },
58 { EFI_ALTSCTR },
59 { EFI_UNUSED }, /* CACHE (cachefs) is never used */
60 { EFI_RESERVED },
61 { EFI_SYSTEM },
62 { EFI_LEGACY_MBR },
63 { EFI_SYMC_PUB },
64 { EFI_SYMC_CDS },
65 { EFI_MSFT_RESV },
66 { EFI_DELL_BASIC },
67 { EFI_DELL_RAID },
68 { EFI_DELL_SWAP },
69 { EFI_DELL_LVM },
70 { EFI_DELL_RESV },
71 { EFI_AAPL_HFS },
72 { EFI_AAPL_UFS }
73 };
74
75 /*
76 * Default vtoc information for non-SVr4 partitions
77 */
78 struct dk_map2 default_vtoc_map[NDKMAP] = {
79 { V_ROOT, 0 }, /* a - 0 */
80 { V_SWAP, V_UNMNT }, /* b - 1 */
81 { V_BACKUP, V_UNMNT }, /* c - 2 */
82 { V_UNASSIGNED, 0 }, /* d - 3 */
83 { V_UNASSIGNED, 0 }, /* e - 4 */
84 { V_UNASSIGNED, 0 }, /* f - 5 */
85 { V_USR, 0 }, /* g - 6 */
86 { V_UNASSIGNED, 0 }, /* h - 7 */
87
88 #if defined(_SUNOS_VTOC_16)
89
90 #if defined(i386) || defined(__amd64)
91 { V_BOOT, V_UNMNT }, /* i - 8 */
92 { V_ALTSCTR, 0 }, /* j - 9 */
93
94 #else
95 #error No VTOC format defined.
96 #endif /* defined(i386) */
97
98 { V_UNASSIGNED, 0 }, /* k - 10 */
99 { V_UNASSIGNED, 0 }, /* l - 11 */
100 { V_UNASSIGNED, 0 }, /* m - 12 */
101 { V_UNASSIGNED, 0 }, /* n - 13 */
102 { V_UNASSIGNED, 0 }, /* o - 14 */
103 { V_UNASSIGNED, 0 }, /* p - 15 */
104 #endif /* defined(_SUNOS_VTOC_16) */
105 };
106
107 #ifdef DEBUG
108 int efi_debug = 1;
109 #else
110 int efi_debug = 0;
111 #endif
112
113 static int efi_read(int, struct dk_gpt *);
114
115 /*
116 * Return a 32-bit CRC of the contents of the buffer. Pre-and-post
117 * one's conditioning will be handled by crc32() internally.
118 */
119 static uint32_t
120 efi_crc32(const unsigned char *buf, unsigned int size)
121 {
122 uint32_t crc = crc32(0, Z_NULL, 0);
123
124 crc = crc32(crc, buf, size);
125
126 return (crc);
127 }
128
129 static int
130 read_disk_info(int fd, diskaddr_t *capacity, uint_t *lbsize)
131 {
132 int sector_size;
133 unsigned long long capacity_size;
134
135 if (ioctl(fd, BLKSSZGET, &sector_size) < 0)
136 return (-1);
137
138 if (ioctl(fd, BLKGETSIZE64, &capacity_size) < 0)
139 return (-1);
140
141 *lbsize = (uint_t)sector_size;
142 *capacity = (diskaddr_t)(capacity_size / sector_size);
143
144 return (0);
145 }
146
147 static int
148 efi_get_info(int fd, struct dk_cinfo *dki_info)
149 {
150 #if defined(__linux__)
151 char *path;
152 char *dev_path;
153 int rval = 0;
154
155 memset(dki_info, 0, sizeof(*dki_info));
156
157 path = calloc(PATH_MAX, 1);
158 if (path == NULL)
159 goto error;
160
161 /*
162 * The simplest way to get the partition number under linux is
163 * to parse it out of the /dev/<disk><parition> block device name.
164 * The kernel creates this using the partition number when it
165 * populates /dev/ so it may be trusted. The tricky bit here is
166 * that the naming convention is based on the block device type.
167 * So we need to take this in to account when parsing out the
168 * partition information. Another issue is that the libefi API
169 * API only provides the open fd and not the file path. To handle
170 * this realpath(3) is used to resolve the block device name from
171 * /proc/self/fd/<fd>. Aside from the partition number we collect
172 * some additional device info.
173 */
174 (void) sprintf(path, "/proc/self/fd/%d", fd);
175 dev_path = realpath(path, NULL);
176 free(path);
177
178 if (dev_path == NULL)
179 goto error;
180
181 if ((strncmp(dev_path, "/dev/sd", 7) == 0)) {
182 strcpy(dki_info->dki_cname, "sd");
183 dki_info->dki_ctype = DKC_SCSI_CCS;
184 rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
185 dki_info->dki_dname,
186 &dki_info->dki_partition);
187 } else if ((strncmp(dev_path, "/dev/hd", 7) == 0)) {
188 strcpy(dki_info->dki_cname, "hd");
189 dki_info->dki_ctype = DKC_DIRECT;
190 rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
191 dki_info->dki_dname,
192 &dki_info->dki_partition);
193 } else if ((strncmp(dev_path, "/dev/md", 7) == 0)) {
194 strcpy(dki_info->dki_cname, "pseudo");
195 dki_info->dki_ctype = DKC_MD;
196 rval = sscanf(dev_path, "/dev/%[a-zA-Z0-9]p%hu",
197 dki_info->dki_dname,
198 &dki_info->dki_partition);
199 } else if ((strncmp(dev_path, "/dev/dm-", 8) == 0)) {
200 strcpy(dki_info->dki_cname, "pseudo");
201 dki_info->dki_ctype = DKC_VBD;
202 rval = sscanf(dev_path, "/dev/%[a-zA-Z0-9-]p%hu",
203 dki_info->dki_dname,
204 &dki_info->dki_partition);
205 } else if ((strncmp(dev_path, "/dev/ram", 8) == 0)) {
206 strcpy(dki_info->dki_cname, "pseudo");
207 dki_info->dki_ctype = DKC_PCMCIA_MEM;
208 rval = sscanf(dev_path, "/dev/%[a-zA-Z0-9]p%hu",
209 dki_info->dki_dname,
210 &dki_info->dki_partition);
211 } else if ((strncmp(dev_path, "/dev/loop", 9) == 0)) {
212 strcpy(dki_info->dki_cname, "pseudo");
213 dki_info->dki_ctype = DKC_VBD;
214 rval = sscanf(dev_path, "/dev/%[a-zA-Z0-9]p%hu",
215 dki_info->dki_dname,
216 &dki_info->dki_partition);
217 } else {
218 strcpy(dki_info->dki_dname, "unknown");
219 strcpy(dki_info->dki_cname, "unknown");
220 dki_info->dki_ctype = DKC_UNKNOWN;
221 }
222
223 switch (rval) {
224 case 0:
225 errno = EINVAL;
226 goto error;
227 case 1:
228 dki_info->dki_partition = 0;
229 }
230
231 free(dev_path);
232 #else
233 if (ioctl(fd, DKIOCINFO, (caddr_t)dki_info) == -1)
234 goto error;
235 #endif
236 return (0);
237 error:
238 if (efi_debug)
239 (void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno);
240
241 switch (errno) {
242 case EIO:
243 return (VT_EIO);
244 case EINVAL:
245 return (VT_EINVAL);
246 default:
247 return (VT_ERROR);
248 }
249 }
250
251 /*
252 * the number of blocks the EFI label takes up (round up to nearest
253 * block)
254 */
255 #define NBLOCKS(p, l) (1 + ((((p) * (int)sizeof (efi_gpe_t)) + \
256 ((l) - 1)) / (l)))
257 /* number of partitions -- limited by what we can malloc */
258 #define MAX_PARTS ((4294967295UL - sizeof (struct dk_gpt)) / \
259 sizeof (struct dk_part))
260
261 int
262 efi_alloc_and_init(int fd, uint32_t nparts, struct dk_gpt **vtoc)
263 {
264 diskaddr_t capacity = 0;
265 uint_t lbsize = 0;
266 uint_t nblocks;
267 size_t length;
268 struct dk_gpt *vptr;
269 struct uuid uuid;
270 struct dk_cinfo dki_info;
271
272 if (read_disk_info(fd, &capacity, &lbsize) != 0) {
273 if (efi_debug)
274 (void) fprintf(stderr,
275 "couldn't read disk information\n");
276 return (-1);
277 }
278 #if defined(__linux__)
279 if (efi_get_info(fd, &dki_info) != 0) {
280 if (efi_debug)
281 (void) fprintf(stderr,
282 "couldn't read disk information\n");
283 return (-1);
284 }
285
286 if (dki_info.dki_partition != 0)
287 return (-1);
288
289 if ((dki_info.dki_ctype == DKC_PCMCIA_MEM) ||
290 (dki_info.dki_ctype == DKC_VBD) ||
291 (dki_info.dki_ctype == DKC_UNKNOWN))
292 return (-1);
293 #endif
294
295 nblocks = NBLOCKS(nparts, lbsize);
296 if ((nblocks * lbsize) < EFI_MIN_ARRAY_SIZE + lbsize) {
297 /* 16K plus one block for the GPT */
298 nblocks = EFI_MIN_ARRAY_SIZE / lbsize + 1;
299 }
300
301 if (nparts > MAX_PARTS) {
302 if (efi_debug) {
303 (void) fprintf(stderr,
304 "the maximum number of partitions supported is %lu\n",
305 MAX_PARTS);
306 }
307 return (-1);
308 }
309
310 length = sizeof (struct dk_gpt) +
311 sizeof (struct dk_part) * (nparts - 1);
312
313 if ((*vtoc = calloc(length, 1)) == NULL)
314 return (-1);
315
316 vptr = *vtoc;
317
318 vptr->efi_version = EFI_VERSION_CURRENT;
319 vptr->efi_lbasize = lbsize;
320 vptr->efi_nparts = nparts;
321 /*
322 * add one block here for the PMBR; on disks with a 512 byte
323 * block size and 128 or fewer partitions, efi_first_u_lba
324 * should work out to "34"
325 */
326 vptr->efi_first_u_lba = nblocks + 1;
327 vptr->efi_last_lba = capacity - 1;
328 vptr->efi_altern_lba = capacity -1;
329 vptr->efi_last_u_lba = vptr->efi_last_lba - nblocks;
330
331 (void) uuid_generate((uchar_t *)&uuid);
332 UUID_LE_CONVERT(vptr->efi_disk_uguid, uuid);
333 return (0);
334 }
335
336 /*
337 * Read EFI - return partition number upon success.
338 */
339 int
340 efi_alloc_and_read(int fd, struct dk_gpt **vtoc)
341 {
342 int rval;
343 uint32_t nparts;
344 int length;
345
346 /* figure out the number of entries that would fit into 16K */
347 nparts = EFI_MIN_ARRAY_SIZE / sizeof (efi_gpe_t);
348 length = (int) sizeof (struct dk_gpt) +
349 (int) sizeof (struct dk_part) * (nparts - 1);
350 if ((*vtoc = calloc(length, 1)) == NULL)
351 return (VT_ERROR);
352
353 (*vtoc)->efi_nparts = nparts;
354 rval = efi_read(fd, *vtoc);
355
356 if ((rval == VT_EINVAL) && (*vtoc)->efi_nparts > nparts) {
357 void *tmp;
358 length = (int) sizeof (struct dk_gpt) +
359 (int) sizeof (struct dk_part) *
360 ((*vtoc)->efi_nparts - 1);
361 nparts = (*vtoc)->efi_nparts;
362 if ((tmp = realloc(*vtoc, length)) == NULL) {
363 free (*vtoc);
364 *vtoc = NULL;
365 return (VT_ERROR);
366 } else {
367 *vtoc = tmp;
368 rval = efi_read(fd, *vtoc);
369 }
370 }
371
372 if (rval < 0) {
373 if (efi_debug) {
374 (void) fprintf(stderr,
375 "read of EFI table failed, rval=%d\n", rval);
376 }
377 free (*vtoc);
378 *vtoc = NULL;
379 }
380
381 return (rval);
382 }
383
384 static int
385 efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc)
386 {
387 void *data = dk_ioc->dki_data;
388 int error;
389 #if defined(__linux__)
390 diskaddr_t capacity;
391 uint_t lbsize;
392
393 /*
394 * When the IO is not being performed in kernel as an ioctl we need
395 * to know the sector size so we can seek to the proper byte offset.
396 */
397 if (read_disk_info(fd, &capacity, &lbsize) == -1) {
398 if (efi_debug)
399 fprintf(stderr,"unable to read disk info: %d",errno);
400
401 errno = EIO;
402 return -1;
403 }
404
405 switch (cmd) {
406 case DKIOCGETEFI:
407 if (lbsize == 0) {
408 if (efi_debug)
409 (void) fprintf(stderr, "DKIOCGETEFI assuming "
410 "LBA %d bytes\n", DEV_BSIZE);
411
412 lbsize = DEV_BSIZE;
413 }
414
415 error = lseek(fd, dk_ioc->dki_lba * lbsize, SEEK_SET);
416 if (error == -1) {
417 if (efi_debug)
418 (void) fprintf(stderr, "DKIOCGETEFI lseek "
419 "error: %d\n", errno);
420 return error;
421 }
422
423 error = read(fd, data, dk_ioc->dki_length);
424 if (error == -1) {
425 if (efi_debug)
426 (void) fprintf(stderr, "DKIOCGETEFI read "
427 "error: %d\n", errno);
428 return error;
429 }
430
431 if (error != dk_ioc->dki_length) {
432 if (efi_debug)
433 (void) fprintf(stderr, "DKIOCGETEFI short "
434 "read of %d bytes\n", error);
435 errno = EIO;
436 return -1;
437 }
438 error = 0;
439 break;
440
441 case DKIOCSETEFI:
442 if (lbsize == 0) {
443 if (efi_debug)
444 (void) fprintf(stderr, "DKIOCSETEFI unknown "
445 "LBA size\n");
446 errno = EIO;
447 return -1;
448 }
449
450 error = lseek(fd, dk_ioc->dki_lba * lbsize, SEEK_SET);
451 if (error == -1) {
452 if (efi_debug)
453 (void) fprintf(stderr, "DKIOCSETEFI lseek "
454 "error: %d\n", errno);
455 return error;
456 }
457
458 error = write(fd, data, dk_ioc->dki_length);
459 if (error == -1) {
460 if (efi_debug)
461 (void) fprintf(stderr, "DKIOCSETEFI write "
462 "error: %d\n", errno);
463 return error;
464 }
465
466 if (error != dk_ioc->dki_length) {
467 if (efi_debug)
468 (void) fprintf(stderr, "DKIOCSETEFI short "
469 "write of %d bytes\n", error);
470 errno = EIO;
471 return -1;
472 }
473
474 /* Sync the new EFI table to disk */
475 error = fsync(fd);
476 if (error == -1)
477 return error;
478
479 /* Ensure any local disk cache is also flushed */
480 if (ioctl(fd, BLKFLSBUF, 0) == -1)
481 return error;
482
483 error = 0;
484 break;
485
486 default:
487 if (efi_debug)
488 (void) fprintf(stderr, "unsupported ioctl()\n");
489
490 errno = EIO;
491 return -1;
492 }
493 #else
494 dk_ioc->dki_data_64 = (uint64_t)(uintptr_t)data;
495 error = ioctl(fd, cmd, (void *)dk_ioc);
496 dk_ioc->dki_data = data;
497 #endif
498 return (error);
499 }
500
501 #if defined(__linux__)
502 static int
503 efi_rescan(int fd)
504 {
505 int retry = 5;
506 int error;
507
508 /* Notify the kernel a devices partition table has been updated */
509 while ((error = ioctl(fd, BLKRRPART)) != 0) {
510 if (--retry == 0) {
511 (void) fprintf(stderr, "the kernel failed to rescan "
512 "the partition table: %d\n", errno);
513 return (-1);
514 }
515 }
516
517 return (0);
518 }
519 #endif
520
521 static int
522 check_label(int fd, dk_efi_t *dk_ioc)
523 {
524 efi_gpt_t *efi;
525 uint_t crc;
526
527 if (efi_ioctl(fd, DKIOCGETEFI, dk_ioc) == -1) {
528 switch (errno) {
529 case EIO:
530 return (VT_EIO);
531 default:
532 return (VT_ERROR);
533 }
534 }
535 efi = dk_ioc->dki_data;
536 if (efi->efi_gpt_Signature != LE_64(EFI_SIGNATURE)) {
537 if (efi_debug)
538 (void) fprintf(stderr,
539 "Bad EFI signature: 0x%llx != 0x%llx\n",
540 (long long)efi->efi_gpt_Signature,
541 (long long)LE_64(EFI_SIGNATURE));
542 return (VT_EINVAL);
543 }
544
545 /*
546 * check CRC of the header; the size of the header should
547 * never be larger than one block
548 */
549 crc = efi->efi_gpt_HeaderCRC32;
550 efi->efi_gpt_HeaderCRC32 = 0;
551
552 if (((len_t)LE_32(efi->efi_gpt_HeaderSize) > dk_ioc->dki_length) ||
553 crc != LE_32(efi_crc32((unsigned char *)efi,
554 LE_32(efi->efi_gpt_HeaderSize)))) {
555 if (efi_debug)
556 (void) fprintf(stderr,
557 "Bad EFI CRC: 0x%x != 0x%x\n",
558 crc,
559 LE_32(efi_crc32((unsigned char *)efi,
560 sizeof (struct efi_gpt))));
561 return (VT_EINVAL);
562 }
563
564 return (0);
565 }
566
567 static int
568 efi_read(int fd, struct dk_gpt *vtoc)
569 {
570 int i, j;
571 int label_len;
572 int rval = 0;
573 int md_flag = 0;
574 int vdc_flag = 0;
575 diskaddr_t capacity = 0;
576 uint_t lbsize = 0;
577 struct dk_minfo disk_info;
578 dk_efi_t dk_ioc;
579 efi_gpt_t *efi;
580 efi_gpe_t *efi_parts;
581 struct dk_cinfo dki_info;
582 uint32_t user_length;
583 boolean_t legacy_label = B_FALSE;
584
585 /*
586 * get the partition number for this file descriptor.
587 */
588 if ((rval = efi_get_info(fd, &dki_info)) != 0)
589 return rval;
590
591 if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) &&
592 (strncmp(dki_info.dki_dname, "md", 3) == 0)) {
593 md_flag++;
594 } else if ((strncmp(dki_info.dki_cname, "vdc", 4) == 0) &&
595 (strncmp(dki_info.dki_dname, "vdc", 4) == 0)) {
596 /*
597 * The controller and drive name "vdc" (virtual disk client)
598 * indicates a LDoms virtual disk.
599 */
600 vdc_flag++;
601 }
602
603 /* get the LBA size */
604 if (read_disk_info(fd, &capacity, &lbsize) == -1) {
605 if (efi_debug) {
606 (void) fprintf(stderr,
607 "unable to read disk info: %d",
608 errno);
609 }
610 return (VT_EINVAL);
611 }
612
613 disk_info.dki_lbsize = lbsize;
614 disk_info.dki_capacity = capacity;
615
616 if (disk_info.dki_lbsize == 0) {
617 if (efi_debug) {
618 (void) fprintf(stderr,
619 "efi_read: assuming LBA 512 bytes\n");
620 }
621 disk_info.dki_lbsize = DEV_BSIZE;
622 }
623 /*
624 * Read the EFI GPT to figure out how many partitions we need
625 * to deal with.
626 */
627 dk_ioc.dki_lba = 1;
628 if (NBLOCKS(vtoc->efi_nparts, disk_info.dki_lbsize) < 34) {
629 label_len = EFI_MIN_ARRAY_SIZE + disk_info.dki_lbsize;
630 } else {
631 label_len = vtoc->efi_nparts * (int) sizeof (efi_gpe_t) +
632 disk_info.dki_lbsize;
633 if (label_len % disk_info.dki_lbsize) {
634 /* pad to physical sector size */
635 label_len += disk_info.dki_lbsize;
636 label_len &= ~(disk_info.dki_lbsize - 1);
637 }
638 }
639
640 if (posix_memalign((void **)&dk_ioc.dki_data,
641 disk_info.dki_lbsize, label_len))
642 return (VT_ERROR);
643
644 memset(dk_ioc.dki_data, 0, label_len);
645 dk_ioc.dki_length = disk_info.dki_lbsize;
646 user_length = vtoc->efi_nparts;
647 efi = dk_ioc.dki_data;
648 if (md_flag) {
649 dk_ioc.dki_length = label_len;
650 if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) {
651 switch (errno) {
652 case EIO:
653 return (VT_EIO);
654 default:
655 return (VT_ERROR);
656 }
657 }
658 } else if ((rval = check_label(fd, &dk_ioc)) == VT_EINVAL) {
659 /*
660 * No valid label here; try the alternate. Note that here
661 * we just read GPT header and save it into dk_ioc.data,
662 * Later, we will read GUID partition entry array if we
663 * can get valid GPT header.
664 */
665
666 /*
667 * This is a workaround for legacy systems. In the past, the
668 * last sector of SCSI disk was invisible on x86 platform. At
669 * that time, backup label was saved on the next to the last
670 * sector. It is possible for users to move a disk from previous
671 * solaris system to present system. Here, we attempt to search
672 * legacy backup EFI label first.
673 */
674 dk_ioc.dki_lba = disk_info.dki_capacity - 2;
675 dk_ioc.dki_length = disk_info.dki_lbsize;
676 rval = check_label(fd, &dk_ioc);
677 if (rval == VT_EINVAL) {
678 /*
679 * we didn't find legacy backup EFI label, try to
680 * search backup EFI label in the last block.
681 */
682 dk_ioc.dki_lba = disk_info.dki_capacity - 1;
683 dk_ioc.dki_length = disk_info.dki_lbsize;
684 rval = check_label(fd, &dk_ioc);
685 if (rval == 0) {
686 legacy_label = B_TRUE;
687 if (efi_debug)
688 (void) fprintf(stderr,
689 "efi_read: primary label corrupt; "
690 "using EFI backup label located on"
691 " the last block\n");
692 }
693 } else {
694 if ((efi_debug) && (rval == 0))
695 (void) fprintf(stderr, "efi_read: primary label"
696 " corrupt; using legacy EFI backup label "
697 " located on the next to last block\n");
698 }
699
700 if (rval == 0) {
701 dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
702 vtoc->efi_flags |= EFI_GPT_PRIMARY_CORRUPT;
703 vtoc->efi_nparts =
704 LE_32(efi->efi_gpt_NumberOfPartitionEntries);
705 /*
706 * Partition tables are between backup GPT header
707 * table and ParitionEntryLBA (the starting LBA of
708 * the GUID partition entries array). Now that we
709 * already got valid GPT header and saved it in
710 * dk_ioc.dki_data, we try to get GUID partition
711 * entry array here.
712 */
713 /* LINTED */
714 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
715 + disk_info.dki_lbsize);
716 if (legacy_label)
717 dk_ioc.dki_length = disk_info.dki_capacity - 1 -
718 dk_ioc.dki_lba;
719 else
720 dk_ioc.dki_length = disk_info.dki_capacity - 2 -
721 dk_ioc.dki_lba;
722 dk_ioc.dki_length *= disk_info.dki_lbsize;
723 if (dk_ioc.dki_length >
724 ((len_t)label_len - sizeof (*dk_ioc.dki_data))) {
725 rval = VT_EINVAL;
726 } else {
727 /*
728 * read GUID partition entry array
729 */
730 rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
731 }
732 }
733
734 } else if (rval == 0) {
735
736 dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
737 /* LINTED */
738 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
739 + disk_info.dki_lbsize);
740 dk_ioc.dki_length = label_len - disk_info.dki_lbsize;
741 rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
742
743 } else if (vdc_flag && rval == VT_ERROR && errno == EINVAL) {
744 /*
745 * When the device is a LDoms virtual disk, the DKIOCGETEFI
746 * ioctl can fail with EINVAL if the virtual disk backend
747 * is a ZFS volume serviced by a domain running an old version
748 * of Solaris. This is because the DKIOCGETEFI ioctl was
749 * initially incorrectly implemented for a ZFS volume and it
750 * expected the GPT and GPE to be retrieved with a single ioctl.
751 * So we try to read the GPT and the GPE using that old style
752 * ioctl.
753 */
754 dk_ioc.dki_lba = 1;
755 dk_ioc.dki_length = label_len;
756 rval = check_label(fd, &dk_ioc);
757 }
758
759 if (rval < 0) {
760 free(efi);
761 return (rval);
762 }
763
764 /* LINTED -- always longlong aligned */
765 efi_parts = (efi_gpe_t *)(((char *)efi) + disk_info.dki_lbsize);
766
767 /*
768 * Assemble this into a "dk_gpt" struct for easier
769 * digestibility by applications.
770 */
771 vtoc->efi_version = LE_32(efi->efi_gpt_Revision);
772 vtoc->efi_nparts = LE_32(efi->efi_gpt_NumberOfPartitionEntries);
773 vtoc->efi_part_size = LE_32(efi->efi_gpt_SizeOfPartitionEntry);
774 vtoc->efi_lbasize = disk_info.dki_lbsize;
775 vtoc->efi_last_lba = disk_info.dki_capacity - 1;
776 vtoc->efi_first_u_lba = LE_64(efi->efi_gpt_FirstUsableLBA);
777 vtoc->efi_last_u_lba = LE_64(efi->efi_gpt_LastUsableLBA);
778 vtoc->efi_altern_lba = LE_64(efi->efi_gpt_AlternateLBA);
779 UUID_LE_CONVERT(vtoc->efi_disk_uguid, efi->efi_gpt_DiskGUID);
780
781 /*
782 * If the array the user passed in is too small, set the length
783 * to what it needs to be and return
784 */
785 if (user_length < vtoc->efi_nparts) {
786 return (VT_EINVAL);
787 }
788
789 for (i = 0; i < vtoc->efi_nparts; i++) {
790
791 UUID_LE_CONVERT(vtoc->efi_parts[i].p_guid,
792 efi_parts[i].efi_gpe_PartitionTypeGUID);
793
794 for (j = 0;
795 j < sizeof (conversion_array)
796 / sizeof (struct uuid_to_ptag); j++) {
797
798 if (bcmp(&vtoc->efi_parts[i].p_guid,
799 &conversion_array[j].uuid,
800 sizeof (struct uuid)) == 0) {
801 vtoc->efi_parts[i].p_tag = j;
802 break;
803 }
804 }
805 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED)
806 continue;
807 vtoc->efi_parts[i].p_flag =
808 LE_16(efi_parts[i].efi_gpe_Attributes.PartitionAttrs);
809 vtoc->efi_parts[i].p_start =
810 LE_64(efi_parts[i].efi_gpe_StartingLBA);
811 vtoc->efi_parts[i].p_size =
812 LE_64(efi_parts[i].efi_gpe_EndingLBA) -
813 vtoc->efi_parts[i].p_start + 1;
814 for (j = 0; j < EFI_PART_NAME_LEN; j++) {
815 vtoc->efi_parts[i].p_name[j] =
816 (uchar_t)LE_16(
817 efi_parts[i].efi_gpe_PartitionName[j]);
818 }
819
820 UUID_LE_CONVERT(vtoc->efi_parts[i].p_uguid,
821 efi_parts[i].efi_gpe_UniquePartitionGUID);
822 }
823 free(efi);
824
825 return (dki_info.dki_partition);
826 }
827
828 /* writes a "protective" MBR */
829 static int
830 write_pmbr(int fd, struct dk_gpt *vtoc)
831 {
832 dk_efi_t dk_ioc;
833 struct mboot mb;
834 uchar_t *cp;
835 diskaddr_t size_in_lba;
836 uchar_t *buf;
837 int len;
838
839 len = (vtoc->efi_lbasize == 0) ? sizeof (mb) : vtoc->efi_lbasize;
840 if (posix_memalign((void **)&buf, len, len))
841 return (VT_ERROR);
842
843 /*
844 * Preserve any boot code and disk signature if the first block is
845 * already an MBR.
846 */
847 memset(buf, 0, len);
848 dk_ioc.dki_lba = 0;
849 dk_ioc.dki_length = len;
850 /* LINTED -- always longlong aligned */
851 dk_ioc.dki_data = (efi_gpt_t *)buf;
852 if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) {
853 (void *) memcpy(&mb, buf, sizeof (mb));
854 bzero(&mb, sizeof (mb));
855 mb.signature = LE_16(MBB_MAGIC);
856 } else {
857 (void *) memcpy(&mb, buf, sizeof (mb));
858 if (mb.signature != LE_16(MBB_MAGIC)) {
859 bzero(&mb, sizeof (mb));
860 mb.signature = LE_16(MBB_MAGIC);
861 }
862 }
863
864 bzero(&mb.parts, sizeof (mb.parts));
865 cp = (uchar_t *)&mb.parts[0];
866 /* bootable or not */
867 *cp++ = 0;
868 /* beginning CHS; 0xffffff if not representable */
869 *cp++ = 0xff;
870 *cp++ = 0xff;
871 *cp++ = 0xff;
872 /* OS type */
873 *cp++ = EFI_PMBR;
874 /* ending CHS; 0xffffff if not representable */
875 *cp++ = 0xff;
876 *cp++ = 0xff;
877 *cp++ = 0xff;
878 /* starting LBA: 1 (little endian format) by EFI definition */
879 *cp++ = 0x01;
880 *cp++ = 0x00;
881 *cp++ = 0x00;
882 *cp++ = 0x00;
883 /* ending LBA: last block on the disk (little endian format) */
884 size_in_lba = vtoc->efi_last_lba;
885 if (size_in_lba < 0xffffffff) {
886 *cp++ = (size_in_lba & 0x000000ff);
887 *cp++ = (size_in_lba & 0x0000ff00) >> 8;
888 *cp++ = (size_in_lba & 0x00ff0000) >> 16;
889 *cp++ = (size_in_lba & 0xff000000) >> 24;
890 } else {
891 *cp++ = 0xff;
892 *cp++ = 0xff;
893 *cp++ = 0xff;
894 *cp++ = 0xff;
895 }
896
897 (void *) memcpy(buf, &mb, sizeof (mb));
898 /* LINTED -- always longlong aligned */
899 dk_ioc.dki_data = (efi_gpt_t *)buf;
900 dk_ioc.dki_lba = 0;
901 dk_ioc.dki_length = len;
902 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
903 free(buf);
904 switch (errno) {
905 case EIO:
906 return (VT_EIO);
907 case EINVAL:
908 return (VT_EINVAL);
909 default:
910 return (VT_ERROR);
911 }
912 }
913 free(buf);
914 return (0);
915 }
916
917 /* make sure the user specified something reasonable */
918 static int
919 check_input(struct dk_gpt *vtoc)
920 {
921 int resv_part = -1;
922 int i, j;
923 diskaddr_t istart, jstart, isize, jsize, endsect;
924
925 /*
926 * Sanity-check the input (make sure no partitions overlap)
927 */
928 for (i = 0; i < vtoc->efi_nparts; i++) {
929 /* It can't be unassigned and have an actual size */
930 if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
931 (vtoc->efi_parts[i].p_size != 0)) {
932 if (efi_debug) {
933 (void) fprintf(stderr, "partition %d is "
934 "\"unassigned\" but has a size of %llu",
935 i, vtoc->efi_parts[i].p_size);
936 }
937 return (VT_EINVAL);
938 }
939 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
940 if (uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid))
941 continue;
942 /* we have encountered an unknown uuid */
943 vtoc->efi_parts[i].p_tag = 0xff;
944 }
945 if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
946 if (resv_part != -1) {
947 if (efi_debug) {
948 (void) fprintf(stderr, "found "
949 "duplicate reserved partition "
950 "at %d\n", i);
951 }
952 return (VT_EINVAL);
953 }
954 resv_part = i;
955 }
956 if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
957 (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
958 if (efi_debug) {
959 (void) fprintf(stderr,
960 "Partition %d starts at %llu. ",
961 i,
962 vtoc->efi_parts[i].p_start);
963 (void) fprintf(stderr,
964 "It must be between %llu and %llu.\n",
965 vtoc->efi_first_u_lba,
966 vtoc->efi_last_u_lba);
967 }
968 return (VT_EINVAL);
969 }
970 if ((vtoc->efi_parts[i].p_start +
971 vtoc->efi_parts[i].p_size <
972 vtoc->efi_first_u_lba) ||
973 (vtoc->efi_parts[i].p_start +
974 vtoc->efi_parts[i].p_size >
975 vtoc->efi_last_u_lba + 1)) {
976 if (efi_debug) {
977 (void) fprintf(stderr,
978 "Partition %d ends at %llu. ",
979 i,
980 vtoc->efi_parts[i].p_start +
981 vtoc->efi_parts[i].p_size);
982 (void) fprintf(stderr,
983 "It must be between %llu and %llu.\n",
984 vtoc->efi_first_u_lba,
985 vtoc->efi_last_u_lba);
986 }
987 return (VT_EINVAL);
988 }
989
990 for (j = 0; j < vtoc->efi_nparts; j++) {
991 isize = vtoc->efi_parts[i].p_size;
992 jsize = vtoc->efi_parts[j].p_size;
993 istart = vtoc->efi_parts[i].p_start;
994 jstart = vtoc->efi_parts[j].p_start;
995 if ((i != j) && (isize != 0) && (jsize != 0)) {
996 endsect = jstart + jsize -1;
997 if ((jstart <= istart) &&
998 (istart <= endsect)) {
999 if (efi_debug) {
1000 (void) fprintf(stderr,
1001 "Partition %d overlaps "
1002 "partition %d.", i, j);
1003 }
1004 return (VT_EINVAL);
1005 }
1006 }
1007 }
1008 }
1009 /* just a warning for now */
1010 if ((resv_part == -1) && efi_debug) {
1011 (void) fprintf(stderr,
1012 "no reserved partition found\n");
1013 }
1014 return (0);
1015 }
1016
1017 /*
1018 * add all the unallocated space to the current label
1019 */
1020 int
1021 efi_use_whole_disk(int fd)
1022 {
1023 struct dk_gpt *efi_label;
1024 int rval;
1025 int i;
1026 uint_t phy_last_slice = 0;
1027 diskaddr_t pl_start = 0;
1028 diskaddr_t pl_size;
1029
1030 rval = efi_alloc_and_read(fd, &efi_label);
1031 if (rval < 0) {
1032 return (rval);
1033 }
1034
1035 /* find the last physically non-zero partition */
1036 for (i = 0; i < efi_label->efi_nparts - 2; i ++) {
1037 if (pl_start < efi_label->efi_parts[i].p_start) {
1038 pl_start = efi_label->efi_parts[i].p_start;
1039 phy_last_slice = i;
1040 }
1041 }
1042 pl_size = efi_label->efi_parts[phy_last_slice].p_size;
1043
1044 /*
1045 * If alter_lba is 1, we are using the backup label.
1046 * Since we can locate the backup label by disk capacity,
1047 * there must be no unallocated space.
1048 */
1049 if ((efi_label->efi_altern_lba == 1) || (efi_label->efi_altern_lba
1050 >= efi_label->efi_last_lba)) {
1051 if (efi_debug) {
1052 (void) fprintf(stderr,
1053 "efi_use_whole_disk: requested space not found\n");
1054 }
1055 efi_free(efi_label);
1056 return (VT_ENOSPC);
1057 }
1058
1059 /*
1060 * If there is space between the last physically non-zero partition
1061 * and the reserved partition, just add the unallocated space to this
1062 * area. Otherwise, the unallocated space is added to the last
1063 * physically non-zero partition.
1064 */
1065 if (pl_start + pl_size - 1 == efi_label->efi_last_u_lba -
1066 EFI_MIN_RESV_SIZE) {
1067 efi_label->efi_parts[phy_last_slice].p_size +=
1068 efi_label->efi_last_lba - efi_label->efi_altern_lba;
1069 }
1070
1071 /*
1072 * Move the reserved partition. There is currently no data in
1073 * here except fabricated devids (which get generated via
1074 * efi_write()). So there is no need to copy data.
1075 */
1076 efi_label->efi_parts[efi_label->efi_nparts - 1].p_start +=
1077 efi_label->efi_last_lba - efi_label->efi_altern_lba;
1078 efi_label->efi_last_u_lba += efi_label->efi_last_lba
1079 - efi_label->efi_altern_lba;
1080
1081 rval = efi_write(fd, efi_label);
1082 if (rval < 0) {
1083 if (efi_debug) {
1084 (void) fprintf(stderr,
1085 "efi_use_whole_disk:fail to write label, rval=%d\n",
1086 rval);
1087 }
1088 efi_free(efi_label);
1089 return (rval);
1090 }
1091
1092 efi_free(efi_label);
1093 return (0);
1094 }
1095
1096
1097 /*
1098 * write EFI label and backup label
1099 */
1100 int
1101 efi_write(int fd, struct dk_gpt *vtoc)
1102 {
1103 dk_efi_t dk_ioc;
1104 efi_gpt_t *efi;
1105 efi_gpe_t *efi_parts;
1106 int i, j;
1107 struct dk_cinfo dki_info;
1108 int rval;
1109 int md_flag = 0;
1110 int nblocks;
1111 diskaddr_t lba_backup_gpt_hdr;
1112
1113 if ((rval = efi_get_info(fd, &dki_info)) != 0)
1114 return rval;
1115
1116 /* check if we are dealing wih a metadevice */
1117 if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) &&
1118 (strncmp(dki_info.dki_dname, "md", 3) == 0)) {
1119 md_flag = 1;
1120 }
1121
1122 if (check_input(vtoc)) {
1123 /*
1124 * not valid; if it's a metadevice just pass it down
1125 * because SVM will do its own checking
1126 */
1127 if (md_flag == 0) {
1128 return (VT_EINVAL);
1129 }
1130 }
1131
1132 dk_ioc.dki_lba = 1;
1133 if (NBLOCKS(vtoc->efi_nparts, vtoc->efi_lbasize) < 34) {
1134 dk_ioc.dki_length = EFI_MIN_ARRAY_SIZE + vtoc->efi_lbasize;
1135 } else {
1136 dk_ioc.dki_length = NBLOCKS(vtoc->efi_nparts,
1137 vtoc->efi_lbasize) *
1138 vtoc->efi_lbasize;
1139 }
1140
1141 /*
1142 * the number of blocks occupied by GUID partition entry array
1143 */
1144 nblocks = dk_ioc.dki_length / vtoc->efi_lbasize - 1;
1145
1146 /*
1147 * Backup GPT header is located on the block after GUID
1148 * partition entry array. Here, we calculate the address
1149 * for backup GPT header.
1150 */
1151 lba_backup_gpt_hdr = vtoc->efi_last_u_lba + 1 + nblocks;
1152 if (posix_memalign((void **)&dk_ioc.dki_data,
1153 vtoc->efi_lbasize, dk_ioc.dki_length))
1154 return (VT_ERROR);
1155
1156 memset(dk_ioc.dki_data, 0, dk_ioc.dki_length);
1157 efi = dk_ioc.dki_data;
1158
1159 /* stuff user's input into EFI struct */
1160 efi->efi_gpt_Signature = LE_64(EFI_SIGNATURE);
1161 efi->efi_gpt_Revision = LE_32(vtoc->efi_version); /* 0x02000100 */
1162 efi->efi_gpt_HeaderSize = LE_32(sizeof (struct efi_gpt));
1163 efi->efi_gpt_Reserved1 = 0;
1164 efi->efi_gpt_MyLBA = LE_64(1ULL);
1165 efi->efi_gpt_AlternateLBA = LE_64(lba_backup_gpt_hdr);
1166 efi->efi_gpt_FirstUsableLBA = LE_64(vtoc->efi_first_u_lba);
1167 efi->efi_gpt_LastUsableLBA = LE_64(vtoc->efi_last_u_lba);
1168 efi->efi_gpt_PartitionEntryLBA = LE_64(2ULL);
1169 efi->efi_gpt_NumberOfPartitionEntries = LE_32(vtoc->efi_nparts);
1170 efi->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (struct efi_gpe));
1171 UUID_LE_CONVERT(efi->efi_gpt_DiskGUID, vtoc->efi_disk_uguid);
1172
1173 /* LINTED -- always longlong aligned */
1174 efi_parts = (efi_gpe_t *)((char *)dk_ioc.dki_data + vtoc->efi_lbasize);
1175
1176 for (i = 0; i < vtoc->efi_nparts; i++) {
1177 for (j = 0;
1178 j < sizeof (conversion_array) /
1179 sizeof (struct uuid_to_ptag); j++) {
1180
1181 if (vtoc->efi_parts[i].p_tag == j) {
1182 UUID_LE_CONVERT(
1183 efi_parts[i].efi_gpe_PartitionTypeGUID,
1184 conversion_array[j].uuid);
1185 break;
1186 }
1187 }
1188
1189 if (j == sizeof (conversion_array) /
1190 sizeof (struct uuid_to_ptag)) {
1191 /*
1192 * If we didn't have a matching uuid match, bail here.
1193 * Don't write a label with unknown uuid.
1194 */
1195 if (efi_debug) {
1196 (void) fprintf(stderr,
1197 "Unknown uuid for p_tag %d\n",
1198 vtoc->efi_parts[i].p_tag);
1199 }
1200 return (VT_EINVAL);
1201 }
1202
1203 /* Zero's should be written for empty partitions */
1204 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED)
1205 continue;
1206
1207 efi_parts[i].efi_gpe_StartingLBA =
1208 LE_64(vtoc->efi_parts[i].p_start);
1209 efi_parts[i].efi_gpe_EndingLBA =
1210 LE_64(vtoc->efi_parts[i].p_start +
1211 vtoc->efi_parts[i].p_size - 1);
1212 efi_parts[i].efi_gpe_Attributes.PartitionAttrs =
1213 LE_16(vtoc->efi_parts[i].p_flag);
1214 for (j = 0; j < EFI_PART_NAME_LEN; j++) {
1215 efi_parts[i].efi_gpe_PartitionName[j] =
1216 LE_16((ushort_t)vtoc->efi_parts[i].p_name[j]);
1217 }
1218 if ((vtoc->efi_parts[i].p_tag != V_UNASSIGNED) &&
1219 uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_uguid)) {
1220 (void) uuid_generate((uchar_t *)
1221 &vtoc->efi_parts[i].p_uguid);
1222 }
1223 bcopy(&vtoc->efi_parts[i].p_uguid,
1224 &efi_parts[i].efi_gpe_UniquePartitionGUID,
1225 sizeof (uuid_t));
1226 }
1227 efi->efi_gpt_PartitionEntryArrayCRC32 =
1228 LE_32(efi_crc32((unsigned char *)efi_parts,
1229 vtoc->efi_nparts * (int)sizeof (struct efi_gpe)));
1230 efi->efi_gpt_HeaderCRC32 =
1231 LE_32(efi_crc32((unsigned char *)efi, sizeof (struct efi_gpt)));
1232
1233 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1234 free(dk_ioc.dki_data);
1235 switch (errno) {
1236 case EIO:
1237 return (VT_EIO);
1238 case EINVAL:
1239 return (VT_EINVAL);
1240 default:
1241 return (VT_ERROR);
1242 }
1243 }
1244 /* if it's a metadevice we're done */
1245 if (md_flag) {
1246 free(dk_ioc.dki_data);
1247 return (0);
1248 }
1249
1250 /* write backup partition array */
1251 dk_ioc.dki_lba = vtoc->efi_last_u_lba + 1;
1252 dk_ioc.dki_length -= vtoc->efi_lbasize;
1253 /* LINTED */
1254 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data +
1255 vtoc->efi_lbasize);
1256
1257 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1258 /*
1259 * we wrote the primary label okay, so don't fail
1260 */
1261 if (efi_debug) {
1262 (void) fprintf(stderr,
1263 "write of backup partitions to block %llu "
1264 "failed, errno %d\n",
1265 vtoc->efi_last_u_lba + 1,
1266 errno);
1267 }
1268 }
1269 /*
1270 * now swap MyLBA and AlternateLBA fields and write backup
1271 * partition table header
1272 */
1273 dk_ioc.dki_lba = lba_backup_gpt_hdr;
1274 dk_ioc.dki_length = vtoc->efi_lbasize;
1275 /* LINTED */
1276 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data -
1277 vtoc->efi_lbasize);
1278 efi->efi_gpt_AlternateLBA = LE_64(1ULL);
1279 efi->efi_gpt_MyLBA = LE_64(lba_backup_gpt_hdr);
1280 efi->efi_gpt_PartitionEntryLBA = LE_64(vtoc->efi_last_u_lba + 1);
1281 efi->efi_gpt_HeaderCRC32 = 0;
1282 efi->efi_gpt_HeaderCRC32 =
1283 LE_32(efi_crc32((unsigned char *)dk_ioc.dki_data,
1284 sizeof (struct efi_gpt)));
1285
1286 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1287 if (efi_debug) {
1288 (void) fprintf(stderr,
1289 "write of backup header to block %llu failed, "
1290 "errno %d\n",
1291 lba_backup_gpt_hdr,
1292 errno);
1293 }
1294 }
1295 /* write the PMBR */
1296 (void) write_pmbr(fd, vtoc);
1297 free(dk_ioc.dki_data);
1298
1299 #if defined(__linux__)
1300 rval = efi_rescan(fd);
1301 if (rval)
1302 return (VT_ERROR);
1303 #endif
1304
1305 return (0);
1306 }
1307
1308 void
1309 efi_free(struct dk_gpt *ptr)
1310 {
1311 free(ptr);
1312 }
1313
1314 /*
1315 * Input: File descriptor
1316 * Output: 1 if disk has an EFI label, or > 2TB with no VTOC or legacy MBR.
1317 * Otherwise 0.
1318 */
1319 int
1320 efi_type(int fd)
1321 {
1322 #if 0
1323 struct vtoc vtoc;
1324 struct extvtoc extvtoc;
1325
1326 if (ioctl(fd, DKIOCGEXTVTOC, &extvtoc) == -1) {
1327 if (errno == ENOTSUP)
1328 return (1);
1329 else if (errno == ENOTTY) {
1330 if (ioctl(fd, DKIOCGVTOC, &vtoc) == -1)
1331 if (errno == ENOTSUP)
1332 return (1);
1333 }
1334 }
1335 return (0);
1336 #else
1337 return (ENOSYS);
1338 #endif
1339 }
1340
1341 void
1342 efi_err_check(struct dk_gpt *vtoc)
1343 {
1344 int resv_part = -1;
1345 int i, j;
1346 diskaddr_t istart, jstart, isize, jsize, endsect;
1347 int overlap = 0;
1348
1349 /*
1350 * make sure no partitions overlap
1351 */
1352 for (i = 0; i < vtoc->efi_nparts; i++) {
1353 /* It can't be unassigned and have an actual size */
1354 if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
1355 (vtoc->efi_parts[i].p_size != 0)) {
1356 (void) fprintf(stderr,
1357 "partition %d is \"unassigned\" but has a size "
1358 "of %llu\n", i, vtoc->efi_parts[i].p_size);
1359 }
1360 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
1361 continue;
1362 }
1363 if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
1364 if (resv_part != -1) {
1365 (void) fprintf(stderr,
1366 "found duplicate reserved partition at "
1367 "%d\n", i);
1368 }
1369 resv_part = i;
1370 if (vtoc->efi_parts[i].p_size != EFI_MIN_RESV_SIZE)
1371 (void) fprintf(stderr,
1372 "Warning: reserved partition size must "
1373 "be %d sectors\n", EFI_MIN_RESV_SIZE);
1374 }
1375 if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
1376 (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
1377 (void) fprintf(stderr,
1378 "Partition %d starts at %llu\n",
1379 i,
1380 vtoc->efi_parts[i].p_start);
1381 (void) fprintf(stderr,
1382 "It must be between %llu and %llu.\n",
1383 vtoc->efi_first_u_lba,
1384 vtoc->efi_last_u_lba);
1385 }
1386 if ((vtoc->efi_parts[i].p_start +
1387 vtoc->efi_parts[i].p_size <
1388 vtoc->efi_first_u_lba) ||
1389 (vtoc->efi_parts[i].p_start +
1390 vtoc->efi_parts[i].p_size >
1391 vtoc->efi_last_u_lba + 1)) {
1392 (void) fprintf(stderr,
1393 "Partition %d ends at %llu\n",
1394 i,
1395 vtoc->efi_parts[i].p_start +
1396 vtoc->efi_parts[i].p_size);
1397 (void) fprintf(stderr,
1398 "It must be between %llu and %llu.\n",
1399 vtoc->efi_first_u_lba,
1400 vtoc->efi_last_u_lba);
1401 }
1402
1403 for (j = 0; j < vtoc->efi_nparts; j++) {
1404 isize = vtoc->efi_parts[i].p_size;
1405 jsize = vtoc->efi_parts[j].p_size;
1406 istart = vtoc->efi_parts[i].p_start;
1407 jstart = vtoc->efi_parts[j].p_start;
1408 if ((i != j) && (isize != 0) && (jsize != 0)) {
1409 endsect = jstart + jsize -1;
1410 if ((jstart <= istart) &&
1411 (istart <= endsect)) {
1412 if (!overlap) {
1413 (void) fprintf(stderr,
1414 "label error: EFI Labels do not "
1415 "support overlapping partitions\n");
1416 }
1417 (void) fprintf(stderr,
1418 "Partition %d overlaps partition "
1419 "%d.\n", i, j);
1420 overlap = 1;
1421 }
1422 }
1423 }
1424 }
1425 /* make sure there is a reserved partition */
1426 if (resv_part == -1) {
1427 (void) fprintf(stderr,
1428 "no reserved partition found\n");
1429 }
1430 }
1431
1432 /*
1433 * We need to get information necessary to construct a *new* efi
1434 * label type
1435 */
1436 int
1437 efi_auto_sense(int fd, struct dk_gpt **vtoc)
1438 {
1439
1440 int i;
1441
1442 /*
1443 * Now build the default partition table
1444 */
1445 if (efi_alloc_and_init(fd, EFI_NUMPAR, vtoc) != 0) {
1446 if (efi_debug) {
1447 (void) fprintf(stderr, "efi_alloc_and_init failed.\n");
1448 }
1449 return (-1);
1450 }
1451
1452 for (i = 0; i < MIN((*vtoc)->efi_nparts, V_NUMPAR); i++) {
1453 (*vtoc)->efi_parts[i].p_tag = default_vtoc_map[i].p_tag;
1454 (*vtoc)->efi_parts[i].p_flag = default_vtoc_map[i].p_flag;
1455 (*vtoc)->efi_parts[i].p_start = 0;
1456 (*vtoc)->efi_parts[i].p_size = 0;
1457 }
1458 /*
1459 * Make constants first
1460 * and variable partitions later
1461 */
1462
1463 /* root partition - s0 128 MB */
1464 (*vtoc)->efi_parts[0].p_start = 34;
1465 (*vtoc)->efi_parts[0].p_size = 262144;
1466
1467 /* partition - s1 128 MB */
1468 (*vtoc)->efi_parts[1].p_start = 262178;
1469 (*vtoc)->efi_parts[1].p_size = 262144;
1470
1471 /* partition -s2 is NOT the Backup disk */
1472 (*vtoc)->efi_parts[2].p_tag = V_UNASSIGNED;
1473
1474 /* partition -s6 /usr partition - HOG */
1475 (*vtoc)->efi_parts[6].p_start = 524322;
1476 (*vtoc)->efi_parts[6].p_size = (*vtoc)->efi_last_u_lba - 524322
1477 - (1024 * 16);
1478
1479 /* efi reserved partition - s9 16K */
1480 (*vtoc)->efi_parts[8].p_start = (*vtoc)->efi_last_u_lba - (1024 * 16);
1481 (*vtoc)->efi_parts[8].p_size = (1024 * 16);
1482 (*vtoc)->efi_parts[8].p_tag = V_RESERVED;
1483 return (0);
1484 }